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Abstract—We analyze a tree search problem with an un- 
derlying Markov decision process, in which the goal is to 
identify the best action at the root that achieves the highest 
cumulative reward. We present a new tree policy that op- 
timally allocates a limited computing budget to maximize 
a lower bound on the probability of correctly selecting the 
best action at each node. Compared to widely used upper 
confidence bound (UCB) tree policies, the new tree policy 
presents a more balanced approach to manage the explo- 
ration and exploitation tradeoff when the sampling budget 
is limited. Furthermore, UCB assumes that the support of 
reward distribution is known, whereas our algorithm re- 
laxes this assumption. Numerical experiments demonstrate 
the efficiency of our algorithm in selecting the best action 
at the root. 

 

Index   Terms—Machine   learning,   Monte   Carlo   tree 
search (MCTS), optimization algorithms, stochastic optimal 
control. 

 
 

I. INTRODUCTION 
 

E CONSIDER a reinforcement learning problem where 

an agent interacts with an underlying environment. A 

Markov decision process (MDP) with finite horizon is used to 

model the environment. In each move, the agent will take an 

action, receive a reward, and land in a new state. The reward is 

usually random, and its distribution depends on both the state of 

the agent and the action taken. The distribution of the next state 
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is also determined by the agent’s current state and action. Our 

goal is to determine the optimal sequence of actions that leads 

to the highest expected reward. The optimality of the decision 

policy will be evaluated by the probability of correctly selecting 

the best action in the first stage of the underlying MDP. 

If the distributions and the dynamics of the environment are 

known, the optimal set of actions can be computed through 

dynamic programming [2]. Under more general settings where 

the agent does not have perfect information regarding the envi- 

ronment, the authors in [3] proposed an adaptive algorithm based 

on a multiarmed bandit (MAB) model and upper confidence 

bound (UCB) [4].   The authors in [5] and [6] applied UCB 

to tree search, and [6] invented the term Monte Carlo tree 

search (MCTS) and used it in a Go-playing program for the 

first time. Since then, MCTS has been developed extensively 

and applied to various games such as Othello [7] and Go [8]. 

To deal with different types of problems, several variations of 

MCTS have been introduced, e.g., flat UCB (and its extension 

bandit algorithm for smooth trees) [9] and single-player MCTS 

(for single-player games) [10]. 

However, most bandit-based MCTS algorithms are designed 

to minimize regret (or maximize the cumulative reward of the 

agent), whereas in many situations, the goal of the agent may 

be to efficiently determine the optimal set of actions within a 

limited sampling budget. To the best of our knowledge, there 

is limited effort in the MCTS literature that aims at addressing 

the latter problem. Teraoka et al. [11] first incorporated best arm 

identification (BAI) into MCTS for a MIN-MAX game tree, and 

provided upper bounds of play-outs under different settings. [12] 

had an objective similar to [11], but with a tighter bound. Their 

tree selection policy selects the node with the largest confidence 

interval, which can be seen as choosing the node with the highest 

variance. In some sense, this is a pure exploration policy and 

would not efficiently use the limited sampling budget. In our 

work, we are motivated to establish a tree policy that intelligently 

balances exploration and exploitation (analogous to the objective 

of UCB). The algorithms developed in [11] and [12] are only for 

MIN-MAX game trees, whereas our new tree policy can be ap- 

plied to more general types of tree search problems. The MCTS 

algorithm in [13] is more general than [11] and [12], but its goal 

is to estimate the maximum expected cumulative reward at the 

root node, whereas we focus on identifying the optimal action. 

Algorithms that focus on minimizing regret tend to discourage 

exploration. This tendency can be seen in two ways. Suppose at 

some point an action was performed and received a small reward. 

To minimize regret, the algorithm would be discouraged from 
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taking this action again. However, the small reward could be due 

to the randomness in the reward distribution. Mathematically, the 

authors in [14] showed that for MAB algorithms, the number of 

times the optimal action is taken is exponentially more than 

suboptimal ones, which makes sense when the objective is to 

maximize the cumulative reward, since the exploration of other 

actions is highly discouraged. Such exploration–exploitation 

balance may be optimal under a different objective, such as 

minimizing regret, but when the goal is to select the optimal 

action, as in our setting, MAB-based algorithms would over- 

weight exploitation. This leads to our second motivation: Is there 

a tree policy that explores suboptimal actions more to ensure the 

optimal action is found? 

Apart from the lack of exploration as a result of the underlying 

MAB model’s objective to minimize regret or maximize cumu- 

lative reward, most MCTS algorithms assume that the support 

of the reward distribution is bounded and known (typically 

assumed to be [0, 1]). With the support of reward distribution 

being known, the parameter in the upper confidence term in 

UCB is tuned or the reward is normalized. However, a general 

tree search problem may likely have an unknown and practically 

unbounded range of rewards. In such case, assuming a range can 

lead to very poor performance. Therefore, the third motivation 

of our research is to relax the known reward support assumption. 

To tackle the challenge in balancing exploration and ex- 

ploitation with a limited sampling budget for a tree policy, we 

model the tree selection problem at each stage as a statistical 

ranking & selection (R&S) problem (which is referred to as 

BAI in the computer science community) and propose a new tree 

policy for MCTS based on an adaptive algorithm from the R&S 

community. Similar to the MAB problem, R&S (BAI) assumes 

that we are given a set of bandit machines (often referred to as 

alternatives in the R&S literature) with unknown reward distri- 

butions, and the goal is to select the machine with the highest 

mean reward. Developments of BAI under various settings such 

as linear bandits and infinitely many arms can be found in [15], 

[16], and [17]; see [18] for a review. In this work, we will develop 

an MCTS tree policy based on the popular optimal computing 

budget allocation (OCBA) framework [19], [20]. OCBA was 

first proposed in [21], and aims to maximize the probability of 

correctly selecting the action with highest mean reward using a 

limited sampling budget. More recent developments of OCBA 

under various optimization goals and simulation settings include 

addressing multiple objectives [22], subset selection [23], and 

input uncertainty [24]. Applications of OCBA in energy and 

semiconductor manufacturing include [25], [26]. 

The objective of the proposed OCBA tree policy is to maxi- 

mize the approximate probability of correct selection (APCS), 

which is a lower bound on the probability of correctly select- 

ing the optimal action at each node. Intuitively, the objective 

function of the new OCBA tree selection policy would lead to 

an optimal balance between exploration and exploitation with a 

limited sampling budget, and thus, help address the drawbacks 

of existing work that either pursues pure exploration [11], [12] 

or exponentially discourages exploration [14]. Our new OCBA 

tree policy also removes the known and bounded support as- 

sumption for the reward distribution, because the new OCBA 

policy determines the sampling allocation based on the posterior 

distribution of each action, which is updated adaptively accord- 

ing to samples. 

To summarize, the contributions of our work are primarily 

algorithmic and computational, and include the following. 

1) We propose a new tree policy for MCTS that focuses 

on efficiently selecting the optimal action, where UCB is 

replaced by OCBA. The new OCBA tree selection policy 

also relaxes the UCB assumption of known bounded 

support on the reward distribution. 

2) We present a sequential algorithm to implement the new 

OCBA tree policy that maximizes the APCS at each 

sampling stage, where the selection policy converges to 

the optimal action. 

3) To support the OCBA-based MCTS algorithm, we pro- 

vide convergence results and bounds based on OCBA the- 

ory, which highlights the exploration-exploitation trade- 

off of OCBA that is more suitable than UCB for identi- 

fying the best action. 

4) We demonstrate the efficiency of our algorithm through 

numerical experiments. 

Remark 1: In much of the computer science/artificial intel- 

ligence literature, an algorithm that focuses on determining the 

optimal set of actions under a limited budget is defined as a pure 

exploration algorithm (see, e.g., [27]–[29]), whereas we view 

such algorithms as retaining a balance between exploration and 

exploitation, as the analysis in Section III shows. In statistical 

R&S, pure exploration algorithms generally imply sampling 

based primarily on the variance of each action, which often leads 

to sampling suboptimal actions more. This will become clearer 

in the Section V, where we show that OCBA-MCTS actually 

samples less those highly suboptimal actions and “exploits” 

those potential actions more. 

The rest of the article is organized as follows. We present 

the problem formulation in Section II, and review the proposed 

OCBA-MCTS algorithm in Section III. Theoretical analyses, in- 

cluding convergence results and exploration–exploitation anal- 

ysis, are carried out in Section IV. Proofs are given in the 

Appendix. Numerical examples are presented in Section V to 

evaluate the performance of our algorithm. Section VI concludes 

this article and points to future research directions. 

A preliminary version of this work was presented in [1], where 

a simpler tree policy (not employing the node representation 

adopted in the current work) was used. In addition to improving 

the efficiency of the MCTS algorithm, here we show that our pro- 

posed algorithm converges asymptotically to the optimal action, 

and provide an exploration–exploitation tradeoff analysis, both 

analytically and through a more comprehensive set of numerical 

experiments. 
 
 

II. PROBLEM FORMULATION 
 

Consider a finite horizon MDP M = (X, A, P, R) with hori- 

zon length H , finite state space X , finite action space A with 

|A| > 1, bounded reward function R = {Rt , t = 0, 1, . . . H }, 

such that Rt maps a state-action pair to a random variable (r.v.), 

and transition function P = {Pt , t = 0, 1, . . . H }, such that Pt 

maps a state-action pair to a probability distribution over X . We 

assume that Pt  is unknown and/or |X | and |A| are very large, 
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t=0 
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H 

i+1 
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i+1 

i 

∼ 
σ (x, a)

 

 
 

and hence it is not feasible to solve the problem by dynamic 

programming. Further define Xa  and Ax as the available child 

states when taking action a and available actions at state x, re- 

spectively. Denote by Pt (x, a)(y) the probability of transitioning 

to state y ∈ Xa  from state x ∈ X when taking action a ∈ Ax in 

stage t, and Rt (x, a) the reward in stage t by taking action a in 

state x. Let Π be the set of all possible nonstationary Markovian 

policies π = {πi |πi  : X → A, i ≥ 0}. 

Bandit-based algorithms for MDPs seek to minimize the 

expected cumulative regret, whereas our objective is to identify 

N (x, a) the number of visits to node x and (x, a), respectively, 

Xa the set of child state nodes given parent nodes, and Ax  the 

set of available child actions at node x, respectively. 

Traditionally, MCTS algorithms aim at estimating V ∗(x) and 

model the selection process in each stage as an MAB problem, 

i.e., view Q(x, a) as a set of bandit machines, where (x, a) are 

child state-action nodes of x ([3], [5]), and minimize the regret, 

namely, 

 
N 

the best action that leads to maximum total expected reward 

given by E[
H −1 Rt (xt , πt (xt ))] for given x0  ∈ X . We first 

define the optimal reward-to-go value function for state x in 

stage i by 

min 
a1 ,...,aN ∈Ax 

{N max(Q(x, a)) − Q(x, ak )} 
a∈Ax 

k=1 
 

N 

= {NV ∗(x) − Q(x, ak )} 

 
i (x) = max E 

π∈Π 

 

H −1 

 
t=i 

Rt (xt , πt (xt )) xi  = x  , 

k=1 

 
for x in stage 1, 2, . . . H , where N and ak  are the number of 

rollouts/simulations (also known as total sampling budget in 
i = 0, 1, . . . , H − 1 (1) 

 

with V ∗ (x) = 0 for all x ∈ X . Also define 

much of R&S literature) and the kth action sampled at state 

node x by the tree policy, respectively. The meaning of rollout 

will be clearer in Section III. In this article, our goal is to identify 

Qi (x, a) = E[Ri (x, a)] + Pt (x, a)(y)V ∗
 

y∈Xa 

(y) the optimal action that achieves the highest cumulative reward 

at the root with initial state x, that is, find 
 

with QH (x, a) = 0. It is well known [2] that (1) can be written 

via the standard Bellman optimality equation 
 

i (x) = max(E[Ri (x, a)] + EPi (x,a) Vi+1 (Y ))
 

 

x0   
= arg  max  Q(x0 , a) 

a∈Ax0 

V ∗
 

a∈Ax 

∗ 

where the root state node x0  = (x, 0). Let Q̂(x, a) = R(x, a) +  

= max(E[Ri (x, a)] + Pt (x, a)(y)V ∗ 
 

(y)) V ∗(y) be the random cumulative reward by taking action a at 

a∈Ax 
 
y∈Xa 

state node x, where y is the random state node reached. Clearly, 

Q̂(x, a) is a random variable. We assume Q̂(x, a) is normally 

= max(Qi (x, a)), i = 0, 1, . . . , H − 1 
a∈Ax 

 

where Y ∼ Pi (x, a)(·) represents the random next state. 

Since we are considering a tree search problem, some addi- 

tional notation and definitions beyond MDP settings are needed. 

Define a state node by a tuple that contains the state and the stage 

number: 
 

x = (x, i) ∈ X ∀x ∈ X,  0 ≤ i ≤ H 
 

where X is the set of state nodes. Similarly, we define a state- 

action node by a tuple of state, stage number, and action (i.e., a 

state node followed by an action) 
 

a = (x, a) = (x, i, a)  ∀x ∈ X,  0 ≤ i ≤ H, a ∈ Ax . 
 

Now, we can rewrite the immediate reward function, value 

function for state, state-action pair with state node and state- 

action node, and state transition distribution, respectively, by 
 

R(a) = R(x, a) := Ri (x, a) 

V ∗(x) := V ∗(x) 
 

Q(a) = Q(x, a) := Qi (x, a) 

distributed with known variance, and its mean μ(x, a) has a 

conjugate normal prior with a mean equals Q(x, a). Hence we 

have 
 

Q(x, a) = E[E[Q̂(x, a)|μ(x, a)]]. 

 
Remark 2: For our derivations, we assume the variance of the 

sampling distribution of Q̂(x, a) is known; however, in practice, 

the prior variance may be unknown, in which case estimates 

such as the sample variance are used [20]. 

Consider  the  noninformative  case,  i.e.,  the  prior  mean 

Q(x, a) is unknown, it can be shown that [30] the posterior 

of μ(x, a) given observations (i.e., samples) is also normal. 

For convenience, define the tth sample by Q̂t (x, a). Then the 

conditional distribution of μ(x, a) given the set of samples 

(Q̂1 (x, a), Q̂2 (x, a), . . . , Q̂N (x,a) (x, a)) is 

 
2 

Q̃(x, a)  N (Q̄(x, a),  )  (2) 
N (x, a) 

 
where 

 

P (a) = P (x, a) := Pi (x, a). 
 

Similarly, V ∗(x)  and Q(x, a) are assumed to be zero for all 

terminal state nodes x. To make our presentation clearer, we 

 

Q̄(x, a) =  
1 

N (x, a) 

N (x,a) 

 
t=1 

 
Q̂t (x, a) 

adopt the following definitions based on nodes: Define N (x) and Q̃(x, a) = μ(x, a)|(Q̂1 
(x, a), Q̂2 

(x, a), . . . , Q̂N (x,a) 
(x, a)) 
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x 

x 

x 

x 

x 

2 

 
 

and σ2 (x, a) is the variance of Q̂(x, a) and can be approximated 

by the sample variance 

calling the expansion function. Then, we continue with 

the selection algorithm. 

b) If an expandable state node (which could be a leaf node) is 

σ̂2 (x, a) =  
1 

N (x, a) 

N (x,a) 

 
t=1 

 

Q̂t (x, a) − Q̄(x, a) . 
encountered, we call the expansion function to add a new 

child state-action node and a state node (by automatically 

expanding the state-action node) to the path. Then, we 

Remark 3: If the samples of Q(x, a) are not normally dis- 

tributed, the normal assumption can be justified by batch sam- 

pling and the central limit theorem. 

Under these settings, our objective is to maximize the proba- 

bility of correct selection (PCS) defined by 

stop the selection phase and return the path from the root 

to this state node. Finally, we proceed with the simulation 

and backpropagation phase. 

c) If an unexpandable state node is encountered (denoted 

by x), we employ a tree policy to determine which child 

 
PCS = P  

a∈A,a =â∗
x 

(Q̃(x, â∗ ) ≥ Q̃(x, a)) 

 
(3) 

action to sample. Then we enter the new state-action node 

(x, a) and continue the selection algorithm with this state- 

action node. The tree policies can be briefly categorized 
 

for  a  state  node  x,  where â∗
 

 

is  the  action  that  achieves 
into two types: Deterministic, such as UCB1 and several 

of its variants (e.g., UCB-tuned, UCB-E), and stochastic, 
the highest mean sample Q-value at such node, i.e., â∗  = 

arg maxa∈Ax  
Q̄(x, a). 

PCS is hard to compute because of the intersections in the 

(joint) probability. We seek to simplify the joint probability 

by changing the intersections to sums using the Bonferroni 

inequality to make the problem tractable. By the Bonferroni 

inequality, PCS is lower bounded by the APCS, that is, 

such as E-greedy and EXP3; see [31] for a review. 

2)  Expansion: In this phase, a random child state or state- 

action node of the given node is added. If the incoming node 

is a state node x, the next node is selected randomly (usually 

uniform) from those unvisited child state-action nodes. If the 

incoming node is a state-action node (x, a), the subsequent state 

node is found by simply sampling from distribution P (x, a)(·). 

˜ ˜
 

3)  Simulation: In some literature, this phase is also known
 

PCS ≥ 1 − P 

a∈Ax ,a =â∗
x 

Q(x, â∗ ) ≤ Q(x, a) =: APCS. 

 
(4) 

 

as “rollout.” The simulation phase starts with a state node. The 

purpose of this step is to simulate a path from this node to a 

terminal node and produce a sample of cumulative reward by 

The objective of our new tree policy is to maximize APCS as 

given in (4). Compared to MAB’s objective of minimizing the 

expected cumulative regret, this objective function will result 

in an allocation of sampling budget to alternative actions in a 

way that optimally balances exploration and exploitation. This 

objective function is motivated by the OCBA algorithm [19], 

[20] in the R&S literature. We will present and analyze our 

OCBA tree policy in the following sections. 

 
III. ALGORITHM DESCRIPTION 

 

In this section, we first briefly describe the main four phases, 

i.e., selection, expansion, simulation, and backpropagation, in 

an MCTS algorithm. Then, we propose a novel tree policy in 

the selection stage that aims at finding the optimal action at each 

state node. 

 
A. Canonical MCTS Algorithm 

 

Here we briefly summarize the four phases in a typical MCTS 

algorithm. We refer readers to [31] for a complete illustration of 

these phases. Algorithm 1 represents a canonical MCTS, with 

detailed descriptions of the main phases below. 

1)  Selection: In  this  phase, the  algorithm will  navigate 

down the tree from the root state node to an expandable node, 

i.e., a node with unvisited child nodes. We assume that expansion 

is automatically followed when a state-action is encountered. 

Therefore, when determining the path down, there are three 

possible situations as follows. 

a) If a state-action node is encountered (denoted by (x, a)), 

we will land into a new state node y which is obtained by 

taking this path (which is a sample of the value for this node). The 

simulated path is taken by a default policy, which is to usually 

sample the feasible child sate-action nodes uniformly. With this 

node’s value sample, we may proceed to the backpropagation 

phase. 

4)  Backpropagation: This phase simply takes the simulated 

node value and updates the values of the nodes in the path 

(obtained in selection step) backward. 

In the next section, we will propose our tree policy based on 

OCBA and illustrate the detailed implementations of the four 

phases. 
 
 
B. OCBA Selection Algorithm 
 

We now present an efficient tree policy to estimate the optimal 

actions in every state node by estimating V ∗(x) and Q(x, a) 

for all possible a ∈ Ax  at the state node. Denote the estimates 

of V ∗(x) at node x by V̂ ∗(x), which is initialized to 0 for all 

state nodes. Our algorithm estimates Q(x, a) for each action a 

by its sample mean, and selects the action that maximizes the 

sample mean as â∗ . During the process, the estimate of Q(x, a) is 

given by (2) and the proposed new OCBA tree policy is applied. 

Our algorithm follows the algorithmic framework described in 

Section III-A, with the tree policy changed to OCBA and other 

mild modifications. 

The structure of the proposed OCBA-MCTS algorithm is 

shown in Algorithms 1 to 6. There are two major characteristics: 

The first is to use the proposed OCBA algorithm for the tree 

policy. The second is to require each state-action node to be 

expanded n0 > 1 times, because we need a sample variance 
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x0 

x 

x 

1 

 
 

for each state-action node, which will become clearer after the 

tree policy illustration. The process is run for a prespecified N 

times (which will be later referred to as number of rollouts or 

sampling budget) from the root state node x0 , after which  a  

partially expanded tree is obtained and the optimal action â∗ 

can be derived. 

When steering down the tree and a state node x is visited, the 

selection phase, which is illustrated in Algorithm 2, will first 

determine if there is a child state-action node that was visited 

for less than n0  times at the given state node. If there is, then 

the state-action node will be sampled and added to the path. 

In other words, we try to expand each state node when it is 

are visited less than n0 > 1 times. State-action nodes are always 

expandable. 

At the expansion phase as shown in Algorithm 4, a state-action 

node is expanded by simply sampling the transition distribution 

P (x, a)(·), and the resulting state node is subsequently added 

to the path. The reward by taking the action in the state node is 

also recorded and will be used in the backpropagation stage. 

In the simulation and backpropagation phases illustrated in 

Algorithm 5 and 6, a leaf-to-terminal path is simulated, and its 

reward is used to update the value for the leaf node. If we denote 

the leaf node and the reward from the simulated path by xl  and 

r, respectively, the leaf node value estimate is updated by 

visited, and require each node to be expanded n0  times. If all 

the state-action nodes are well expanded, Algorithm 2 will call 

Algorithm 3 (OCBA Selection), which calculates the allocation 

 

V̂ ∗(xl ) ← 

 

N (xl ) − 1 

N (xl ) 

 

V̂ ∗(xl ) +  

 

1 

N (xl ) 

 
r.  (9) 

of samples to child state-action nodes of the current state node 

for a total sampling budget a∈A N (x, a) + 1. To determine the 
number of samples allocated to each state-action node, denoted 

by (Ñ (x, a1 ), Ñ (x, a2 ), . . . , Ñ (x, a|Ax |)) (where ai  ∈ Ax , i = 
1, . . . , |Ax |), the OCBA tree policy first identifies the child state- 
action node with the largest sample mean (sample optimal) and 

finds the difference between the sample means of the sample 

optimum and all other nodes 

â∗  := arg max Q̄(x, a), 

After updating the leaf state node, we update the nodes in the 

path collected in selection stage in reversed order. Suppose we 

have a path 
 

(x0 , (x0 , a0 ), . . . , xi , (xi , ai ), xi+1 , . . . , xl ) 
 

and the node values of xi+1 , . . . , xl  have been updated, the 

preceding nodes xi  and (xi , ai ) are updated through 

Q̂N (x,a) (xi , ai ) = R(xi , a) + V̂ ∗(xi+1 )  (10) 
x 

a  N (x , a )  1
 

Q̄(xi , ai ) ←
 i i − 

Q̄(xi , ai )
 

δx (â
∗ , a) := Q̄ (x, â∗ ) − Q̄(x, a), ∀a = â∗ . N (x , a )

 
x  x  x  i i 

The  set  of  allocations  (Ñ (x, a1 ), Ñ (x, a2 ), . . . , Ñ (x, a|A|))
 

+ 
1 

Q̂N (x,a) (x , a )  (11)
 

that maximizes APCS can be obtained by solving the following 

set of equations: 
 

2
 

 
 
V̄ (xi ) ← 

N (xi , ai ) 

N (xi ) − 1 

i i 
 

 

V̄ ∗(xi ) +  

 
 
Q̄(xi , ai )

 

Ñ (x, an+1 ) 

Ñ (x, an ) 

σ(x, an+1 )/δx (â
∗ , an+1 ) 

= 
σ(x, an )/δx (â∗

x , an ) 
 

∀an , an+1  = â∗ , an , an+1  ∈ Ax  (5) 

N (xi ) 
 

 

V̂ (xi ) ← (1 − αN (xi ) )V̄  (xi ) 

N (xi )  
(12) 

+ αN (x ) max Q̄(xi , a)  (13) 
i 

a∈A 

Ñ (x, â∗ ) = σ(x, â∗ )
(Ñ (x, a))2 

xi 

(6)
 

x  x   
a∈A,a=â∗

x 
σ2 (x, a) where V̄  (·) is an intermediate variable that records the average 

value of the node through the root-to-leaf path, and α 

Ñ (x, a) =  N (x, a) + 1. (7) 

N (xi ) ∈ 
[0, 1] is a smoothing parameter. The updates are performed 

backward to the root node. 
a∈A a∈A 

Details of the OCBA tree policy are shown in Algorithms 1 
The derivations of (5) to (7) are illustrated in the Appendix. 

After the new budget allocation is computed, the algorithm 

will select the “most starving” action to sample [20], i.e., sample 

â = arg max(Ñ (x, a) − N (x, a)).  (8) 
a∈Ax 

An alternative approach recently proposed in [32] optimizes a 

one-step look ahead value function to sequentially determine 

the action to sample, and asymptotically achieves the optimal 

sampling ratios. 

We highlight some major modifications to the canonical 

MCTS in the proposed algorithm. First, in the selection phase, 

we will try to expand all “expandable” nodes visited when 

obtaining a path to leaf. Since the variances of the values of a 

state node’s child nodes are required in the proposed tree policy, 

we define a state node as expandable if it has child nodes that 

to 6. 

There are a few points worth emphasizing in Algorithm 3. 

First, Ñ (x, ai ) is the total number of samples for each action i 

after the allocation. Given present information, i.e., all samples 

state node x, OCBA-MCTS assumes now a total number of 

a∈A N (x, a) + 1 samples available. By solving (5) to (7), the 

new  budget  allocation  (Ñ (x, a1 ), Ñ (x, a2 ), . . . , Ñ (x, a|A|)) 
that maximizes APCS is calculated. Afterward, one action based 

on (8) is selected to sample and move to the next stage. This 

“most-starving” implementation of the OCBA policy [19] as 

given in Algorithm 3 is fully sequential, as each iteration allo- 

cates only one sample to an action before the allocation deci- 

sion is recomputed. It is also possible to allocate the sampling 

budget in a batch of size Δ > 1. We use the “most-starving” 

scheme, because it has been shown to be more efficient than the 
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x 

 

 
 

Algorithm 3: OCBA Selection(x). 

Input: state node x 

Identify â∗  = arg maxa Q̄(x, a); 

δx (â
∗ , a) ← Q̄(x, â∗ ) − Q̄(x, a); x  x 

Compute new sampling allocation 

(Ñ (x, a1 ), Ñ (x, a2 ), . . . , Ñ (x, a|A|)) 
by solving (5) to (7); 

â ← arg maxa∈A (Ñ (x, a) − N (x, a)); 

return â; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
batch sampling scheme [33]. However, the benefit of sampling 

in batches for MCTS is that in one iteration, multiple root- 

to-leaf paths can be examined, enabling parallelization of the    

algorithm. 

Second, updating V̂ (xi ) involves two stages: Updating the 

value estimate along the path (12) and taking the maximum 

over the values of the child state-action nodes (canonical way 

to update). Then the two values are mixed through αN (xi ) to 

update V̂ (xi ), as prior research (e.g., [6], [34]) suggests mixing 

with αN (xi ) → 1 (i.e., asymptotically achieves Bellman update) 
ensures more stable updates. 

Finally, although we present our algorithm in the context of 

solving an MDP, it can be applied to other tree structures such 

as MIN-MAX game trees or more general game trees, by setting 

the reward function and the max and min operators accordingly. 

 

IV. ANALYSIS OF OCBA-MCTS 
 

In this section, we first discuss how the OCBA tree policy 

in OCBA-MCTS balances exploration and exploitation mathe- 

matically. Then, we present several theoretical results regarding 

OCBA-MCTS. The proofs are given in the Appendix. 



Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore.  Restrictions apply. 

LI et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2691  

 

x 

x  
N 

0 

x 

 
 

Equations (5) to (7) determine the new sampling budget where Φ(·) is the cdf of standard normal distribution and 

allocation. First, (5) shows that the suboptimal state-action 

nodes should be sampled proportional to their variances and 
 
rx (ã, a) =  

 

σ(x, ã)δx 

 

(â∗ , a)2 
. 

inversely proportional to the squared differences between their 

sample means and that of the optimal state-action node. This 

OCBA property represents a different type of tradeoff between 

exploration (sampling actions with high variances) and exploita- 

tion (sampling actions with higher sample means) compared to 

bandit-based algorithms. 

In this part, we present results for OCBA-MCTS. The first 

proposition ensures the estimate of the value-to-go function 

converges to the true value. The second proposition establishes 

that OCBA-MCTS will select the correct action, i.e., the PCS 

converges to 1. 

Proposition 1 (Asymptotic consistency): Assume the ex- 

pected cumulative reward at state-action node (x, a) is a random 

variable with nonzero finite variance. Suppose the proposed 

OCBA-MCTS algorithm is run with a sampling budget N at 

root state node x0 . Then at any subsequent nodes x and (x, a) 

σ(x, a)δx (â∗
x , ã) 

Similar to solving (5) to (7) in the selection stage, the true 

variance may not be known in practice, but can be approximated 

with the sample variance, which provides an estimate for the PCS 

lower bound. 

 
V. NUMERICAL EXAMPLES 

 

In this section, we evaluate our proposed OCBA-MCTS on 

two tree search problems against the well-known UCT [5]. The 

effectiveness is measured by PCS, which is estimated by the 

fraction of times the algorithm chooses the true optimal action. 

We first evaluate our algorithm on an inventory control problem 

with random nonnormal rewards. Then we apply our algorithm 

to the game of tic-tac-toe. The code is available at [35]. 

For convenience, we restate the UCT tree policy here. At a 

state node x, the UCT policy will select the child state-action 

lim Q̄(x, a) = E[Q̂(x, a)] = Q(x, a) node with the highest upper confidence bound, i.e., 
N →∞ 

 

lim 

 

V̂ (x) = V ∗(x),  ∀ x ∈ X,  (x, a) ∈ X × Ax . â = arg max Q̄(x, a) + we
 

2 log a  ∈Ax  
N (x, a ) 

N →∞ 
 

Proposition  2  (Asymptotic  correctness): Assume  the  ex- 

pected cumulative reward at state-action node (x, a) is a normal 

a∈Ax  N (x, a) 
 

(14) 

random variable with mean μ(x, a) and variance σ2 (x, a) < ∞, 

i.e., Q̂(x, a) ∼ N (μ(x, a), σ2 (x, a))  for 0 ≤ i < H and that 
μ(x, a) is normally distributed with unknown mean and known 

variance. Then the PCS converges to 1 for any state node x ∈ X, 

i.e., 

where we is the “exploration weight.” The original UCT algo- 
rithm assumes the value function in each stage is bounded in 

[0,1] because it sets we = 1, whereas the support is unknown in 

many practical problems. Therefore, in general, we needs to be 

tuned to encourage exploration. 

For all experiments, we set the smoothing parameter in (13) in 
    1  

 

P 

a∈Ax ,a=â∗
x 

( lim 
N →∞ 

Q̃(x, â∗ ) − lim 
→∞ 

Q̃(x, a)) ≥ 0   = 1  the backpropagation phase to αN (x) = 1 − 
5N (x) 

. Since initial 

estimates of sample variance can be less accurate with small n0 , 

we add an initial variance σ2 > 0, which decays as the number 
where â∗  = arg maxa∈Ax Q̄(x, a). of visits grows, to the sample variance to encourage exploration. 

The allocation rule obtained by solving (5) and (6) can be 

derived using a similar analysis as that in [19], which shows 

that at each point of the algorithm when a decision needs to be 

Specifically, we set 
 

2  1 

 
 
N (x,a) 

 
 

2 

Q̂t (x, a) − Q̄(x, a)
 

made, the action that maximizes the APCS (asymptotically, i.e., 

as N → ∞) will be selected and sampled. Therefore, the OCBA 

tree policy gradually maximizes the overall APCS at the root, 

σ̂  (x, a) =  
N (x, a) 

 

+ σ2
 

 
t=1 

which is a lower bound for PCS. 

A lower bound on PCS for the algorithm in the known variance 

setting can be derived using (4) by substituting the OCBA alloca- 

tion into the APCS expression (right-hand side of the inequality) 

and incorporating the normal distribution assumptions on the Q 

functions. 

Proposition 3 (Lower bound on the probability of correct 

selection): Under the same assumptions of Theorem 2, the PCS 

at each stage and state is lower bounded by 

P C S ≥ 1 − 
a∈Ax ,a=â∗

x 

0 /N (x, a) 

where the first term is the sample variance, and second term 

vanishes as N (x, a) grows. 

 
A. Inventory Control Problem 
 

We now evaluate the performance of OCBA-MCTS using 

the inventory control problem in [3]. The objective is to find 

the initial order quantity that minimizes the total cost over a 

finite horizon. At decision period i, we denote by Di the random 

demand in period i, xi  = (xi , i) the state node, where xi  is the 

inventory level at the end of period i (which is also the inventory 

at the beginning of period i + 1), (xi , ai ) the corresponding 

 
δx (â

∗ , a) N (x, â∗ ) 
child state-action node with ai being the order amount in period 
i, p the per period per unit demand lost penalty cost, h the per 

Φ − x  x  

σ2 (x, â∗ ) + σ(x, â∗ )σ2 (x, a) x  x  ã∈Ax ,ã=â∗
x 

rx (ã,a) 

σ(x,ã) 

period per unit inventory holding cost, K the fixed (setup) cost 

per order, M the maximum inventory level (storage capacity), 
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0 

0 

0 

 
 

and H the number of simulation stages. We set M = 20, initial 

state x0  = 5, h = 1, H = 3, Di  ∼ DU (0, 9) (discrete uniform, 

inclusive), and consider two different settings for p and K as 

follows. 

1) Experiment 1: p = 10 and K = 0. 

2) Experiment 2: p = 1 and K = 5. 

The reward function, which in this case is the negative of the 

inventory cost in stage i, is defined by 
 

R(xi, ai ) = − (h max{0, xi + ai − Di }+ 
 

p max{0, Di − xi − ai } + K 1{ai >0}) 

where 1 is the indicator function, and the state transition follows: 
 

xi+1  = max(0, xi + ai − Di ) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(a) 

where  
 
ai  ∈ Axi   

= {a|xi + a ≤ M }. 
 

For UCT, to accommodate the reward support not being [0, 1], 

we adjust the exploration weight when updating a state-action 

node, i.e., set we initially to 1, then in the backpropagation step, 

update we by 

we = max(we , |Q̂
N (x,a) (x, a)|) 

 

where Q̂N (x,a) (x, a) is obtained in (10). The initial variance σ2 

is set to 100. For both OCBA-MCTS and UCT, we set the number 

of expansions (n0 ) to 4 for depth 1 state-action nodes (i.e., the 

child nodes of the root) and to 2 for all other state action nodes 

in Experiment 1, and set n0  to 2 for all nodes in Experiment 

2. The different values of n0 are due to the variance decreasing 
with the depth of a node, and Experiment 2 is a relatively easier 

problem. 

For both experiment settings, each algorithm is repeated 2000 

times at each simulation budget level N to estimate PCS. Since 

Experiment 1 is a much harder problem compared to Experiment 

2, more rollouts (budget) are required. Therefore, N ranges 

from 14 000 to 24 000 and from 50 to 200 for Experiments 

1 and 2, respectively. The estimated PCS curves for both ex- 

periments are illustrated in Fig. 1, where the standard error 

(=     PCS(1 − PCS)/N ) is small and thus omitted for clarity. 

OCBA-MCTS achieves better PCS for both experiment setups. 

For Experiment 1 (optimal action a∗  = 4), as shown in Fig. 1(a), 

OCBA-MCTS achieves a 5% higher PCS (absolute) compared 

to UCT. For Experiment 2 (optimal action a∗  = 0), we see a 

15% performance gap between UCT and OCBA-MCTS when 

the number of samples is less than 80, after which UCT gradually 

closes the gap as OCBA already reaches PCS> 95%. 

It is also beneficial to compare the distribution of budget 

allocation of OCBA-MCTS and UCT to show the exploration– 

exploitation balance of OCBA-MCTS. For convenience, we 

label the child actions of the root node from 0 to 15, where 

action i denotes ordering i units. Figs. 2 and 3 illustrate the 

average number of visits, average estimated value function, and 

average estimated standard deviation of all child state-action 

nodes of the root node over 1000 repeated runs with 24 000 and 

170 rollouts for Experiment 1 and Experiment 2, respectively. 

Note that although the estimated standard deviation does not 

 

 
 
 
 
 
 
 
 

(b) 

 
Fig. 1.    Estimated PCS as a function of sampling budget achieved by 
UCT-MCTS and OCBA-MCTS for inventory control problem, averaged 
over 2000 runs. (a) Experiment 1: p = 10, K = 0 and (b) Experiment 2: 
p = 1, K = 5. 

 
play a role in determining the allocation for UCT, we still plot 

it for reference. Both figures show that the number of visits to 

children nodes is, to some extent, proportional to the estimated 

value of the node for UCT. On the other hand, OCBA-MCTS 

puts more effort on the estimated optimal and second optimal 

actions (actions 4 and 3 for Experiment 1 and actions 0 and 1 

for Experiment 2, respectively), as illustrated in Figs. 2(b) and 

3(b). 

In Experiment 1, where there are two competing actions with 

similar estimated values (actions 3 and 4, with action 4 being the 

optimal), OCBA-MCTS will spend most of its sampling budget 

on those two potential actions and put much lesser effort on 

clearly inferior actions, such as actions 6 to 14, compared to 

UCT. This strategy makes more sense when the objective is to 

identify the best action, and thus, is more suitable for MCTS 

problems, as the ultimate goal is to make a decision. It is also 

interesting to note that OCBA-MCTS actually allocates slightly 

more visits to the competing suboptimal action than the optimal 

one (mean 10 781 and 10 350 for actions 3 and 4, respectively), 

which will not happen in bandit-based policies, as their goal is to 

minimize regret, and thus, will put more effort on exploiting the 

estimated optimal action. In Experiment 2, where the optimum is 
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(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
Fig. 2.    Sampling distribution for Experiment 1 with N = 24 000, aver- 
aged over 2000 runs (action 4 optimal, action 3 near optimal). (a) UCT 
and (b) OCBA. 

 
(a) 

 

 

 
 

 
(b) 

 
Fig. 3.    Sampling distribution for Experiment 2 with N = 200, averaged 
over 2000 runs (action 0 optimal). (a) UCT and (b) OCBA. 

 

slightly easier to find, although OCBA-MCTS allocates a larger 

fraction of samples to suboptimal actions compared to that in 

Experiment 1, most of the samples are still allocated to the top 

2 actions as shown in Fig. 3(b), whereas UCT performs similar 

to that in Experiment 1. 
 

 
B. Tic-Tac-Toe 

 

In this section, we apply OCBA-MCTS and UCT to the game 

of tic-tac-toe to identify the optimal move. Tic-tac-toe is a game 

for two players who take turns marking “X” (Player 1) and “O” 

(Player 2) on a 3 × 3 board. The objective for Player 1 (Player 2) 

is to mark 3 consecutive “X” (“O”) in a row, column, or diagonal. 

If both players act optimally, the game will always end in a draw. 

 
 
 
 
 
 
Fig. 4.    Action layout. 

 

   

   

   
 
 
 

   

   

   
 

(a) (b) 

For ease of presentation, we number the spaces sequentially 

as shown in Fig. 4. We use OCBA-MCTS and UCT to represent 

Player 2 (who marks “O” on the board). We consider two board 

setups: Player 1 already marked “X” space 0 (setup 1) and space 

4 (setup 2). The root nodes and optimal actions for Player 2 are 

illustrated in Figs. 5 and 6, respectively. Since in setup 2, the 

optimal move for Player 2 will be marking any of the corner 

spaces [shown in Fig. 6(b)] due to symmetry, we consider it a 

correct selection if the algorithm returns any one of the optimal 

moves. For both setups, taking any of the suboptimal actions 

will end up in losing the game if Player 1 plays optimally. In 

Fig. 5.    Tic-tac-toe board setup 1. (a) Root node and (b) Optimal. 

 
   

   

   

(a) (b) 

 
Fig. 6.    Tic-tac-toe board setup 2. (a) Root node and (b) Optimal (any 
one of the corner spaces). 
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0 

 

 
 

 

 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
Fig. 7.    Estimated PCS as a function of sampling budget achieved by 
UCT-MCTS and OCBA-MCTS for tic-tac-toe under setup 1, averaged 
over 5000 runs. (a) Experiment 3: Player 1 plays randomly and (b) 
Experiment 4: Player 1 plays UCT. 

 

 
this game, Player 2 (MCTS algorithm) makes decisions at even 

stages (2, 4, . . . ) and Player 1 makes decisions at odd stages 

(3, 5, . . . ). The state transitioning is deterministic and Player 1’s 

move is modeled using a randomized policy. We consider two 

different policies for Player 1 under both setups. 

1) Experiment 3: Under setup 1, Player 1 plays randomly, 

i.e., with equal probability to mark any feasible space. 

2) Experiment 4: Under setup 1, Player 1 plays UCT. 

3) Experiment 5: Under setup 2, Player 1 plays randomly, 

i.e., with equal probability to mark any feasible space. 

4) Experiment 6: Under setup 2, Player 1 plays UCT. 

We compare the performance of OCBA-MCTS and UCT on 

Player 2 in all four experiments. At state node x, the reward 

function for taking action a is defined according to the fol- 

lowing rules: Immediately after taking the action, if Player 2 

wins the game, R(x, a) = 1, if it leads to a draw, R(x, a) =  

0.5; otherwise (Player 2 loses or in any nonterminating state), 
R(x, a) = 0. n0  is set to 2 across all nodes for both UCT and 

OCBA-MCTS. Since the value function for all state-action nodes 

is now bounded in [0, 1], we set we = 1 throughout the entire 

experiment for UCT policies. The initial variance σ2 is set to 

(a) 

 

 
 

(b) 

 
Fig. 8.    Sampling distributions for Experiment 3, averaged over 5000 
runs (action 4 optimal). (a) UCT and (b) OCBA. 
 

 

 
 

(a) 
 

 

 
 

(b) 

 
Fig. 9.    Sampling distributions for Experiment 4, averaged over 5000 
runs (action 4 optimal). (a) UCT and (b) OCBA. 
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(a) 

 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 

(b) 

 
Fig. 11.    Sampling distributions for Experiment 5, averaged over 5000 
runs (actions 0, 2, 6, and 8 optimal). (a) UCT and (b) OCBA. 

 
 
 
 

(b) 

 
Fig. 10.    Estimated PCS as a function of sampling budget achieved by 
UCT-MCTS and OCBA-MCTS for tic-tac-toe under setup 2, averaged 
over 5000 runs. (a) Experiment 5: Player 1 plays randomly and (b) 
Experiment 6: Player 1 plays UCT. 

 
10. For Experiment 4, where Player 1 plays UCT, its goal is to 

minimize the reward, therefore, Player 1 will select the action 

that minimizes the lower confidence bound, i.e., 

4, the difference is around 5% when N < 500 and soon catches 

up as N  increases. This is expected, as it becomes easier to 

determine the optimal action when the opponent applies an AI 

algorithm (i.e., Player 1 has a better chance to take its optimal 

action). In this case, space 4 becomes a clear optimum and 

therefore Player 2’s UCT algorithm tends to exploit it more, 

which leads to better performance. 

The sampling distributions for OCBA-MCTS and UCT with 

N = 700 for both experiments are shown in Figs. 8 and 9. 

â = arg min Q̄(x, a) − we
 2 log a ∈Ax  

N (x, a ) 
.
 

In this game, since a relatively clear optimum is available, 

OCBA-MCTS and UCT behaved differently compared to that 

a∈Ax  N (x, a) in the inventory control problem. As shown in Figs. 8(a) and 

9(a), UCT spends most of the sampling budget exploiting this 

Similar to the previous section, we plot the PCS of the two 

algorithms as a function of the number of rollouts, which ranges 

from 300 to 800 for Experiments 3 and 4 and the PCS is estimated 

over 5000 independent experiments at each rollout level. The 

results are shown in Fig. 7, which indicates that the proposed 

OCBA-MCTS produces a more accurate estimate of the optimal 

action compared to UCT. In setup 1 (i.e., experiments 3 and 4), 

both experiments show that OCBA-MCTS is better at finding 

the optimal move when the sampling budget is relatively low. 

The performance of UCT and OCBA-MCTS becomes compa- 

rable when more samples become available. We also note that 

there is a greater performance gap between UCT and OCBA- 

MCTS in Experiment 3 than in Experiment 4: In Experiment 3, 

OCBA-MCTS achieves 15% better PCS, whereas in Experiment 

action, whereas OCBA will still try to explore other promising 

suboptimal actions (e.g., action 2, 6, and 8) and pay less attention 

to inferior actions (e.g., 1, 3, and 5) due to its tendency to better 

balance exploration and exploitation. 

The PCS estimation for setup 2 is shown in Fig. 10, where 

the budget ranges from 80 to 200. Since it is an easier setting 

(Player 2 has a 50% chance of marking an optimal space even 

if choosing randomly), the difference between OCBA-MCTS 

and UCT-MCTS is not as significant as that in Experiments 3 

and 4, but OCBA still consistently performs better than UCT, 

especially when the budget is low. The sampling distribution for 

Experiments 5 and 6 are shown in Figs. 11 and 12, respectively. 

Similar to previous experiments, the OCBA-MCTS spent more 

effort on those equally optimal actions compared to UCT-MCTS, 
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(b) 

 
Fig. 12.    Sampling distributions for Experiment 6, averaged over 5000 
runs (actions 0, 2, 6, and 8 optimal). (a) UCT and (b) OCBA. 

 
which, again, shows the unique property of OCBA-MCTS in 

finding an optimal action instead of minimizing regret. 

In summary, the proposed OCBA-MCTS outperforms UCT in 

both experiments in finding the optimal action at the root. Since 

APPENDIX 

CONVERGENCE ANALYSIS 
 

Proof of Proposition 1: To prove that our algorithm correctly 

selects the optimal action as the sampling budget goes to infinity, 

we first prove that at each stage, the PCS converges to 1. The 

process of our algorithm at each single stage is OCBA adapted 

from [19]. OCBA tries to identify the alternative with the highest 

mean from a set of alternatives with means Ji  and known vari- 

ances σ2 , i = 1, 2, . . . , k by efficiently allocating samples that 

maximizes APCS. Here we present OCBA again in Algorithm 

7 for convenience. The budget allocation process is similar to 

(5) to (7). First define 

 
1   

li 

the objective of the proposed OCBA tree policy is to maximize J̄i  :=
 ˆm 

i
 

PCS, it leads to different budget allocation and better PCS. 

 
VI. CONCLUSION 

 

In this article, we present a new OCBA tree policy for MCTS. 

Unlike bandit-based tree policies (e.g., UCT), the new policy 

maximizes PCS at the root node, and in doing so, balances the 

exploration and exploitation tradeoff differently. Furthermore, 

the new OCBA tree policy relaxes the assumption of known 

bounded support on the reward distribution, and thus, makes 

MCTS more generally applicable. 

li 
m=1 

 

b :=  arg max J̄i 
i 

δ(b, i) := J̄b − J̄i , ∀i = b 

 

where li is the number of samples for alternative i, Ĵm  is the 

mth sample of Ji  for 1 ≤ i ≤ k, 1 ≤ m ≤ li . The new alloca- 

tions (l̃1 , ̃l2 , . . . , ̃lk ) with budget T > i li can be obtained by 
solving the set of equations 

For future research, we intend to explore the use of a batch 

sampling scheme in Algorithm 2, which allocates a batch of 

Δ > 1 samples at each node. With batch sampling and updating, 

l̃i 

l̃j 

σi /δ(b, i) 
2

 

= 
σj /δ(b, j) 

 
, ∀i = j = b (15) 

we may exploit the power of parallel computing to more quickly 

identify the optimal action. On the other hand, this sequential al- 
k 

l̃b  = σb 

2̃ 
    i   

2
 

 
(16) 

gorithm could also benefit from a one-step look ahead policy, as 

suggested in [32]. Furthermore, establishing that our algorithm is 

(σi ) 
i=1,i=b 

˜
 

E − δ-correct and conducting time-complexity analysis are also 

important topics for future research. Another important future 

research direction is incorporating the uncertainty in sample 

 
i=1 

li = T (17) 

variance estimation, as it has been shown that ignoring the 

estimation error could potentially lead to performance degrada- 

tion [36]. Finally, it is worthwhile to investigate incorporating 

where σi is the standard deviation of the ith reward distribution. 
As in Remark 2, σi is assumed to be known, but in practice can 
be unknown and approximated by sample standard deviation 

other R&S (or BAI) approaches with MCTS. 

σ̂i  =   1   li 

m̂  
ī  

2 

li −1 m=1(Ji    − J )  .
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i=1 

. 

   

x  
N 

b i 

 
 

Since 
k

 li = T , when T → ∞, at least one of the actions for all child state-action pair (x, a). It follows that: 

will be sampled infinitely many times, i.e., there exists an index 

i, such that li → ∞. Then there are two possible cases: i = b 

and i = b. 

lim 
N →∞ 

V̂ (x) → V ∗(x). 
 

0 
Case 1: i = b 

According to (15) 
 

2 

σj /δ(b, j) 

Proof of Proposition 2: We start with the single-stage OCBA, 

which assumes that J̄i  is also normally distributed. Define the 

single-stage PCS 

lj  = 
σi /δ(b, i) 

li , ∀j = i, j = b.  
PCSsingle = P

 
k 

(J̃ − J̃  ) ≥ 0
 

 

Since σi   and δ(b, i) are positive and finite for all i,  lj  → 
b i 

i=1,i=b 

∞,  ∀j = b. 

Therefore,  by  (16),  lb  → ∞.  Thus,  li → ∞  for  all  i = where J̃i is the posterior distribution of Ji 

 

given li 
 

samples ∀i = 

1, 2, . . . , k. 

Case 2: i = b According to (16) 
 

k 
l2

 

1, 2, . . . , k. Then, we first show that PCSsingle → 1 as T → ∞. 
Similar to (4), PCSsingle can be lower bounded by APCSsingle , 

i.e., by the Bonferroni inequality 
 

k 

lb  = σb 
    i   

→ ∞ 

 

PCS = P (J̃
  

J )  0 
i=1,i=b 

(σi )2
 

single 

i=1,i=b 

b − ĩ    ≥ 

Thus there exists an index i = b, such that li → ∞. By a similar 

argument in Case 1, we can conclude that li → ∞  for all i = 

1, 2, . . . , k. 

 

 
≥ 1 − 

 
k 

P 

i=1,i=b 

 
J̃b − J̃i  ≤ 0 

Since li → ∞, ∀i, by applying the strong law of large num- 
bers, we have 

 

= APCS 
 

single . 

J̄i  → E[Ji ] w.p. 1 as T → ∞,  ∀i = 1, 2, . . . , k.  (18) 

With the convergence analysis from single-stage OCBA, The- 

orem 1 can be proved by induction.
 

Thus,  to  prove  that  PCSsingle → 1,  it  suffices  to  prove 

APCSsingle → 1, i.e., 
 

k 
 

First observe that since N → ∞,  each path is explored in- 

finitely many times. Thus the number of samples in each stage 

 
i=1,i=b 

P  (J̃b − J̃i ) ≤ 0   → 0  as  T → ∞. 

also goes to infinity as N → ∞. Based on the normality assumption, the posterior distribution is 

i /l ). Thus, J̃   − J̃i  ∼ N (J̄b − 

panded. If the current state node x is at stage H − 1 (i.e., it J̄i , σ
2    

b i  i

 

will transit into a terminal node in the next transition), running 

Algorithm 3 reduces to a single-stage problem, which is the 

b /l 
 

k + σ2 /l ). Therefore 

 
P  (J̃b − J̃i ) ≤ 0   = 

 
k 

Φ(− 

 

J̄b − 

 

J̄i 

) 

same as OCBA in Algorithm 7. Q̂(x, a) can be viewed as a set of σ2 /lb + σ2 /li
 

alternatives for a ∈ A. From Corollary 18, it is straightforward 

that 

i=1,i=b i=1,i=b b i 

(19) 

 

lim 
N →∞ 

Q̄(x, a) = Q(x, a). 
where Φ is the cdf of the standard normal distribution. 

Since li → ∞ for all i = 1, 2, . . . , k and J̄b is defined to be the 
 

Therefore, since the reward function is bounded 
maximum of all J̄i , i.e., J̄b − J̄i  ≥ 0 for all i = b, (19) becomes 

k  k  
J̄  − J̄

 
lim V̂ (x) =  lim max Q̄(x, a) P  (J̃b − J̃i ) ≤ 0 =  Φ(− ) → 0 

N →∞ N →∞ a∈Ax
 

σ2 2
 

 
= max 

 
lim 

 

Q̄(x, a) 
i=1,i=b i=1,i=b b /lb+σi /li 

a∈Ax  N →∞ 

= V ∗(x). 
 

Now suppose that the statement is true for all child state nodes y 

of a state x, i.e., V̂ (y) → V ∗(y) and y could be achieved from 

x. Then for x, the algorithm also reduces to OCBA. Thus from 

Corollary 18 again 

as desired. 

Since we assume Q̂(x, a) is normally distributed with known 

variance, the posterior distribution of μ(x, a) given observations 

Q̂(x, a), i.e., Q̃(x, a), is also a normal random variable. Then, 

using the same analysis as that in proving PCSsingle → 1, we 

have 

k 

lim 
N →∞ 

Q̄(x, a) =  lim 
N (x,a)→∞ 

Q̄(x, a) P 

a∈Ax ,a=â∗
x 

( lim 
N →∞ 

Q̃(x, â∗ ) − lim 
→∞ 

Q̃(x, a)) ≥ 0   = 1  

= E[R(x, a)] + EP (x,a) [V ∗(y)] 
 

= Q(x, a) 

 

∀i = 1, . . . , H, x ∈ X,  a ∈ A. 
 

0 
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i=1   i 

x ) 

x 

2  2  

x 

x 

∼ 
σ (x, a)

 

x 

∗ 

x  x 

x 

x ) 

x 

c = 
n 

x 

 
 

Proof of Proposition 3: When the number of samples at node 

x is large, we assume that N (x, a) satisfies (5) to (6).
 Applying inequality 

n 
c2 

’s yields
 ≤ n 

i=1 
2  
i i=1 ci for 

 

From (5), we have 
positive numbers ci 

σ(x, ã)δx (â∗ , a) 
2 

σ2 ∗   1 2  ∗
 

N (x, ã) =  x 

σ(x, a)δx (â∗
x , ã) 

N (x, a) x (a, âx ) ≤ 
N (x, â∗ 

σ (x, âx )+ 

∀ã, a = â∗ . (20) 
 

In this way, we can express the budget allocation to any sub- 

optimal action ã  as the product of the budget allocation to a 

 

σ(x, â∗
 )σ2 (x, a)  

ã∈Ax ,ã=â∗
x 

 

rx (ã, a)   
. 

σ(x, ã) 

particular suboptimal action a and the factor Since APCS is decreasing in σ2 ∗
 

σ(x, ã)δx (â∗ , a) 
2 

PCS 1 

x (a, âx ), we have 

 

 
From (6) 

rx (ã, a) =  x  . 
σ(x, a)δx (â∗

x , ã) 

≥  − 
a∈Ax ,a=â∗

x 

 

δx (â
∗ , a)    N (x, â∗ ) 

(N (x, ã)2 ) 

N (x, â∗ ) = σ(x, â∗ ) . 

Φ −   x  x   

r (ã,a) 

σ (x, â∗
x ) + σ(x, â∗

x )σ (x, a)  ã  A ,ã=â∗ 

x  x 
ã∈Ax ,ã=â∗

x 
σ2 (x, ã) 

∈   x x 
x 

σ(x,ã) 

 

Substituting N (x, ã) from (20) yields 
 
 
 
(rx (ã, a))2 

as desired. 0 
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2  ∗ 2
 

thesis, department of knowledge engineering, Universiteit Maastricht, 
Maastricht, The Netherlands, 2011. 

[11]  K. Teraoka, K. Hatano, and E. Takimoto, “Efficient sampling method for 
Monte Carlo tree search problem,” IEICE Trans. Inf. Syst., vol. 97, no. 3,

 

σ2 ∗
 σ (x, âx )
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