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Abstract
The cataclysmic observations of event GW170817, first as gravitational waves along
the inspiral motion of two neutron stars, then as a short γ -ray burst, and later as a
kilonova, launched the era of multimessenger astronomy, and played a pivotal role in
furthering our understanding on a number of longstanding questions. Numerical mod-
eling of such multimessenger sources is an important tool to understand the physics of
compact objects and, more generally, the physics of matter under extreme conditions.
In this review we present a unified view of various techniques used to obtain equi-
librium and quasiequilibrium solutions for three astrophysically relevant relativistic,
self-gravitating fluid systems: Binary neutron stars, black hole-disks, and magne-
tized rotating neutron stars. These solutions are necessary not only for modeling such
compact objects, but equally important, for providing self-consistent initial data in
numerical relativity simulations. Instead of presenting the full details of the formula-
tions and numerical algorithms, we focus on painting the broadbrush picture of the
methods developed to address these problems, and facilitate future work in the area.
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1 Introduction

Although the majority of neutron stars are observed as isolated pulsars that emit elec-
tromagnetic radiation from their magnetic poles [1, 2], a small percentage of them
appear in binary systems. In our own Galaxy the first binary neutron star (BNS) sys-
tem, PSR B1913+16, was discovered in 1974 [3] while currently 19 such binaries are
known [4]). Despite the small number of BNS currently observed their strong gravita-
tional and electromagnetic interactions constitute them as ideal probes for relativistic
astrophysical phenomena. In particular:

(i) During their inspiral and merger they produce gravitational waves an important
feature of the general theory of relativity. Fundamental tests related to gravity in
an otherwise inaccessible strong-field regime are therefore possible [5–7].

(ii) The late inspiral as well as the merger process can yield important information
about the masses and radii of the component stars and in effect about their
equation of state (EOS) [8–11].

(iii) They can be the progenitors of short duration (< 2 s) γ -ray bursts (sGRBs)
[12–14].
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(iv) They constitute premier sites for the production of rare heavy elements like gold
and platinum [15–17], through a rapid neutron-capture process (or r-process), in
which neutrons are captured by lighter nuclei like iron in a dense neutron-rich
environment [18, 19].

In a single stroke the first detection by LIGO/Virgo of a BNS approximately 40 Mpc
away in the Galaxy NGC 4993, together with follow-up detections by the Fermi,
INTEGRAL spacecrafts and other telescopes, addressed all of the problems above.
Event GW170817 showed the inspiral of two neutron stars [20] which was followed
by a sGRB, named GRB170817A 1.7 s later [21–23]. Lastly a luminous optical
counterpart, named AT2017gfo, was also observed 11 hours after the merger [24–28].
This kilonova [29] transient was powered by the radioactive decay of heavy neutron-
rich elements created in the expandingmerger ejecta [30] and served as a direct probe of
the astrophysical origin of the heaviest elements in the Universe (see recent review by
Metzger [31]). Despite the scarcity of detections like event GW170817, it is apparent
that the synthesis of gravity, electromagnetism, and microphysical processes in binary
black hole-neutron star (BHNS) or BNS mergers (binary black holes are not expected
to produce electromagnetic radiation due to the absence of matter) is astrophysically
very fruitful [32–41].

The background spacetime in which many of the complex phenomena mentioned
above develop, is the strong gravity regime. Depending on the question at hand, or
the timescale, one can consider two categories of problems. In the first category there
is a dominant compact object (either single or composite) that sets up the spacetime
and the rest of the system is evolving either without affecting the gravitational sector
or by perturbing it. An example of such system is a black hole surrounded by a non
self-gravitating disk [42]. A widely separated BNS where the neutron stars are treated
as point masses, also falls within this class of problems [43]. The complement of the
first category constitutes of all systems where the gravitational interactions between
the various components are equally significant, cannot be isolated, and vary with time.
In this category one necessarily ends up with a dynamical spacetime where the self-
gravity of every component is important. Analytical work for these kinds of systems is
limited, and full 3+ 1 (spatial and temporal) computational calculations are the main
tool of investigation. In this endeavor the Einstein equations are playing the leading
role since both electromagnetic and nuclear interactions are actingwithin the unknown
spacetime. Therefore numerical simulations that try to explain complex phenomena
behindBHNSorBNSmergers inevitably have to be able to integrate in a stableway the
equations of general relativity, a second order system of partial differential equations.
In addition in order to incorporate magnetic fields one needs Maxwell’s equations,
and finally the energy-momentum and radiation transport equations for the evolution
of matter and radiation.

Any differential equation needs initial values in order to be integrated and the afore-
mentioned dynamical system is no exception. Even more, due to the complexity of
the problem there are two main difficulties. The first one is mathematical and is asso-
ciated with the fact that the Einstein dynamical system itself, and therefore its initial
values too, is not trivially posed. After all the Einstein equations for the pair (M, gαβ),
where M is a 4-dimensional manifold, and gαβ a Lorentzian metric, are invariant
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under diffeomorphisms of M and the associated isometries of gαβ . In addition even
if a formulation is mathematically well posed it does not mean that it will be numeri-
cally stable. The second difficulty is rooted into the fact that the initial value functions
must represent the physical system under consideration which is a complicated task
in the general theory of relativity. Basic concepts like the mass, angular momentum or
center of mass are not trivially defined as they are in Newtonian mechanics. In other
words it is not always clear what kind of assumptions one has to make in order to get a
snapshot of the system under consideration which will be physically meaningful. The
subject of numerical relativity and relativistic hydrodynamics has grown considerably
since the pioneering binary black hole simulations [44–46] and details can be found
in a number of textbooks [47–53], while recent reviews [41, 54–58] present different
aspects of it.

In this review we will touch upon the initial value problem and its numerical imple-
mentationof three astrophysically relevant self-gravitating systems that includematter:
BNSs, black hole-disks (BHDs), and magnetized rotating neutron stars (MRNSs). For
reasons mentioned above the modeling of a neutron star in a binary or single setting as
well as its magnetic field is very important not only for gravitational wave astronomy
but also multimessenger astrophysics. In addition since the most promising scenario
for the existence of a sGRB is a black hole surrounded by a massive disk [12, 13,
59–65] the study of such systems is also well-motivated. Furthermore BHDs are ubiq-
uitous in the Universe and self-gravity can be important at certain times during their
evolution. AlthoughBHDs have been intensely studied in the past [42, 53, 66, 67], here
we will focus only on general relativistic self-gravitating disks that are not covered in
the bibliography, where a fixed Kerr black hole is assumed. Apart from the BNS initial
value problem which is discussed extensively in the bibliography, BHD and MRNS
are still missing a concrete exposition, therefore our effort here is to close this gap
and offer a unified approach to the subject. Also we do not discuss the initial value
problem of binary black holes, BHNSs or rotating neutron stars (RNSs) since it is suf-
ficiently covered in the textbooks and the reviews mentioned above. Due to limitations
in space, our discussionwill focus only on the salient features andmethods of obtaining
self-gravitating solutions of generic BNS, BHD, andMRNS (quasi)equilibria, without
getting into the details of those calculations.Wewill narrow our exposition only in full
general relativistic methods. Neither will we address the important subject of stability
and evolution in general for these compact objects that inevitably would make this
review growmanyfold. Our main goal is to offer a bird’s eye view of the subject, while
at the same time motivate further research in the field of numerical general relativistic
solutions.

In this review Greek indices are taken to run from 0 to 3 while Latin indices from
1 to 3. We use a signature (−,+,+,+) for the spacetime line element, and a system
of units in which c = G = M� = 1 (unless explicitly shown). The list of acronyms
adopted in this paper are listed below:

2 Binary neutron stars

In general relativity contrary to Newtonian gravity binary compact objects evolve
by the emission of gravitational waves. When two neutron stars are separated by a
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BNS Binary neutron star sGRB Short γ -ray burst
RNS Rotating neutron star EOS Equation of state
MRNS Magnetized rotating neutron star ADM Arnowitt–Deser–Misner
BHD Black hole-disk KEH Komatsu–Eriguchi–Hachisu
MHD Magnetohydrodynamics IWM Isenberg–Wilson–Mathews
IMHD Ideal magnetohydrodynamics

distance much larger than their radii one can approximate them as point particles [43].
At that stage the neutron stars evolve in an adiabatic manner with the gravitational
wave timescale being larger than the orbital period Porb,

tgw
Porb

≈
( r

6M

)5/2 ( M

4μ

)
. (1)

Here M is the total mass of the binary and μ its reduced mass (μ = M/4 for equal
mass binaries).When the separation becomes smaller, the gravitational wave timescale
decreases, as does the orbital period. When the two become comparable, the radial
velocity of the neutron stars increases significantly and the adiabatic approximation
breaks down. For a typical system this happens at 35 km or 1 kHz gravitational wave
frequency with the orbital period being approximately 2 ms. The neutron stars merge
shortly afterwards. At the intermediate stage when on one hand the two neutron stars
are not too far (distances less than 60 km), but on the other not too close, (distances
greater than 35 km) the system can be approximated as stationary in the corotating
frame and finite size effects are important. The combined Einstein–Euler system needs
to be resolved for an accurate representation of the system. The methods described
below aim at that stage. The solutions obtained can be used as accurate initial values
for performing full general relativistic simulations and study the late inspiral, merger
and postmerger at the nonlinear regime, but they can also be used on their own for
gaining important information regarding this stage in the evolution of the binary.

2.1 Isenberg–Wilson–Mathews formulation

One of the pillars in constructing binary neutron star initial data is the so-called
Isenberg–Wilson–Mathews (IWM) formulation [68–71]. Threewaveless formulations
were proposed by Isenberg in 1978 [68] which simplify computations of astrophysical
systems of compact objects by decoupling the gravitationalwave part and an “induced”
part of strong gravity (which may be associated with the matter source terms). Isen-
berg never implemented the formulation into a numerical code, but later Wilson and
Mathews [69–71] implemented one of the waveless formulations, in which the spatial
metric is assumed to be conformally flat, for the evolution of BNSs.

Since a binary system is inherently nonaxisymmetric, all 10 metric components in
the spacetime line element are necessary. A convenient way to express that is by the
use of the 3 + 1 form

ds2 = −α2dt2 + γi j (dx
i + β i dt)(dx j + β j dt), (2)
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where α, β i are the lapse function and shift vector respectively, and γi j the spatial
metric. A conformal 3-metric, γ̃i j , and a conformal traceless extrinsic curvature, Ãi j ,
are introduced through [72, 73]

γi j = ψ4γ̃i j , and Ai j = ψ4 Ãi j , (3)

where ψ is the confomal factor. In the IWM formulation, the spatial metric is con-
formally flat γ̃i j = fi j ( fi j = δi j in Cartesian coordinates), the slicing is maximal
K = 0, and the time derivatives of the conformal metric vanish ∂t γ̃i j = 0. Under
such assumptions, part of the Einstein system reduces to 5 elliptic equations for the
conformal factorψ , the lapse α and the shift β i . These are the Hamiltonian constraint,
the spatial trace of ∂t Ki j , and the momentum constraint. In the IWM formulation the
tracefree part of the extrinsic curvature is written in terms of the lapse, the shift, and
the conformal factor as

Ai j = Ki j = ψ−4

2α

( ◦
Diβ j + ◦

D jβ i − 2

3
f i j

◦
Dkβ

k
)
, (4)

where
◦
D is the covariant derivative with respect to the flat metric,

◦
Dc fab = 0 (in

Cartesian coordinates
◦
Di = ∂i ). This scheme was first used in an evolutionary study

of BNSs by Wilson et al. [70, 71]. Soon after, it was realized that the IWM formu-
lation was even more useful for the construction of accurate initial data sets for full
numerical relativity simulations. The IWM formulation is still used in simulations of
binary neutron stars or binary white dwarf mergers in order to incorporate (part of)
relativistic gravity by replacing the Newtonian gravitational potential with the above
metric potentials [74, 75]. The connection between gravity and matter can be accom-
plished in many ways and the IWM formalism is one of them. A better formulation
will be presented later in Sect. 2.9 [76, 77].

2.2 Mass, angular momentum and the first law for binary systems

Two important characteristics of a BNS system are its mass-energy content, and its
angular momentum. In an asymptotically flat spacetime like the one representing an
isolated BNS a definition for a global mass was presented by Arnowitt–Deser–Misner
(ADM) [78, 79]. It is now called the ADM mass

M = 1

16π

∮

S∞
( f ai f bk − f ki f ab)

◦
DkγabdSi , (5)

where the integral is performed on a sphere whose radius tends at infinity. Similarly
the ADM angular momentum associated with a rotational Killing vector φi is

J = − 1

8π

∮

S∞
π i

jφ
j dSi , (6)
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were π i j = −(Ki j −γ i j K )√γ the momentum conjugate to γi j .1 Having a spacetime
metric in the form of Eq. (2), one can rewrite Eqs. (5) and (6) in terms of α,ψ, β i , Ki j

(see e.g. [51]) and therefore have a measure of the mass and angular momentum in
terms of the 3 + 1 variables.

According to the first law of thermodynamics for binary systems by Friedman
et al. [80], if one assumes a spatial geometry Σt that is conformally flat, neighboring
equilibria of asymptotically flat spacetimes with a helical Killing vector satisfy

δM = Ωδ J +
∫

Σt

[T̄ΔdS + μ̄ΔdM0 + V αΔdCα] +
∑
i

1

8π
κiδAi . (7)

Here M and J are the ADM mass and angular momentum of the spacetime while Ω
is the orbital angular velocity; T̄ and μ̄ are the redshifted temperature and chemical
potential; dM0 is the baryon mass of a fluid element; dCα is related to the circulation
of a fluid element, and V α is the velocity with respect to the corotating frame; κi , Ai

are the surface gravity, and the areas of black holes. For isentropic fluids, dynamical
evolution conserves the baryon mass, entropy, and vorticity of each fluid element, and
thus the first law yields

δM = Ωδ J . (8)

Eq. (7) implies that a natural measure to characterize the spin of a neutron star in a
binary setting is its circulation in a similar manner to the way rest mass characterizes
the mass.

2.3 Equations for perfect fluids

In this review the stress-energy tensor for the matter will be described by a perfect
fluid with 4-velocity uα , pressure p and total energy density ε,

T αβM = (ε + p)uαuβ + pgαβ. (9)

Its conservation leads to [52, 81]

∇βT αβM = ρ[uβ∇β(huα)+ ∇αh] + huα∇β(ρuβ)− ρT∇αs = 0, (10)

where thefirst lawof thermodynamicsdh = Tds+dp/ρ has beenused for the pressure
gradient. Here ρ, h, s are the rest-mass density, specific enthalpy (h := (ε + p)/ρ),
and specific entropy respectively.

The inspiral of two cold neutron stars can be considered as an isentropic process
therefore the last term in Eq. (10) can be set to zero. In addition the system con-

1 In the original works [78, 79] there is no mention of angular momentum. As discussed in [51], Eq. (6), is
not invariant under certain coordinate transformations, and one needs to impose further asymptotic gauge
conditions. Despite of that, and given the similarities with the ADM mass, we will refer to Eq. (6) as the
ADM angular momentum, a convention that is widely used in numerical relativity studies.
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serves rest mass,∇α(ρuα) = 0, therefore one arrives at the relativistic Euler equation,
uβ∇β(huα)+ ∇αh = 0.

Decomposing the 4-velocity with respect to the corotating observer as

uα = ut (kα + V α), (11)

with

kα = tα +Ωφα (12)

being the helical vector, one can rewrite the conservation of rest mass as

Lk(ρu
t )+ ∇α(ρut V α) = 0, (13)

and the Euler equation as,

Lk(huα)+ ∇α
(
h

ut
+ huβV

β

)
+ V βωαβ = 0, (14)

whereωαβ = ∇β(huα)−∇α(huβ) is the vorticity tensor. HereLk is the Lie derivative
along kα , and vector φα generates rotations in the φ direction. Equations (13) and (14)
are valid for any type of flow field. In the next sections we will describe 3 types of
flows: corotating, irrotational, and arbitrary spinning.

2.4 Corotating binary neutron star initial data

The first BNS quasiequilibrium initial data have been constructed by Baumgarte et al.
[82, 83] using the IWM formalism. Neglecting deviations from a strictly periodic
circular orbit and assuming the two stars to be corotating, the fluid 4-velocity is pro-
portional to the helical vector kα , as in a single rotating neutron star, which is assumed
to be a Killing vector—a time translation symmetry in a rotating frame. HereΩ in Eq.
(12) is the orbital angular velocity of the binary system which is also the spin angular
velocity of the corotating component stars. Similarly to the single rotating star case the
Euler equations can be integrated to yield a first integral. Equation (14) with V α = 0
and Lk(huα) = 0 results in

h

ut
= C, (15)

where C is a constant. This first integral can be used to compute the single unknown
thermodynamic variable (for example h). The component ut can be found from the
normalization of the 4-velocity and the gravitational variables, ut = 1/

√
α2 − ωiωi ,

where ωi = β i +Ωφi is the so-called corotating shift vector. There are two constants
that appear in the equations, which are the orbital angular velocityΩ and the constant
C that has the meaning of the injection energy [84]. These are evaluated from two
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conditions, one is to fix ρ at the center of the star, and the other to fix the separation.2

The whole procedure above is repeated until the differences in all computed quantities
between two subsequent iteration steps drop below a certain threshold error.

Baumgarte et al. [82, 83] built quasiequilibrium binary sequences, i.e. sequences of
solutions of constant rest mass and decreasing separation, which approximate evolu-
tionary trajectories of neutron star binaries undergoing slow inspiral via the generation
of gravitational radiation. By construction these sequences maintained corotation (i.e.
the spin frequency of the neutron stars increases as they become closer) which is
not realistic, since tidal torques due to realistic viscosity mechanisms are not strong
enough to synchronize the neutron star spin. The conserved quantity in a BNS system
besides the rest mass is circulation [80, 85, 86]. Nevertheless, constructing corotating
sequenceswas a very important first step in understanding close binary dynamics. They
found that the maximum density of the component stars decreases as they approach
each other and become tidally deformed.3 At the same time, the mass that a given
maximum density can support increases as the stars approach each other. The authors
found that the maximum allowed mass of neutron stars in quasiequilibrium binaries
increases with decreasing separation. These effects are larger for a smaller polytropic
index and hence a stiffer EOS. In this review we use the term stiff in two ways. If the
EOS is a simple polytrope, then a stiff EOS has a higher value of polytropic exponent
Γ . On the other hand if we have a realistic EOS (as those represented in piecewise
polytropic form [95]) a stiff EOS signifies that a more massive neutron star can be
supported.4

Baumgarte et al. computed the binding energy of the system Eb = M − M∞,
where M is the ADM mass at a given separation, and M∞ = M1 + M2 the sum of
the two gravitational masses of the two component stars at infinite separation. In a
corotating binary as the stars approach each other, the angular velocity increases while
the binding energy decreases as in Newtonian gravity. When the separation becomes
sufficiently small, finite size effects start playing an important role, and in particular
the (positive) rotational energy of the stars reduces the negative binding energy. If the
EOS is sufficiently stiff (Γ � 2 so that the moment of inertia is sufficiently large)
the binding energy goes through a minimum and then increases again prior to contact.
Thisminimum in energywhich coincides with theminimum in the angular momentum
of the system (see Eq. (8) [80]), approximately signifies the innermost stable circular
orbit (ISCO) beyond which a rapid plunge and merger occurs. By locating the turning
points in their total energy versus separation curves, the authors identified the onset of

2 Sometimes the number of constants is augmented to 3 or 4, and additional conditions are needed. This
results in a system of 3 or 4 non-linear equations that needs to be solved at every iteration.
3 The behavior of maximum density as the binary system merges was the subject of intense debate which
stemmed from relativistic numerical simulations [70, 71, 87] in which it has been noted that as the stars
approach each other their interior maximum density increases. As a consequence, depending on the EOS,
BNS would collapse individually toward black holes prior to merger. At that time many authors have
disputed the finding of density increase [88–92], while Flanagan [93] pointed to an inconsistency in the
solution of the shift vector employed in [70, 71, 87] and was responsible for this erroneous behavior [94].
4 A lot of times this means that for a given mass, stiff EOSs result in larger radius. Confusion may arise
since for simple polytropes (in terms of normalized mass and radius), a higher Γ results in neutron stars
with smaller radius (for a given mass), or in a smaller maximummass, although the maximum compactness
M/R becomes higher.
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orbital instability, and the orbital parameters at that critical radius finding no evidence
of destabilization [70, 71, 96]. For soft EOSs the stars are more centrally condensed
and such a minimum in the energy is absent, i.e. the binding energy is monotonically
decreasing andmerger happens at someminimumdistance at the inner Lagrange point.

Corotating BNSs have also been calculated byMarronetti et al. [97] using the IWM
scheme similarly to [82], where the focus was in the direct determination of the ISCO.
The authors presented equal mass corotating binaries from a larger separation, where
the Newtonian approximation is valid, to a smaller separation close to ISCO. Further
analysis of conformally flat corotating configurations has been presented by Miller
et al. [98], who explicitly showed that if one takes into account the spin energy of
the neutron stars, the effective binding energy (i.e. the binding energy of an effective
irrotational BNS) no longer exhibits a minimum (this was in agreement with irro-
tational quasiequilibrium BNS sequences as we describe in Sect. 2.5). The authors
made a complete comparison of the quasiequilibrium corotating sequences with full
general relativistic simulations and analyzed the conformal flatness assumption, and
the assumption of the 4-velocity being proportional to the Killing vector field kα in a
BNS evolution. It turned out that the violation of the assumption regarding the timelike
helical Killing vector field was an order of magnitude larger than the violation of the
assumption of conformal flatness. In particular, for corotating BNSs at separations
less than 47M0 (which was slightly more than 6 neutron star radii), where M0 is the
neutron star rest mass, the quasiequilibrium solutions violate the Einstein field equa-
tions at the order of 10%. On the other hand the conformal flatness assumption was
violated at the order of 1%.

2.5 Irrotational binary neutron star initial data

Asmentioned earlier corotation is not maintained during the evolution of a BNS due to
their small viscosity [85, 86, 98]. Instead the conserved quantity is circulation, and it is
expected that most BNSs can be approximated as irrotational, i.e. having no vorticity
in the inertial frame. In this case the stars are counterotating in the rotating frame and
therefore thefluid velocity is nonzero there. Thismeans that in contrast to the corotating
case, the continuity equation is nontrivial and leads to an equation for the divergence
of the fluid velocity. A first formulation that treated the case of nonsynchronized
binaries was presented by Bonazzola et al. [99] and Asada [100]. Later Shibata [101]
and Teukolsky [102] presented a simplified formulation introducing the relativistic
velocity potential. Since for irrotational BNSs the three formalisms are equivalent
(see Appendix A in [103]), with the latter two being much simpler, and becoming the
workhorse in all subsequent numerical implementations, we will limit our discussion
to those. As in the corotating case, we assume that the system preserves its properties
under the action of the helical Killing vector (12) (stationarity property), i.e.

Lk(uα) = Lk(h) = 0. (16)

For an irrotational flow the vorticity tensor ωαβ is by definition zero which implies
that the 4-velocity can be derived from a potential Φ
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huα = ∇αΦ, (17)

which together with the conservation of rest mass, Eq. (13), will yield an elliptic
equation for Φ, ∇α(ρh ∇αΦ) = 0, or in 3+ 1 form under helical symmetry (16), (13)

Di (αρu
t V i ) = 0, with V i = DiΦ

hut
− ωi . (18)

Here Di is the 3D covariant derivative associated with γi j . A boundary condition
for this Poisson type of equation can be derived by setting the fluid velocity in the
corotating frame V α at the stellar surface, r = Rs , to be tangent to the surface itself,
V α∇α p|r=Rs = 0, which yields

(DiΦ − hutωi )Diρ|r=Rs = 0. (19)

Having determined the enthalpy vector (canonical momentum), huα , one needs to
calculate the enthalpy h in order to have a complete solution of the fluid equations for
a barotropic EOS. Equation (14) under the assumptions of Eqs. (16) yields the first
integral

h

ut
+ V β∇βΦ = const. (20)

We emphasize here that in order to arrive to the first integral Eq. (20), and the elliptic
equation for Φ, Eq. (18), both the first (in particular Lkut = 0) and the second parts
of Eq. (16) are used. In other words both the thermodynamic profile and the velocity
field need to respect the approximation of stationarity in the corotating frame.

The irrotational formulation by Shibata [101] and Teukolsky [102] togetherwith the
IWMformalism [68, 70, 71] has been used bymany groups around theworld in order to
obtain realistic BNS initial data. The first such calculation has been done by Bonazzola
et al. [104] which explicitly showed that the maximum density of constant rest-mass
irrotational binaries decreases with respect to its value at infinite separation, as the
binaries are approaching each other. As expected the decrease is not as pronounced as
the corresponding decrease of the corotating binaries. This can be explained by the fact
that the latter have considerable spin at close distances which leads to a larger decrease
in their central density, as in a sequence of single rotating neutron stars that starts at the
spherical limit and evolves towards the mass-shedding limit. These first results have
soon been confirmed by Marronetti et al. [105] as well as by Uryū and Eriguchi [106].
The picture that emerged from these early BNS initial data studies [104–114] can be
summarized as follows: (1) Irrotational binary neutron star systems have been found
to be dynamically stable during the inspiraling stage until Roche lobe overflow starts
at the L1 point as in the Newtonian cases. The quasiequilibrium sequences showed
no increase of the maximum energy density during the inspiraling phase as a result
of gravitational wave emission. (2) In general, equal mass corotating BNS sequences
terminate at contact point, while all the other types of sequences (corotating nonequal
mass BNSs, irrotational equalmass, and irrotational nonequalmass binaries) end at the
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mass shedding point. (3) Turning points (defining the ISCO) in the binding energy and
angular momentum of constant rest-mass sequences are found for corotating binary
systems for Γ ≥ 2 and for irrotational ones for Γ ≥ 2.5. It was conjectured, that
if the turning points are found for the Newtonian binaries for some adiabatic index
Γ , they should exist in the general relativistic computations for the same value of Γ .
(4) For different mass binary systems a turning point may not always exist. (5) The
deformation of the star is determined by the orbital separation and the mass ratio and
is not affected much by its compactness. (6) The decrease of the central energy density
depends on the compactness of the star and not on that of its companion.

The first three groups that computed irrotational BNS quasiequilibrium initial data
used the same formalism for the gravitational field and hydrodynamics but completely
different numerical techniques to solve these equations. In particular Bonazzola et al.
[104, 107] used a multi-domain pseudo spectral method with several coordinate sys-
tems one of which is fitted to the stellar surface. The implementation has been done
within the lorene code [115] and produced solutions with excellent accuracy with
only limited amount of resources. Marronetti et al. [105] on the other hand, used a
Cartesian coordinate system and a finite differencemethod. They used domain decom-
position techniques which provided a natural way of code parallelization, that reduced
the processing time enormously. For the conservation of rest-mass density equation,
they splitted the elliptic equation for the potential field into homogeneous and inhomo-
geneous parts, with the homogeneous field satisfying the boundary condition. While
formally correct, this solution was difficult to implement accurately and the results
strongly depended on grid resolutions (see Sect. 2.7 for recent work on this issue). In
theworks byUryū and Eriguchi [106] spherical coordinates and finite differenceswere
used while the Poisson equations were inverted using a Green’s function approach.
This was the first application of the Komatsu–Eriguchi–Hachisu (KEH) method [116,
117] to BNSs in general relativity. Separate coordinates for the gravitational and fluid
equations have been employed (surface fitted coordinates) that enabled the accurate
determination of the neutron star surface.

A systematic study of quasiequilibriumBNSs has been performed by Taniguchi and
Shibata [118] where a large number of systems with different mass ratios q = M1/M2
(0.71 ≤ q ≤ 1), total masses, and EOSs has been studied under the IWM formulation
using the lorene code. By constructing a large number of BNS sequences of constant
rest mass, the authors investigated the behavior of the binding energy and total angular
momentum, the endpoint of such sequences, and the orbital angular velocity as a
function of time. They found that for piecewise polytropic EOSs the change in stellar
radius at fixed core stiffness makes the orbital angular velocity at the mass-shedding
limit vary widely, while the change in stiffness of the core EOS at fixed stellar radius
does not change the orbital angular velocity at mass-shedding significantly. Since the
less massive star in an unequal-mass binary is tidally deformed by the companion
more massive star and starts shedding mass at larger separation than that for the
equal-mass case, the orbital angular velocity at the closest separation decreases as we
decrease the mass ratio. On the other hand the orbital angular velocity at the mass-
shedding limit increases as the neutron star mass increases, since a more massive star
becomes more compact and more difficult to be tidally disrupted for the same EOS.
This implies that BNS with massive stars need to come closer than those with less
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massive stars for reaching the mass-shedding limit. The authors derive an empirical
formula for the orbital angular velocity at the mass-shedding limit using a Newtonian
argument

MΩms = 0.27C3/2
1

(
1 + 1

q

)3/2
q1/2 (21)

where C1 = M1/R1 the compactness of the first neutron star.
In all the initial data above, the IWM formulation as well as helical symmetry

for the matter [Eq. (16)] is assumed. Any sequence constructed from such initial
data, satisfies Eq. (8). Stated differently, a sequence whose entropy and rest mass is
kept constant, and the flow is either corotational or circulation conserving, approx-
imately inspirals as a result of gravitational wave emission. However, because such
solutions represent circular orbits of the IWM spacetime, their sequences deviate
from the realistic inspiraling orbits in full general relativity. When such initial data
are used for precise numerical relativity simulations of inspiraling BNS (typically
for highly accurate gravitational wave extraction), an approaching velocity for the
component stars is added to minimize the deviation from the inspiraling orbit (see
Sect. 2.8).

2.6 Spinning binary neutron star initial data

One of the most important characteristic of a neutron star is its rotational frequency,
which in isolation has been observed to be as high as 716 Hz, corresponding to a
period of 1.4 ms for PSR J1748-2446ad [119]. For the BNS systems currently known
in the Galaxy [120, 121] the rotational frequencies are typically smaller. The neutron
star in the system J1807-2500B has a period of 4.2 ms while systems J1946+2052
[122], J1757-1854 [123], J0737-3039A [124] have periods 16.96, 21.50, 22.70 ms
respectively. Although the majority of the BNS simulations are based on formulations
that assume the neutron stars to be irrotational this is no longer true when the spins are
as high as approximately 10 times the orbital period atmerger (∼ 3 ms). In otherwords
for accurate gravitational wave analysis we cannot ignore neutron star spins that are
30 ms or less. According to [121] this will be the case for binaries J1946+2052, J1757-
1854, J0737-3039A which at merger will have periods of 18.23, 27.09, 27.17 ms,
respectively. Note that typical spin down rate observed for neutron stars is around
10−13 − 10−17s s−1, where 10−15s s−1 = 30 ms/106 yr. Also, let’s not forget that
event GW170817 [20] was unable to rule out high spin priors and thus two sets of data
(for low and high spins) were consistent with the observations.

2.6.1 Earlier formulations and calculations

The first attempt to address the neutron star spin in a general relativistic binary setting
was byMarronetti and Shapiro [125]. Despite the problems with their approach, it laid
the foundations for the more recent advances in this topic by Tichy [126] that we will
discuss in the next section. The central points of [125] are the use of the generalized
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Bernoulli law

Lu(huαk
α) = 0 (22)

together with a decomposition

vi = viRS + viRI + εi jkΩ j xk (23)

for the fluid velocity. Here vi = ui/ut and Eq. (23) decomposes the velocity with
respect to the inertial frame vi , into an orbital velocity (last term) and a velocity with
respect to the rotating frame (other two terms). The latter is further written as the sum
of a solenoidal viRS, and an irrotational part viRI, i.e.

∂iv
i
RS = 0, εk ji∂

jviRI = 0. (24)

Here εk ji is the three-dimensional Levi–Civita tensor. Equation (22) holds if kα is a
Killing vector, and a symmetry vector for the stress-energy tensor. It generalizes the
relativistic Bernoulli law for stationary flows, i.e. that the enthalpy per unit rest mass
is constant along the flow lines, hut = const, and one can show that in the cases of
corotating or irrotational flows the more stringent relation

huαk
α = const everywhere inside the star (25)

holds. The authors make their first assumption at this point by taking Eq. (25) to hold
for the arbitrary spinning binaries too. For the components of the fluid velocity in Eq.
(23) they assume

viRS = (a − 1)εi jkΩ
j (xk − xk0 ), viRI = ∂ iΦ. (26)

The first equation above assigns a uniform angular velocity of magnitude (a− 1)Ω (a
fraction of the orbital angular velocity) to the neutron star companions in the rotating
frame (xk, xk0 are the coordinate position vector and the position ofmaximumbaryonic
density respectively), while the second expresses the fact that every irrotational vector
field is a gradient of a scalar. The free parameter a controls the approximate spin of
the neutron star Ω i

s = aΩ i as seen by a distant observer in the inertial frame. Since
neither a nor Ω i

s have a strict physical meaning, in order to measure the spin of each
neutron star the authors introduce the concept of circulation,

C =
∮

c
huαdx

α, (27)

which according to the Kelvin–Helmholtz theorem [127] is conserved for isentropic
flows along any closed path c on hypersurfaces of constant proper time. Carter [127]
has shown that conservation laws like Eq. (27) can hold beyond hypersurfaces of
constant proper time, and Marronetti and Shapiro [125] assume constant circulation
along a sequence of orbits. This assumption is consistent with neglecting the radial
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velocity of the fluid as the binary moves to closer separations. In reality both the radial
velocity is nonzero and the circulation will slightly change as the stars get closer
together. For an irrotational flow the closed integral (27) over a gradient yields zero
circulation, while for a corotating binary C is monotonically increasing from zero at
infinite separation to a finite value (but relatively small with respect to the maximum
possible, see Sect. 2.7) all the way to merger. The irrotational part of the velocity, viRI
in (26), leads to a Poisson-type of equation, similar to Eq. (18), which the authors
solved following the methods of Marronetti et al. [105]. Sequences of different values
of circulation have been constructed and the authors reported on a spin-up effect for
all cases examined, except for the sequence with the largest value of compactness.

A different approach to construct spinning BNS initial data has been introduced by
Baumgarte and Shapiro [128, 129]. In an effort to reduce the Euler equations to an
elliptic problem they took the divergence of Eq. (14) and derived a Poisson-type of
equation for the auxiliary variable

H = h

ut
+ V i ûi , (28)

where ûi = γ αi huα the projected enthalpy current. Two generalizations for the
enthalpy current have been introduced:

U1) ûi = DiΦ + ηΩφi , (29)

U2) ûi = DiΦ + ηhut (βi +Ωφi ) (30)

where η is a parameter. Decomposition (U1) does not lead to a corotating flow when
η = 1, while (U2) does. For both decompositions when η = 0 one gets an irrotational
flow. Although the introduction of decompositions (U1) or (U2) were in the correct
direction (see [126] and [130]) the main problem of the approach in [128] was the
effort to reduce the Euler equation into an elliptic problem. As it was identified by
Gourgoulhon [129], by doing so, one solves only a subset of the equilibrium equations
in general, but not all of them. In particular for the Euler equation to be satisfied, both
its divergence and its curl has to vanish. For the limiting cases of corotational or
irrotational fluid flow the curl of these equations does vanish identically, but this is not
necessarily the case for intermediate circulation.

2.6.2 Tichy’s formulation for spinning binary neutron star initial data

A formulation that remedies the problems of [125, 128] has been proposed by Tichy
[126]. The main ingredient of his approach was the decomposition of the spatialy
projected enthalpy current

ûi = DiΦ + si , (31)

as in the decomposition (U1) of [128]. Here si is the neutron star spin, which in
principle can have any form. The second main ingredient in Tichy’s formulation is
a first integral of the Euler equation as in Eq. (20). Although this first integral has
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the same form as the one in the irrotational case in reality it is different because the
velocity with respect to the corotating observer is now

V i = DiΦ + si

hut
− ωi , (32)

i.e. it depends on the choice of the input spin si . Tichy derived this first integral by
using the following assumptions: (A1) Helical symmetry for the metric Lkgαβ =
0. (A2) Helical symmetry for the fluid thermodynamic variables like h or ρ. (A3)
Helical symmetry for the irrotational part of the velocity γ νiLk(∇νΦ) = 0. (A4)
Spin is constant along ∇Φ/(hut ) which is parallel to the worldline of the star center,
γ νiL∇Φ/(hut )(sν) = 0. (A5) Second order terms on spin are neglected γ νiLs/(hut )(si ) =
0. In particular, Tichy argued that for the spinning case one cannot assume helical
symmetry on the 4-velocity Lkuα = 0, but only on the irrotational part, assumption
(A3) [55]. In such case, from the relation ut = gtαuα , and assumption (A1), one has
that Lkut �= 0, which implies that the conservation of rest mass in the form of Eq.
(18) (first part) will not hold. Fortunately the assumption Lkuα �= 0 is not necessary,
and the same set of equations can still be derived. We will come back to this point in
the following section.

Equation (31) generalizes the irrotational condition Eq. (17) with the inclusion of a
spin vector si . Although this vector in principle can be chosen arbitrarily, it was shown
[126, 131] that a choice

si = Ωa
s φ

i
s(a) (33)

minimizes differential rotation and leads to a negligible shear. Here Ωa
s are the three

components of the spin angular velocity and φis(a) are the rotation vectors along the
neutron star’s three axes (the subscript (a) denotes a different vector). One important
difference between the works of Tichy [126] and Marronetti and Shapiro [125] is the
fact that the latter decomposes ui/ut = vi in irrotational and rotational parts while the
former performs this decomposition on the spatial enthalpy current ûi . This choice is
better first because vi is not a spatial vector while ûi is, and second because it leads
to equations that have the correct limit in the irrotational case while the ones in [125]
do not.

With the help of Eqs. (20), (31), (32), the conservation of rest-mass density, Eq.
(18), as well as the rest of the IWM equations for the gravitational fields, one can
obtain a quasiequilibrium solution for spinning BNS following the same steps as in the
irrotational case. Spinning equilibria with their spins aligned with the orbital angular
momentum have been presented in [131] using a polytropic EOS (Γ = 2), and the
sgrid code [132] that employs pseudospectral methods. Those sequences conserve the
rest-mass of the neutron star while keeping the spin parameterΩs the same. Although
a better description for BNS quasiequilibria conserves rest mass and circulation [125,
130], the two descriptions give similar results [130]. A large suite of results using
the sgrid code have been presented in [133], where different spins, eccentricities,
mass ratios, compactions, and EOSs have been explored. The authors produced highly
eccentric and eccentricity-reduced initial data (see Sect. 2.8), as well as unequal-mass
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binaries with mass ratios q ≈ 2. In addition they constructed binaries with arbitrary
spins, misaligned with the orbital angular momentum, and studied precession. In all
cases the dimensionless spins of the neutron stars were� 0.16. Recent upgrades of the
sgrid code [134] that involved a new grid structure, the use of different coordinates,
as well as a reformulation of the equations for the conformal factor and the velocity
potential, enabled the same group to reach spins all the way to the mass-shedding limit
(∼ 0.59 for a Γ = 2 polytrope) and compactions up to C ∼ 0.28.

2.7 Other developments

A completely different method to compute BNS initial data with arbitrary spin has
also been presented by Tsatsin and Marronetti [135]. Their method does not look
for solutions of the Hamiltonian and momentum constraints: their satisfaction is only
asymptotic with binary separation. Instead it consists of a variant of metric superposi-
tion that addresses two common problems, large stellar shape oscillations and orbital
eccentricities. It reduces the former to variations of the order of 1% and offers great
control over orbital eccentricities. The authors also found that these initial data sets
possess less junk radiation than that found in standard quasiequilibria. Techniques
based on superposition and the conformal thin sandwich formulation of the constraint
equations have been used for generic initial data calculations in [136], while spin-
ning initial data based on superposition of irrotational and corotating flows have been
employed in [137].

Another approach to BNS initial data has been presented in [130, 138] which
employs the cocal library that has been used in the past to succesfully compute a
great variety of quasiequilibria, including RNSs and quark stars (axisymmetric or
triaxial) [139–144], binary black holes [145–147], MRNSs with mixed poloidal and
toroidal magnetic fields [148, 149] (see Sect. 4), as well as self-gravitating BHDs
[150] (see Sect. 3). The main characteristics of the cocal code is the use of finite
differences and a Green’s function approach as first developed in [106] for neutron
stars and in [151] for black holes to achieve a convergent solution through a Picard type
of iteration. The field equations are solved in spherical coordinates in multiple patches
and a smooth solution is obtained everywhere through boundary surface integrals.
For the fluid equations surface fitted coordinates are being implemented that allow
accurate representation of the neutron star surface which is important in order to
impose boundary conditions. Comparison both with the pseudospecral code kadath
[147] as well as with lorene [138, 152] showed excellent agreement, with the small
initial differences being leveled out in the first couple of iterations of an evolution.
The cocal code can produce accurate initial data for a variety of neutron or quark star
EOSs in a piecewise or tabulated form. It has been employed for the construction of
the highest compactness BNS system (C = 0.34 with a total mass of M = 7.90M�)
in quasiequilibrium to date, using a causal and compressible EOS [153].

The first spinning quasiequilibrium sequences with a nuclear EOS have been pre-
sented by Tsokaros et al. [138]. The authors used the formulation by Tichy [126]
but started from different assumptions. In particular using Eqs. (31) and (32) one can
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rewrite the Euler Eq. (14) as

γ αi [Lk(huα)+ LV(sα)] + Di

(
h

ut
+ V j D jΦ

)
= 0. (34)

Instead of using assumptions (A1)-(A5) in Sect. 2.6.2 [126], they assumed (A1), (A2),
and

(B1) : Lkûi = 0, and (B2) : LVsi = 0. (35)

Assumption (B1) enforces helical symmetry on the fluid velocity, consistent with the
helical symmetry assumption on the spacetime (A1), and more importantly, consistent
with the helical symmetry on the thermodynamic variables (A2). Assumption (B1) is
also necessary for taking Lkut = 0 and deriving the elliptic equation for the fluid
potential Φ. On the other hand, assumption (B2) roughly expresses the fact that the
spin does not change significantly with respect to the corotating observer. Although
helical symmetry is increasinglymore accurate as the binary separation becomes larger
(irrespective of the spin), closer binaries with rapidly spinning neutron stars (with ms
or smaller periods) will not satisfy the helical symmetry assumptions, and in fact will
not satisfy any of (A1)–(A5), (B1),(B2).

BNS initial data within the IWM formulation have also been presented by Tacik
et al. [154, 155] based on the spells elliptic solver libraries developed by Pfeiffer et al.
[156, 157]. These methods employ pseudospectral techniques that have been applied
from the same group with great success in the binary black hole problem [158–161].
The authors implement the spinning formulation by Tichy [126] and introduce a new
diagnostic for measuring the neutron star spin in a BNS setting which is based on
their work on binary black holes [162]. In particular they construct the quasilocal spin
angular momentum [163–165]

Jql = 1

8π

∮

S
K j
i ζ

i dS j , (36)

where ζ i is an approximate Killing vector of the spacetime.5 For spacetimes with
axisymmetry, as for example a rotating black hole, ζ i should be chosen as the rotational
Killing vector φi . For binary systems where no such symmetry exists one needs to
construct ζ i through a minimization principle that results in an eigenvalue problem
[162]. The surface of integration S is the apparent horizon for the case of a black
hole, while for neutron stars although there is no clear choice, the stellar surface is the
most natural one. The authors performed this integration both on the stellar surface
(which is calculated when a convergent solution is obtained) as well as on spheres of
increased radius outside the star. They showed that the calculated spin is independent
of the precise choice of S within an accuracy of 1%. For irrotational BNSs they
found a quasilocal spin residue of ∼ 10−4. Highly spinning BNS initial data with

5 Note that this expression is essentially identical to the ADM angular momentum calculated at infinity
Eq. (6).
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Jql/M2
1 ∼ 0.43, where M1 is the ADM mass of a single star at infinite separation,

were presented, as well as precessing binaries. The spin and orbital precession of
the stars were well described by the post-Newtonian approximation. In addition the
authors implemented eccentricity control algorithms [166] for its reduction targeted
for highly accurate waveform production (see Sect. 2.8).

Different spin measures for BNSs were examined in detail in Tsokaros et al. [130].
The authors examined the relationship between the circulation C, dimensionless spin
Jql/M2

1 , and spin parameter Ωs in Eq. (33). For the quasilocal spin, Eq. (36), the
authors assumed ζ i to be the rotational vector around each star’s center φis . Realistic
spinning sequences that conserve both rest mass and circulation were presented and
compared with corotating and irrotational (zero circulation) ones. Regarding the coro-
tating sequence, it was found that the circulation and the dimensionless spin of the
neutron stars close to the ISCO (turning point of the Eb(Ω) curve) are much smaller
than the possible maximums at the mass-shedding limit. Practically this means that
corotating neutron stars at the ISCO can be considered as slowly rotating. Similarly to
isolated slowly uniformly rotating neutron stars, the circulation and the dimensionless
spin of the component stars increase linearly with the angular velocity as the binary
proceeds to closer separations.

For a spinning sequence of constant restmass and circulation, the binding energy (or
angular momentum) as a function of angular velocity typically follows a curve parallel
to the irrotational sequence, but shifted to higher energy (or angular momentum). This
is expected since now the system contains the spin rotational energy which remains
approximately constant along the sequence. For moderate spins (i.e. spins smaller
than the corotating value at the ISCO), Eb(Ω) or J (Ω) curves of a spinning sequence
exhibit an intersection with the corotating curve at some angular velocity Ωi . For
Ω < Ωi the binding energy (or angular momentum) of the spinning sequence is
larger than the corresponding one from the corotating and irrotational binaries (with
the same rest mass) due to the excess of rotational energy. On the other hand for
Ω > Ωi (binaries in closer separations) the binding energy (angular momentum) of
the spinning sequence although larger than the corresponding irrotational one, it is
smaller than the corotating. The dimensionless spin of each star, Jql/M2

1 , is nearly
constant for larger separations and exhibits an increase of the order of 10 − 15% as
ones moves closer to the ISCO. For closer separations, the choice ζ i = φis is less
accurate and one needs to compute the approximate Killing vector for the quasilocal
spin [162]. In addition the rotational parameter Ωs was found to be approximately
constant along a constant rest mass and circulation sequence.

Motivated by the circulation expression for single stars and corotating binaries

C =
∮

c
hutγi j (β

i +Ωφi )dx j , (37)

the authors proposed a modification for the fluid velocity decomposition Eq. (31)
according to

ûi = DiΦ + hut si , (38)
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which apart from the shift term in Eq. (37), resembles the circulation of a single
rotating star. This decomposition is similar to the choice (U2) Eq. (30) in Baumgarte
and Shapiro [128]. The velocity with respect to the corotating observer, Eq. (32), is
now modified as

V i = DiΦ

hut
− (ωi − si ), (39)

and new equations of hydrostatic equilibrium are derived. Notice that Eq. (39) resem-
bles the corresponding velocity of irrotational binaries Eq. (18), with the spin vector
si modifying the corotating shift ωi . Similar modification is present in the boundary
condition, Eq. (19). Using Eq. (38) the authors computed new sequences of constant
rest mass and circulation and found that for a fixed angular velocity, the binding energy
(and angularmomentum) is now larger than the corresponding one using the decompo-
sition of Eq. (31). This shows that the way the 4-velocity is decomposed can influence
important quantities like the energy of the system or its angular momentum.

The irrotational and spinning formulations involve the solution of an elliptic equa-
tion for the velocity potentialΦ, which typically is performed on the so-called surface
fitted coordinates for greater accuracy. These are fluid coordinates that track the posi-
tion of the surface of the star at every iteration and are used to impose the boundary
condition Eq. (19) for the irrotational case (or a similar one for the spinning case).
In order to avoid such complication, Tsao et al. [167] developed a new technique by
employing the source term method proposed by Towers [168], where the boundary
condition is treated as a jump condition and is incorporated as additional source terms
in the Poisson equation. If the domain of the star is denoted by Q+, its exterior by
Q−, and its boundary by ∂Q+, Tsao et al. considered the boundary value problem

∇2Φ = S+(x), x ∈ Q+, ∇2Φ = S−(x), x ∈ Q−, (40)[
∂Φ

∂n

]
= a(x), x ∈ ∂Q+, [Φ] = b(x), x ∈ ∂Q+, (41)

which is a generalization of the irrotational/spinning one for the velocity potential Φ.
Here we denote by [Φ] ≡ Φ+ − Φ− = b(x) and

[
∂Φ
∂n

] ≡ ( ∂Φ
∂n

)+ − ( ∂Φ
∂n

)− = a(x),

withΦ+,
(
∂Φ
∂n

)+
being the solutionΦ and its normal derivative evaluated at the interior

of Q+, while Φ−,
(
∂Φ
∂n

)−
the same quantities at the exterior Q−.

The source term method converts the boundary conditions on ∂Q+ to jump condi-
tions that can be absorbed into the sources. The generalized Poisson equation that is
solved in the extended domain Q = Q+ ∪ Q− becomes

∇2Φ = ∇2(bH)− H∇2b −
(
a − ∂b

∂n

)
|∇ρ|δ(ρ)+ S, (42)

where ρ is the rest-mass density, S(x) = S+H(ρ(x))+ S−(1− H(ρ(x))) with H(ρ)
the Heaviside function, and δ(ρ) the Dirac delta function. The authors presented
a comparison between the solution of Eq. (42) on a Cartesian grid, with the one
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obtained by cocal on surface fitted coordinates, and found excellent agreement with
amaximum difference of 1.4%. The source termmethod can be used in other problems
where nonsmooth solutions are present, as for example in MRNSs.

More recently spinning BNS solutions have been presented by Papenfort et al. [169]
using the KADATH spectral library [170, 171]. The authors used Tichy’s formulation
[126] to produce a large suite of highly spinning, and asymmetric systems including
one with mass ratio q = 0.455 with the primary having dimensionless spin of ∼ 0.6.
Eccentricity reduced techniques (as described in the next section) have also been
implemented.

2.8 Eccentricity in binary neutron stars

All BNS initial data computations that we have mentioned are based on the IWM for-
mulation, whose equations hold even without the existence of a helical Killing vector.
Since gravitational radiation reaction and the accompanying approaching velocity are
neglected, quasicircular binary initial data of this kind exhibit a small but nonzero
deviation from strict circularity of the order of ∼ 0.01. Despite its small value, the
residual eccentricity becomes problematic in the evolution of a binary when accurate
gravitational wave analysis is needed in order to determine various parameters such
as the tidal deformability [172–174], which is crucial for constraining the neutron star
EOS.

Kyutoku et al. [175] presented a method to further reduce the orbital eccentricity
by using a similar methodology employed for binary black holes [166]. The main idea
is to incorporate an approaching velocity term in the formulation that can be adjusted
through sequential evolutions until the eccentricity is reduced. The difference between
binary black holes and BNSs is that this approaching velocity is incorporated on the
apparent horizon boundary conditions in the black hole case, while for neutron stars
it is through the helical Killing vector that controls the hydrodynamic equations. The
procedure starts with the computation of quasicircular initial data and a modified
symmetry vector for the hydrodynamical fields as

kα = tα +Ωφα + v r
r0
(∂r )

α, (43)

instead of Eq. (12). Here v is the radial velocity, and r0 the separation from the
coordinate origin. Note that the extra approaching velocity term is a conformal Killing
vector of the flat metric, and hence does not affect the gravitational field equations. The
quasicircular initial data (v = 0) are then evolved for a sufficient time interval whose
duration on one hand has to be long enough to include more than one modulation
eccentricity cycles, and on the other, short enough to avoid strong influence of a
long-term secular evolution. The authors assumed an interval of [0.5P, 3P], where
P = 2π/Ω is the initial orbital period. To measure the eccentricity they locate the star
center xi

NS
= (xNS , yNS , 0) through the maximum of the conserved rest-mass density,

ραut
√
γ , and compute the coordinate orbital separation and orbital phase as
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d(t) =
√
(xNS,1 − xNS,2)

2 + (yNS,1 − yNS,2)
2, (44)

φ(t) = tan−1
(
yNS,1 − yNS,2
xNS,1 − xNS,2

)
+ 2πN , (45)

where N is the number of orbits (in order to make φ continuous) and indices 1, 2 refer
to the two neutron stars. Following [166, 176], Kyutoku et al. assume

dΩ

dt
= A0 + A1t + B cos(ωt + φ0), (46)

where {A0, A1, B, ω, φ0} are fitting parameters. The term A0+ A1t is due to radiation
reaction, while the term B cos(ωt + φ0) represents the modulation from the nonzero
eccentricity e. For a perfectly circular orbit it should be B = 0. For a Newtonian orbit
with small eccentricity (e << 1), it is Ω(t) ≈ Ω[1 + 2e sin(ωt + φ0)] which leads
to the estimate e ≈ |B|

2ωΩ . Following Newtonian considerations [177] the adjustments
in the orbital velocity and the approaching velocity turn out to be

Ω → Ω − Bω sin φ0
4Ω2 , and v → v + Bd cosφ0

4Ω
. (47)

Using the updated values ofΩ and v, the elliptic initial value equations are then solved
again, and the whole procedure is repeated until an acceptable value of eccentricity
(e � 10−3) is obtained. Typically this requires 3 such iterations. By calculating the
gravitational waves in every iteration the authors prove that this eccentricity reduc-
tion procedure leads to gauge invariant results, i.e. the considerations based on the
coordinate orbital separation are not gauge artifacts.

The authors provide an alternative way to measure the eccentricity based on the
gravitational wave angular velocity Ωgw(t),

egw(t) = Ωgw(t)−Ωgw,fit(t)

2Ωgw,fit(t)
(48)

whereΩgw,fit(t) a fourth order polynomial (5 fitting constants). They showed that the
results obtained with this method are similar to the ones based on the orbital motion
adding confidence about the reliability of both methods.

Similar algorithms to remove the eccentricity were presented by Tacik et al. [154,
155], Dietrich et al. [133], and Papenfort et al. [169]. Dietrich et al. [133] compared
two merger simulations with the SLy EOS one from quasicircular initial data having
e = 1.241×10−2, and the other fromeccentricity reduced initial data having e = 8.7×
10−4. They found that the phase difference δφ22 oscillates in the range of [−0.06, 0.06]
rad, i.e. it produces an approximate dephasing of ∼ 0.12 rad. The amplitude of the
non-eccentricity-reduced data oscillates around the eccentricity-reduced ones by 5%at
early times and decrease as the system approachesmerger. Note that in this comparison
the initial data are at a large distance of ∼ 10 orbits before merger. At much closer
distances of ∼ 3 orbits, Tsokaros et al. [152] found that the dephasing that comes by
evolving quasicircular initial data from the cocal and lorene initial value codes,
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with theWhiskyTHC [178, 179] evolution code, can be 10 times larger. Therefore for
accurate gravitational wave analysis one has to takemultiple factors into consideration
including the truncation errors at various resolutions.

When BNSs merge they will follow highly circular trajectories, since gravitational
radiation reaction circularizes the orbit [180].Despite of that, BNSmergers in eccentric
orbits are still possible, either by dynamical interactions in dense stellar regions, such
as globular clusters [181–183], or by exciting their eccentricity by, e.g., the Kozai
mechanism in a hierarchical triple [184–187]. Although eccentric BNSs have been
constructed by Gold et al. [188], as well by East and Pretorius [189] using different
approximations, the first consistent method to construct such initial data has been
presented by Moldenhauer et al. [190]. Their method generalizes the approximate
helical Killing vector approach that is used to solve the Euler equation in quasicircular
binaries, to a pair of inscribed helical symmetry vectors (one for each star), and allows
them to provide initial data for binary neutron stars with arbitrary eccentricity. The
authors assume each star center moves along a segment of an elliptic orbit at apoapsis
(which they take to be on the x-axis), and approximate this small orbital segment by
the circle inscribed into the elliptical orbit there. The radii of the inscribed circles
are rc1,2 = (1 − e)d1,2, where e is the eccentricity of the elliptical orbit, and d1,2 =
|x1,2 − xcm| are the distances of the neutron stars from the center of mass. The centers
of the inscribed circles are at xc1,2 = xcm+e(x1,2−xcm), thus the approximate Killing
vector (near each star) for the elliptical orbit is

kαecc1,2 = tα +Ω[(x − xc1,2)y
α − yxα]. (49)

In addition in order to accommodate for the energy loss due to gravitational wave
emission, a radial velocity can be added to Eq. (49) similar in spirit to Eq. (43) [175].
Consistent initial data with eccentricities as large as e = 0.5 have been presented in
[133].

2.9 Non-conformally flat binary neutron star initial data

In an effort to correct the error coming from the choice of the conformally flat three-
geometry, two groups presented an improved formulation for initial data starting from
different viewpoints. Bonazzola et al. [76] aimed to reformulate the whole 3 + 1
numerical relativity system (the Einstein system), and instead of using a free-evolution
scheme (like the Baumgarte–Shapiro–Shibata–Nakamura formulation [191, 192]) that
involves hyperbolic equations, they proposed to use a fully constrained evolution
method. In that formulation one only solves the maximum number of elliptic equa-
tions and the minimum number of hyperbolic equations: the two wave equations
corresponding to the two degrees of freedom of the gravitational field. To achieve this
they assumed a decomposition of the conformal spatial metric as

γ̃i j = fi j + hi j , (50)
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where fi j is the flat metric in the chart of the 3-dim hypersurface, and hi j the compo-
nents that need to be evaluated. The authors imposed a condition for the determinants,
det γ̃i j = det fi j , and used maximal slicing and a generalization of the Dirac gauge to
curvilinear coordinates

◦
Dbγ̃

ab = 0. (51)

This gauge fixes the spatial coordinates xi in each hypersurfaceΣt , and has been intro-
duced by Dirac [193] as a way to fix the coordinates in the Hamiltonian formulation
of general relativity. The non-conformal flat part of the metric hi j satisfies a wave-like
equation which in spherical coordinates and in the presence of the Dirac gauge can
be reduced to two scalar wave equations. This new evolution scheme in effect deter-
mines a new initial data formulation also, where the quantities {ψ, α, β i , hi j } must be
determined from a set of elliptic equations.

At the same time Shibata et al. [77] proposed a formulation for BNSs where the
full Einstein system is solved similar to [76]. They also used the Dirac gauge to derive
elliptic equations for the non-conformal part of the metric hi j , but not in spherical
coordinates. The authors provide asymptotic falloff conditions for the lapse, the shift,
the spatial metric, and the extrinsic curvature which ensure the equality of ADM
and Komar masses, MK = M , therefore generalizing the results by Beig [194], and
Ashtekar andMagnon-Ashtekar [195] for stationary systems. The equality of theADM
and Komar masses is related to a virial relation for equilibrium,

∫

Σ

xaγ αa ∇βT β
α

√−gd3x = 0, (52)

and the first law, Eq. (7), that are used for evaluating the accuracy of the numerical
solutions including non-axisymmetric ones computed from the above formulation.

The first quasiequilibrium sequences of irrotational BNS under the formulation
described above were calculated by Uryū et al. [196]. Together with the assump-
tions of maximal slicing and the Dirac gauge (or spatially transverse condition), the
authors restrict the time derivative terms so that all components of the field equations
are elliptic, and hence that all metric components, including the spatial metric have
Coulomb-type falloff. In particular for the conformal metric a condition ∂t γ̃i j = 0 is
imposed while for the extrinsic curvature and the fluid variables helical symmetry is
assumed LkKi j = 0.

In order to impose conditions (51) and have a self-consistent iteration scheme, an
adjustment is necessary for the hi j . This is accomplished by introducing new gauge
vector potentials ξa as in [197], (or [140] Eq. (29)-(32)) through the transformation

δγ ab → δγ ab − ◦
Daξb − ◦

Dbξa, (53)

which when combined with Eq. (51), yield another set of elliptic equations for ξa .
The augmented system for {ψ, αψ, βa, hi j , ξa} is then solved using a self-consistent
method. The authors named this new formulation as “waveless” due to the absence
of gravitational waves in the constructed spacetimes. The work of Uryū et al. [196]
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has two main conclusions. First when one computes the binding energy of the system
it is found that although at large separations the results agree with the ones coming
from post-Newtonian or from using the IWM formulation, this is not true any more
for close orbits. In particular it was shown that the IWM formalism overestimates |Eb|
by neglecting the non-flat part (the hi j potentials) of the conformal geometry. The
second important conclusion of [196] is that the IWM formulation does not enforce
circularity as accurately as the waveless formulation even for large separations. In
order to prove that, the authors calculated the norm of LkKi j which should be zero in
exact helical symmetry. They found that in the waveless formulation the number is at
least one order of magnitude less than in the IWM formulation and the discrepancy is
larger at larger separations.

These results have been extended in the sequel work of Uryū et al. [197] where
two formulations for nonconformally flat initial data are examined: waveless and
near-zone helically symmetric [198]. In each formulation, the Einstein–Euler system,
written in 3+1 form on an asymptotically flat spacelike hypersurface, is exactly solved
for all metric components, including the spatially nonconformally flat potentials, and
assuming an irrotational flow. In the helically symmetric approach helical symmetry is
imposed in the near zone, from the center of mass to a radius ∼ λ = π/Ω , and either
the waveless formulation is applied outside, or the computational domain is truncated
at that radius. Here λ is the wavelength of the dominant mode (primarily � = m = 2
quadrupole) of the gravitational waves expected to be radiated from the system. As
the compactness of the component neutron stars increases, the behavior of the bind-
ing energy and angular momentum of binary sequences more closely approximates
that of point masses. By using a variety of realistic EOSs in a piecewise representa-
tion the authors show that this is true for the IWM and waveless/helically symmetric
sequences, but the effect is more pronounced for the IWM models than in the wave-
less/helically symmetric ones. The behavior of the IWM sequence was interpreted as
the effacing of the tidal effects due to the spatially conformally flat approximation. In
effect this correction reflects an overestimation in the IWM formulation by 1 cycle in
the gravitational wave phase during the last several orbits.

3 Self-gravitating black hole-disks

BHD systems are omnipresent in astrophysics, from the core collapse of massive stars
[199, 200], and the cores of active galactic nuclei [201–203], to the merger of two
compact objects at least one of which is not a black hole [59–62, 204–207]. In addition,
stellar-mass binaries in active galactic nuclei andquasars ormassive black hole binaries
in extended disks are also possible scenarios with high astrophysical interest. Such
systems constitute excellent candidates of “multimessenger astronomy” since theywill
produce copious amounts of electromagnetic and gravitational radiation, detectable
by the future Laser Interferometer Space Antenna (LISA) [208].

In many of the cases above the spacetime can be approximated by the Kerr solution,
and one assumes that the fluid motion is not backreacting on the gravitational sector.
However it is possible that a massive black hole (or a binary black hole system) is
immersed in an extended disk with mass comparable or even greater than the black
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hole itself. In other words, there may be a timeframe where such BHD spacetimes
cannot be described by the Kerr metric and the self-gravity of the disk needs to be
taken into account. The disk geometry, and density profile can instigate a number
of instabilities [209–214] that can affect the gravitational wave signal detected by
LISA [215–219]. Sufficiently massive disks can cause spin precession or even spin
flips [220]. At the same time gas accretion can appreciably change the mass and the
spin of the black hole(s) [221]. If a binary black hole is found within a massive disk
its gravitational pull, hydrodynamical drag, and planetary migration can change the
trajectories of the companions leaving an imprint on the inspiral rate and the GW
phase evolution [222–225]. More recently, the announcement of the high-mass binary
black hole, GW190521 by aLIGO and VIRGO [226], initiated a debate regarding the
several possibilities for forming black holes in the mass gap ∼ 50− 120 M�. One of
the intriguing proposals [227] was that the source of GW190521 is a stellar collapse
of a very massive star leading temporarily to a black hole with a massive disk that is
dynamically unstable to the one-armed spiral-shape deformation.

For all these reasons simulating self-gravitating BHDs is important in order to
understand the plethora of current and future observations. Only by including self-
gravity in full general relativity and tracking the nonaxisymmetric perturbations that
it may trigger can gravitational waves from the disk be calculated reliably. The
methods that we will describe below aim towards calculating self-gravitating BHD
(quasi)equilibria, that can serve as self-consistent initial data for various evolutionary
scenarios.

3.1 Formulation

Most of the work in BHDs as well as in MRNSs has been done under the assump-
tion of a circular, stationary, and axisymmetric spacetime. In these spacetimes (used
extensively in the construction of RNSs [52, 56]), the line element, Eq. (2) can be
constrained to a smaller number of unknownmetric components. In particular a space-
time is stationary and axisymmetric if there exist a timelike Killing vector ξα with
integral curves b(t), t ∈ R, and a spacelike Killing vector χα with closed integral
curves c(φ), φ ∈ [0, 2π ]. Here t, φ are arbitrary parameters. Carter has shown [228]
that there is no loss of generality if one further assumes that these two vector fields
commute, ξα∇αχβ = χα∇αξβ . The commutation property can be used to promote
parameters t, φ into coordinates of the spacetime manifold. In particular one can
choose coordinates {t, x1, x2, φ} such that ξα := (∂t )α and χα := (∂φ)α . In that case
the 10 spacetime metric components gμν will depend only on coordinates x1, x2 and
not on t, φ.

If in addition the spacetime is circular, then [229–231]

ξμR [α
μ ξ

βχγ ] = 0, χμR [α
μ ξ

βχγ ] = 0, (54)

where Rαβ is the Ricci tensor, and square brackets denote antisymmetrization. Equa-
tion (54) guarantee that the 2-dimensional planes orthogonal to ξα and χα are
integrable (we have tacitly assumed that the spacetime is asymptotically flat, there-
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fore a rotational axis where χα vanishes, must exist). Under such assumptions the
spacetime metric can be further simplified as

ds2 = gttdt
2 + 2gtφdtdφ + gφφdφ

2 + gABdx
Adx B, (55)

where A, B ∈ {x1, x2}, with only 6 nonzero components. A proper choice of x1, x2

will make the 2-dimensional metric gAB diagonal (for example spherical coordinates
{x1 = r , x2 = θ}) and since all 2-dimensional metrics are conformally related, one
more component can be eliminated. At the end, the form of a circular, stationary and
axisymmetric spacetime in the so-called quasi-isotropic form is [232, 233]

ds2 = −α2dt2 + ψ4[e2q(dr2 + r2dθ2)+ r2 sin2 θ(dφ + βdt)2] (56)

where all four functions α,ψ, q, β depend on r , θ only. From now on, in accordance
with the coordinate notation of the metric, we will denote the Killing vectors ξα and
χα as tα and φα .

In the presence of nonzero sources in the Einstein’s equations, the Ricci tensor in
conditions (54) can be replaced by the stress-energy tensor, which result into imposing
the circularity property on them. In particular for a perfect fluid, conditions (54) imply
that

u[αtβφγ ] = 0, (57)

i.e. the fluid 4-velocity belongs to the hyperplane spanned by tα and φα , or

uα = ut (tα +Ωφα), with Ω := uφ

ut
= dφ

dt
. (58)

Such kind of fluid flow, which is typically assumed in RNSs, will be employed
for the BHDs considered below. In this case, the rest mass conservation equation,
∇α(ρuα) = 0, is identically satisfied, and the equations of motion for the fluid
(gαβ + uαuβ)∇γ T βγ = 0 yield

∇i p

ε + p
= −∇i ln(ut )+ Ω∇i�

1 −Ω�, (59)

where

� := −uφ
ut

= −gtφ +Ωgφφ
gtt +Ωgtφ

, Ω = uφ

ut
= − gtφ + �gtt

gφφ + �gtφ , (60)

ut =
√

g2tφ − gtt gφφ

gφφ + 2�gtφ + �2gtt . (61)
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Equation (59) is integrable if a one-parameter EOS6 and a rotation law, � = �(Ω) (or
Ω = Ω(�)), are prescribed. The same equation can be written alternatively as

∇α ln h

ut
+ utuφ∇αΩ = 0, (62)

where h is the relativistic specific enthalpy. Similarly Eq. (62) is integrable if a one-
parameter EOS and the rotation law j := utuφ = j(Ω) (orΩ = Ω( j)) are prescribed.
The first integral of Eq. (59) or Eq. (62) defines the surfaces of constant pressure (which
correspond to the equipotential surfaces in Newtonian theory). When the self-gravity
of the disk is negligible, these surfaces are derived from the Kerr metric components
and the rotation law � = �(Ω). Such equilibria, the so-called Polish doughnuts,
have been computed by Fishbone and Moncrief [234], Abramowicz et al. [235], and
Kozlowski et al. [236]. They constitute the workhorse of most BHD studies where
disk’s gravity is neglected. They are also taken as the starting point for the calculation
of a self-gravitating disk around a black hole.

For the casewhere � = constant, and assuming a polytropic EOS p = kρΓ , Eq. (59)
can be integrated as

ρ =
[(
Γ − 1

Γ k

)(
uin − ut

ut

)] 1
Γ−1

. (63)

Here uin = ut (rin, θ = π/2) is the specific energy at the inner point of the disk on the
equatorial plane. For a radiation dominated disk, Γ = 4/3. Ignoring the self-gravity
of the disk and assuming a Kerr metric results in the determination of ut through Eq.
(61), and therefore the rest-mass density ρ. On the other hand if one assumes a general
differential rotation law of the form � = �(Ω), either of Eqs. (60) is solved pointwise
to calculate � = �(x, y, z) (or Ω = Ω(x, y, z)), which in turn is used to compute ut
from Eq. (61), and finally the rest-mass density is obtained from the first integral of
Eq. (59) or (62).

The inclusion of disk’s self-gravity is achieved by solving simultaneously the Ein-
stein equations in conjunction with Eq. (59) or Eq. (62) through an iterative method.
An assumption about the EOS, and the disk’s differential rotation law as mentioned
above, is required. Thus the procedure described in the paragraph above for a non
self-gravitating disk, is now repeated at every iteration step, with the difference being
the metric components that determine ut are now the solutions of the Einstein system,
and not the ones coming from the Kerr spacetime.

6 We often use a barotropic EOS, p = p(ε), or p = p(ρ) and ε = ε(ρ).

123



Methods for relativistic self-gravitating fluids… Page 29 of 77    52 

3.2 Mass, angular momentum, and Smarr formula

In the case of axisymmetric systems the angular momentum can be expressed covari-
antly (and therefore in a gauge invariant way) as a Komar integral

JK = 1

8π

∮

S∞
∇αφβdSαβ = − 1

8π

∮

H
∇αφβdSαβ

︸ ︷︷ ︸
Jh

+
∫

Σt

T αβφ
βdSα

︸ ︷︷ ︸
Jt

, (64)

where S∞ denotes a sphere whose radius tends at infinity. From Eq. (6) one can show
that the Komar angular momentum coincides with the ADM angular momentum,
J = JK. Using Stokes theorem, the surface integral at infinity can be converted to
a surface integral on the black hole horizon H , and a volume integral on the spatial
slice Σt . The former can be identified with the black hole angular momentum Jh ,
while the latter with the disk angular momentum Jt [237–239], which with the help
of ∇β∇αφβ = Rαβφβ can be expressed in terms of the stress-energy tensor Tαβ , Eq.
(64).

In an analogous manner to the Komar angular momentum one can define in the
presence of the timelike Killing vector field tα (stationary spacetimes) the Komar
mass as a surface integral at infinity

MK = − 1

4π

∮

S∞
∇αtβdSαβ = 1

4π

∮

H
∇αtβdSαβ

︸ ︷︷ ︸
Mh

+
∫

Σt

(
T δαβ − 2T αβ

)
tβdSα

︸ ︷︷ ︸
Mt

,

(65)

where T = Tμμ. Beig [194], Ashtekar and Magnon-Ashtekar [195], and Shibata
et al. [77] have proved that the Komar and ADM masses are identical, M = MK, for
stationary systems. The integral over the horizon can be identified as the black hole
mass Mh , while the volume integral as the gravitational mass of the disk Mt . In the
vacuum case the volume integral over the stress-energy tensor Mt = 0, and Mh can
be evaluated through the Smarr formula [240]

Mh = 1

4π
κh Ah + 2ωh Jh . (66)

Here κh is the surface gravity of the black hole, Ah the area of the horizon, and ωh
the frame-dragging at the horizon defined by ωh = −gtφ/gφφ . For the Kerr black
hole, κh = √

M2 − a2/(2Mr+), and Ah = 8πMr+, with r+ = M + √
M2 − a2 the

radial coordinate of the event horizon in Boyer–Lindquist coordinates. One important
point already discussed in [238] is that in the presence of matter around the black hole,
Mh is not a good choice for the gravitational mass of the black hole and can lead to
erroneous results (for example that Jh/M2

h > 1). On the contrary, Jh is always a good
measure of the black hole angular momentum.
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3.3 Self-gravitating thin disk around black hole

The first general relativistic computation of a BHD system in which the self-gravity
of the disk was taken into account has been computed by Lanza [241] for a thin
pressureless (dust) disk whose stress energy tensor is Tαβ = σuαuβ , σ being its
surface energy density. In his method σ was prescribed, and then the metric and
the rotation law were iterated until the field equations and the equation of motion
were satisfied. For computing the metric, the author used the Bardeen and Wagoner
formulation [232] in which the self-gravity of a massive infinitesimally thin disk
was incorporated as boundary conditions of the Einstein’s equations at the equatorial
plane. Although Lanza’s black hole-disk model involves a significant simplification
in computing the thin disk, its qualitative behavior agrees well with that of the self-
gravitating equilibrium thick disk (having nonzero pressure) around a black hole.

The starting point of [241] was the determination of a non self-gravitating density
profile ρ, Eq. (63), around a rotating black hole [235, 236] under the assumption of an
� = const law and the polytropic EOS for a radiation dominated gas (Γ = 4/3). The
free quantities to be chosen are the specific angular momentum �, and the inner point
of the disk rin. During the iteration procedure to incorporate the disk’s self-gravity,
the author fixes the surface density which is calculated as a quadrature of ρ in the
θ direction, σ(r) = ∫ π

0 ρrψ
2eqdθ , taken from the above non-self-gravitating thick

disk. The projection of the divergence of the stress-energy tensor orthogonal to the
4-velocity (Euler equation), when p = 0, leads to the geodesic equation

∂αgtt + 2Ω∂αgtφ +Ω2∂αgφφ = 0 , (67)

which the author employs to calculateΩ on the equatorial plane. The specific angular
momentum profile, and the 4-velocity are then calculated from Eqs. (60), (61), while
the rest mass of the disk, M0, is computed as a volume integral over the fluid support.

Since the reference model of non-self-gravitating thick disk is composed of an
ideal gas plus radiation, the polytropic constant k in Eq. (63) is a function of the ratio
δ = pgas/p, p being the total pressure. By varying δ, and thus k, solutions of BHDs
are computed where it was found that for fixed specific angular momentum �, the disk
rest mass M0 increases with δ, as the central density becomes larger. Also for fixed
ratio δ, increasing � results in larger disks and therefore M0 also increases.

Lanza computes BHD sequences of increasing rest mass, where the disk has the
same inner radius rin and specific angular momentum �, while the black hole has fixed
angular momentum Jh (aligned with the disk angular momentum), and area Ah . He
found that along this sequence:

1. The ADM mass and angular momentum of the system are increasing.
2. The mass of the black hole, given by the diagnostic Mh , is decreasing.
3. The black hole surface gravity κh is decreasing.
4. The black hole horizon radius rh is decreasing.
5. The black hole horizon angular velocity Ωh is decreasing.

Finding (1) is not surprising; it is due to the increase of the gravitational energy and
angular momentum caused by the disk’s self-gravity. Finding (2) is also expected since

123



Methods for relativistic self-gravitating fluids… Page 31 of 77    52 

Mh contains part of the binding energy of the system [238], that becomes increasingly
negative as the mass of the disk increases. In fact Mh is not a good diagnostic for the
black hole mass, as clearly shown by Shibata [233].

The fact that the surface gravity of the black hole decreases (finding (3)) can be
explained as follows: As the gravitational field of the disk becomes significant, a zero
angular momentum observer located between the black hole and the disk will feel the
outward pull of the disk decreasing his physical acceleration with respect to infinity,
i.e. decreasing the effective gravity. In the limit as one goes to the horizon this is
decribed by κh .7 Because the surface gravity and the radius of the horizon are related,
κh = 4πrh/Ah , and since Ah is kept constant, the radius of the horizon behaves
analogously (finding (4)).

Will [244, 245] has pointed that in the presence of self-gravitatingmatter one cannot
make a clear distiction for the individual contributions of the black hole and the disk.
This makes possible for the black hole to have zero angular momentum but non zero
angular velocity or zero angular velocity and negative angular momentum. This effect
is due to the dragging of the inertial frames by the external self-gravitating disk. In the
case of a slowly rotating black hole the metric function −β has no longer a maximum
at the horizon but at the center of the disk and this maximum increases with M0. This
explains finding (5).

Lanza also computes sequences of increasing disk mass with fixedΩh , and horizon
radius rh , for a slowly rotating black hole (small and positive Ωh). Now the black
hole’s angular momentum is decreasing and becomes increasingly more negative (in
order to keepΩh = const) consistent with finding (5). On the other hand, the apparent
horizon area (or the irreducible mass) is increasing, consistent with finding (3), and
the fact that κh = 4πrh/Ah .

3.4 Black hole-toroid in equilibrium

The first full calculation of a self-gravitating thick disk in general relativity has been
performed by Nishida and Eriguchi [246]. The starting point of their work was the
Bardeen formalism and its horizon boundary conditions. The new ingredients were:
(1) The stress energy tensorwas assumed to be a perfect fluid, Eq. (9), with a polytropic
EOS p = kεΓ .8 Contrary to Lanza [241], the authors assumed p �= 0 and computed
the hydrostatic equilibrium of geometrically thick disks. (2) The differential rotation
law for the disk was assumed to be utuφ = A2(Ωc −Ω) folllowing the KEH [116,
117] works on rotating stars. Here A is an input constant parameter that determines the
degree of differential rotation and Ωc a constant that is evaluated during the iteration
scheme. (3) The numerical solution of the elliptic equations was performed using the
KEH method where the second order operator (a Laplacian) is inverted by employing
a Green’s function approach.

In general, each equilibrium solution of a BHD is obtained by specifying the fol-
lowing: (i) the black hole mass, (ii) the black hole spin, (iii) the EOS of the toroid, (iv)

7 A particle between the black hole and the disk will need less angular momentum to stay in a Keplerian
orbit [242, 243].
8 Notice that in most works reported in this review the polytropic EOS is p = kρΓ .
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the rotation law of the toroid, (v) the rest mass of the toroid, (vi) the position of the
toroid relative to the black hole, (vii) the total angular momentum of the toroid. For a
strict equilibrium, the directions of black hole spin and the disk’s angular momentum
should be aligned or antialigned. Properties (i), (ii) are free parameters, and similarly
functional relations (iii) and (iv) can be chosen freely. On the other hand properties
(v)–(vii) determine a unique BHD model. In actual numerical computations different
authors use different ways to specify (v)-(-vii). For example property v) is controlled
by specifying themaximum density ρmax (or εmax). For properties vi) and (vii) Nishida
and Eriguchi choose to fix the inner and the outer point of the disk.

The authors constructed sequences of BHDs around nonspinning as well as mildly
rotating black holes (Jh/M2

h � 0.6) for Γ = 2, and Γ = 5/3 polytropes. In general
they found that the disk plays the role of an “anchor” since a larger angular momentum
is needed to keep the same angular velocity as the correspondingKerr black hole. They
paid special attention to the cases with ωh = 0, and confirmed previous results [241,
244, 245] that even when � �= const the self-gravity of the torus induces negative
angular momentum Jh on the black hole. Alternatively one can have a black hole with
Jh = 0, while ωh �= 0. The authors find that black holes with Jh = 0 have ratio of
polar to equatorial proper circumference Cp/Ce always equal to unity irrespective of
the mass of the disk. This motivates them to define a “nonrotating” black hole as one
that has Jh = 0 or Cp/Ce = 1. Since those equilibria will have ωh �= 0, they will
exhibit ergoregions (by definition) despite being spherical in shape. In other words in
the presence of self-gravitating disks one can imagine energy extraction even from
“nonrotating” black holes.

Ansorg and Petroff [247] using their highly accurate multidomain pseudospectral
code [248], and the Bardeen formalism [238], constructed a wide range of uniformly
rotating and constant density self-gravitating rings. They were able to investigate
various properties up to machine precision (for example the authors claim that when
Jh = 0 the ratio Cp/Ce is close but not exactly one). They presented a BHD with
Jh/M2

h > 1, while in a follow-up work [249] they calculate a model with Mh < 0,
lendingmore evidence that the Komarmass for the black hole in the presence of matter
is not a good diagnostic.

More recently, the method of Nishida and Eriguchi was employed by Stergioulas
[250, 251] in order to produce more accurate solutions using a finite difference code.
In particular he applied a compactification in the numerical domain, as in RNS calcu-
lations [252], using a redefinition of the radial coordinate. Self-gravitating sequences
of BHD were produced with vanishing horizon angular velocity and it was found
that self-gravitating heavy tori with constant specific angular momentum can fill their
Roche lobe only if � < 4Mbh, similar to massless disks around a Schwarzschild black
hole.

3.5 Black hole-toroid in the puncture framework

New ideas for the construction of self-gravitating BHDs have been introduced by
Shibata [233], where methods from binary black hole initial data calculations were
employed. In particular the author uses the 3+1 formalism and the puncture framework
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with inversion symmetric boundary conditions at the black hole throat, together with
assumptions on stationarity and axisymmetry to derive a new set of equations (4
elliptic plus one first order) that solve the Einstein system. His starting point was the
formulation of Krivan and Price [253] according to which in axisymmetric spacetimes
around rotating black holes, a nonconformally flat form of the 3-geometry can be
chosen which allows a simple superposition of Kerr black holes with arbitrary mass
and spin. For a spacetime element in quasi-isotropic form, Eq. (56), the nontrivial
components of the extrinsic curvature are

Kiϕ = ψ4

2α
r2 sin2 θ∂iβ, where i ∈ {r , θ}, (68)

and the slicing is maximal, i.e. K = 0. As a consequence there is only one component
for the momentum constraint (the ϕ component) that needs to be satisfied and results
in

1

r2
∂r (r

2ψ2Krϕ)+ 1

r2 sin θ
∂θ (sin θψ

2Kθϕ) = 8πT t
ϕαψ

6e2q . (69)

The equation above is linear in the conformal frame, i.e., in ψ2Kiϕ [253]. Thus one
can make a decomposition that separates the contribution of the Kerr black hole from
the torus as

ψ2Kiϕ := K K
iϕ + K T

iϕ, and β := βK + βT (70)

with

K K
iϕ := Hi sin θ

r
, and K T

iϕ := ψ6

2α
r2 sin2 θ∂iβT . (71)

with Hi = (Hr , Hθ ) = (HE sin θ/r , HF ) and HE , HF having well-known expres-
sions in Kerr spacetime [253]. The “Kerr” contribution to the shift is calculated from

∂rβK := 2αHE

ψ6r4
, (72)

although this does not mean that βK will be the Kerr shift, since the conformal factorψ
in Eq. (72) will be a solution of the Hamiltonian constraint and will have a contribution
from the torus. Equation (70) and the momentum constraint will then yield an elliptic
equation for the torus shift βT . Elliptic equations for the lapse α, and the conformal
factor ψ , are derived from the ∂t K = 0 equation, and the Hamiltonian constraint
respectively. On the other hand a combination of the ∂t Ki j = 0 equations,
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γ rr∂t Krr + γ θθ ∂t Kθθ − 3γ φφ∂t Kφφ − ∂t K = 0, (73)

will yield an elliptic equation for q. Together with Eq. (72), this new system in 3 + 1
and axisymmetry has one more elliptic equation (in the absence of a torus one has 4
elliptic equations for α, β,ψ, q) than the Bardeen–Wagoner system [232, 238, 254]
and completely determines the Einstein equations.

Shibata introduces the puncture by a transformation for the conformal factor and
the lapse to a new set of variables s, B

ψ :=
(
1 + rh

r

)
es, αψ :=

(
1 − rh

r

)
e−s B, (74)

where rh = √
m2 − a2/2 is the black hole horizon in quasi-isotropic coordinates, and

m, a the mass and spin parameter of the initial Kerr black hole. This transformation
leads to a new elliptic system in terms of {s, B, βT , q}. Because the vacuum equations
are inversion symmetric with respect to the r = rh surface, Shibata extends that
symmetry in the presence of the fluid and imposes

∂r s = ∂r B = ∂rβT = ∂r q = 0, at r = rh . (75)

With the above boundary conditions the 2-surface r = rh becomes a marginally outer
trapped surface, or an apparent horizon, which in stationary spacetimes agrees with
the event horizon [255].

Another important contribution of this work is the careful study of the diagnostics
for the BHD that corrected many of the problems that plagued previous works, and in
particular the diagnostic for the black hole mass. Contrary to the angular momentum
which can unambiguously be separated into the black hole and the torus components,
Eq. (64), the case of mass needs more care. A similar separation for the mass, Eq.
(65), does not lead to a good measure of the black hole mass Mh in the presence of
a massive disk. This point is already being discussed by Bardeen [238] who notes
that Mh defined as such is smaller than the true value of the black hole mass, by an
amount first order in the mass of the torus, since it includes the binding energy of the
system. Numerically this was already reported in the self-gravitating BHD computed
by Lanza [241] who found Mh to be decreasing as the rest mass of the torus increased.
Assigning Mh to the black hole mass is problematic and Shibata showed explicitly
the following erroneous conclusions that such a diagnostic entails: (i) For heavy tori
Mh becomes smaller than the irreducible mass of the black hole (which is impossible
by definition of Mirr) and (ii) The sum of the rest mass of the torus and Mh is smaller
than the ADM mass of the system (which is is impossible for a bound system). In
order to remedy this problem the author proposed two new diagnostics for the black
hole mass both of which are inspired from the isolated Kerr spacetime. In the first
one the black hole mass is estimated from MC := Ce/(4π), where Ce the proper
equatorial circuference of the black hole horizon. In the second one, since the angular
momentum of the black hole is Jh [Eq. (64)] and the irreducible mass can be found
from the apparent horizon area Mirr := √

Ah/(16π), Shibata uses the Christodoulou

formula [256], Mbh := Mirr

√
1 + J 2h /(4M

4
irr), to get another measure for the black
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Table 1 Dependence of various black hole diagnostics as a function of the disk rest mass, M0, along a
sequence of j = const self-gravitating BHDs

Mbh ↑ MC ↑ Mh ↓ Mirr ↑ |Jh |
M2
bh

↓ Cp
Ce

↑ |MbhΩh | ↓ Mbhκh ↓

hole mass. For disk masses up to twice the black hole mass the two diagnostics, MC

and Mbh agree to ∼ 3%.
Using a Γ = 4/3 polytropic EOS and a j = huφ = const differential rotating law

the author calculates self-gravitating sequences of disks around highly spinning black
holes. The author fixes the mass m, and the spin parameter a of the Kerr black hole,
therefore the radius of the throat is also fixed. As the mass of the toroid increases,
the mass and spin of the black hole diverge from the fixed Kerr quantities m and a.
Also because of the boundary condition on the shift β at the throat, Jh = ma always,
irrespective of themass and the spin of the torus. In Table 1we summarize the behavior
of various diagnostics, as the mass of the disk increases. In particular:

1. The angular velocity of the black hole horizon,Ωh , decreases with increasing disk
mass, due to the fact that the black hole frame-dragging is reduced by the slower
rotation of the disk (the disk plays the role of an “anchor” [241, 246]).

2. The strength of gravity on the event horizon and themagnitude of its surface gravity
κh is weakened by the tidal force of the torus (less angular momentum is needed
to stay in a Keplerian orbit) [241, 246]).

3. The area of the black hole horizon and therefore its irreducible mass is increasing.
This results in an actual increase in the black hole mass as measured by the diag-
nostic Mbh, since Jh is constant. At the same time the dimensioless spin decreases
with the disk mass, consistent with finding (1).

4. Also consistent with the behavior of the dimensioless spin is the fact that the ratio
Cp/Ce increases as the torus becomes heavier, and the black hole becomes more
spherical.

More recently the method of Shibata has been employed by the Kraków group
in a series of works that investigate the properties of rotation around self-gravitating
axisymmetric disks as well as to construct magnetized equilibria using a second order
finite difference code [257–262]. In particular Karkowski et al. [257, 258] proposed a
new Keplerian rotation law that holds for massless as well as massive disks according
to

utuφ = − 3

2λ

d

dΩ
ln

[
1 − λ

3
[a2Ω2 + 3w

4
3Ω

2
3 (1 − aΩ)

4
3 ]
]
. (76)

Here λ is a parameter that takes values around λKerr = 3, which corresponds to the
exact formula that characterizes themotion of circular geodesics at the equatorial plane
of a Kerr black hole with spin parameter a and mass m = w2. For self-gravitating
tori w2 �= m in general. In the Newtonian limit, Eq. (76) yields the Keplerian angular
velocityΩ = w/(r sin θ)3/2. Using the rotation law Eq. (76), and the Shibata formu-
lation, the authors constructed sequences of stationary and axisymmetric equilibria
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around nonrotating as well as spinning black holes. In Newtonian gravity von Zeipel’s
theorem [263] states that for a barotropic fluid the surfaces of constantΩ coincide with
the surfaces of constant �N = Ω� 2, where � the distance from the axis of rotation.
This implies that �N = �N (�) orΩ = Ω(�), i.e. the angular velocity depends only
on the distance from the axis of rotation (Poincaré-Wavre [264]). In general relativity
Abramowicz [265] showed that for massless disks the surfaces of constant Ω have
cylindrical topology, therefore they depend not only on the distance from the rotation
axis but also on the distance from the equatorial plane of symmetry. As expected this
is also true for self-gravitating tori [258].

Many properties of self-gravitating BHDs have been investigated by Dyba et al.
[261] using the infrastructure developed in previous works. In particular the authors
find that by fixing the black hole parameters (a andm), the polytropic exponent Γ , and
the inner and outer coordinate equatorial radii of the torus, as well as its maximal rest-
mass density, there exist two solutions differing in the ADM mass. In other words, it
is possible to obtain a sequence of tori with a decreasing maximum rest-mass density
and increasing mass, simply because their size is also growing. Applying Seguin’s
[266] criterion for linear stability against axially symmetric perturbations the authors
found that the massive branchmust be dynamically unstable. The location of the ISCO
for a variety of self-gravitating equilibria showed non-negligible differences from the
corresponding Kerr value, even for light toroids. A typical behavior is the increase of
the circumferential radius of the ISCO relative to that of the Kerr black hole. On the
other hand Dyba et al. found that for sufficiently massive disks the effective potential
Veff due to its nonmonotonic behavior further from the black hole, can exhibit a
region outside the ISCO in which circular geodesics can be unstable (V ′′

eff(r) < 0).
This provides yet another reason why very massive disks are dynamically unstable.

3.6 Black hole-toroid withmagnetic fields

Mach et al. [259] constructed self-gravitating BHDs with toroidal magnetic fields
in the general relativistic ideal magnetohydrodynamics (IMHD) regime [233, 267]
under stationarity and axisymmetry. The main difference here is the integral of the
Euler equation, since for the gravitational field equations the analysis follows previous
works [233, 257, 258] (apart from the modification of the sources in the Einstein
equations). Mach et al. assume that T αβ = T αβM + T αβEM with

T αβEM = b2(uαuβ + 1

2
gαβ)− bαbβ, (77)

the IMHD stress-energy tensor, and T αβM the perfect fluid stress-energy tensor Eq. (9).
Here bα = Bα/

√
4π is the magnetic field measured by an observer with 4-velocity uα

(at rest with respect to the fluid), and b2 = bμbμ the magnetic pressure pmag = b2/2.
Since

bμu
μ = 0, (78)
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assuming a toroidal magnetic field with br = bθ = 0 yields the following realation:

bt = −Ωbφ. (79)

In this set up, the continuity equation, the induction equation, as well as the t and
φ components of ∇αT αβ = 0 are trivially satisfied, while the r and θ components
satisfy

∇μ ln h

ut
+ utuφ∇μΩ + 1

2ρhA∇μ(b2A) = 0, (80)

where A = gφφgtt − g2tφ . The above equation can be integrated if and only if utuφ
is a function of Ω , and b2A a function of ρhA. When the magnetic field is zero one
recovers the integral of the Euler Eq. (62). The authors assumed b2|A| = f (ρh|A|)
with f ′(x) = 2nC1x/(1 + C1x), so that

∫
d(b2A)
2ρhA = ln(1 − C1ρhA)n . (81)

Constants n, C1 characterize the topology of the magnetic field and the authors con-
struct a series of solutions with variable C1 while fixing n = 1. They found that the
larger the C1, the smaller the thermal pressure, even in cases in which the maximum
of the baryonic density is fixed. In general they also observe an increase of the value of
the magnetic pressure. For the rotation law (utuφ term) they employed Eq. (76) with
λ = 3. Each solution is specified by the black hole parameters (m and a), the inner
rin and outer rout radii of the disk, the polytropic exponent of the EOS, the maximum
rest-mass density, and the magnetic field constants C1 and n. On the other hand, the
constant w that appears in the differential rotation law, Eq. (76), the constant that
appears in the integral of the Euler Eq. (80), and the two angular velocities at the
inner and outer points are determined during the iteration scheme. As in Dyba et al.
[261] fixing a, m, rin, rout, Γ , ρmax does not lead to unique solutions. Two solutions
exist with different ADM masses, with one of them being larger than the mass of the
central black hole. The authors measure the magnetization of their solutions by the
parameter βmag = 2p/b2 and they construct a large set of solutions with βmag as small
as ∼ 6 × 10−4. The main characteristic of the toroidal magnetic field is to shift the
location of the maximum rest-mass density towards the black hole.

3.7 Arbitrary spinning black hole-toroid

In an effort to go beyond axisymmetry or stationarity Tsokaros et al. [150] presented
a new formalism for 3-dimensional self-gravitating BHD solutions. This method goes
beyond the minimal construction of initial data (solution of constraints in binary black
hole calculations) [68, 70, 105, 268–272] and solves the full Einstein system. In par-
ticular the 5 equations related to the conformal geometry which are associated with the
true dynamical degrees of freedom of the gravitational field [269] are resolved. The
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following suite of benchmarks have been used to assess the new formalism: (1) In the
absence of matter it can reproduce the exact Kerr–Schild solution, even for extreme
spins, which makes the method suitable for a broad range of nonaxisymmetric prob-
lems, such as tilted disks or binary systems. (2) The domain of the solution extends
inside the apparent horizon, which is well-suited for evolution simulations. (3) In the
presence of massless disks around the black hole our method reproduces well-known
solutions (e.g. [273, 274]) even with black hole tilt. (4) The first self-consistent, self-
gravitating, and tilted BHD solutions are presented that satisfy not only the constraint
equations but the whole Einstein system.

The starting point of Tsokaros et al. [150] is a line element in its general 3 + 1
form [Eq. (2)] together with a conformal metric decomposition as in Eq. (50). Instead
of a maximal slicing and the Dirac gauge Eq. (51), the coordinates now used were
Kerr–Schild with

K = KKS = 2Hα3KS
r

(
1 + H + 2H2r

m

)
, (82)

and

◦
Di γ̃

i j = ◦
Dih

i j
KS. (83)

Here αKS, h
i j
KS are the lapse and non flat part of the conformal metric in Kerr–Schild

coordinates ds2 = (ημν+2H�μ�ν)dxμdxν . Assuming Kerr–Schild boundary condi-
tions for the potentials ψ, α, β̃i , hi j the authors found that the corresponding system
[76, 77] could not converge in the neighborhood outside the horizon. The failure was
due to the fact that the equations for hi j were losing their elliptic character close to
the horizon. The region of nonconvergence was larger for higher spins but still rela-
tively small (less than twice the horizon radius). In order to evercome this difficulty,
and even more to obtain horizon penetrating solutions the authors introduced a new
decomposition for the traceless extrinsic curvature as

Ãi j = ÃKS
i j + σ̃ (L̃W̃ )i j , (84)

where ÃKS
i j is the Kerr–Schild part, W̃i an unknown spatial vector, and σ̃ a scalar.

Here L̃ is the conformal Killing operator: (L̃W̃ )i j = D̃i W̃ j + D̃ j W̃i − 2
3 γ̃i j D̃k W̃ k .

Equation (84) implies that the momentum constraint is now solved twice once for the
shift vector β̃i and once for W̃i . Solving for β i is necessary since it will be used in
the computation of LαnK . On the other hand decomposition (84) with zero boundary
conditions for W̃i on the horizon results into convergence for the hi j potentials even
inside the horizon. The Kerr–Schild gauge conditions Eq. (83) are satisfied through
a transformation of the form Eq. (53) which introduces 3 more potentials ξ i . The
augmented system of the 17 elliptic equations with zero boundary conditions for the
gauge potentials and the vector W̃i converges smoothly in vaccum or in the presence
of matter (like a massive disk), even for near maximally-spinning black holes, thus
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not only solving for the constraint equations but providing also a way to control the
gravitational wave content of the initial data in a self-consistent way.

For the Euler equations the authors assumed a stationary and axisymmetric fluid
flowwhich in the presence of a tilted black hole (with respect to the angularmomentum
of the disk) is a valid approximation if the inner point of the disk is further away from
the black hole horizon. Using the KEH scheme for black holes [151], as implemented
within the cocal code [145] the authors computed self-gravitating tilted BHD solu-
tions with a disk mass larger than the black hole mass and with the black hole having
almost extremal spin.

4 Magnetized rotating neutron stars

While the typical surface magnetic field of pulsars is ∼ 1012 − 1013 G [2] there exist
neutron stars, the so-called magnetars, with extremely large magnetic fields� 1014 G
[275–277]. The magnetar model has been invoked to explain soft γ -ray repeaters
(object that emits large bursts of γ -rays andX-rays at irregular intervals) and the related
anomalous X-ray pulsars [275–283]. According to many studies, soft γ -ray repeater
bursts are caused by the cracking of the neutron star crust due to magnetic stresses,
which leads to injection of Alfvénwaves into themagnetosphere, particle acceleration,
and formation of an optically thick pair plasma. The decay of the magnetic field heats
the neutron-star interior, and gives rise to persistent thermal soft X-ray emission from
the surface. In addition, the strong magnetic field causes the spindown of the neutron
star which may end up with rotation periods of ∼ 10 s. From the microscopic point of
viewwhen the cyclotron energy equals the electron rest mass, one reaches the quantum
critical magnetic field strength of ∼ 1013 G beyond which the magnetic field affects
physical processes and is responsible for many exotic phenomena, such as vacuum
birefringence, photon splitting, and the distortion of atoms (see [284] for an extensive
review).

Magnetic fields beyond magnetar strength that can reach values of ∼ 1017 G can
be developed in the merger of two neutron stars due to a number of different mecha-
nisms: (i) The Kelvin–Helmholtz instability [285, 286] which occurs in the shear layer
that forms between the two neutron stars and can grow on a timescale of a couple of
milliseconds [287–289]. (ii) The magnetorotational instability [290–292] during the
merger as well as in the postmerger compact object [293–296]. (iii) Magnetic winding
which is due to differential rotation [289, 297, 298]. Differential rotation generates
toroidal Alfvén waves which convert rotational kinetic energy into magnetic field
energy. (iv) Turbulent amplification, where small-scale magnetic fields will evolve in
longer times to large-scale ones. In fact all of the mechanisms above are responsible
for converting poloidal to toroidal magnetic fields leading to a remnant with compa-
rable poloidal and toroidal components. Strong magnetic fields affect the neutron star
in at least two ways. First, they result in an anisotropy through a modification of the
energy-momentum tensor. Second, they affect the EOS due to Landau quantization of
the constituent particles, as pointed out in Bandyopadhyay et al. [299]. Therefore one
expects that the EOS, and thus a number of observational quantities such as the neutron
star maximum mass, to be affected too [300–303]. The magnetar scenario has also
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been recently employed to explain the blue radioactive ejecta in the BNSmerger event
GW170817 [304]. The authors proposed that the source for these ejecta was a mag-
netized neutrino-irradiated wind, which emerges from the hypermassive neutron star
remnant over≈ 0.1−1 s prior to its collapse to a blackhole. The role of strongmagnetic
fields was instrumental in explaining the high ejecta mass and the observed velocities.

Therefore the ab initio calculationof self-gravitatingmagnetars cangreatly facilitate
the study of these objects and understanding of their gravitational and electromag-
netic signatures. On the other hand equilibrium solutions does not mean that they are
necessarily stable. The first general relativistic MHD simulations with either purely
toroidal magnetic fields [305] or purely poloidal magnetic fields [306–309] confirmed
the unstable nature of these solutions predicted decades ago [310–315]. In [306–309]
the initial conditions were based on the self-consistent poloidal solutions of [300],
and the Cowling approximation was used, while in [305] the initial toroidal condi-
tions were those of [302] and an axisymmetric general relativistic MHD simulation
was employed.More recently [347],MHD simulations in full general relativity of self-
consistent rotating neutron stars with ultrastrongmixed poloidal and toroidal magnetic
fields showed that long term stability is affected by the specific magnetic properties
of a NS model.

In this section, we review theoretical works on the structure of MRNS in the frame-
work of general relativity. While for BNSs and BHDs we focused only on numerical
methods that model the whole or part of the Einstein–Euler system (but still without
truncating any equation), forMRNSwewill mention pertubativemethods as well. Per-
turbative modeling of MRNSs is important because in many astrophysically realistic
scenarios the contribution of the magnetic field to the equilibrium of a compact star
may be small enough to be treated as a perturbation. In Table 2, we present a classifi-
cation of mathematical modelings for relativistic magnetized compact stars based on
three characteristics. In most of the cases stationarity and axisymmetry are assumed,
except for a few models whose magnetic axis is tilted with respect to the rotation axis.

4.1 Magnetized rotating neutron stars with purely poloidal magnetic fields

In their pioneering work Bocquet et al. [300] have constructed stationary and axisym-
metric rotating neutron stars [316] (spacetime metric Eq. (56)) having circular flows,
and electric currents that induce a poloidal magnetic field. For the exterior region of
the star the authors assumed a magnetovacuum/electrovacuum. This work is not only
the first self-consistent numerical construction of relativistic rotating stars associated
with strong poloidal (electro)magnetic fields, but it is also achieved earlier than any
perturbative study in the framework of general relativity. The numerical code that was
employed extended [316] to include the electromagnetic equations. For the solution of
the elliptic equations the authors employed a Chebyshev–Legendre spectral method
developed by Bonazzola and Marck [317].

Carter has shown [318] that conditions (54) imposed on an electromagnetic energy-
momentum tensor

T αβEM = 1

4π

(
Fαγ Fβγ − 1

4
gαβFγ δF

γ δ

)
, (85)
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Table 2 A summary of mathematical modelings for magnetized compact stars

Theory Types Properties

Flow fields no flows

toroidal (rotation)
poloidal (meridional circulation)
mixed

⎫
⎬
⎭

⎧
⎪⎪⎨
⎪⎪⎩

slow rotation (perturbation)
with Ω = const. or Ω = Ω(r)
rapid rotation (numerical)
with Ω = const. or differential

EM field
components

no fields

poloidal
toroidal
mixed

⎫⎬
⎭

{
weak (perturbation)
strong (numerical)

EM field
configurations

confined, outside vaccum
extended, outside magnetovacuum
extended, outside magnetosphere

⎫⎬
⎭ arbitrary functions for the currents

Metric fixed spherical background

truncated
total

} {
small deformation (perturbation)
large deformation (numerical)

Stress energy tensor
perfect fluid (PF)
PF + EM
PF + EM + magnetization

⎫⎬
⎭

EOS (polytropic, realistic,
magnetized, hypothetical)

EM stands for electromagnetism. Second column signifies the type of assumptions made with respect to
the hydrodynamical, electromagnetic, and gravitational sector, as well as to the stress energy tensor (first
column). Third column shows the additional properties shared by the corresponding studies. Brackets signify
that any line in the second column can be combined with any line in the third column, since most models
in the literature are computed using one of the types with one of the properties

will imply that

j [αtβφγ ] = 0, (86)

i.e. a circular (toroidal) current jα = ( j t , 0, 0, jφ) similar to the 4-velocity (58).
Conversely, if the fluid circularity condition (57), and the current circularity condition
(86) are satisfied on a certain connected domain, then the metric circularity condition
(54), and the electromagnetic field circularity condition

Fαβ t
αφβ = 0, F[αβ tγ φδ] = 0 (87)

are satisfied on the same domain (generalized Papapetrou theorem). As a corollary,
the electromagnetic potential circularity condition

A[αtβφγ ] = 0, (88)

is also satisfied. Here Aα is the electromagnetic 1-form that derives the Faraday tensor
Fαβ = ∂αAβ − ∂β Aα .
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In this setup magnetic field lines lie on surfaces Aφ = const, while the electric
and magnetic field as seen by the normal observers will have only r , θ components
Eα = Fαβnβ = (0, Er , Eθ , 0), and Bα = 1

2εακμνn
κFμν = (0, Br , Bθ , 0)

Using a stationary and axisymmetric metric, Eq. (56), and the 3+ 1 formulation of
the Einstein equations one can calculate the gravitational potentials α, ψ, β, q from
4 elliptic equations [233, 316]. Regarding the nonrotating (static) solutions we note
here that when the magnetic field is zero we have β = 0 i.e. the timelike Killing vector
tα is orthogonal to the spatial hypersurfaces. In the case of poloidal magnetic fields
a static spacetime implies not only a non-rotating fluid, but also a vanishing electric
charge. A nonzero charge creates an electrostatic field outside the star and therefore a
nonzero Poynting vector that leads to nonzero angular momentum although the fluid
does not rotate.

Bocquet et al. assume a stress-energy tensor composed of a perfect fluid and an
electromagnetic field T αβ = T αβM + T αβEM . The source-free Maxwell equations

∇[γ Fαβ] = 0 (89)

are identically satisfied, while the ones with nonzero sources

∇βFαβ = 4π jα (90)

result into two elliptic equations for At and Aφ

◦
Di

◦
Di At = P(· · · ; At , Aφ, j

t , jφ), and
◦
Di

◦
Di Aφ = Q(· · · ; At , Aφ, j

t , jφ).

(91)

The dots in the right-hand side of the Eqs. (91) signify the nonlinear dependence
on the gravitational metric components. In order to satisfy the magnetohydrostatic
equilibrium, the projection of the conservation of the stress-energy tensor implies

∂i ln
hα

ΓL
− jφ −Ω j t

ε + p
∂i Aφ = 0 , (92)

where ΓL is the Lorentz factor connecting the normal and comoving observers. Equa-
tion (92) is analogous to Eq. (59) and (80). Integrability demands

jφ −Ω j t = (ε + p) f (Aφ) (93)

where f an arbitrary function which the authors refer to as the “current function”
since it relates to a current associated with the electromagnetic potential Aφ . Different
choices for f lead to different magnetic field distributions. In addition from Ohm’s
law and assuming that matter has infinite conductivity, the electric field as measured
by the fluid comoving observer must be zero,

Fαβu
β = 0. (94)
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This implies that inside the star ∂i At +Ω∂i Aφ = 0, and for the rigidly rotating case,
Ω = constant, we have

At +ΩAφ = C . (95)

Here C is a constant that determines the total electric charge of the star. Equation (95)
is called the perfect conductivity equation.

Given an EOS and a current function f , a solution is obtained if one specifies the
central enthalpy, and a value for the total charge. The first integral of Eq. (92) that
describes the magnetohydrostatic equilibrium can be used to find the angular veloc-
ity and the corresponding constant of integration. Given the gravitational potentials,
α, ψ, β, q, one can use the four equations (91), (93), and (95) to solve for At , Aφ, j t ,

and jφ . The iteration is based on the fact that the
◦
Di

◦
Di At equation includes j t in the

source term and together with Eq. (93) they are used to compute the new values of

the currents jφ , j t . Then At , and Aφ are obtained from the
◦
Di

◦
Di Aφ equation and the

perfect conductivity Eq. (95). The equation of Aφ is the easiest since imposing Aφ = 0
as r → ∞ one finds a smooth solution everywhere. On the other hand, because of
the assumption that the exterior region of the neutron star is vacuum, At is not dif-
ferentiable across the surface of the star. In order to make At continuous at the stellar
surface, a rotating perfect conductor is endowed with a static surface charge density
(hence the component of the electric field normal to the surface is discontinuous). The
solution for At proceeds in two steps. Outside the star a value A(1)t is obtained by
assuming At = 0 as r → ∞. This solution in general does not agree on the surface of
the star with the interior solution A(0)t = −ΩAφ obtained previously from the perfect

conductivity equation. Thus a harmonic (
◦
Di

◦
Di A(2)t = 0) function

A(2)t =
L∑
�=0

a�
P�(cos θ)

r�+1 (96)

is added to A(1)t in order for the exterior field, A(1)t + A(2)t , to satisfy the appropriate
boundary conditions on the star surface. At the end, the exterior solution A(1)t +
A(2)t matches the interior one A(0)t at the surface of the neutron star, and therefore a
continuous component of At is obtained in the whole domain. This solution though
has a certain electric charge (as measured in the asymptotics) that does not coincide
with the desired one. If in addition one wants to fix the charge of the solution then a
further adjustment of the arbitrary constant C in Eq. (95) is needed.

The authors have calculated non-rotating as well as rotating magnetized models for
different EOSs and with a zero total charge (which is a free parameter in the formu-
lation). Sequences of solutions are parametrized either by their rest mass or magnetic
dipole momentM, which is measured from the leading term of the asymptotic behav-
ior of the magnetic field as measured by the normal observer. For the static solutions
the authors employed a constant current function f (x) = const and foundmodels with
a magnetic field at the pole as large as Bpole = 1.5×1018 G, and a ratio of magnetic to
gas pressure at the center of∼ 1.0. The gravitational mass of the magnetized solutions
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was an increasing function of M, reaching differences � 29% from the correspond-
ing nonmagnetized ones (at very large central magnetic fields ∼ 1018 G). The authors
found that this increase in the maximum mass was EOS dependent, with some EOSs
leading to more modest enhancements (∼ 13%) than others. Given the fact that rota-
tion increases the maximum gravitational mass by at most∼ 20% [319–321], Bocquet
et al. showed explicitly for the first time that depending on the EOS the magnetic field
can be more efficient in increasing the maximum nonrotating gravitational mass than
rotation itself.

For the magnetized rotating configurations the authors experimented with different
current functions f (x) such as

f1(x) = N

1 + x
, or f2(x) = N

(
1 − 1

1 + (Λx)2
)
, (97)

where x = Aφ/A0
φ , and A0

φ , N , andΛ are constants. For example choice f1(x) led to a
current distribution more concentrated towards the star’s center, relative to the choice
f (x) = const. The authors compared the MRNS having a magnetic dipole moment
M = 1.5 × 1032A m2, and the non-magnetized RNS of the same central enthalpy
and angular velocity. They found that a magnetic field increases the baryonic mass
for a fixed central enthalpy and angular velocity. In other words magnetic forces act
in a centrifugal manner that help the star support more baryons. At the same time the
total angular momentum of the system increases linearly with respect to the angular
velocity, reaching values ∼ 14% larger than the zero magnetic field ones. In addition
the Keplerian angular velocity at the mass shedding limit, ΩK, also increases with
M. On the other hand, the equatorial circumferential radius shows an increase for
small angular velocities (as it does for the static cases where Lorentz forces stretch the
star out), while for larger angular velocities the radius decreases. Bocquet et al. argue
that this behavior can be explained in the following way. In order for equilibrium to
be maintained the gravitational force must counterbalance both the centrifugal force
which is greater at the periphery of the star, and the Lorentz forcewhich is greater at the
center of the star. For the same central density and large rotation rate, an energetically
favorable configuration happens at a smaller radius contrary to the slower rotating
case.

The overall conclusion of this study was that the magnetic field influences the star
structure mostly through the Lorentz forces and not through the gravitational field
generated by the electromagnetic stress-energy tensor, something which is anticipated
since even a huge magnetic field of ∼ 1018 G has energy density ∼ 0.25ρnucc2, much
smaller than the matter density at the neutron star center. Notwithstanding that, for
such high values of the magnetic field, the deformation of the star can be dramatic.
This is due to the anisotropic character of the magnetic pressure similar to the way
anisotropic centrifugal forces deform a rotating star even though its kinetic energy is
much smaller than its gravitational one. On the other hand the deformation of the star
due to the magnetic stresses is important if B � 1015 G.

Amore in depth analysis ofmagnetized static poloidal solutions (β = At = J t = 0)
by Cardall et al. [301] employing more EOSs, and using a constant current function,
found that the maximum mass of these configurations is noticeably larger than the
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maximum mass attained by uniform rotation for all EOS examined, and even larger
than that reported in Bocquet et al.. For a fixed number of baryons, maximum mass
configurations are characterized by an off-center density maximum. In their study they
used the KEH method in a compactified domain [116, 252], and constructed a large
number of sequences of constant rest mass and constant magnetic dipole momentM
as in [300].9

Amethod for generating exact static and axisymmetric interior solutionswith a pure
poloidal magnetic field has been developed by Yazadjiev [322]. The author employs
an anisotropic stress energy tensor and finds solutions that are prolate in shape.

4.2 Perturbative models for magnetized rotating neutron stars

Perturbative techniques in the calculation of general relativistic MRNSs have been
used first by Konno et al. [323] in order to calculate their deformation due to magnetic
stresses. They found that for nonrotating neutron stars the ellipticity ((Re − Rp)/Rm ,
where Rp, Re, and Rm are the polar, equatorial andmean radius) for the dipolemagnetic
field becomes large as the compactness M/R increases, for the same ratio of magnetic
energy to gravitational energy. In a subsequent work [324], Konno considered slow
rotation of magnetically deformed stars on the symmetry axis in order to define the
moment of inertia and found that each principal moment is modified by a factor of 2
at most due to the general relativistic effects.

In an effort to compute equilibrium models that incorporate both poloidal and
toroidal magnetic fields Ioka and Sasaki [325] presented a formalism for IMHD in
stationary and axisymmetric spacetimes that goes beyond circular flows. In this way
they extended previous works on the Grad–Shafranov equation [326–329] to noncir-
cular spacetimes. Their starting point was the work by Bekenstein and Oron [330,
331] who have shown the existence of 5 conserved quantities along a flow line. Given
the ideal MHD condition Eα = Fαβuβ = 0, and the assumptions of stationarity and
axisymmetry, one finds that the magnetic potentialΨ := Aμφμ = Aφ and the electric
potential Φ := Aμtμ = At are constant along each flow line, i.e.

uμ∇μΨ = uμ∇μΦ = 0. (98)

As a consequence, one can label each flow line byΨ , which is called the flux function.
Surfaces with Ψ = const are called flux surfaces and are generated by the rotating
magnetic field lines or equivalently the flow lines, about the axis of symmetry. It
also implies that the electric and magnetic potentials are dependent, i.e. Φ = Φ(Ψ ).
Introducing the function Ω̄ = −dΦ/dΨ , and since

EA = (Ω̄ −Ω)ut∂AΨ + FABu
B = 0 (99)

one finds that Ω̄ coincides with the angular velocity only when toroidal fields are
absent, i.e. F12 = 0. Using the continuity equation one can write the components of

9 Even though there is no principle of conservation of magnetic moment these sequences are expected to
be astrophysically relevant, at least in a certain timeframe, since the timescale of magnetic field decay is
expected to be large.
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the Faraday tensor

Ft A = Ω̄FAφ, Ftφ = 0, (100)

F12 = C
√−gρ(uφ − Ω̄ut ), F1φ = C

√−gρu2 = ∂1Ψ , (101)

F2φ = C
√−gρu1 = ∂2Ψ , (102)

where Ω̄ = Ω̄(Ψ ) and C = C(Ψ ) are conserved along each flow line. The magnetic
field can be written in terms of the 4-velocity as

Bμ = −Cρ[(ut + Ω̄uφ)u
μ + tμ + Ω̄φμ]. (103)

Similarly to the conserved quantities C and Ω̄ , it can be shown that

E = −
(
h + b2

ρ

)
ut − C(ut + Ω̄uφ)bt , (104)

L =
(
h + b2

ρ

)
uφ + C(ut + Ω̄uφ)bφ, (105)

D = −h(ut + Ω̄uφ), (106)

where h the specific enthalpy, are all conserved along the flow lines. Note here that not
all of the quantities are independent and it is D = E − Ω̄L . Since they are essentially
the first integrals of motion, their specification characterizes the configuration of the
electromagnetic field and the fluid flow.

In order to describe noncircular, stationary, and axisymmetric spacetime the authors
use the (2+ 1)+ 1 formalism by Gourgoulhon and Bonazzola [332] for the 10 metric
components gμν . Under these assumptions the Euler equations reduce to the Grad–
Shafranov equation for the flux function Ψ

Jφ − Ω̄ J t + 1

C
√−g

[∂2(hu1)− ∂1(hu2)] + ρT ds

dΨ

−ρu0
[
dE

dΨ
−Λd(CΩ̄)

dΨ

]
+ ρuφ

[
dL

dΨ
−Λ dC

dΨ

]
= 0, (107)

where Λ = (ut Bφ − uφBt )/4π and

Jσ = 1

4παζ
DA(αζ F

σ A), for σ = {t, φ}. (108)

In Eq. (107) s is the specific entropy, while in Eq. (108), ζ is the “lapse” function that
defines the unit spacelike 4-vector mα orthogonal to the t = const and φ = const
surfaces Σtφ . It is mα = ζDαφ, with D being the covariant derivative with respect
to the induced 2-metric on Σtφ . The Grad–Shafranov equation is a second order
nonlinear partial differential equation for Ψ due to the first 3 terms (Jφ , J t , and the
term in square brackets) which include first order derivatives of Ψ . In addition to Eq.
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(107) one has the so-called wind equation from the normalization of the 4-velocity
that can be used to compute one of the thermodynamic variables. Given the conserved
functions E(Ψ ), L(Ψ ), Ω̄(Ψ ), C(Ψ ), s(Ψ ), and the metric gμν , Eq. (107) together
with the wind equation describe fully the magnetohydrostatic equilibrium.

The authors proceed in a perturbativeway to computemodels ofmagnetized neutron
stars [333] with mixed poloidal and toroidal internal magnetic fields where meridional
circulation is present. They employed a polytropic EOS with Γ = 2 and considered
theGrad–Shafranov equation in theweakmagnetic field limit, with the flux functionΨ
being the perturbation parameter, similar in spirit to the slow rotation limit ofHartle and
Thorne [334]. For the metric they solved the perturbation equations for Δgμν around
a spherically symmetric metric, which turn out to be O(Ψ 2). Models with toroidal
magnetic fields were found to distort prolately contrary to the oblate distortion in the
pure poloidal case [300]. For fixed baryonic mass and magnetic helicity [127, 335]

H =
∫

Σt

HαdSα, where Hα = 1

2
εαβγ δAβFγ δ, (109)

more spherical stars were found to have lower energy. In addition, the authors report
on two new types of frame dragging that differ from the familiar one in Kerr black
holes. These effects that violated reflection symmetry with respect to the equatorial
plane, were due to the meridional flow and the toroidal magnetic field.

One instability that has been argued to be operating inMRNSs is the Parker instabil-
ity, or the so-called magnetic buoyancy instability [336], according to which magnetic
flux tubes are subject to magnetic buoyancy and are forced to move toward the surface,
destabilizing the star. Many authors have argued that stable stratification is necessary
for magnetized equilibria to be stable [337, 338]. For sufficiently cold neutron stars,
the proton-neutron composition gradient is a candidate for such stratification [339].
Stable stratified neutron stars in general relativity have been computed by Yoshida
et al. [340] as well as by Yoshida [341], although in their models buoyancy results
from entropy gradients, and not composition ones. From the conservation of the stress
energy tensor Eq. (10), and the conservation of baryon mass, it is

uα∇αs = 0. (110)

If we restrict to stationary and axisymmetric systems Eq. (110) yields uA∇As = 0. In
other words the specific entropy has to be constant along the streamlines on the stellar
meridional plane, unless uA = 0, i.e. meridional flows do not exist. The authors argue
that the specific entropy cannot be constant along the streamlines in a meridional plane
since in general these are closed curves for stationary and axisymmetric systems, thus
it is inevitable for regions with ∇α p∇αs < 0 to exist. Therefore for a stably stratified
star one has

uA = 0 (111)

i.e. circular flows uα = ut (tα + Ωφα). In this case Maxwell equations, the perfect
conductivity equation Fαβuα = 0, and the projection (gαγ + uαuγ )∇βT αβM = 0 yield
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a set of equations similar to Eqs. (100), (101), (102) and the Grad–Shafranov Eq. (107)
with Ω = Ω̄ . The arbitrary function of Ψ that enter the equations are specified as in
Ioka and Sasaki [325]. For the EOS the authors assume a parametric representation of
the type

p = kρ1+1/n, and e = 1

Γ − 1

p

ρ
, (112)

where k, and n are the polytropic constant and index respectively, and Γ the adiabatic
index, which in general is not equal to 1+1/n. For stars whose density profile satisfies
dρ/dr < 0, the condition for stable stratification is

Γ > 1 + 1

n
. (113)

The authors assumed Γ = 2.1 (along with Γ = 2 for comparison purposes), and
using perturbativemethods they calculatedmodels that have both poloidal and toroidal
magnetic fields of comparable strength. Building on thiswork,Yoshida et al. [340, 341]
were able to calculate new equilibria with magnetic fields whose toroidal components
are much larger than the poloidal ones.

In the above works by Konno et al. [323, 324], Ioka and Sasaki [325, 333], and
Yoshida et al. [340, 341], the authors have taken into account not only the magnetic
fields, but also the metric perturbations. In this way they were able to compute the
deformation of the neutron star due to the magnetic field and rotation. On the other
hand, some of the studies below do not incorporate metric perturbations, but introduce
a larger variety of magnetic field configurations. Another common feature between
the perturbed models of Ioka et al. is the assumption that both toroidal and poloidal
magnetic field components are entirely confined inside the neutron stars, while outside
it is vacuum without any electromagnetic fields.

Colaiuda et al. [342] extended the work of Konno et al. [323] to include toroidal
magnetic fieldswith an amplitude comparable to that of the poloidal fields. The authors
pay special attention to the boundary conditions and the matching of the interior
solution of theGrad–Shafranov equation to the exterior solution ofMaxwell’s equation
(magnetovacuum solution). Because of their choice in the integrability condition, the
toroidal field has a non-zero value at the stellar surface. Since the toroidal field is
not allowed under the assumption of magnetovacuum (no electric current) outside the
neutron star, the authors implicitly introduced a surface electric current, and switched
off the toroidal field outside. They calculated various magnetic field configurations,
including those distributed in the entire interior of the neutron star, as well as those
localized in the crust. For the latter case, the surface deformation is much larger than
in the former. They also calculated the stellar deformation due to the magnetic field
and rotation, changing the mass, the EOS, and the magnetic field configuration.

Twisted torus configurations where the toroidal magnetic field component is con-
fined inside the neutron star, while the poloidal component extends to the exterior have
been presented by Ciolfi et al. [343] who built their equilibria based on the formal-
ism developed by Konno [323], Ioka and Sasaki [333] and Colaiuda et al. [342]. In
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their work the Grad–Shafranov equation is solved to first order in the magnetic field.
In the solutions presented although the magnitude of the toroidal magnetic field is
of the same order as the poloidal one, the contribution of the toroidal energy to the
total magnetic energy is � 10%, because the toroidal field is non-vanishing only in a
small region inside the neutron star. Unlike in Ioka and Sasaki [333], the poloidal field
smoothly extends outside of the star, and unlike in Colaiuda et al. [342] the toroidal
field is smoothly confined inside the neutron star, and therefore consistent with the
magnetovacuum exterior (no magnetosphere). These equilibria have been built under
the assumptions of a linear relation in the flux function between the poloidal and
the toroidal components of the magnetic field, with their ratio being estimated by
determining the configuration of minimal energy at fixed magnetic helicity. The con-
tribution of higher than � = 1 multipoles was taken to be minimum outside the star.
The latter assumption was removed in Ciolfi et al. [344], in addition with a more
general parametrization of the relation between the toroidal and poloidal fields. The
new configurations had a much smaller poloidal field near the symmetry axis, and
a larger toroidal field near the stellar surface, so that the toroidal field energy never
surpassing ∼ 13% of the total magnetic energy inside the neutron star. A toroidal
magnetic field that contains much less energy from the poloidal one can be problem-
atic for a number of reasons. First, simulations indicate that poloidal-field-dominated
geometries are unstable on Alfvén time-scales [306–308, 345–347]. Second, MHD
simulations of core-collapse supernovae show that the toroidal magnetic fields can be
efficiently amplified due to the winding if the core rotates differentially. After core
bounce, the toroidal fields generically dominate over the poloidal ones even if there
is no toroidal field initially (see [348] for an extensive review). A similar mechanism
is responsible for the creation of a large toroidal magnetic field in BNS mergers. In
order to address these limitations Ciolfi and Rezzolla [349] adopted a new prescrip-
tion for the azimuthal currents that led to more generic twisted-torus configurations,
where the toroidal-to-total magnetic field energy ratio can be as high as 90%. The
authors found that for a fixed exterior magnetic field strength, a higher relative con-
tent of toroidal field energy implies a much higher total magnetic energy in the star,
which can have a strong impact on the expected electromagnetic and gravitational
wave emission properties of magnetars.

Finally, a series of works [350–357] focused mainly on the electromagnetic con-
figuration outside of a neutron star. In the last work [357], the authors reformulated
a perturbative method for slowly rotating models of MRNS, and studied both inte-
rior and exterior magnetic configurations. In particular, they demonstrated the exterior
electromagnetic wave solutions of MRNS.

4.3 Magnetized rotating neutron stars with purely toroidal magnetic fields

As we discussed in the previous section toroidal magnetic fields appear naturally both
in BNS mergers as well as in core-collapse supernova. Therefore it is important to
study neutron stars with significant toroidal magnetic fields. Demanding a circular
flow for a generic electromagnetic tensor leads to circular currents [Eq. (86)] that
can sustain only poloidal fields. Oron [358] realized that if one restricts to an IMHD
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stress-energy tensor T αβEM , Eq. (77), then conditions (54) imply

Bt B
[αtβφγ ] = 0, and BφB

[αtβφγ ] = 0, (114)

i.e. either a circular magnetic field Bμ = (Bt , 0, 0, Bφ), or a purely poloidal magnetic
field Bt = Bφ = 0 . Note that the magnetic field here is Bα = − 1

2ε
αβγ δuβFγ δ ,

therefore Bαuα = 0. This implies that there is only one independent magnetic field
component, since

Bt +ΩBφ = 0. (115)

In summary Oron [358] has proved the following theorem: A spacetime containing
a stationary and axisymmetric purely toroidal flow of a perfect infinitely conducting
fluid carrying a magnetic field, will be circular, if and only if, the magnetic field is
either purely poloidal, or purely toroidal.

Based on Oron’s theorem, Kiuchi and Yoshida [302] calculated the first fully gen-
eral relativistic models of neutron stars with purely toroidal magnetic fields using
the KEH method [116, 252]. Contrary to the purely poloidal case where there are 2
extra elliptic equations that need to be solved (see Eqs. (91)), here there is only one
independent magnetic component, which can be freely chosen due to the magnetohy-
drostatic equilibrium. The authors assume this independent component to be Frθ . The
corresponding vector potential is of the form Aμ = (0, Ar , Aθ , 0) and the relativistic
Euler equation reduces to

∂A ln
h

ut
+ 1

4πρhg2

√
g2
g1

F12∂A

(√
g2
g1

F12

)
= 0, (116)

where g1 = grr gθθ , g2 = g2tφ − gtt gφφ . Integrability of Eq. (116) demands

√
g2
g1

F12 = f (ρhg2), (117)

where f an arbitrary function. The magnetic field with respect to the fluid observer
will be

Bμ = ut f (q)(−Ω, 0, 0, 1), with q = ρhg2 (118)

while the electromagnetic current

jα = 1

4π

1√−g
∂β(

√−gFαβ) = 1

4π
√
g1g2

(0, ∂θ f ,−∂r f , 0). (119)
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The authors employed a simple polytropic EOSwithΓ = 2 and explored the whole
parameter space of both nonrotating as well as rotating magnetized equilibria. For the
free function f in Eq. (117) they used

f (w) = bwk, (120)

where b, k constants. Regularity of Bα on the magnetic axis requires k ≥ 1, thus the
authors explored two values; k = 1 and k = 2. For the choice k = 1 the magnetic
pressure dominates over the matter pressure near the stellar surface, while for k = 2
the opposite happens. For such values of k the magnetic field vanishes on the star
surface therefore no boundary conditions will be needed there. Sequences of constant
baryon mass and magnetic flux (Φ) with respect to the meridional cross sectionΠ(τ)

Φ =
∫

Π(τ)

Fμνdx
μ ∧ dxν =

∫ R

0
dr
∫ π

0
dθFrθ (121)

are presented. These sequences of equilibria may model isolated neutron stars that are
adiabatically losing angular momentum via gravitational radiation. In reality during
such a process the arbitrary function f will also change, therefore the evolutionary
sequences computed can only hold in an appropriate timescale.

Assuming a stress energy tensor as in Eq. (77) the total energy momentum pα

measured by the observers with 4-velocity uα is pα = T αβu
β = −(ε + 1

8π B
μBμ)uα ,

where ε the total energy density that includes the baryon mass contribution and the
internal energy. Due to this decomposition one can define a proper fluid energy and a
magnetic energy as

Mp :=
∫

Σ

εuαdSα and H := 1

8π

∫

Σ

BμB
μuαdSα, (122)

so that the gravitational potential energy will be |W | = Mp + T + H − M , where T
is the rotational energy, and M the ADM mass of the system.

As shown in Newtonian studies [359] the toroidal magnetic field tends to distort a
neutron star prolately, since the toroidal field lines act like “rubber belts” pulling in
the matter around the magnetic axis. This deformation exists even for stars rotating at
the mass shedding limit as well as in static (nonrotating) magnetized equilibria. This
is in contrast with the poloidal magnetic fields that result in oblate deformations. If in
addition the neutron star is rotating with its rotation axis in an angle with respect to
the magnetic one, then such systems can be a source of gravitational waves where the
wobbling angle grows on a dissipation timescale until they become othogonal [360,
361]. The authors measure the prolateness of the neutron star by the parameter

ē = Izz − Ixx
Izz

, (123)

where Ixx , Izz the principle moments of inertia around the x and z axes. For oblate
shapes ē is positive (typical RNSs) while for prolate ones ē is negative. Static solutions
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with a magnetic field as high as Bmax = 1.168 × 1018G, ratio of magnetic to gravi-
tational potential energy H/|W | = 0.2186 and deformation parameter ē = −1.012
were presented.

For the rotating models the authors compute highly magnetized solutions with
H/|W | larger than the ratio of kinetic to gravitational energy T /|W | even at the mass
shedding limit. The shape of the stellar surface of RNSs becomes oblate because of
the centrifugal force while close to the core the matter distribution can still be prolate.
Strong toroidal fields result in mass shedding at lower values of angular velocityΩ or
T /|W | since the central concentration of matter rises with the toroidal magnetic field.

In the follow-up paper Kiuchi et al. [362] computed toroidal equilibria using dif-
ferent realistic EOSs in order to investigate possible differences from the simple
polytropic EOS used in [302]. They considered equilibria only with k = 1 [Eq.
(120)] since models with k �= 1 were found to be unstable against axisymmetric
perturbations [305]. One such difference was that along the maximum gravitational
mass sequences, the stars with realistic EOSs are not as prolate as the corresponding
ones with the polytropic EOS. The reason for this is that the magnetic belt effects
subside in the vicinity of the equatorial plane � 10 km, where the adiabatic indices
are generally higher than 2 for all EOSs examined. This means that matter is stiffer
there than the polytropic Γ = 2 case [302], leading to a smaller deformation. The
dependence of the mass-shedding angular velocity, along a sequence of constant rest
mass and magnetic flux is determined from the nonmagnetized case. For some EOSs
(like Shen [363]) the mass-shedding limit along the sequence is reached at smaller
angular velocity while for others (like FPS [364]) at larger. Equilibrium configurations
of supramassive sequences are generally oblate in shape, although prolate shapes exist
in a narrow space of parameters that depends on the EOS.10 As with simple polytopic
EOSmagnetized equilibria with realistic EOSs reachmass shedding at smaller angular
velocities, since at the stellar surface the Lorentz force exerted on matter has the same
direction as the centrifugal force. Similar to unmagnetized equilibria the spin-up effect
[365] is also present here. Angular velocities Ωup above which the stars start to spin
up as they lose angular momentum, are found to depend sharply on the realistic EOSs.
In particular for the LS [366], Shen [363], SLy [367], and FPS [364] EOSs examined
the authors found thatΩSLy

up > ΩFPS
up > ΩLS

up > Ω
Shen
up even for sequences with strong

magnetic fields. In summary the authors suggest that the EOSs of such magnetized
equilibria can be constrained by observing the angular velocities, the gravitational
waves, and the signature of the spin-up.

Equilibria with strong toroidal magnetic fields have been constructed for hybrid
stars having a hadronic matter mantle and a quark core by Yasutake et al. [368]. In
particular the authors model the EOS with a first-order transition by bridging the MIT
bag model [369] for the description of quark matter with the Shen EOS [363] using
two matching densities n1 and n2. For n < n1 the Shen EOS is assumed while for
n > n2 the MIT bag model. For n1 < n < n2 the authors compute a mixed phase in
chemical equilibrium under β-decay with vanishing neutrino chemical potentials. For

10 Regarding the definition of normal versus supramassive sequences [365] there exists a difference with
respect to the nonmagnetized cases. A nonmagnetized normal sequence (has rest mass less than the maxi-
mum rest mass) always starts from a spherical model and extends all the way to mass shedding [365]. On
the other hand it is possible a magnetized normal sequence not to include any nonrotating solution.

123



Methods for relativistic self-gravitating fluids… Page 53 of 77    52 

the free function [Eq. (120)] that appears in the magnetohydrostatic equilibrium, the
authors assumed k = 1. Equilibrium sequences are constructed by varying the central
density, the axis ratio rp/re, and the magnetic field strength, b, in Eq. (120). In general
hybrid stars aremore compact than neutron stars, due to the softness of the EOS. Given
the same baryon mass, the gravitational mass of hybrid stars is smaller than that of
neutron stars, reflecting the smaller energy of the quark matter (or the smaller binding
energy). Also since the compression of the matter is more enhanced for a small bag
constant, hybrid stars with smaller bag constant become more compact.

Yasutake et al. found that the maximum magnetic fields in hybrid stars are 30%
larger than in neutron stars. In particular the frozen-in magnetic fields are compressed
by the presence of the quark phase leading to a pinching of the field lines. Hybrid stars
with smaller bag constant become more prolate (smaller ē), and their maximum mass
becomes smaller than those with a larger bag constant.

The authors pay special attention to the possible evolutionary track of a rapidly
rotating neutron star to a slowly rotating hybrid star due to the spin-down via gravi-
tational radiation and/or magnetic breaking [370]. The formation of a quark core can
happen through the conversion of an initially metastable hadronic matter through the
increase of the central density due to mass accretion, spin-down or cooling. In the pro-
cess a large amount of gravitational binding energy is released which can be a source
of γ -ray bursts [371], or help explain various transient phenomena such as glitches,
magnetar flares, and super-bursts [372]. The authors found that the maximum energy
release is � 0.01M� which is equivalent to � 1052 erg, much smaller than those
predicted in other studies [370, 373, 374]. In association with this energy release grav-
itational waves can be produced with peak amplitudes as large as h ∼ 10−18 − 10−19

at frequencies of ∼kHz with the source being at the Galactic center (∼ 10 kpc).
Equilibrium relativistic stars with toroidal magnetic fields have also been computed

by Frieben and Rezzolla [303] using the lorene spectral code [375]. Although the
basic set up with respect to the stress-energy tensor is the same as in Oron [358] or
Kiuchi and Yoshida [302], the general relativistic formulation as well as the numerical
implementation is different. In particular using an element of the form Eq. (56), the
authors employ the 3 + 1 formulation under axisymmetry and stationarity to solve
the 4 elliptic equations as in Bonazzola et al. [316] or Shibata [233]. For the arbi-
trary function which appears in the integrability condition of the magnetohydrostatic
equilibrium, Eq. (116) (see, Eqs.(118) and (120)), the authors chose

Bφ = λ0ρhαe−2qr2 sin2 θ (124)

which yields a magnetic potential

M̃ = λ20

4π
ρhα2e−2qr2 sin2 θ. (125)

Here ∂A M̃ is the Lorentz force term in Eq. (116), and λ0 a constant parameter that
controls the magnitude of the magnetic field and is called the magnetization param-
eter. In order to make a systematic study Frieben and Rezzolla introduce the surface
deformation or apparent oblateness
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es = re
rp

− 1, (126)

and the quadrupole deformation

e = −3

2

Izz

I
. (127)

Here re, rp are the equatorial and polar coordinate radii respectively, Izz is the
quadrupole moment measured in some asymptotically Cartesian mass-centered sys-
tem [376], and I = Izz is the moment of inertia defined as I = J/Ω , J being the total
(ADM) angular momentum of the star. Positive values for e or es signify oblateness,
and for a spherical unmagnetized star one has es = e = 0. Depending on the rotation
andmagnetization levels the authors identify 3 regions which they call PP, PO, andOO
for prolate-prolate, prolate-oblate, and oblate-oblate respectively. The PP region has
both deformations negative e < 0 and es < 0 and corresponds to highly magnetized
toroidal solutions where centrifugal forces are subdominant to the magnetic ones. The
OO region (typical RNS) corresponds to the opposite scenario e > 0 and es > 0
where magnetic forces are the subdominant ones. Between these two regions there
exists the PO region with e < 0 and es > 0 where the surface of the star is oblate due
to centrifugal forces, while the matter distribution is prolate due to electromagnetic
forces. The PO region is bounded by the e = 0 (no quadrupole distortion) and es = 0
(no surface deformation) neutral lines.

As in [302] the authors find that mass-shedding for magnetized rotating equilibria
happens at lower frequencies than the corresponding unmagnetized ones. The toroidal
magnetic field is acting as a source of additional pressure which not only deforms
prolately the surface and matter distribution, but causes an expansion of the star. This
means that mass-shedding can set-in at lower angular velocities. At a given angular
velocity the mass-shedding model coincides with the one of maximum magnetization
which develops the characteristic cusp on the equator.

One important new finding of [303] is that for nonrotating magnetized neutron
stars no upper limit was found to the magnetization parameter λ0, with stellar models
becoming increasingly prolate and extended as λ0 is increased independent of the
EOS. The authors presented static solutions with circumferencial radius ∼ 102km
and H/|W | ∼ 0.5. The general behavior of the nonrotating models of realistic EOSs
was quite similar to the polytropic one. For increasingmagnetization amaximumvalue
of the magnetic field appears, ∼ 1018G, beyond which the magnetic field decreases.
This nonmonotonic behavior of the mean magnetic field strength in terms of the
magnetization parameter λ0 found in nonrotating models extends to the rotating ones
as well. The authors present approximate relations for both the quadrupole and the
surface deformation

εs = bΩΩ
2 − bB〈B2

15〉, and ε = cΩΩ
2 − cB〈B2

15〉, (128)

where B15 = B/1015 G, andbΩ ,bB , cΩ , and cB are (positive) parameters that dependon
the EOS. The symbol 〈〉 denotes average values. These relations generalize Newtonian
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analogues [377, 378] and express the fact that the surface and quadrupole deformation
are approximately linear functions of Ω2 and B2.

4.4 Magnetized rotating neutron stars with various magnetic field configurations

Bucciantini et al. have developed the XNS code for computing magnetized equilibri-
ums, as a part of the X-ECHO code project for general relativistic MHD [379, 380]. In
[380], non-rotating and axisymmetric general relativistic magnetized equilibria have
been constructed using the conformal flat approximation. Using the 3+1 formulation,
the authors solved 2 components α, ψ in the metric Eq. (56) from the Hamiltonian
constraint and the spatial trace of Einstein’s equation. A stress-energy tensor as in
Eq. (77) is assumed, and purely poloidal, purely toroidal as well as mixed magnetic
field configurations are obtained.

The purely toroidal configurations are constructed along the same lines as in [302],
and [303] with

αBφ = b(ρh� 2)k (129)

similar to Eq. (120). The authors assumed for the magnetic exponent k = 1, 2.
Although the magnetic field distribution is similar for these values of k, the authors
found that for higher values of k the magnetic field reaches its maximum at larger
radii. A magnetic field concentrated at larger radii will produce smaller effects, than
the same magnetic field, buried deeper inside, or alternatively, currents in the outer
layers have minor effects with respect to those residing in the deeper interior. Despite
their approximate scheme Pili et al. [380] found perfect agreement with the results of
Frieben and Rezzolla [303] and some differences with respect to those of Kiuchi and
Yoshida [302]. In particular Bmax is not a monotonic function of the magnetization
constant b; increasing initially until a maximum and then decreasing. This behavior
is due to the expansion of the star for large values of b with a corresponding decrease
of Bmax.

For poloidal configurations the authors employ the Grad–Shafranov equation [381–
383] in order to calculate Aφ ,

∇2 Ãφ + ∂Aφ∂ ln(αψ−2)

r sin θ
+ ψ8r sin θ

(
ρh

dM
d Aφ

+ I
� 2

dI
d Aφ

)
= Ãφ

r2 sin2 θ
(130)

where Ãφ = Aφ/(r sin θ),� 2 = N 2ψ4r2 sin2 θ and ∂ f ∂g = ∂r f ∂r g + ∂θ f ∂θg/r2.
In Eq. (130) there appear 2 free functions, the magnetization functionM = M(Aφ),
and I = I(Aφ), which are both dependent on Aφ(r , θ) only. In particularM appears
in themagnetohydrostatic equilibriumEq. (116)which canbewritten as ln(hα)−M =
const. On the other hand I is derived from the requirement that the φ component of the
Lorentz force must vanish Bi∂i (αBφ) = 0 (axisymmetry), and hence αBφ = I(Aφ).
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As in [343] the authors used a second order polynomial for the magnetization
function

M(Aφ) = kpol

(
Aφ + ξ

2
A2
φ

)
, (131)

while for the function I(Aφ),

I(Aφ) = a

ζ + 1
Θ[Aφ − Amax

φ ](Aφ − Amax
φ )ζ+1. (132)

The authors managed to compute not only purely poloidal magnetized neutron stars,
but also equilibria with mixed poloidal and toroidal components, the so-called twisted
torus solutions using the same form of functions (131) and (132). Here, kpol is the
poloidal magnetization constant, ξ is a nonlinear poloidal constant,Θ is the Heaviside
function, a is the twisted torus magnetization parameter (a = 0 for purely poloidal
configurations), and ζ the twisted torus magnetization index. The choice of Eqs. (131),
(132) guarantees that the currents are all confined within the star.

A comparison with the purely poloidal models of Bocquet et al. [300] showed
excellent agreement despite the approximate scheme used. This means that for at least
static solutions, even with extreme magnetic fields, the conformal flat approximation
is very accurate. Similar to rotation, poloidal magnetic fields lead to oblate defor-
mations with a peak magnetic field in the core of the neutron star. Contrary to the
purely toroidal case here the magnetic field extends smoothly outside the neutron star.
Also the maximum magnetic field appeared at the maximum magnetization while its
behavior for even larger magnetizations was unclear since such models could not be
constructed. Therefore the nonmonotonic behavior present in toroidal magnetic fields
is not observed for the poloidal case.

Beyond purely poloidal and purely toroidal magnetic field geometries the authors
also constructed mixed field the so-called twisted torus configurations. In order to do
so they used the same magnetization function as in the poloidal models Eq. (131)
including only linear terms for the toroidal currents, ξ = 0. The toroidal magnetic
field is generated by the current Eq. (132) and ζ = 0. The structure of the resulted
poloidal magnetic field is similar with the purely poloidal case, threading the entire
star, reaching its maximum value at the center, and vanishing only in a ring-like region
on the equatorial plane. On the other hand the toroidal component has a different
geometry than in the purely toroidal case. It is confined in a torus tangent to the stellar
surface at the equator and does not fill completely the interior of the star, while it
reaches its maximum exactly in the ring-like region where the poloidal component
vanishes. The toroidal component is subdominant to the poloidal one, which is mainly
responsible for the deformation of the star. All models presented had ratio of toroidal
to total magnetic energy less than 0.07.

In a sequel work, Bucciantini et al. [384] made a thorough investigation of the role
of current distributions in general relativistic equilibria of magnetized neutron stars. In
particular they assumed fixed spherically symmetric distributions of metric and matter
of a nonrotating neutron star in isotropic coordinates (i.e. solved only forψ and α) and
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solved only the Grad–Shafranov equation over the background. The magnetic field
was of the form

Br = ∂θ Aφ√
γ
, Bθ = −∂r Aφ√

γ
, Bφ = ψ2I(Aφ)

α
√
γ sin θ

, (133)

where γ = det(γi j ), Aφ the magnetic flux function, and I(Aφ) the free current func-
tion. The conduction current J i = εi jk∂ j (αBk)/α depends on the two free functions
M(Aφ) and I(Aφ). The determination of the flux function Aφ is done through the
Grad–Shafranov Eq. (130) which determines hydromagnetic equilibrium inside the
star. Its solution can be extended outside the star as well by neglecting the terms
associated with the fluid rest-mass density. The authors extend the results of [380] by
considering a magnetization functional form of

M(Aφ) = kpolAφ

[
1 + ξ

ν + 1

(
Aφ
Amax
φ

)ν]
(134)

and a current function of the form

I(Aφ) = a

ζ + 1
Θ(Aφ − Asurf

φ )
(Aφ − Asurf

φ )ζ+1

(Asurf
φ )ζ

, (135)

or

I(Aφ) = a

ζ + 1
Θ(Aφ − Asurf

φ )
(Aφ − Asurf

φ )ζ+1(Amax
φ − Aφ)ζ+1

(Asurf
φ Amax

φ )ζ+1/2
. (136)

As in Eq. (131) kpol is the poloidal magnetization constant, while constant ν is the
poloidal magnetization index that generalizes the exponent ν = 2 in Eq. (131). Sim-
ilarly to Eq. (132), a and ζ in Eqs. (135) and (136) are the toroidal magnetization
constant and the toroidal magnetization index. The magnetization function M van-
ishes outside the surface of the neutron star, while the toroidal magnetic field is fully
confined within the star. Equation (135) corresponds to a twisted torus configuration,
where the azimuthal current has the same sign over its domain and the toroidal field
reaches its maximum where the poloidal field vanishes, while Eq. (136) corresponds
to a twisted ring configuration, where the current changes its sign, and the toroidal
field vanishes in the same place where the poloidal field goes to zero.

For purely poloidal fields, i.e. Bφ = I = 0, the main conclusions were: (i) Sub-
tractive currents (ξ < 0), confine the magnetic field towards the axis, leaving large
unmagnetized regions inside the neutron star. The surface magnetic field is concen-
trated in a polar region of∼ 20◦ from the pole, while at lower latitudes it can be a factor
of ∼ 10 smaller than at the pole. (ii) Additive currents (ξ > 0) tend to concentrate the
field in the outer layer of the neutron star. The field strength reaches itsmaximumcloser
to the surface,while its strength at the center can be evenmore than a factor of 2 smaller.
The structure of the field at the equator can be qualitatively different from a dipole.
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For mixed toroidal and poloidal magnetic fields the authors found that despite using
two families of currents representative of a large class of configurations, in neither case
they could obtain magnetic field distributions where the energetics were dominated
by the toroidal component. In particular Htor/H � 0.1 in contrast with the results of
Ciolfi and Rezzolla [349]. A possible origin of this difference, is related perhaps to the
choice of boundary conditions, but further work is needed to clarify this issue. On the
other hand, the ratioHtor/H increases with the total mass of the neutron star. It appears
that the rest-mass density stratification [385] regulates the relative importance of I and
M, and the net outcome in terms of energetics of the toroidal and poloidal components.

In [386], the same group was able to calculate a twisted magnetic field threading
both the interior of the neutron star and the exterior magnetosphere. To do so, the
Grad–Shafranov equation was solved over the background spherical solution as in
[384] for both the interior and the exterior of the star with the use of a generalized
current of the form [387]

I(Aφ) = a

ζ + 1
Θ(Aφ − Aext

φ )
(Aφ − Aext

φ )
ζ+1

(Amax
φ )ζ+1/2 . (137)

Here Aext
φ is the maximum value it reaches at a distance r = λre from the star, where

re the equatorial radius. Parameter λ controls the size of the twisted magnetosphere
outside the star and thus the equilibria presented are generalizations of the twisted torus
models of [380]. In all the obtained configurations, the energy of the external toroidal
magnetic field is, at most, ∼ 25% of the total magnetic energy in the magnetosphere
which is thus dominated by the poloidal field.

MRNS equilibria associatedwith strong purely poloidal or purely toroidalmagnetic
fields in general relativity have been presented by the same Florence group in [388].
For the gravity sector a 3 + 1 form of a metric is assumed and the IWM formulation
is employed to solve for the lapse α, the conformal factor ψ , and the shift βφ . In
the electromagnetic sector purely poloidal magnetic fields are computed using the
formalismofBocquet et al. [300]where theMaxwell–Gauss and theMaxwell–Ampère
equations are written as elliptic equations for the electromagnetic potential Φ and
the magnetic flux Ψ = Aφ . These equations determine the electromagnetic field
everywhere once the charge and current distributions are known, independently of the
fluid properties. Hydrostatic equilibrium depends on the magnetization function for
which the authors assume Eq. (134) with ξ = 0. On the other hand for purely toroidal
magnetic fields a choice similar to [302, 303] is adopted. A large number of sequences
is presented and special attention is paid in the quantities like the surface ellipticity es
and mean deformation ē, Eq. (123).

Purely toroidal equilibria show an increase in the gravitational and the baryonic
mass, at a given central density, a result of the growth of the stellar radius caused by
rotation and the magnetic field. Rapidly RNS appear as oblate ellipsoids. At higher
magnetization the mass shedding limit occurs at higher densities with respect to the
nonmagnetized case. This happens because the toroidal magnetic field significantly
expands and rarefies the outer layers of the star making them volatile to centrifugal
effects. At low magnetization, the surface shape is always oblate, as expected for an
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unmagnetized RNS. As the magnetic field increases, the oblateness diminishes and
the shape becomes prolate. As the magnetic field begins to inflate the outer layer of
the star, the local centrifugal support is enhanced, and the star becomes oblate again.
At the mass shedding all models show apparent oblateness with the equatorial radius
being larger than the polar one. Bilinear relations that approximate the surface and
mean deformation in terms of B2 and Ω2 similar to Eqs. (128), as well as in terms
of T /W and H/W are derived. Although such empirical relations are equivalent the
authors find that the latter hold with the same accuracy for a ∼ 50% larger range of
magnetic field strengths and rotation rates. Also their accuracy (� 5%) holds up to
the full non-linear regime.

The effect on the baryonic and gravitational mass of a purely poloidal magnetic
field follows the same behavior as with the toroidal one. Both masses increase with the
magnetization and with the rotational frequency. The difference in the poloidal case is
that the magnetic field acts in the same way as the centrifugal force flattening the star
in the direction of the equatorial plane. Therefore the configurations are oblate and
the surface ellipticity es positive. The poloidal field does not inflate the outer layers
of the star even though the equatorial radius grows. The poloidal field enhances the
stability against the Keplerian limit since the equatorial Lorentz force points outward
in the inner region of the star causing its deformations, but points inward in the outer
layers playing a confining role. At high magnetization, the magnetic force can expel
matter from the core so that the density reaches its maximum in a ring located in the
equatorial plane (rather than at the center) similar to a differentially RNS. As pointed
out by Cardall et al. [301], at even higher magnetization no stationary solution can be
found because the magnetic field pushes off-center a sufficient amount of mass that
results in the gravitational force pointing outward near the center of the star.

4.5 Magnetizedmatter andmagnetic field dependent equation of state

A step forward in understanding the interplay between the magnetic field and matter,
was achieved by Chatterjee et al. [389]. In their work the effect of the magnetic field on
the EOS and the interaction of the electromagnetic field with matter were investigated
in a self-consistent manner. In particular building on the work of Bocquet et al. [300]
the authors compute magnetized equilibria with a pure poloidal magnetic field and a
generalized energy-momentum tensor of the form

T αβ = T αβM + T αβEM + T αβFM with T αβFM = 1

2
(FαγM

γβ + FβγM
γα), (138)

being the term that represents the interaction of the electromagnetic field with matter,
and has been derived from the interaction Lagrangian in a self-consistent way. Mαβ

is the magnetization tensor (not to be confused with the magnetization free function)
which is defined as the derivative of the grand canonical potential with respect to the
electromagnetic tensor. T αβM is the perfect fluid stress-energy tensor, Eq. (9), and T αβEM

the IMHD stress-energy tensor, Eq. (77). For the magnetization tensor the authors
adopt the following form
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Mαβ = εμναβmμuν, and mα = wbα, (139)

where mα is the magnetization 4-vector and w a scalar quantity. Under such assump-
tions T αβFM = w(bαbβ − b2(uαuβ + gαβ)).

The second important ingredient in the calculation of Chatterjee et al. is that the
EOS depends on the magnetic field, i.e.

p = p(h, b), ε = ε(h, b), ρ(h, b), and w(h, b). (140)

The evaluation of the thermodynamic variables in the presence of magnetic field is
described in [390, 391], while the authors employ the quark model in the Magnetic
Colour-Flavour-Locked (MCFL) phase to describe the neutron star interior [390].
Elliptic equations for At and Aφ are written similarly to Eqs. (91) in Bocquet et al.
although extra terms that depend on the magnetization w are now present. On the
other hand the equation of magnetohydrostatic equilibrium is now the same as in Eq.
(92) due to the specific form of the magnetization tensor in accordance with Bland-
ford and Hernquist [392]. In general the authors found that the effect of inclusion of
the magnetic field dependence on the EOS does not change significantly the stellar
structure. Quantities like the polar magnetic field, the gravitational mass and the com-
pactness for static and uniformly rotating magnetars are only slightly modified even
for the strongest magnetic fields considered, well above the values that are considered
realistic from present magnetar observations.

In order to explore further the effects of a magnetic-field-dependent EOS and mag-
netization, Franzon et al. [393] compute equilibria with pure poloidal magnetic fields
using the lorene code [316] as in [300, 389] but with an EOS that describes magne-
tized hybrid stars containing nucleons, hyperons, and quarks, and takes into account
the anomalous magnetic moment for all hadrons. This EOS [394–396] is an extended
hadronic and quark SU(3) non-linear realization of the sigma model that describes
magnetized hybrid stars containing nucleons, hyperons, and quarks. Despite the fact
that they can reach a magnetization approximately 10 times higher than in [389], the
neutron star structure, like its mass-radius relationship, is not modified drastically.
On the other hand, the magnetic field causes the central density in these objects to be
reduced, inducing major changes in the populated degrees of freedom and, potentially,
converting a hybrid star into a hadronic star.

In [397] the same group investigated the effects of strong magnetic fields on a
hot and rapidly rotating proto-neutron star. Different from typical cold neutron stars,
proto-neutron stars can have temperatures up to 50MeV, and are lepton-rich as well
as optically thick to neutrinos, which are temporarily trapped within the star. The
magnetic field can affect the amount of trapped neutrinos and prevent or favor exotic
phases with hyperons or quarks. For the EOS the authors use the hadronic chiral SU(3)
model [394–396] explicitly including trapped neutrinos and fixed entropy per baryon.
The cold and hot EOSs are then calculated at finite temperature and over a range of
entropies and neutrino fractions, while equilibria with pure poloidal magnetic fields
are computed using the methods of [300, 393]. Their results suggested that spherical
hot stars with trapped neutrinos are less massive than the same stars in β-equilibrium
or their cold counterparts. The primary effect of the magnetic field decay is to increase
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the amount of neutrinos and the strangeness at the stellar core. Assuming that the
magnetic field decays over time, the temperature in the equatorial plane increases in
the inner core while it decreases in the outer core. This fact is related to the Lorentz
force, which reverses its direction in the equatorial plane. For rotating proto-neutron
stars the electron neutrino distribution does not differ much from their nonrotating
counterpart since the centrifugal forces act mainly on the outer layers of the star.
However, the amount of hyperons is reduced inside these objects, which may affect
the cooling of these stars. As expected, the reduction in the central densities is even
more pronounced, andmagnetic fields suppress exotic phases in rotating proto-neutron
stars even further, as in the case of cold neutron stars.

Effects of the magnetic field on the crust structure of neutron stars was investigated
by Franzon et al. [398]. The authors define the crust thickness as the difference between
the stellar surface radius and the radius at the base of the crust where the crust-core
transition takes place, for which they assume a baryon number density of 0.076 fm−3.
They found that on average the crust thickness as a function of the poloidal magnetic
field decreases first, before it starts to increase. This is in contrast with rotationally
deformed axially symmetric neutron stars, where the crust gets always thicker as a
function of rotation. The authors argue that the reason behind this behavior lies in the
dual role of the electromagnetic field in a general relativistic scenario. On one hand
the energy of the electromagnetic field contributes to the curvature of spacetime and
on the other it generates additional forces that modify the equilibrium of the star. In
particular the two competing effects are the Lorentz force that tends to make the crust
thinner, and the gravitational contribution of the magnetic field that tends to make
the crust thicker. For moderately high magnetic fields, the former wins, and the crust
gets thinner on average, whereas for extreme values of magnetic fields, the latter is
dominant, making the crust thicker overall. This change in crust geometry may be
relevant to the overall cooling of neutron stars, as well as their deformability during
the late inspiral in a BNS merger.

4.6 A general formulation for magnetized rotating neutron stars and numerical
solutions

The fully general models for stationary and axisymmetric magnetized equilibriums
are those associated with mixed toroidal and poloidal magnetic fields as well as mixed
circular and meridional matter flows. The stress-energy tensor of such models does
not satisfy conditions (54), and hence the spacetime metric cannot be described in the
form (55) in case suchmixed electromagnetic fields and/ormatter flows dominate. Full
exact formulations for such models are derived in [149, 399], and numerical solutions
for such strongly magnetized rotating relativistic equilibriums are presented by Uryū
et al. [148, 149].

The formulation consists of three parts, that for the gravitational fields, for the
electromagnetic fields and for the magneto-hydrostationary equilibrium. For the grav-
itational fields, a formulation developed for computing initial data of BNSs using a
fully general form of the metric, Eq. (2), is applied (see Sect. 2.9) [76, 77, 196, 197].

123



   52 Page 62 of 77 A. Tsokaros, K. Ury ¯ u

An analogous idea is used to write the 3 + 1 decomposed Maxwell’s equations
as a system of elliptic partial differential equations for the electromagnetic potential
1-form Aα [149].

For the formulation to compute the MHD equilibrium one may assume an IMHD
condition Fαβuβ = 0 as mentioned in the purely poloidal or toroidal cases. A set
of first integrals, and several integrability conditions, of the IMHD equations can be
derived for the case with mixed poloidal and toroidal fields under the assumptions of
stationarity and axisymmetry. Those conditions amount to express several quantities
in terms of a master potential Υ [149, 399] as

At = At (Υ ), Aφ = Aφ(Υ ),
√−gΨ = [√−gΨ ](Υ ) (141)

−[√−gΨ ]′huφ + 1

4π
A′
φB

√−g = [√−gΛφ](Υ ), (142)

A′
φhut − A′

t huφ = Λ(Υ ), (143)

where
√−gΨ is a weighted stream function of the meridional flow, h the relativistic

enthalpy, and B = −Fxz . At (Υ ), Aφ(Υ ), [√−gΨ ](Υ ), and Λ(Υ ) are arbitrary
functions of Υ , and primed functions such as A′

t (Υ ) are the derivatives with respect to
Υ of those functions. In the computations presented in [148, 149], the master potential
Υ is chosen to be Υ = Aφ for simplicity. In this case, the relativistic enthalpy and the
components of 4-velocity are calculated as

uA = 1

ρ
√−g

[√−gΨ ]′εAB∂B Aφ, (144)

ut = 1

[−gαβ(αnα + βα + vα)(αnβ + ββ + vβ)]1/2 , (145)

uφ = [√−gΨ ]′Bφ
ρ
√−g

− A′
t u

t , (146)

h = Λ

ut − A′
t uφ
. (147)

The equation for ut is derived from the normalization condition of the 4-velocity,
uαuα = −1, that for uφ from the meridional components of the IMHD condition
Fαβuβ = 0, and that for h from Eq. (143). Here the 4-velocity is decomposed as
uα = ut (tα + vα).

Under the IMHD condition, the electric current does not have a dynamical degree
of freedom, and therefore it can be written in terms of the above integrability con-
ditions as in the cases of purely poloidal or toroidal magnetic fields. Substituting
those expressions of the components of the current jα to Maxwell’s equations, one
can derive the transfield equation for the master potential Υ , which fully determines a
mixed poloidal-toroidal magnetic field configuration [399]. Different from this formu-
lation, all components of Maxwell’s equations are solved in [148, 149] as mentioned
above. The expressions of the components of the current in terms of the integrability
conditions are written, for the case with Υ = Aφ ,
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j A
√−g = ([√−gΨ ]′′huφ + [√−gΛφ]′

)
δAB BB − [√−gΨ ]′δABωB, (148)

jφ
√−g + A′

t j
t√−g = ([√−gΨ ]′′huφ + [√−gΛφ]′

)
Bφ − [√−gΨ ]′ωφ

− (A′′
t huφ +Λ′) ρut√−g − s′Tρ

√−g, (149)

where s = s(Aφ) the entropy per unit baryon mass, which is taken to be constant.
These current components are substituted into the source terms of the 3+1decomposed
Maxwell’s equations.

In the computations of [148, 149], a one-parameter EOS p = p(ρ) is used, and the
arbitrary functions of integrability conditions are assumed as follows:

At (Aφ) = −Ωc Aφ + Ce, (150)

Λ(Aφ) = −Λ0Ξ(Aφ)−Λ1Aφ − E, (151)

[√−gΛφ](Aφ) = Λφ0Ξ(Aφ), (152)

[√−gΨ ](Aφ) = constant. (153)

The derivative of Ξ(Aφ) is the smoothed step (“sigmoid”) function defined by

Ξ ′(Aφ) := 1

2

[
tanh

(
1

b

Aφ − Amax
φ,S

Amax
φ − Amax

φ,S
− c

)
+ 1

]
, (154)

where Aφ ∈ [Amax
φ,S , A

max
φ ], and b, c are parameters such that 0 < b < 1, 0 < c < 1.

The prescribed constantsΛ0,Λ1 andΛφ0 control the magnitude and configuration of
the electromagnetic fields. On the other hand,Ωc and E are constants to be determined
from the rotating equilibrium, while constant Ce from charge neutrality.

Several numerical solutions of strongly magnetized rotating equilibria associated
with mixed poloidal and toroidal magnetic fields are demonstrated in [148, 149]. In
the case with the strongest toroidal field, the authors show that the magnetic pressure
and energy density dominate over those of the fluid, and that the matter is expelled
from the toroidal region. Therefore, it is expected that compact stars with an extremely
strong toroidalmagnetic fieldmay exhibit an internal toroidal electromagnetic vacuum
tunnel.

5 Conclusions

A number of recent breakthroughs, from the BNS event GW170817 [20] to the Event
Horizon Telescope observations of the core of the galaxy M87 [400], have shown that
BNSs, BHDs, andMRNSs play a central role in understanding the physics of compact
objects and, more generally, the physics of matter under extreme conditions. In order
to simulate accurately such systems, one needs self-consistent models as initial data.
These models can be thought as “snapshots” of the system during an evolutionary
process. The assumptions that lead to such a snapshot cannot be underestimated. In
this review we summarized studies for the numerical construction of self-gravitating
(quasi)equilibria for the 3 aforementioned compact objects. Our focus was to present
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an overview of the basic equations that govern these (quasi)equilibria along with the
crucial assumptions that led to them, as well as the corresponding numerical results.
Despite the different nature of the problems, common strategies are identified and
different methods are underlined.

There are a lot of works that couldn’t be covered in this article. Those include
related studies in the framework of Newtonian gravity, including [401–406] for BNSs,
[407] for self-gravitating BHDs, and [346, 385, 408–419] for MRNSs. These studies
often treat more advanced and astrophysically realistic problems, and many of their
ideas are transferred to the relativistic problems introduced in this review. Finally, we
did not cover studies that go beyond general relativistic gravity. For example, BNS
models in scalar-tensor theories [420], or [421–423] for MRNSs. As observations of
gravitational waves and electromagnetic fields from compact objects are expected to
become increasingly more accurate in the future, their modeling in alternative theories
of gravity will gain momentum similarly. Hopefully a future version of this article will
close this gap.
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196. Uryū, K., Limousin, F., Friedman, J.L., Gourgoulhon, E., Shibata,M.: Phys. Rev. Lett. 97(17), 171101

(2006). https://doi.org/10.1103/PhysRevLett.97.171101
197. Uryū, K., Limousin, F., Friedman, J.L., Gourgoulhon, E., Shibata, M.: Phys. Rev. D 80, 124004

(2009). https://doi.org/10.1103/PhysRevD.80.124004
198. Yoshida, S., Bromley, B.C., Read, J.S., Uryu, K., Friedman, J.L.: Class. Quantum Gravity 23, S599

(2006). https://doi.org/10.1088/0264-9381/23/16/S16
199. Woosley, S.E.: Astrophys. J. 405, 273 (1993). https://doi.org/10.1086/172359
200. MacFadyen, A.I., Woosley, S.E.: Astrophys. J. 524, 262 (1999). https://doi.org/10.1086/307790
201. Lynden-Bell, D.: Nature 223(5207), 690 (1969). https://doi.org/10.1038/223690a0
202. Shakura, N.I., Sunyaev, R.A.: Astron. Astrophys. 24, 337 (1973)
203. Paczynski, B.: Acta Astron. 28, 91 (1978)
204. Shibata, M., Uryu, K.: Phys. Rev. D 74, 121503 (R) (2006). https://doi.org/10.1103/PhysRevD.74.

121503
205. Etienne, Z.B., Faber, J.A., Liu, Y.T., Shapiro, S.L., Taniguchi, K., Baumgarte, T.W.: Phys. Rev. D

77(8), 084002 (2008). https://doi.org/10.1103/PhysRevD.77.084002
206. Rezzolla, L., Baiotti, L.,Giacomazzo,B., Link,D., Font, J.A.: Class.QuantumGravity 27(11), 114105

(2010). https://doi.org/10.1088/0264-9381/27/11/114105
207. Lovelace, G., Duez, M.D., Foucart, F., Kidder, L.E., Pfeiffer, H.P., Scheel, M.A., Szilágyi, B.: Class.

Quantum Gravity 30(13), 135004 (2013). https://doi.org/10.1088/0264-9381/30/13/135004
208. Amaro-Seoane, P., Audley, H., Babak, S., Baker, J., Barausse, E., Bender, P., Berti, E., Binetruy, P.,

Born,M.,Bortoluzzi,D., Camp, J., Caprini, C., Cardoso,V.,Colpi,M.,Conklin, J., Cornish,N.,Cutler,
C.,Danzmann,K.,Dolesi, R., Ferraioli, L., Ferroni,V., Fitzsimons, E.,Gair, J.,GesaBote, L.,Giardini,
D.,Gibert, F.,Grimani,C.,Halloin,H.,Heinzel,G.,Hertog,T.,Hewitson,M.,Holley-Bockelmann,K.,
Hollington, D., Hueller, M., Inchauspe, H., Jetzer, P., Karnesis, N., Killow, C., Klein, A., Klipstein,
B., Korsakova, N., Larson, S.L., Livas, J., Lloro, I., Man, N., Mance, D., Martino, J., Mateos, I.,
McKenzie, K., McWilliams, S.T., Miller, C., Mueller, G., Nardini, G., Nelemans, G., Nofrarias, M.,
Petiteau, A., Pivato, P., Plagnol, E., Porter, E., Reiche, J., Robertson, D., Robertson, N., Rossi, E.,
Russano, G., Schutz, B., Sesana, A., Shoemaker, D., Slutsky, J., Sopuerta, C.F., Sumner, T., Tamanini,
N., Thorpe, I., Troebs,M., Vallisneri, M., Vecchio, A., Vetrugno, D., Vitale, S., Volonteri, M.,Wanner,
G., Ward, H., Wass, P., Weber, W., Ziemer, J., Zweifel, P.: arXiv e-prints arXiv:1702.00786 (2017)

209. Papaloizou, J.C.B., Pringle, J.E.: Mon. Not. R. Astron. Soc. 208, 721 (1984)
210. Papaloizou, J.C.B., Pringle, J.E.: Mon. Not. R. Astron. Soc. 213, 799 (1985)
211. Blaes, O.M.: Mon. Not. R. Astron. Soc. 216, 553 (1985). https://doi.org/10.1093/mnras/216.3.553
212. Goldreich, P., Goodman, J., Narayan, R.: Mon. Not. R. Astron. Soc. 221, 339 (1986). https://doi.org/

10.1093/mnras/221.2.339
213. Narayan, R., Goldreich, P., Goodman, J.: Mon. Not. R. Astron. Soc. 228, 1 (1987). https://doi.org/

10.1093/mnras/228.1.1
214. Abramowicz, M.A., Calvani, M., Nobili, L.: Astrophys. J. 242, 772 (1980). https://doi.org/10.1086/

158512
215. Korobkin, O., Abdikamalov, E.B., Schnetter, E., Stergioulas, N., Zink, B.: Phys. Rev. D 83(4), 043007

(2011). https://doi.org/10.1103/PhysRevD.83.043007
216. Korobkin, O., Abdikamalov, E., Stergioulas, N., Schnetter, E., Zink, B., Rosswog, S., Ott, C.D.: Mon.

Not. R. Astron. Soc. 431, 349 (2013). https://doi.org/10.1093/mnras/stt166
217. Mewes, V., Galeazzi, F., Font, J.A., Montero, P.J., Stergioulas, N.: Mon. Not. R. Astron. Soc. 461,

2480 (2016). https://doi.org/10.1093/mnras/stw1490
218. Kiuchi, K., Shibata, M., Montero, P.J., Font, J.A.: Phys. Rev. Lett. 106(25), 251102 (2011). https://

doi.org/10.1103/PhysRevLett.106.251102
219. Wessel, E., Paschalidis, V., Tsokaros, A., Ruiz,M., Shapiro, S.L.: Phys. Rev.D 103(4), 043013 (2021).

https://doi.org/10.1103/PhysRevD.103.043013
220. Gergely, L.Á., Biermann, P.L.: Astrophys. J. 697, 1621 (2009). https://doi.org/10.1088/0004-637X/

697/2/1621
221. Gammie, C.F., Shapiro, S.L., McKinney, J.C.: Astrophys. J. 602, 312 (2004)

123

https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1103/PhysRevD.59.024007
https://doi.org/10.1016/0375-9601(78)90198-6
https://doi.org/10.1103/PhysRevLett.97.171101
https://doi.org/10.1103/PhysRevD.80.124004
https://doi.org/10.1088/0264-9381/23/16/S16
https://doi.org/10.1086/172359
https://doi.org/10.1086/307790
https://doi.org/10.1038/223690a0
https://doi.org/10.1103/PhysRevD.74.121503
https://doi.org/10.1103/PhysRevD.74.121503
https://doi.org/10.1103/PhysRevD.77.084002
https://doi.org/10.1088/0264-9381/27/11/114105
https://doi.org/10.1088/0264-9381/30/13/135004
http://arxiv.org/abs/1702.00786
https://doi.org/10.1093/mnras/216.3.553
https://doi.org/10.1093/mnras/221.2.339
https://doi.org/10.1093/mnras/221.2.339
https://doi.org/10.1093/mnras/228.1.1
https://doi.org/10.1093/mnras/228.1.1
https://doi.org/10.1086/158512
https://doi.org/10.1086/158512
https://doi.org/10.1103/PhysRevD.83.043007
https://doi.org/10.1093/mnras/stt166
https://doi.org/10.1093/mnras/stw1490
https://doi.org/10.1103/PhysRevLett.106.251102
https://doi.org/10.1103/PhysRevLett.106.251102
https://doi.org/10.1103/PhysRevD.103.043013
https://doi.org/10.1088/0004-637X/697/2/1621
https://doi.org/10.1088/0004-637X/697/2/1621


   52 Page 72 of 77 A. Tsokaros, K. Ury ¯ u

222. Petrich, L.I., Shapiro, S.L., Stark, R.F., Teukolsky, S.A.: Astrophys. J. 336, 313 (1989). https://doi.
org/10.1086/167013

223. Barausse, E., Rezzolla, L.: Phys. Rev. D 77, 104027 (2008). https://doi.org/10.1103/PhysRevD.77.
104027

224. Barausse, E.: Mon. Not. Roy. Astron. Soc. 382, 826 (2007). https://doi.org/10.1111/j.1365-2966.
2007.12408.x

225. Yunes, N., Kocsis, B., Loeb, A., Haiman, Z.: Phys. Rev. Lett. 107, 171103 (2011). https://doi.org/10.
1103/PhysRevLett.107.171103

226. Abbott, R., et al.: Phys. Rev. Lett. 125(10), 101102 (2020). https://doi.org/10.1103/PhysRevLett.125.
101102

227. Shibata, M., Kiuchi, K., Fujibayashi, S., Sekiguchi, Y.: Phys. Rev. D 103(6), 063037 (2021). https://
doi.org/10.1103/PhysRevD.103.063037

228. Carter, B.: Commun. Math. Phys. 17(3), 233 (1970). https://doi.org/10.1007/BF01647092
229. Papapetrou, A.: Ann. Inst. H. Poincaré A 4, 83 (1966)
230. Kundt, W., Trümper, M.: Z. Phys. 192(4), 419 (1966). https://doi.org/10.1007/BF01325677
231. Wald, R.M.: General Relativity. The University of Chicago Press, Chicago (1984)
232. Bardeen, J.M., Wagoner, R.V.: Astrophys. J. 167, 359 (1971). https://doi.org/10.1086/151039
233. Shibata, M.: Phys. Rev. D 76, 064035 (2007). https://doi.org/10.1103/PhysRevD.76.064035
234. Fishbone, L.G., Moncrief, V.: Astrophys. J. 207, 962 (1976)
235. Abramowicz, M., Jaroszynski, M., Sikora, M.: Astron. Astrophys. 63, 221 (1978)
236. Kozlowski, M., Jaroszynski, M., Abramowicz, M.A.: Astron. Astrophys. 63, 209 (1978)
237. Bardeen, B.C.J.M., Hawking, S.: Commun. Math. Phys. 31, 161 (1973)
238. Bardeen, J.M.: In: deWitt, C., deWitt, B. (eds.) Black Holes. pp. 245–289. Gordon and Breach, New

York (1973)
239. Carter, B.: In: deWitt, C., deWitt, B. (eds.) Black Holes. pp. 59–214. Gordon and Breach, New York

(1973)
240. Smarr, L.L.: Phys. Rev. Lett. 30, 71 (1973)
241. Lanza, A.: Astrophys. J. 389, 141 (1992). https://doi.org/10.1086/171193
242. Abramowicz, M.A., Curir, A., Schwarzenberg-Czerny, A., Wilson, R.E.: Mon. Not. R. Astron. Soc.

208, 279 (1984). https://doi.org/10.1093/mnras/208.2.279
243. Chakrabarti, S.K.: J. Astrophys. Astron. 9, 49 (1988). https://doi.org/10.1007/BF02715056
244. Will, C.M.: Astrophys. J. 191, 521 (1974). https://doi.org/10.1086/152992
245. Will, C.M.: Astrophys. J. 196, 41 (1975). https://doi.org/10.1086/153392
246. Nishida, S., Eriguchi, Y.: Astrophys. J. 427, 429 (1994). https://doi.org/10.1086/174153
247. Ansorg, M., Petroff, D.: Phys. Rev. D 72, 024019 (2005). https://doi.org/10.1103/PhysRevD.72.

024019
248. Ansorg, M., Kleinwächter, A., Meinel, R.: Astron. Astrophys. 405, 711 (2003)
249. Ansorg, M., Petroff, D.: Class. Quant. Grav. 23, L81 (2006). https://doi.org/10.1088/0264-9381/23/

24/L01
250. Stergioulas, N.: Int. J. Mod. Phys. D 20, 1251 (2011). https://doi.org/10.1142/S021827181101944X
251. Stergioulas, N.: J. Phys. Conf. Ser. 283, 012036 (2011). https://doi.org/10.1088/1742-6596/283/1/

012036
252. Cook, G.B., Shapiro, S.L., Teukolsky, S.A.: Astrophys. J. 422, 227 (1994). https://doi.org/10.1086/

173721
253. Krivan, W., Price, R.H.: Phys. Rev. D 58, 104003 (1998)
254. Butterworth, E.M., Ipser, J.R.: Astrophys. J. Lett. 200, L103 (1975). https://doi.org/10.1086/181907
255. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press,

Cambridge (1973). https://doi.org/10.1017/CBO9780511524646
256. Christodoulou, D.: Phys. Rev. Lett. 25(22), 1596 (1970)
257. Karkowski, J., Kulczycki, W., Mach, P., Malec, E., Odrzywołek, A., Piróg, M.: Phys. Rev. D 97(10),

104034 (2018). https://doi.org/10.1103/PhysRevD.97.104034
258. Karkowski, J., Kulczycki, W., Mach, P., Malec, E., Odrzywołek, A., Piróg, M.: Phys. Rev. D 97,

104017 (2018). https://doi.org/10.1103/PhysRevD.97.104017
259. Mach, P., Gimeno-Soler, S., Font, J.A., Odrzywołek, A., Piróg, M.: Phys. Rev. D 99(10), 104063

(2019). https://doi.org/10.1103/PhysRevD.99.104063
260. Kulczycki, W., Mach, P., Malec, E.: Phys. Rev. D 99, 024004 (2019). https://doi.org/10.1103/

PhysRevD.99.024004

123

https://doi.org/10.1086/167013
https://doi.org/10.1086/167013
https://doi.org/10.1103/PhysRevD.77.104027
https://doi.org/10.1103/PhysRevD.77.104027
https://doi.org/10.1111/j.1365-2966.2007.12408.x
https://doi.org/10.1111/j.1365-2966.2007.12408.x
https://doi.org/10.1103/PhysRevLett.107.171103
https://doi.org/10.1103/PhysRevLett.107.171103
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevLett.125.101102
https://doi.org/10.1103/PhysRevD.103.063037
https://doi.org/10.1103/PhysRevD.103.063037
https://doi.org/10.1007/BF01647092
https://doi.org/10.1007/BF01325677
https://doi.org/10.1086/151039
https://doi.org/10.1103/PhysRevD.76.064035
https://doi.org/10.1086/171193
https://doi.org/10.1093/mnras/208.2.279
https://doi.org/10.1007/BF02715056
https://doi.org/10.1086/152992
https://doi.org/10.1086/153392
https://doi.org/10.1086/174153
https://doi.org/10.1103/PhysRevD.72.024019
https://doi.org/10.1103/PhysRevD.72.024019
https://doi.org/10.1088/0264-9381/23/24/L01
https://doi.org/10.1088/0264-9381/23/24/L01
https://doi.org/10.1142/S021827181101944X
https://doi.org/10.1088/1742-6596/283/1/012036
https://doi.org/10.1088/1742-6596/283/1/012036
https://doi.org/10.1086/173721
https://doi.org/10.1086/173721
https://doi.org/10.1086/181907
https://doi.org/10.1017/CBO9780511524646
https://doi.org/10.1103/PhysRevD.97.104034
https://doi.org/10.1103/PhysRevD.97.104017
https://doi.org/10.1103/PhysRevD.99.104063
https://doi.org/10.1103/PhysRevD.99.024004
https://doi.org/10.1103/PhysRevD.99.024004


Methods for relativistic self-gravitating fluids… Page 73 of 77    52 

261. Dyba, W., Kulczycki, W., Mach, P.: Phys. Rev. D 101(4), 044036 (2020). https://doi.org/10.1103/
PhysRevD.101.044036

262. Kulczycki, W., Mach, P., Malec, E.: Phys. Rev. D 104(2), 024005 (2021). https://doi.org/10.1103/
PhysRevD.104.024005

263. von Zeipel, H.: Mon. Not. R. Soc. 84, 665 (1924)
264. Tassoul, J.L.: Theory of Rotating Stars. Princeton University Press, Princeton (1978)
265. Abramowicz, M.A.: Acta Astron. 24, 45 (1974)
266. Seguin, F.H.: Astrophys. J. 197, 745 (1975). https://doi.org/10.1086/153563
267. Komissarov, S.S.: Mon. Not. R. Astron. Soc. 368, 993 (2006). https://doi.org/10.1111/j.1365-2966.

2006.10183.x
268. York, J.W.: Phys. Rev. Lett. 26, 1656 (1971)
269. York, J.W.: Phys. Rev. Lett. 28, 1082 (1972)
270. Pfeiffer, H.P., York, J.W.: Phys. Rev. D 67, 044022 (2003)
271. Brandt, S., Brügmann, B.: Phys. Rev. Lett. 78(19), 3606 (1997)
272. York, J.W.: Phys. Rev. Lett. 82, 1350 (1999)
273. Chakrabarti, S.K.: Astrophys. J. 288, 1 (1985). https://doi.org/10.1086/162755
274. Villiers, J.P.D., Hawley, J.F., Krolik, J.H.: Astrophys. J. 599(2), 1238 (2003). https://doi.org/10.1086/

379509
275. Duncan, R.C., Thompson, C.: Astrophys. J. Lett. 392, L9 (1992). https://doi.org/10.1086/186413
276. Thompson, C., Duncan, R.C.: Mon. Not. R. Astron. Soc. 275, 255 (1995)
277. Thompson, C., Duncan, R.C.: Astrophys. J. 473, 322 (1996). https://doi.org/10.1086/178147
278. Mazets, E.P., Golentskii, S.V., Ilinskii, V.N., Aptekar, R.L., Guryan, I.A.: Nature 282(5739), 587

(1979). https://doi.org/10.1038/282587a0
279. Paczynski, B.: Acta. Astron. 42, 145 (1992)
280. Kouveliotou, C., Fishman, G.J., Meegan, C.A., Paciesas, W.S., van Paradijs, J., Norris, J.P., Preece,

R.D., Briggs, M.S., Horack, J.M., Pendleton, G.N., Green, D.A.: Nature 368(6467), 125 (1994).
https://doi.org/10.1038/368125a0

281. Kouveliotou, C., Dieters, S., Strohmayer, T., van Paradijs, J., Fishman, G.J., Meegan, C.A., Hurley,
K., Kommers, J., Smith, I., Frail, D., Murakami, T.: Nature 393(6682), 235 (1998). https://doi.org/
10.1038/30410

282. Kouveliotou, C., Strohmayer, T., Hurley, K., van Paradijs, J., Finger, M.H., Dieters, S., Woods,
P., Thompson, C., Duncan, R.C.: Astrophys. J. Lett. 510(2), L115 (1999). https://doi.org/10.1086/
311813

283. Mereghetti, S.: Astron. Astrophys. Rev. 15, 225 (2008). https://doi.org/10.1007/s00159-008-0011-z
284. Harding, A.K., Lai, D.: Rep. Prog. Phys. 69, 2631 (2006). https://doi.org/10.1088/0034-4885/69/9/

R03
285. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover Edition, New York (1981)
286. Bodo, G., Massaglia, S., Ferrari, A., Trussoni, E.: Astron. Astrophys. 283, 655 (1994)
287. Price, D.J., Rosswog, S.: Science 312, 719 (2006). https://doi.org/10.1126/science.1125201
288. Anderson, M., Hirschmann, E.W., Lehner, L., Liebling, S.L., Motl, P.M., Neilsen, D., Palenzuela,

C., Tohline, J.E.: Phys. Rev. Lett. 100(19), 191101 (2008). https://doi.org/10.1103/PhysRevLett.100.
191101

289. Kiuchi, K., Cerdá-Durán, P., Kyutoku, K., Sekiguchi, Y., Shibata, M.: Phys. Rev. D 92(12), 124034
(2015). https://doi.org/10.1103/PhysRevD.92.124034

290. Velikhov, E.P.: Sov. Phys. JETP 9, 995 (1959)
291. Chandrasekhar, S.: Proc. Natl. Acad. Sci. 46, 253 (1960). https://doi.org/10.1073/pnas.46.2.253
292. Balbus, S.A., Hawley, J.F.: Astrophys. J. 376, 214 (1991). https://doi.org/10.1086/170270
293. Shibata, M., Duez,M.D., Liu, Y.T., Shapiro, S.L., Stephens, B.C.: Phys. Rev. Lett. 96, 031102 (2006).

https://doi.org/10.1103/PhysRevLett.96.031102
294. Duez, M.D., Liu, Y.T., Shapiro, S.L., Shibata, M., Stephens, B.C.: Phys. Rev. Lett. 96(3), 031101

(2006). https://doi.org/10.1103/PhysRevLett.96.031101
295. Siegel, D.M., Ciolfi, R., Harte, A.I., Rezzolla, L.: Phys. Rev. D 87(12), 121302 (2013). https://doi.

org/10.1103/PhysRevD.87.121302
296. Kiuchi, K., Sekiguchi, Y., Kyutoku, K., Shibata, M., Taniguchi, K., Wada, T.: Phys. Rev. D 92(6),

064034 (2015). https://doi.org/10.1103/PhysRevD.92.064034
297. Baumgarte, T.W., Shapiro, S.L., Shibata, M.: Astrophys. J. Lett. 528, L29 (2000). https://doi.org/10.

1086/312425

123

https://doi.org/10.1103/PhysRevD.101.044036
https://doi.org/10.1103/PhysRevD.101.044036
https://doi.org/10.1103/PhysRevD.104.024005
https://doi.org/10.1103/PhysRevD.104.024005
https://doi.org/10.1086/153563
https://doi.org/10.1111/j.1365-2966.2006.10183.x
https://doi.org/10.1111/j.1365-2966.2006.10183.x
https://doi.org/10.1086/162755
https://doi.org/10.1086/379509
https://doi.org/10.1086/379509
https://doi.org/10.1086/186413
https://doi.org/10.1086/178147
https://doi.org/10.1038/282587a0
https://doi.org/10.1038/368125a0
https://doi.org/10.1038/30410
https://doi.org/10.1038/30410
https://doi.org/10.1086/311813
https://doi.org/10.1086/311813
https://doi.org/10.1007/s00159-008-0011-z
https://doi.org/10.1088/0034-4885/69/9/R03
https://doi.org/10.1088/0034-4885/69/9/R03
https://doi.org/10.1126/science.1125201
https://doi.org/10.1103/PhysRevLett.100.191101
https://doi.org/10.1103/PhysRevLett.100.191101
https://doi.org/10.1103/PhysRevD.92.124034
https://doi.org/10.1073/pnas.46.2.253
https://doi.org/10.1086/170270
https://doi.org/10.1103/PhysRevLett.96.031102
https://doi.org/10.1103/PhysRevLett.96.031101
https://doi.org/10.1103/PhysRevD.87.121302
https://doi.org/10.1103/PhysRevD.87.121302
https://doi.org/10.1103/PhysRevD.92.064034
https://doi.org/10.1086/312425
https://doi.org/10.1086/312425


   52 Page 74 of 77 A. Tsokaros, K. Ury ¯ u

298. Shapiro, S.L.: Astrophys. J. 544, 397 (2000)
299. Bandyopadhyay, D., Chakrabarty, S., Pal, S.: Phys. Rev. Lett. 79, 2176 (1997). https://doi.org/10.

1103/PhysRevLett.79.2176
300. Bocquet, M., Bonazzola, S., Gourgoulhon, E., Novak, J.: Astron. Astrophys. 301, 757 (1995)
301. Cardall, C.Y., Prakash, M., Lattimer, J.M.: Astrophys. J. 554, 322 (2001). https://doi.org/10.1086/

321370
302. Kiuchi, K., Yoshida, S.: Phys. Rev. D 78(4), 044045 (2008). https://doi.org/10.1103/PhysRevD.78.

044045
303. Frieben, J., Rezzolla, L.:Mon. Not. R. Astron. Soc. 427, 3406 (2012). https://doi.org/10.1111/j.1365-

2966.2012.22027.x
304. Metzger, B.D., Thompson, T.A., Quataert, E.: Astrophys. J. 856, 101 (2018). https://doi.org/10.3847/

1538-4357/aab095
305. Kiuchi, K., Shibata, M., Yoshida, S.: Phys. Rev. D 78(2), 024029 (2008). https://doi.org/10.1103/

PhysRevD.78.024029
306. Ciolfi, R., Lander, S.K., Manca, G.M., Rezzolla, L.: Astrophys. J. 736, L6 (2011). https://doi.org/10.

1088/2041-8205/736/1/L6
307. Lasky, P.D., Zink, B., Kokkotas, K.D., Glampedakis, K.: Astrophys. J. 735, L20 (2011). https://doi.

org/10.1088/2041-8205/735/1/L20
308. Ciolfi, R., Rezzolla, L.: Astrophys. J. 760, 1 (2012). https://doi.org/10.1088/0004-637X/760/1/1
309. Lasky, P.D., Zink, B., Kokkotas, K.D.: arXiv:1203.3590 (2012)
310. Tayler, R.J.: Proc. Phys. Soc. Sect. B 70(1), 31 (1957). https://doi.org/10.1088/0370-1301/70/1/306
311. Tayler, R.J.: Mon. Not. R. Astron. Soc. 161, 365 (1973)
312. Wright, G.A.E.: Mon. Not. R. Astron. Soc. 162, 339 (1973)
313. Markey, P., Tayler, R.J.: Mon. Not. R. Astron. Soc. 163, 77 (1973)
314. Markey, P., Tayler, R.J.:Mon.Not. R.Astron. Soc. 168(3), 505 (1974). https://doi.org/10.1093/mnras/

168.3.505
315. Flowers, E., Ruderman, M.A.: Astrophys. J. 215, 302 (1977). https://doi.org/10.1086/155359
316. Bonazzola, S., Gourgoulhon, E., Salgado, M., Marck, J.A.: Astron. Astrophys. 278, 421 (1993)
317. Bonazzola, S., Marck, J.A.: J. Comput. Phys. 87, 201 (1990). https://doi.org/10.1016/0021-

9991(90)90234-R
318. Carter, B.: In: deWitt, C., deWitt, B. (eds.) Black Holes. pp. 125–214. Gordon and Breach, New York

(1973). Reprinted in Gen. Relativ. Gravit. 42, 653–744 (2010). https://doi.org/10.1007/s10714-009-
0920-9

319. Cook, G.B., Shapiro, S.L., Teukolsky, S.A.: Astrophys. J. 424, 823 (1994)
320. Lasota, J.P., Haensel, P., Abramowicz, M.A.: Astrophys. J. 456, 300 (1996). https://doi.org/10.1086/

176650
321. Breu, C., Rezzolla, L.: Mon. Not. R. Astron. Soc. 459, 646 (2016). https://doi.org/10.1093/mnras/

stw575
322. Yazadjiev, S.: Phys. Rev. D 85, 044030 (2012). https://doi.org/10.1103/PhysRevD.85.044030
323. Konno, K., Obata, T., Kojima, Y.: Astron. Astrophys. 352, 211 (1999)
324. Konno, K.: Astron. Astrophys. 372, 594 (2001). https://doi.org/10.1051/0004-6361:20010556
325. Ioka, K., Sasaki, M.: Phys. Rev. D 67(12), 124026 (2003). https://doi.org/10.1103/PhysRevD.67.

124026
326. Lovelace, R.V.E., Mehanian, C., Mobarry, C.M., Sulkanen, M.E.: Astrophys. J. Suppl. Ser. 62, 1

(1986). https://doi.org/10.1086/191132
327. Mobarry, C.M., Lovelace, R.V.E.: Astrophys. J. 309, 455 (1986). https://doi.org/10.1086/164617
328. Nitta, S.Y., Takahashi, M., Tomimatsu, A.: Phys. Rev. D 44(8), 2295 (1991). https://doi.org/10.1103/

PhysRevD.44.2295
329. Beskin, V.S.: Sov. Phys. Uspekhi 40, 659 (1997)
330. Bekenstein, J.D., Oron, E.: Phys. Rev. D 18, 1809 (1978). https://doi.org/10.1103/PhysRevD.18.1809
331. Bekenstein, J.D., Oron, E.: Phys. Rev. D 19(10), 2827 (1979). https://doi.org/10.1103/PhysRevD.19.

2827
332. Gourgoulhon, E., Bonazzola, S.: Phys. Rev.D 48(6), 2635 (1993). https://doi.org/10.1103/PhysRevD.

48.2635
333. Ioka, K., Sasaki, M.: Astrophys. J. 600, 296 (2004). https://doi.org/10.1086/379650
334. Hartle, J.B., Thorne, K.S.: Astrophys. J. 153, 807 (1968). https://doi.org/10.1086/149707
335. Bekenstein, J.D.: Astrophys. J. 319, 207 (1987). https://doi.org/10.1086/165447

123

https://doi.org/10.1103/PhysRevLett.79.2176
https://doi.org/10.1103/PhysRevLett.79.2176
https://doi.org/10.1086/321370
https://doi.org/10.1086/321370
https://doi.org/10.1103/PhysRevD.78.044045
https://doi.org/10.1103/PhysRevD.78.044045
https://doi.org/10.1111/j.1365-2966.2012.22027.x
https://doi.org/10.1111/j.1365-2966.2012.22027.x
https://doi.org/10.3847/1538-4357/aab095
https://doi.org/10.3847/1538-4357/aab095
https://doi.org/10.1103/PhysRevD.78.024029
https://doi.org/10.1103/PhysRevD.78.024029
https://doi.org/10.1088/2041-8205/736/1/L6
https://doi.org/10.1088/2041-8205/736/1/L6
https://doi.org/10.1088/2041-8205/735/1/L20
https://doi.org/10.1088/2041-8205/735/1/L20
https://doi.org/10.1088/0004-637X/760/1/1
http://arxiv.org/abs/1203.3590
https://doi.org/10.1088/0370-1301/70/1/306
https://doi.org/10.1093/mnras/168.3.505
https://doi.org/10.1093/mnras/168.3.505
https://doi.org/10.1086/155359
https://doi.org/10.1016/0021-9991(90)90234-R
https://doi.org/10.1016/0021-9991(90)90234-R
https://doi.org/10.1007/s10714-009-0920-9
https://doi.org/10.1007/s10714-009-0920-9
https://doi.org/10.1086/176650
https://doi.org/10.1086/176650
https://doi.org/10.1093/mnras/stw575
https://doi.org/10.1093/mnras/stw575
https://doi.org/10.1103/PhysRevD.85.044030
https://doi.org/10.1051/0004-6361:20010556
https://doi.org/10.1103/PhysRevD.67.124026
https://doi.org/10.1103/PhysRevD.67.124026
https://doi.org/10.1086/191132
https://doi.org/10.1086/164617
https://doi.org/10.1103/PhysRevD.44.2295
https://doi.org/10.1103/PhysRevD.44.2295
https://doi.org/10.1103/PhysRevD.18.1809
https://doi.org/10.1103/PhysRevD.19.2827
https://doi.org/10.1103/PhysRevD.19.2827
https://doi.org/10.1103/PhysRevD.48.2635
https://doi.org/10.1103/PhysRevD.48.2635
https://doi.org/10.1086/379650
https://doi.org/10.1086/149707
https://doi.org/10.1086/165447


Methods for relativistic self-gravitating fluids… Page 75 of 77    52 

336. Parker, E.N.: Astrophys. J. 145, 811 (1966). https://doi.org/10.1086/148828
337. Kiuchi, K., Yoshida, S., Shibata, M.: Astron. Astrophys. 532, A30 (2011). https://doi.org/10.1051/

0004-6361/201016242
338. Reisenegger, A.: Astron. Astrophys. 499, 557 (2009). https://doi.org/10.1051/0004-6361/200810895
339. Reisenegger, A., Goldreich, P.: Astrophys. J. 395, 240 (1992). https://doi.org/10.1086/171645
340. Yoshida, S., Kiuchi, K., Shibata, M.: Phys. Rev. D 86, 044012 (2012). https://doi.org/10.1103/

PhysRevD.86.044012
341. Yoshida, S.: Phys. Rev. D 99(8), 084034 (2019). https://doi.org/10.1103/PhysRevD.99.084034
342. Colaiuda, A., Ferrari, V., Gualtieri, L., Pons, J.A.:Mon. Not. R. Astron. Soc. 385, 2080 (2008). https://

doi.org/10.1111/j.1365-2966.2008.12966.x
343. Ciolfi, R., Ferrari, V., Gualtieri, L., Pons, J.A.: Mon. Not. R. Astron. Soc. 397, 913 (2009). https://

doi.org/10.1111/j.1365-2966.2009.14990.x
344. Ciolfi, R., Ferrari, V., Gualtieri, L.: Mon. Not. R. Astron. Soc. 406, 2540 (2010). https://doi.org/10.

1111/j.1365-2966.2010.16847.x
345. Braithwaite, J.: Mon. Not. R. Astron. Soc. 397, 763 (2009). https://doi.org/10.1111/j.1365-2966.

2008.14034.x
346. Lander, S.K., Jones, D.I.: Mon. Not. R. Astron. Soc. 424, 482 (2012). https://doi.org/10.1111/j.1365-

2966.2012.21213.x
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