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Intelligent nanoscope for rapid nanomaterial
identification and classification†
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Machine learning image recognition and classification of particles and materials is a rapidly expanding field.

However, nanomaterial identification and classification are dependent on the image resolution, the image

field of view, and the processing time. Optical microscopes are one of the most widely utilized

technologies in laboratories across the world, due to their nondestructive abilities to identify and classify

critical micro-sized objects and processes, but identifying and classifying critical nano-sized objects and

processes with a conventional microscope are outside of its capabilities, due to the diffraction limit of the

optics and small field of view. To overcome these challenges of nanomaterial identification and

classification, we developed an intelligent nanoscope that combines machine learning and microsphere

array-based imaging to: (1) surpass the diffraction limit of the microscope objective with microsphere

imaging to provide high-resolution images; (2) provide large field-of-view imaging without the sacrifice of

resolution by utilizing a microsphere array; and (3) rapidly classify nanomaterials using a deep convolution

neural network. The intelligent nanoscope delivers more than 46 magnified images from a single image

frame so that we collected more than 1000 images within 2 seconds. Moreover, the intelligent nanoscope

achieves a 95% nanomaterial classification accuracy using 1000 images of training sets, which is 45% more

accurate than without the microsphere array. The intelligent nanoscope also achieves a 92% bacteria

classification accuracy using 50000 images of training sets, which is 35% more accurate than without the

microsphere array. This platform accomplished rapid, accurate detection and classification of

nanomaterials with miniscule size differences. The capabilities of this device wield the potential to further

detect and classify smaller biological nanomaterial, such as viruses or extracellular vesicles.

Introduction

Machine learning is a powerful tool for identifying and
classifying material. One of the growing fields of machine
learning applied to image recognition and classification is
deep learning.1–7 Deep learning is a part of the

mathematically revolutionized machine learning algorithms
which analyzes information continuously with a given logic
structure to draw similar conclusions as humans might.
Within the field of deep learning, the convolutional neural
network (CNN) is the most common tool for visual image
analyzation and classification.8–14 CNN exploits the spatial
locality of an image by using convolutional filters, and CNN
image classification methods have demonstrated high
accuracy while saving computational cost for size-based image
classification, ranging from large objects (e.g., firearms) to
small objects (e.g., nanomaterials).15–22 However, image
identification and classification of nanomaterials is limited
by the image resolution, the field of view of the sample, and
the processing time.

Several inventions have been developed in order to assist
in identifying and classifying smaller objects. For example,
the invention of the optical microscope altered the course of
history for the identification of smaller material. Critical
biological organisms and scientific processes have been
analyzed and discovered through its use.23–30 Recently, an
electron microscopy assembled with nanofluidic coulter
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counting system was established for detection of drug-
induced viruses.31 Unlike some of the more advanced
microscopy methods, the optical microscope is a universal
instrument that is used in many research and industrial
areas, due to its nondestructive, inexpensive, and real-time
imaging capabilities.32,33 Moreover, the rapid development of
low-cost and high-frame-rate digital cameras makes fast
sample identification and classification possible.34–36 For
example, recently a flow cytometric cell sorting system with
real-time intelligent image processor was developed to
achieve high-throughput cell imaging and sorting.37 Since
the first generation of optical microscopes, the resolving
power has significantly improved with the superior design of
the objective lens. This high-resolution imaging has been
especially impactful in order to identify critical micro- and
nano-sized particles, viruses, and bacteria that have been
found to greatly impact humanity.38–48 However, the
identification and classification of nanomaterial targets
through a conventional optical microscope has several
limitations. For example, the diffraction limit or resolution of
a 20x objective lens is around 580 nm,49 which makes it hard
to resolve structures smaller than 580 nm. An objective lens
with a higher NA can be used to increase the resolution but
at the cost of a reduced field of view.

One particular method that has been employed to
overcome the diffraction limit of a conventional optical
microscope is by using optically transparent
microspheres.50–59 A microsphere focuses an incoming light
to form a so-called photonic nanojet, which breaks the
diffraction limit and essentially renders the microsphere into
a super-resolution imaging lens. Recently, a microsphere lens
allowed for the successful detection of 50 nm gratings,60

protein,61 and plasmid DNA.62,63 Although the field of view of
one microsphere is small, the field of view can be
significantly increased by increasing the amount of
microspheres or scanning them in a controllable way.64–68

This increase in the field of view increases the sample size of
the images taken, thereby reducing sampling time. For
example, single-nanomaterial detection with a microsphere
array has recently been demonstrated.69,70

By combining the innovations from the microsphere array
optical imaging with CNN machine learning classification
methods, we have developed the intelligent nanoscope. This
platform can rapidly identify and classify nanomaterials with
miniscule size differences. A large dataset of high-resolution
nanomaterial images can be quickly obtained from a
microsphere array as training data for the CNN algorithm to
rapidly distinguish and classify different sized nanomaterials.
The intelligent nanoscope offers the following innovations:
(1) simultaneous large field-of-view and super-resolution
imaging significantly reduces the sample data collection time
and reveals additional training information for the CNN; (2)
a deep CNN is applied to process the images and increase
the accuracy for nanomaterial identification and
classification. The intelligent nanoscope significantly reduces
the number of training data by 90 times and improves the

training accuracy by two times compared to an optical
microscope without the microsphere array. Moreover, we
classified four different kinds of bacteria by using the
intelligent nanoscope. Recently, various research groups have
reported bacteria classification using optical microscopic
images as training datasets for a CNN classification
method.71–73 These studies showed that target bacteria
classification performance is dependent on its shape and
size. By utilizing a microsphere array imaging method, we
magnified the target sample image to acquire detailed
training datasets to enhance bacteria classification of
bacteria of varying shapes and sizes. Some applications that
can be used with this technology include bacteria type
detection for infection diagnostic or nanoparticle size
detection for nanomaterial synthesis feedback
measurements. Overall, this device achieves nondestructive,
rapid, and accurate size-based classification of
nanomaterials, showing great promise to extend to
classifying smaller biological nanomaterials, such as
extracellular vesicles or viruses, in the future.

Materials and methods
Training data collection and deep neural network process

Fig. 1 gives an overall depiction of the training image
collection and deep neural network experiment process. The
left panel of Fig. 1(a) shows a schematic of the intelligent
nanoscope. The intelligent nanoscope consists of a
microsphere array that can be placed on the sample stage of

Fig. 1 (a) Schematic of the intelligent nanoscope setup, process, and
data collection for deep learning training. The microsphere array and
fluidic channel was fabricated to obtain deep learning training dataset
images by super resolution imaging. (b) Schematic of the neural
network process and nanoparticle classification. The gathered training
datasets of each nanoparticle sample were used for feature learning by
a convolutional neural network method. The trained model then
classified the different sizes of nanoparticle samples.
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a conventional optical microscope (20×, NA: 0.45, Eclipse
LV100, Nikon, Japan). Magnified images were first captured
through each barium titanate microsphere, as seen in the
middle panel of Fig. 1(a), and then imaged on a camera
through a low-magnification objective lens on the optical
microscope. Therefore, high-resolution images and a large
field of view can be obtained simultaneously by incorporating
the super-resolution capability of an array of microspheres.

Captured images were then categorized as training input
datasets for deep learning (Fig. 1(a) right panel). To have
consistent image data acquisition, we imaged different sized
SiO2 nanoparticles (0.26 μm, 0.50 μm, 0.69 μm, 0.89 μm, 1.18
μm, Cospheric, USA) within the same microfluidic chip. SEM
images and specification data of the properties of the
nanoparticles are shown in Fig. S1.† Between each
experiment, the microfluidic channel was flushed with water
and ethanol to ensure accurate training images. Furthermore,
the microscope stage was also fixed to make sure all dataset's
focal points were the same.

As shown in Fig. 1(b), we used a deep convolution neural
network based on AlexNet to train and decompose class
layers and then extract the distinctive features of each class.74

The model architecture comprises of 5 convolution layers, 3
fully connected layers, and 3 × 3 max pooled, normalized,
flattened, and dense layers for reducing the overfitting with
the rectified linear unit activation function. This model was
then applied to separate known nanomaterial sizes to
determine the model's accuracy for nanomaterial
identification and classification.

Microsphere array fabrication

The microsphere array is fabricated by using standard soft-
lithography procedures as depicted in Fig. 2.75 First, a
polydimethylsiloxane (PDMS) channel with a height of 7 μm
is fabricated as follows: a photoresist (SU-8 10, MicroChem

Inc., USA) was spin coated (4000 RPM, 30 sec) on a 4-inch
polished single-sided silicon wafer (783, University Wafers,
USA). After soft baking for 2 min at 65 °C and 5 min at 95 °C,
a carefully designed photomask was aligned to subsequently
cure with UV for 10 seconds. Then, after post exposure
baking (1 min at 65 °C, 2 min at 95 °C), the uncured area
was developed by a SU-8 developer (Y020100 4000L1PE,
Fisher Scientific, USA). In the following step, 40 μm sized
barium titanite microspheres (refractive index: 2.2,
Cospheric, USA) were mixed with DI water and dropped on
the 3 mm2 square channel in the fabricated mold. Next, after
drying in room temperature for 3 hours, mixed PDMS base
and cross-linker in a 10 : 1 ratio (Sylgard 184, Dow Corning,
USA) was applied onto the barium titanite particle array mold
and cured in a 65 °C oven for 24 hours. The cured PDMS
channel was then peeled off from the wafer mold and
punched at the inlet and outlet connecting positions. Finally,
the PDMS channel was bonded to an oxygen-plasma-treated
24 mm × 60 mm cover glass with no. 1 thickness
(SuperSlips™ Micro Cover Glasses, VWR, USA) and incubated
at 65 °C overnight.

Experiment and microscope imaging setup

The microsphere array is placed on the sample stage of an
upright microscope (Eclipse LV100, Nikon, Japan) with a 20×
objective lens (NA: 0.45, Nikon, Japan). A transmitted light
source with a colored bandpass filter (FGV9 - Ø25 mm VG9,
Thorlabs, USA) was used to reduce chromatic aberration, and
a 3.1 Mega pixels color CMOS camera (DFK 33UX265,
Imagingsource, USA) was connected to the microscope.
Particles of different sizes are injected to the microsphere
array and imaged with the microsphere array on the
microscope. The sample nanomaterial was loaded and
injected into the device by hand using a 1 ml syringe. As the
flow reached a speed of approximately 15 to 20 μm s−1 in
which the images would not be blurry at a 15 frames per
second acquisition speed, the nanomaterial in the channel
was captured using a CMOS camera with a 20× objective lens.

Results and discussion
Finite element method simulation

A photonic nanojet is typically formed around a microsphere
in a homogenous medium. In order to validate that the PDMS
and water boundaries did not significantly affect the formation
of the photonic nanojet, and in order to optimize the size and
material of the microsphere and the microfluidic channel
height, we performed a finite element method simulation, as
seen in Fig. 3(a–c). To visualize the optical waves' propagation
through the PDMS and 40 μm barium titanite microsphere,
simulations were performed using the electromagnetic wave
module in COMSOL Multiphysics software. The scattering
boundary condition was applied on all the boundaries with an
incident out-of-plane electric field amplitude of 1 V m−1 on the
top. Fig. 3(a) shows the simulated electric field distribution
around a barium titanite microsphere. The simulation result

Fig. 2 Fabrication process of the microsphere array. 40 μm of barium
titanite microspheres are immobilized with PDMS curing in a 7 μm tall
microfluidic channel.
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confirmed that the PDMS and water boundary did not
significantly affect the formation of the photonic nanojet, as
shown in Fig. 3(a). To determine the microfluidic channel
height, we calculated a focal length of the microsphere, which
is defined as the distance between the front surface of the
microsphere and the center of the nanojet as shown in
Fig. 3(b). The calculated focal distance was 6.8 μm, so we
selected approximately 7 μm for the optimum channel height.
In addition, to verify the image capability, we calculated the full
width at half maximum (FWHM) of the photonic nanojets. The
resulting FWHM of the photonic nanojet was 319.5 nm,
indicating that the intelligent nanoscope could achieve around
115 nm ∼201 nm of lateral resolution.52 This is comparable to
the 100× objective lens resolution. To compare with the
resolution and the field of view size between intelligent
nanoscope and conventional microscope, we added a
quantitative table in the Table S1.†

Image acquisition and comparison in different conditions

Although a microsphere could help to resolve and magnify the
target sample, imaging the target sample without the
microsphere array (bare imaging) needed to be considered in
order to compare the machine learning performance with and
without the increased resolution. Thus, we collected both
microsphere imaging and bare imaging for the machine
learning training datasets. Nanomaterial images obtained
through the microsphere array are shown in the first row of
Fig. 3(d). Nanomaterial images in the absence of the
microsphere arrays are shown in the second row of Fig. 3(d).
The field of view was the same for both the microsphere and

bare images for comparison. Due to the lack of microsphere
magnification in the bare images, more nanomaterials are seen
within the image. In this process, we maintained the same
experimental conditions, including light intensity, imaging
resolution, camera shutter speed, and field of view. The only
changed condition was the change in focal point when
collecting the bare images, in order to focus on the
nanomaterials at the surface of the microfluidic channel.
Images collected from these two conditions were used for the
same deep learning training process. Each homogenous
nanoparticle and bacteria samples were prepared in this work
for reliable data collection. The nanomaterial concentration of
the sample was selected to contain the greatest number of
particles to form a single layer of nanomaterials in the field of
view. This nanomaterial concentration was chosen in order to
reduce the machine learning training dataset biases. These
biases include the bias from an increase in empty space for the
smaller sized nanomaterial, the bias from the increase in the
probability of empty microspheres, and the bias from
overlapping nanomaterial samples. Although the bias between
empty space and the number of nanoparticles cannot be
isolated, this concentration was applied to reduce the various
biases of the system. This concentration was applied to both
the microsphere imaging and bare imaging methods. By
utilizing this nanomaterial concentration, a high classification
performance is achieved for both imaging methods.

Deep learning training data preparation

For images collected from the microsphere array, we collected
images at two different focal planes as shown in Fig. 4(a). The

Fig. 3 (a) Finite element method simulation of electric field distribution around a barium titanite microsphere. Outer medium of microsphere is
PDMS (n = 1.43), and the water (n = 1.33) channel is beneath the PDMS and microsphere (n = 2.2). (b) Focal distance measurement from simulation
results. (c) Full width half maximum of the photonic nanojets from 40 μm barium titanite microsphere simulation result. (d) Magnified images
through a microsphere and bare nanoparticle images without a microsphere of the target SiO2 nanoparticles. Scale bar is 5 μm.
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image at focal plane #1 shows the image of the barium
titanate microsphere that was utilized to locate the field of
view of each microsphere lens and provides accurate radius
and center coordinates for image analysis. The focal plane #1
was fixed at the middle point of the barium titanate
microsphere, which was around 20 μm from the
microsphere's bottom, as depicted by the red line in Fig. 4(a).
After taking a single image frame at focal plane #1, the image
focus was moved to focal plane #2, where the sample is
located as shown in Fig. 4(a). At this focal plane, we could
observe the magnified image through the microspheres, and
the main data images were collected by a sequential image
saving function from image capturing software (IC capture –

image acquisition, Imagingsource, USA) at 15 frames per
second. We used a MATLAB circle finding function to obtain
certain information such as the center coordinates and radius
of each microsphere from an image at focal plane #1, as
shown in Fig. 4(b). In total, 46 microspheres were found from
the image along with each microsphere's stored information.
These 46 microspheres covered 51.16% of the original field of
view of the 20× objective lens. This allowed for a similar
percentage of the field of view to compare both the
microsphere and the bare imaging methods with the same
experimental conditions. Then, by applying the stored
microsphere center coordinates and radius information, we
could crop each magnified image belonging to the focal plane
#2 dataset images, as seen in the left panel of Fig. 4(c). Since
each cropped image had an unnecessary edge area which
could cause error for deep learning training, we removed the
remaining edges and preserved the microsphere area from
the cropped images, as shown in the right panel of Fig. 4(c).

Comparison between microsphere images and bare images

To verify the performance of nanomaterial classification, we
tested classification accuracy based on the size of the training
datasets. Each category contained 1000 images for each
particle size, ranging from 0.26 μm to 1.18 μm. A range from
100 to 110 000 images were used for these training datasets.
In each training procedure, we prepared 5000 separate
validation data images and 1000 prediction test images for
each category of nanomaterials. Fig. 5(a) shows that the
training model accuracy is dependent on the size of the
training dataset. The imaging through the microsphere array
has shown comparatively higher accuracy in categorization
from a smaller dataset size. For the case of a microsphere
image, validation accuracy ranged from 67% to 97% with a
corresponding training size of 100 to 1000 images. This result
indicates that datasets of 11 image frames can achieve higher
than 85% classification capability, since a single image frame
has 46 microsphere images as training datasets. When the
training dataset size is higher than 1000 (e.g., 22 image
frames), the prediction test accuracy rises above 95%. In
contrast, bare nanomaterial image without the microspheres
showed that the prediction test accuracy could not exceed
95% until 90 000 images of training dataset sizes were used.
In order to achieve the same test accuracy of 97.5% from
microsphere imaging, the bare imaging required 90 times
more images for its training dataset. Fig. 5(b) and (c) show
the classification results of the different sized particles for
the two imaging nanomaterial methods for a given number
of training data.

Bacteria classification experiment

To demonstrate the capabilities of critical biological
nanomaterial classification, we conducted a classification
study of four different species of bacteria using the same
experimental conditions. We used S. aureus JE2, B. subtilis
3610, E. coli BW25113, and P. aeruginosa PA14 in our
experiments. A single colony was inoculated into 5 ml of
Luria–Bertani (LB) broth medium in a test tube. Cultures
were grown overnight (∼17 hours) in a 37 °C shaker shaking
at 225 rpm. For imaging, the overnight culture was diluted
1 : 5 to the same medium and 1 μl of the diluted culture was
loaded on the glass slide. Detailed bacteria images were
taken under a Nikon Ti-E microscope with 100× objective
lens (Fig. S2†). The average size difference from the
microscope data for each bacteria type is in Fig. S2e.†
Although the average size of each bacteria ranges from ∼1 to
5 μm, the size difference between similarly shaped bacteria is
on the nanoscale (<1 μm). Using the same protocols, we
tested bacteria classification accuracy based on the size of
the training datasets. We collected images through the
microsphere array as shown in the first row of Fig. 6(a) to
obtain each bacteria sample image for the machine learning
training. Bacteria sample images in the absence of the
microsphere arrays were also collected for comparison
without the microsphere array imaging method, as shown in

Fig. 4 (a) Schematic of the two different focal points used through
the microsphere. (b) Circle finding process from an image with focal
point #1. Circle location information is stored. (c) The stored location
is applied at image frames with focal point #2. Cropped image's edges
are removed for making training data.
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the second row of Fig. 6(a). A range from 100 to 110 000
images were used for the training datasets. 5000 separate
images of each bacteria sample were processed for test
accuracy validation and 1000 other separate images were
prepared for prediction testing. Fig. 6(b) shows the training
model accuracy for both the microsphere array imaging and
the bare imaging methods. To achieve a test accuracy of
∼92%, the bare imaging method took more than twice the
amount of images for its training dataset. The classification
results of the four different kinds of bacteria for the two
imaging methods are shown in Fig. S3.† To test whether the
present approach is distinguishing the bacterial cells by their
shapes, we examined a bacteria classification accuracy for the
different shaped bacteria subsets with varying amounts of

training data in the Fig. S4.† The results show that the
different shaped samples require less training data, and that
similarly shaped samples require 5 times larger data size to
reach a 99% classification accuracy. A comparison between
our bacteria classification technology and other bacteria
classification technologies is provided in Fig. S2.†

Conclusions

Here, we introduced the intelligent nanoscope imaging
platform that utilizes a microsphere array to optically image
and classify nanomaterials using a deep learning network.
The microsphere array achieved a large field of view with
high resolution for rapid data collection. By combining the
microsphere array and machine learning, the intelligent
nanoscope imaging platform achieved rapid classification of
similarly sized particles. Greater than 95% nanomaterial
classification test accuracy was achieved by 1000 dataset
images, which only took 2 seconds of collection time with a
15 frames/second camera. Also, nearly 92% bacteria
classification test accuracy was achieved by 50 000 dataset
images, which only took ∼73 seconds of collection time with
a 15 frames/second camera. Given these features, this work
could greatly assist in treating imperative biological
nanomaterial threats, such as bacterial or viral infections, by
rapidly and accurately classifying and identifying the
biological nanomaterials. Future works of this technology
include the classification of heterogenous samples and
smaller bionanomaterial, including fluorescently tagged viral
particles or small extracellular vesicles.
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