
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022 2685

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

W

An Optimal Computing Budget Allocation Tree

Policy for Monte Carlo Tree Search

Yunchuan Li , Michael C. Fu , Fellow, IEEE, and Jie Xu , Senior Member, IEEE

Abstract—We analyze a tree search problem with an un-
derlying Markov decision process, in which the goal is to
identify the best action at the root that achieves the highest
cumulative reward. We present a new tree policy that op-
timally allocates a limited computing budget to maximize
a lower bound on the probability of correctly selecting the
best action at each node. Compared to widely used upper
confidence bound (UCB) tree policies, the new tree policy
presents a more balanced approach to manage the explo-
ration and exploitation tradeoff when the sampling budget
is limited. Furthermore, UCB assumes that the support of
reward distribution is known, whereas our algorithm re-
laxes this assumption. Numerical experiments demonstrate
the efficiency of our algorithm in selecting the best action
at the root.

Index Terms—Machine learning, Monte Carlo tree
search (MCTS), optimization algorithms, stochastic optimal
control.

I. INTRODUCTION

E CONSIDER a reinforcement learning problem where

an agent interacts with an underlying environment. A

Markov decision process (MDP) with finite horizon is used to

model the environment. In each move, the agent will take an

action, receive a reward, and land in a new state. The reward is

usually random, and its distribution depends on both the state of

the agent and the action taken. The distribution of the next state

Manuscript received June 22, 2020; revised June 30, 2020, April 16,
2021, and May 16, 2021; accepted May 30, 2021. Date of publication
June 14, 2021; date of current version May 31, 2022. This work was
supported in part by the National Science Foundation under Grants
CMMI-1434419 and DMS-1923145, in part by the Air Force Office of Sci-
entific Research under Grants FA95502010211 and FA9550-19-1-0383,
in part by the Defense Advanced Research Projects Agency (DARPA)
under Grant N660011824024, and in part by the UChicago Argonne LLC
under Grant 1F-60250. This paper was presented in part at the 58th
IEEE Conference on Decision, and Control, Nice, France, December
2019. Recommended by Associate Editor Q.-S. Jia. (Corresponding
author: Yunchuan Li.)

Yunchuan Li is with the Department of Electrical and Computer Engi-
neering and the Institute for Systems Research, University of Maryland,
College Park, MD 20742 USA (e-mail: yli93@umd.edu).

Michael C. Fu is with the R. H. Smith School of Business and the
Institute for Systems Research, University of Maryland, College Park,
MD 20742 USA (e-mail: mfu@umd.edu).

Jie Xu is with the Department of Systems Engineering and Op-
erations Research, George Mason University, Fairfax, VA 22030 USA
(e-mail: jxu13@gmu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3088792.

Digital Object Identifier 10.1109/TAC.2021.3088792

is also determined by the agent’s current state and action. Our

goal is to determine the optimal sequence of actions that leads

to the highest expected reward. The optimality of the decision

policy will be evaluated by the probability of correctly selecting

the best action in the first stage of the underlying MDP.

If the distributions and the dynamics of the environment are

known, the optimal set of actions can be computed through

dynamic programming [2]. Under more general settings where

the agent does not have perfect information regarding the envi-

ronment, the authors in [3] proposed an adaptive algorithm based

on a multiarmed bandit (MAB) model and upper confidence

bound (UCB) [4]. The authors in [5] and [6] applied UCB

to tree search, and [6] invented the term Monte Carlo tree

search (MCTS) and used it in a Go-playing program for the

first time. Since then, MCTS has been developed extensively

and applied to various games such as Othello [7] and Go [8].

To deal with different types of problems, several variations of

MCTS have been introduced, e.g., flat UCB (and its extension

bandit algorithm for smooth trees) [9] and single-player MCTS

(for single-player games) [10].

However, most bandit-based MCTS algorithms are designed

to minimize regret (or maximize the cumulative reward of the

agent), whereas in many situations, the goal of the agent may

be to efficiently determine the optimal set of actions within a

limited sampling budget. To the best of our knowledge, there

is limited effort in the MCTS literature that aims at addressing

the latter problem. Teraoka et al. [11] first incorporated best arm

identification (BAI) into MCTS for a MIN-MAX game tree, and

provided upper bounds of play-outs under different settings. [12]

had an objective similar to [11], but with a tighter bound. Their

tree selection policy selects the node with the largest confidence

interval, which can be seen as choosing the node with the highest

variance. In some sense, this is a pure exploration policy and

would not efficiently use the limited sampling budget. In our

work, we are motivated to establish a tree policy that intelligently

balances exploration and exploitation (analogous to the objective

of UCB). The algorithms developed in [11] and [12] are only for

MIN-MAX game trees, whereas our new tree policy can be ap-

plied to more general types of tree search problems. The MCTS

algorithm in [13] is more general than [11] and [12], but its goal

is to estimate the maximum expected cumulative reward at the

root node, whereas we focus on identifying the optimal action.

Algorithms that focus on minimizing regret tend to discourage

exploration. This tendency can be seen in two ways. Suppose at

some point an action was performed and received a small reward.

To minimize regret, the algorithm would be discouraged from

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

mailto:yli93@umd.edu
mailto:mfu@umd.edu
mailto:jxu13@gmu.edu
https://doi.org/10.1109/TAC.2021.3088792
https://doi.org/10.1109/TAC.2021.3088792
http://www.ieee.org/publications/rights/index.html
http://www.ieee.org/publications/rights/index.html

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2686 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

taking this action again. However, the small reward could be due

to the randomness in the reward distribution. Mathematically, the

authors in [14] showed that for MAB algorithms, the number of

times the optimal action is taken is exponentially more than

suboptimal ones, which makes sense when the objective is to

maximize the cumulative reward, since the exploration of other

actions is highly discouraged. Such exploration–exploitation

balance may be optimal under a different objective, such as

minimizing regret, but when the goal is to select the optimal

action, as in our setting, MAB-based algorithms would over-

weight exploitation. This leads to our second motivation: Is there

a tree policy that explores suboptimal actions more to ensure the

optimal action is found?

Apart from the lack of exploration as a result of the underlying

MAB model’s objective to minimize regret or maximize cumu-

lative reward, most MCTS algorithms assume that the support

of the reward distribution is bounded and known (typically

assumed to be [0, 1]). With the support of reward distribution

being known, the parameter in the upper confidence term in

UCB is tuned or the reward is normalized. However, a general

tree search problem may likely have an unknown and practically

unbounded range of rewards. In such case, assuming a range can

lead to very poor performance. Therefore, the third motivation

of our research is to relax the known reward support assumption.

To tackle the challenge in balancing exploration and ex-

ploitation with a limited sampling budget for a tree policy, we

model the tree selection problem at each stage as a statistical

ranking & selection (R&S) problem (which is referred to as

BAI in the computer science community) and propose a new tree

policy for MCTS based on an adaptive algorithm from the R&S

community. Similar to the MAB problem, R&S (BAI) assumes

that we are given a set of bandit machines (often referred to as

alternatives in the R&S literature) with unknown reward distri-

butions, and the goal is to select the machine with the highest

mean reward. Developments of BAI under various settings such

as linear bandits and infinitely many arms can be found in [15],

[16], and [17]; see [18] for a review. In this work, we will develop

an MCTS tree policy based on the popular optimal computing

budget allocation (OCBA) framework [19], [20]. OCBA was

first proposed in [21], and aims to maximize the probability of

correctly selecting the action with highest mean reward using a

limited sampling budget. More recent developments of OCBA

under various optimization goals and simulation settings include

addressing multiple objectives [22], subset selection [23], and

input uncertainty [24]. Applications of OCBA in energy and

semiconductor manufacturing include [25], [26].

The objective of the proposed OCBA tree policy is to maxi-

mize the approximate probability of correct selection (APCS),

which is a lower bound on the probability of correctly select-

ing the optimal action at each node. Intuitively, the objective

function of the new OCBA tree selection policy would lead to

an optimal balance between exploration and exploitation with a

limited sampling budget, and thus, help address the drawbacks

of existing work that either pursues pure exploration [11], [12]

or exponentially discourages exploration [14]. Our new OCBA

tree policy also removes the known and bounded support as-

sumption for the reward distribution, because the new OCBA

policy determines the sampling allocation based on the posterior

distribution of each action, which is updated adaptively accord-

ing to samples.

To summarize, the contributions of our work are primarily

algorithmic and computational, and include the following.

1) We propose a new tree policy for MCTS that focuses

on efficiently selecting the optimal action, where UCB is

replaced by OCBA. The new OCBA tree selection policy

also relaxes the UCB assumption of known bounded

support on the reward distribution.

2) We present a sequential algorithm to implement the new

OCBA tree policy that maximizes the APCS at each

sampling stage, where the selection policy converges to

the optimal action.

3) To support the OCBA-based MCTS algorithm, we pro-

vide convergence results and bounds based on OCBA the-

ory, which highlights the exploration-exploitation trade-

off of OCBA that is more suitable than UCB for identi-

fying the best action.

4) We demonstrate the efficiency of our algorithm through

numerical experiments.

Remark 1: In much of the computer science/artificial intel-

ligence literature, an algorithm that focuses on determining the

optimal set of actions under a limited budget is defined as a pure

exploration algorithm (see, e.g., [27]–[29]), whereas we view

such algorithms as retaining a balance between exploration and

exploitation, as the analysis in Section III shows. In statistical

R&S, pure exploration algorithms generally imply sampling

based primarily on the variance of each action, which often leads

to sampling suboptimal actions more. This will become clearer

in the Section V, where we show that OCBA-MCTS actually

samples less those highly suboptimal actions and “exploits”

those potential actions more.

The rest of the article is organized as follows. We present

the problem formulation in Section II, and review the proposed

OCBA-MCTS algorithm in Section III. Theoretical analyses, in-

cluding convergence results and exploration–exploitation anal-

ysis, are carried out in Section IV. Proofs are given in the

Appendix. Numerical examples are presented in Section V to

evaluate the performance of our algorithm. Section VI concludes

this article and points to future research directions.

A preliminary version of this work was presented in [1], where

a simpler tree policy (not employing the node representation

adopted in the current work) was used. In addition to improving

the efficiency of the MCTS algorithm, here we show that our pro-

posed algorithm converges asymptotically to the optimal action,

and provide an exploration–exploitation tradeoff analysis, both

analytically and through a more comprehensive set of numerical

experiments.

II. PROBLEM FORMULATION

Consider a finite horizon MDP M = (X, A, P, R) with hori-

zon length H , finite state space X , finite action space A with

|A| > 1, bounded reward function R = {Rt , t = 0, 1, . . . H },

such that Rt maps a state-action pair to a random variable (r.v.),

and transition function P = {Pt , t = 0, 1, . . . H }, such that Pt

maps a state-action pair to a probability distribution over X . We

assume that Pt is unknown and/or |X | and |A| are very large,

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2687

t=0

V ∗

H

i+1

a∗

i+1

i

∼
σ (x, a)

and hence it is not feasible to solve the problem by dynamic

programming. Further define Xa and Ax as the available child

states when taking action a and available actions at state x, re-

spectively. Denote by Pt (x, a)(y) the probability of transitioning

to state y ∈ Xa from state x ∈ X when taking action a ∈ Ax in

stage t, and Rt (x, a) the reward in stage t by taking action a in

state x. Let Π be the set of all possible nonstationary Markovian

policies π = {πi |πi : X → A, i ≥ 0}.

Bandit-based algorithms for MDPs seek to minimize the

expected cumulative regret, whereas our objective is to identify

N (x, a) the number of visits to node x and (x, a), respectively,

Xa the set of child state nodes given parent nodes, and Ax the

set of available child actions at node x, respectively.

Traditionally, MCTS algorithms aim at estimating V ∗(x) and

model the selection process in each stage as an MAB problem,

i.e., view Q(x, a) as a set of bandit machines, where (x, a) are

child state-action nodes of x ([3], [5]), and minimize the regret,

namely,

N

the best action that leads to maximum total expected reward

given by E[
H −1 Rt (xt , πt (xt))] for given x0 ∈ X . We first

define the optimal reward-to-go value function for state x in

stage i by

min
a1 ,...,aN ∈Ax

{N max(Q(x, a)) − Q(x, ak)}
a∈Ax

k=1

N

= {NV ∗(x) − Q(x, ak)}

i (x) = max E

π∈Π

H −1

t=i

Rt (xt , πt (xt)) xi = x ,

k=1

for x in stage 1, 2, . . . H , where N and ak are the number of

rollouts/simulations (also known as total sampling budget in
i = 0, 1, . . . , H − 1 (1)

with V ∗ (x) = 0 for all x ∈ X . Also define

much of R&S literature) and the kth action sampled at state

node x by the tree policy, respectively. The meaning of rollout

will be clearer in Section III. In this article, our goal is to identify

Qi (x, a) = E[Ri (x, a)] + Pt (x, a)(y)V ∗

y∈Xa

(y) the optimal action that achieves the highest cumulative reward

at the root with initial state x, that is, find

with QH (x, a) = 0. It is well known [2] that (1) can be written

via the standard Bellman optimality equation

i (x) = max(E[Ri (x, a)] + EPi (x,a) Vi+1 (Y))

x0
= arg max Q(x0 , a)

a∈Ax0

V ∗

a∈Ax

∗

where the root state node x0 = (x, 0). Let Q̂(x, a) = R(x, a) +

= max(E[Ri (x, a)] + Pt (x, a)(y)V ∗

(y)) V ∗(y) be the random cumulative reward by taking action a at

a∈Ax

y∈Xa

state node x, where y is the random state node reached. Clearly,

Q̂(x, a) is a random variable. We assume Q̂(x, a) is normally

= max(Qi (x, a)), i = 0, 1, . . . , H − 1
a∈Ax

where Y ∼ Pi (x, a)(·) represents the random next state.

Since we are considering a tree search problem, some addi-

tional notation and definitions beyond MDP settings are needed.

Define a state node by a tuple that contains the state and the stage

number:

x = (x, i) ∈ X ∀x ∈ X, 0 ≤ i ≤ H

where X is the set of state nodes. Similarly, we define a state-

action node by a tuple of state, stage number, and action (i.e., a

state node followed by an action)

a = (x, a) = (x, i, a) ∀x ∈ X, 0 ≤ i ≤ H, a ∈ Ax .

Now, we can rewrite the immediate reward function, value

function for state, state-action pair with state node and state-

action node, and state transition distribution, respectively, by

R(a) = R(x, a) := Ri (x, a)

V ∗(x) := V ∗(x)

Q(a) = Q(x, a) := Qi (x, a)

distributed with known variance, and its mean μ(x, a) has a

conjugate normal prior with a mean equals Q(x, a). Hence we

have

Q(x, a) = E[E[Q̂(x, a)|μ(x, a)]].

Remark 2: For our derivations, we assume the variance of the

sampling distribution of Q̂(x, a) is known; however, in practice,

the prior variance may be unknown, in which case estimates

such as the sample variance are used [20].

Consider the noninformative case, i.e., the prior mean

Q(x, a) is unknown, it can be shown that [30] the posterior

of μ(x, a) given observations (i.e., samples) is also normal.

For convenience, define the tth sample by Q̂t (x, a). Then the

conditional distribution of μ(x, a) given the set of samples

(Q̂1 (x, a), Q̂2 (x, a), . . . , Q̂N (x,a) (x, a)) is

2

Q̃(x, a) N (Q̄(x, a),) (2)
N (x, a)

where

P (a) = P (x, a) := Pi (x, a).

Similarly, V ∗(x) and Q(x, a) are assumed to be zero for all

terminal state nodes x. To make our presentation clearer, we

Q̄(x, a) =
1

N (x, a)

N (x,a)

t=1

Q̂t (x, a)

adopt the following definitions based on nodes: Define N (x) and Q̃(x, a) = μ(x, a)|(Q̂1
(x, a), Q̂2

(x, a), . . . , Q̂N (x,a)
(x, a))

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2688 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

x

x

x

x

x

2

and σ2 (x, a) is the variance of Q̂(x, a) and can be approximated

by the sample variance

calling the expansion function. Then, we continue with

the selection algorithm.

b) If an expandable state node (which could be a leaf node) is

σ̂2 (x, a) =
1

N (x, a)

N (x,a)

t=1

Q̂t (x, a) − Q̄(x, a) .
encountered, we call the expansion function to add a new

child state-action node and a state node (by automatically

expanding the state-action node) to the path. Then, we

Remark 3: If the samples of Q(x, a) are not normally dis-

tributed, the normal assumption can be justified by batch sam-

pling and the central limit theorem.

Under these settings, our objective is to maximize the proba-

bility of correct selection (PCS) defined by

stop the selection phase and return the path from the root

to this state node. Finally, we proceed with the simulation

and backpropagation phase.

c) If an unexpandable state node is encountered (denoted

by x), we employ a tree policy to determine which child

PCS = P

a∈A,a =â∗
x

(Q̃(x, â∗) ≥ Q̃(x, a))

(3)

action to sample. Then we enter the new state-action node

(x, a) and continue the selection algorithm with this state-

action node. The tree policies can be briefly categorized

for a state node x, where â∗

is the action that achieves
into two types: Deterministic, such as UCB1 and several

of its variants (e.g., UCB-tuned, UCB-E), and stochastic,
the highest mean sample Q-value at such node, i.e., â∗ =

arg maxa∈Ax
Q̄(x, a).

PCS is hard to compute because of the intersections in the

(joint) probability. We seek to simplify the joint probability

by changing the intersections to sums using the Bonferroni

inequality to make the problem tractable. By the Bonferroni

inequality, PCS is lower bounded by the APCS, that is,

such as E-greedy and EXP3; see [31] for a review.

2) Expansion: In this phase, a random child state or state-

action node of the given node is added. If the incoming node

is a state node x, the next node is selected randomly (usually

uniform) from those unvisited child state-action nodes. If the

incoming node is a state-action node (x, a), the subsequent state

node is found by simply sampling from distribution P (x, a)(·).

˜ ˜

3) Simulation: In some literature, this phase is also known

PCS ≥ 1 − P

a∈Ax ,a =â∗
x

Q(x, â∗) ≤ Q(x, a) =: APCS.

(4)

as “rollout.” The simulation phase starts with a state node. The

purpose of this step is to simulate a path from this node to a

terminal node and produce a sample of cumulative reward by

The objective of our new tree policy is to maximize APCS as

given in (4). Compared to MAB’s objective of minimizing the

expected cumulative regret, this objective function will result

in an allocation of sampling budget to alternative actions in a

way that optimally balances exploration and exploitation. This

objective function is motivated by the OCBA algorithm [19],

[20] in the R&S literature. We will present and analyze our

OCBA tree policy in the following sections.

III. ALGORITHM DESCRIPTION

In this section, we first briefly describe the main four phases,

i.e., selection, expansion, simulation, and backpropagation, in

an MCTS algorithm. Then, we propose a novel tree policy in

the selection stage that aims at finding the optimal action at each

state node.

A. Canonical MCTS Algorithm

Here we briefly summarize the four phases in a typical MCTS

algorithm. We refer readers to [31] for a complete illustration of

these phases. Algorithm 1 represents a canonical MCTS, with

detailed descriptions of the main phases below.

1) Selection: In this phase, the algorithm will navigate

down the tree from the root state node to an expandable node,

i.e., a node with unvisited child nodes. We assume that expansion

is automatically followed when a state-action is encountered.

Therefore, when determining the path down, there are three

possible situations as follows.

a) If a state-action node is encountered (denoted by (x, a)),

we will land into a new state node y which is obtained by

taking this path (which is a sample of the value for this node). The

simulated path is taken by a default policy, which is to usually

sample the feasible child sate-action nodes uniformly. With this

node’s value sample, we may proceed to the backpropagation

phase.

4) Backpropagation: This phase simply takes the simulated

node value and updates the values of the nodes in the path

(obtained in selection step) backward.

In the next section, we will propose our tree policy based on

OCBA and illustrate the detailed implementations of the four

phases.

B. OCBA Selection Algorithm

We now present an efficient tree policy to estimate the optimal

actions in every state node by estimating V ∗(x) and Q(x, a)

for all possible a ∈ Ax at the state node. Denote the estimates

of V ∗(x) at node x by V̂ ∗(x), which is initialized to 0 for all

state nodes. Our algorithm estimates Q(x, a) for each action a

by its sample mean, and selects the action that maximizes the

sample mean as â∗ . During the process, the estimate of Q(x, a) is

given by (2) and the proposed new OCBA tree policy is applied.

Our algorithm follows the algorithmic framework described in

Section III-A, with the tree policy changed to OCBA and other

mild modifications.

The structure of the proposed OCBA-MCTS algorithm is

shown in Algorithms 1 to 6. There are two major characteristics:

The first is to use the proposed OCBA algorithm for the tree

policy. The second is to require each state-action node to be

expanded n0 > 1 times, because we need a sample variance

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2689

x0

x

x

1

for each state-action node, which will become clearer after the

tree policy illustration. The process is run for a prespecified N

times (which will be later referred to as number of rollouts or

sampling budget) from the root state node x0 , after which a

partially expanded tree is obtained and the optimal action â∗

can be derived.

When steering down the tree and a state node x is visited, the

selection phase, which is illustrated in Algorithm 2, will first

determine if there is a child state-action node that was visited

for less than n0 times at the given state node. If there is, then

the state-action node will be sampled and added to the path.

In other words, we try to expand each state node when it is

are visited less than n0 > 1 times. State-action nodes are always

expandable.

At the expansion phase as shown in Algorithm 4, a state-action

node is expanded by simply sampling the transition distribution

P (x, a)(·), and the resulting state node is subsequently added

to the path. The reward by taking the action in the state node is

also recorded and will be used in the backpropagation stage.

In the simulation and backpropagation phases illustrated in

Algorithm 5 and 6, a leaf-to-terminal path is simulated, and its

reward is used to update the value for the leaf node. If we denote

the leaf node and the reward from the simulated path by xl and

r, respectively, the leaf node value estimate is updated by

visited, and require each node to be expanded n0 times. If all

the state-action nodes are well expanded, Algorithm 2 will call

Algorithm 3 (OCBA Selection), which calculates the allocation

V̂ ∗(xl) ←

N (xl) − 1

N (xl)

V̂ ∗(xl) +

1

N (xl)

r. (9)

of samples to child state-action nodes of the current state node

for a total sampling budget a∈A N (x, a) + 1. To determine the
number of samples allocated to each state-action node, denoted

by (Ñ (x, a1), Ñ (x, a2), . . . , Ñ (x, a|Ax |)) (where ai ∈ Ax , i =
1, . . . , |Ax |), the OCBA tree policy first identifies the child state-
action node with the largest sample mean (sample optimal) and

finds the difference between the sample means of the sample

optimum and all other nodes

â∗ := arg max Q̄(x, a),

After updating the leaf state node, we update the nodes in the

path collected in selection stage in reversed order. Suppose we

have a path

(x0 , (x0 , a0), . . . , xi , (xi , ai), xi+1 , . . . , xl)

and the node values of xi+1 , . . . , xl have been updated, the

preceding nodes xi and (xi , ai) are updated through

Q̂N (x,a) (xi , ai) = R(xi , a) + V̂ ∗(xi+1) (10)
x

a N (x , a) 1

Q̄(xi , ai) ←
 i i −

Q̄(xi , ai)

δx (â
∗ , a) := Q̄ (x, â∗) − Q̄(x, a), ∀a = â∗ . N (x , a)

x x x i i

The set of allocations (Ñ (x, a1), Ñ (x, a2), . . . , Ñ (x, a|A|))

+
1

Q̂N (x,a) (x , a) (11)

that maximizes APCS can be obtained by solving the following

set of equations:

2

V̄ (xi) ←

N (xi , ai)

N (xi) − 1

i i

V̄ ∗(xi) +

Q̄(xi , ai)

Ñ (x, an+1)

Ñ (x, an)

σ(x, an+1)/δx (â
∗ , an+1)

=
σ(x, an)/δx (â∗

x , an)

∀an , an+1 = â∗ , an , an+1 ∈ Ax (5)

N (xi)

V̂ (xi) ← (1 − αN (xi))V̄ (xi)

N (xi)
(12)

+ αN (x) max Q̄(xi , a) (13)
i

a∈A

Ñ (x, â∗) = σ(x, â∗)
(Ñ (x, a))2

xi

(6)

x x
a∈A,a=â∗

x
σ2 (x, a) where V̄ (·) is an intermediate variable that records the average

value of the node through the root-to-leaf path, and α

Ñ (x, a) = N (x, a) + 1. (7)

N (xi) ∈
[0, 1] is a smoothing parameter. The updates are performed

backward to the root node.
a∈A a∈A

Details of the OCBA tree policy are shown in Algorithms 1
The derivations of (5) to (7) are illustrated in the Appendix.

After the new budget allocation is computed, the algorithm

will select the “most starving” action to sample [20], i.e., sample

â = arg max(Ñ (x, a) − N (x, a)). (8)
a∈Ax

An alternative approach recently proposed in [32] optimizes a

one-step look ahead value function to sequentially determine

the action to sample, and asymptotically achieves the optimal

sampling ratios.

We highlight some major modifications to the canonical

MCTS in the proposed algorithm. First, in the selection phase,

we will try to expand all “expandable” nodes visited when

obtaining a path to leaf. Since the variances of the values of a

state node’s child nodes are required in the proposed tree policy,

we define a state node as expandable if it has child nodes that

to 6.

There are a few points worth emphasizing in Algorithm 3.

First, Ñ (x, ai) is the total number of samples for each action i

after the allocation. Given present information, i.e., all samples

state node x, OCBA-MCTS assumes now a total number of

a∈A N (x, a) + 1 samples available. By solving (5) to (7), the

new budget allocation (Ñ (x, a1), Ñ (x, a2), . . . , Ñ (x, a|A|))
that maximizes APCS is calculated. Afterward, one action based

on (8) is selected to sample and move to the next stage. This

“most-starving” implementation of the OCBA policy [19] as

given in Algorithm 3 is fully sequential, as each iteration allo-

cates only one sample to an action before the allocation deci-

sion is recomputed. It is also possible to allocate the sampling

budget in a batch of size Δ > 1. We use the “most-starving”

scheme, because it has been shown to be more efficient than the

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2690 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

x

Algorithm 3: OCBA Selection(x).

Input: state node x

Identify â∗ = arg maxa Q̄(x, a);

δx (â
∗ , a) ← Q̄(x, â∗) − Q̄(x, a); x x

Compute new sampling allocation

(Ñ (x, a1), Ñ (x, a2), . . . , Ñ (x, a|A|))
by solving (5) to (7);

â ← arg maxa∈A (Ñ (x, a) − N (x, a));

return â;

batch sampling scheme [33]. However, the benefit of sampling

in batches for MCTS is that in one iteration, multiple root-

to-leaf paths can be examined, enabling parallelization of the

algorithm.

Second, updating V̂ (xi) involves two stages: Updating the

value estimate along the path (12) and taking the maximum

over the values of the child state-action nodes (canonical way

to update). Then the two values are mixed through αN (xi) to

update V̂ (xi), as prior research (e.g., [6], [34]) suggests mixing

with αN (xi) → 1 (i.e., asymptotically achieves Bellman update)
ensures more stable updates.

Finally, although we present our algorithm in the context of

solving an MDP, it can be applied to other tree structures such

as MIN-MAX game trees or more general game trees, by setting

the reward function and the max and min operators accordingly.

IV. ANALYSIS OF OCBA-MCTS

In this section, we first discuss how the OCBA tree policy

in OCBA-MCTS balances exploration and exploitation mathe-

matically. Then, we present several theoretical results regarding

OCBA-MCTS. The proofs are given in the Appendix.

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2691

x

x
N

0

x

Equations (5) to (7) determine the new sampling budget where Φ(·) is the cdf of standard normal distribution and

allocation. First, (5) shows that the suboptimal state-action

nodes should be sampled proportional to their variances and

rx (ã, a) =

σ(x, ã)δx

(â∗ , a)2
.

inversely proportional to the squared differences between their

sample means and that of the optimal state-action node. This

OCBA property represents a different type of tradeoff between

exploration (sampling actions with high variances) and exploita-

tion (sampling actions with higher sample means) compared to

bandit-based algorithms.

In this part, we present results for OCBA-MCTS. The first

proposition ensures the estimate of the value-to-go function

converges to the true value. The second proposition establishes

that OCBA-MCTS will select the correct action, i.e., the PCS

converges to 1.

Proposition 1 (Asymptotic consistency): Assume the ex-

pected cumulative reward at state-action node (x, a) is a random

variable with nonzero finite variance. Suppose the proposed

OCBA-MCTS algorithm is run with a sampling budget N at

root state node x0 . Then at any subsequent nodes x and (x, a)

σ(x, a)δx (â∗
x , ã)

Similar to solving (5) to (7) in the selection stage, the true

variance may not be known in practice, but can be approximated

with the sample variance, which provides an estimate for the PCS

lower bound.

V. NUMERICAL EXAMPLES

In this section, we evaluate our proposed OCBA-MCTS on

two tree search problems against the well-known UCT [5]. The

effectiveness is measured by PCS, which is estimated by the

fraction of times the algorithm chooses the true optimal action.

We first evaluate our algorithm on an inventory control problem

with random nonnormal rewards. Then we apply our algorithm

to the game of tic-tac-toe. The code is available at [35].

For convenience, we restate the UCT tree policy here. At a

state node x, the UCT policy will select the child state-action

lim Q̄(x, a) = E[Q̂(x, a)] = Q(x, a) node with the highest upper confidence bound, i.e.,
N →∞

lim

V̂ (x) = V ∗(x), ∀ x ∈ X, (x, a) ∈ X × Ax . â = arg max Q̄(x, a) + we

2 log a ∈Ax
N (x, a)

N →∞

Proposition 2 (Asymptotic correctness): Assume the ex-

pected cumulative reward at state-action node (x, a) is a normal

a∈Ax N (x, a)

(14)

random variable with mean μ(x, a) and variance σ2 (x, a) < ∞,

i.e., Q̂(x, a) ∼ N (μ(x, a), σ2 (x, a)) for 0 ≤ i < H and that
μ(x, a) is normally distributed with unknown mean and known

variance. Then the PCS converges to 1 for any state node x ∈ X,

i.e.,

where we is the “exploration weight.” The original UCT algo-
rithm assumes the value function in each stage is bounded in

[0,1] because it sets we = 1, whereas the support is unknown in

many practical problems. Therefore, in general, we needs to be

tuned to encourage exploration.

For all experiments, we set the smoothing parameter in (13) in
 1

P

a∈Ax ,a=â∗
x

(lim
N →∞

Q̃(x, â∗) − lim
→∞

Q̃(x, a)) ≥ 0 = 1 the backpropagation phase to αN (x) = 1 −
5N (x)

. Since initial

estimates of sample variance can be less accurate with small n0 ,

we add an initial variance σ2 > 0, which decays as the number
where â∗ = arg maxa∈Ax Q̄(x, a). of visits grows, to the sample variance to encourage exploration.

The allocation rule obtained by solving (5) and (6) can be

derived using a similar analysis as that in [19], which shows

that at each point of the algorithm when a decision needs to be

Specifically, we set

2 1

N (x,a)

2

Q̂t (x, a) − Q̄(x, a)

made, the action that maximizes the APCS (asymptotically, i.e.,

as N → ∞) will be selected and sampled. Therefore, the OCBA

tree policy gradually maximizes the overall APCS at the root,

σ̂ (x, a) =
N (x, a)

+ σ2

t=1

which is a lower bound for PCS.

A lower bound on PCS for the algorithm in the known variance

setting can be derived using (4) by substituting the OCBA alloca-

tion into the APCS expression (right-hand side of the inequality)

and incorporating the normal distribution assumptions on the Q

functions.

Proposition 3 (Lower bound on the probability of correct

selection): Under the same assumptions of Theorem 2, the PCS

at each stage and state is lower bounded by

P C S ≥ 1 −
a∈Ax ,a=â∗

x

0 /N (x, a)

where the first term is the sample variance, and second term

vanishes as N (x, a) grows.

A. Inventory Control Problem

We now evaluate the performance of OCBA-MCTS using

the inventory control problem in [3]. The objective is to find

the initial order quantity that minimizes the total cost over a

finite horizon. At decision period i, we denote by Di the random

demand in period i, xi = (xi , i) the state node, where xi is the

inventory level at the end of period i (which is also the inventory

at the beginning of period i + 1), (xi , ai) the corresponding

δx (â

∗ , a) N (x, â∗)
child state-action node with ai being the order amount in period
i, p the per period per unit demand lost penalty cost, h the per

Φ − x x

σ2 (x, â∗) + σ(x, â∗)σ2 (x, a) x x ã∈Ax ,ã=â∗
x

rx (ã,a)

σ(x,ã)

period per unit inventory holding cost, K the fixed (setup) cost

per order, M the maximum inventory level (storage capacity),

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2692 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

0

0

0

and H the number of simulation stages. We set M = 20, initial

state x0 = 5, h = 1, H = 3, Di ∼ DU (0, 9) (discrete uniform,

inclusive), and consider two different settings for p and K as

follows.

1) Experiment 1: p = 10 and K = 0.

2) Experiment 2: p = 1 and K = 5.

The reward function, which in this case is the negative of the

inventory cost in stage i, is defined by

R(xi, ai) = − (h max{0, xi + ai − Di }+

p max{0, Di − xi − ai } + K 1{ai >0})

where 1 is the indicator function, and the state transition follows:

xi+1 = max(0, xi + ai − Di)

(a)

where

ai ∈ Axi

= {a|xi + a ≤ M }.

For UCT, to accommodate the reward support not being [0, 1],

we adjust the exploration weight when updating a state-action

node, i.e., set we initially to 1, then in the backpropagation step,

update we by

we = max(we , |Q̂
N (x,a) (x, a)|)

where Q̂N (x,a) (x, a) is obtained in (10). The initial variance σ2

is set to 100. For both OCBA-MCTS and UCT, we set the number

of expansions (n0) to 4 for depth 1 state-action nodes (i.e., the

child nodes of the root) and to 2 for all other state action nodes

in Experiment 1, and set n0 to 2 for all nodes in Experiment

2. The different values of n0 are due to the variance decreasing
with the depth of a node, and Experiment 2 is a relatively easier

problem.

For both experiment settings, each algorithm is repeated 2000

times at each simulation budget level N to estimate PCS. Since

Experiment 1 is a much harder problem compared to Experiment

2, more rollouts (budget) are required. Therefore, N ranges

from 14 000 to 24 000 and from 50 to 200 for Experiments

1 and 2, respectively. The estimated PCS curves for both ex-

periments are illustrated in Fig. 1, where the standard error

(= PCS(1 − PCS)/N) is small and thus omitted for clarity.

OCBA-MCTS achieves better PCS for both experiment setups.

For Experiment 1 (optimal action a∗ = 4), as shown in Fig. 1(a),

OCBA-MCTS achieves a 5% higher PCS (absolute) compared

to UCT. For Experiment 2 (optimal action a∗ = 0), we see a

15% performance gap between UCT and OCBA-MCTS when

the number of samples is less than 80, after which UCT gradually

closes the gap as OCBA already reaches PCS> 95%.

It is also beneficial to compare the distribution of budget

allocation of OCBA-MCTS and UCT to show the exploration–

exploitation balance of OCBA-MCTS. For convenience, we

label the child actions of the root node from 0 to 15, where

action i denotes ordering i units. Figs. 2 and 3 illustrate the

average number of visits, average estimated value function, and

average estimated standard deviation of all child state-action

nodes of the root node over 1000 repeated runs with 24 000 and

170 rollouts for Experiment 1 and Experiment 2, respectively.

Note that although the estimated standard deviation does not

(b)

Fig. 1. Estimated PCS as a function of sampling budget achieved by
UCT-MCTS and OCBA-MCTS for inventory control problem, averaged
over 2000 runs. (a) Experiment 1: p = 10, K = 0 and (b) Experiment 2:
p = 1, K = 5.

play a role in determining the allocation for UCT, we still plot

it for reference. Both figures show that the number of visits to

children nodes is, to some extent, proportional to the estimated

value of the node for UCT. On the other hand, OCBA-MCTS

puts more effort on the estimated optimal and second optimal

actions (actions 4 and 3 for Experiment 1 and actions 0 and 1

for Experiment 2, respectively), as illustrated in Figs. 2(b) and

3(b).

In Experiment 1, where there are two competing actions with

similar estimated values (actions 3 and 4, with action 4 being the

optimal), OCBA-MCTS will spend most of its sampling budget

on those two potential actions and put much lesser effort on

clearly inferior actions, such as actions 6 to 14, compared to

UCT. This strategy makes more sense when the objective is to

identify the best action, and thus, is more suitable for MCTS

problems, as the ultimate goal is to make a decision. It is also

interesting to note that OCBA-MCTS actually allocates slightly

more visits to the competing suboptimal action than the optimal

one (mean 10 781 and 10 350 for actions 3 and 4, respectively),

which will not happen in bandit-based policies, as their goal is to

minimize regret, and thus, will put more effort on exploiting the

estimated optimal action. In Experiment 2, where the optimum is

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2693

(a)

(b)

Fig. 2. Sampling distribution for Experiment 1 with N = 24 000, aver-
aged over 2000 runs (action 4 optimal, action 3 near optimal). (a) UCT
and (b) OCBA.

(a)

(b)

Fig. 3. Sampling distribution for Experiment 2 with N = 200, averaged
over 2000 runs (action 0 optimal). (a) UCT and (b) OCBA.

slightly easier to find, although OCBA-MCTS allocates a larger

fraction of samples to suboptimal actions compared to that in

Experiment 1, most of the samples are still allocated to the top

2 actions as shown in Fig. 3(b), whereas UCT performs similar

to that in Experiment 1.

B. Tic-Tac-Toe

In this section, we apply OCBA-MCTS and UCT to the game

of tic-tac-toe to identify the optimal move. Tic-tac-toe is a game

for two players who take turns marking “X” (Player 1) and “O”

(Player 2) on a 3 × 3 board. The objective for Player 1 (Player 2)

is to mark 3 consecutive “X” (“O”) in a row, column, or diagonal.

If both players act optimally, the game will always end in a draw.

Fig. 4. Action layout.

(a) (b)

For ease of presentation, we number the spaces sequentially

as shown in Fig. 4. We use OCBA-MCTS and UCT to represent

Player 2 (who marks “O” on the board). We consider two board

setups: Player 1 already marked “X” space 0 (setup 1) and space

4 (setup 2). The root nodes and optimal actions for Player 2 are

illustrated in Figs. 5 and 6, respectively. Since in setup 2, the

optimal move for Player 2 will be marking any of the corner

spaces [shown in Fig. 6(b)] due to symmetry, we consider it a

correct selection if the algorithm returns any one of the optimal

moves. For both setups, taking any of the suboptimal actions

will end up in losing the game if Player 1 plays optimally. In

Fig. 5. Tic-tac-toe board setup 1. (a) Root node and (b) Optimal.

(a) (b)

Fig. 6. Tic-tac-toe board setup 2. (a) Root node and (b) Optimal (any
one of the corner spaces).

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2694 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

0

(a)

(b)

Fig. 7. Estimated PCS as a function of sampling budget achieved by
UCT-MCTS and OCBA-MCTS for tic-tac-toe under setup 1, averaged
over 5000 runs. (a) Experiment 3: Player 1 plays randomly and (b)
Experiment 4: Player 1 plays UCT.

this game, Player 2 (MCTS algorithm) makes decisions at even

stages (2, 4, . . .) and Player 1 makes decisions at odd stages

(3, 5, . . .). The state transitioning is deterministic and Player 1’s

move is modeled using a randomized policy. We consider two

different policies for Player 1 under both setups.

1) Experiment 3: Under setup 1, Player 1 plays randomly,

i.e., with equal probability to mark any feasible space.

2) Experiment 4: Under setup 1, Player 1 plays UCT.

3) Experiment 5: Under setup 2, Player 1 plays randomly,

i.e., with equal probability to mark any feasible space.

4) Experiment 6: Under setup 2, Player 1 plays UCT.

We compare the performance of OCBA-MCTS and UCT on

Player 2 in all four experiments. At state node x, the reward

function for taking action a is defined according to the fol-

lowing rules: Immediately after taking the action, if Player 2

wins the game, R(x, a) = 1, if it leads to a draw, R(x, a) =

0.5; otherwise (Player 2 loses or in any nonterminating state),
R(x, a) = 0. n0 is set to 2 across all nodes for both UCT and

OCBA-MCTS. Since the value function for all state-action nodes

is now bounded in [0, 1], we set we = 1 throughout the entire

experiment for UCT policies. The initial variance σ2 is set to

(a)

(b)

Fig. 8. Sampling distributions for Experiment 3, averaged over 5000
runs (action 4 optimal). (a) UCT and (b) OCBA.

(a)

(b)

Fig. 9. Sampling distributions for Experiment 4, averaged over 5000
runs (action 4 optimal). (a) UCT and (b) OCBA.

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2695

(a)

(a)

(b)

Fig. 11. Sampling distributions for Experiment 5, averaged over 5000
runs (actions 0, 2, 6, and 8 optimal). (a) UCT and (b) OCBA.

(b)

Fig. 10. Estimated PCS as a function of sampling budget achieved by
UCT-MCTS and OCBA-MCTS for tic-tac-toe under setup 2, averaged
over 5000 runs. (a) Experiment 5: Player 1 plays randomly and (b)
Experiment 6: Player 1 plays UCT.

10. For Experiment 4, where Player 1 plays UCT, its goal is to

minimize the reward, therefore, Player 1 will select the action

that minimizes the lower confidence bound, i.e.,

4, the difference is around 5% when N < 500 and soon catches

up as N increases. This is expected, as it becomes easier to

determine the optimal action when the opponent applies an AI

algorithm (i.e., Player 1 has a better chance to take its optimal

action). In this case, space 4 becomes a clear optimum and

therefore Player 2’s UCT algorithm tends to exploit it more,

which leads to better performance.

The sampling distributions for OCBA-MCTS and UCT with

N = 700 for both experiments are shown in Figs. 8 and 9.

â = arg min Q̄(x, a) − we
 2 log a ∈Ax

N (x, a)
.

In this game, since a relatively clear optimum is available,

OCBA-MCTS and UCT behaved differently compared to that

a∈Ax N (x, a) in the inventory control problem. As shown in Figs. 8(a) and

9(a), UCT spends most of the sampling budget exploiting this

Similar to the previous section, we plot the PCS of the two

algorithms as a function of the number of rollouts, which ranges

from 300 to 800 for Experiments 3 and 4 and the PCS is estimated

over 5000 independent experiments at each rollout level. The

results are shown in Fig. 7, which indicates that the proposed

OCBA-MCTS produces a more accurate estimate of the optimal

action compared to UCT. In setup 1 (i.e., experiments 3 and 4),

both experiments show that OCBA-MCTS is better at finding

the optimal move when the sampling budget is relatively low.

The performance of UCT and OCBA-MCTS becomes compa-

rable when more samples become available. We also note that

there is a greater performance gap between UCT and OCBA-

MCTS in Experiment 3 than in Experiment 4: In Experiment 3,

OCBA-MCTS achieves 15% better PCS, whereas in Experiment

action, whereas OCBA will still try to explore other promising

suboptimal actions (e.g., action 2, 6, and 8) and pay less attention

to inferior actions (e.g., 1, 3, and 5) due to its tendency to better

balance exploration and exploitation.

The PCS estimation for setup 2 is shown in Fig. 10, where

the budget ranges from 80 to 200. Since it is an easier setting

(Player 2 has a 50% chance of marking an optimal space even

if choosing randomly), the difference between OCBA-MCTS

and UCT-MCTS is not as significant as that in Experiments 3

and 4, but OCBA still consistently performs better than UCT,

especially when the budget is low. The sampling distribution for

Experiments 5 and 6 are shown in Figs. 11 and 12, respectively.

Similar to previous experiments, the OCBA-MCTS spent more

effort on those equally optimal actions compared to UCT-MCTS,

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2696 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

i

J

i

l

(a)

(b)

Fig. 12. Sampling distributions for Experiment 6, averaged over 5000
runs (actions 0, 2, 6, and 8 optimal). (a) UCT and (b) OCBA.

which, again, shows the unique property of OCBA-MCTS in

finding an optimal action instead of minimizing regret.

In summary, the proposed OCBA-MCTS outperforms UCT in

both experiments in finding the optimal action at the root. Since

APPENDIX

CONVERGENCE ANALYSIS

Proof of Proposition 1: To prove that our algorithm correctly

selects the optimal action as the sampling budget goes to infinity,

we first prove that at each stage, the PCS converges to 1. The

process of our algorithm at each single stage is OCBA adapted

from [19]. OCBA tries to identify the alternative with the highest

mean from a set of alternatives with means Ji and known vari-

ances σ2 , i = 1, 2, . . . , k by efficiently allocating samples that

maximizes APCS. Here we present OCBA again in Algorithm

7 for convenience. The budget allocation process is similar to

(5) to (7). First define

1

li

the objective of the proposed OCBA tree policy is to maximize J̄i :=
 ˆm

i

PCS, it leads to different budget allocation and better PCS.

VI. CONCLUSION

In this article, we present a new OCBA tree policy for MCTS.

Unlike bandit-based tree policies (e.g., UCT), the new policy

maximizes PCS at the root node, and in doing so, balances the

exploration and exploitation tradeoff differently. Furthermore,

the new OCBA tree policy relaxes the assumption of known

bounded support on the reward distribution, and thus, makes

MCTS more generally applicable.

li
m=1

b := arg max J̄i
i

δ(b, i) := J̄b − J̄i , ∀i = b

where li is the number of samples for alternative i, Ĵm is the

mth sample of Ji for 1 ≤ i ≤ k, 1 ≤ m ≤ li . The new alloca-

tions (l̃1 , ̃l2 , . . . , ̃lk) with budget T > i li can be obtained by
solving the set of equations

For future research, we intend to explore the use of a batch

sampling scheme in Algorithm 2, which allocates a batch of

Δ > 1 samples at each node. With batch sampling and updating,

l̃i

l̃j

σi /δ(b, i)
2

=
σj /δ(b, j)

, ∀i = j = b (15)

we may exploit the power of parallel computing to more quickly

identify the optimal action. On the other hand, this sequential al-
k

l̃b = σb

2̃
 i

2

(16)

gorithm could also benefit from a one-step look ahead policy, as

suggested in [32]. Furthermore, establishing that our algorithm is

(σi)
i=1,i=b

˜

E − δ-correct and conducting time-complexity analysis are also

important topics for future research. Another important future

research direction is incorporating the uncertainty in sample

i=1

li = T (17)

variance estimation, as it has been shown that ignoring the

estimation error could potentially lead to performance degrada-

tion [36]. Finally, it is worthwhile to investigate incorporating

where σi is the standard deviation of the ith reward distribution.
As in Remark 2, σi is assumed to be known, but in practice can
be unknown and approximated by sample standard deviation

other R&S (or BAI) approaches with MCTS.

σ̂i = 1 li

m̂
ī

2

li −1 m=1(Ji − J) .

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2697

i=1

.

x
N

b i

Since
k

 li = T , when T → ∞, at least one of the actions for all child state-action pair (x, a). It follows that:

will be sampled infinitely many times, i.e., there exists an index

i, such that li → ∞. Then there are two possible cases: i = b

and i = b.

lim
N →∞

V̂ (x) → V ∗(x).

0
Case 1: i = b

According to (15)

2

σj /δ(b, j)

Proof of Proposition 2: We start with the single-stage OCBA,

which assumes that J̄i is also normally distributed. Define the

single-stage PCS

lj =
σi /δ(b, i)

li , ∀j = i, j = b.
PCSsingle = P

k

(J̃ − J̃) ≥ 0

Since σi and δ(b, i) are positive and finite for all i, lj →
b i

i=1,i=b

∞, ∀j = b.

Therefore, by (16), lb → ∞. Thus, li → ∞ for all i = where J̃i is the posterior distribution of Ji

given li

samples ∀i =

1, 2, . . . , k.

Case 2: i = b According to (16)

k
l2

1, 2, . . . , k. Then, we first show that PCSsingle → 1 as T → ∞.
Similar to (4), PCSsingle can be lower bounded by APCSsingle ,

i.e., by the Bonferroni inequality

k

lb = σb
 i

→ ∞

PCS = P (J̃

J) 0
i=1,i=b

(σi)2

single

i=1,i=b

b − ĩ ≥

Thus there exists an index i = b, such that li → ∞. By a similar

argument in Case 1, we can conclude that li → ∞ for all i =

1, 2, . . . , k.

≥ 1 −

k

P

i=1,i=b

J̃b − J̃i ≤ 0

Since li → ∞, ∀i, by applying the strong law of large num-
bers, we have

= APCS

single .

J̄i → E[Ji] w.p. 1 as T → ∞, ∀i = 1, 2, . . . , k. (18)

With the convergence analysis from single-stage OCBA, The-

orem 1 can be proved by induction.

Thus, to prove that PCSsingle → 1, it suffices to prove

APCSsingle → 1, i.e.,

k

First observe that since N → ∞, each path is explored in-

finitely many times. Thus the number of samples in each stage

i=1,i=b

P (J̃b − J̃i) ≤ 0 → 0 as T → ∞.

also goes to infinity as N → ∞. Based on the normality assumption, the posterior distribution is

i /l). Thus, J̃ − J̃i ∼ N (J̄b −

panded. If the current state node x is at stage H − 1 (i.e., it J̄i , σ
2

b i i

will transit into a terminal node in the next transition), running

Algorithm 3 reduces to a single-stage problem, which is the

b /l

k + σ2 /l). Therefore

P (J̃b − J̃i) ≤ 0 =

k

Φ(−

J̄b −

J̄i

)

same as OCBA in Algorithm 7. Q̂(x, a) can be viewed as a set of σ2 /lb + σ2 /li

alternatives for a ∈ A. From Corollary 18, it is straightforward

that

i=1,i=b i=1,i=b b i

(19)

lim
N →∞

Q̄(x, a) = Q(x, a).
where Φ is the cdf of the standard normal distribution.

Since li → ∞ for all i = 1, 2, . . . , k and J̄b is defined to be the

Therefore, since the reward function is bounded
maximum of all J̄i , i.e., J̄b − J̄i ≥ 0 for all i = b, (19) becomes

k k
J̄ − J̄

lim V̂ (x) = lim max Q̄(x, a) P (J̃b − J̃i) ≤ 0 = Φ(−) → 0

N →∞ N →∞ a∈Ax

σ2 2

= max

lim

Q̄(x, a)
i=1,i=b i=1,i=b b /lb+σi /li

a∈Ax N →∞

= V ∗(x).

Now suppose that the statement is true for all child state nodes y

of a state x, i.e., V̂ (y) → V ∗(y) and y could be achieved from

x. Then for x, the algorithm also reduces to OCBA. Thus from

Corollary 18 again

as desired.

Since we assume Q̂(x, a) is normally distributed with known

variance, the posterior distribution of μ(x, a) given observations

Q̂(x, a), i.e., Q̃(x, a), is also a normal random variable. Then,

using the same analysis as that in proving PCSsingle → 1, we

have

k

lim
N →∞

Q̄(x, a) = lim
N (x,a)→∞

Q̄(x, a) P

a∈Ax ,a=â∗
x

(lim
N →∞

Q̃(x, â∗) − lim
→∞

Q̃(x, a)) ≥ 0 = 1

= E[R(x, a)] + EP (x,a) [V ∗(y)]

= Q(x, a)

∀i = 1, . . . , H, x ∈ X, a ∈ A.

0

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2698 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

i=1 i

x)

x

2 2

x

x

∼
σ (x, a)

x

∗

x x

x

x)

x

c =
n

x

Proof of Proposition 3: When the number of samples at node

x is large, we assume that N (x, a) satisfies (5) to (6).
 Applying inequality

n
c2

’s yields
 ≤ n

i=1
2
i i=1 ci for

From (5), we have
positive numbers ci

σ(x, ã)δx (â∗ , a)
2

σ2 ∗ 1 2 ∗

N (x, ã) = x

σ(x, a)δx (â∗
x , ã)

N (x, a) x (a, âx) ≤
N (x, â∗

σ (x, âx)+

∀ã, a = â∗ . (20)

In this way, we can express the budget allocation to any sub-

optimal action ã as the product of the budget allocation to a

σ(x, â∗
)σ2 (x, a)

ã∈Ax ,ã=â∗
x

rx (ã, a)
.

σ(x, ã)

particular suboptimal action a and the factor Since APCS is decreasing in σ2 ∗

σ(x, ã)δx (â∗ , a)
2

PCS 1

x (a, âx), we have

From (6)

rx (ã, a) = x .
σ(x, a)δx (â∗

x , ã)

≥ −
a∈Ax ,a=â∗

x

δx (â
∗ , a) N (x, â∗)

(N (x, ã)2)

N (x, â∗) = σ(x, â∗) .

Φ − x x

r (ã,a)

σ (x, â∗
x) + σ(x, â∗

x)σ (x, a) ã A ,ã=â∗

x x
ã∈Ax ,ã=â∗

x
σ2 (x, ã)

∈ x x
x

σ(x,ã)

Substituting N (x, ã) from (20) yields

(rx (ã, a))2

as desired. 0

ACKNOWLEDGMENT

N (x, â∗) = N (x, a)σ(x, â∗)

The views, opinions, and/or findings expressed are those of

x

i.e.,

x

ã∈

Ax ,ã=â∗

x
σ2 (x, ã)

the authors, and should not be interpreted as representing the

official views or policies of the Department of Defense or the

 N (x, â∗
)

N (x, a) = .
(rx (ã,a))2

U.S. Government.

σ(x, â∗
x) ã∈Ax ,ã=â∗

σ2 (x,ã) REFERENCES

Since PCS is lower bounded by APCS, and the posterior Q̃(x, a)

is normally distributed with

2

Q̃(x, a) N (Q̄(x, a),)
N (x, a)

then

P C S ≥ AP C S

[1] Y. Li, M. C. Fu, and J. Xu, “Monte Carlo tree search with optimal
computing budget allocation,” in Proc. 58th IEEE Conf. Decis. Control,
vol. 3, Dec. 2019, pp. 6332–6337.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
MA, USA: Athena Scientific, 1995.

[3] H. S. Chang, M. C. Fu, J. Hu, and S. I. Marcus, “An adaptive sampling al-
gorithm for solving Markov decision processes,” Operations Res., vol. 53,
no. 1, pp. 126–139, 2005.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2/3, pp. 235–256,
2002.

= 1 − P

a∈Ax ,a=â∗
x

= 1 − Φ(

a∈Ax ,a=â∗
x

Q̃(x, â∗) ≤ Q̃(x, a)

Q̄(x, a) − Q̄(x, â∗)
)

x

σx (a, â∗
x)

[5] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,” in
Proc. 17th Eur. Conf. Mach. Learn., pp. 282–293, 2006.

[6] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo
tree search,” in Proc. Int. Conf. Comput. Games, H. J. van den Herik, P.
Ciancarini, and H. H. L. M. J. Donkers, Eds., 2007, pp. 72–83.

[7] P. Hingston and M. Masek, “Experiments with Monte Carlo Othello,” in
Proc. IEEE Congr. Evol. Comput., Sep. 2007, pp. 4059–4064.

[8] D. Silver et al., “Mastering the game of Go with deep neural networks and

= 1 −
a∈Ax ,a=â∗

x

δx (âx , a)
Φ(−

σ (a, â∗)
)

tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.
[9] P.-A. Coquelin and R. Munos, “Bandit algorithms for tree search,” 2007,

arXiv:cs/0703062.
[10] M. P. D. Schadd, “Selective search in games of different complexity,” Ph.D.

where the second equality is because Q̃(x, â∗) − Q̃(x, a) is nor-

mally distributed with mean Q̄(x, a) − Q̄(x, â∗) and variance x

2 ∗ 2

thesis, department of knowledge engineering, Universiteit Maastricht,
Maastricht, The Netherlands, 2011.

[11] K. Teraoka, K. Hatano, and E. Takimoto, “Efficient sampling method for
Monte Carlo tree search problem,” IEICE Trans. Inf. Syst., vol. 97, no. 3,

σ2 ∗
 σ (x, âx)

 σ (x, a)
pp. 392–398, 2014.

x (a, âx) =
N (x, â∗

+

1

N (x, a)

[12] E. Kaufmann and W. M. Koolen, “Monte-Carlo tree search by best arm
identification,” in Proc. Adv. Neural Inf. Process. Syst., I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.

=
N (x, â∗

x)
σ2 (x, â∗)+

(rx (ã, a))2

Garnett, Eds., , 2017, pp. 4897–4906.
[13] J.-B. Grill, M. Valko, and R. Munos, “Blazing the trails before beating the

path: sample-efficient Monte-Carlo planning,” in Proc. Adv. Neural Inf.
Process. Syst., D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.

σ(x, â∗)σ2 (x, a) . Garnett, Eds., 2016, pp. 4680–4688.
x

ã∈Ax ,ã=â∗
x

σ2 (x, ã) [14] T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation
rules,” Adv. Appl. Math., vol. 6, pp. 4–22, Mar. 1985.

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2699

[15] M. Soare, A. Lazaric, and R. Munos, “Best-arm identification in linear
bandits,” in Proc. 27th Int. Conf. Neural Inf. Process. Syst., Cambridge,
MA, USA, 2014, pp. 828–836.

[16] C. Tao, S. Blanco, and Y. Zhou, “Best arm identification in linear bandits
with linear dimension dependency,” in Proc. 35th Int. Conf. Mach. Learn.,
vol. 80, J. Dy and A. Krause, Eds., 10–15 Jul. 2018, pp. 4877–4886.

[17] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari, “X-armed bandits,” J.
Mach. Learn. Res., vol. 12, pp. 1655–1695, Apr. 2011.

[18] S. Bubeck and C. Nicolò, Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. Boston, MA, USA: Now, 2012.

[19] C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick, “Simulation budget
allocation for further enhancing the efficiency of ordinal optimization,”
Discrete Event Dyn. Syst., vol. 10, no. 3, pp. 251–270, 2000.

[20] C.-H. Chen and L. H. Lee, Stochastic Simulation Optimization: An Optimal
Computing Budget Allocation. 1st ed., River Edge, NJ, USA: World
Scientific, 2010.

[21] C.-H. Chen, “An effective approach to smartly allocate computing budget
for discrete event simulation,” in Proc. 34th IEEE Conf. Decis. Control,
vol. 3, pp. 2598–2603 vol.3, Dec. 1995.

[22] L. H. Lee, E. P. Chew, S. Teng, and D. Goldsman, “Optimal computing
budget allocation for multi-objective simulation models,” in Proc. Winter
Simul. Conf., vol. 1, Dec., p. 594, 2004.

[23] S. Zhang, L. H. Lee, E. P. Chew, J. Xu, and C.-H. Chen, “A simula-
tion budget allocation procedure for enhancing the efficiency of optimal
subset selection,” IEEE Trans. Autom. Control, vol. 61, no. 1, pp. 62–75,
Jan. 2016.

[24] H. Xiao, F. Gao, and L. H. Lee, “Optimal computing budget allocation
for complete ranking with input uncertainty,” IISE Trans., vol. 52, no. 5,
pp. 489–499, 2020.

[25] A. E. Thanos, M. Bastani, N. Celik, and C. Chen, “Dynamic data driven
adaptive simulation framework for automated control in microgrids,” IEEE
Trans. Smart Grid, vol. 8, no. 1, pp. 209–218, Jan. 2017.

[26] L. Y. Hsieh, E. Huang, and C. Chen, “Equipment utilization enhancement
in photolithography area through a dynamic system control using multi-
fidelity simulation optimization with big data technique,” IEEE Trans.
Semicond. Manuf., vol. 30, no. 2, pp. 166–175, May 2017.

[27] A. Shleyfman, A. Komenda, and C. Domshlak, “On interruptible pure
exploration in multi-armed bandits,” in Proc. 29th AAAI Conf. Artific.
Intell., 2015. pp. 3592–3598.

[28] S. Chen, T. Lin, I. King, M. R. Lyu, and W. Chen, “Combinatorial pure
exploration of multi-armed bandits,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, Eds., 2014, pp. 379–387.

[29] S. Bubeck, R. Munos, and G. Stoltz, “Pure exploration in multi-armed
bandits problems,” in Proc. Algorithmic Learn. Theory, R. Gavaldà,
G. Lugosi, T. Zeugmann, and S. Zilles, Eds., Berlin, Germany, 2009,
pp. 23–37.

[30] M. H. DeGroot, Optimal Statistical Decisions. vol. 82. Hoboken, NJ, USA:
Wiley, 2005.

[31] C. B. Browne et al., “A survey of Monte Carlo tree search methods,” IEEE
Trans. Comput. Intell. AI in Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[32] Y. Peng, E. K. P. Chong, C.-H. Chen, and M. C. Fu, “Ranking and
selection as stochastic control,” IEEE Trans. Autom. Control, vol. 63, no. 8,
pp. 2359–2373, Aug. 2018.

[33] C.-H. Chen, D. He, and M. Fu, “Efficient dynamic simulation allocation
in ordinal optimization,” IEEE Trans. Autom. Control, vol. 51, no. 12, pp.
2005–2009, Dec. 2006.

[34] D. R. Jiang, L. Al-Kanj, and W. B. Powell, “Monte Carlo tree search with
sampled information relaxation dual bounds,” Operations Res., vol. 68,
no. 6, pp. 1678–1697, 2020.

[35] Y. Li, “Monte Carlo tree search with optimal computing budget alloca-
tion.” 2021, [Online]. Available: https://github.com/lyc192130/MCTS-
with-OCBA

[36] I. O. Ryzhov, “On the convergence rates of expected improvement meth-
ods,” Operations Res., vol. 64, no. 6, pp. 1515–1528, 2016.

Yunchuan Li received the bachelor’s degree in automation from Univer-
sity of Electronic Science and Technology of China (UESTC), Chengdu,
China, in 2015, and the Ph.D. degree in electrical and computer en-
gineering from the University of Maryland, College Park, MD, USA, in
2020.

His research interests include optimization and control with applica-
tions to operations research problems.

Michael C. Fu (Fellow, IEEE) received degrees in mathematics and
electrical engineering and computer science from Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, in 1985, and the Ph.D. degree
in applied math from Harvard University, Cambridge, MA, USA, in 1989.

Since 1989, he has been with the University of Maryland, currently
holding the Smith Chair of Management Science. He also served as
the Operations Research Program Director with the National Science
Foundation. His research interests include simulation optimization and

stochastic gradient estimation.
Dr. Fu is a Fellow of the Institute for Operations Research and the

Management Sciences (INFORMS).

Jie Xu (Senior Member, IEEE) received the B.S. degree in electrical
engineering from Nanjing University, Nanjing, China, in 1999, the M.E.
degree in electrical engineering from Shanghai Jiaotong University,
Shanghai, China, in 2002, the M.S. degree in computer science from
The State University of New York, Buffalo, NY, USA, in 2004, and the
Ph.D. degree in industrial engineering and management sciences from
Northwestern University, Evanston, IL, USA, in 2009.

He is currently an Associate Professor of Systems Engineering and
Operations Research with George Mason University, Fairfax, VA, USA.
His research interests are data analytics, stochastic simulation and
optimization, with applications in cloud computing, manufacturing, and
power systems.

https://github.com/lyc192130/MCTS-with-OCBA
https://github.com/lyc192130/MCTS-with-OCBA
https://github.com/lyc192130/MCTS-with-OCBA

