
Spiral: Fast, High-Rate Single-Server PIR via FHE Composition∗

Samir Jordan Menon
Unaffiliated

menon.samir@gmail.com

David J. Wu
UT Austin

dwu4@cs.utexas.edu

Abstract

We introduce the Spiral family of single-server private information retrieval (PIR) protocols. Spiral relies

on a composition of two lattice-based homomorphic encryption schemes: the Regev encryption scheme and the

Gentry-Sahai-Waters encryption scheme. We introduce new ciphertext translation techniques to convert between

these two schemes and in doing so, enable new trade-offs in communication and computation. Across a broad range

of database configurations, the basic version of Spiral simultaneously achieves at least a 4.5× reduction in query size,

1.5× reduction in response size, and 2× increase in server throughput compared to previous systems. A variant of

our scheme, SpiralStreamPack, is optimized for the streaming setting and achieves a server throughput of 1.9 GB/s

for databases with over a million records (compared to 200 MB/s for previous protocols) and a rate of 0.81 (compared

to 0.24 for previous protocols). For streaming large records (e.g., a private video stream), we estimate the monetary

cost of SpiralStreamPack to be only 1.9× greater than that of the no-privacy baseline where the client directly

downloads the desired record.

1 Introduction

A private information retrieval (PIR) [CGKS95] protocol enables a client to download an element from a public
database without revealing to the database server which record is being requested. Beyond its direct applications
to private database queries, PIR is a core building block in a wide range of privacy-preserving applications such as
anonymous messaging [MOT+11, KLDF16, AS16, ACLS18], contact discovery [BDG15, DRRT18], private contact
tracing [TSS+20], private navigation [FKP15, WZPM16], and safe browsing [KC21].

Private information retrieval protocols fall under two main categories: (1) multi-server protocols where the
database is replicated across multiple servers [CGKS95]; and (2) single-server protocols where the database lives on a
single server [KO97]. We refer to [Gas04, OS07] for excellent surveys of single-server and multi-server constructions.
In many settings, multi-server constructions have reduced computational overhead compared to single-server
constructions and can often achieve information-theoretic security. The drawback, however, is their reliance on
having multiple non-colluding servers; this assumption can be challenging to realize in practice.

Conversely, single-server PIR protocols do not assume non-colluding servers. Instead, existing single-server PIR
implementations have significantly higher computational costs compared to multi-server constructions. Indeed, it was
believed that single-server PIRwould never outperform the “trivial PIR” of simply having the client download the entire
database [SC07]. While this assumption applied to earlier number-theoretic PIR schemes [KO97, CMS99, Cha04, GR05],
recent lattice-based constructions [MBFK16, ACLS18, GH19, PT20, AYA+21, MCR21] have made significant strides in
concrete efficiency and are much faster than the trivial PIR in many settings.

When studying PIR protocols, we are primarily interested in the (1) rate, which is the ratio of the response size to
the size of the retrieved record; and (2) the server throughput, which is the ratio of the database size to the server’s
computation time. The rate measures the overhead in the server-to-client communication while the throughput
measures how fast the server can answer a PIR query as a function of the database size. A third quantity of interest is
the query size. Recent constructions are able to achieve relatively compact queries (e.g., 32–64 KB queries in the case
of [ACLS18, MCR21] for databases with millions of records and tens of gigabytes of data).

∗This is the extended version of a paper by the same title that appeared at IEEE Security & Privacy 2022 [MW22].

1

The current state-of-the-art single-server PIR, OnionPIR [MCR21], achieves a rate of 0.24 and a throughput of 149
MB/s. In contrast, the fastest two-server PIR scheme can achieve an essentially optimal rate of ≈1 and a throughput
of 5.5 GB/s [HH19]. Thus, there remains a large gap between the performance of the best single-server PIR and the
best two-server PIR protocols.

This work. In this work, we introduce Spiral, a new family of lattice-based single-server PIR schemes that enables
new trade-offs in communication and computation. The basic instantiation of Spiral simultaneously achieves a
4.5× reduction in query size, a 1.5× increase in the rate, and a 2× increase in the server throughput compared to
OnionPIR [MCR21] (see Table 2).

Like previous PIR protocols [ACLS18, GH19, PT20, ALP+21, MCR21, AYA+21], the Spiral protocol works in the
model where the client starts by sending the server a set of query-independent public parameters. The server uses
these parameters along with the client’s query to compute the response. Since these parameters can be reused for an
arbitrary number of queries and they are independent of the query, the client can transmit these parameters to the
server in a separate “offline” phase. For this reason, we often distinguish between the offline cost of generating and
communicating the public parameters and the online cost of generating the query and computing the response.

We also introduce several variants of Spiral that achieve higher server throughput and rates (i.e., reduced online
cost) in exchange for larger queries and/or public parameters:

• SpiralStream: The SpiralStream protocol variant is optimized for the streaming setting. In the streaming
setting, the client’s query is reused across multiple databases, so we can amortize the cost of query generation
and communication over multiple PIR responses. The SpiralStream protocol has larger queries (30 MB), but
achieves a rate of 0.49 (2× higher than OnionPIR) and an effective server throughput of up to 1.5 GB/s (roughly
10× higher than OnionPIR). We provide more detailed benchmarks in Section 5.3 and Table 4.

• SpiralPack: The SpiralPack protocol leverages a new response packing technique that reduces the online
costs of Spiral (for databases with large records) at the expense of requiring a larger set of (reusable) public
parameters. As we show in Section 5.3 and Table 3, when database records are large, SpiralPack can achieve a
30% higher rate compared to Spiral while simultaneously providing a similar or higher server throughput.

The two optimizations we describe above can also be combined and we refer to the resulting protocol as Spiral-
StreamPack. Compared to the other Spiral variants, SpiralStreamPack has the largest public parameter and query
sizes, but is able to simultaneously achieve a high rate (0.81) and a high server throughput (1.9 GB/s) on databases
with over a million records. This represents a 2.1× increase in rate and 5.5× increase in throughput compared to the
base version of Spiral. However, the size of the public parameters is 4.2× higher and the query size is over 2000×
higher. In absolute terms, the public parameter size increases from 30 MB to 125 MB and the query size increases
from 14 KB to 30 MB. We believe these remain reasonable for many streaming applications. Overall, for settings
where both the public parameters and the query will be reused for a large number of queries, SpiralStreamPack
likely offers the most competitive performance.

We note that for databases with sufficiently-large records (≥ 30 KB), the server throughput of our streaming
constructions is 2–4× higher than that of full database encryption using a software-based AES implementation.
We believe that this is the first single-server PIR where the server throughput is faster than applying a symmetric

cryptographic primitive over the full database. Although this is still 2.9× slower than the best two-server PIR
using hardware-accelerated AES [HH19], hardware acceleration for the lattice-based building blocks underlying our
construction could help bridge this gap (e.g., [SFK+21]).

A limitation of Spiral is that it generally requires larger public parameters compared with previous schemes.
To compare, the public parameters in SealPIR [ACLS18], FastPIR [AYA+21], and OnionPIR [MCR21] are 3.4 MB,
1.4 MB, and 4.6 MB, respectively. In Spiral, they range from 14 to 18 MB and for SpiralStream, they range from
344 KB to 3 MB. The larger parameters in Spiral are needed to enable our new ciphertext translation procedures
(Sections 1.2 and 3) that are critical for reducing the online costs of our protocol. The SpiralPack variant requires
public parameters that range from 14 to 47 MB (in order to support ciphertext packing).

2

1.1 Background on Lattice-Based PIR

The most efficient single-server PIR protocols [AS16, MBFK16, ACLS18, GH19, PT20, ALP+21, MCR21] use lattice-
based fully homomorphic encryption (FHE) schemes [Gen09, BV11, Bra12, FV12, BGV12, GSW13].1 These protocols
follow the general paradigm of constructing PIR from homomorphic encryption [KO97]. In these protocols, the
database is represented as a hypercube, and the client sends encryptions of basis vectors selecting for each dimension
of the hypercube. To compute the response, the server either relies on multiplicative homomorphism, where the
server iteratively multiplies the response for each dimension with the client’s query vectors, or by using a recursive
composition approach that only needs additive homomorphism. While earlier PIR protocols [AS16, MBFK16, ACLS18]
relied on recursive composition and additive homomorphism, more recent protocols [GH19, PT20, ALP+21, MCR21]
have shown how to leverage multiplicative homomorphism for better efficiency.

The challenge: ciphertext noise management. A key challenge when working with lattice-based FHE schemes
is managing noise growth. In these schemes, the ciphertexts are noisy encodings of the plaintext messages, and
homomorphic operations increase the magnitude of the noise in the ciphertext. If the noise exceeds a predetermined
bound, then it is no longer possible to recover the message. The lattice parameters are chosen to ensure that the
scheme can support the requisite number of operations and achieve the target level of security. Most lattice-based
PIR constructions [MBFK16, AS16, ACLS18, GH19, ALP+21, MCR21] are based on either the Regev encryption
scheme [Reg05], which is additively homomorphic, or its generalization, the Brakerski/Fan-Vercauteren (BFV)
scheme [Bra12, FV12], which additionally supports homomorphic multiplication. In the BFV scheme, the ciphertext
noise scales exponentially in the multiplicative depth of the computation.2 Consequently, initial lattice-based PIR
schemes did not use multiplicative homomorphism [MBFK16, AS16, ACLS18].

A solution: FHE composition. Recently, Chillotti et al. [CGGI18, CGGI20] introduced an “external product”
operation to homomorphically multiply ciphertexts from two different schemes. They specifically show how to
multiply a ciphertext encrypted under Regev’s encryption scheme [Reg05] with a ciphertext encrypted under the
encryption scheme of Gentry, Sahai, and Waters (GSW) [GSW13]. The requirement is that the two Regev and GSW
ciphertexts are encrypted with respect to the same secret key.

The advantage of the GSW encryption scheme is its asymmetric noise growth for homomorphic multiplication.
Specifically, in the setting of PIR, one of the inputs to each homomorphic multiplication is a “fresh” ciphertext (i.e., a
query ciphertext). In this case, the noise growth after : sequential multiplications increases linearly with : rather
than exponentially with : (as would be the case with BFV). The drawback of GSW ciphertexts is their poor rate:
encrypting a scalar requires a large matrix. Conversely, Regev ciphertexts have much better rate; over polynomial
rings, the amortized version [PVW08] can encrypt an = × = plaintext elements with a ciphertext of size = × (= + 1).

The external product operation from [CGGI18, CGGI20] enables us to get the best of both worlds. Namely, if
each homomorphic multiplication is between a Regev ciphertext and a fresh GSW ciphertext, then the noise scales
additively in the number of multiplications, and the result is still a high-rate Regev ciphertext. This is the basis of the
theoretical PIR construction of Gentry and Halevi [GH19] and the recently-implemented OnionPIR protocol [MCR21].
Our approach further builds upon and expands this technique of composing Regev encryption with GSW encryption
to get a better handle on noise growth while enabling fast computation.

1.2 Our Contributions and Construction Overview

In this work, we present the Spiral family of single-server PIR protocols that leverages the combination of matrix
Regev and GSW encryption schemes to simultaneously reduce the query size, response size, and the server computation
time compared to all previous implemented protocols (see Section 5). Here, we provide an overview of our techniques.

1Technically, these constructions (including Spiral) only require leveled homomorphic encryption, which support a bounded number of computa-
tions. For ease of exposition, we will still write FHE to refer to leveled schemes.

2While it is possible to use bootstrapping [Gen09] to reduce the noise, the concrete cost of bootstrapping in the BFV encryption scheme remains
high (e.g., a few minutes to refresh a single ciphertext) [VJH21].

3

High rate via ciphertext amortization. To achieve higher rate, we take the Gentry-Halevi [GH19] approach of
using the amortized version of Regev encryption [PVW08] (over rings [LPR10]) as our base encryption scheme. Here,
the rate of the encryption scheme (i.e., the ratio of plaintext size to ciphertext size) scales with =2/(=2 + =) where
= is the plaintext dimension. Higher dimensions enable a better rate at the cost of higher server computation. For
example, by using the high-rate version of Regev encryption, the base version of Spiral is able to achieve a rate that
is 1.5×–6× better than OnionPIR (Table 2) on a broad range of database configurations.

Ciphertext translation and query compression. To take advantage of the Regev-GSW homomorphism, the
client would have to include GSW ciphertexts as part of their query. Even with the query compression techniques
of [ACLS18, CCR19], Gentry and Halevi estimate that the size of the queries in their construction to be 30 MB,
which is more than 450× worse compared to existing schemes. The reason for this blowup is that the Angel et al.
query compression technique [ACLS18] relies on the ability to homomorphically compute automorphisms; while
this is possible on matrix Regev ciphertexts, the same does not seem to hold for GSW ciphertexts. As such, in the
Gentry-Halevi construction, the client has to send multiple large GSW ciphertexts as part of its query. The OnionPIR
scheme avoids this issue by observing that in the 1-dimensional case, a GSW ciphertext can be viewed as a BFV
ciphertext, in which case, they can use the same type of packing approach from [ACLS18, CCR19].

In this work, we describe a general technique for translating between matrix Regev ciphertexts (of any dimension)
and GSW ciphertexts (Section 3). Our transformations leverage the similar algebraic structure shared by Regev
ciphertexts and GSW ciphertexts, and can be viewed as a particular form of key switching between two different
encryption schemes. We then compose our translation algorithms with the query-packing approach from [ACLS18,
CCR19], and compress our query into a single scalar Regev ciphertext of just 14 KB. Our query expansion procedure
expands this single Regev ciphertext into a collection of matrix Regev ciphertexts and GSW ciphertexts encoding the
client’s query along each dimension of the database hypercube. More generally, our ciphertext translation protocols
can be viewed as a way to “compress” GSW ciphertexts (Remark 3.3), and may be useful in other settings where users
are sending/receiving GSW ciphertexts.

The Spiral family of PIR protocols. The Spiral family of PIR protocol follows a similar high-level structure as
previous lattice-based PIR protocols (Section 1.1). We describe the main steps here and also visually in Fig. 1:

• Query generation: The client’s query consists of a single scalar Regev ciphertext that encodes the record index
the client wants to retrieve. We structure the database of # = 2a1×a2 records as a 2a1 × 2 × · · · × 2 hypercube. A
record index can then be described by a tuple (8, 91, . . . , 9a2) where 8 ∈ {0, . . . , 2a1 − 1} and 91, . . . , 9a2 ∈ {0, 1}.
The query consists of an encoding of the vector (8, 91, . . . , 9a2), which we can pack into a single scalar Regev
ciphertext using the Angel et al. [ACLS18] technique.

• Query expansion: Upon receiving the client’s query, the server expands the query ciphertext as follows:

– Initial expansion: The server starts by applying the expansion technique from [ACLS18] to expand the
query into a collection of (scalar) Regev ciphertexts that encode the queried index (8, 91, . . . , 9a2). This
yields two collections of Regev ciphertexts, which we will denote by CReg and CGSW.

– First dimension expansion: Next, the server uses CReg to expand the ciphertexts into a collection of 2a1

matrix Regev ciphertexts that “indicate” index 8: namely, the 8th ciphertext is an encryption of 1 while the
remaining ciphertexts are encryptions of 0. We can view this collection of ciphertexts as an encryption
of the 8th basis vector. This step relies on a scalar-to-matrix algorithm ScalToMat that takes a Regev
ciphertext encrypting a bit ` ∈ {0, 1} and outputs a matrix Regev ciphertext that encrypts the matrix `I= ,
where I= is the =-by-= identity matrix. We describe this construction in Section 3.1.

– GSW ciphertext expansion: The server then uses CGSW to construct GSW encryptions of the indices
91, . . . , 9a2 ∈ {0, 1}. This step relies on a Regev-to-GSW translation algorithm RegevToGSW that we
describe in Section 3.2.

4

Query

Scalar
Regev

Coefficient
Expansion

ScalToMat

0

1

0

0

Matrix
Regev

×

Matrix
Plaintext Database

0 11

Matrix
GSW

1 00

0

1

0

0

1

I

I2

0

0

0

Scalar
Regev

Scalar
Regev

RegevToGSW

Matrix
Regev

Result

1 Query Expansion

2 First Dim.

Processing

3 Folding

Figure 1: Server processing for a single Spiral query. The parameter I here is a decomposition base and is used for
the translation between Regev ciphertexts and GSW ciphertexts. We refer to Section 3.2 for more details.

• Query processing: After expanding the query into matrix Regev encryptions of the first dimension and
GSW encryptions of the subsequent dimension, the server follows the Gentry-Halevi blueprint [GH19] and
homomorphically computes the response as follows:

– First dimension processing: First, it uses the matrix Regev encryptions of the 8th basis vector to project
the database onto the sub-database of records whose first index is 8 . This step only requires linear
homomorphisms since the database records are available in the clear while the query is encrypted. At the
end of this step, the server has matrix Regev encryptions of the projected database.

– Folding in subsequent dimensions: Next, the server uses the Regev-GSW external product to homo-
morphically multiply in the GSW ciphertexts encrypting the subsequent queries. Each GSW ciphertext
selects for one of two possible dimensions. Since each multiplication involves a “fresh” GSW ciphertext
derived from the original query, we can take advantage of the asymmetric noise growth property of
Regev-GSW multiplication. The result is a single matrix Regev ciphertext encrypting the desired record.

• Response decoding: At the conclusion of the above protocol, the server replies with a single matrix Regev
ciphertext encrypting the desired record.

We provide the full protocol description in Section 4 and a high-level illustration in Fig. 1.

SpiralPack: New trade-offs via response packing. Using matrix Regev ciphertexts for the bulk of the compu-
tation improves the rate of the protocol but does incur some computational overhead (from the need to operate on

5

matrices rather than scalars). The SpiralPack protocol is a variant of Spiral that allows the server to simultaneously
operate on scalar Regev ciphertexts while retaining the high rate benefits of using matrix Regev ciphertexts. In
particular, we show how to adapt our ciphertext translation techniques to pack multiple scalar Regev ciphertexts
into a single matrix Regev ciphertext. The server processing then operates on 1-dimensional ciphertexts, while the
response consists of =-dimensional ciphertexts. The main cost of this packing procedure is it requires a larger set of
public parameters. We describe the construction details in Section 4.1.

Automated parameter selection. Our design introduces multiple tunable parameters that allow us to explore
new trade-offs between server computation, query size, and response size. Since the overall server computation and
communication of our PIR protocol is a complex function of the underlying parameters of our scheme, we introduce
an automatic parameter selection procedure that takes as input a database configuration (i.e., number of records and
record size), and systematically searches through the space of possible parameters to minimize the server cost. A
similar approach was also used in the XPIR system [MBFK16]. We describe our parameter selection methodology in
Section 5.1. Our system allows choosing parameters that either minimizes the estimated cost of the protocol (based
on the costs associated with server computation and communication), or focuses solely on maximizing either the
server throughput or rate. The system also supports selecting parameters that satisfy a constraint on the query size
or the public parameter size. The parameter selection tool searches over candidate parameter sets for all of the Spiral
variants described in this paper and selects the system that best achieves the target objective.

Performance evaluation and trade-offs. Finally, we provide a complete implementation of Spiral and a detailed
experimental analysis and comparison with previous PIR protocols. We provide the full evaluation and accompanying
microbenchmarks in Section 5.3. We also estimate the concrete monetary costs of applying the Spiral family of
protocols to support several privacy-preserving applications. For instance, based on current cloud computing costs,
we show that SpiralStreamPack enables a user to privately stream a 2 GB movie from a library of 214 movies with a
server cost of $0.34, which is just 1.9× higher than the no-privacy baseline (where the client directly downloads the
movie of interest). This is a 9× reduction in cost compared to the previous state of the art, OnionPIR [MCR21].

2 Preliminaries

We write _ to denote the security parameter. For a positive integer = ∈ N, we write [=] to denote the set {1, . . . , =}.
For integers 0, 1 ∈ Z, we write [0, 1] to denote the set {0, 0 + 1, . . . , 1}. For a positive integer @ ∈ N, we write Z@
to denote the integers modulo @. We use bold uppercase letters to denote matrices (e.g., A,B) and bold lowercase
letters to denote vectors (e.g., u, v). We write poly(_) to denote a function that is $ (_2) for some 2 ∈ N and negl(_)
to denote a function that is > (_−2) for all 2 ∈ N. An algorithm is efficient if it runs in probabilistic polynomial time in
its input length. We say that two families of distributions D1 = {D1,_}_∈N and D2 = {D2,_}_∈N are computationally
indistinguishable if no efficient algorithm can distinguish them with non-negligible probability. We denote this by

writing D1
2≈ D2. We say a distribution D is �-bounded if Pr[|G | ≤ � : G ← D] = 1.

Discrete Gaussians and tail bounds. We recall the definition of the discrete Gaussian distribution and basic
facts about subgaussian distributions (see [Pei16] for more details). For a real value f > 0, the Gaussian function
df : R→ R+ with width f is the function df (G) := exp(−cG2/f2). The discrete Gaussian distribution �Z,f over Z
with mean 0 and width f is the distribution where

Pr[- = G : - ← �Z,f] =
df (G)∑
~∈Z df (~)

. (2.1)

Definition 2.1 (Subgaussian Random Variable). A real random variable - is subgaussian with parameter f if for
every C ≥ 0, Pr[|- | > C] ≤ 2 exp(−cC2/f2).

Fact 2.2 (Subgaussian Random Variables). Subgaussian random variables satisfy the following properties:

• If - is subgaussian with parameter f and 0 ∈ R, then 0- is subgaussian with parameter |0 | f .

6

• If-1, . . . , -< are independent subgaussian random variables with parameters f1, . . . , f< , respectively,
∑

8∈[<] -8

is subgaussian with parameter ‖2 ‖2 where 2 = (f1, . . . , f<).

Private information retrieval. We now recall the standard definition of a two-message single-server PIR proto-
col [KO97]. Like most lattice-based PIR schemes [ACLS18, GH19, PT20, AYA+21, ALP+21, MCR21], we allow for an
initial query-independent and database-independent setup protocol that outputs a query key qk (known to the client)
and a set of public parameters pp (known to both the client and the server). The same pp and qk can be reused by the
client and server for multiple queries, so we can amortize the cost of the setup phase over many PIR queries. Note
that we can also obtain a standard 2-message PIR protocol without setup by having the query algorithm generate qk
and pp and including pp as part of its query.

Definition 2.3 (Two-Message Single-Server PIR [KO97, adapted]). A two-message single-server private information
retrieval (PIR) scheme ΠPIR = (Setup,�ery,Answer, Extract) is a tuple of efficient algorithms with the following
properties:

• Setup(1_, 1#) → (pp, qk): On input the security parameter _ and a bound on the database size # , the setup
algorithm outputs a query key qk and a set of public parameters pp.

• �ery(qk, idx) → (st, q): On input the query key qk and an index idx, the query algorithm outputs a state st
and a query q.

• Answer(pp,D, q) → r: On input the public parameters pp, a database D = {31, . . . , 3# }, and a query q, the
answer algorithm outputs a response r.

• Extract(qk, st, r) → 38 : On input the query key qk, the state st, and a response r, the extract algorithm outputs
a database record 38 .

The algorithms should satisfy the following properties:

• Correctness: For all _ ∈ N, all polynomials # = # (_), ℓ = ℓ (_), and all databases D = {31, . . . , 3# } where
each 38 ∈ {0, 1}ℓ , and all indices idx ∈ [#],

Pr[Extract(qk, st, r) = 38] = 1,

where (pp, qk) ← Setup(1_, 1#), (st, q) ←�ery(qk, idx), and r← Answer(pp,D, q).

• Query privacy: For all polynomials # = # (_) and all efficient adversariesA, there exists a negligible function
negl(·) such that for all _ ∈ N, ����Pr

[
AO1 (qk, ·, ·) (1_, pp) = 1

]
− 1

2

���� = negl(_),

where (pp, qk) ← Setup(1_, 1#), 1 r← {0, 1}, and the oracle O1 (qk, idx0, idx1) outputs �ery(qk, idx1). This
definition captures reusability of pp and qk.

CPA-secure encoding. We also recall the notion of CPA security. While this notion is typically defined for
encryption schemes, we define it in the simpler setting of an encoding scheme (i.e., an encryption scheme without an
explicit decryption algorithm).

Definition 2.4 (CPA-Secure Encoding). A (secret-key) encoding scheme for a message spaceM is a pair of two
efficient algorithms (KeyGen, Encode) with the following properties:

• KeyGen(1_) → sk: On input the security parameter _ ∈ N, the key-generation algorithm outputs a secret
encoding key sk.

7

• Encode(sk,<) → 2< : On input the secret encoding key sk and a message< ∈ M, the encode algorithm outputs
an encoding 2< .

We say an encoding scheme is CPA-secure if for all efficient adversaries A, there exists a negligible function negl(·)
such that for all _ ∈ N, ����Pr

[
AO1 (sk, ·, ·) (1_) = 1

]
− 1

2

���� = negl(_), (2.2)

where sk← KeyGen(1_), 1 r← {0, 1}, and O1 (sk,<0,<1) outputs Encode(sk,<1). We say that the scheme is&-query
secure if Eq. (2.2) holds against all efficient adversaries making up to & queries.

Key-dependent message security. Like all FHE schemes that support key switching or bootstrapping [Gen09,
BV11, BGV12, Bra12, FV12, GHS12a, GSW13], we require CPA security to hold even given encodings of (certain)
functions of the secret key. We formally capture this using the following notion of key-dependent message (KDM)
security, adapted from [BRS02].

Definition 2.5 (Key-Dependent Message Security [BRS02, adapted]). Let Π = (KeyGen, Encode) be an encoding
scheme over a message spaceM. Let F be a set of efficiently-computable functions with output spaceM. We say
that Π satisfies F -key-dependent message security (F -KDM security) if for all efficient adversaries A, there exists a
negligible function negl(·) such that for all _ ∈ N,����Pr

[
AO1 (sk, ·) (1_) = 1

]
− 1

2

���� = negl(_),

where sk ← KeyGen(1_), 1 r← {0, 1}, and on input 5 ∈ F , oracle O1 samples A
r← M and responds with

Encode(sk8 , 5 (sk)) if 1 = 0 and Encode(sk8 , A) if 1 = 1.

2.1 Lattice-Based Homomorphic Encodings

Like previous lattice-based PIR protocols [MBFK16, ACLS18, GH19, ALP+21, MCR21, AYA+21], Spiral operates over
cyclotomic rings ' = Z[G]/(G3 + 1) where 3 is a power of two. For a positive integer @ ∈ N, we write '@ = '/@'. For
a polynomial 5 ∈ ', we write ‖ 5 ‖∞ to denote the ℓ∞ norm of the vector of coefficient of 5 over Z3 . We say that 5 ∈ '
is sampled from a subgaussian distribution with parameter f if the coefficients of 5 are sampled from independent
subgaussian distributions, each with parameter f . We write W' to denote the ring expansion constant associated with
the ring '. Namely, for all 5 , 6 ∈ ', we have that ‖ 5 6‖∞ ≤ W' ‖ 5 ‖∞ ‖6‖∞. When ' = Z[G]/(G3 + 1) is a power-of-two
cyclotomic ring, W' = 3 [DPSZ12]. When the coefficients of one of the polynomials 5 are sampled from a subgaussian
distribution and the coefficients of the other polynomial 6 are sampled from an independent �-bounded distribution,
then the distribution of coefficients in the product polynomial 5 6 ∈ ' is also subgaussian:

Lemma2.6 (Polynomials with Subgaussian Coefficients). Let' = Z[G]/(G3+1). Let 5 =
∑

8∈[0,3−1] 58G
8 be a polynomial

where each 58 is independently sampled from a subgaussian distribution with parameter f and 6 =
∑

8∈[0,3−1] 68G
8 be a

polynomial where each 68 is independently sampled from a �-bounded distribution. Let ℎ = 5 6 =
∑

8∈[0,3−1] ℎ8G
8 ∈ '.

Then, for all 8 ∈ [0, 3 − 1], the distribution of ℎ8 is subgaussian with parameter
√
3�f . In addition, if the polynomial 6

has at most : non-zero coefficients, where each non-zero coefficient is sampled from independent �-bounded distributions,

then the distribution of ℎ8 is subgaussian with parameter
√
:�f .

Proof. Over the ring ', we have that

ℎ8 =
∑

9,: : 9+:=8 mod 3

(−1)2 9,: 596: =

∑
9 ∈[0,3−1]

(−1)2
′
9 5968−9 mod 3 ,

for some 2 9,: , 2
′
9 ∈ {0, 1}. Let I 9 = 5968−9 mod 3 . By construction, I 9 is either 0 (if 68−9 mod 3 = 0) or subgaussian with

parameter �f . Since the 59 ’s and 6: ’s are sampled independently, the I 9 ’s are also independent. Thus, if 6 has :

non-zero coefficients, then each ℎ8 is subgaussian with parameter
√
:�f . The main statement corresponds to the case

: = 3 . �

8

Ring learning with errors. We now recall the ring learning with errors problem [LPR10]. We state the assumption
in normal form where the RLWE secret is sampled from the error distribution. Applebaum et al. [ACPS09] showed
that this version is as hard as the standard version of the RLWE assumption where the secret is sampled from the
uniform distribution.

Definition 2.7 (Ring Learning with Errors (RLWE) [LPR10, ACPS09]). Let _ be a security parameter, and let
' = Z[G]/(G3 + 1) where 3 = 3 (_) is a power of 2. Let< = <(_) be the number of samples, @ = @(_) be a ring
modulus, and j = j (_) be an error distribution over '@ . The decisional ring learning with errors (RLWE) assumption

RLWE3,<,@,j in Hermite normal form states that for a
r← '<@ , B ← j , e ← j< , and u

r← '<@ , the following two
distributions are computationally indistinguishable:

(a, Ba + e) and (a, u) .

Gadget matrices. In this work, we use gadget matrices with different bases [MP12]. Fix a dimension = ∈ N,
and a base I ∈ N. Let gTI = [1, I, I2, . . . , I⌊logI @⌋] ∈ 'C@ where C =

⌊
logI @

⌋
+ 1. We define the gadget matrix

G=,I = I= ⊗ gTI ∈ '=×<@ , where< = =C . We write g−1I : '@ → 'C@ to denote the function that expands the input into a

base-I representation where each digit is in the range [−I/2, I/2].3 We write G−1=,I : '
=
@ → '<@ to denote the function

that applies g−1I to each component of the input vector, and extend G−1=,I to operate on matrices M by applying G−1=,I to
each column ofM.

Regev encoding scheme for matrices. Spiral uses the matrix version of Regev encryption over rings [Reg05,
PVW08, LPR10]. When describing our construction, it is more convenient to view Regev encryption as a noisy

encoding scheme over '@ , which does not support decryption for all encoded values. If we apply a redundant encoding
of a message (i.e., scaling the message as in standard Regev encryption) then it is possible to recover the encoded
value (see Definition 2.10 and Theorem 2.11).

Construction 2.8 (Matrix Regev Encoding [Reg05, PVW08, LPR10, adapted]). Let ' = Z[G]/(G3 + 1) where 3 = 3 (_)
is a power of two. Let = = =(_) be the dimension, j = j (_) be an error distribution over '@ , and @ = @(_) be the
encoding modulus. The matrix encoding scheme for matrices in '=×=@ is defined as follows:

• KeyGen(1_, 1=): On input the security parameter _ and the message dimension =, sample s̃← j= and output

S = [−s̃ | I=]T ∈ ' (=+1)×=@ .

• Encode(S,M): On input the secret key S = [−s̃ | I=]T and a matrix M ∈ '=×=@ , sample a
r← '=@ , E← j=×= and

output the encoding4

C =

[
aT

s̃aT + E

]
+
[
01×=

M

]
∈ ' (=+1)×=@ .

In addition, we define the following homomorphic operations supported by the Regev encoding scheme:

• Add(C1,C2): On input two encodings C1,C2 ∈ ' (=+1)×=@ , output C1 + C2 ∈ ' (=+1)×=@ .

• ScalarMul(C,T): On input an encoding C ∈ ' (=+1)×=@ and a matrix T ∈ '=×=@ , output CT ∈ ' (=+1)×=@ .

Definition 2.9 (Regev Encoding Structure). Let S ∈ ' (=+1)×=@ be a Regev secret key. We say that C ∈ ' (=+1)×=@ is a

Regev encoding of M ∈ '=×=@ with error E ∈ '=×= if STC = M + E. Note that an encoding C can be associated with
many possible message/error pairs (M, E).
3One way to obtain this representation is to first write the input in the standard base-I representation, and then observe that we can always

rewrite : · I8 as I8+1 − (I −:)I8 . At least one of : and I −: will be in the interval [−I/2, I/2]. In our settings, 2@ < I ⌊logI @⌋+1, so this approach
does not increase the dimension of the decomposition.

4We can alternatively define Encode to encode a single vector in '=
@ . In this case, we sample 0

r← '@ and e ← j= and output an encoding

c ∈ '=+1
@ . Then, an encoding of a matrix M ∈ '=×=

@ is just the concatenation of = independent encodings, one for each column of M. In this way,

we can generalize this encoding algorithm to encode messages in '=×:
@ for arbitrary : . Our key-switching matrices in Section 3 will rely on

encoding rectangular matrices.

9

Definition 2.10 (Regev Decoding). Let ? = ? (_) be a plaintext modulus. We define the following decoding algorithm:

• Decode(Z): On input Z ∈ '=×=@ , output ⌊?/@ · Z⌉, where ⌊·⌉ denotes rounding to the nearest integer. Both the
scaling and rounding are performed over the rationals.

Theorem 2.11 (Decoding Correctness). Suppose Z = ⌊@/?⌋ · M + E ∈ '=×=@ where M ∈ '=×=? and E ∈ '=×=@ . If

‖E‖∞ + (@ mod ?) < @/2? , then Decode(Z) = M.

Proof. Since ‖M‖∞ < ? and ‖E‖∞ < @/2? , the relation Z = ⌊@/?⌋ ·M + E holds over ' (not just '@). Then, over the
rationals,

?

@
· Z =

?

@

(⌊
@

?

⌋
M + E

)
= M − @ mod ?

@
M + ?

@
E

︸ ︷︷ ︸
E′

.

since ⌊@/?⌋ = @/? − (@ mod ?)/? . Since ‖M‖∞ < ? ,

‖E′‖∞ =

?@ E − @ mod ?

@
M

∞
<

?

@
(‖E‖∞ + (@ mod ?)) < 1

2
.

Since ‖E′‖∞ < 1/2, we have that ⌊?/@ · Z⌉ = ⌊M + E′⌉ = M. �

Theorem 2.12 (Homomorphic Operations for Matrix Encodings). Let ' = Z[G]/(G3 + 1) where 3 is a power of two.

Suppose that C1,C2 ∈ '
(=+1)×=
@ are Regev encodings of M1,M2 ∈ '=×=@ under S ∈ '

(=+1)×=
@ with errors E1, E2 ∈ '=×= ,

respectively. Then, the following hold:

• Addition: Let C← Add(C1,C2). Then, C is an encoding ofM1 +M2 with error E where ‖E‖∞ ≤ ‖E1‖∞ + ‖E2‖∞.
If E1 and E2 are independent and subgaussian with parameters f1 and f2, respectively, then E is subgaussian with

parameter f =

√
f2
1 + f2

2 .

• Scalar multiplication: Take any T ∈ '=×=@ and let C ← ScalarMul(C1,T). Then, C is an encoding of M1T ∈
'=×=@ with error E where ‖E‖∞ = ‖E1T‖∞ ≤ 3= ‖T‖∞ ‖E1‖∞. If E1 is subgaussian with parameter f1, then E is

subgaussian with parameter f =

√
=3 ‖T‖∞ f1.

Moreover, if every element of T is a monomial (i.e., an element of the form C8 9 ·GD for some C8 9 ∈ Z@ and D ∈ Z), then
‖E‖∞ ≤ = ‖T‖∞ ‖E1‖∞. Likewise, if E1 is subgaussian with parameter f1, then E is subgaussian with parameter√
= ‖T‖∞ f1.

Proof. By definition, STC8 = M8 + E8 for 8 ∈ {1, 2}. We analyze each operation individually:

• Addition: By definition, C = C1 +C2. Then, S
TC = (M1 +M2) + (E1 + E2), so C is an encoding ofM1 +M2 with

error E1 + E2.

• Scalar multiplication: By definition, C = C1T so STC = M1T+E1T. Thus, C is an encoding ofM1T with error
E1T. The claim (and the special case) follow from Lemma 2.6. �

Theorem 2.13 (CPA Security [Reg05, PVW08, LPR10]). Fix a security parameter _ and take any polynomial& = & (_).
Let ' = Z[G]/(G3 + 1) where 3 = 3 (_) is a power of two. Let = = =(_), j = j (_), and @ = @(_) be scheme parameters.

Then, under the RLWE3,=&,@,j assumption, the Regev encoding scheme (Construction 2.8) is &-query CPA-secure.

GSW encoding scheme. We now describe the encryption scheme of Gentry, Sahai, and Waters [GSW13]. Since
we do not require the ability to decrypt ciphertexts, we again present it as an encoding scheme. We refer to [GSW13]
for details on how to implement decryption.

Construction 2.14 (GSW Encoding [GSW13]). Let ' = Z[G]/(G3 +1) where 3 = 3 (_) is a power of two. Let = = =(_)
be the dimension and @ = @(_) be the encoding modulus. Let I ∈ N be a decomposition base, let C =

⌊
logI @

⌋
+ 1 and

let< = (= + 1)C . The GSW encoding scheme for messages in '@ is defined as follows:

10

• KeyGen(1_): Sample s̃← j= and output S = [−s̃ | I=]T ∈ ' (=+1)×=@ .

• Encode(S, `): On input a secret key S = [−s̃ | I=]T and a message ` ∈ '@ , sample a
r← '<@ , E ← j=×< and

output the encoding

C =

[
aT

s̃aT + E

]
+ ` · G=+1,I ∈ ' (=+1)×<@

Definition 2.15 (GSW Encoding Error). Let I ∈ N be a decomposition base, C =
⌊
logI @

⌋
+ 1, and< = (= + 1)C . Let

S ∈ ' (=+1)×=@ be a GSW secret key. We say that C ∈ ' (=+1)×<@ is a GSW encoding of ` ∈ '? with error E ∈ '=×<@ if

STC = `STG=+1,I + E.

Remark 2.16 (Complementing GSW Encodings). If C ∈ ' (=+1)×<@ is a GSW encoding of a bit 1 ∈ {0, 1} with respect to
error E and a decomposition base I, then we define Complement(C) := G=+1,I −C. By construction, Complement(C)
is a GSW encoding of 1 − 1 ∈ {0, 1} with error −E.

Theorem 2.17 (CPA Security [GSW13]). Fix a security parameter _ and take any polynomial & = & (_). Let ' =

Z[G]/(G3 + 1) where 3 = 3 (_) is a power of two. Let = = =(_), j = j (_), and @ = @(_) be scheme parameters. Under the

RLWE3,<&,@,j assumption, the GSW encoding scheme (Construction 2.14) is &-query CPA-secure.

Independence heuristic. When choosing lattice parameters for homomorphic encryption, there is often a large
amount of slack between the noise level observed in practice compared to those predicted by a worst-case noise
analysis. To obtain better concrete efficiency, a common heuristic is to appeal to an independence heuristic and model
the noise components that arise in homomorphic operations as independent subgaussian variables. We describe this
heuristic in the following remark:

Remark 2.18 (Independence Heuristic). Similar to existing lattice-based PIR constructions [ACLS18, GH19, MCR21]
and other systems based on homomorphic encryption [GHS12b, CGGI18, MCR21], we model the noise components
introduced by key switching and other homomorphic operations as independent subgaussian variables instead of
bounding the noise magnitude with a worst-case bound when setting concrete parameters. This allows us to bound
the variance of the noise vector (i.e., f2 where f is the subgaussian width parameter associated with the noise) rather
than the ℓ∞ norm of the noise vector. Since the variance is additive for independent subgaussian variables, bounding
the variance typically yields a square root improvement to some of the noise components compared to the worst-case
bounds. In our theorem statements, we provide both a worst-case characterization of the noise as well as a bound on
the noise variance under an independence assumption.

When setting concrete parameters (Section 5.1), we use the bounds obtained under the independence heuristic.
Importantly, we only consider parameter sets that provide the target level of security, and select among these the
smallest set that achieves a target level of correctness (estimated under the independence heuristic). The use of the
independence heuristic does not lead to selecting parameter sets that provide lower security, only parameter sets that
increase the probability of a correctness error. In Section 5.3, we empirically compare the actual noise magnitude in
our encodings with those predicted by our noise model under the independence heuristic. The empiric results indicate
that even with the independence heuristic, there still remains several bits of slack between the predicted noise level
and that observed in practice. In these cases, there is no degradation in the correctness or security of the protocol.

Regev-GSWhomomorphism. A critical homomorphismwe rely on in our construction (and also used in a number
of recent works [CGGI18, CCR19, GH19, CGGI20, PT20, MCR21]) is the ability to multiply a Regev encoding with a
GSW encoding when the two encodings are encoded with respect to the same key. We describe this multiplication
operation (sometimes called an “external product” [CGGI18, CCR19, CGGI20, MCR21]) below:

• Multiply(CGSW,CRegev): On input a GSW encoding CGSW ∈ '
(=+1)×<
@ with decomposition base I ∈ N and

< = (= + 1) (⌊logI @⌋ + 1) and a Regev encoding CRegev ∈ ' (=+1)×=@ , output CGSWG−1=+1,I (CRegev).

Theorem 2.19 (Regev-GSW Homomorphic Multiplication). Let S = [−s̃ | I=]T ∈ ' (=+1)×=@ be a secret key. Suppose

CGSW and CRegev are encodings under S with the following properties:

11

• Suppose CGSW ∈ '
(=+1)×=
@ is a GSW encoding of a message ` ∈ '? with decomposition base I ∈ N and error

EGSW ∈ '=×<@ where< = (= + 1) (⌊logI @⌋ + 1).

• Suppose CRegev ∈ ' (=+1)×=@ is a Regev encoding of M ∈ '=×=@ with error ERegev ∈ '=×=@ .

Let C← Multiply(CGSW,CRegev). Then, C is a Regev encoding of `M ∈ '@ with error E where the following hold:

• ‖E‖∞ ≤ 3 ‖`‖∞

ERegev

∞+<3 ‖EGSW‖∞ I/2. If ` is amonomial, then ‖E‖∞ ≤ ‖`‖∞

ERegev

∞+<3 ‖EGSW‖∞ I/2.

• If the components of EGSW and ERegev are subgaussian with parameters fGSW and fRegev, respectively, then

under the independence heuristic (Remark 2.18), the components of E are subgaussian with parameter f where

f2
= 3 ‖`‖2∞ f2

Regev +<3I2f2
GSW/4 (and f2

= ‖`‖2∞ f2
Regev +<3I2f2

GSW/4 if ` is a monomial).

Proof. By definition, STCGSW = `STG=+1,I + EGSW and STCRegev = M + ERegev. Then,

STC = STCGSWG−1=+1,I (CRegev)
= `STCRegev + EGSWG−1=+1,I (CRegev)
= `M + `ERegev + EGSWG−1=+1,I (CRegev) .

This is a Regev encoding of `M with error E = `ERegev + EGSWG−1=+1,I (CRegev). Thus,

‖E‖∞ ≤ 3 ‖`‖∞

ERegev

∞ +<3 ‖EGSW‖∞ I/2.

When ` is a monomial (and' = Z[G]/(G3+1)), then

`ERegev

∞ = ‖`‖∞

ERegev

∞. For the case where EGSW and ERegev

are subgaussian, by Lemma 2.6, we have that `ERegev is subgaussian with parameter
√
3 ‖`‖∞ fRegev (and ‖`‖∞ fRegev

when ` is a monomial). Assuming independence of EGSW and CRegev, the components of EGSWG−1=+1,I (CRegev) is
subgaussian with parameter

√
<3fGSWI/2. The claim now follows by appealing to the independence heuristic. �

3 Encoding Compression and Translation

Similar to previous PIR protocols based on homomorphic encryption, we view our database as a hypercube. A PIR
query consists of a collection of encodings encrypting 0/1 indicator vectors that select for the desired index along each
dimension (see Section 1.1). A naïve implementation would require at least one encoding for each dimension of the
hypercube in the query. Previously, Angel et al. [ACLS18] and Chen et al. [CCR19] introduced a query compression
algorithm to pack the ciphertexts for the different dimensions into a single RLWE ciphertext (specifically, a BFV
ciphertext [Bra12, FV12]).

To achieve higher rate and reduce noise growth, Spiral follows the Gentry-Halevi approach [GH19] of encoding
the index along the first dimension using a matrix Regev encoding and the subsequent dimensions using GSW
encodings (see Section 4). In this section, we introduce new building blocks to enable an analogous query compression
approach as [ACLS18, CCR19] that allows us to compress the query encodings into a single Regev encoding of a scalar.
Using our transformations, a PIR query in Spiral consists of a single RLWE ciphertext, which precisely matches
schemes like SealPIR [ACLS18] or OnionPIR [MCR21]. However, due to better control of noise growth, Spiral can be
instantiated with smaller lattice parameters, thus resulting in smaller queries (see Section 5.3). Our approach relies on
four main ingredients which we describe in this section:

• In Section 3.1, we show how to expand a Regev encoding of a scalar ` ∈ '@ into a matrix Regev encoding of `I=
for any = > 1. In the Spiral protocol, this is used to obtain the matrix Regev encoding of the query index along
the first database dimension.

• In Section 3.2, we show how to take Regev encodings of the components of ` · gI to obtain a GSW encoding of
` with respect to the gadget matrix G=+1,I for any = ≥ 1 (Section 3.2). In the Spiral protocol, this is used to
derive the GSW encodings of the query index along the subsequent dimensions of the database.

12

• To compress the query itself, we rely on previous techniques [ACLS18, CCR19] to pack multiple Regev encodings
of scalars into a single Regev encoding (of a polynomial).

• Finally, after server processing, we apply modulus switching [BV11, BGV12] to the output Regev encoding
to reduce the encoding size. Here, we describe a simple variant of modulus switching that rescales the Regev
encoding by two different scaling factors to achieve a higher rate (Section 3.4). This is especially beneficial
when working with matrix Regev encodings.

We believe that our transformations are also useful in other settings that combine Regev and GSW encodings. Overall,
they allow us to take advantage of the high rate of matrix-Regev encodings and the slower (asymmetric) noise growth
of GSW homomorphic operations, but without needing to communicate low-rate GSW encodings.

The scalar-to-matrix and Regev-to-GSW transformations we develop here are very similar to “key switching”
transformations used in FHE [BV11, BGV12]. Much like key switching in FHE, the client needs to publish additional key-
switching components (as part of the public parameters of the PIR scheme). The key-switching matrices are essentially
encryptions of the secret key for the encoding scheme, so security relies on a key-dependent message security
assumption (e.g., a circular security assumption). We note that previous query expansion algorithms [ACLS18, CCR19]
also require publishing key-switching matrices (to support automorphisms), which also necessitate making a circular
security assumption.

3.1 Expanding a Scalar Regev Encoding to a Matrix Regev Encoding

First, we describe a method to expand a Regev encoding of a scalar ` ∈ '@ into a matrix Regev encoding of `I= ∈ '=×=@ .
The conversion procedure consists of a setup algorithm that samples a conversion key (i.e., a key-switching matrix):

• ScalToMatSetup(s0, S1, I): On input the source key s0 = [−B̃0 | 1]T ∈ '2
@ , the target key S1 = [−s̃1 | I=]T ∈

'
(=+1)×=
@ , and a decomposition base I ∈ N, sample a

r← '<@ and E← j=×< , where< = =(⌊logI @⌋ + 1). Then,
output the key

W =

[
aT

s̃1a
T + E

]
+
[

01×<

−B̃0 · G=,I

]
∈ ' (=+1)×<@ .

• ScalToMat(W, c): On input a key W ∈ '
(=+1)×<
@ and an encoding c = (20, 21) ∈ '2

@ , output WG−1=,I (20I=) +
[0= | 21I=]T.

Theorem 3.1 (Scalar to Matrix Conversion). Let c = (20, 21) be a Regev encoding of a scalar ` ∈ '@ with respect to a

secret key s0 = [−B̃0 | 1]T ∈ '2×1
@ and error 4 . Take any secret key S1 = [−s̃1 | I=]T ∈ ' (=+1)×=@ and decomposition base

I ∈ N. Let C =

⌊
logI @

⌋
+ 1 and< = =C . Let W ← ScalToMatSetup(s0, S1, I), C ← ScalToMat(W, c). Then, C is a

Regev encoding of `I= under S1 and error E where E satisfy the following properties:

• If j in ScalToMatSetup is �-bounded, then ‖E‖∞ ≤ ‖4 ‖∞ + 3C�I/2; and

• If 4 is subgaussian with parameter f4 and j is subgaussian with parameter fj , then under the independence

heuristic, the components of E are subgaussian with parameter f� where f2
�
= f2

4 + 3CI2f2
j/4.

Proof. By definition, sT0c = ` + 4 and

W =

[
aT

s̃1a
T + Ẽ

]
+
[

01×<

−B̃0 · G=,I

]
∈ ' (=+1)×<@ ,

where Ẽ← j=×< and for some a ∈ '<@ . Then,

ST1C1 = ST1WG−1=,I (20I=) + ST1
[
01×=

21I=

]
= ẼG−1=,I (20I=) − B̃020I= + 21I=

= ẼG−1=,I (20I=) + I= (sT0c)
= `I= + 4I= + ẼG−1=,I (20I=).

13

Thus, C is an encoding of `I= with error E = 4I= + ẼG−1=,I (20I=). For the case where j is �-bounded, then the entries of

Ẽ are �-bounded, so ‖ẼG−1=,I (20I=)‖∞ ≤ W'C�I/2 = 3C�I/2,5 and the claim follows. When the components of 4 and Ẽ

are independent subgaussians, and appealing also to the independence heuristic, then the components of E are also
subgaussian with parameter f� where f2

�
= f2

4 + 3CI2f2
j/4. �

3.2 Converting Regev Encodings into GSW Encodings

Next, we describe an approach to construct a GSW encoding of a message ` ∈ '@ (with decomposition base IGSW)

from a collection of scalar Regev encodings of `gIGSW = [`, ` · IGSW, . . . , ` · ICGSW−1GSW
] where CGSW = ⌊logIGSW @⌋ + 1.

Chen et al. [CCR19] previously showed an approach for the special case where = = 1 that builds up the GSW ciphertext
row by row using homomorphic multiplications. It is not clear how to extend this approach to higher dimensions
(e.g., to allow homomorphic multiplication with matrix Regev encodings). Here, we describe a general transformation
for arbitrary =.

To have finer control over noise growth, we introduce an additional decomposition base Iconv used for the
conversion algorithm. The decomposition base Iconv for conversion does not have to match the decomposition base
IGSW for the GSW encoding. As we show in Theorem 3.2, the noise introduced by the encoding conversion step
depends only on the decomposition base Iconv and not on the decomposition base IGSW associated with the GSW
encodings. This will enable more flexibility in parameter selection (see Section 5.1) and better concrete efficiency.

• RegevToGSWSetup(sRegev, SGSW, IGSW, Iconv): On input the Regev secret key sRegev = [−B̃Regev | 1]T ∈ '2
@ , the

GSW secret key SGSW = [−s̃GSW | I=]T ∈ ' (=+1)×=@ , and decomposition bases IGSW, Iconv ∈ N, proceed as follows:

– Define CGSW =

⌊
logIGSW @

⌋
+ 1, Cconv =

⌊
logIconv @

⌋
+ 1, and<GSW = (= + 1)CGSW.

– Sample W← ScalToMatSetup(sRegev, SGSW, Iconv).

– Sample a
r← '2Cconv

@ and E← j=×2Cconv and construct the matrix

V =

[
aT

s̃GSWaT + E

]
+
[

01×2Cconv

−s̃GSW · (sTRegev ⊗ gTIconv)

]
∈ ' (=+1)×2Cconv@ . (3.1)

– Define the permutation matrix � ∈ {0, 1}<GSW×<GSW such that[
gTIGSW 01×=CGSW

0=×CGSW gTIGSW ⊗ I=

]
� =

[
gTIGSW 01×=CGSW

0=×CGSW I= ⊗ gTIGSW

]
= G=+1,IGSW ∈ '

(=+1)×<GSW
@ .

Output the conversion key ck = (V,W,�).

• RegevToGSW(ck, c1, . . . , cCGSW): On input the conversion key ck = (V,W,�) and Regev encodings c1, . . . , cCGSW ∈
'2
@ , compute C8 ← ScalToMat(W, c8) for each 8 ∈ [CGSW]. Then, output

C = [Vg−1Iconv (Ĉ) | C1 | · · · | CCGSW] · �

where Ĉ = [c1 | · · · | cCGSW] ∈ '
2×CGSW
@ .

Theorem 3.2. Fix decomposition bases IGSW, Iconv ∈ N. Let CGSW = ⌊logIGSW @⌋ + 1 and Cconv = ⌊logIconv @⌋ + 1. Let
c1, . . . , cCGSW be Regev encodings of `, `IGSW, . . . , `I

CGSW−1
GSW

∈ '@ with errors 41, . . . , 4CGSW ∈ '@ , respectively. Take any secret
key SGSW = [−s̃GSW | I=]T and let ck← RegevToGSW(sRegev, SGSW, IGSW, Iconv), C← RegevToGSW(ck, c1, . . . , cCGSW).
Then, C is a GSW encoding of ` with respect to secret key S, decomposition base IGSW, and error E where E satisfies the

following properties:

• If the noise distribution j in ScalToMatSetup, RegevToGSWSetup is �-bounded,6 then ‖E‖∞ ≤ 34max ‖s̃GSW‖∞ +
3Cconv�Iconv where 4max = max8∈[CGSW] ‖48 ‖∞.

5In particular, note that each column of G−1=,I (20I=) only contains at most C non-zero entries.
6While we could use different error distributions j for ScalToMatSetup and RegevToGSWSetup, this level of generality is unnecessary in this work.
We present the analysis for the setting where the same error distribution is used for both the ScalToMat and the RegevToGSW transformations.

14

• If the noise distribution j in ScalToMatSetup and RegevToGSWSetup is subgaussian with parameter fj , and

the errors 41, . . . , 4C are subgaussian with parameter f4 , then under the independence heuristic (Remark 2.18), the

components of E are subgaussian with parameter f where f2
= 3f2

4 ‖s̃GSW‖2∞ + 3Cconvf2
jI

2
conv/2.

Proof. First, ck = (V,W,�), where W ← ScalToMatSetup(sRegev, SGSW, Iconv) and V is given in Eq. (3.1). Let

Ĉ = [c1 | · · · | cCGSW] and ê = [41 | · · · | 4CGSW]T. By definition, C = [Vg−1Iconv (Ĉ) | C1 | · · · | CCGSW] · �, where

C8 ← ScalToMat(W, c8) for each 8 ∈ [CGSW]. We now consider the components of ST
GSW

C:

• By definition sT
Regev

Ĉ = `gTIGSW + ê
T. Now, by definition of V from Eq. (3.1),

STGSWVg−1Iconv (Ĉ) = E+ g
−1
Iconv
(Ĉ) − s̃GSWsTRegevĈ = E+ g

−1
Iconv
(Ĉ) − s̃GSW (`gTIGSW + ê

T),

for some E+ ← j=×2Cconv .

• By Theorem 3.1, for 8 ∈ [CGSW], we have STGSWC8 = I8−1
GSW
· `I= + E8 . Letting Ẽ = [E1 | · · · | ECGSW], we can then

write
STGSW [C1 | · · · | CCGSW] = `gTIGSW ⊗ I= + Ẽ.

Let Ẽ′ = [E+ g−1Iconv (Ĉ) − s̃GSWêT | Ẽ] · � ∈ '=×<GSW
@ . Now, putting everything together, we can write

STGSWC =

[
−`s̃GSWgTIGSW | `g

T
IGSW
⊗ I=

]
� + Ẽ′ = ` [−s̃GSW | I=]

[
gTIGSW 01×=CGSW

0=×CGSW gTIGSW ⊗ I=

]
� + Ẽ′

= `STGSWG=+1,IGSW + Ẽ′.

Thus, C is a GSW encoding of ` with error Ẽ′. We now bound the components of Ẽ′ as follows:

• Since j is �-bounded, by Theorem 3.1, ‖Ẽ‖∞ ≤ 4max+3Cconv�Iconv/2. Similarly, by Lemma 2.6, ‖E+ g−1Iconv (Ĉ)‖∞ ≤
2Cconv3�Iconv/2 = 3Cconv�Iconv.

• Next, ‖s̃GSWêT‖∞ ≤ 34max ‖s̃GSW‖∞.

• Finally, multiplying by a permutation matrix � does not change the error magnitude.

The overall error is thus bounded by

‖Ẽ′‖∞ ≤ max(4max + 3Cconv�Iconv/2, 34max ‖s̃GSW‖∞ + 3Cconv�Iconv)
= 34max ‖s̃GSW‖∞ + 3Cconv�Iconv .

For the subgaussian case, we have the following:

• By Theorem 3.1, the components of Ẽ are subgaussian with parameter f� where f2
�
= f2

4 + 3CconvI2convf2
j/2.

• By Lemma 2.6, the components of E+ g
−1
Iconv
(Ĉ) are subgaussian with parameter

√
2Cconv3fjIconv/2. Similarly,

the components of s̃GSWêT are subgaussian with parameter
√
3f4 ‖s̃GSW‖∞.

Under the independence heuristic, the components of Ẽ′ are thus subgaussian with parameter f where f2
=

max(f2
�
, Cconv3f

2
jI

2
conv/2 + 3f2

4 ‖s̃GSW‖2∞) = Cconv3f
2
jI

2
conv/2 + 3f2

4 ‖s̃GSW‖2∞. �

Remark 3.3 (Compressing GSW Encodings). The RegevToGSW algorithm takes CGSW Regev encodings (consisting
of 2 · CGSW elements of '@) and outputs a single GSW encoding with (= + 1)<GSW = (= + 1)2CGSW elements of '@ .
Thus, our Regev-to-GSW transformation can be viewed as a way to achieve a (= + 1)2/2 factor compression on GSW
encodings at the cost of a small amount of additional noise and needing to store a (large) conversion key ck. However,
ck can be generated in a separate offline phase and reused across multiple protocol invocations. This provides an
effective way to reduce the online communication costs of sending GSW encodings.

15

3.3 Coefficient Extraction on Regev Encodings

The next ingredient we require is the coefficient expansion algorithm by Angel et al. [ACLS18] and extended by
Chen et al. [CCR19]. The algorithm takes a polynomial 5 =

∑
8∈[0,2A−1] 58G

8 ∈ '@ as input and outputs a (scaled)

vector of coefficients 2A · (50, . . . , 52A−1) ∈ Z2
A

@ . This algorithm relies on the fact that we can homomorphically evaluate
automorphisms on Regev-encoded polynomials. We use the same approach from [ACLS18, CCR19], so we defer the
description to Appendix A.

3.4 Modulus Switching

Modulus switching [BV11, BGV12] reduces the size of Regev-based encodings by rescaling the encoding down into a
smaller ring while preserving the encoded message. This allows performing homomorphic operations over a larger
ring '@ (which accommodates more homomorphic operations) and then rescaling the final encoding (e.g., the PIR
response) to a smaller ring '@′ to obtain a more compact representation.

While previous approaches [BV11, BGV12, GHS12b, GH19] rescale all of the ciphertext components from '@ to '@′

for some @′ < @, we can achieve further compression by re-scaling some of the components of the Regev ciphertext
to one modulus @1 and the remaining components to a different modulus @2. Decoding then requires a modified
procedure (see Theorem 3.4). The advantage of this variant is that we can use a very small value of @1 (e.g., @1 = 4?)
and still ensure correctness. Importantly, the message-embedding components of the ciphertext (i.e., an =2/(=2 + =)
fraction of the ciphertext components) can be rescaled to the smaller modulus @1. This allows us to achieve a higher
rate when using larger plaintext dimensions =. With our modulus switching approach, we achieve a ciphertext rate of

rate =
plaintext size

ciphertext size
=

=2 log?

=2 log@1 + = log@2
.

This allows us to achieve considerably higher rates (e.g., up to 0.81 compared to a maximum of 0.34 if we were to
use a single modulus; see Section 5.3) while maintaining low computational costs. We now describe our variant of
the modulus switching procedure ModulusSwitch along with an encoding-recovery procedure Recover that takes a
rescaled encoding (ĉ1, Ĉ2) (as output byModulusSwitch) and the secret key S as input, and outputs an encoding Z

(over '@1) satisfying Z = ⌊@1/?⌋M + E′. If E′ is sufficiently small, we can recover M from Z using the procedure from
Definition 2.10. Both theModulusSwitch and Recover algorithms are parameterized by a pair of moduli @1, @2 ∈ N.

• ModulusSwitch@1,@2 (C): On input an encoding C =

[
cT1
C2

]
, where c1 ∈ '=@ and C2 ∈ '=×=@ , let ĉ1 = ⌊c1 · @2/@⌉ ∈

'=@2 and Ĉ2 = ⌊C2 · @1/@⌉ ∈ '=×=@1
. Both the division and rounding are performed over the rationals. Output

(ĉ1, Ĉ2)

• Recover@1,@2 (S, (ĉ1, Ĉ2)): On input the secret key S = [−s̃ | I=] ∈ '
=×(=+1)
@ , and an encoding (ĉ1, Ĉ2) where

ĉ1 ∈ '=@2 , and Ĉ2 ∈ '=×=@1
, compute Z =

⌊
(@1/@2) (−s̃ĉT1)

⌉
+ Ĉ2, and output Z mod @1.

Theorem 3.4 (Modulus Switching). Fix positive integers @ > @2 > @1 > ? . Let C ∈ ' (=+1)×=@ be a Regev encoding of

⌊@/?⌋M ∈ '=×=@ for somemessageM ∈ '=×= (with ‖M‖∞ ≤ ?/2) and with respect to a secret key S = [−s̃ | I=]T ∈ ' (=+1)×=@

and error E ∈ '=×=@ . Let (ĉ1, Ĉ2) ← ModulusSwitch@1,@2 (C) and Z← Recover@1,@2 (S, (ĉ1, Ĉ2)). Then, Z = ⌊@1/?⌋M+E′
(mod @1), where E′ = E′1 + E′2 and

E′1

∞ ≤ 1

2

(
2 + (@1 mod ?) + @1

@
(@ mod ?)

)
and

E′2

∞ ≤ @1

@
‖E‖∞ +

@1

2@2
3 ‖s̃‖∞ .

When the components of E are subgaussian with parameter f4 and the components of s̃ are subgaussian with parameter

fB , then under the independence heuristic (Remark 2.18), the components of E′2 are subgaussian with parameter f =√
(@1/@)2f2

4 + (@1/@2)2f2
B3/4.

16

Proof. Write C as C =

[
cT1
C2

]
, where c1 ∈ '=@ and C2 ∈ '=×=@ . Let : = ⌊@/?⌋ = (@ − @ mod ?)/? . By definition,

STC = : ·M + E (mod @), so we can write STC = −s̃cT1 + C2 = : ·M + E + @D ∈ '=×= for some D ∈ '=×= . Over the
rationals, we can write ĉ1 = (@2/@)c1 + e1, Ĉ2 = (@1/@)C2 + E2, and Z = (@1/@2) (−s̃ĉT1) + Ĉ2 + e3, where the rounding
errors e1, E2, e3 satisfy ‖e1‖∞, ‖E2‖∞, ‖e3‖∞ ≤ 1/2. Again, working over the rationals,

Z = (@1/@2) (−s̃ĉT1) + Ĉ2 + e3
= (@1/@2)

(
(@2/@) (−s̃cT1) − s̃eT1

)
+ (@1/@)C2 + E2 + e3

= (@1/@) (−s̃cT1 + C2) − (@1/@2)s̃eT1 + E2 + e3
= (:@1/@)M + (@1/@)E − (@1/@2)s̃eT1 + E2 + e3 + @1D

=
@1

?
M − @1 (@ mod ?)

?@
M + @1

@
E − @1

@2
s̃eT1 + E2 + e3 + @1D

=

⌊
@1

?

⌋
M − @1 mod ?

?
M − @1 (@ mod ?)

?@
M + E2 + e3︸ ︷︷ ︸

E′1

+ @1
@
E − @1

@2
s̃eT1︸ ︷︷ ︸

E′2

(mod @1).

The bound now follows from the fact that ‖e1‖∞, ‖E2‖∞, ‖e3‖∞ < 1/2 and ‖M‖∞ ≤ ?/2. For the subgaussian case, we

apply the independence heuristic to conclude that the components of −s̃eT1 are subgaussian with parameter
√
3fB/2.

The claim now follows from the independence heuristic. �

4 The Spiral Protocol

The structure of the basic Spiral protocol follows recent constructions of PIR based on composing Regev-based
encryption with GSW encryption [GH19, MCR21]. The primary difference is that it uses the techniques from Section 3
for query compression. Very briefly, the database of # = 2a1+a2 records is arranged as a hypercube with dimensions
2a1 × 2 × 2 × · · · × 2. Processing the initial (large) dimension only requires scalar multiplication (since the database
is known in the clear) and is implemented using matrix Regev encodings. After processing the first dimension, the
server has a (2 × 2 × · · · × 2)-hypercube containing 2a2 matrix-Regev encodings. The client’s index for each of the
subsequent dimensions is encoded using GSW, so using a2 rounds of the Regev-GSW homomorphic multiplication,
the server can “fold” the remaining elements into a single matrix Regev encoding. We refer to Section 1.2 and Fig. 1
for a general overview.

Construction 4.1 (Spiral). Let _ be a security parameter, and ' = Z[G]/(G3 + 1) where 3 = 3 (_) is a power of two.
Let ? = ? (_) be the plaintext modulus and = = =(_) be the plaintext dimension.

Database structure. Each database record 38 is an element of '=×=? , where ‖38 ‖∞ ≤ ?/2. We represent a database
D = {31, . . . , 3# } of # = 2a1+a2 records as a (a2 + 1)-dimensional hypercube with dimensions 2a1 × 2 × 2 × · · · × 2.
In the following description, we index elements of D using either the tuple (8, 91, . . . , 9a2) where 8 ∈ [0, 2a1 − 1] and
91, . . . , 9a2 ∈ {0, 1}, or the tuple (8, 9) where 8 ∈ [0, 2a1 − 1] and 9 ∈ [0, 2a2 − 1].

Scheme parameters. A notable feature of our PIR is that it relies on several additional parameters that will be
helpful for enabling new communication/computation trade-offs:

• Let @ = @(_) be an encoding modulus (for the query) and @1 = @1 (_), @2 = @2 (_) be the smaller moduli associated
with the PIR response. We require that @ is odd.

• Let j = j (_) be an error distribution. We use the same error distribution for all sub-algorithms.

• Let Icoeff, Iconv, IGSW ∈ N be different decomposition bases that will be used for query expansion and homomor-
phic evaluation:

17

– Icoeff is the decomposition base for evaluating the automorphisms in the coefficient expansion algorithm
(Section 3.3 and Algorithm 1);

– Iconv is the decomposition base used to translate scalar Regev encodings into matrix Regev encodings
(Section 3.1); and

– IGSW is the decomposition base used in GSW encodings.

The decomposition bases are chosen to balance the server computational costs with the total communication
costs (see Section 5.1 for details on how we choose these parameters). For ease of notation, in the following, we

will write GGSW to denote the gadget matrix G=+1,IGSW ∈ '
(=+1)×<GSW
@ associated with GSW encodings, where

<GSW = (= + 1) · CGSW and CGSW =

⌊
logIGSW @

⌋
+ 1.

We now describe the PIR scheme below:

• Setup(1_, 1#): On input the security parameter _ and the database size # , the setup algorithm proceeds as
follows:

1. Key-generation: Sample two secret keys S← KeyGen(1_, 1=) and s← KeyGen(1_, 11) that are used for
response encoding and query encoding, respectively.

2. Regev-to-GSW conversion keys: Compute ck← RegevToGSWSetup(s, S, Iconv).
3. Automorphism keys: Let d = 1 + max(a1, ⌈log CGSWa2⌉). For each 8 ∈ [0, d − 1], compute W8 ←

AutomorphSetup(s, g2d−8+1, Icoeff).

Output the public parameters pp = (ck,W0, . . . ,Wd−1) and the querying key qk = (s, S).

• �ery(qk, idx): On input the querying key qk = (s, S) and an index idx = (8∗, 9∗1 , . . . , 9∗a2) where 8
∗ ∈ [0, 2a1 − 1]

and 9∗1 , . . . , 9
∗
a2
∈ {0, 1}, the query algorithm does the following:

1. Encoding the first dimension: Define the polynomial `8∗ (G) = ⌊@/?⌋ · G8
∗ ∈ '@ .

2. Encoding subsequent dimensions: Define the polynomial ` 9∗ =
∑

ℓ∈[a2] ` 9∗ℓ where for each ℓ ∈ [a2],

` 9∗ℓ (G) = 9∗ℓ
∑

:∈[CGSW]
(IGSW):−1G (ℓ−1)CGSW+: .

3. Query packing: Define the “packed” polynomial

` (G) := 2−A1`8∗ (G2) + 2−A2G` 9∗ (G2) ∈ '@, (4.1)

where A1 = 1 + a1 and A2 = 1 + ⌈log(CGSWa2)⌉.
4. Query encryption: Compute the encrypted query c ← Regev.Encode(s, `) ∈ '2

@ . Output the query
q = c and an empty query state st = ⊥.

• Answer(pp,D, q): On input the database D, the public parameters pp = (ck,W1, . . . ,Wd), and a query q = c,
the server response algorithm parses ck = (V,W,�) and proceeds as follows:

1. Query expansion: The server expands the query ciphertext c into 2a1 matrix Regev encodings (for the
first dimension) and a2 GSW encodings (for the subsequent dimensions) as follows:

(a) Initial expansion: Homomorphically evaluate a single iteration of the coefficient expansion algo-
rithm (Algorithm 1) on c. Let cReg, cGSW ∈ '2

@ be the output encodings.

(b) First dimension expansion: Continue homomorphic evaluation of Algorithm 1 for a1 additional

iterations on cReg to obtain encodings c
(Reg)
1 , . . . , c

(Reg)
2a1 ∈ '2

@ . For each 8 ∈ [0, 2a1 − 1], let C(Reg)8 ←
ScalToMat(W, c

(Reg)
8).

18

(c) GSW ciphertext expansion: Continue homomorphic evaluation of Algorithm 1 for ⌈log(CGSWa2)⌉
additional iterations on cGSW to obtain encodings c

(GSW)
1 , . . . , c

(GSW)
CGSWa2

∈ '2
@ . Discard any additional

encodings output by Algorithm 1 whenever CGSWa2 is not a power of two. For each 9 ∈ [a2], compute

C
(GSW)
9 ← RegevToGSW

(
ck, c

(GSW)
(9−1)CGSW+1, . . . , c

(GSW)
9CGSW

)
.

Note that the above invocations of Algorithm 1 will use the automorphism keys W0, . . . ,Wd−1.

2. Processing the first dimension: For every 9 ∈ [0, 2a2 − 1], the server does the following:
(a) Initialize C

(0)
9 ← ScalarMul

(
C
(Reg)
0 , 30, 9

)
.

(b) For each 8 ∈ [2a1 − 1], update C(0)9 ← Add
(
C
(0)
9 , ScalarMul

(
C
(Reg)
8 , 38, 9

))
.

3. Folding in the subsequent dimensions: For each A ∈ [a2], and each 9 ∈ [0, 2a2−A − 1], compute

C
(A)
9 = Add

(
Multiply

(
Complement(C(GSW)A),C(A−1)9

)
,Multiply

(
C
(GSW)
A ,C

(A−1)
2a2−A+9

))
, (4.2)

where the Complement operation is as defined in Remark 2.16.

4. Modulus switching: Output the rescaled response r← ModulusSwitch@1,@2 (C
(A)
0).

• Extract(qk, st, r): On input the query key qk = (s, S), an (empty) query state st, and the server response r, the
extraction algorithm first computes Z← Recover@1,@2 (S, r) ∈ '=×=@1

and outputs C← Decode(Z) ∈ '=×=? .

Remark 4.2 (Plaintext Dimension = = 1). For the particular case where the plaintext dimension = satisfies = = 1 in
Construction 4.1, we can simplify the protocol by taking the query encoding key s0 to be the same as the response
encoding key s1. By setting s0 = s1, we no longer need to apply the scalar-to-matrix translation ScalToMat from s0
to s1 when expanding the first dimension. While the base version of Spiral always considers plaintext dimensions
= > 1 to achieve higher rates and throughput (see Section 5), the = = 1 case is useful when combined with a “packing”
approach we describe in Section 4.1.

Remark 4.3 (Decomposition Bases in Query Expansion). As noted in Remark A.5, we can reduce noise growth
from the expansion steps in Steps 1b and 1c of the Answer algorithm by using different decomposition bases. Since
2a1 ≫ CGSWa2 in all of the scenarios we consider, we opt to use a larger decomposition base to expand the Regev
encodings for processing the first dimension and a smaller decomposition base to expand the GSW encodings for the
folding steps. Using a larger decomposition base enables a faster expansion algorithm but adds more noise to the
output encoding. We denote these expansion bases by Icoeff,Reg and Icoeff,GSW.

Remark 4.4 (Query Size Trade-off and the SpiralStream Protocol). To reduce noise growth in Construction 4.1, the

client can directly upload the Regev encodings c
(Reg)
8 and c

(GSW)
9 for 8 ∈ [2a1] and 9 ∈ [CGSWa2] as part of its query

rather than compress them into a single encoding. This yields larger queries, but eliminates the noise growth from
query expansion. As we discuss in Section 5, this setting is appealing for streaming scenarios where the same query
is reused for a large number of consecutive requests. Note that it still remains advantageous to use our Regev-to-GSW
transformation (Section 3.2 and Remark 3.3) rather than send GSW encodings directly. This is because GSW encodings
are much larger than Regev encodings and the expansion process is fast and only introduces a small amount of noise.
We refer to this variant of Spiral as SpiralStream.

Correctness and security analysis. We now state the formal correctness and security theorems for Construc-
tion 4.1, but defer their formal proofs to Appendix B.

Theorem 4.5 (Correctness). Let ' = Z[G]/(G3 +1) where 3 = 3 (_) is a power of two. Let ? be the plaintext modulus and

= be the message dimension. Take any database D with up to # = 2a1+a2 records from '=×=? , and arranged as a (a2 + 1)-
dimensional hypercube as described in Construction 4.1. Let I = max(Icoeff, Iconv, IGSW) be the largest decomposition

base. Then, if j is �-bounded and @ = Ω
(
32=?�I log@(22a1? + a22�3I log

2 @)
)
, @2 = Ω(3�?), and @1 = Ω(?2), then

Construction 4.1 is correct.7

7For this setting of parameters, correctness holds without needing to appeal to the independence heuristic (Remark 2.18).

19

Theorem 4.6 (Security). Let Faff and Fauto be the following family of functions over '@ :

• Let Faff be the family of affine functions on '
(=+1)×=
@ .

• Let Fauto = {A ↦→ : · gℓ (A) | : ∈ Z, ℓ ∈ Z} be the family of scaled automorphisms over '@ , where for an integer

ℓ ∈ Z, gℓ : '@ → '@ is the ring automorphism A (G) ↦→ A (G ℓ).

Suppose the Regev encoding scheme with message space '=@ is Faff-KDM-secure and the Regev encoding scheme with

message space '@ is Fauto-KDM-secure. Then Construction 4.1 satisfies query privacy.

4.1 SpiralPack: Higher Rate via Encoding Packing

In this section, we describe a variant of Spiral (called SpiralPack) that enables a higher rate and a higher throughput
(for large records) at the expense of larger public parameters. As we discuss in greater detail in Section 5.1, the
plaintext dimension = in Spiral directly affects the rate and the throughput. A larger value of = yields a higher rate
(i.e., the rate scales with =2/(=2 + =)). However, the cost of processing the first dimension scales quadratically with =.

Here, we describe an encoding packing approach that allows us to enjoy the “best of both worlds.” At a high level,
our approach takes =2 Regev encodings of scalars and packs them into a single matrix Regev encoding of an = × =
matrix. To leverage this to achieve higher rate, we modify Spiral as follows:

• Break each record in the database into =2 blocks of equal length. This yields a collection of =2 different databases,
where the 8th database contains the 8th block of each record. To process a query, the server applies the query to
each of the =2 databases.

• The query consists of packed Regev encodings of scalar values (i.e., 1-dimensional values). As noted above, this
minimizes the server’s computational cost when processing the first dimension.

• After applying the query to each of the =2 databases, the server has =2 Regev encodings of scalars. Transmitting
these back to the client would yield a protocol with a low rate (at best, the rate is 1/2, and typically, it is much
lower). Instead, the server now applies a “packing” technique to pack the =2 Regev encodings into a single = ×=
matrix Regev encoding. The rate now scales with =2/(=2 + =) > 1/2 whenever = > 1.

The packing transformation used here requires publishing an additional set of translation matrices in the public
parameters. Thus, this approach provides a trade-off between the size of the public parameters and the online costs of
the protocol (measured in terms of server throughput and rate). Since the public parameters can be reused over many
queries, SpiralPack is better-suited for settings where a client will perform many database queries and the server is
able to store the client’s public parameters.

We note that our encoding packing approach is different from and incomparable to the message packing technique
from [ACLS18, CCR19] described in Section 3.3. Our encoding packing technique packs scalar Regev encodings into a
matrix Regev encoding while the message packing technique from [ACLS18, CCR19] packs multiple messages into a
single scalar Regev encoding. Encoding packing helps reduce response size while message packing helps reduce query
size. The SpiralPack protocol uses both packing techniques. We now describe our encoding packing approach.

Packing Regev encodings. Similar to the other encoding translation algorithms from Section 3, our packing
technique relies on a set of public parameters. In the following description, we write u8 ∈ '=@ to denote the 8th

elementary basis vector (i.e., a vector with a 1 in the 8th component and 0 elsewhere).

• PackSetup(s0, S1, I): On input the source key s0 = [−B̃0 | 1]T ∈ '2
@ , the target key S1 = [−s̃1 | I=]T ∈ ' (=+1)×=@ ,

and a decomposition base I ∈ N, let C =
⌊
logI @

⌋
+ 1. For each 8 ∈ [=], sample a8

r← 'C@ and E8 ← j=×C , and
compute the key

P8 =

[
aT8

s̃1a
T
8 + E8

]
+
[

01×C

−B̃0u8gTI

]
∈ ' (=+1)×C@ .

Output the packing key pk = (P1, . . . , P=).

20

• Pack(pk, c1 . . . c=2): On input the packing key pk = (P1, . . . , P=) and a collection of Regev encodings c1, . . . , c=2 ∈
'2
@ , write c8 = (28,1, 28,2) for all 8 ∈ [=2]. Output the encoding

C =

∑
8∈[=]

∑
9 ∈[=]

(
P8g
−1
I (28 ·=+9,1) + [0 | 28 ·=+9,2uT8]T

)
uT9 ∈ '

(=+1)×=
@ .

Theorem 4.7 (Packing). For each 8 ∈ [=2], let c8 ∈ '2
@ be a Regev encoding of `8 ∈ '@ with respect to a secret key

s0 = [−B̃0 | 1]T and error 48 . Take any secret key S1 = [−s̃1 | I=]T ∈ '
(=+1)×=
@ and decomposition base I ∈ N. Let

C =

⌊
logI @

⌋
+ 1. Let pk ← PackSetup(s0, S1, I) and C ← Pack(pk, c1, . . . , c=2). Then, C is a Regev encoding of the

matrixM ∈ '=×=@ with error E, where M =
∑

8∈[=]
∑

9 ∈[=] `8 ·=+9u8u
T
9 and E satisfies the following properties:

• If j in PackSetup is �-bounded and setting 4max = max8∈[=2] ‖48 ‖∞, then ‖E‖∞ ≤ 4max + 3=C�I/2; and

• If each 48 is subgaussian with parameter f4 and j is subgaussian with parameter fj , then under the independence

heuristic (Remark 2.18), the components of E are subgaussian with parameter f� where f2
�
= f2

4 + 3=CI2f2
j/4.

Proof. By assumption, for each 8 ∈ [=2], sT0c8 = −B̃028,1 + 28,2 = `8 + 48 . In addition, for all 8 ∈ [=],

P8 =

[
aT8

s̃1a
T
8 + E8

]
+
[

01×C

−B̃0u8gTI

]
,

where E8 ← j=×C and for some a8 ∈ 'C@ . Then,

ST1C =

∑
8∈[=]

∑
9 ∈[=]

ST1

(
P8g
−1
I (28 ·=+9,1) + [0 | 28 ·=+9,2uT8]T

)
uT9

=

∑
8∈[=]

∑
9 ∈[=]

E8g
−1
I (28 ·=+9,1)uT9 − B̃028 ·=+9,1u8uT9 + 28 ·=+9,2u8uT9

=

∑
8∈[=]

∑
9 ∈[=]

E8g
−1
I (28 ·=+9,1)uT9 + (`8 ·=+9 + 48 ·=+9)u8uT9

= M +
∑
8∈[=]

∑
9 ∈[=]

48 ·=+9u8u
T
9 + E8g−1I (28 ·=+9,1)uT9

︸ ︷︷ ︸
E

.

Thus, C is an encoding of M with error E. To bound the error components, we use the fact that u9 is a basis vector so

∑
9 ∈[=] g

−1
I (c8 ·=+9)uT9

∞ ≤ I/2. Next, since j is �-bounded, the entries of E8 are correspondingly �-bounded, so

‖E‖∞ ≤ 4max +

∑
8∈[=]

E8
©­«
∑
9 ∈[=]

g−1I (28 ·=+9,1)uT9
ª®¬

∞

≤ 4max + W'=C�I/2.

The claim now follows since W' = 3 . When the components of 4 and E8 are independent subgaussians, and appealing
also to the independence heuristic, then by the same calculation as above, we conclude that the components of E are
subgaussian with parameter f� where f2

�
= f2

4 + 3=CI2f2
j/4. �

The SpiralPack protocol. We now describe the SpiralPack variant of Spiral that leverages the above packing
transformation to achieve higher throughput and rates at the expense of larger public parameters and a larger
minimum database element size.

Construction 4.8 (SpiralPack). SpiralPack use the same setup as Spiral (Construction 4.1), except we first split
each record in the database D into) 2

pack
blocks of equal size, where)pack ∈ N is the packing dimension. We

construct) 2
pack

sub-databases D1 . . .D) 2
pack

, where D8 contains the 8
th block of each record in D. Let (Spiral.Setup,

Spiral.�ery, Spiral.Answer, Spiral.Extract) be the algorithms from Construction 4.1. The SpiralPack protocol is
defined as follows:

21

• Setup(1_, 1#): On input the security parameter _ ∈ N and the number of records in the database, run
(pp

Spiral
, qk

Spiral
) ← Spiral.Setup(1_, 1#) with plaintext dimension = = 1. Using the optimization from

Remark 4.2, the querying key qk
Spiral

in this case consists of a single encoding key s ∈ '2
@ . Next, sample a

matrix encoding key S
r← KeyGen(1_, 1)

pack
) that will be used for packing, and construct the packing key

pk← PackSetup(s, S, Iconv). Output pp = (pp
Spiral

, pk) and qk = (qk
Spiral

, S) = (s, S).

• �ery(qk, idx): On input the querying key qk = (qk
Spiral

, S) and the index idx ∈ [#], output the query
q← Spiral.�ery(qk

Spiral
, idx).

• Answer(pp,D, q): On input the public parameters pp = (pp
Spiral

, pk), the database D = (D1, . . . ,D) 2
pack
), and

the query q, the answer algorithm essentially runs Spiral.Answer on each of the) 2
pack

databases D1, . . . ,D) 2
pack

and then packs the) 2
pack

responses together into a single matrix Regev encoding. Note that the query expansion

only needs to be done once. More precisely, the answer algorithm operates as follows:

1. Query expansion: This is the same procedure as in Spiral.Answer(pp
Spiral

, ·, ·).
2. Response generation: For each 8 ∈ [) 2

pack
], process the first dimension and the subsequent dimensions

on database D8 according to the specification in Spiral.Answer. The same (expanded) query is used to
process each D8 . This yields a collection of encodings c1, . . . , c) 2

pack
∈ '2

@ .

3. Packing: Compute the packed encoding C← Pack(pk, c1 . . . c) 2
pack
) ∈ ' ()pack+1)×)pack@ .

4. Modulus switching: Given the final packed encodingC, output the response r← ModulusSwitch@1,@2 (C).

• Extract(qk, st, r): On input the query key qk = (s, S), an (empty) query state st, and the server response r,
output Decode(Recover@1,@2 (S, r)).

Correctness. Correctness of SpiralPack essentially follows from the same analysis as in the proof of Theorem 4.5.
We provide a sketch of the argument here. The only difference in SpiralPack is the additional packing transformation
applied at the very end of the answer algorithm. Let D = (31, . . . , 3#) and let idx ∈ [#] be an arbitrary index.
Suppose (pp, qk) ← Setup(1_, 1#), q ←�ery(qk, idx). Consider the behavior of Answer(pp,D, q). By the same
analysis as in the proof of Theorem 4.5, each encoding c8 output by the response-generation step is a Regev encoding
of ⌊@/?⌋ 3idx,8 with error e8 , where 3idx,8 denotes the 8

th block of record 3idx and

‖e8 ‖∞ = $
(
22a132?�I log@ + a22�233I2 log3 @

)
.

Note here that we are instantiating the base protocol with = = 1. Now, by Theorem 4.7, the packing step introduces
an additional noise to the final encoding that is bounded by $ (3)pack�I log@). Then, by Theorem 3.4, after modulus
switching, the noise E in the final encoding Z← Recover(S, r) is bounded by

‖E‖∞ = $

(
@1

@

(
22a132?�I log@ + a22�233I2 log3 @ + 3)pack�I log@ + ?

)
+ @1
@2
3� + ?

)
.

By Theorem 2.11, Decode(Z) = 3idx as long as ‖E‖∞ + (@1 mod ?) ≤ @1/2? . Thus, it suffices to set

Ω
(
3?�I log@()pack + 22a13? + a22�32I log2 @)

)
and @2 = Ω(3�?) and @1 = Ω(?2).

Security. Security follows by an analogous argument as the proof of Theorem 4.6. In this case, the only additional
component added to the public parameters pp is the packing key pk. By construction, pk consists of encodings
of the source key s under the destination key S. Since s and S are sampled independently, we can appeal to CPA
security of the Regev encoding scheme to argue that the components in pk are computationally indistinguishable from
encodings of randommatrices. The remaining components of pp are common to Spiral and those are computationally
indistinguishable from encodings of random values assuming KDM-security for Regev encodings (see Theorem 4.6).

22

5 Implementation and Evaluation

In this section, we describe the implementation of the Spiral system as well as our automated parameter selection
procedure. We conclude with a detailed experimental evaluation.

5.1 Automatic Parameter Selection

To select parameters for Construction 4.1, we start by analyzing the noise growth from the homomorphic operations.
As discussed in Remark 2.18, when selecting concrete parameters, we rely on the independence heuristic and bound
the variance of the noise rather than rely on the worst-case bounds from Theorem 4.5. This allows us to use smaller
lattice parameters in our instantiation at the expense of a possibly larger correctness error. In Section 5.3, we validate
the independence heuristic by comparing the actual noise magnitude to the noise level predicted under our heuristic
noise model. Next, we describe the computation/communication trade-offs associated with the system parameters. We
empirically measure the costs of the main steps in the response-generation as a function of the different underlying
parameters and use this to construct a heuristic model for the computational cost for a given parameter instantiation.
We then search over the candidate parameter sets to identify the most suitable setting for a target database.

Noise analysis. Suppose the error distribution j in Construction 4.1 is �-bounded and subgaussian with parameter
f . Under the independence heuristic (Remark 2.18), we model the error in the server’s response as a subgaussian
random variable. In the following, we provide a precise characterization of the error in the response as opposed to
the asymptotic one from Theorem 4.5 since we will use this analysis to select the concrete parameters for Spiral.

• Query: The initial error e in the client’s encoding q is sampled from j , so it is subgaussian with parameter f .

• Query expansion: We consider the Regev and GSW encodings separately. As described in Remark 4.3, we
use two different decomposition bases Icoeff,Reg and Icoeff,GSW for expanding the components for the Regev
encodings and those for the GSW encodings, respectively.

– By Theorem A.4, the error e
(Reg)
8 associated with each encoding c

(Reg)
8 is subgaussian with parameter f̂ (Reg)

where
(
f̂ (Reg)

)2
= 4a1+1f2 (1+3Ccoeff,RegI2coeff,Reg/3), and Ccoeff,Reg = ⌊logIcoeff,Reg @⌋ + 1. By Theorem 3.1, each

E
(Reg)
8 is subgaussian with parameter f (Reg) where

(
f (Reg)

)2
=
(
f̂ (Reg)

)2 + 3CconvI2convf2/4 = f2
(
4a1+1 (1 + 3Ccoeff,RegI2coeff,Reg/3) + 3CconvI

2
conv/4

)
,

and Cconv = ⌊logIconv @⌋ + 1.

– Again by Theorem A.4, the error e
(GSW)
8 associated with each encoding c

(GSW)
8 is subgaussian with

parameter f̂ (GSW) where

(
f̂ (GSW)

)2 ≤ 4(CGSWa2 + 1)2f2 (1 + 3Ccoeff,GSWI2coeff,GSW/3),

and Ccoeff,GSW = ⌊logIcoeff,GSW @⌋ + 1. By Theorem 3.2, each E
(GSW)
8 is subgaussian with parameter f (GSW)

where (
f (GSW)

)2
=
(
f̂ (GSW)

)2
3�2 + Cconv3f2I2conv/2

= 3f2
(
4�2 (CGSWa2 + 1)2 (1 + 3Ccoeff,GSWI2coeff,GSW/3) + CconvI

2
conv/2

)
.

• Processing the first dimension: Under the independence heuristic and Theorem 2.12, the noise E
(0)
9 in each

encoding C
(0)
9 is subgaussian with parameter f (0) where

(
f (0)

)2
= 2a1=3 (?/2)2

(
f (Reg)

)2
.

23

• Folding in the subsequent dimensions: Under the independent heuristic, Theorem 2.19, and appealing to

a similar argument as in the proof of Theorem 4.5, the noise E
(A)
9 in each encoding C

(A)
9 is subgaussian with

parameter f (A) where
(
f (A)

)2
=
(
f (A−1)

)2 + 3<GSWI
2
GSW

(
f (GSW)

)2/2. Correspondingly, the noise in the final

encoding E
(a2)
0 is subgaussian with parameter f (a2) where

(
f (a2)

)2
= 2a1=3 (?/2)2

(
f (Reg)

)2 + a23<GSWI
2
GSW/2 ·

(
f (GSW)

)2
• Modulus switching: By Theorem 3.4, the final error E can be written as E = E1 + E2 where ‖E1‖∞ ≤
((@1 mod ?) + (@1/@) (@ mod ?) + 2) /2 and the components of E2 are subgaussian with parameter f2 where

f2
2 = (@1/@)2

(
f (a2)

)2 + (@1/@2)2f23/4.

Let � > 0 be a correctness parameter. By a union bound over the entries of E2, with probability 1 − 23=2 exp(−c�2),
‖E2‖∞ ≤ �f2 and correspondingly,

‖E‖∞ ≤
1

2

(
(@1 mod ?) + @1

@
(@ mod ?) + 2

)
+�f2. (5.1)

To ensure correct decoding (Theorem 2.11), we now choose the parameters such that ‖E‖∞ + (@1 mod ?) < @1/2? .
Finally, we define the correctness error Ycorr to be Ycorr = 23=2 exp(−c�2).

Parameter selection trade-offs. We now describe our general methodology for selecting parameters to support a
database D with up to # records, where each record is at most (bits. The parameters of interest in Construction 4.1
are the lattice parameters 3, @, j , the plaintext modulus ? , the plaintext dimension =, the database configuration
a1, a2, the decomposition bases Icoeff,Reg, Icoeff,GSW, Iconv, IGSW (see Remark 4.3), and the correctness parameter � . A
single invocation of the PIR protocol yields an element of '=×=? , which encodes 3=2 log? bits. When the record size (

satisfies (> 3=2 log ? , we break each record into) ≥ (/(3=2 log?) blocks, each of size 3=2 log? . We then construct
) databases where the 8th database contains the 8th block of each record and run the Answer protocol) times to
compute the response. Importantly, the query expansion step only needs to be computed once in this case since the
same query is applied to each of the) databases. The subsequent homomorphic evaluation is performed over each of
the) databases. Our goal is to choose parameters that minimize the estimated cost of the protocol (estimated based on
current AWS computing costs and the total computation and communication required of the protocol; see Section 5.2).
We choose parameters to tolerate a correctness error Ycorr = 23=2 exp(−c�2) of at most 2−40 and a security level of
128 bits of (classical) security.

• Lattice parameters. Throughout this work, we work over a power-of-two cyclotomic ring, so the ring
dimension 3 is a power of two. Since the computational cost of multiplications in '@ = Z@ [G]/(G3 + 1) is super-
linear in the ring dimension, and the size of the modulus also increases with 3 , we choose the minimal value of
3 that suffices for correctness and security. The modulus @ must be large enough to ensure correctness. This in
turn translates to a lower bound on 3 to ensure security. In our setting, we set 3 = 211 = 2048, which allows us
to choose a 56-bit modulus @. This is sufficient to efficiently support databases with up to 222 records. We use a
standard discrete Gaussian noise distribution j with mean 0 and width f = 6.4. This ensures 128 bits of classical
security, as estimated by the LWE estimator [APS15] (based on the algorithms from [CN11, AG11, BDGL16]).

• Database configuration. When the records are large (i.e., (≥ 3=2 log?), each plaintext element can encode
at most one record. In this case, we require 2a1+a2 ≥ # . When the database records are small (i.e., (< 3=2 log?),
we can pack multiple records into a single plaintext.8 In this case, it suffices to choose a1 and a2 so that
2a1+a23=2 log ? ≥ #(. The size of the first dimension a1 determines the number of rounds of query expansion
and the noise growth in the query expansion scales exponentially with a1. The number of subsequent dimensions
a2 determines the number of rounds of folding needed during query processing (Step 3 of the Answer algorithm
in Construction 4.1).

8Of course, the overall rate is smaller with packing. The highest rate we can achieve corresponds to the case where the size of each record is at
least as large as an element of '=×=

? .

24

• Plaintext dimension. A larger plaintext dimension = translates to a higher rate. For sufficiently large records
((≥ 3=2 log?) and leveraging modulus switching (with reduced moduli @1 and @2), the ratio of the record size
to the response size is

rate =
record size

response size
=

=2 log?

= log@2 + =2 log@1
. (5.2)

However, the per-record computational cost also scales linearly with the dimension =. In particular, each homo-
morphic operation in the first dimension processing pass (Step 2 of the Answer algorithm in Construction 4.1)
requires computing # ·$ (=2 (= + 1)) ring operations for a database of size # ·$ (=2 log?).

For the base Spiral protocol, we set = = 2 which provides a compelling trade-off between computation and
communication. Compared to the case where = = 1, this yields a 33% reduction in communication at the expense
of a 33% increase in computation. Under our cost model based on a deployment over AWS, the communication
cost is often higher than the compute cost, especially for streaming applications.

As discussed in Section 4.1, we also consider a packed variant SpiralPack where we use = = 1 for query
processing and a much larger dimension = > 2 for response packing.

• Plaintext and encoding modulus. From our noise analysis above (Eq. (5.1); see also Theorem 4.5), the error
in the final set of encodings depends on (@1 mod ?) and @1/@ · (@ mod ?), where ? is the plaintext modulus
and @1 is one of the moduli used for modulus switching. As mentioned above, we set @ = 256 for all of our
instantiations. In our construction, we choose @1 = 4? so @1 mod ? = 0. We then search over a range of possible
values for ? (and compute the noise variance according to Eq. (5.1)). Using a large ? leads to higher noise
growth (since the noise in the first dimension is scaled by ?) but enables a higher rate and higher throughput
(since more plaintext data is processed per operation on the encoded data).

We set @1 and @2 as small as possible to maximize the rate (see Eq. (5.2)). Throughout this work, we set @1 = 4?
which is the smallest value that ensures correctness (for our choice of parameters) and has the added benefit
that @1 mod ? = 0. Finally, we choose @2 to be the smallest value that satisfies the correctness requirement.

• Decomposition bases. Using larger decomposition bases Icoeff,Reg and Iconv increases the amount of noise
introduced by the associated transformation, but reduces the amount of computation in the query expansion
step (i.e., the dimensions of G=,I scales with = logI @ so larger values of I corresponds to a smaller gadget matrix
G=,I). We additionally observe that the decomposition base Icoeff,GSW used to expand the GSW encodings has a
minimal impact on computation, since a2CGSW ≪ 2a1 . For this reason, we fix Icoeff,GSW = 2 which minimizes the
noise growth from the GSW expansion step.

• GSW gadget base. Using a larger decomposition base IGSW for the GSW encodings increases the noise growth
from homomorphic multiplications (in the folding steps), but reduces the computational cost in both the query
expansion and the folding steps. Moreover, to pack the query into a single scalar Regev encoding, we require
that 2a1 + a2CGSW ≤ 3 . Otherwise, the client cannot pack all of the components of the query into a single
encoding and would have to send multiple Regev encodings on each query.

Automatic parameter selection. Balancing the different scheme parameters is important for obtaining a good
trade-off between computational costs and communication. Similar to XPIR [MBFK16], we introduce a heuristic
search algorithm for parameter selection based on a given database configuration (i.e., the number of records #
and the record size (). As described above, we set the ring dimension 3 = 2048 and use a 56-bit encoding modulus
@. This ensures 128 bits of security and suffices to support databases of size # ≤ 222. As noted above, for the base
Spiral protocol, we set the plaintext dimension to = = 2. It then suffices to choose the plaintext modulus ? , the
decomposition dimensions Ccoeff,Reg, Ccoeff,GSW, Cconv, CGSW, database configuration a1, a2, and the number of executions
) . For each of these parameters, there is a small number of reasonable values, and we can quickly search over all of
the candidate configurations.

25

We set the plaintext modulus ? to be a power of two with maximum value 230. Using larger ? would require using
a larger modulus @ and ring dimension 3 ≥ 4096. We consider Ccoeff,Reg, Cconv ∈ {2, 4, 8, 16, 32, 56} and CGSW ∈ [2, 56].9
Recall from above that we fix the decomposition base Icoeff,GSW = 2, which fixes the dimension Ccoeff,GSW = 56. Finally,
we consider all database configurations a1, a2 ∈ [2, 11].10 With these constraints, there are ≈3 million candidate
parameter sets for each database setting. After pruning out parameter settings where the correctness error exceeds
the threshold (2−40), we are left with ≈700,000 parameter sets. This initial pruning step takes 3 minutes on our
benchmarking platform, and the pruned set of feasible parameters can be cached in a single 40 MB file.

We now need a way to estimate the concrete performance (e.g., server computation time) for each set of candidate
parameters. We do so by developing an empiric model based on concrete measurements for the different components
of the server computation:

• For typical configurations, the cost of the coefficient expansion (Algorithm 1) is dominated by the cost of
expanding the encodings for the first dimension (since 2a1 ≫ CGSWa2). To model the computational cost, we
just focus on the cost of expanding the first dimension, which is a function of a1 and Ccoeff only.11 There are
only 60 possible combinations for a1 and Ccoeff,Reg, so we precompute a look-up table with the running times for
each candidate parameter setting.

• During the encoding translation steps, we call ScalToMat 2a1 times and RegevToGSW CGSWa2 times. Asymptoti-
cally, the running time scales linearly with the variables 2a1 , CGSWa2, Cconv, and CGSW. We fit a linear model based
on the measured running times for a small set of candidate parameters to estimate the concrete running time.

• For the cost of processing the first dimension (Step 2 of the Answer algorithm in Construction 4.1), the cost is a
linear function of the database configuration 2a1 , 2a2 , and 2a1+a2 . We again use a linear model to estimate the
concrete running time as a function of a1 and a2.

• For the folding step (Step 3 of the Answer algorithm in Construction 4.1), the running time of a single folding
step is linear in CGSW. We fit a linear model to predict the concrete running time of a single folding step and
scale the result by the total number of folding steps a2.

• Finally, we compute the minimum number of executions) =

⌈
(/=23 log?

⌉
needed to serve a record of size at

least (. This yields an estimate on the overall server running time.

Using the above models, we can efficiently estimate the concrete running time for each parameter setting. Applying
the AWS monetary cost model (see Section 5.2) for CPU time and network download, we then select the parameter
setting that minimizes the server’s total cost to answer a query. The search process takes about 10 seconds on our
platform. For all of the parameter sets selected using this approach, the estimated server computation time is within
10% of the actual measured running time. We provide sample parameters chosen by our procedure in Table 1. We
use an almost identical procedure to select parameters for SpiralPack. In this setting, we set the initial plaintext
dimension to = = 1 and introduce an additional packing dimension parameter)pack to the search procedure. We then
estimate the extra noise introduced by packing using the bounds from Theorem 4.7, and then select parameters that
minimize the server cost while ensuring the target level of correctness.

Remark 5.1 (Other Optimization Objectives). By default, we configure our parameter-selection method to minimize
the total cost on an AWS-based deployment. However, the system naturally supports optimizing other objectives such
as minimizing the estimated server computation time or to maximize the rate. We also support selecting parameter
sets with a size constraint on the public parameter size or the query size. This provides a way to systematically
explore different trade-offs in the final protocol. We elaborate on some of these trade-offs in Section 5.3.

9While we could also consider the full range of values for Ccoeff,Reg, Cconv, this would increase the size of our search space by ≈ 100×. In our
experiments, we did not observe a significant benefit to the overall system efficiency with the expanded search space.

10Our vectorized implementation for processing the first dimension requires that a1 > 1. We exclude a2 = 1 because this settings makes it infeasible
to pack all of the query coefficients into a small number of ciphertexts for even a moderate-size database with just a few thousand records.

11For cases where a1 is small and CGSWa2 > 2a1 , this model underestimates the cost of coefficient expansion. However, evenwith this underestimation,
the parameter selection tool does not favor such configurations, as they lead to an imbalanced, and thereby suboptimal, configuration. Thus, for
modeling simplicity, we focus solely on the cost of expanding the components in the first dimension.

26

Database log? log@2 Ccoeff,Reg Cconv CGSW (a1, a2)) Rate Estim. CPU Actual CPU

220 × 256B 8 21 8 4 9 (9, 6) 1 0.0122 1.68 s 1.69 s
214 × 100KB 9 21 16 4 10 (9, 5) 11 0.4129 5.03 s 4.92 s

Table 1: Parameter sets for Spiral chosen by our search procedure for two different database configurations. We
use a plaintext dimension = = 2, a ring dimension 3 = 2048, an encoding modulus @ where log@ = 56, a discrete
Gaussian error distribution j with mean 0 and width f = 6.4, and decomposition dimension Ccoeff,GSW = 56 for
all settings. As described in Section 5.1, ? is the plaintext modulus, @1, @2 are the reduced moduli (with @1 = 4?),
Ccoeff,Reg, Cconv, CGSW are the decomposition dimensions for the various ciphertext translation algorithms, a1, a2 is the
database configuration, and) is the number of executions. The parameters are chosen to provide 128 bits of classical
security [APS15] and ensure a correctness error of at most 2−40. The “Rate” is the ratio of the PIR response size to
the database record size. The “Estim. CPU” column gives the estimated time in seconds to process a single query
according to our model described in Section 5.1 and the “Actual CPU” column gives the actual computation time
taken as measured on our experimental setup.

5.2 Implementation and Experimental Setup

We now describe some system optimizations used in our implementation as well as our experimental setup.

Spiral configurations. The vanilla version of Spiral is designed to be a general-purpose PIR protocol. However,
in a streaming setting, the SpiralStream variant of Spiral (Remark 4.4) can achieve even better performance. In our
experimental evaluation (Section 5.3), we consider both a static setting and a streaming setting:

• Static setting: This is the basic setting where the client privately retrieves a single record from a database. For
this setting, we choose the parameters to balance query size, response size, and the server computation time.
This is the default operating mode of Spiral (and its packed version, SpiralPack).

• Streaming setting: In the streaming setting, a client uploads a single query that is reused across many databases.
This captures two general settings: (1) applications with large records that we want to consume progressively
(e.g., a private video streaming service like Popcorn [GCM+16]); and (2) metadata-hiding messaging systems
where a user is repeatedly reading from a “mailbox” (e.g. Pung [AS16] or Addra [AYA+21]). Since the query
can be reused in the streaming setting, we can amortize the cost of transmitting the query over the lifetime
of the stream. Systems like FastPIR [AYA+21] are designed specifically for the streaming setting and as such,
achieve higher server throughput compared to SealPIR [ACLS18], but require larger queries. We can easily
adapt Spiral to the setting using the approach from Remark 4.4. Namely, in SpiralStream, the client uploads
all of the Regev encodings directly without using the query packing approach from [ACLS18]. As we show in
Section 5.3, SpiralStream has larger queries, but achieves a much better rate and server throughput. We define
the streaming version of SpiralPack analogously and refer to the resulting scheme as SpiralStreamPack.

We use our automatic parameter selection tool (Section 5.1) to select parameters for all of the Spiral variants.

Compressing Regev encodings. In Spiral (and all of its variants), the PIR query consists of one or more scalar
Regev encodings. A scalar Regev encoding c is a pair c = (20, 21), where 20 ∈ '@ is uniformly random. Instead of
sending 20, the client can instead send a seed B for a pseudorandom generator (PRG) and derive 20 by evaluating the
PRG on the seed B . Security holds if we model the PRG as a random oracle. This is a standard technique to compress
Regev encodings [Gal13, BCD+16, ISW21].

Modulus choice. In our implementation, we use a 56-bit modulus @ that is a product of two 28-bit primes U , V . By
the Chinese remainder theorem (CRT), '@ � 'U × 'V . We implement arithmetic operations in 'U and 'V using native

64-bit arithmetic. We choose U, V = 1 mod 23 so ZU and ZV have a subgroup of size 23 (i.e., the (23)th roots of unity).
Polynomial multiplication in 'U and 'V can be efficiently implemented using a standard “nega-cyclic” fast Fourier

27

transform (also called the number-theoretic transform (NTT)) [LMPR08, LN16]. To allow faster modular reduction,
we also choose U, V to be of the form 28 − 29 + 1 for integers 8, 9 where 28 > 29 > 23 .

Database representation. Database elements in our system are elements of '=×=? . We represent all ring elements
in their evaluation representation (i.e., the FFT/NTT representation). This enables faster homomorphic operations
during query processing.

SIMD operations. Like previous constructions [MCR21], we take advantage of the Intel Advanced Vector Exten-
sions (AVX) to accelerate arithmetic operations in 'U and 'V (recall '@ � 'U ×'V). In particular, we use the AVX2 and
AVX-512 instructions when computing the scalar multiplications and homomorphic additions for the first dimension
processing in Construction 4.1.

Code. Our implementation consists of roughly 4,000 lines of C++.12 We adapt the procedure from the SEAL
homomorphic encryption library [SEA19] to implement the FFTs for homomorphic evaluation. We use the Intel
HEXL library [BKS+21] to implement FFTs in the response decoding procedures.

Experimental setup. We compare our PIR protocol against the public implementations of SealPIR [ACLS18],
FastPIR [AYA+21], and OnionPIR [MCR21]. Since the memory requirements vary between protocols, we use an
implicit representation of the database across all of our measurements to ensure a consistent comparison. To minimize
any variance in running time due to cache accesses, we set the minimal size of the implicitly-represented database
to be 1 GB. Based on our measurements, using this implicit database representation only has a small effect on the
measurements (at most a 1% difference in server compute time).

We measure the performance of our system on an Amazon EC2 c5n.2xlarge instance running Ubuntu 20.04.
The machine has 8 vCPUs (Intel Xeon Platinum 8124M @ 3 GHz) and 21 GB of RAM. We use the same benchmarking
environment for all experiments, and compile all of the systems using Clang 12. The processor supports the AVX2
and AVX-512 instruction sets, and we enable SIMD instruction set support for all systems. We use a single-threaded
execution for all of our experiments and report running times averaged over a minimum of 5 trials.

Metrics. For each database configuration, we measure the total computation and communication for the client and
the server, as well as the size of the public parameters. Similar to previous works [ACLS18, MCR21, AYA+21], we
assume the public parameters have been generated and transmitted in a separate offline phase, and focus exclusively
on the online computation and communication. This is often justified since the public parameters only needs to be
generated once and can be reused for many PIR queries.

We also estimate the server’s monetary cost to respond to a single query. This is the sum of the server’s CPU
cost and the cost of the network communication. We estimate these costs based on the current rates for a long-term
Amazon EC2 instance: $0.0195/CPU-hour and $0.09/GB of outbound traffic at the time of writing [AWS21]. Finally, we
report the rate of the protocol (i.e., the ratio of the record size to the response size), and the server’s throughput (i.e.,
the number of database bytes the server can process each second). We generally do not report the response-decoding
times, since they are very small (Fig. 5).

5.3 Evaluation Results for Spiral

We start by comparing the performance of Spiral and SpiralStream to existing systems on three different database
configurations in Table 2:

• A database with many small records (220 records of size 256 B). This is a common baseline for PIR [AS16,
ALP+21, AYA+21].

• A database with moderate-size records (218 records of size 30 KB). This is the optimal configuration for
OnionPIR [MCR21].

12Our implementation is available here: https://github.com/menonsamir/spiral.

28

Database Metric SealPIR FastPIR MulPIR* OnionPIR Spiral SpiralStream

Param. Size 3 MB 1 MB - 5 MB 14–18 MB 344 KB–3 MB

Query Size 66 KB 33 MB 122 KB 63 KB 14 KB 8 MB
Response Size 328 KB 66 KB 119 KB 127 KB 21 KB 20 KB

220 × 256B Computation 3.19 s 1.44 s - 3.31 s 1.69 s 0.85 s

(268 MB) Rate 0.0008 0.0039 0.0024 0.0020 0.0122 0.0125
Throughput 84 MB/s 186 MB/s - 81 MB/s 159 MB/s 314 MB/s
Server Cost $0.000047 $0.000014 - $0.000029 $0.000011 $0.000006

Query Size 66 KB 8 MB - 63 KB 14 KB 15 MB
Response Size 3 MB 262 KB - 127 KB 84 KB 62 KB

218 × 30KB Computation 74.91 s 50.52 s - 52.73 s 24.46 s 8.99 s

(7.9 GB) Rate 0.0092 0.1144 - 0.2363 0.3573 0.4803
Throughput 105 MB/s 156 MB/s - 149 MB/s 322 MB/s 875 MB/s
Server Cost $0.000701 $0.000297 - $0.000297 $0.000140 $0.000054

Query Size 66 KB 524 KB - 63 KB 14 KB 8 MB
Response Size 11 MB 721 KB - 508 KB 242 KB 208 KB

214 × 100KB Computation 19.03 s 23.27 s - 14.38 s 4.92 s 2.38 s

(1.6 GB) Rate 0.0092 0.1387 - 0.1969 0.4129 0.4811
Throughput 86 MB/s 70 MB/s - 114 MB/s 333 MB/s 688 MB/s
Server Cost $0.001076 $0.000191 - $0.000124 $0.000048 $0.000032

∗ To date, there is not a public implementation of the MulPIR system. Here, we report the query and response sizes on a
similar database of size 220 × 288B from [ALP+21].

Table 2: Comparison of Spiral and SpiralStream with recent PIR protocols (SealPIR [ACLS18], FastPIR [AYA+21],
MulPIR [ALP+21], OnionPIR [MCR21]) on different database configurations. All measurements are collected on
the same computing platform using a single-threaded execution. SealPIR and OnionPIR provide 115 and 111 bits of
security, respectively. All other schemes provide at least 128 bits of security. The public parameter size (“Param. Size”
column) for Spiral (and SpiralStream) varies depending on database configuration and we report the range here.
The rate is the ratio of the record size to the response size, the throughput is the ratio of the server’s computation
time to database size, and the server cost is the estimated monetary cost needed to process a single query based on
current AWS prices (see Section 5.2).

• A database with a small number of large records (214 records of size 100 KB).

When the record size is small, all of the lattice-based PIR schemes have low rate. This is because lattice ciphertexts
encode a minimum of a few KB of data, so there is a significant amount of unused space for small records. When the
record size is comparable or greater than the amount of data that can be packed into a lattice ciphertext, the rate
essentially becomes the inverse of the ciphertext expansion factor. Due to better control of noise growth, the use of
matrix Regev encodings, and improved modulus switching, Spiral and SpiralStream achieve a higher rate than
previous implementations of single-server PIR.

In all three settings, Spiral has the smallest query size. For the databases with 30 KB and 100 KB records, Spiral’s
throughput is at least 2.2× higher than competing schemes (while achieving a higher rate and smaller queries). In the
small record case, Spiral’s server throughput is only outperformed by FastPIR, which is optimized for the streaming
setting and requires a query that is over 2400× larger. The main limitation of Spiral is its larger public parameter
size. This is due to the additional keys needed for the query compression approach from Section 3. Note though that
these public parameters are reusable and the cost of communicating them can be amortized over multiple queries.

Turning next to SpiralStream, we see that it achieves a higher rate and server throughput compared to all
previous schemes. For instance, on the database with moderate-size records, SpiralStream achieves a throughput of
over 800 MB/s, which is 5.6× higher than the previous state-of-the-art; SpiralStream simultaneously achieves a
2× increase in rate as well. Measured in terms of monetary cost, SpiralStream is 5.4× less expensive compared to
OnionPIR for this database configuration. The trade-off is SpiralStream requires larger queries, though this is a less
significant factor in streaming settings where the same query is reused across multiple requests.

29

Database Metric Best Previous Spiral SpiralStream SpiralPack SpiralStreamPack

Param. Size 1 MB 14 MB 344 KB 14 MB 16 MB
Query Size 34 MB 14 KB 8 MB 14 KB 15 MB

220 × 256B Response Size 66 KB 21 KB 20 KB 20 KB 71 KB
(268 MB) Computation 1.44 s 1.68 s 0.86 s 1.37 s 0.42 s

Rate 0.0039 0.0122 0.0125 0.0125 0.0036
Throughput 186 MB/s 159 MB/s 312 MB/s 196 MB/s 635 MB/s

Param. Size 5 MB 18 MB 3 MB 18 MB 16 MB
Query Size 63 KB 14 KB 15 MB 14 KB 30 MB

218 × 30KB Response Size 127 KB 84 KB 62 KB 86 KB 96 KB
(7.9 GB) Computation 52.99 s 24.52 s 9.00 s 17.69 s 5.33 s

Rate 0.2363 0.3573 0.4803 0.3488 0.3117
Throughput 148 MB/s 321 MB/s 874 MB/s 444 MB/s 1.48 GB/s

Param. Size 5 MB 17 MB 1 MB 47 MB 24 MB
Query Size 63 KB 14 KB 8 MB 14 KB 30 MB

214 × 100KB Response Size 508 KB 242 KB 208 KB 188 KB 150 KB
(1.6 GB) Computation 14.35 s 4.92 s 2.40 s 4.58 s 1.21 s

Rate 0.1969 0.4129 0.4811 0.5307 0.6677
Throughput 114 MB/s 333 MB/s 683 MB/s 358 MB/s 1.35 GB/s

Table 3: Comparison for all four Spiral variants with the best alternative system: FastPIR [AYA+21] for the database
with small records (220 × 256B) and OnionPIR otherwise [MCR21].

Packing. In Table 3, we compare the packed versions of Spiral and SpiralStream with the vanilla versions on
each of the main benchmarks. As shown in Table 3, packing enables higher rates and throughput, but requires larger
public parameter for the packing keys (Section 4.1). For instance, the size of the public parameters ranges from
14–18 MB for Spiral and increases to 14–47 MB for SpiralPack. On the flip side, when considering larger databases,
SpiralPack achieves a 30% increase in the rate with comparable or higher server throughput. If we consider the
streaming variant (which optimizes for throughput and rate at the expense of public parameter size and query size),
the packed variant achieves substantially higher throughput compared to previous PIR schemes and the other Spiral
variants. On the larger databases, SpiralStreamPack achieves 10× higher throughput compared to previous systems
(1.5 GB/s) and a 1.7× improvement over the non-packed scheme SpiralStream.

System scaling. Fig. 2 shows how the server’s computation time for different PIR schemes scales with the number
of records # in the database. When the database consists of relatively small records (10 KB), Spiral achieves similar
performance as existing systems when the numbers of records is small, but is up to 2× faster for databases with a
million records. When considering databases with larger records (100 KB), Spiral is always 1.8–3× faster for all
choices of # we considered. The server computation time of SpiralPack is generally comparable to that of Spiral.
Packing is most beneficial when the number of records is large; in these cases SpiralPack achieves up to a 1.5×
reduction in server computation time. As we discuss next, packing makes the most difference in the streaming setting.

Throughput in the streaming setting. As noted in Section 5.2, we also consider using PIR in a streaming setting,
where the same query is reused across multiple PIR invocations (on different databases). In this case, query expansion
only needs to happen once and its cost can be amortized over the lifetime of the stream. Thus, when considering
the streaming setting, we measure the server’s processing time without the query expansion process. We apply
the same methodology to all Spiral variants, SealPIR, OnionPIR, and FastPIR. The effective server throughput for
different schemes is shown in Fig. 3 and Table 4. When choosing the parameters for the streaming protocol variants
SpiralStream and SpiralStreamPack, we impose a maximum query size of 33 MB to ensure a balanced comparison
with the FastPIR protocol [AYA+21] which have queries of the same size. FastPIR is a PIR protocol tailored for the

30

210 212 214 216 218 220

100

101

102

Number of Records (10 KB Records)

Se
rv
er

C
o
m
p
u
te

(s
)

210 212 214 216 218 220

100

101

102

103

Number of Records (100 KB Records)

Se
rv
er

C
o
m
p
u
te

(s
)

Spiral SpiralPack SealPIR FastPIR OnionPIR

Figure 2: Server computation time as a function of database size for different PIR protocols.

210 212 214 216 218 220
0

500

1,000

1,500

2,000

Number of Records

T
h
ro
u
g
h
p
u
t
(M

B
/s
) Spiral

SpiralPack

SpiralStream

SpiralStreamPack

SpiralStream1/2
SealPIR

FastPIR

OnionPIR

Figure 3: Server throughput in the streaming setting as a function of the number of database records. In the streaming
setting, we ignore the query expansion costs (if present) and use the optimal record size for each system. The
query sizes for SealPIR, FastPIR, Spiral/SpiralPack, SpiralStream/SpiralStreamPack and SpiralStream1/2, are
65 KB, 33 MB, 14 KB, 33 MB, and 16 MB, respectively. In particular, we choose parameters for SpiralStream and
SpiralStreamPack so as to match the query size from the FastPIR system (a PIR protocol tailored for the streaming
setting).

streaming setting that leverages a large query size to achieve better server throughput. We note that increasing the
query size in SpiralStream and SpiralStreamPack beyond 33 MB can enable further improvements to the server
throughput and the rate, and we explore these trade-offs in more detail in Fig. 4.

For the database configurations we considered, the base version of Spiral achieves a 1.7–3.7× higher throughput in
the streaming setting compared to previous systems. The packed version SpiralPack achieves higher throughput with
the same query size, but at the expense of larger public parameters. The streaming-optimized systems SpiralStream
and SpiralStreamPack achieve significantly higher throughput; on databases with roughly a million records, the
server throughput of SpiralStreamPack is 1.9 GB/s, which is 9.7× higher than FastPIR. The rate is also 5.8× higher
than that of FastPIR (i.e., the number of bits the client has to download is 5.8× smaller with SpiralStreamPack).

From Fig. 3, we observe that for each Spiral configuration, the throughput peaks at a certain number of records,
and then starts decreasing as the number of records increases. Based on our microbenchmarks (Fig. 5), we observe
that the throughput is highest when the server’s work is evenly distributed between the first dimension processing
and the folding steps (Steps 2 and 3 of the Answer algorithm in Construction 4.1, respectively). For small database
sizes, we do not achieve an even split, resulting in lower throughput. Moreover, we cannot increase the size of the
first dimension indefinitely, as the noise accumulation scales linearly with the size of the first dimension. In the
case of Spiral and SpiralPack, the limiting factor is that the first dimension can have size at most 29 before the

31

T Metric FastPIR OnionPIR Spiral SpiralPack SpiralStream SpiralStreamPack

Param. Size 1 MB 5 MB 31 MB 156 MB 3 MB 125 MB

212 Query Size 131 KB 63 KB 14 KB 14 KB 15 MB 15 MB

Rate 0.1392 0.2419 0.4348 0.7143 0.4918 0.8057

Throughput* 23 MB/s 159 MB/s 544 MB/s 640 MB/s 1.20 GB/s 1.57 GB/s

Param. Size 1 MB 5 MB 30 MB 31 MB 5 MB 125 MB

216 Query Size 2 MB 63 KB 14 KB 14 KB 30 MB 30 MB

Rate 0.1392 0.2419 0.4000 0.7013 0.4918 0.8057

Throughput* 142 MB/s 157 MB/s 433 MB/s 614 MB/s 1.52 GB/s 1.93 GB/s

Param. Size 1 MB 5 MB 30 MB 91 MB 5 MB 125 MB

220 Query Size 34 MB 63 KB 14 KB 14 KB 30 MB 30 MB

Rate 0.1392 0.2419 0.3902 0.6857 0.4918 0.8057

Throughput* 201 MB/s 158 MB/s 355 MB/s 521 MB/s 1.46 GB/s 1.94 GB/s

∗ This throughput measurement does not include query expansion costs, since these are amortized away in the streaming scenario.

Table 4: Performance of FastPIR [AYA+21], OnionPIR [MCR21], and the different Spiral variants in the streaming
setting as a function of the number of records # in the database. In the streaming setting, we ignore all query
expansion costs (if present) and use the optimal record size for each system.

Database Best System Rate Throughput Param. Size Query Size

220 × 256B SpiralStream 0.0227 130 MB/s 344 KB 15 MB
220 × 256B SpiralStreamPack 0.0025 1.03 GB/s 16 MB 15 MB

218 × 30KB SpiralStream 0.4883 326 MB/s 5 MB 3 MB
218 × 30KB SpiralStreamPack 0.1723 1.85 GB/s 24 MB 30 MB

214 × 1MB SpiralStreamPack 0.7750 1.35 GB/s 88 MB 8 MB
214 × 1MB SpiralStreamPack 0.6532 1.65 GB/s 16 MB 30 MB

Table 5: Maximum-rate and maximum-throughput Spiral configurations for different database configurations. For
each database configuration, we use the automatic parameter selection algorithm (Section 5.1) to choose the best
Spiral variant and parameters that yields the highest rate or the highest server throughput (including query expansion
costs). We report the rate, throughput, public parameter size, and query size for the chosen scheme. In all cases, we
impose a maximum query size of 33 MB (i.e., the query size in the FastPIR system [AYA+21]). Fig. 4 shows how the
maximum rate and throughput scales more generally as a function of the query size (and the public parameter size).

noise from the coefficient expansion process is too high to ensure correctness (without moving to a larger set of
lattice parameters). Increasing the number of records requires fixing the size of the first dimension and increasing the
number of folding rounds. This also leads to lower throughput.

For SpiralStream and SpiralStreamPack, the limiting factor on how we can split the database between the first
dimension and the subsequent dimensions is the query size. The query size scales linearly with the size of the first
dimension, and once this maxes out, the throughput starts to decrease. To illustrate this, we consider a version of
SpiralStream where the limit on the query size is halved to 16 MB (denoted SpiralStream1/2). As shown in Fig. 3,
the throughput peaks at a much smaller database (214 records as opposed to 216 records). To scale to larger databases
while maintaining high throughput, we could either increase the query size (to reduce the number of expansion steps
needed) or increase the response size (by running the protocol in parallel with a fixed query).

32

0 10 20 30 40 50 60
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

OnionPIR

FastPIR

Public Parameter + Query Size (MB)

R
at
e

0 10 20 30 40 50 60
0

0.3

0.6

0.9

1.2

1.5

OnionPIR
FastPIR

Public Parameter + Query Size (MB)

T
h
ro
u
g
h
p
u
t
(G
B
/s
)

0 10 20 30 40 50 60
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

OnionPIR

FastPIR

Query Size (MB)

R
at
e

0 10 20 30 40 50 60
0

0.3

0.6

0.9

1.2

1.5

OnionPIR
FastPIR

Query Size (MB)

T
h
ro
u
g
h
p
u
t
(G
B
/s
)

SpiralStream SpiralStreamPack SpiralPack

Figure 4: Maximum achievable rate and throughput with a constraint on the public parameter size and/of the query size
across all Spiral variants for a 214× 100 KB database. We set the automatic parameter selection algorithm (Section 5.1)
to choose the best Spiral variant and parameters that yield the highest rate or the highest server throughput subject
to the restriction on the size of the public parameters and/or the size of the query. The performance of OnionPIR and
FastPIR are plotted as points, since we cannot vary their query sizes.

Optimizing for rate or throughput. Next, we measure the highest possible throughput and rate achieved by the
Spiral family of protocols on different database configurations. Specifically, for each database configuration, we set
our parameter selection tool to select parameters that maximize either the rate or the server throughput (recall that
our default optimization objective is the estimated server cost). We summarize our results in Table 5.

When considering small database records (e.g., 256 bytes), SpiralStream achieves a higher rate compared to the
packed version SpiralStreamPack. This is because SpiralStreamPack relies on a large packing dimension)pack to
achieve high rate. However, using larger values of)pack translates to a larger minimum record size (i.e., each response
decodes to) 2

pack
log? bits). When the number of bits in the database record is smaller than) 2

pack
log? , the extra bits in

the response are effective wasted and reduce the rate of the resulting protocol. When the record size is sufficiently large
(e.g., 1 MB), the packed version of SpiralStream outperforms the vanilla version. On the flip side, when maximizing
throughput, SpiralStreamPack generally outperforms SpiralStream, since the first dimension processing step
(Step 2 of the Answer algorithm in Construction 4.1) is applied to encodings of 1-dimensional values rather than
2-dimensional ones. Recall that the computational cost of processing the first dimension scales quadratically with the
message dimension =, and this step is a significant portion of the total server computation.

We also note that for the database configurations considered in Table 5, the streaming variants of Spiral and
SpiralPack achieve the best rates and throughput. This is because of the extra ciphertext expansion needed in the
the vanilla versions of Spiral (and SpiralPack). On the flip side, achieving higher rates and throughput using the
streaming variants of Spiral requires communicating larger public parameters and queries. In Fig. 4 we explore the
trade-offs between the public parameter size (and query size) and the rate or throughput of the system. Specifically,
we report the system performance subject to a bound on either the total query and public parameter size or just
the query size. As Fig. 4 shows, it can be advantageous to use the non-streaming variants of Spiral when the goal
is to minimize the online query size. However, as we allow the query size (and public parameter size) to grow, the
streaming and packed variants of Spiral will allow for higher rates and server throughput. We also observe rapidly

33

210 212 214 216 218 220

100

101

102

Number of Records

C
li
en
t
C
o
m
p
u
te

(m
s)

Setup �ery Extract

210 212 214 216 218 220
10−1

100

101

102

Number of Records

Se
rv
er

C
o
m
p
u
te

(s
)

Expansion First Dimension Folding

Figure 5: Microbenchmarks for client and server computation in Spiral for processing databases with 100 KB records.
The client computation consists of the Setup,�ery, and Extract algorithms while the server computation consists of
the Answer algorithm from Construction 4.1. We separately measure the costs of the query expansion (Step 1), first
dimension processing (Step 2), and ciphertext folding (Step 3) in the Answer algorithm.

diminishing returns in the achievable rate and throughput as a function of the parameter sizes.

Microbenchmarks. Finally, we provide a more fine-grained breakdown of the different components of the client’s
and server’s computation in Fig. 5. The client’s cost is dominated by the key-generation procedure (which samples
the key-switching matrices needed for the query generation algorithm). While this cost is non-trivial (≈ 700 ms), this
only needs to be generated once and can be reused for arbitrarily many queries. The query-generation completes in
under 30 ms, and the response-decoding completes in under 1 ms.

For server computation, the cost of query expansion is mostly fixed, while the cost of processing the initial
dimension and the subsequent folding steps (Steps 2 and 3 of the Answer algorithm in Construction 4.1, respectively)
both scale linearly with the size of the database. The parameters chosen by our parameter generation algorithm favor
those that balance the cost of the initial dimension processing and the cost of the subsequent folding operations.

CRT/SIMD optimizations. As noted in Section 5.2, we choose the 56-bit modulus @ to be a product of two 28-bit
primes and use the Chinese remainder theorem (CRT) in conjunction with the AVX instruction set to accelerate
the integer arithmetic. Choosing a modulus @ that splits into 32-bit primes is important for concrete efficiency. We
observe that using the AVX instruction sets, we can compute four 32-bit-by-32-bit integer multiplications in the same
time it takes to compute a single 64-bit-by-64-bit integer multiplication. Thus, using CRT with AVX gives us a factor
of 2× speed-up for arithmetic operations. Note that this is helpful primarily when processing the first dimension and
less so for the subsequent GSW folding operations. Indeed, if we compare against a modified implementation where
we use 64-bit-by-64-bit integer multiplications, we observe a 2.1× slowdown in the time it takes to process the first
dimension. As a function of the overall computation time, using CRT provides a 1.3–1.4× speed-up (since the first
dimension processing accounts for slightly less than half of the total server computation).

We also note that our implementation uses AVX-512, whereas previous systems only used AVX2. However,
AVX-512 is not the main source of speedup in our implementation. If we disable AVX-512, we only observe moderate
slowdowns of 6–14%. AVX2 is more critical to our system’s performance; for large databases, disabling AVX2 results
in a 2× slowdown.

Heuristic noise analysis. As mentioned in Remark 2.18, we set our lattice parameters under an independence
heuristic where we model the noise introduced by various homomorphic operations as independent subgaussian
distributions (see Section 5.1). While this is a standard heuristic in many previous lattice-based systems (e.g.,
[GHS12b, CGGI18, MCR21]), we validate the heuristic by comparing the actual error magnitude in the lattice
encodings with the magnitude predicted by our heuristic model. We compare the two in Fig. 6. As the plot shows,

34

48 49 50 51 52 53 54 55 56
2−50

2−40

2−30

2−20

2−10

20

Encoding Modulus @

E
rr
o
r
R
at
e

Observed error rate Extrapolated error rate Predicted error rate

Figure 6: Observed error rates for Spiral on a 220 × 256B database as a function of the encoding modulus @. The
observed error rate is the fraction of error components that exceed the correctness threshold for a particular encoding
modulus. These are estimated from a set of 163, 000 error coefficients obtained from 20 independent protocol
executions. We extend the measured values with a Gaussian function (with width parameter estimated based on the
final observed value). Finally, we also plot the error rate predicted by our heuristic noise analysis from Section 5.1.

there is still a decent margin between the measured error magnitude and the predicted error magnitude. This means
that while we set our correctness target to 2−40, the actual scheme should satisfy a much higher correctness guarantee.

Application scenarios. We now estimate the concrete cost of using Spiral to support various privacy-preserving
applications based on PIR:

• Private video streaming. Suppose a user is interested in privately streaming a 2 GB movie from a library
of 214 movies. Using SpiralStreamPack, this would require a 30 MB upload, a 2.5 GB download, and 5.6
CPU-hours of computation. The overall server cost using SpiralStreamPack is $0.33. This is just 1.9× higher
than the no-privacy baseline where the client just downloads the movie directly ($0.18). Using OnionPIR for the
same task would require a 63 KB upload, an 8.3 GB download, and 59.3 CPU-hours of compute. This is 17×
more expensive than the non-private solution, and 9× more expensive than SpiralStreamPack.

• Private voice calls. Next, we consider the Addra application for private voice communication [AYA+21]. In
Addra, a 5-minute voice call can be implemented with 625 rounds, and in each round, the user downloads 96
bytes. If we use SpiralStream to support a system with up to 220 users, a private 5-minute voice call would
require a 29 MB upload, 11 MB of download, and 112 seconds of CPU time. The per-user server cost is $0.0016,
which is a 3.9× improvement compared to FastPIR (used for the Addra system). On an absolute scale, running a
system like Addra using SpiralStream remains costly at over $300/minute to support a million users.

• Private Wikipedia. We can also consider a non-streaming setting where we use PIR to privately access a
Wikipedia article. We consider the end-to-end latency needed to retrieve an entry from a 31 GB database (which
would contain all of the text in English Wikipedia and a subset of article images) with a maximum article size
of 30 KB. We split the database into 16 independent partitions and process the query in parallel on a 16-core
machine with 42 GB of memory. Running this setup would require $229 USD monthly on AWS. We model
network conditions based on a median mobile upload speed of 8 Mbps and download speed of 29 Mbps [Spe22].
Under these conditions, SpiralPack could deliver an article in just 4.3 seconds. This is a 2.1× reduction in the
end-to-end time compared to OnionPIR. Unlike the movie streaming setting above, the non-streaming setting
remains one where the private solution remains much slower than non-private retrieval.

35

6 Related Work

Number-theoretic constructions. Many early constructions of single-server PIR [Cha04, Lip05] follow the
Kushilevitz-Ostrovsky paradigm [KO97] based on homomorphic encryption. These were typically instantiated
using number-theoretic assumptions such as Paillier [Pai99] or the Damgård-Jurik [DJ01] encryption schemes. An-
other line of works [CMS99, GR05] gave constructions with polylogarithmic communication from the q-hiding
assumption. Döttling et al. [DGI+19] showed how to construct rate-1 PIR (on sufficiently-large) records based on
trapdoor hash functions, which can in turn be based on a broad range of classic number-theoretic assumptions.

Lattice-based PIR. Themore concretely efficient single-server PIR protocols are based on lattice-based assumptions.
Starting with XPIR [MBFK16], a number of systems have progressively reduced the computational cost of single-
server PIR [AS16, ACLS18, GH19, PT20, ALP+21, AYA+21, MCR21]. While early constructions only relied on additive
homomorphism, more recent constructions also incorporate multiplicative homomorphism for better concrete
efficiency [GH19, PT20, ALP+21, MCR21]. The design of Spiral follows the recent approach of composing Regev
encryption with GSW encryption to achieve a higher rate and slower noise growth.

PIR variants. Many works have introduced techniques to reduce or amortize the computation cost of single-server
PIR protocols. One approach is batch PIR [BIM00, IKOS04, GKL10, ACLS18] where the server’s computational cost is
amortized over a batch of queries. In particular, Angel et al. [ACLS18] introduced a generic approach of composing a
PIR protocol with a probabilistic batch code to amortize the server’s computational cost.

Another line of works has focused on stateful PIR [PPY18, MCR21, CK20, CHK22] where the client retrieves some
query-independent advice string from the database in an offline phase and uses the advice string to reduce the cost
of the online phase. The recent OnionPIR system [MCR21] introduces a general approach based on private batch
sum retrieval that reduces the online cost of performing PIR over a database with # records to that of a PIR over a
database with$ (

√
) records (the overall online cost is still$ (#), but the bottleneck is the PIR on the$ (

√
) record

database). Corrigan-Gibbs and Kogan [CK20] show how to obtain a single-server stateful PIR with sublinear online
time; however, the advice string is not reusable so the (linear) offline preprocessing has to be repeated for each query.
More recently, Corrigan-Gibbs et al. [CHK22] introduce a stateful PIR protocol with a reusable advice string which
yields a single-server PIR with sublinear amortized cost.

Another variant is PIR with preprocessing [BIM00] or doubly-efficient PIR [BIPW17, CHR17] where the server
first performs a linear preprocessing step to obtain an encoding of the database. Using the encoding, the server can
then answer online queries in strictly sublinear time. Boyle et al. [BIPW17] and Canetti et al. [CHR17] recently
showed how to construct doubly-efficient PIR schemes from virtual black-box obfuscation, a very strong cryptographic
assumption that is possible only in idealized models [BGI+01] (and also currently far from being concretely efficient).

Multi-server PIR. While our focus in this work in the single-server setting, many PIR protocols [CGKS95, Yek07,
Efr09, BIKO12, GI14, BGI16, HH19] consider the multi-server setting where the database is replicated across several
non-colluding servers (see also the survey by Gasarch [Gas04] and the references therein). Multi-server constructions
are highly efficient as the server computation can be based purely on symmetric operations rather than more expensive
public-key operations. However, the non-colluding requirements imposes logistic hurdles to deployment.

Acknowledgments

We thank Henry Corrigan-Gibbs and Craig Gentry for helpful insights and pointers on this work. D. J. Wu is supported
by NSF CNS-1917414, CNS-2045180, and a Microsoft Research Faculty Fellowship.

References

[ACLS18] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. PIR with compressed queries and
amortized query processing. In IEEE S&P, 2018.

36

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast cryptographic primitives and
circular-secure encryption based on hard learning problems. In CRYPTO, 2009.

[AG11] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In ICALP, 2011.

[ALP+21] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann, Karn Seth, and Kevin
Yeo. Communication-computation trade-offs in PIR. In USENIX Security, 2021.

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of Learning with Errors.
Journal of Mathematical Cryptology, 9(3), 2015.

[AS16] Sebastian Angel and Srinath T. V. Setty. Unobservable communication over fully untrusted infrastructure.
In OSDI, 2016.

[AWS21] Amazon EC2 reserved instances pricing. https://aws.amazon.com/ec2/pricing/

reserved-instances/pricing/, 2021. Last accessed: November 28, 2021.

[AYA+21] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trinabh Gupta. Addra:
Metadata-private voice communication over fully untrusted infrastructure. In OSDI, 2021.

[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Nikolaenko, Ananth
Raghunathan, and Douglas Stebila. Frodo: Take off the ring! practical, quantum-secure key exchange
from LWE. In ACM CCS, 2016.

[BDG15] Nikita Borisov, George Danezis, and Ian Goldberg. DP5: A private presence service. Proc. Priv. Enhancing
Technol., 2015(2), 2015.

[BDGL16] Anja Becker, Léo Ducas, Nicolas Gama, and Thijs Laarhoven. New directions in nearest neighbor
searching with applications to lattice sieving. In SODA, 2016.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan, and Ke Yang.
On the (im)possibility of obfuscating programs. In CRYPTO, 2001.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In
ACM CCS, 2016.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic encryption
without bootstrapping. In ITCS, 2012.

[BIKO12] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conversion and private information
retrieval. In CCC, 2012.

[BIM00] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in private information
retrieval: PIR with preprocessing. In CRYPTO, 2000.

[BIPW17] Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database both locally and
privately? In TCC, 2017.

[BKS+21] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe DM de Souza, Vinodh Gopal, et al. Intel HEXL (release
1.2). https://github.com/intel/hexl, 2021.

[Bra12] Zvika Brakerski. Fully homomorphic encryption without modulus switching from classical GapSVP. In
CRYPTO, 2012.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-scheme security in the presence of
key-dependent messages. In SAC, 2002.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard)
LWE. In FOCS, 2011.

37

[CCR19] Hao Chen, Ilaria Chillotti, and Ling Ren. Onion ring ORAM: efficient constant bandwidth oblivious RAM
from (leveled) TFHE. In ACM CCS, 2019.

[CGGI18] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: fast fully homomorphic
encryption over the torus. IACR Cryptol. ePrint Arch., 2018.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: fast fully homomorphic
encryption over the torus. J. Cryptol., 33(1), 2020.

[CGKS95] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. Private information retrieval. In FOCS,
1995.

[Cha04] Yan-Cheng Chang. Single database private information retrieval with logarithmic communication. In
ACISP, 2004.

[CHK22] Henry Corrigan-Gibbs, Alexandra Henzinger, and Dmitry Kogan. Single-server private information
retrieval with sublinear amortized time. In EUROCRYPT, 2022.

[CHR17] Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private information retrieval.
In TCC, 2017.

[CK20] Henry Corrigan-Gibbs and Dmitry Kogan. Private information retrieval with sublinear online time. In
EUROCRYPT, 2020.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information retrieval with
polylogarithmic communication. In EUROCRYPT, 1999.

[CN11] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In ASIACRYPT, 2011.

[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail Ostrovsky. Trapdoor
hash functions and their applications. In CRYPTO, 2019.

[DJ01] Ivan Damgård and Mads Jurik. A generalisation, a simplification and some applications of paillier’s
probabilistic public-key system. In PKC, 2001.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somewhat
homomorphic encryption. In CRYPTO, 2012.

[DRRT18] Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: scaling private contact discovery.
Proc. Priv. Enhancing Technol., 2018(4), 2018.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In STOC, 2009.

[FKP15] Eric Fung, Georgios Kellaris, and Dimitris Papadias. Combining differential privacy and PIR for efficient
strong location privacy. In SSTD, 2015.

[FV12] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. IACR Cryptol.

ePrint Arch., 2012.

[Gal13] Steven D Galbraith. Space-efficient variants of cryptosystems based on learning with errors. 2013.

[Gas04] William I. Gasarch. A survey on private information retrieval. Bull. EATCS, 82, 2004.

[GCM+16] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath T. V. Setty, Lorenzo Alvisi, and Michael
Walfish. Scalable and private media consumption with popcorn. In NSDI, 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, 2009.

[GH19] Craig Gentry and Shai Halevi. Compressible FHE with applications to PIR. In TCC, 2019.

38

[GHS12a] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog overhead. In
EUROCRYPT, 2012.

[GHS12b] Craig Gentry, Shai Halevi, and Nigel P. Smart. Homomorphic evaluation of the AES circuit. In CRYPTO,
2012.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In EUROCRYPT, 2014.

[GKL10] Jens Groth, Aggelos Kiayias, and Helger Lipmaa. Multi-query computationally-private information
retrieval with constant communication rate. In PKC, 2010.

[GR05] Craig Gentry and Zulfikar Ramzan. Single-database private information retrieval with constant commu-
nication rate. In ICALP, 2005.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with errors:
Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, 2013.

[HH19] Syed Mahbub Hafiz and Ryan Henry. A bit more than a bit is more than a bit better: Faster (essentially)
optimal-rate many-server PIR. Proc. Priv. Enhancing Technol., 2019(4), 2019.

[IKOS04] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their applications. In
STOC, 2004.

[ISW21] Yuval Ishai, Hang Su, and David J. Wu. Shorter and faster post-quantum designated-verifier zkSNARKs
from lattices. In ACM CCS, 2021.

[KC21] Dmitry Kogan and Henry Corrigan-Gibbs. Private blocklist lookups with checklist. In USENIX Security,
2021.

[KLDF16] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. Riffle: An efficient communication system
with strong anonymity. Proc. Priv. Enhancing Technol., 2016(2), 2016.

[KO97] Eyal Kushilevitz and Rafail Ostrovsky. Replication is not needed: Single database, computationally-private
information retrieval. In FOCS, 1997.

[Lip05] Helger Lipmaa. An oblivious transfer protocol with log-squared communication. In ISC, 2005.

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest proposal
for FFT hashing. In FSE, 2008.

[LN16] Patrick Longa and Michael Naehrig. Speeding up the number theoretic transform for faster ideal
lattice-based cryptography. In CANS, 2016.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over
rings. In EUROCRYPT, 2010.

[MBFK16] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian. XPIR : Private informa-
tion retrieval for everyone. Proc. Priv. Enhancing Technol., 2016(2), 2016.

[MCR21] Muhammad Haris Mughees, Hao Chen, and Ling Ren. OnionPIR: Response efficient single-server PIR. In
ACM CCS, 2021.

[MOT+11] Prateek Mittal, Femi G. Olumofin, Carmela Troncoso, Nikita Borisov, and Ian Goldberg. Pir-tor: Scalable
anonymous communication using private information retrieval. In USENIX Security, 2011.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In
EUROCRYPT, 2012.

39

[MW22] Samir Jordan Menon and David J. Wu. Spiral: Fast, high-rate single-server PIR via FHE composition. In
IEEE S&P, 2022.

[OS07] Rafail Ostrovsky and William E. Skeith III. A survey of single database PIR: techniques and applications.
IACR Cryptol. ePrint Arch., 2007.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In EUROCRYPT,
1999.

[Pei16] Chris Peikert. A decade of lattice cryptography. Found. Trends Theor. Comput. Sci., 10(4), 2016.

[PPY18] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. Private stateful information retrieval. In ACM CCS, 2018.

[PT20] Jeongeun Park and Mehdi Tibouchi. SHECS-PIR: somewhat homomorphic encryption-based compact
and scalable private information retrieval. In ESORICS, 2020.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, 2005.

[SC07] Radu Sion and Bogdan Carbunar. On the practicality of private information retrieval. In NDSS, 2007.

[SEA19] Microsoft SEAL (release 3.2). https://github.com/Microsoft/SEAL, February 2019. Microsoft
Research, Redmond, WA.

[SFK+21] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald G. Dreslinski, Christo-
pher Peikert, and Daniel Sánchez. F1: A fast and programmable accelerator for fully homomorphic
encryption. In MICRO, pages 238–252, 2021.

[Spe22] Speedtest. Speedtest global index, 2022. https://www.speedtest.net/global-index. Last accessed:
March 18, 2022.

[TSS+20] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. Epione: Lightweight contact
tracing with strong privacy. IEEE Data Eng. Bull., 43(2), 2020.

[VJH21] Alexander Viand, Patrick Jattke, and Anwar Hithnawi. SoK: Fully homomorphic encryption compilers.
In IEEE S&P, 2021.

[WZPM16] David J. Wu, Joe Zimmerman, Jérémy Planul, and John C. Mitchell. Privacy-preserving shortest path
computation. In NDSS, 2016.

[Yek07] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. In STOC, 2007.

A Coefficient Extraction on Regev Encodings

In this section, we recall the coefficient expansion algorithm byAngel et al. [ACLS18] and extended byChen et al. [CCR19].
This approach relies on the ability to homomorphically compute automorphisms on Regev-encoded polynomials. We
review this below.

Automorphisms. As usual, let ' = Z[G]/(G3 + 1) where 3 is a power of two. For a positive integer ℓ , we write
gℓ : ' → ' to denote the ring automorphism A (G) ↦→ A (G ℓ). We can define a corresponding set of automorphisms
over '@ . For notational convenience, we use gℓ to denote both sets of automorphisms. We extend gℓ to operate on
vectors and matrices of ring elements (in both ' and '@) in a component-wise manner.

40

Automorphisms onRegev encodings. Similar to the other translation protocols (Sections 3.1 and 3.2), supporting
automorphisms requires knowledge of additional key-switching matrices. We give the parameter-generation and
automorphism algorithms below:

• AutomorphSetup(s, g, I): On input the secret key s = [−B̃ | 1]T, an automorphism g : '@ → '@ , and a decompo-

sition base I ∈ N, let C =
⌊
logI @

⌋
+ 1. Sample a

r← 'C@ , e← jC , and output the key

Wg =

[
aT

B̃aT + eT
]
+
[

01×C

−g (B̃) · gI

]
∈ '2×C

@

• Automorph(Wg , c): On input the automorphism keyWg ∈ '2×C
@ associated with an automorphism g : '@ → '@ ,

and encoding c = (20, 21) ∈ '2
@ , outputWgg

−1
I (g (20)) + [0 | g (21)]T.

Theorem A.1 (Automorphisms [GHS12a, BGV12, adapted]). For a positive integer ℓ ∈ N, let gℓ : '@ → '@ be the

automorphism A (G) ↦→ A (G ℓ) and I ∈ N be a decomposition base. Let s = [−B̃ | 1]T ∈ '2
@ be a Regev secret key and suppose

that c ∈ '2
@ encodes ` ∈ '@ with error 4 ∈ '. Let Wg ← AutomorphSetup(s, gℓ , I) and c′ ← Automorph(Wg , c).

Suppose that the error distribution j in AutomorphSetup is �-bounded, and let C =
⌊
logI @

⌋
+ 1. Then, c′ is an encoding

of gℓ (`) ∈ '@ with error 4 ′ where ‖4 ′‖∞ ≤ ‖4 ‖∞ + C3�I/2. If 4 is subgaussian with parameter f , j is subgaussian

with parameter fj , then under the independence heuristic (Remark 2.18), 4 ′ is subgaussian with parameter f ′ where
(f ′)2 = f2 + C3I2f2

j/4.

Proof. Let c = [20 | 21]T. By definition, we have that

sTc′ = sTWgg
−1
I (gℓ (20)) + gℓ (21) = [−B̃ | 1]

([
aT

B̃aT + eT
]
+
[

01×C

−gℓ (B̃) · gI

])
g−1I (gℓ (20)) + gℓ (21)

= eTg−1I (gℓ (20)) − gℓ (B̃)gℓ (20) + gℓ (21)
= eTg−1I (gℓ (20)) + gℓ (sTc)
= gℓ (`) + gℓ (4) + eTg−1I (gℓ (20)).

Thus, c′ is an encoding of gℓ (`) with error gℓ (4) + eTg−1I (gℓ (20)). Over ' = Z[G]/(G3 + 1), the automorphism gℓ simply
permutes the coefficients of the input, so ‖gℓ (4)‖∞ = ‖4 ‖∞. Letting 4 ′ = gℓ (4) + eTg−1I (gℓ (20)), we have that

‖4 ′‖∞ ≤ ‖gℓ (4)‖∞ +

eTg−1I (gℓ (20))

∞ ≤ ‖4 ‖∞ + CW'�I/2 = ‖4 ‖∞ + C3�I/2.

Next, since e in Wg is sampled independently of c, by Lemma 2.6, eTg−1I (gℓ (20)) is subgaussian with parameter√
C3fjI/2. If we apply the independence heuristic to 4 and eTg−1I (gℓ (20)), then 4 ′ is subgaussian with parameter f ′

where (f ′)2 = f2 + C3I2f2
j/4. �

Coefficient expansion algorithm. We recall the coefficient expansion procedure by Angel et al. [ACLS18] and
extended by Chen et al. [CCR19]. The algorithm takes a polynomial 5 =

∑
8∈[0,2A−1] 58G

8 ∈ '@ as input and outputs a

(scaled) vector of coefficients 2A · (50, . . . , 52A−1) ∈ Z2
A

@ . The algorithm only relies on ring automorphisms gℓ : '@ → '@
and linear operations, and can be implemented homomorphically on encodings.

Theorem A.2 (Correctness of Coefficient Expansion [ACLS18, CCR19]). Let ' = Z[G]/(G3 + 1) where 3 is a power of

two. Let @ be an odd integer. Then, on input a polynomial 5 =
∑

8∈[0,2A−1] 58G
8 ∈ '@ where 2A ≤ 3 , Algorithm 1 outputs the

scaled coefficients 2A · (50, . . . , 52A−1) ∈ Z2
A

@ . More generally, for any input polynomial 5̂ =
∑

8∈[0,3−1] 5̂8G
8 to Algorithm 1,

after round 8 ∈ [A], the value 59 satisfies 59 =
∑

: ::=9−1 mod 28 5̂:G
:−9+1.

Remark A.3 (Homomorphic Expansion). By construction, Algorithm 1 only requires scalar multiplication, addition,
and automorphisms over '@ . Thus, we can homomorphically evaluate Algorithm 1 on a Regev encoding of a

41

Algorithm 1: Coefficient expansion [ACLS18, CCR19].

Input: a polynomial 5 =
∑

8∈[0,2A−1] 58G
8 ∈ '@ where ' = Z[G]/(G3 + 1) and 2A ≤ 3

Output: the scaled coefficients 2A · (50, . . . , 52A−1) ∈ Z2
A

@

1 50 ← 5

2 for 8 = 0 to A − 1 do
3 ℓ ← 2A−8 + 1
4 for 9 = 0 to 28 − 1 do
5 5 ′9 ← 59 · G−2

9
⊲ G−2

9
= −G3−29 ∈ '

6 59 ← 59 + gℓ (59) ⊲ gℓ : '@ → '@ is the automorphism 5 (G) ↦→ 5 (G ℓ)
7 59+28 ← 5 ′9 + gℓ (5 ′9)
8 end

9 end

10 return 50, 51, . . . , 52A−1

polynomial 5 ∈ '@ to obtain (scaled) Regev encodings of the coefficients of 5 . To homomorphically compute A rounds
of Algorithm 1 on an encoding c, the evaluator will need access to key-switching matrices W0, . . . ,WA−1 where
W8 ← AutomorphSetup(s, g2A−8+1, I), s is the secret key associated with c, and I ∈ N is the desired decomposition
base (chosen to control noise growth).

Theorem A.4 (Homomorphic Coefficient Expansion). Let ' = Z[G]/(G3 + 1) where 3 is a power of two and let s ∈ '2
@

be a Regev secret key. Take any polynomial 5 =
∑

8∈[0,2A−1] 58G
8 ∈ '@ for some A ∈ N where 2A ≤ 3 . Suppose that c is a

Regev encoding of 5 with error 4 . Suppose automorphism keys are sampled using AutomorphSetup with decomposition

base I ∈ N and a �-bounded error distribution j . Then, homomorphically applying Algorithm 1 to c yields encodings

(c′0, . . . , c′2A−1) where c′8 encodes 58 with error 4 ′8 and

4 ′8

∞ ≤ 2A (‖4 ‖∞ + C3�I) for C =

⌊
logI @

⌋
+ 1. In addition, if

4 is subgaussian with parameter f and j is subgaussian with parameter fj , then under the independence heuristic

(Remark 2.18), each 4 ′8 is subgaussian with parameter f ′8 where (f ′8)2 = 4A (f2 + C3I2f2
j/3).

Proof. Correctness of the homomorphic operations (Theorems 2.12 and A.1) along with correctness of the coefficient
expansion algorithm (Theorem A.2) implies that c′8 is a valid encoding of 58 .

To bound the error in the output encodings, consider the error accumulation in each round 8 = 0, . . . , A − 1 of
Algorithm 1. Let ĉ be an encoding at the beginning of the 8th round and let 4̂ be its associated error (e.g., 4̂ = 4

when 8 = 0). By Theorem 2.12, multiplication by the monomial G−2
9
does not change the norm of the error. By

Theorems 2.12 and A.1, the error in the encoding after the homomorphic addition and automorphism is bounded by
‖4̂ ‖∞ + (‖4̂ ‖∞ + C3�I/2) = 2 ‖4̂ ‖∞ + C3�I/2. Thus, after A iterations, the final error 4 ′8 in each encoding satisfies

4 ′8

∞ ≤ 2A ‖4 ‖∞ + (2A − 1)C3�I/2 ≤ 2A ‖4 ‖∞ + 2A C3�I.

For the subgaussian case, suppose that the errors in the encodings at the beginning of the 8th round are subgaussian
with parameter f8 . By the same analysis as in the proof of Theorem A.1, the error associated with encodings at the
end of the 8th round will be subgaussian with parameter f8+1 where f2

8+1 = 4f2
8 + C3I2f2

j/4. After A iterations,

f2
A = 4Af2 + C3I2f2

j/4
∑

8∈[0,A]
48 < 4Af2 + 4A C3I2f2

j/3. �

Remark A.5 (Multiple Decomposition Bases). When homomorphically evaluating Algorithm 1, we only require the
ability to homomorphically evaluate automorphisms on the encrypted polynomial. For more fine-grained control of
the noise introduced by the expansion procedure, we can use different decomposition bases in different rounds of the
expansion. This will be useful in our protocol (Construction 4.1) since we pack two different polynomials into the
even and odd powers of 5 ; the two polynomials have very different degrees, so it is advantageous to use different
decomposition bases to expand them.

42

B Correctness and Security Analysis

In this section, we provide the formal proofs of Theorem 4.5 and Theorem 4.6 for Construction 4.1.

Proof of Theorem 4.5 (Correctness). Let D = {31, . . . , 3# } be the database where 38 ∈ '=×=? and take any index

idx = (8∗, 9∗1 , . . . , 9∗a2). Sample (pp, qk) ← Setup(1_, 1#) and let q ← �ery(qk, idx), r ← Answer(pp,D, q). In
particular, qk = (s, S), q = c ∈ '2

@ , and r = (ĉ1, Ĉ2) ∈ '=@2 × '
=×=
@1

. We first argue that C is a Regev encoding of 3idx and
then proceed with the noise analysis. We consider each step of the Answer algorithm:

• Query expansion: By construction, c is an encoding of the packed polynomial ` (G) from Eq. (4.1). By
Theorems A.2 and A.4, after a single iteration, cReg encodes the message 2A1−1`8∗ (G2), and cGSW encodes the
message 2A2−1` 9∗ (G2).

– Since `8∗ = ⌊@/?⌋ G8
∗
, after A1 − 1 rounds of expansion on cReg, for all 8 ≠ 8∗, c

(Reg)
8 is an encoding of 0

while c
(Reg)
8∗ is an encoding of ⌊@/?⌋. By Theorem 3.1, C

(Reg)
8 are encodings of 0=×= for all 8 ≠ 8∗ while

C
(Reg)
8∗ is an encoding of ⌊@/?⌋ I= .

– By construction of ` 9∗ , after A2 − 1 rounds of expansion on cGSW, the encodings c
(GSW)
(ℓ−1)CGSW+1, . . . , c

(GSW)
ℓCGSW

encode messages 9∗ℓ , IGSW 9∗ℓ , . . . , (IGSW)CGSW−1 9∗ℓ for each ℓ ∈ [a2]. Then, by Theorem 3.2, C
(GSW)
ℓ is a

GSW encoding of the bit 9∗ℓ .

• Processing the first dimension: By Theorem 2.12 and the fact that C
(Reg)
8 are encodings of 0=×= for all 8 ≠ 8∗,

it follows that C
(0)
9 is an encoding of ⌊@/?⌋ · 38∗, 9 for each 9 ∈ [0, 2a2 − 1].

• Folding in the subsequent dimensions: We show that for all A ∈ [0, a2] and 9 ∈ [0, 2a2−A − 1], C(A)9 encodes

⌊@/?⌋ 38∗,dA+9 , where dA =
∑

8∈[A] 2
a2−8 9∗8 . As shown above, this is true for A = 0. Consider the ciphertexts output

at the end of the A th round. First, by definition, dA = dA−1 + 2a2−A 9∗A . Now, by correctness of the homomorphic

operations (Theorems 2.12 and 2.19 and Remark 2.16), C
(A)
9 is an encoding of

⌊@/?⌋
(
(1 − 9∗A)38∗,dA−1+9 + 9∗A 38∗,dA−1+2a2−A+9

)
= ⌊@/?⌋ · 38∗,dA+9 ,

as required. Finally, da2 =
∑

8∈[a2] 2
a2−8 9∗8 . Thus, the final encoding C

(a2)
0 has value

⌊@/?⌋ 38∗,da2 = ⌊@/?⌋ 38∗, 9∗1 ,..., 9∗a2 = ⌊@/?⌋ 3idx .

As long as the noise in C
(a2)
0 is small enough (as required by Theorems 2.11 and 3.4), Decode will output 3idx, and

correctness holds. We now analyze the noise in C
(a2)
0 . We can assume this maximum is taken over all decomposition

bases used for coefficient expansion (see Remark A.5).

• Query: The client’s query c ∈ '2
@ is a fresh Regev encryption with error at most e← j . Since j is �-bounded,

‖e‖∞ ≤ �. Similarly, if j is subgaussian with parameter f , the same holds for e.

• Query expansion: We consider the Regev and GSW ciphertexts separately:

– By TheoremA.4, the noise e
(Reg)
8 associated with each c

(Reg)
8 is bounded by 2a1+1�+2a1+1Ccoeff3�Icoeff , where

Ccoeff = ⌊logIcoeff @⌋ + 1 = $ (log@). Thus, ‖e(Reg)8 ‖∞ = $ (2a13�I log@). By Theorem 3.1, the noise E
(Reg)
8 in

each C
(Reg)
8 is bounded by ‖e(Reg)8 ‖∞ + (3Cconv�Iconv)/2 = $ (2a13�I log@), since Cconv = ⌊logIconv @⌋ + 1 =

$ (log@).
– Similarly, by Theorem A.4, and using the fact that CGSW = ⌊logIGSW @⌋ + 1 = $ (log@), the noise e(GSW)8

associated with each c
(GSW)
8 is bounded by $ (a2�3I log2 @). By Theorem 3.2, the noise E

(GSW)
8 associated

with C
(GSW)
8 is bounded by $ (a2�232I log2 @) +$ (3�I log@) = $ (a2�232I log2 @).

43

• Processing the first dimension: By Theorem 2.12, the noise E
(0)
9 in each ciphertext C

(0)
9 is bounded by

2a13=?/2 ·$ (2a13�I log@) = $ (22a132=?�I log@).

• Folding in the subsequent dimensions: To bound the noise introduced in the folding step, we first observe

that C
(GSW)
A is encrypting a bit 1 ∈ {0, 1}, and moreover, either C

(GSW)
A or Complement(C(GSW)A) is a GSW

encryption of 0. Appealing now to Theorem 2.19, the noise E
(A)
9 in each ciphertext C

(A)
9 is bounded by

max
(
‖E(A−1)9 ‖∞, ‖E(A−1)2a2−A+9 ‖∞

)
+$

(
3=I‖E(GSW)A ‖∞ log@

)
.

The final noise E
(a2)
0 is then bounded by $ (22a132=?�I log@ + a22�233=I2 log3 @).

Recall that r = (ĉ1, Ĉ2). By Theorem 3.4, the noise E in the final encoding Z← Recover(S, ĉ1, Ĉ2) is bounded by

‖E‖∞ = $

(
@1

@

(
22a132=?�I log@ + a22�233=I2 log3 @ + ?

)
+ @1
@2
3� + ?

)
.

By Theorem 2.11, Decode(Z) = 3idx as long as ‖E‖∞ + (@1 mod ?) ≤ @1/2? . This condition is satisfied by taking

@ = Ω
(
32=?�I log@(22a1? + a22�3I log2 @)

)
and @2 = Ω(3�?) and @1 = Ω(?2),

and the theorem follows. �

Proof of Theorem 4.6 (Security). We proceed with a hybrid argument:

• Hyb0: This is the real query privacy game. The challenger starts by computing (pp, qk) ← Setup(1_, 1#) and
sends pp to the adversary. The challenger samples a random bit 1

r← {0, 1} and replies to the adversary’s
queries (idx0, idx1) with q ← �ery(qk, idx1). In particular, the challenger samples S ← KeyGen(1_, 1=),
s ← KeyGen(1_, 11), computes the conversion keys ck = (V,W,�) ← RegevToGSWSetup(s, S, Iconv) and
W8 ← AutomorphSetup(s, g2d−8+1, Icoeff) for all 8 ∈ [0, d − 1], and sets pp = (ck,W0, . . . ,Wd−1). In addition,
the query consists of an encoding Regev.Encode(s, `), where ` ∈ '@ is as defined in Eq. (4.1). At the end of the
experiment, the adversary outputs a bit 1 ′ ∈ {0, 1}. The experiment outputs 1 if 1 = 1 ′ and 0 otherwise.

• Hyb1: Same as Hyb0 except the challenger replaces the encoding V in ck with an encoding of a random matrix

R1
r← '=×<conv

@ under S, where<conv = (= + 1) · Cconv and Cconv =
⌊
logIconv @

⌋
+ 1. It also replaces W in ck with

an encoding of a random matrix R2
r← '=×2Cconv@ under S.

• Hyb2: Same as Hyb1 except the challenger replaces W8 with an encoding of a random element r8
r← '

Ccoeff
@

under s for all 8 ∈ [0, d − 1] and where Ccoeff = ⌊logIcoeff @⌋ + 1. It also replies to each query with an encoding of

a random A
r← '@ under s.

For an adversary A, we write Hyb8 (A) to denote the output of experiment Hyb8 with adversary A. By design, in
Hyb2, the adversary’s view is entirely independent of 1, so for all adversariesA, Pr[Hyb2 (A) = 1] = 1/2. To complete
the proof, we show that the outputs of each adjacent pair of experiments are computationally indistinguishable.

Lemma B.1. Suppose the Regev encoding scheme with message space '=@ is Faff-KDM-secure. Then, for all efficient

adversaries A, Hyb0 (A)
2≈ Hyb1 (A),

Proof. Suppose there is an efficient adversary A such that
��Pr[Hyb0 (A) = 1] − Pr[Hyb1 (A) = 1]

�� ≥ Y for some
non-negligible Y. We use A to construct an algorithm B that breaks KDM security of the encoding scheme:

1. The KDM security challenger starts by sampling a secret key S = [−s̃1 | I=]T ← KeyGen(1_, 1=).

2. Algorithm B samples for itself a key s = [−B̃0 | 1]T ← KeyGen(1_, 11).

44

3. Algorithm B queries the encryption oracle on input −B̃0 · G=,Iconv to obtain V and on input −s̃1 · (sT ⊗ gTIconv) to
obtain W.13 Note that −B̃0 · G=,Iconv is independent of the secret key S and −s̃1 · (sT ⊗ gTIconv) is a linear function
of the components of the secret key S (specifically, algorithm B can compute sT ⊗ gTIconv itself). Algorithm B
computes � exactly as in the real scheme and sets ck = (V,W,�).

4. Algorithm B computes W0, . . . ,Wd−1 as in the real scheme (since it only depends on s) and gives pp =

(ck,W0, . . . ,Wd−1) to A.

5. Algorithm B samples a bit V
r← {0, 1}. When A makes a query (idx0, idx1), algorithm B responds with

�ery(qk, idxV). In particular, the�ery algorithm depends only on s (which B knows) and not on S.

6. Finally, algorithm A outputs a bit V ′ ∈ {0, 1} and algorithm B outputs 1 if V = V ′ and 0 otherwise.

Let 1 ∈ {0, 1} be the bit the KDM challenger samples.

• If 1 = 0, then the challenger replies to B’s queries with the encryption of the queried message. In this case,
B perfectly simulates Hyb0 and outputs 1 with Pr[Hyb0 (A) = 1]. Correspondingly, B outputs 1 = 0 with
probability 1 − Pr[Hyb0 (A) = 1].

• If 1 = 1, then the challenger replies to B’s queries with an encryption of a random message. In this case, B
perfectly simulates Hyb1 and outputs 1 with probability Pr[Hyb1 (A) = 1].

Thus, algorithm B outputs 1 with probability����Pr[B(1_) = 1] − 1

2

���� =
����12 (1 − Pr[Hyb0 (A) = 1]) + 1

2
Pr[Hyb1 (A) = 1] − 1

2

���� = Y

2
. �

Lemma B.2. Suppose the Regev encoding scheme with message space '@ is Fauto-KDM-secure. Then, for all efficient

adversaries A, Hyb1 (A)
2≈ Hyb2 (A).

Proof. Suppose there exists an efficient adversary A such that
��Pr[Hyb1 (A) = 1] − Pr[Hyb2 (A) = 1]

�� ≥ Y for some
non-negligible Y. We use A to construct an algorithm B that breaks KDM security of the encoding scheme:

1. The KDM security challenger starts by sampling a secret key s = [−B̃0 | 1]T ← KeyGen(1_, 11).

2. Algorithm B samples for itself a key S = [−s̃1 | I=]T ← KeyGen(1_, 1=).

3. Algorithm B samples R1
r← '=×<conv

@ and R2
r← '=×2Cconv@ . It computes V ← Encode(S,R1) and W ←

Encode(S,R2). It sets ck = (V,W,�) where � is defined as in the real scheme.

4. For each 8 ∈ [0, d−1], it queries its encryption oracle on each component of −g2d−8+1 (B̃0) ·gIcoeff and concatenates
the encodings to obtainW8 . It gives pp = (ck,W0, . . . ,Wd−1) to A.

5. Algorithm B samples a bit V
r← {0, 1}. WhenA makes a query (idx0, idx1), algorithm B computes ` according

to the real scheme (following Eq. (4.1)) and queries the encryption oracle on ` to obtain the encoded query c. It
replies to A with c.

6. Finally, algorithm A outputs a bit V ′ ∈ {0, 1} and algorithm B outputs 1 if V = V ′ and 0 otherwise.

Let 1 ∈ {0, 1} be the bit the KDM challenger samples.

• If 1 = 0, then the challenger replies to B’s queries with the encryption of the queried message under s. In this
case, algorithm B perfectly simulates the distribution in Hyb1 and outputs 1 with probability Pr[Hyb1 (A) = 1].
Correspondingly, B outputs 1 = 0 with probability 1 − Pr[Hyb1 (A) = 1].

13Strictly speaking, algorithm B constructs V andW by concatenating encodings of the columns of −B̃0 ·G=,Iconv and −s̃1 · (sT ⊗gTIconv) , respectively
(see Construction 2.8). This way, we only rely on KDM-security for the message space '=

@ .

45

• If 1 = 1, then the challenger replies to B with encryption of random messages. This corresponds to the
distribution in Hyb2, and B outputs 1 with probability Pr[Hyb2 (A) = 1].

By an analogous calculation as in the proof of Lemma B.1, the advantage of algorithm B is Y/2. �

As noted above, for all adversaries A, Pr[Hyb2 (A) = 1] = 1/2. The claim now follows from Lemmas B.1 and B.2.
Correspondingly, for all efficient adversaries A, Pr[Hyb0 (A) = 1] ≤ 1/2 + negl(_). �

46

	Introduction
	Background on Lattice-Based PIR
	Our Contributions and Construction Overview

	Preliminaries
	Lattice-Based Homomorphic Encodings

	Encoding Compression and Translation
	Expanding a Scalar Regev Encoding to a Matrix Regev Encoding
	Converting Regev Encodings into GSW Encodings
	Coefficient Extraction on Regev Encodings
	Modulus Switching

	The Spiral Protocol
	SpiralPack: Higher Rate via Encoding Packing

	Implementation and Evaluation
	Automatic Parameter Selection
	Implementation and Experimental Setup
	Evaluation Results for Spiral

	Related Work
	Coefficient Extraction on Regev Encodings
	Correctness and Security Analysis

