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Abstract—A novel methodology is introduced for optimally 

allocating a sampling budget. Sampling budget allocation prob- 
lems arise frequently in various settings. For example, in the 

design of complex engineering systems, given both the com- 
plexity  of  these  systems  and  the  imperfect  information  on 
new  technologies,  designers  often  face  deep  uncertainty  as 

to  system performance. Consequently, designers need to  sam- 
ple multiple alternative designs under a limited budget. This 
article proposes a minimax regret approach to allocate the sam- 

pling budget in the presence of deep uncertainty pertaining to 
system performance. The objective is to maximize the probabil- 
ity of selecting the design with the minimum–maximum regret 

under a limited sampling budget and imperfect information. To 
effectively  solve  the  minimax  regret  problem,  an  approxima- 
tion methodology that provides good solutions with quantifiable 

uncertainty is developed. The essence of the methodology, which 
has the added benefit of being generally applicable to any 
multilevel optimization, is that all but the first level of multilevel 

optimization can be eliminated via a response surface. By sam- 
pling many values of a higher level decision’s variables, solving 
the  next  lower  level  optimization given  those  samples  values, 

and  calibrating  a  response  surface  to  the  objective  function 
value  eliminate  one  required  optimization. Doing  this  repeat- 
edly reduces the complexity of the multilevel optimization to a 

standard optimization. Regardless of the number of levels in the 
optimization, repeating this process ultimately leaves one with 
a single optimization whose objective function can be directly 

computed, given the highest level variables. Numerical experi- 
ments with two sampling allocation examples demonstrate both 
the benefit of the robust sampling budget allocation versus nonro- 

bust formulations and the effectiveness of the proposed solution 
approach. 

 

Index Terms—Complex system design, minimax regret, 

response surface methodologies, sampling budget allocation. 
 
 
 

I.  INTRODUCTION  

N THIS article, a novel methodology is introduced for allo- 

cating  a  sampling budget  under  deep  uncertainty. Deep 

uncertainty  is  defined as  a  situation  where  decision  mak- 

ers  lack  probability distributions for  some or  all  uncertain 

parameters [14]. Sampling budget allocation is an important 
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problem arising in many different contexts. For example, in 

the design of complex systems, where the utility of design 

alternatives is often understood by running simulations that 

are computationally expensive, often requiring multiple days to 

generate a single sample, the designer must carefully allocate 

a limited sampling budget among many design alternatives. 

Classical approaches to sampling allocation for the system 

design typically assume the mean and variance of each design 

alternative’s utility can be reliably estimated by a subject- 

matter expert (SME); an optimal sampling allocation is then 

determined using these estimates which maximizes the proba- 

bility of identifying the best design, post-sampling. Decisions 

made under the classical framework are likely to be poor, 

however, if an SME fails to accurately estimate means and 

variances. Realistically, in the design of complex systems 

means and variances of alternative designs’ utilities cannot be 

accurately estimated prior to generating samples for a variety 

of reasons: complex systems have many interacting parts, so 

new system designs are very unpredictable; even when imple- 

menting an existing design in a new environment, interactions 

with the environment may cause unpredictable behavior. For 

this reason, this article relaxes the assumption an SME can 

provide a point estimate of design utility means and variances 

and instead assumes an SME can only specify an uncertainty 

set in which each lies. Optimizing sampling budget allocation 

when means and variances are unknown, but within a given 

uncertainty set, presents a robust optimization (RO). 

ROs are a class of multilevel optimizations where a decision 

maker needs to make a decision under uncertainty, but instead 

of assuming a probability distribution for the uncertain vari- 

ables in the problem, it is assumed nature is an intelligent actor 

who picks these variables, so as to create the worst possible 

outcome for the decision maker. The simplest RO formulation 

contains a sequence of two optimizations (“bilevel”), where 

a decision is made in the first optimization, and nature then 

selects values for uncertain parameters to produce the worst 

case result as the second optimization. As discussed further in 

Section II, this formulation is often overly conservative and 

a common remedy is to formulate a trilevel minimax regret 

problem: 1) a decision is made; 2) nature then selects the 

uncertain parameters; and 3) finally, a notional decision maker 

selects values for the original decision variables that would 

have been optimal, given the realized values of the uncer- 

tain parameters. The actual decision maker’s objective is to 

minimize a quantity called “regret,” which is the difference 

between the realized utility and what could have been realized 

had the uncertain parameters been known. 
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Applying this notion to the sampling budget allocation 

problem, the decision maker is tasked to allocate samples 

among k designs available for implementation, each with an 

uncertain utility that is assumed to follow a normal distri- 

bution with unknown mean μ and standard deviation σ . All 

that can be  elicited from an  SME are uncertainty sets for 

μ and σ . Generating samples, i.e., running computer simula- 

tions, reduces the uncertainty in utility estimates, which in turn 

affects the probability, post-sampling, of correctly selecting the 

best design. However, the sampling allocation that maximizes 

the probability of correct selection (PCS) of the best design 

can be quite different depending on where μ  and σ lie in 

their uncertainty sets. Thus, a methodology is needed to find 

the sampling allocation that minimizes the maximal difference 

between potential PCS and realized PCS (i.e., regret). 

RO problems are notoriously difficult to solve, especially in 

the trilevel, minimax regret form. To tackle this challenge, this 

article develops an approximation technique that well approx- 

imates the exact solution. The essence of the methodology, 

described fully in Section III, is that all but the highest level 

of the optimization can be reduced by sampling many values of 

the higher level decision variables at a given level (which are 

assumed known during lower levels), solving the optimization 

given those sampled values, and then estimating a response 

surface that predicts the objective function value as a function 

of the higher level decision variables. This transforms each 

lower level optimization into an expression of the higher level 

decision variables, which can then be optimized over. The pro- 

cess is continued until all that is left is the highest level of 

the optimization, whose objective function is now a response 

surface with a value that can be directly computed, given the 

highest level decision variables. 

The remainder of this article proceeds as follows. Section II 

presents a brief literature review of sampling budget alloca- 

tion problems, robust and other multilevel optimizations, and 

response surface fitting. Section III describes the methodology 

and Section IV provides example problems, their solution, and 

comparisons with nonrobust benchmarks. Section V comments 

on issues to be addressed by future research as well as some 

concluding remarks. 
 
 

II.  LITERAT URE REVIEW  

While limited research has been done on robust approaches 

to the sampling allocation problem, the broader literature on 

this subject is quite rich. The Ranking & Selection (R&S) 

literature is concerned with the allocation of simulation sam- 

ples to maximize PCS or provide a probabilistic guarantee 

on PCS [8], [13], [27], [28]. Optimal computing budget allo- 

cation (OCBA) [6], [7], [11], [29], [30] is a popular R&S 

algorithm that achieves the optimal asymptotic convergence 

rate for PCS when the total number of samples to be drawn 

goes to infinity. In this article, no asymptotic assumptions are 

made, as in general, it may be computationally impractical 

to generate enough samples for an asymptotic assumption to 

be an accurate reflection of reality, in the context of design- 

ing complex systems using computationally very expensive 

simulation models.  Furthermore, an  asymptotic assumption 

is not needed for the developed response surface methodol- 

ogy to be used. Robust approaches to the sampling allocation 

problem have not been widely explored, but recent examples 

include Gao et al. [12], Ungredda et al. [24], Wu et al. [26], 

and Zhu et al. [31], which again use an asymptotic assump- 

tion. The literature on nonasymptotic approaches to sampling 

allocation includes [9], [10], and [17] where the focus is to 

sequentially allocate one sample at a time with an objective 

to maximize the improvement achieved by the new sample. 

As stated in Section I, RO is a subset of multilevel optimiza- 

tions. Multilevel optimizations occur when a decision maker 

must act, and subsequent decisions by intelligent actors influ- 

ence his realized utility. Multilevel optimizations are often 

found in game theory where actual intelligent actors are mak- 

ing decisions (e.g., [1], [5], and [23]), as well as in the RO 

setting where nature is assumed to be an intelligent actor. RO 

is an alternative to traditional stochastic optimization; rather 

than specifying probability distributions for uncertain parame- 

ters and solving a stochastic optimization, the decision maker 

assumes nature  selects values for  the  uncertain parameters 

so as to create a worst case result for the decision maker, 

given his decision. This framework was developed to allow 

decision makers lacking sufficient information to specify prob- 

ability distributions to find solutions that perform well in many 

scenarios. A good textbook on RO is [3]. The standard RO 

framework seeks to maximize the minimum value of a utility 

function, which often gives an overly conservative solution as 

detailed in [18]. A commonly used alternative formulation to 

address the conservatism of RO is to minimize the maximum 

value of regret. This is defined as the difference in utility when 

a decision maker is allowed to make a decision with perfect 

knowledge of the uncertain parameters, and the realized util- 

ity from making a decision without the knowledge of those 

parameters. As seen clearly in Section III, the minimax regret 

formulation requires three levels of optimization, making it a 

more difficult problem to solve. The proposed methodology 

is able to approximate the exact solution well, however, with 

limited additional difficulty compared to the standard robust 

formulation. We thus adopt the minimax regret formulation 

to obtain a more practically useful robust sampling budget 

allocation policy. 

Even the smallest scale multilevel optimizations are known 

to be NP hard [2]. Extensive research has been performed to 

approximate their solutions. An excellent review of both exact 

and approximate solution techniques can be found in [15]. Of 

particular note is that most approximation methods for trilevel 

optimizations (of which minimax regret is an example) utilize 

fuzzy programming [22]. While useful for decision makers, 

these fuzzy methods seek to find satisfactory solutions without 

any claim of producing the true optimum in expectation. A key 

component of the methodology developed in this article is that 

it is not only intended to arrive at the true optimum in expecta- 

tion but also produce a measurable error term so the decision 

maker is aware of how much error has been introduced. 

This article’s methodology relies on fitting a response sur- 

face to the inner levels of the optimization. Each time a 

response surface is fit, an error is introduced. Therefore, fit- 

ting surfaces accurately will be a critical component for any 
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decision maker utilizing this method. Recall that when fitting 

a response surface to a nested optimization, one must draw 

samples of the model variables that are assumed known at 

the current level of optimization, optimize over the decision 

variables and record the objective function value, and repeat 

this process many times. This leads to two key considerations 

when fitting response surfaces: 1) drawing sufficient samples 

to accurately represent the space of unknown variables and 

2) choosing a functional form for the response surface that 

will be easy to optimize when solving the more outer levels of 

the optimization. Choosing proper functional forms is problem 

specific, but drawing representative samples is a widely stud- 

ied problem. Latin hypercube sampling (LHS), for example, 

is an efficient way to capture the entire space of unknown 

variables when they lie in a box set, and generalizing LHS 

to other than box sets is an open research area that has been 

studied in [16], [19], and [20]. 
 

 
III.  APPROXIMATION MODEL FOR SAMPLING  

ALLOCATION WITH MINIMAX REGRET 

This section outlines modeling assumptions, defines the 

objective function, and formulates the minimax regret problem 

for that objective. Noting that no analytical solution to this par- 

ticular minimax regret problem is known to exist, a method 

for approximating the model is then described. 
 

 
A. Modeling Assumptions 

Assume a decision maker needs to select a single design 

to implement among k alternatives. All designs have already 

been fully developed, but there is still uncertainty in how each 

would perform if implemented. This could be because the 

designs have never been employed, or because they have only 

been employed in a different setting than the decision maker 

intends to use them. It is therefore assumed all the decision 

maker has is an SME’s best guess as to the lower and upper 

bounds of each design utility’s mean and standard deviation, 

μi   ∈ [μl , μu   ] and σi  ∈ [σ l , σ u  ], for i = 1, 2, . . . , k. It is 
i i i i 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.    Box-and-whiskers plots for theoretical utilities, prior to sampling, 
are plotted for two possible realizations of μ and σ . In each Fig. 1(a) and 

(b), uncertainty sets for designs 1–3 are μ1   ∈ [85, 95], μ2  ∈ [80, 90], and 
μ3   ∈  [75, 85], and σ1  ∈  [10, 15], σ2  ∈  [10, 15], and σ3  ∈  [10, 15]. For 
a sampling allocation of N1  = 80, N2  = 15, and N3  = 5, realized APCS 
is 95% [Fig. 1(a)] versus 57% [Fig. 1(b)]. (a) Realized μ  = [90, 85, 80], 
σ = [10, 10, 10]. (b) Realized μ = [88, 85, 82], σ = [15, 15, 15]. 

 
 

Using (2) as an objective function will make most 

optimization problems intractable, so as in Chen et al. [7], 

a lower bound on PCS using the Bonferronni inequality [4] 

will be used in its place. This bound is called the approximate 

PCS (APCS) 

PCS = P(Lb > Li  ∀ i  = b) 

≥ 1 − P(Li > Lb ) 

i =b 

μi  − μb
 

= 1 −   

i =b σ 2 /Nb + σ 2 /Ni 
b i 

= APCS. (3) 

 
B. Minimax Regret Optimization for APCS 

Notice the distinction between the problem formulated thus 

far  and  the  traditional  sampling  allocation  problem  as  in 

Chen et  al.  [7],  where samples are  allocated to  maximize 

APCS when Li ∼ N(μi , σi ), and μi  and σi are assumed known 
assumed these unknown utilities are normally distributed and 
the notation Li ∼ N(μi , σi ) denotes the ith design’s utility. The 

for all designs i. The traditional problem solves 

decision maker has a total of B samples to allocate to the k 

designs that will be used to reduce uncertainty before selecting 

a design. Prior to generating samples, the effect on μi  cannot 

be predicted, but it can be assumed variance is reduced by the 

max 
N 

s.t. 

APCS(N|μ, σ ) 
 

Ni = B (4) 

i 

inverse of the number of samples allocated. That is where B is the sampling budget. This article, on the other 

hand, still assumes Li  ∼ N(μi , σi ), but does not assume μi 

σ 2 2
 

i   → σi /Ni (1) 
 

where Ni  is the number of samples allocated to design i. 

The decision maker’s objective is to allocate samples to 

ensure the best design is selected with high probability. The 

quantity of interest is therefore the PCS, which is defined as 

the probability the selected design has a higher mean than all 

others. PCS can be calculated via 
 

PCS = P(Lb > Li   ∀ i  = b)  (2) 
 

where the subscript b indicates the selected design, which will 

be that with μb  > μi  ∀ i. 

and σi  are known; all that assumes is they lie in the known 

uncertainty sets. 

As depicted in Fig. 1, for a given sampling allocation, the 

realized value of APCS could vary considerably depending 

on  the  realized  values  of  μi   and  σi ,  as  drawn  from  their 

uncertainty sets. The uncertainty sets are such that means can 

be quite different and variances relatively low [Fig. 1(a)], or 

lead to means that are tightly packed and variances that are 

high [Fig. 1(b)]. These two cases lead to drastically differ- 

ent sampling strategies. Because all the decision maker has 

is  uncertainty  sets  for  μi   and  σi ,  RO  must  be  used,  and 

for  the  reasons  discussed  in  Section  II,  a  minimax  regret 



Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 19:48:21 UTC from IEEE Xplore.  Restrictions apply. 

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS 

 

 

| 
= 

i 

i   1 

 

 

solution concept should be  used rather than the (generally 

more conservative) traditional robust formulation. 

Regret problems are intended to minimize the difference 

between the realized value of an objective function, and the 

value that could have been realized had one known in advance 

To make the methodology described in the preceding para- 

graph more transparent, and to make the generalizability to 

other nested optimizations clear, MMR is restated as follows: 
 

MMR : 

the value of unknown variables, μi   and σi , for all designs i. 

Using the vector notation N := {N1 , N2 , . . . , Nk }, and similarly 

for the other problem variables, the minimax regret model, 

denoted MMR, for the sampling allocation problem is formally 

defined as follows: 

min 
N 

s.t. 

z1 (N) 
 

 
k 

Ni = B 

i=1 

 
MMR : 

min 
N 

 

 
 
max Regret(N  μ, σ ) 
μ,σ 

Ni ≥ 1 ∀ i (6) 
 

where. . . 

s.t. z1 (N)  max 
μ,σ 

z2 (μ, σ |N) 

Regret(N|μ, σ ) = APCS N∗|μ, σ − APCS(N, μ, σ ) 

APCS N∗|μ, σ 

s.t. 

μi  ∈   μl  u 
i , μi  ∀ i 

k  l u 

= max
 

APCS N |μ, σ s.t.
 

N  = B, N  ≥ 1 ∀ i
 σi ∈ σi , σi ∀ i (6.1) 

N  

 

μi  ∈ i , μi ∀ i

 

i  i 

i=1 
 
where. . . 

μl u
 

 

z2 (μ, σ |N) 

σi  ∈ i , σi ∀ i  σ l u
 

 

μ  − μ
 

i b 

k 

Ni = B
 

= z3 (μ, σ ) − 1 +  
i=b

 
(6.2) 

σ 2 /Nb + σ 2 /Ni
 

 
i=1 

Ni ≥ 1 ∀ i.  (5) 
 

APCS(N, μ, σ ) is simply the quantity in (3) evaluated for 

 
and where. . . 

 
z3 (μ, σ ) = max 1 − 

b i 

μi  − μb 

given values of μ,  σ , and N, and APCS(N∗|μ, σ ) is APCS
 N  

i   b σ 2 /N
 

+ σ 2 /N
 

computed using the optimal choice of N∗  for known values 

of μ and σ . The constraint Ni ≥ 1 ∀ i ensures the uncertainty 

in a particular design cannot decrease below its initial, the 
presampling level. Throughout this article, it is assumed the 

sampling budget is finite, yet sufficiently large so that MMR
 

 
s.t. 

k 

i=1 

N  
 

= 

 
 
N  = B 

b b i i 

 

can be solved using continuous values of N. The methodology 

presented here applies to small sampling budgets as well, but 

integer optimization techniques would need to be used when 

estimating response surfaces. 

MMR  is  a  trilevel  optimization.  Regret  problems  (like 

other multilevel optimizations) are solved by first solving the 

innermost optimization and working backward. While an ana- 

lytical solution for APCS(N∗|μ, σ ) is known if an asymptotic 
assumption is used (see Chen et al. [7]), it is not then known 

how to solve maxμ,σ APCS(N∗|μ, σ ) − APCS(N, μ, σ ), and 

thus an approximation technique is needed. 
 
 

C. Estimation of Response Surfaces 

i  ≥ 1 ∀ i. (6.3) 
 

The  first  step  in  approximating  this  model  as  a  single 

minimization is to estimate a response surface for z3 (μ, σ ); 

this will allow z2 (μ, σ |N) to be rewritten as a function of μ, 
σ , and N that can be maximized without reference to another 

optimization. To  accomplish this,  Latin hypercube samples 

over the decision space μi   ∈ [μl , μu ], σi  ∈ [σ l , σ u ] ∀  i are 
i i i i 

generated, the optimization z3 (μ, σ ) is solved for each sam- 
ple using nonlinear optimization techniques (this article used 

sequential least squares, as implemented by Python’s SciPy 

package), and the results are stored. The following response 

surface can then be fit to the samples: 

μi  − μb
 

 

To overcome the difficulty in solving MMR analytically, this 
z3 (μ, σ ) = β3,0 + β3,i · 

i
 

+ ε3  (7) 
σ 2 + σ 2 

article begins by estimating a response surface from {μ, σ } to b i
 

the objective value of APCS(N∗|μ, σ ) using Latin hypercube 
samples for {μ, σ }; denote this surface f3 (μ, σ ). Next, f3 (μ, σ ) 
is substituted for APCS(N∗|μ, σ ) and a second response sur- 
face is estimated, using Monte Carlo samples of N to predict 

maxμ,σ f3 (μ, σ ) − APCS(N, μ, σ ); denote this surface f1 (N). 

where ε3 ∼ N(0, σ3 ) and β3  values are constant coefficients. 
This surface was chosen for the following three general 

reasons. 

1)  It  is  clearly  based  on  the  structure  of  the  objective 

function, APCS(N, μ, σ ). 

Finally, f1 (N) is optimized subject to k
 = 

approximate solution to MMR. 

Ni = B to get an 2)  It  is  simple  enough  such  that  when  inserting it  into 

the objective function for z1 (N),  it can be repeatedly 
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optimized over the decision variables μ and σ , for many 

samples of N. 

3)  Furthermore, it happens that the error term ε3  is inde- 

pendent of the decision variables μ  and σ ;  this was 

verified for the examples in Section IV via the White 

test [25]. While not required for the methodology to be 
implemented, this property means a decision maker can 

ignore ε3  when maximizing z2 (μ, σ |N),  regardless of 

risk preferences. 

In the examples presented in Section IV, model (7) is seen 

to fit quite well so alternative specifications were not explored. 

With this response surface in hand, the next step in approxi- 

mating MMR is to express z2 (μ, σ |N) as a direct expression 

of (7). Using the definition of z2 (μ, σ |N) in (6), this gives 

TABLE I 
EXAMPLE  PARAMETERS  

μi  − μb
 

z2 (μ, σ |N) = β3,0 + β3,i · 
i
 σ 2 + σ 2 

b i 

μi  − μb
 

− 1 +  
i=b

 
+ ε3 .   (8) 

σ 2 /Nb + σ 2 /Ni
 

b i 

Next,  Monte  Carlo  samples  for  N  are  generated  such 

that   
k 
= Ni = B,   sequential  least   squares  are   used   to 

maximize (8) over {μ, σ }, and results are stored. The following 
response surface for z1 (N) is then estimated: 

Ni 
z1 (N) = β1,0 + β1,i · 

i 
B 

+ ε3 + ε1  (9)
 

where mean uncertainty sets exhibit moderate overlap, and 

variances are likewise moderate. The other examples look at 

where again ε1 ∼ N(0, σ1 ) and β1  values are constants. 
Note that while ε3  error term from the response surface 

calibrated to z3 (μ, σ ) carries over to z1 (N),  this term does 

not complicate the analysis because ε3  is a random variable 
independent of all decision variables. The choice of response 

surface used the same criteria as for z3 (μ, σ ), though bullet 

2 is now less important as, at this highest level of optimization, 

z1 (N) will only need to be optimized once. To complete the 

approximation of MMR, (9) is minimized over N, which is a 

standard, single-level optimization 
 

M MR : 

Ni 

other reasonable cases, consider higher variances, mean uncer- 

tainty sets that are near uniform, and a situation where the 

highest and lowest means have the highest variances. These 

latter situations pose additional challenges to robust decision 

making. Near uniform means, for example, is commonly used 

in the sample allocation literature as the most challenging test 

case for a selection methodology. High variances also make 

the allocation decision more difficult as this makes it more 

probable empirical means taken from small samples will be 

misleading. The parameters used are summarized in Table I, 

and all four examples are repeated with k = 12 and k = 24. 
Results are summarized in Table II, while Table III lists the 

response surface fitting errors for all examples. 
min 

N 
β1,0 + 
 

k 

β1,i · 
i 

B 
+ ε3 + ε1

 

 

Each example implements the response surface methodol- 

ogy by generating 1000 samples of {μ, σ } to estimate f3 , and 

s.t. 
 

 
i=1 

Ni = B 
1000 samples of N to estimate f1 . Each surface is estimated 
using linear least squares. These sample sizes are conservative 

Ni ≥ 1 ∀ i. (10) 

As noted previously, ε1 and ε3 are independent of any deci- 

sion variables and thus do not affect the optimal solution of 

M MR. They are nonetheless explicitly written in the objec- 

tive function to maintain cognizance that this approximation 

of MMR is subject to error. 

 
IV.  EXAMPLE IMPLEMENTING THE RESPONSE SURFACE 

METHODOLOGY FOR MMR 

Four examples of interested are now presented, all with 

k  = 6 and B  = 100. This first example represents a sce- 

nario  most  likely  to  be  encountered by  a  decision  maker, 

for the response surface coefficients to converge but were not 

computationally burdensome. 

For each example, the effectiveness of the methodology was 
evaluated by generating 4000 uniformly distributed samples 

of {μ, σ } from their uncertainty sets and computing the resul- 

tant regret values for the solution to (10), which is denoted 
as  N

M--MR 
.  The  upper  quantiles  of  regret  generated  in  this 

way give a  strong estimation of  the maximum regret pos- 

sible; if this estimator of maximum regret is small, that is 

evidence the methodology is performing well. For compari- 

son, two reasonable benchmarks are used. The first benchmark 

is the sampling allocation obtained by assuming all means 

and variances equal their “most likely” values, defined as the 
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∀ i

 

 
TABLE II 

REGRET  QUANTILES  

 
 

 

 
 

 

 

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 
 

midpoints of uncertainty sets. Formally, this benchmark is 

TABLE III 
RESPONSE  SURFACE  ERRORS  

6 
μ  − μ 

i bmid
 

NML = argmaxN 1 − 

i=2 σ 2 
b 

2 
i

 

 

s.t. Ni = B 

i 

bmid 
/N  mid  + σ i /N

 

   μu  μl 

μi  =    i  −  i
 

   σ u σ l
 

σ i  =    i   −  i 
 

bmid := i|μi  > μj  ∀ j = i. (11) 

The second benchmark is the uniform sampling allocation, 

Nuni  = {B/k, B/k, . . . , B/k}.  When facing deep uncertainty, 
this may perform rather well in minimizing maximal regret. 

N
M--MR  

will be compared to these two benchmarks by comput- 

ing the upper quantiles of regret for each solution. 

 
A. Example: Moderate Overlap in Means, Moderate 

Variance 

Solving (10) yields N
M--MR   

= [25, 22, 18, 17, 11, 8].  The 

solution to (11) is NML  = [39, 28, 16, 8, 5, 3]. The response 
surface  methodology  has  clearly  led  to  a  more  uniform 

allocation of  samples, though is  still far from a  pure uni- 

form allocation. Fig. 2 plots the upper quantiles for N
M--MR 

, 

NML , and Nuni . As seen, N
M--MR   

outperforms both NML  and 

 
 
 
 
 
 

 
Fig. 2.    Regret quantiles for Example A. 

 
 
 
Nuni  by a wide margin. The 99.9th quantiles of the regret 

in  APCS  for  the  three  strategies  are  0.0828,  0.1600,  and 

0.1525, respectively. Recalling the definition of APCS as a 

lower bound on the probability of selecting the best design 

option, post-sampling, these results show the response sur- 

face  methodology can  reduce  a  decision  maker’s  potential 

regret  by  1 − 0.0825/0.1525  = 45.7%  over  the  next-best 
benchmark. 
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Fig. 3.    Regret quantiles for Example B. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.    Regret quantiles for Example C. 
 

 
 

B. Example: Moderate Overlap in Means, High Variance 

Increasing variances from σ u = 20 and σ l = 10 to σ u = 40 

and σ l  = 20 creates an interesting dynamic between N -- , 

NML , and Nuni , as seen in Fig. 3. N
M--MR   

still vastly outper- 

forms each NML and Nuni , but Nuni now outperforms NML . The 

relative improvement of Nuni is not surprising, as higher vari- 

ances, and wider ranges in variance, creates greater potential 

for NML  to perform poorly. The improvement of N
M--MR  

over 

Nuni  is still substantial, marking a 25.9% reduction in regret 
at the 99.9th quantile. This is understandably lower than the 

improvement in Example A, given the increased difficulty of 

allocating samples in a high variance scenario. 
 

 
C. Example: Near Uniformity in Means, Moderate Variance 

Example  B  motivates  further  exploration into  Nuni   as  a 

viable strategy, and thus this example considers mean uncer- 

tainty sets that are close to identical. In this case, both N
M--MR

 

and Nuni  lead to substantially smaller maximal regrets than 

NML .  However, the  maximal regret for  N
M--MR   

and  Nuni  is 

indistinguishable, as seen in Fig. 4. This does not invalidate 

the methodology of this article but rather reflects that uniform 

Fig. 5.    Regret quantiles for Example D. 

 

 
sampling is a good strategy when the designs are hard to dis- 

tinguish. Consider, for instance, that the following realized 

means and variances are possible: 
 

μ1  = μ2  = μ3  = μ4  = μ5  = μ6  = 95 

σ1 = σ2 = σ3 = σ4 = σ5 = σ6 ∈ [10, 20]. 
 

Thus, given the information provided by SMEs, it is possible 

the designs are all identical in mean and variance. 
 

 
D. Example: Moderate Overlap in Means, While 

Higher/Lower Means Have Higher Variances 

This final example is an interesting case, as a decision maker 

is incentivized to devote samples to designs with lower mean 

uncertainty bounds because those designs also have higher 

variances (refer to Table I). Not allocating samples to designs 

with high mean uncertainty bounds is risky, as these also have 

high variances. As Fig. 5 shows, the approximation method 

still outperforms each of the benchmarks. At the 99.9th quan- 

tile, N
M--MR  

reduces regret by 30.6% compared to the next-best 

benchmark. The actual solutions N
M--MR   

and NML  are worth 
noting in  this  example: N

M--MR   
= [35, 21, 15, 7, 9, 12]  and 

NML  = [51, 34, 5, 2, 3, 4]. Each allocates the most samples 
to design 1, and successively less to designs 2–4, before allo- 

cating successively more to designs 5 and 6, reflecting the 

higher variance of these designs. N
M--MR 

, however, is closer to 

uniform sampling, which evidently improves maximal regret 

while still being better than pure uniformity. 

These  same  four  examples were  repeated  with  k  = 12 

and  k  = 24,  expanding the  sampling budgets to  B = 200 

and B = 400, respectively. The sampling budget was increased 
with k so that uniform sampling would still allocate a reason- 

able number of samples to each design. The uncertainty sets 
for designs 7–24 are computed by naturally extending the pat- 

tern used when k = 6. That is, mean upper and lower bounds 

continue declining at the same rates for successive designs. 
For the case when variances are higher for the highest and 

lowest means, the first and last designs have σ u  = 20 and 

σ l = 10, while the middle designs have σ u = 8 and σ l = 4. 
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For example, when k = 12, and moderate overlap in mean 

uncertainty sets and variances that are higher for the highest 
and lowest means are used, the uncertainty sets are 

 

μu  = 105, 95, 90, . . . , 55, 50 

μl  = 95, 85, 80, . . . , 45, 40 

σ u = 20, 17.6, 15.2, . . . , 8, 8, 10.4, 12.8, . . . , 20 

σ l = 10, 8.8, 7.6, . . . , 4, 4, 5.2, 6.4, . . . , 20. 
 

The results are summarized in Table II, where regret quan- 

tiles are given for the 95th, the 99th, and the 99.9th quantiles. 

Continued  outperformance  of  the  benchmarks  is  seen  for 

k = 12, but performance deteriorates when k = 24. When 

k = 24, the response surface methodology outperforms the 
benchmarks in only two of the four examples. This can be 

explained by the increase in response surface error, as seen 

in Table III. Implementing more elaborate response surfaces 

with less error (which consequently are expected to be more 

difficult to optimize) is left as a key point of future research. 

For the time being, this article has provided evidence that, if a 

response surface can be found with suitably small errors, then 

the response surface methodology for multilevel optimizations 

is a powerful decision-making tool. 
 

 
V.  CONCLUSION AND FUTURE RESEARCH 

This  article  developed  a  robust  sampling  budget  alloca- 

tion policy via an MMR formulation, solved effectively using 

a novel response surface-based approximation approach. For 

designers of complex systems who often face deep uncertainty 

when exploring alternative design concepts, the developed 

procedure may provide valuable guidance on how to assign 

a  limited  sampling budget  to  select  the  best  design  avail- 

able. Very little research has previously been done on robust 

solutions to  sampling allocation problems, and  to  the  best 

of our knowledge, this is the first article to utilize a mini- 

max regret approach, which is more difficult than a standard 

max–min RO. The analysis was motivated by the need in com- 

plex system’s design to allocate simulation sampling budgets 

intelligently, where information prior to running any simula- 

tions is often limited and thus robust solutions are valuable. 

The methodology has applicability beyond sampling alloca- 

tion problems or even RO; it can be used more generally for 

any multilevel optimization. 

There are several promising topics to study in the future. 

One such area is the incorporation of more elaborate response 

surfaces into the methodology. The response surfaces in this 

article were transformed linear regressions, which had two 

desirable properties. First, they were easy to optimize, which 

is an essential property of the lower level optimizations if 

one is to estimate the higher levels in a reasonable amount 

of time. Fast global optimization, in general, is a rich area of 

research, but specialized techniques to quickly optimize the 

more sophisticated response surfaces (such as neural networks, 

boosted regressions, and so on) will enhance the usefulness of 

response surfaces for multilevel optimization. The second use- 

ful property of the response surfaces used in this article is they 

exhibited no heteroskedasticity. This implied even risk-averse 

decision makers could ignore error terms in the response sur- 

face approximation to MMR. If errors instead depend on the 

decision variables, it would be straightforward enough to sim- 

ply penalize decisions that introduce high error. However, a 

more sophisticated approach would be able to select samples 

from the decision space such that response surface errors are 

either: 1) uniform or 2) large only in sections of the decision 

space known to provide bad solutions. 

Related to the desire for optimizations that can be solved 

quickly is the need to get a representative sample of the deci- 
sion space with as few sample values as possible. This article 

used Latin hypercube samples for {μ, σ }, as this is  a well- 

developed method for efficiently sampling from a box set. 
When sampling from the simplex decision space for N, tradi- 

tional LHS did not apply and the unbiased, though inefficient, 

method of drawing Monte Carlo samples was used. Extending 

LHS to constrained sample spaces is an open research area 

that will be important for improving the efficiency of the 

methodology presented in this article. 
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