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ABSTRACT

Digital twinning presents an exciting opportunity enabling real-time optimization of the
control and operations of cyber-physical systems (CPS) with data-driven simulations, while
facing prohibitive computational burdens. This paper introduces a method, Sequential
Allocation using Machine-learning Predictions as Light-weight Estimates (SAMPLE) to address
this computational challenge by leveraging machine learning models trained off-line in a
predictive simulation learning setting prior to a real-time decision. SAMPLE integrates machine
learning predictions with data generated by real-time execution of a digital twin in a rigorous
yet flexible way, and optimally quides the digital twin simulation to achieve the computational
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efficiency required for real-time decision-making in a CPS. Numerical experiments demonstrate
the viability of SAMPLE to select optimal decisions in real-time for CPS control and operations,
compared to those of using only machine learning or simulations.

1. INTRODUCTION

Recently, the digital twin concept has attracted
a tremendous amount of attention from researchers
and practitioners across a wide spectrum of scientific
and engineering disciplines. One particularly exciting
future application of the digital twin concept is the
potential to conduct real-time optimisation of the
control and operations of a cyber-physical system
(CPS) with data-driven simulations.

One such application example is the real-time
resource allocation to mitigate disruptions on
a system’s components as illustrated in Figure I.
When protecting k components from fast approach-
ing disruptions, the decision-maker only has
a limited amount of time to determine how M
mitigation measures will be allocated to protect
components once the disruptions are observed. An
example of such a problem is illustrated when
managing power grid against disturbances such as
an incoming storm system, electricity demand
surges, or intermittent generations (Bastani,
Damgacioglu et al, 2018; Bastani, Thanos et al,
2018; Damgacioglu & Celik, 2022; Darville & Celik,
2020a, 2020b; Shi & Celik, 2016; Xu et al., 2020;
Yavuz et al, 2020). Here, one mitigation measure is
the power utility company crew teams, which will be
allocated to protect k transmission lines. Given
a digital twin that is designed to determine the out-
come of the disruptions for a given allocation of
mitigation measures, the goal of real-time digital
twin-based decision-making would be to select the

optimal allocation of mitigation measures from
amongst all possible allocations, e.g., to minimise
load shedding caused by the storm system.

In this paper, we emphasise the importance of con-
text in digital twin-based optimisation, which refers to
a collection of both external and internal events, cov-
ariates, and states under which a decision is being
evaluated. For example, for the problem of determin-
ing the optimal mitigation measure allocation of
a power grid to improve its weather resilience, weather
forecast, electricity demand, and power generation
capabilities, etc., are all part of the context under
which the mitigation decision is made. Obviously,
different contexts will lead to different optimal deci-
sions, making the optimal decision context dependent.
In fact, the hallmark characteristic of a digital twin is
to dynamically assimilate various sensor data into
a computational simulation model to reflect the cur-
rent state of the system and predict the outcomes of
decision alternatives.

In principle, once a context is observed, an optimi-
sation problem can then be formulated under the
context and solved via simulation optimisation,
which is an emerging optimisation methodology that
works directly with a stochastic black-box function,
e.g., a digital twin. Simulation optimisation has already
been used in a wide spectrum of engineering, scienti-
fic, and societal applications. Examples include pro-
duction planning in manufacturing (Calverley et al.,
2021; Cao et al., 2021; Hsieh et al., 2007; Pickardt et al.,
2010; Song et al., 2019; Zhang et al., 2020), operational
planning of power systems (Thanos et al., 2015; Xu
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Figure 1. A systemdisruption mitigation problem with n mitigation measures (blue triangles) to be allocated to protectk
interconnected components (black circles) upon observing a disruption vector with m disruptions (red diamonds).

et al,, 2020; Yavuz et al., 2020), resource allocation in
healthcare and other service systems (T. T. Chen &
Wang, 2016; Kasaie & Kelton, 2013; Qiu & song,
2016), and transportation (Zhou et al., 2021).

Before the advent of digital twin, simulation opti-
misation methodologies were intended to optimise the
planning and design of a system. Data sets were col-
lected over a period of time and compiled to provide
views on the uncertainty in systems’ operations and
environments, and provide input models, often
together with some other expert inputs, for the simu-
lation. The simulation optimisation algorithm then
selects a decision that achieves the best performance
as measured against the input models. The concept of
context is typically not explicit and instead encapsu-
lated into the simulation model, representing the
belief that the simulation model will internally reflect
the future state forecast. Considering the uncertainty
in the future, some perturbations to the input models
may be added to help understand how the system’s
performance may change when the future is different
from what the curated input models specify. One
representative example is the simulation study of the
development of drug resistance among parasites by Xu
et al. (2014), where many genetic, epidemiological,
and climatic parameters were determined based on
historical data and past research results, but were
perturbed to account for uncertainty in these para-
meters as well as difficult to predict future changes.

In contrast, an anticipated main usage of simula-
tion optimisation in future digital twin applications is
to respond in real-time to changes or disturbances in
system’s operational states or external events, or in
other words, to find the optimal decision under
a new context that has just been observed using
dynamic data feed retrieved from sensors and assimi-
lated into the digital twin. While it is possible to argue

that a simulation optimisation may be performed for
this newly observed context in the same way it has
been used in the past, the tight simulation budget
constraint due to the short decision time window,
and the high computation cost of running digital
twin simulations make this approach no longer viable.
Without a sufficient amount of simulation budget,
existing simulation optimisation methodologies
would fail to either identify an (near) optimal decision
or estimate its performance accurately.

An intuitive approach is to simulate all possible
contexts and identify the best decision for each context
and store these results in a contingency table, or “play-
book”. Then, a quick table look-up would suffice to
help a decision-maker to select the best decision in
real-time. The problem with implementing this solu-
tion is the poor scalability; as the cardinality of the
context space increases, e.g., with a high-dimensional
context space, this leads to exorbitantly high computa-
tional cost to solve a simulation optimisation problem
for each context.

Machine learning models are powerful predictive
tools and can be used to support real-time decision-
making. The emerging area of simulation learning
(Brantley et al., 2014; Lin et al., 2019; Pedrielli et al.,
2019) studies how to design stochastic simulation
experiments to generate data that can be used to
train machine learning models to predict system per-
formance. Given a predictive machine learning model
trained using simulation data, when a new context is
observed, the decision-maker may then use the pre-
dictive model to quickly select a decision
(Damgacioglu et al. (2018, 2019)). One such approach
is the covariate Ranking & Selection (R&S) method
considered in Shen et al. (2021), which used a linear
regression model to model the relationship between
simulation output and covariates (what we call context



in this paper). In Jiang et al. (2020), a logistic regres-
sion model was created using simulation output, and
was shown to accurately classify risk levels associated
with financial portfolios. The classification of these
risk levels allows for real-time updating of risk assess-
ments. Pearce and Branke (2017) used a Gaussian
random field trained using simulation data sequen-
tially added using the criterion of expected improve-
ment, to relate the system’s performance with contexts
(referred to as instances in their paper) and decisions.
Such a scheme is also referred to as offline simulation
online decision (OSOD) by L. J. Hong and Jiang
(2019) because machine learning models are trained
offline before the context is observed, and then an
online decision upon observing a context is made
using the machine learning model predictions.

In this paper, we refer to the aforementioned meth-
ods as predictive simulation learning because it relies
on simulation learning that is performed before the
current decision context is observed, and then uses the
machine learning predictions without any further
simulation optimisation to select a decision in
response to the observed context.

While predictive simulation learning has been
demonstrated as a potentially very useful method to
support real-time decision-making, major obstacles
exist that make it difficult to achieve high-quality
decision outcome. For linear models used in Shen
et al. (2021) and Jiang et al. (2020), selection of
a proper set of basis functions to predict the expected
utility of a context has been shown to be difficult in
high-dimensional problems. While the Gaussian ran-
dom field model used by Pearce and Branke (2017) is
a very powerful predictive model, its use is still limited
to a low-dimensional context space because of the
curse of dimensionality. The problem of predictive
accuracy is further compounded by the use of stochas-
tic simulation data, often with significantly heteroge-
neous noise, in model training. More importantly, as
explained in Pedrielli et al. (2019), the vast context and
decision space and the complex, dynamic and uncer-
tain environment, and limited computing budget for
learning often lead to predictive accuracy that ranges
from poor to mediocre.

To address the aforementioned limitations of simu-
lation optimisation and predictive simulation learn-
ing, this paper proposes a new algorithmic approach
that integrates predictive simulation learning with
simulation after a context is observed. The new algo-
rithm, Sequential Allocation using Machine-learning
Predictions as Light-weight Estimates (SAMPLE),
makes an important step towards the goal of real-
time simulation optimisation for digital twin applica-
tions. SAMPLE integrates predictions from lightweight
machine learning models, which means those models
are easy to train and fast to compute, but are of poor
prediction accuracy, with simulation output
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conducted under the observed context. This is the
gist of SAMPLE that distinguishes it from existing
works such as Jiang et al. (2020) and Shen et al. (2021):

« By integrating simulation output for the current
context, SAMPLE is able to effectively overcome the
problem of predictive errors in machine learning
models, and offers a robust method that works well
with lightweight machine learning models that are
easy to train and deploy in many important real-
time decision making situations.

o By integrating machine learning predictions,
SAMPLE is able to tremendously reduce the impact
of stochastic variability in digital twin simulation
estimates due to the severely limited simulation bud-
get in a real-time decision making situation, and
translates predictive simulation learning power col-
lected from a large amount of past simulation data
into improved decision outcomes in the future.

In the rest of the paper, Section 2 presents the math-
ematical formulation of the real-time simulation opti-
misation problem. Section 3 presents the technical
details of the proposed SAMPLE algorithm. Section 4
presents  numerical experiment results on
a benchmark function and a case study. Section 5
states the conclusions and potential future work.

2, Real-time simulation optimisation problem
and challenges

Formally, we aim to solve the following optimisation
problem. Let Z denote the context, e.g., the observed
system disruption such as the forecast of wind speeds
in an area affected by a storm system, or a new rush
order sent to the factory floor of a semiconductor
manufacturing plant. Under context Z, the decision-
maker needs to select from a set of feasible decisions
X;¥a1;2;...;m, eg., the allocation of utility crew to

nower substations or transmission lines to nerform
equipment/line hardening. Let f0X;; ZP denote the uti-

lity of decision X; given context Z. Our goal is to select
j"éZP, the optimal decision under context Z:

j8Zb Y4 arg max  f0X;; ZP:
j2f1;...;mg
Given the uncertainty in the system, e.g., in weather
forecast and weather impact on the power system,
f0X;; Zb is typically a summary statistic of a random
variable FOXj; Z; §P, where § represents the uncertainty
in the system. In this paper, we consider
f0X;; ZP Ya Em%FéX,-,‘ Z; §"), where the expectation is
taken with respect to the probability measure y,,

which may depend on the context Z as well as decision
Xj. Because of the complexity of the digital twin
model, f0X;; ZP can only be observed by running

cimmulations that nradnce indenendent and identicallv

distributed (IID) observations of F0Xj; Z; §p. We
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denote the output from the [/ th IID replication by
Fi8X;; Z; §p. The digital twin simulation estimate of

f0X;; ZP is the sample average

f6X; Zb Ya  FX; Z; §b=1; (1)
1Yal
where [; is the number of simulation replications ran
for X; under context Z. Then, the best decision
selected would be
%02p Y arg max 0X;; Zp: 2)
j2fL...;

1;...; mg

When there is considerable noise in simulation out-
put, a large number of simulation samples need to be
collected to achieve an acceptable probability of cor-
rection selection (PCS) by simulation. We define this
to be the probability that, for an observed context
Z Y Z;, we observe the correct j* from our simulation
output and denote this as PCSs0Z;p
§

PCSs0Z:P Vs p(y“azip e POZ

For general Z, Z, Shen et al. (2021) introduces two
different ways to understand the probability of correct
selection across the entire space of covariates; the
probability can be taken with respect to its expected
value across covariates or its minimal value across
covariates. In this paper, we consider the PCS across
Z under its expected value, such that

PCS; %ﬁzép('ﬁazp Y, 62 ?vb (3)

where the expectation is taken with respect to the
probability distribution of Z. For our numerical
experiments, we evaluate this probability by conduct-
ing experiments on randomly generated contexts and
take the sample average to estimate PCSs.

Given a particular context Z;, simulation optimisa-

tion literature provides manv efficient methods that
either achieve a pre-specified certain level of PCS<0Z;p
or maximise PCSg0Z;P for a given simulation budget

(Fu, 2015; Xu et al., 2016). A recent review of existing
procedures that includes descriptions of emerging
techniques in simulation optimisation is given by
J. L. Hong et al. (2021). Specifically, fixed-confidence
Ranking & Selection (R&S) methods determine the
number of simulation replications to be allocated to
each decision so as to provide some form of probabil-
istic guarantees, e.g., the PCS or probability of good
selection (PGS; Eckman & Henderson, 2021; Kim &
Nelson, 2006). Fixed-budget R&S methods aim to
optimise the allocation of a given simulation budget
to maximise some performance metrics, e.g., PCS or
expected opportunity cost (EOC; Branke et al., 2007;
Gao et al, 2017; He et al,, 2007). Well-known fixed-
budget R&S methods adopt either a large-deviation
rate optimal approach started by the seminal paper on
optimal computing budget allocation (OCBA; C.-H.

C.-H. Chen & Lee, 2010; C.-H. Chen et al., 2000;
LaPorte et al., 2012, 2015) or Bayesian approach that
sequentially allocates simulation budget (Chick et al.,
2010; Frazier et al., 2008; Ryzhov et al., 2012).

When there is a sufficient amount of simulation
budget, problem (2) can be solved by the aforemen-
tioned existino simulation ontimisation methods to

achieve a reasonably high PCSg0Zp, although the
role of context Z; is not explicitly considered and
instead encapsulated into the simulation model itself.

However. with a hiochlv canstrained simulation hiudeet
as in real-time digital twin applications, PCSs0Z;P may

be very poor when existing simulation optimisation
methods are directly applied. One may consider
executing an R&S procedure in a high-performance
computing (HPC) environment, such as in Luo et al.
(2015), Ni et al. (2017), Zhong and Hong (2021), and
Zhong et al. (2021). However, access to computing
clusters which provide the magnitude of compute
nodes required to successfully implement traditional
R&S procedures in the real-time context we consider
are often not available. Furthermore, in some
instances, the scale of computational complexity to
identify good solutions from a given simulation may
be such that the required number of compute nodes is
intractable to obtain even for those willing to invest in
HPC infrastructure.

Recently, OCBA has also been extended to consider
the allocation of simulation budget to decisions and
a finite set of contexts with an objective to maximise
the PCS measured across all contexts for a particular
decision (Gao et al., , 2019b). They did not consider
the possibility of executing a limited number of simu-
lations once a context is observed. Consequently,
assuming that the true optimal alternative is different
depending on the observed context (otherwise, the
problem degrades to traditional simulation optimisa-
tion), such a policy is sub-optimal given the observed
information contained in the context. While the deci-
sion selected by their procedure is expected to perform
reasonably well, it would most likely be sub-optimal
for the specific realised context without taking advan-
tage of new information generated by simulating deci-
sions under the observed context.

In the following, we present the proposed SAMPLE
framework that effectively handles the aforementioned
challenges for potential digit twin applications.

3. SAMPLE framework

In this paper, we assume that the decision-maker has
used predictive simulation learning to train a machine
learning model using simulation data generated on
different contexts and decision alternatives. Then,
upon observing Z, the utility of a decision X; is
approximated by the machine learning model predic-
tion g0X;; ZP, which can be evaluated in a negligible



amount of time compared to running digital twin
simulations. For notational simplicity, we just con-
sider one machine learning model here. The proposed
SAMPLE algorithm is able to work with multiple
machine learning models. It is then reasonable to
select the best predicted decision by

62D Ya arg /max g0X;; Zp: (4)
jYl;..om
The probability of selection by predictive simulation
learning (PCS p) is then defined by

PCSp %, 0P8i*32p Ya j#620bp (5)

The problem of solely relying on #32b is that PCS p is
likely to be low unless gi§; § has high predictive accu-

racv. However. as explained in Pedrielli et al. (2019).
data sparsity makes it likely that ¢i§; # only provides
a crude approximation to f9); §) for the current context

7. The nronosed SAMPIE framewaork integrates
information from simulation output F,6X;; Z; §P in

equation (1) with the machine learning predictions

in equation (4) to produce a new estimate f3X;; ZP,
which then gives the following real-time simulation
optimisation selection rule
%02 Ya arg max f0X;; Zb;
Hal;..om
and the PCS with real-time simulation optimisation

using the proposed SAMPLE algorithm under
a realised context Z;, is then given by

PCSREZ,p Y P82 Ys 82,0P:

To better measure the performance of SAMPLE in the
context space, following the definition of PCSy as in
equation (3), we define PCSy:

PCSy 4, 8PCSR8Z;Pb: (6)

Unlike the previous work on context-dependent R&S
by Shen et al. (2021), the proposed SAMPLE algorithm
is not designed with any prior context distribution in
mind. Rather, the premise of SAMPLE is that for any

realised context 7.. oiven the same online simunlation

budget, SAMPLE would be able to improve PCSz0Z;P
because of the usage of both machine learning predic-
tions and online simulation data. In the following

sections, we first show how to construct féXj; Zb. We

then conduct numerical experiments to compare
PCSy with PCSg and PCS,,.

3.1. Overview of sample

The proposed SAMPLE algorithm operates at two
stages: predictive simulation learning and real-time
simulation optimisation. The predictive simulation
learning stage occurs before the decision context Z is
observed. The purpose of the predictive simulation
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learning stage is to train machine learning models
using simulation data on various contexts and deci-
sion alternatives. SAMPLE can use any of the predic-
tive simulation learning methods in the literature such
as Shen et al. (2021) and Pedrielli et al. (2019) in this
stage.

In the real-time simulation optimisation stage,
SAMPLE then integrates predictions from the
machine learning models with simulations run in real-
time on the observed context Z; to evaluate decision
alternatives and recommend a (near) optimal decision
in real time. The real-time simulation optimisation
stage sets SAMPLE apart from existing methods.
Figure 2 presents the information flow in the
SAMPLE framework.

3.2. Predictive simulation learning

In the predictive simulation learning stage, SAMPLE
generates a large number of contexts and conducts
extensive simulation experiments to estimate out-
comes of decisions under each context. This process
provides a (potentially) vast amount of offline simu-
lation data to train machine learning models that
may predict outcomes of different decisions without
the need to run simulations. A very well-known
example of this offline simulation-based learning
approach is Google/Deepmind’s AlphaGo (Silver
et al.,, 2016) and AlphaGo Zero (Silver et al., 2017).
Trained over 29 million self-played games (Silver
et al,, 2017), AlphaGo Zero was able to build highly
accurate deep neural networks that allow Monte
Carlo Tree Search to effectively search the decision
space without going down very deep in the game
tree. However, most applications would not have
access to the computing power required to perform
offline simulation experiments at such a scale.
Therefore, despite the success of AlphaGo, as
pointed out by Pedrielli et al. (2019), data sparsity
is a real issue for applications with high-dimensional
context and decision spaces. To further exacerbate
the problem of predictive accuracy, unlike
a perfectly deterministic, rule-based board game

like Go, real-world problems lack clear structures
and rules. and uncertaintv is nrevalent hoth intern-
ally and externally, leading to even more complex

behaviours that are extremely difficult to predict
using machine learning models trained on observed
or simulated data.

Another important consideration is the inter-
pretability of machine learning models. While
there has been very active research regarding inter-
pretable machine learning in the past several years
(Du et al, 2019; Molnar, 2020), simpler models
such as linear models and tree-based models are
much easier to understand and provide insights on
relationships among responses and predictors.
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Figure 2. Information flow in the proposed SAMPLE framework.

However, these simpler and much easier to inter-
pret machine learning models may not have high
prediction accuracy.

Furthermore, even when an organisation is cap-
able of employing complex and powerful machine
learning techniques to create models using adequate
data, there may still be a need to implement simula-
tions in real time. For example, such a case may arise
when the system for which our machine learning
model generates predictions is an adaptive system.
When generating predictions for such a system, the
value of a particular decision may change over time
as the system we are concerned with adapts to any
observable pattern in our own decision-making and
optimises its own system dynamics against these pat-
terns. This change in value over time of a decision
renders our predictive model ineffective. It may be
possible, given the time and computing power, to
generate a predictive model which ranks decisions
that perform well against all possible system config-
urations as optimal, but in so doing, may result in
undesirable opportunity cost resulting from sub-
optimal decisions given the current system
configuration.

Considering the data sparsity, prediction accuracy,
and adaptive system limitations, SAMPLE is designed
to work with lightweight machine learning models,
such that it can effectively boost online decision effi-
ciency and quality by working with machine learning
models that are easy to train and interpret, but may
not be the most accurate, e.g., compared to “heavy
weight” counterparts such as deep neural networks.
SAMPLE achieves this important design objective by
optimally using real-time simulation sampling budget
as explained in the next section.

3.3. Real-time simulation optimisation

Upon observing a context in nature for which
a decision is required, relying on machine learning
predictions alone would not lead to an optimal deci-
sion due to the inaccuracies in predicted decision
performance. Online simulation sampling can fill this
gap by providing accurate predictions of decision per-
formance upon observing a new context. However,
simulations are time-consuming, and simulation out-
put is noisy. SAMPLE alleviates the computational
efficiency challenge by utilising machine learning to
guide online simulation sampling. Following exhaus-
tion of a limited simulation budget, machine learning
predictions and simulation data are assimilated to
identify the best decision quickly for real-time
response. This is the key premise of SAMPLE that
sets it apart from existing works.

To implement this framework, the primary diffi-
culty is evaluating the level of uncertainty surrounding
the performance of a particular decision given both
the machine learning predictions and the simulation
output. Traditional R&S methodologies seek to max-
imise the PCS (or minimise the EOC) given noisy
simulation output data. SAMPLE seeks to maximise
the PCS for an observable context given both the
observed simulation output and simulation learning
predictions. The critical question becomes how one
optimally balances the need to explore the solution
space using simulation output to safeguard against
machine learning prediction errors and the need to
exploit machine learning predictions and focus simu-
lation on the top performing alternatives. The work
presented in this paper shows that the optimal solu-
tion to the exploration/exploitation problem in sto-
chastic simulation under a framework such as



SAMPLE produces better decisions with less effort
than when we only consider observable simulation
data, making it a good tool to use when selecting
decision alternatives in a resource constrained envir-
onment. In the following, we first discuss how to
integrate machine learning and online simulation
data, and then study how to allocate online sampling
budget within the SAMPLE framework. The algo-
rithms are based on the work of Peng et al. (2019),
who studied how to integrate low-fidelity model out-
put (Celik & Son, 2012) with high-fidelity simulation
data.

3.3.1. Integration of machine learning and
simulation data
Let Z;i% 1;2;...;n index n contexts, and X;;j ¥
1;2;...; m be the decision alternatives. Let f0X;; Z;P
denote the utility of decision X; given context Z;. Our
goal is to select j*, the optimal decision index under
context Z;: '
j? Yaarg max f0X; Z;P:
j2f1;...;mg

Here, f0X;; Zp can only be evaluated using sto-
chastic simulations that fully capture the complexity
and uncertainty in the system. We assume the simu-
lation sample mean f0X;; Z;P is an unbiased estima-
tor of f6X,-; Zp, and the distribution of the
simulation output is normal with a mean of
f0X;; Z;P and a variance of ofl.. When the distribution

of the simulation output is not normal, we can

instead sample f0Xj; ZP as individual observations
using the average of batched samples, which then
behaves according to a central limit, and yields an
approximately normal distribution.

In addition to the simulation model, there are also
K machine learning models. Denote by g,0X;; Z;P the

prediction from the k th model, and
g0X;; Z;p Y £g,0X;; Z:P; . . .; ex0X;; Z;Pg. Also, denote
by hdX;; Z:p Y ff0X;; Z:b; ¢0X;; Z:Pq. Following the fra-
mework of Peng et al. (2019), hiXj; Z; is assumed to
follow a Gaussian mixture model

hoX;; Z;p , T.P0Qju,; 9P (7)

il
Here, ¢l is the probability density function of a K o
1 dimensional multivariate normal distribution and C

is the numbher of mixtire model comnonents

According to (7), if the performance value of 3X;; Z;P
belongs to component ¢, then machine learning pre-
dictions g(8X;; Z;p;k ¥ 1;...; K and the true utility
f0X;; Z;p follow a multivariate normal distribution
with a mean vector g, and a covariance matrix ..
The parameter 7, gives the weight of component c.
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The motivation and justification for this choice of
representation for decision alternatives’ performance is
centred on a clustering phenomenon that has been docu-
mented in Xu et al. (2016), Peng et al. (2019), Song et al.
(2019), and Zhang et al. (2020). The numerical experi-
ments presented in this paper, e.g., as shown in Figure 5,
also further demonstrated the existence of this clustering
structure. Intuitively, such a clustering structure can be
viewed as a characterisation of the general quality of
decisions, e.g., excellent, good, poor. In real-world appli-
cations, instead of finding the optimal decision, decision
makers typically would be satisfied with finding an excel-
lent or even good decision when decision time window is
very limited. This clustering structure also matches with
this desire and has proved to be a flexible, robust, and
effective method to use low-fidelity predictions to help
determine the quality of a decision.

In Peng et al. (2019), a stochastic model-based
clustering procedure was derived and can be used to
cluster decisions into C components for a context Z;
using both machine learning and stochastic simulation
data. In an online decision setting, the number of
simulation samples would be very limited, and when
noise is significant, including those simulation sam-
ples in clustering analysis may not be helpful. Based on
this consideration, we propose to use the completely
observable machine learning predictions gdX;; Z;P to
perform clustering analysis, which provides an

annroximation to the clustering structure for the par-
tially observable data hi§; §.

¢ ¢ ¢ ¢

2
ab ¢ To .- ve Y

u. Y da; Bb; @ Ya o Ac : Oc 'y, Yc Qc
¢ c c

In the above, ac, f8, represent the average performance
of alternatives contained in the ¢ cluster according to
the simulation and K predictive models, respectively.
The variance of the alternatives’ performance in the ¢
cluster according to the simulation is ¢, and T, the
correlation between the simulation output and each of
the predictive models. The covariance matrix A, is for
the predictions for all K predictive models for alter-
natives in the ¢ cluster. Parameters of ¢! are com-
puted directly from these values. Here 8. and A, only
depend on ,qéX,-,‘ Z:p data. Denote by §c % fﬁc; AT,
c¥1;...; C9 the set of model parameters to be esti-
mated. It can be shown that the likelihood of these
parameters is given as

, YooK
Lch e 1 gigiBi A

RZY A |

This likelihood can be maximised using the expecta-
tion-maximisation (EM) algorithm, and we denote the
estimated parameters as (}?. Since C is unknown, it can
be treated as a tuning parameter. The Bayesian
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information criteria (BIC) can be utilised to discount
the given likelihood in order to determine the optimal
number of components C* as

C* Y arg ¢

m
0C1/41 .....
3d p 1b3d p 2P
2

logm

iC-1 4 (8)

whm; d is the nimher of narameters to he estimated
and # is a pre-specified upper bound for C. Once these

narameters have heen determined. initial online simu-
lation sample of fi§; Z;P would be generated upon

observing the context Z;. We have the following theo-

rem on the posterior distribution of fﬁXj; Zp. For
notation simplicity, we replace 8X;; Z;P with subscripts
in the following, e.g., instead of writing f3X;; Z;P, we
use fj.;.

Theorem 1. Conditional on decision X; belongineg to
cluster ¢, the posterior distribution of féX,-; Zp is nor-
mal with mean f3X;; Z;p and variance ~*0Xj; Z,p as
given below:

~2 ¢ v
it . . T
fii Ya e fi o ci;zl. e p ci;zi i~ B. 0-Y>" (9)
i~

~2 Y (10)

1
; 7 T2
v p lzo

For the proof of Theorem 1. please refer to Pene
et al. (2019). The model parameters a; ; Y; v, in (9)

and (10) are estimated via the EM algorithm using the
number of clusters C? determined using the BIC as
described previously in (8). Given simulation output,
one can easily compute f;; and ¢% , and subsequently
compute the posterior mean and variance. For a more
detailed description of the process, please see, Peng
et al. (2019). As can be seen from (10), as online
simulation sample size ;; increases, the posterior var-
iance goes to zero, providing accurate predictions.
However, [;; would typically be small and thus simula-
tion estimates would have considerable noise. The
term v, is the precision from the Gaussian mixture
model and helps reduce the posterior variance with
the information from machine learning predic-
tions g..

Equation (9) reveals how g;; are used with online

simulation sample mean fj; to predict f;;. The weight
for f;; is given by the ratio of the posterior variance
and the variance of f;;. As more simulation samples
are collected, this weight increases. The second term in
the right-hand side of (9) comes from the estimated
mixture component mean a,:

P, &
Al jic i .
7 - S S VR TN

a1 Mze

(11)

In (11), the binary variable 7, indicates if decision X;
is grouped into component c. Peng et al. (2019)
showed how to compute clustering statistics using
g0§b to determine 1. Therefore, A, pools the online
simulation estimate for all decisions grouped into the
same component ¢ such that limited online simulation
information may be shared among multiple decisions.
The last term in (11) uses the component-wise linear
relationship captured by the multivariate normal

model between fi§p and gigp to directly predict f;;

using g;...

3.3.2. Optimal online sampling policy

After I.: online simulations have been run for each
decision j ¥ 1;...; m, we would select the decision

with the largest posterior mean as the best deci-
sion, i.e.,

i Yy arg max T

Ji g;‘Zfl;.“;mg Tl'l
Due to simulation noise, the selection of j* may be
incorrect, i.e., j*@j*. An optimal online sampling pol-
icy aims to maximise the probability of correctly
selecting the best decision with a sampling budget L:

P(‘“,’ s :’0
L;;2%1;...;mg Ji Ji

X
st li@L
j2f1;..;mg
Under the Gaussian mixture modelling framework
given in (7), the posterior distribution of fi§; Z,p is
normal, which facilitates the derivation of an optimal

sampling allocation rule as given in the theorem
below.

Theorem 2. Let &j; % fy, — £ "j@j', and
vj; Ya 0}, ¢, An asymptotically optimal solution
l?;i;j 2 f1;...; mg to problem (12) satisfies the follow-

ing equations

hit
Lyi o VG

v’]idlzi

;191297 (12)

< fifiiffff

>x<X L
| =j;i
%%pw ’

i i 9
97" vi;;

(13)

The proof of Theorem 2 follows the derivation of
the original OCBA policy in C.-H. Chen et al. (2000)
and is omitted here. The set of equations given in
Theorem 2 can be easily solved to obtain the optimal
allocation of online simulation budget to all decisions.



When the sampling policy is implemented, J, initial
simulation samples are collected for each alternative
and the sample variances "f;i are plugged into equa-
tions (9) and (10), and then the quantity v;; is calcu-
lated and plugged into equations (12) and (13) to
determine the allocations.

3.4. Implementation of sample

Algorithm 1 outlines the main steps of the SAMPLE
algorithm. The decision-maker specifies the number
of simulation replications [, that each alternative
receives at the beginning of the online sampling
stage. The total number of online simulation samples
per SAMPLE iterations AL is another parameter spe-
cified by the decision-maker, which can be determined
based on the decision time window and simulation
run time. The choice of AL is related to the online
computing platform to make use of any parallel com-
puting power available. For notational simplicity, we
drop the subscript i for the context under which
a decision is to be selected.

Algorithm 1 (SAMPLE algorithm)

INPUT: context Z;, a set of decision alternatives
fX,; X5;...; X,,0, machine learning predictions
fgj :j % 1;..., mg, total simulation budget L, the
number of initial simulation replications allocated to
a decision y, the number of simulation samples spent
at each online iteration AL.

4, Initialise

Estimate the Gaussian mixture model using
fgj:j1/4 1;...;mg;set [ Yaly; j¥1;...; m; set itera-
tion counter k % 1; set expended simulation bud-
get Ly Ya mly.

LOOP: WHILE L, <L DO

Online simulation:

1: Simulate Xj;j % 1;...; m [; times, compute sam-

p]e variance Ni and camnle mean fi
2: Compute posterior mean f; and variance ~12 by

plugging 7 and f; into (9) and (10).

3: Compute L. the allocation of AT simulation sam-
plesto X;;j % 1;...; m, using (12) and (13).

4:Setkskp 1and Ly Y4 L, p AL.
END OF LOOP
Decision: Return the decision with the highest f;.

5. Numerical experiments

The efficiency of the SAMPLE framework was first
tested with the widely used Griewank function in
Section 4.1 and then on a system disruption mitigation
experiment in Section 4.2. We compare the achieved
PCS as a function of the total number of algorithm
(SAMPLE and its competitors) iterations executed to
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compare the efficiency of each of the selection proce-
dures tested. The specific PCS  metrics,
PCSs; PCSp; PCSy, are defined in equations (3), (5)
and (6). In these equations, the expectations are
taken with respect to a uniform random distribution
on a context space Z. Therefore, in the following
experiments, we randomly sampled contexts and

took the averase PCS achieved under these samnled
contexts as estimates of PCSg; PCSp, and PCSg,

respectively.

5.1. Experiments with a benchmark function

The efficiency of SAMPLE was first tested on the

widely used Griewank function from the global opti-

misation literature (Griewank, 1981; Taghiyeh & Xu,

2016). The d-dimensional Griewank function is given
by the formula

X 2 Y

fOxP Ya 40’00 -

iYal iYal

cosééﬂfﬂb b1

The Griewank function is typically defined on
a hypercube, where all x; 2 1—600; 600§. For testing
purposes, we only consider values on the interval
t—10; 10§. In this experiment, we set d ¥ 5. The five-
dimensional Griewank function has a global mini-
mum at x ¥ %0; 0; 0; 0; 0j.

Ulsino this information. we define the cost for
a decision x ¥ X; under a particular context z ¥ Z; to be:

fox; zb Ya -— cosé—piﬂ—B b1

X 5x,~ - Z,’p Y 6X,’ — i
w4000 Yal i

The [ th simulation output is then obtained by adding
to fOx; zP a noise term to & that is an IID realisation
from a normal distribution ¢; , N30; ob:

Fi0x; zP Y4 fOx; zP P ¢

To test the effect of simulation learning prediction
error and variability, we use the following equation to
generate “simulation learning predictions” gix; zP:

g0x; 2P Ya fOx; zP p y

Here v is an IID realisation of a normal random
variable Ny » ofb, with “ being the average predic-
tion error and o? the variance in prediction errors.

We create a static list of 1,000 randomly generated
decisions, which serve as the set of feasible alternatives
from which a decision-maker would select her deci-
sion. For each randomlv generated decision denoted

generated uniformly randomly on the i 104 interval

Any duplicate is removed, and a new one is added to
the set of decisions. For testing purposes, we ensure
that for a given context, a single decision from the
previously generated 1000 decisions will be the unique
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optimal decision. Without loss of generality, we utilise
the first 200 decision alternatives to serve as the 200
contexts that we test. Therefore, for each context
tested, there is a decision that is identical to the con-
text and is thus the globally optimal decision.

In our experiments, we varied several procedure
variables for each selection procedure, which affect
the efficiency of the algorithms. Table 1 lists the design
parameters that are tested.

The experiment is executed as follows. For each
context, initial performance estimates are gathered
by simulating each alternative I, replications. For
the SAMPLE algorithm, initialisation also includes
generating the simulation learning predictions and
computing the Gaussian mixture model parameters.
Following initialisation, each selection procedure
executes 100 iterations. For each iteration, AL repli-
cations are allocated in accordance with the selec-
tion procedure. At the end of each iteration (to
include initialisation), the selected optimal alterna-
tive is recorded. We conducted 20 macro-
replications for each experimental parameter con-
figuration given in Table 1 and selection procedure.

According to Table 1. there are 18 uniaue combi-
nations of Ij; AL; 0> to conduct experiments for

OCBA and equal allocation (EA) selection proce-
dures. EA refers to the sampling policy where
replications are distributed to alternatives with
equal probability. Implementation of EA and
OCBA for these experiments was equivalent to
their implementation in a scenario where the con-
text was assumed and integrated into the design of
the simulation. The behaviour of an alternative in
the simulation given the observation of the covari-
ates is fixed, so OCBA and EA can be applied to
determine the optimal alternative in this fixed set-
ting. Unlike SAMPLE, this is performed without
any prior knowledge given by a set of predictive
models. For each of those 18 combinations, there
are 6 unique SAMPLE experiment parameter com-
binations related to the simulation learning predic-
tive model parameters (4, and of). This results in

108 total experiments. Given the large number of
experiments, only a subset of 24 representative
experiments conducted are presented here in
Figure 3, while the remainder of the results pro-
vides similar observations as derived from these 24
experiments.

In Figure 3, each plot shows PCS curves for each
selection procedure, one for each of the 20 macro
replications conducted for the given experiment. We
can see that in all cases, the SAMPLE algorithm has
a clear and substantial increase in PCS during initial
sampling when compared against OCBA and EA.
Given the mean and variance of performance for

Table 1. Experimental design for comparing SAMPLE frame-
work efficiency.
Parameter

Values

Number of Alternatives m 1000
Predictive Estimate Error u,, 0,1

Predictive Estimate Variance o2 0,0.1,1
Initial Replications per Alternative /o 3,10
Allocation Budget per Iteration AL 100, 500, 1000
Simulation output variance ¢? 1,4,9

each selection procedure in each experiment, we can
conduct a two-way ¢-test to infer the statistical signifi-
cance of the difference. The p-values associated with
these tests for a variety of different PCS measures are
given in the following table.

For each of these experiments, we also calculate the
probability that SAMPLE reduces the required num-
ber of simulation replications to achieve various levels
of PCS. In Table 2 and Table 3, we present the p-values
associated with the two-way ¢-tests conducted against
our hypothesis. The null hypothesis used for our sta-
tistical testing is as follows:

Ho : NpcsupBOCBA or EAP ¥ Npcsy,SAMPLEP
(14)

where Npcgy,04P is the number of replications needed
to achieve a PCS level of x with the given selection
procedure. The PCS values that we test our hypothesis
against are .1, .25, .5, .7, and .85. Values which are
annotated as N/A indicate that neither selection pro-
cedure was able to reach that given level of PCS.

We can observe from these results that, in a general
sense, SAMPLE outperforms OCBA and EA with sta-
tistical significance. The only exceptions are seen in
experiments 13-17, when comparing SAMPLE with
OCBA at a PCS level of 0.7. For these experiments, the
variances of the simulation are very low, and the
accuracy of our predictive models are relatively poor.
As a result, OCBA was able to achieve similar perfor-
mance as SAMPLE.

5.2. System disruption mitigation experiments

Figure 4 illustrates a system where a system operator is
given five assets to protect against disruptions, each
with a different utility. There are 10 disruption events
that may happen simultaneously to these assets. The
system operator is able to allocate 10 different mitiga-
tion measures to protect the five assets. The mitigation
measures all have the same probability, denoted as p,
of successfully stopping a disruption event. If the
mitigation measure is not successful, a disruption
event is able to disrupt the system’s operation with
the same probability g.
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Figure 3. Results from 4 out of 24 experiments on the benchmark test problem. Each experiment was presented in a sub-figures
with 6 plots laid in a 3 x 2 grid. The title of each sub-figure contains three numbers depicting o, AL, and 62, respectively. Each plot
is titled using two additional numbers depicting u, and 0_2 for the SAMPLE procedure, respectively. The horizontal axis shows the
algorithm iteration count. The vertical axis shows the PCS achieved by a procedure after a certain number of iterations.
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Table 2. p-values from two-way t-tests comparing SAMPLE and EA.

PCS A 25 5 7 85
1 9.353e-134 1.274e-125 N/A N/A N/A
2 3.649e-127 5.003e-106 N/A N/A N/A
3 1.571e-127 3.580e-08 N/A N/A N/A
4 4.317e-130 2.844e-110 N/A N/A N/A
5 3.747e-133 6.070e-16 N/A N/A N/A
6 4.082e-125 2.246e-09 N/A N/A N/A
7 1.779e-150 7.261e-151 2.36%e-129 1.619e-01 N/A
8 7.524e-151 5.53%-142 1.619e-01 N/A N/A
9 5.969%e-143 7.292e-131 N/A N/A N/A
10 4.157e-154 8.445e-148 3.579e-08 N/A N/A
1 1.111e-149 1.711e-137 N/A N/A N/A
12 7.320e-147 2.042e-134 N/A N/A N/A
13 2.267e-17 7.653e-33 4.323e-16 1.587e-181 7.296e-159
14 2.412e-17 1.820e-32 4.343e-16 6.352e-137 N/A
15 2.492e-17 1.867e-32 4.360e-16 3.482e-03 N/A
16 2.590e-17 7.619e-33 4.335e-16 4.805e-05 N/A
17 2.172e-17 1.877e-32 4.351e-16 2.247e-09 N/A
18 2.23%-17 1.931e-32 4.361e-16 8.100e-03 N/A
18 1.877e-154 6.351e-156 9.023e-139 3.440e-07 N/A
20 1.575e-154 4.706e-145 7.726e-02 N/A N/A
21 6.265e-154 7.264e-129 N/A N/A N/A
22 8.460e-152 1.088e-152 2.672e-21 N/A N/A
23 1.218e-154 7.534e-137 1.619e-01 N/A N/A
24 8.791e-152 9.976e-129 N/A N/A N/A

The parameters utilised for these experiments are
given in Table 4. For a detailed description of one such
example in the context of power grid hardening for
improved weather resilience, please refer to Xu et al.
(2020).

The disruption vector Z % fz;;...; z;g provides

the context ninder which the svstem (})erator deter-
mines the mitigation decision X % fxj;...; xsg.

Assiiming all 10 mitication measnres will he nsed.
there are 1; 001 context-decision pairs. To develop

benchmark performance measures for each context

vector, the theoretically optimal mitigation measure
allocation X;40Z;P was computed for each Z;.

5.2.1. Predictive simulation learning

Two machine learning models were trained in the
offline stage. The first was a linear regression model.
Because linear models are often preferred by decision
makers thanks to their easy interpretability, efforts
were made to compare and select basis functions to
improve the predictive accuracy of a specific linear
model trained for use in this experiment. The linear
regression equation found to be effective for this
experiment is given below:

X
fOX; 2P Brxi P Bz P Biixizi (15)

kYal

Table 3. p-values from two-way t-tests comparing SAMPLE and OCBA across 24 experiment scenarios.

PCS N 25 5 7 .85
1 9.353e-134 1.274e-125 N/A N/A N/A
2 3.649e-127 5.003e-106 N/A N/A N/A
3 1.571e-127 3.580e-08 N/A N/A N/A
4 4.317e-130 2.844e-110 N/A N/A N/A
5 3.747e-133 6.070e-16 N/A N/A N/A
6 4.082e-125 2.246e-09 N/A N/A N/A
7 1.779e-150 7.261e-151 2.36%e-129 1.619e-01 N/A
8 7.524e-151 5.53%-142 1.619e-01 N/A N/A
9 5.969%-143 7.292e-131 N/A N/A N/A
10 4.157e-154 8.445e-148 3.579e-08 N/A N/A
1 1.111e-149 1.711e-137 N/A N/A N/A
12 7.320e-147 2.042e-134 N/A N/A N/A
13 1.401e-43 8.669e-44 3.106e-37 6.75%-02 7.296e-159
14 1.202e-43 1.335e-41 3.809e-36 6.843e-02 N/A
15 1.463e-43 6.984e-43 4.545e-35 9.999%-01 N/A
16 1.568e-43 1.055e-43 7.097e-37 9.974e-01 N/A
17 1.179e-43 1.863e-42 4.711e-36 8.853e-01 N/A
18 1.643e-43 7.478e-43 3.287e-35 N/A N/A
18 1.877e-154 6.351e-156 9.023e-139 3.440e-07 N/A
20 1.575e-154 4.706e-145 7.726e-02 N/A N/A
21 6.265e-154 7.264e-129 N/A N/A N/A
22 8.460e-152 1.088e-152 2.672e-21 N/A N/A
23 1.218e-154 7.534e-137 1.619e-01 N/A N/A
24 8.791e-152 9.976e-129 N/A N/A N/A
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Figure 4. Allocation of 10 mitigation measures to protect 5 assets against 10 incoming disruptions.

The second was a nonlinear regression model known as
multi-adaptive regression spline (MARS (Friedman
(1991)).

Latin hypercube designs (LHD; Santner et al.
(2018)) were used to sample independently 200 disrup-
tion vectors and mitigation vectors. Then, pairing each
disruption vector with all 200 mitigation vectors cre-
ated 40,000 different design points. Thirty simulation
replications were then run for each design point to
generate training data. For the linear regression
model, elastic net (Zou and Hastie (2005)) was used
to estimate regression coefficients. Model tuning was
done using a repeated 10-fold cross-validation process
over multiple L; and L, regularisation parameters, for
which the optimal settings were found to be 60; 10P for

Dissuption 10,0,0,0,0

Disruption 2.2,2,2.2

the L; and L, regularisation parameter, respectively.
For the MARS model, the data was also transformed
using the same basis functions from equation (15). The
tuning parameters were the degree of branching for
splines and the number of splines to utilise. The opti-
mal parameters were found to be 82; 30P, respectively.

We plot predictions made by these two machine
learninog models for six different disruntion scenarios
in Figure 5. In the figure, all 1; 001 mitigation vectors

are sorted in the ascending order of true utility values.
We observe large prediction errors, but the relative
ordering of mitigation vectors using machine learning
predictions appear to be useful, as evidenced by the
overall increasing trend in prediction values. In addi-
tion, except for the middle and right plots in the first

Dissuption 3,3,3,4,0

0 20 4 &0 800 1000 o 200 40

Disruption 5,0,5,0,0

0 =0 1000 [ 0 0 s 200 1000

v, Anernate

Disruption 0,5,0,5,0

&0 20 1000 o 20 40 00 200 1008

Figure 5. Utility values achieved by different mitigation vectors sorted in ascending order of utility values for six disruption
scenarios. Black points are true expected utility values, blue points are predictions from Mars model, red points are predictions
from the linear regression model. Mitigation vectors are sorted in the ascending order of true utility values.
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Table 4. Experiment parameters with 10 disruptions impacting 5 assets protected by 10 mitigation measures.

Asset Utility Prob. of mitigation success (p) Prob. of disruption success (q)
1 5 0.6 0.8
2 6 0.6 038
3 10 0.6 08
4 6 0.6 038
5 5 0.6 08
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Figure 6. Comparison of PCS achieved by five different online sampling methods.

row of Figure 5, we notice the clear clustering struc-
ture of mitigation vectors based on their true utility
values. Importantly, we observe that the clustering of
mitigation vectors closely matches the clustering
structure. These observations provide the empirical
evidence on the viability of the Gaussian mixture
model-based framework to integrate machine learning
and online simulation data.

5.2.2. Real-time simulation sampling and decision
Five different real-time simulation sampling methods
were used to select an optimal mitigation measure
allocation upon observing a disruption vector, and
their performances were compared to determine
their accuracy. First, an EA scheme was used to equally
allocate a limited simulation budget to all feasible
mitigation measures. Second, a sequential implemen-
tation of the asymptotically optimal OCBA algorithm
was used. Then, SAMPLE was used with the linear
regression model (SAMPLE-L), with the MARS model
(SAMPLE-M), and finally with both linear and MARS
models (SAMPLE-LM) to allocate a simulation
budget.

For an observed disruption vector, the sampling
procedure carried out 30 online sampling iterations.
Considering the prevalence of parallel computing in
most applications, in each iteration, the online sam-
pling algorithm determines the allocation of AN
replications, where AN is set based on the parallel
computing power. For example, if 100 openMP

threads are available to run simulations simulta-
neously, then we may set AN ¥ 100. In the experi-
ment, we set AN ¥ 1;000. At the end of an

iteration, the design with the best estimated utility
would be selected as the best mitigation vector. The
sampling procedure then assimilates simulation
results to update the allocation for the next iteration
and proceeds. We set the number of iterations
to K; ¥ 30.

The accuracy of different simulation sampling pro-
cedures were compared in two different ways. For
a disruption vector Z;, the mitigation vector selected
by a procedure at the end of iteration k, b N’; 0Z;p, was

compared against the true optimal mitigation vector
benchmark allocation policy, X#0Z:P. This was done
for i % 1;...; I; randomly generated disruption vec-

tors, and the PCS achieved by each procedure is cal-
culated by the percentage of times that

PKoZ;p@X;40Z;p for all I, disruption scenarios across
all iterations k % 1; .. .; K;. In the experiment, we set
I Y4 250. Figure 6 plots the PCS achieved by different

simulation sampling procedures as a function of simu-
lation sampling iterations. SAMPLE generally outper-
forms EA and OCBA.

Figure 6 plots the PCS achieved by different real-
time simulation sampling procedures as a function
of online sampling iterations. It is immediately clear
that optimally allocating a limited sampling budget
has a major impact on the quality of the decision.



When simulation budget is equally allocated, there
was very little improvement in PCS, hovering
around 20% even after 30 iterations. When
SAMPLE only used one machine learning model,
SAMPLE’s performance was slightly lower than
that of OCBA because machine learning predictors
have considerable errors. However, as iteration
increases, both  SAMPLE-L and SAMPLE-M were
able to outperform OCBA, showing SAMPLE’s abil-
ity to integrate both simulation and machine learn-
ing predictions to improve performance. It is even
more interesting to see how SAMPLE-LM was able
to outperform OCBA early on and was considerably
better than SAMPLE-L and SAMPLE-M as well.
This is a very promising result showing that
SAMPLE was able to integrate multiple machine
learning models’ predictions to achieve further per-
formance improvement. To highlight the computa-
tional efficiency improvement achieved by SAMPLE-
LM, we notice that OCBA after 30 iterations
achieved a PCS around 0.5. It only took seven itera-
tions for SAMPLE-LM to achieve that level of PCS.
Therefore, SAMPLE-LM was more than 4 times
faster than OCBA in this experiment.

6. Conclusions and future research

In this paper, a new framework is proposed to support
online digital-twin-based decision with offline-learned
machine learning models. A case study on disruption
mitigation demonstrated the potential of the proposed
SAMPLE framework. Notably, SAMPLE was able to
benefit from two machine learning models that indi-
vidually have large prediction errors, but when inte-
grated with simulation data, achieved a substantial
improvement in computational efficiency. In the
benchmark function experiment across 108 experi-
ment scenarios, SAMPLE outperforms OCBA with
a high level of statistical significance in the vast major-
ity of scenarios, except for a few with highly favourable
setups for OCBA and unfavourable setups for
SAMPLE. In the system disruption mitigation experi-
ment, SAMPLE was able to achieve a four times speed-
up using machine learning models with low predictive
accuracy.

There are several important directions to further
enhance the performance of the proposed SAMPLE
framework. First, while the Gaussian mixture model
has proved to be effective and flexible, for some appli-
cations, other models may better capture the relation-
ship between machine learning predictions and
simulation output. Exploring alternative models to
integrate offline trained machine learning predictions
with online simulation output may lead to significant
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performance improvement of the proposed SAMPLE
framework. Second, machine learning models used in
the experiments have been built using the well-known
least-squares method. However, for this particular
problem, the ability of a machine learning model to
correctly rank alternatives (specifically, to determine
the best alternative) is more important than its ability
to minimise the sum of squared errors based on how
the online sampling procedure uses the machine
learning model predictions. Therefore, other estima-
tion methods that may lead to better ordinal ranking
performance may further enhance the performance of
the proposed SAMPLE framework.

Finally, incorporation of data from real-time simu-
lation iterations could prove beneficial. For the case
where we are presented with a context, which we have
already investigated in depth in the offline learning
stage, the incorporation of this information may not
help improve machine learning models’ prediction
accuracy. However, it is far more likely that we are
running simulations to make a decision in the event of
a context we have not investigated. In such a case,
there is the potential of incorporating information
from previously ran simulations to adjust estimates
from the offline-learned machine learning models.
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