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Abstract—A novel methodology is introduced for optimally
allocating a sampling budget. Sampling budget allocation prob-
lems arise frequently in various settings. For example, in the
design of complex engineering systems, given both the com-
plexity of these systems and the imperfect information on
new technologies, designers often face deep uncertainty as
to system performance. Consequently, designers need to sam-
ple multiple alternative designs under a limited budget. This
article proposes a minimax regret approach to allocate the sam-
pling budget in the presence of deep uncertainty pertaining to
system performance. The objective is to maximize the probabil-
ity of selecting the design with the minimum-maximum regret
under a limited sampling budget and imperfect information. To
effectively solve the minimax regret problem, an approxima-
tion methodology that provides good solutions with quantifiable
uncertainty is developed. The essence of the methodology, which
has the added benefit of being generally applicable to any
multilevel optimization, is that all but the first level of multilevel
optimization can be eliminated via a response surface. By sam-
pling many values of a higher level decision’s variables, solving
the next lower level optimization given those samples values,
and calibrating a response surface to the objective function
value eliminate one required optimization. Doing this repeat-
edly reduces the complexity of the multilevel optimization to a
standard optimization. Regardless of the number of levels in the
optimization, repeating this process ultimately leaves one with
a single optimization whose objective function can be directly
computed, given the highest level variables. Numerical experi-
ments with two sampling allocation examples demonstrate both
the benefit of the robust sampling budget allocation versus nonro-
bust formulations and the effectiveness of the proposed solution
approach.

Index Terms—Complex system design, minimax regret,
response surface methodologies, sampling budget allocation.

I. INTRODUCTION

N THIS article, a novel methodology is introduced for allo-
I cating a sampling budget under deep uncertainty. Deep
uncertainty is defined as a situation where decision mak-
ers lack probability distributions for some or all uncertain
parameters [14]. Sampling budget allocation is an important
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problem arising in many different contexts. For example, in
the design of complex systems, where the utility of design
alternatives is often understood by running simulations that
are computationally expensive, often requiring multiple days to
generate a single sample, the designer must carefully allocate
a limited sampling budget among many design alternatives.
Classical approaches to sampling allocation for the system
design typically assume the mean and variance of each design
alternative’s utility can be reliably estimated by a subject-
matter expert (SME); an optimal sampling allocation is then
determined using these estimates which maximizes the proba-
bility of identifying the best design, post-sampling. Decisions
made under the classical framework are likely to be poor,
however, if an SME fails to accurately estimate means and
variances. Realistically, in the design of complex systems
means and variances of alternative designs’ utilities cannot be
accurately estimated prior to generating samples for a variety
of reasons: complex systems have many interacting parts, so
new system designs are very unpredictable; even when imple-
menting an existing design in a new environment, interactions
with the environment may cause unpredictable behavior. For
this reason, this article relaxes the assumption an SME can
provide a point estimate of design utility means and variances
and instead assumes an SME can only specify an uncertainty
set in which each lies. Optimizing sampling budget allocation
when means and variances are unknown, but within a given
uncertainty set, presents a robust optimization (RO).

ROs are a class of multilevel optimizations where a decision
maker needs to make a decision under uncertainty, but instead
of assuming a probability distribution for the uncertain vari-
ables in the problem, it is assumed nature is an intelligent actor
who picks these variables, so as to create the worst possible
outcome for the decision maker. The simplest RO formulation
contains a sequence of two optimizations (“bilevel”), where
a decision is made in the first optimization, and nature then
selects values for uncertain parameters to produce the worst
case result as the second optimization. As discussed further in
Section II, this formulation is often overly conservative and
a common remedy is to formulate a trilevel minimax regret
problem: 1) a decision is made; 2) nature then selects the
uncertain parameters; and 3) finally, a notional decision maker
selects values for the original decision variables that would
have been optimal, given the realized values of the uncer-
tain parameters. The actual decision maker’s objective is to
minimize a quantity called “regret,” which is the difference
between the realized utility and what could have been realized
had the uncertain parameters been known.
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Applying this notion to the sampling budget allocation
problem, the decision maker is tasked to allocate samples
among k designs available for implementation, each with an
uncertain utility that is assumed to follow a normal distri-
bution with unknown mean p and standard deviation . All
that can be elicited from an SME are uncertainty sets for
U and 0. Generating samples, i.e., running computer simula-
tions, reduces the uncertainty in utility estimates, which in turn
affects the probability, post-sampling, of correctly selecting the
best design. However, the sampling allocation that maximizes
the probability of correct selection (PCS) of the best design
can be quite different depending on where y and o lie in
their uncertainty sets. Thus, a methodology is needed to find
the sampling allocation that minimizes the maximal difference
between potential PCS and realized PCS (i.e., regret).

RO problems are notoriously difficult to solve, especially in
the trilevel, minimax regret form. To tackle this challenge, this
article develops an approximation technique that well approx-
imates the exact solution. The essence of the methodology,
described fully in Section III, is that all but the highest level
of the optimization can be reduced by sampling many values of
the higher level decision variables at a given level (which are
assumed known during lower levels), solving the optimization
given those sampled values, and then estimating a response
surface that predicts the objective function value as a function
of the higher level decision variables. This transforms each
lower level optimization into an expression of the higher level
decision variables, which can then be optimized over. The pro-
cess is continued until all that is left is the highest level of
the optimization, whose objective function is now a response
surface with a value that can be directly computed, given the
highest level decision variables.

The remainder of this article proceeds as follows. Section II
presents a brief literature review of sampling budget alloca-
tion problems, robust and other multilevel optimizations, and
response surface fitting. Section III describes the methodology
and Section IV provides example problems, their solution, and
comparisons with nonrobust benchmarks. Section V comments
on issues to be addressed by future research as well as some
concluding remarks.

II. LITERATURE REVIEW

While limited research has been done on robust approaches
to the sampling allocation problem, the broader literature on
this subject is quite rich. The Ranking & Selection (R&S)
literature is concerned with the allocation of simulation sam-
ples to maximize PCS or provide a probabilistic guarantee
on PCS [8], [13], [27], [28]. Optimal computing budget allo-
cation (OCBA) [6], [7], [11], [29], [30] is a popular R&S
algorithm that achieves the optimal asymptotic convergence
rate for PCS when the total number of samples to be drawn
goes to infinity. In this article, no asymptotic assumptions are
made, as in general, it may be computationally impractical
to generate enough samples for an asymptotic assumption to
be an accurate reflection of reality, in the context of design-
ing complex systems using computationally very expensive
simulation models. Furthermore, an asymptotic assumption
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is not needed for the developed response surface methodol-
ogy to be used. Robust approaches to the sampling allocation
problem have not been widely explored, but recent examples
include Gao ef al. [12], Ungredda et al. [24], Wu et al. [26],
and Zhu et al. [31], which again use an asymptotic assump-
tion. The literature on nonasymptotic approaches to sampling
allocation includes [9], [10], and [17] where the focus is to
sequentially allocate one sample at a time with an objective
to maximize the improvement achieved by the new sample.

As stated in Section I, RO is a subset of multilevel optimiza-
tions. Multilevel optimizations occur when a decision maker
must act, and subsequent decisions by intelligent actors influ-
ence his realized utility. Multilevel optimizations are often
found in game theory where actual intelligent actors are mak-
ing decisions (e.g., [1], [5], and [23]), as well as in the RO
setting where nature is assumed to be an intelligent actor. RO
is an alternative to traditional stochastic optimization; rather
than specifying probability distributions for uncertain parame-
ters and solving a stochastic optimization, the decision maker
assumes nature selects values for the uncertain parameters
So as to create a worst case result for the decision maker,
given his decision. This framework was developed to allow
decision makers lacking sufficient information to specify prob-
ability distributions to find solutions that perform well in many
scenarios. A good textbook on RO is [3]. The standard RO
framework seeks to maximize the minimum value of a utility
function, which often gives an overly conservative solution as
detailed in [18]. A commonly used alternative formulation to
address the conservatism of RO is to minimize the maximum
value of regret. This is defined as the difference in utility when
a decision maker is allowed to make a decision with perfect
knowledge of the uncertain parameters, and the realized util-
ity from making a decision without the knowledge of those
parameters. As seen clearly in Section III, the minimax regret
formulation requires three levels of optimization, making it a
more difficult problem to solve. The proposed methodology
is able to approximate the exact solution well, however, with
limited additional difficulty compared to the standard robust
formulation. We thus adopt the minimax regret formulation
to obtain a more practically useful robust sampling budget
allocation policy.

Even the smallest scale multilevel optimizations are known
to be NP hard [2]. Extensive research has been performed to
approximate their solutions. An excellent review of both exact
and approximate solution techniques can be found in [15]. Of
particular note is that most approximation methods for trilevel
optimizations (of which minimax regret is an example) utilize
fuzzy programming [22]. While useful for decision makers,
these fuzzy methods seek to find satisfactory solutions without
any claim of producing the true optimum in expectation. A key
component of the methodology developed in this article is that
it is not only intended to arrive at the true optimum in expecta-
tion but also produce a measurable error term so the decision
maker is aware of how much error has been introduced.

This article’s methodology relies on fitting a response sur-
face to the inner levels of the optimization. Each time a
response surface is fit, an error is introduced. Therefore, fit-
ting surfaces accurately will be a critical component for any
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decision maker utilizing this method. Recall that when fitting
a response surface to a nested optimization, one must draw
samples of the model variables that are assumed known at
the current level of optimization, optimize over the decision
variables and record the objective function value, and repeat
this process many times. This leads to two key considerations
when fitting response surfaces: 1) drawing sufficient samples
to accurately represent the space of unknown variables and

2) choosing a functional form for the response surface that
will be easy to optimize when solving the more outer levels of
the optimization. Choosing proper functional forms is problem
specific, but drawing representative samples is a widely stud-
ied problem. Latin hypercube sampling (LHS), for example,
is an efficient way to capture the entire space of unknown
variables when they lie in a box set, and generalizing LHS
to other than box sets is an open research area that has been
studied in [16], [19], and [20].

III. APPROXIMATION MODEL FOR SAMPLING
ALLOCATION WITH MINIMAX REGRET

This section outlines modeling assumptions, defines the
objective function, and formulates the minimax regret problem
for that objective. Noting that no analytical solution to this par-
ticular minimax regret problem is known to exist, a method
for approximating the model is then described.

A. Modeling Assumptions

Assume a decision maker needs to select a single design
to implement among £ alternatives. All designs have already
been fully developed, but there is still uncertainty in how each
would perform if implemented. This could be because the
designs have never been employed, or because they have only
been employed in a different setting than the decision maker
intends to use them. It is therefore assumed all the decision
maker has is an SME’s best guess as to the lower and upper
bounds of each design utility’s mean and standard deviation,
pi € W1t 1and o0; € [0}, 0" 1, for i = 1,2,...,k It is
assumed these unknown utilities are normally distributed and
the notation L; ~ N(U;, 0;) denotes the ith design’s utility. The
decision maker has a total of B samples to allocate to the &
designs that will be used to reduce uncertainty before selecting
a design. Prior to generating samples, the effect on y; cannot
be predicted, but it can be assumed variance is reduced by the
inverse of the number of samples allocated. That is

0} — 0N, (1)
where V; is the number of samples allocated to design i.

The decision maker’s objective is to allocate samples to
ensure the best design is selected with high probability. The
quantity of interest is therefore the PCS, which is defined as
the probability the selected design has a higher mean than all
others. PCS can be calculated via

PCS =P(L, >L; ¥i =b) )

where the subscript b indicates the selected design, which will
be that with up, > p; Vi
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Fig. 1. Box-and-whiskers plots for theoretical utilities, prior to sampling,
are plotted for two possible realizations of y and 0. In each Fig. 1(a) and
(b), uncertainty sets for designs 1-3 are y; € [85,95], y» € [80,90], and

Uz € [75,85], and 0y € [10, 15], 0, € [10,15], and 03 € [10, 15]. For

a sampling allocation of Ny = 80, N, = 15, and N3 = 5, realized APCS

is 95% [Fig. 1(a)] versus 57% [Fig. 1(b)]. (a) Realized y = [90, 85, 80],

o = [10, 10, 10]. (b) Realized py = [88, 85, 82], o = [15, 15, 15].

Using (2) as an objective function will make most
optimization problems intractable, so as in Chen et al [7],
a lower bound on PCS using the Bonferronni inequality [4]
will be used in its place. This bound is called the approximate
PCS (APCS)

PCS=P(L, L;Vi=h)
>1—-  P(L;>Ly)
i=b / \
—1- L HTH
i=b W
= APCS. 3)

B. Minimax Regret Optimization for APCS

Notice the distinction between the problem formulated thus
far and the traditional sampling allocation problem as in
Chen et al [7], where samples are allocated to maximize
APCS when L; ~ N(u;, 0;), and y; and 0; are assumed known
for all designs i. The traditional problem solves

max APCS(N|u, )

s.t. N; =B 4
i

where B is the sampling budget. This article, on the other

hand, still assumes L; ~ N(U;, 0;), but does not assume L;

and 0; are known; all that assumes is they lie in the known

uncertainty sets.

As depicted in Fig. 1, for a given sampling allocation, the
realized value of APCS could vary considerably depending
on the realized values of y; and 0;, as drawn from their
uncertainty sets. The uncertainty sets are such that means can
be quite different and variances relatively low [Fig. 1(a)], or
lead to means that are tightly packed and variances that are
high [Fig. 1(b)]. These two cases lead to drastically differ-
ent sampling strategies. Because all the decision maker has
is uncertainty sets for y; and 0;, RO must be used, and

for the reasons discussed in Section II, a minimax regret
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solution concept should be used rather than the (generally
more conservative) traditional robust formulation.

Regret problems are intended to minimize the difference
between the realized value of an objective function, and the
value that could have been realized had one known in advance
the value of unknown variables, u; and 0;, for all designs i.
Using the vector notation N := {Ny, N,, ..., Ni}, and similarly
for the other problem variables, the minimax regret model,
denoted MMR, for the sampling allocation problem is formally
defined as follows:

MMR :
i Regret(N
min %,ag( egret(N |4, 0)
S.t.
Regret(N|y, 0) = APCS N*|u,0 — APCS(N, u, o)

APCS N*|u, o |

N;=B, N, = 1Vi

=~

=max APCS N |u,0 s.t.
N 1 i=1
M GHI, l-liu] Vi

)

APCS(N, u, o) is simply the quantity in (3) evaluated for
given values of y, 0, and N, and APCS(N*|u, 0) is APCS
computed using the optimal choice of N* for known values
of p and 0. The constraint N; = 1 V i ensures the uncertainty
in a particular design cannot decrease below its initial, the
presampling level. Throughout this article, it is assumed the
sampling budget is finite, yet sufficiently large so that MMR
can be solved using continuous values of N. The methodology
presented here applies to small sampling budgets as well, but
integer optimization techniques would need to be used when
estimating response surfaces.

MMR is a trilevel optimization. Regret problems (like
other multilevel optimizations) are solved by first solving the
innermost optimization and working backward. While an ana-
lytical solution for APCS(N*|u, 0) is known if an asymptotic
assumption is used (see Chen ef al. [7]), it is not then known
how to solve max,, o APCS(N*|u, o) — APCS(N, i, 0 ), and
thus an approximation technique is needed.

C. Estimation of Response Surfaces

To overcome the difficulty in solving MMR analytically, this
article begins by estimating a response surface from {y, o} to
the objective value of APCS(N*|u, 0) using Latin hypercube
samples for {, 0}; denote this surface f3(u, 0). Next, (U, 0)
is substituted for APCS(N*|u, 0) and a second response sur-
face is estimated, using Monte Carlo samples of N to predict
maxy g f3(4, 0) — APCS(N, u,0); denl_ his surface fi (N).
Finally, f(N) is optimized subject to ik:] N; = B to get an
approximate solution to MMR.
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To make the methodology described in the preceding para-
graph more transparent, and to make the generalizability to
other nested optimizations clear, MMR is restated as follows:

MMR :
H[l\i]n z1(N)
S.t.
k
N =B
i=1
> 1Y (6)
where. ..
z1(N) = rB’%x 25 (4, U|N)
S.t. “
pi € W b Vi
o€ o,0" Vi (6.1)
where. ..
z(u, 0|N) / \
=iy, ) — 1+ W HTEY ) (62
i=b 02/Ny + O2/N;
and where. .. / \
z3(4, 0) = max 1 — \ Hi —Hb )
N i 02/Ny + OP/N;
S.t.
k
N, =B
i=1
N=1VYi (6.3)

The first step in approximating this model as a single
minimization is to estimate a response surface for z3(u, 0);
this will allow z;(u, 0|N) to be rewritten as a function of u,
0, and N that can be maximized without reference to another
optimization. To accomplish this, Latin hypercube samples
over the decision space U; € [uli, ul, o; € [Uﬁ, oY1V iare
generated, the optimization z3(l, 0) is solved for each sam-
ple using nonlinear optimization techniques (this article used
sequential least squares, as implemented by Python’s SciPy
package), and the results are stored. The following response
surface can then be fit to the sample- \

B =) e ()

. 2 2
i (9 + 0;

z3(U, 0) = B30 +

where €3 ~ N(0, 03) and B3 values are constant coefficients.
This surface was chosen for the following three general
reasons.
1) It is clearly based on the structure of the objective
function, APCS(N, u, 0 ).
2) It is simple enough such that when inserting it into
the objective function for z;(N), it can be repeatedly
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optimized over the decision variables p and 0, for many
samples of V.
Furthermore, it happens that the error term &3 is inde-
pendent of the decision variables p and o; this was
verified for the examples in Section IV via the White
test [25]. While not required for the methodology to be
implemented, this property means a decision maker can
ignore & when maximizing z (U, 0|N), regardless of
risk preferences.

In the examples presented in Section 1V, model (7) is seen
to fit quite well so alternative specifications were not explored.
With this response surface in hand, the next step in approxi-

mating MMR is to express zp(lJ, 0|N) as a direct expression

3)

of (7). Using the definition of z, / g|N) in (\ this gives
— Mp
o, 0IN) =B+ By N ——/
i of + o2
( )
- 1+ \ %/ + &. (8)
i=h g b2ﬂ\/b + OiZAVi
Nes [onte Carlo samples for N are generated such
that l.k:l N; = B, sequential least squares are used to

maximize (8) over {y, 0}, and results are stored. The following
response surface for z;(N) is then estimated:

z1(N) = B0 +
l
where again £ ~ N(0, 1) and ) values are constants.

Note that while &3 error term from the response surface
calibrated to z3(u, 0) carries over to zi(N), this term does
not complicate the analysis because €3 is a random variable
independent of all decision variables. The choice of response
surface used the same criteria as for z3(u, 0), though bullet
2 is now less important as, at this highest level of optimization,
z1(N) will only need to be optimized once. To complete the
approximation of MMR, (9) is minimized over N, which is a
standard, single-level optimization

"
B, El +& + & )

MR :
. N;
+ . - 4+ +4¢
min B1,0 i B, 3 3+ &
k
s.t. N; =B
i=1
N =1Yi (10)

As noted previously, £ and &3 are independent of any deci-
sion variables and thus do not affect the optimal solution of
MMR. They are nonetheless explicitly written in the objec-
tive function to maintain cognizance that this approximation
of MMR is subject to error.

IV. EXAMPLE IMPLEMENTING THE RESPONSE SURFACE
METHODOLOGY FOR MMR

Four examples of interested are now presented, all with
k = 6 and B = 100. This first example represents a sce-
nario most likely to be encountered by a decision maker,

TABLE I
EXAMPLE PARAMETERS

Design
1 2 3 4 5 6

Moderate overlap in means

ut 105 100 95 90 85 80

ut 95 90 8 80 75 70
Near uniformity in means

u* 105 103 101 99 97 95

ut 95 93 91 89 87 85
Higher/lower means have higher variance

o% 20 14 8 8 14 20

at 10 7 4 4 7 10

Moderate variance: o = 20,0f =10V {
_High variance: o' = 40,0 =20V
Note. These same parameters are used when
k = 12 and k = 24, with natural extensions.
Mean upper- and lower-bounds continue
declining at the same rates for successive
designs, For the case when variances are
higher for the highest and lowest means, the
first and last designs have 6% = 20 and o* =
10, while the middle designs have o™ = 8
and of = 4.

where mean uncertainty sets exhibit moderate overlap, and
variances are likewise moderate. The other examples look at
other reasonable cases, consider higher variances, mean uncer-
tainty sets that are near uniform, and a situation where the
highest and lowest means have the highest variances. These
latter situations pose additional challenges to robust decision
making. Near uniform means, for example, is commonly used
in the sample allocation literature as the most challenging test
case for a selection methodology. High variances also make
the allocation decision more difficult as this makes it more
probable empirical means taken from small samples will be
misleading. The parameters used are summarized in Table I,
and all four examples are repeated with £k = 12 and k£ = 24.
Results are summarized in Table II, while Table III lists the
response surface fitting errors for all examples.

Each example implements the response surface methodol-
ogy by generating 1000 samples of {y, 0} to estimate f3, and
1000 samples of N to estimate f]. Each surface is estimated
using linear least squares. These sample sizes are conservative
for the response surface coefficients to converge but were not
computationally burdensome.

For each example, the effectiveness of the methodology was
evaluated by generating 4000 uniformly distributed samples
of {y, 0} from their uncertainty sets and computing the resul-
tant regret values for the solution to (10), which is denoted
as Nyg. The upper quantiles of regret generated in this
way give a strong estimation of the maximum regret pos-
sible; if this estimator of maximum regret is small, that is
evidence the methodology is performing well. For compari-
son, two reasonable benchmarks are used. The first benchmark
is the sampling allocation obtained by assuming all means
and variances equal their “most likely” values, defined as the
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TABLE II TABLE 111
REGRET QUANTILES RESPONSE SURFACE ERRORS
Moderate overlap in means Moderate overlap in means
Moderate variance Moderate variance
95t 99 99.9" Comment 7 s Comment
k=6 06%,07,12 07%,.10,.14 08%,.16,.15 Ex A k=6 0.1685 0.0857 Ex A
k=12  .19,15%41 22,20, 46 .25%, 27,50 k=12 0.3751 0.1407
k=24  .19,.08%.39 23,00%,45 27,14%,51 k=24 0.4840 0.0980
High variance High variance
9 5\11 99!11 99‘9&. 7 A
k=6 .09*,.14,.14 -11*,.19,.16 -14*,.23,.18 Ex. B k — 6 02108 00555 Ex. B
k=12 _20*,_41,.42 .24*,.47,.46 .27*,.53,.50 =12 0.4129 0.0773
k=24  30,29%,56 34%,43,63 AD*,48,70 " =24 0.5752 0.0872
Highest/lowest have highest variance Highest/k t means have highest variance
95m 99lh 99.9lh
= 06%,07,.16 07*,.11,20 10%,.15,24 . L %
=6 06507 s 16 stna0ia B D k=6 0.1659 0.0931 Ex. D
_ * 3% 56,1, 61%,.70,1.
k=12 Adn45104 oL s o 2o ss k=12 0.8705 0.1605
= * kel . P s f
k=24 .16.07%.39 k=24 0.5800 0.1005
Near uniform means
Moderate variance
90th 95th 99th Ne:; uniform mezans
k=6 13%21,14 604,236,163 .19*,.30,20 Ex € odarate variance
k=12 19% 73 36 .25%,31,41 A1* 41,46 9 Iz
k=24 3523467 A44,38% 76 B2 61,83 k=6 0.1949 0.0559 Ex. C
‘Note. Each entry lists the regret quantiles for N s, Narg, Nunr, 10 that order. k=12 0.5413 0.1393
The bold face and * indicates the best value among the three. k =24 .8888 0.1478
midpoints of uncertainty sets. I'  nally, this benchmark\' 2
‘ 7 -7
Ny = argmaxyl — \ — l bmld_z / 15
i=2 meid/meid + GiﬂVi
s.t. N; =B R
i &
! X
— ,Uu,' - IJ,» .
bi=—7 Vi 05
o4 — ¢!
g, =—+—LVi
2 .
bmid = il; >0 Vj =1 (amn 9 2 94 96 98 1.
The second benchmark is the uniform sampling allocation, Quantile
Nuni = {B/k, B/k, ..., B/k}. When facing deep uncertainty, Nymr — — Nw == = N
this may perform rather well in minimizing maximal regret.
N, ., will be compared to these two benchmarks by comput- Fig. 2. Regret quantiles for Example A.

MR
ing the upper quantiles of regret for each solution.

A. Example: Moderate Overlap in Means, Moderate
Variance

Solving (10) yields Ny

form allocation. Fig. 2 plots the upper quantiles for Ny,

Nmi, and Nyni. As seen, NMR outperforms both My and

= [25,22, 18,17, 11, 8]. The
solution to (11) is My, = [39, 28, 16, 8, 5, 3]. The response
surface methodology has clearly led to a more uniform
allocation of samples, though is still far from a pure uni-

Nuni by a wide margin. The 99.9th quantiles of the regret
in APCS for the three strategies are 0.0828, 0.1600, and
0.1525, respectively. Recalling the definition of APCS as a
lower bound on the probability of selecting the best design
option, post-sampling, these results show the response sur-
face methodology can reduce a decision maker’s potential
regret by 1 — 0.0825/0.1525 = 45.7% over the next-best
benchmark.
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Fig. 3. Regret quantiles for Example B.
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Fig. 4. Regret quantiles for Example C.

B. Example: Moderate Overlap in Means, High Variance

Increasing variances from 0% = 20 and 0/ = 10 to g% = 40
and o/ = 20 creates an interesting dynamic between Npvir. »
NuL, and Nyni, as seen in Fig. 3. Ny still vastly outper-
forms each My and Nypi, but Nyn; now outperforms Nyir. The
relative improvement of Ny, is not surprising, as higher vari-
ances, and wider ranges in variance, creates greater potential
for NmL to perform poorly. The improvement of Ny, over
Nuni is still substantial, marking a 25.9% reduction in regret
at the 99.9th quantile. This is understandably lower than the
improvement in Example A, given the increased difficulty of
allocating samples in a high variance scenario.

C. Example: Near Uniformity in Means, Moderate Variance

Example B motivates further exploration into Ny, as a
viable strategy, and thus this example considers mean uncer-
tainty sets that are close to identical. In this case, both Ny
and Ny, lead to substantially smaller maximal regrets than
Nmp. However, the maximal regret for NM_R and Ny, is
indistinguishable, as seen in Fig. 4. This does not invalidate

the methodology of this article but rather reflects that uniform

Fig. 5. Regret quantiles for Example D.

sampling is a good strategy when the designs are hard to dis-
tinguish. Consider, for instance, that the following realized
means and variances are possible:

Ml =2 = M3 =4 =5 =He =95
01 =0y =03 =04 =05 = 06 € [10, 20].

Thus, given the information provided by SMEs, it is possible
the designs are all identical in mean and variance.

D. Example: Moderate Overlap in Means, While
Higher/Lower Means Have Higher Variances

This final example is an interesting case, as a decision maker
is incentivized to devote samples to designs with lower mean
uncertainty bounds because those designs also have higher
variances (refer to Table I). Not allocating samples to designs
with high mean uncertainty bounds is risky, as these also have
high variances. As Fig. 5 shows, the approximation method
still outperforms each of the benchmarks. At the 99.9th quan-
tile, Ny reduces regret by 30.6% compared to the next-best
benchmark. The actual solutions X, R and Ny are worth
noting in this example: N, = [35,21,15,7,9,12] and
ML = [51, 34,5, 2, 3,4]. Each allocates the most samples
to design 1, and successively less to designs 2—4, before allo-
cating successively more to designs 5 and 6, reflecting the
higher variance of these designs. Ny, however, is closer to
uniform sampling, which evidently improves maximal regret
while still being better than pure uniformity.

These same four examples were repeated with £ = 12
and k = 24, expanding the sampling budgets to B = 200
and B = 400, respectively. The sampling budget was increased
with & so that uniform sampling would still allocate a reason-
able number of samples to each design. The uncertainty sets
for designs 7-24 are computed by naturally extending the pat-
tern used when k£ = 6. That is, mean upper and lower bounds
continue declining at the same rates for successive designs.
For the case when variances are higher for the highest and
lowest means, the first and last designs have 0% = 20 and
o! = 10, while the middle designs have 0% = 8 and ¢! = 4.
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For example, when k& = 12, and moderate overlap in mean

uncertainty sets and variances that are higher for the highest
and lowest means are used, the uncertainty sets are

Ut = 105,95,90,...,55,50

U =95,85,80,...,45,40

o' =20,17.6,15.2,...,8,8,10.4,12.8,...,20
0! =10,8.8,7.6,...,4,4,52,64,...,20.

The results are summarized in Table II, where regret quan-
tiles are given for the 95th, the 99th, and the 99.9th quantiles.
Continued outperformance of the benchmarks is seen for
k = 12, but performance deteriorates when & = 24. When
k = 24, the response surface methodology outperforms the
benchmarks in only two of the four examples. This can be
explained by the increase in response surface error, as seen
in Table III. Implementing more elaborate response surfaces
with less error (which consequently are expected to be more
difficult to optimize) is left as a key point of future research.
For the time being, this article has provided evidence that, if a
response surface can be found with suitably small errors, then
the response surface methodology for multilevel optimizations
is a powerful decision-making tool.

V. CONCLUSION AND FUTURE RESEARCH

This article developed a robust sampling budget alloca-
tion policy via an MMR formulation, solved effectively using
a novel response surface-based approximation approach. For
designers of complex systems who often face deep uncertainty
when exploring alternative design concepts, the developed
procedure may provide valuable guidance on how to assign
a limited sampling budget to select the best design avail-
able. Very little research has previously been done on robust
solutions to sampling allocation problems, and to the best
of our knowledge, this is the first article to utilize a mini-
max regret approach, which is more difficult than a standard
max—min RO. The analysis was motivated by the need in com-
plex system’s design to allocate simulation sampling budgets
intelligently, where information prior to running any simula-
tions is often limited and thus robust solutions are valuable.
The methodology has applicability beyond sampling alloca-
tion problems or even RO; it can be used more generally for
any multilevel optimization.

There are several promising topics to study in the future.
One such area is the incorporation of more elaborate response
surfaces into the methodology. The response surfaces in this
article were transformed linear regressions, which had two
desirable properties. First, they were easy to optimize, which
is an essential property of the lower level optimizations if
one is to estimate the higher levels in a reasonable amount
of time. Fast global optimization, in general, is a rich area of
research, but specialized techniques to quickly optimize the
more sophisticated response surfaces (such as neural networks,
boosted regressions, and so on) will enhance the usefulness of
response surfaces for multilevel optimization. The second use-
ful property of the response surfaces used in this article is they
exhibited no heteroskedasticity. This implied even risk-averse

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

decision makers could ignore error terms in the response sur-
face approximation to MMR. If errors instead depend on the
decision variables, it would be straightforward enough to sim-
ply penalize decisions that introduce high error. However, a
more sophisticated approach would be able to select samples
from the decision space such that response surface errors are
either: 1) uniform or 2) large only in sections of the decision
space known to provide bad solutions.

Related to the desire for optimizations that can be solved
quickly is the need to get a representative sample of the deci-
sion space with as few sample values as possible. This article

used Latin hypercube samples for {u, 0}, as this is a well-

developed method for efficiently sampling from a box set.
When sampling from the simplex decision space for N, tradi-

tional LHS did not apply and the unbiased, though inefficient,
method of drawing Monte Carlo samples was used. Extending
LHS to constrained sample spaces is an open research area
that will be important for improving the efficiency of the
methodology presented in this article.
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