EEE
css

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

2685

An Optimal Computing

Budget Allocation Tree

Policy for Monte Carlo Tree Search

Yunchuan Li®”, Michael C. Fu

Abstract—We analyze a tree search problem with an un-
derlying Markov decision process, in which the goal is to
identify the best action at the root that achieves the highest
cumulative reward. We present a new tree policy that op-
timally allocates a limited computing budget to maximize
a lower bound on the probability of correctly selecting the
best action at each node. Compared to widely used upper
confidence bound (UCB) tree policies, the new tree policy
presents a more balanced approach to manage the explo-
ration and exploitation tradeoff when the sampling budget
is limited. Furthermore, UCB assumes that the support of
reward distribution is known, whereas our algorithm re-
laxes this assumption. Numerical experiments demonstrate
the efficiency of our algorithm in selecting the best action
at the root.

Index Terms—Machine learning, Monte Carlo tree
search (MCTS), optimization algorithms, stochastic optimal
control.

I. INTRODUCTION

E CONSIDER a reinforcement learning problem where
W an agent interacts with an underlying environment. A
Markov decision process (MDP) with finite horizon is used to
model the environment. In each move, the agent will take an
action, receive a reward, and land in a new state. The reward is
usually random, and its distribution depends on both the state of
the agent and the action taken. The distribution of the next state

Manuscript received June 22, 2020; revised June 30, 2020, April 16,
2021, and May 16, 2021; accepted May 30, 2021. Date of publication
June 14, 2021; date of current version May 31, 2022. This work was
supported in part by the National Science Foundation under Grants
CMMI-1434419 and DMS-1923145, in part by the Air Force Office of Sci-
entific Research under Grants FA95502010211 and FA9550-19-1-0383,
in part by the Defense Advanced Research Projects Agency (DARPA)
under Grant N660011824024, and in part by the UChicago Argonne LLC
under Grant 1F-60250. This paper was presented in part at the 58th
IEEE Conference on Decision, and Control, Nice, France, December
2019. Recommended by Associate Editor Q.-S. Jia. (Corresponding
author: Yunchuan Li.)

Yunchuan Li is with the Department of Electrical and Computer Engi-
neering and the Institute for Systems Research, University of Maryland,
College Park, MD 20742 USA (e-mail: yli93@umd.edu).

Michael C. Fu is with the R. H. Smith School of Business and the
Institute for Systems Research, University of Maryland, College Park,
MD 20742 USA (e-mail: mfu@umd.edu).

Jie Xu is with the Department of Systems Engineering and Op-
erations Research, George Mason University, Fairfax, VA 22030 USA
(e-mail: jxu13@gmu.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TAC.2021.3088792.

Digital Object Identifier 10.1109/TAC.2021.3088792

, Fellow, IEEE, and Jie Xu

, Senior Member, IEEE

is also determined by the agent’s current state and action. Our
goal is to determine the optimal sequence of actions that leads
to the highest expected reward. The optimality of the decision
policy will be evaluated by the probability of correctly selecting
the best action in the first stage of the underlying MDP.

If the distributions and the dynamics of the environment are
known, the optimal set of actions can be computed through
dynamic programming [2]. Under more general settings where
the agent does not have perfect information regarding the envi-
ronment, the authors in [3] proposed an adaptive algorithm based
on a multiarmed bandit (MAB) model and upper confidence
bound (UCB) [4]. The authors in [5] and [6] applied UCB
to tree search, and [6] invented the term Monte Carlo tree
search (MCTS) and used it in a Go-playing program for the
first time. Since then, MCTS has been developed extensively
and applied to various games such as Othello [7] and Go [8].
To deal with different types of problems, several variations of
MCTS have been introduced, e.g., flat UCB (and its extension
bandit algorithm for smooth trees) [9] and single-player MCTS
(for single-player games) [10].

However, most bandit-based MCTS algorithms are designed
to minimize regret (or maximize the cumulative reward of the
agent), whereas in many situations, the goal of the agent may
be to efficiently determine the optimal set of actions within a

limited sampling budget. To the best of our knowledge, there
is limited effort in the MCTS literature that aims at addressing
the latter problem. Teraoka ef al. [11] first incorporated best arm
identification (BAI) into MCTS for a MIN-MAX game tree, and
provided upper bounds of play-outs under different settings. [12]
had an objective similar to [11], but with a tighter bound. Their
tree selection policy selects the node with the largest confidence
interval, which can be seen as choosing the node with the highest
variance. In some sense, this is a pure exploration policy and
would not efficiently use the limited sampling budget. In our
work, we are motivated to establish a tree policy that intelligently
balances exploration and exploitation (analogous to the objective
of UCB). The algorithms developed in [11] and [12] are only for
MIN-MAX game trees, whereas our new tree policy can be ap-
plied to more general types of tree search problems. The MCTS
algorithm in [13] is more general than [11] and [12], but its goal
is to estimate the maximum expected cumulative reward at the
root node, whereas we focus on identifying the optimal action.

Algorithms that focus on minimizing regret tend to discourage
exploration. This tendency can be seen in two ways. Suppose at
some point an action was performed and received a small reward.
To minimize regret, the algorithm would be discouraged from

0018-9286 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

mailto:yli93@umd.edu
mailto:mfu@umd.edu
mailto:jxu13@gmu.edu
https://doi.org/10.1109/TAC.2021.3088792
https://doi.org/10.1109/TAC.2021.3088792
http://www.ieee.org/publications/rights/index.html
http://www.ieee.org/publications/rights/index.html

2686

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

taking this action again. However, the small reward could be due
to the randomness in the reward distribution. Mathematically, the
authors in [14] showed that for MAB algorithms, the number of
times the optimal action is taken is exponentially more than
suboptimal ones, which makes sense when the objective is to
maximize the cumulative reward, since the exploration of other
actions is highly discouraged. Such exploration—exploitation
balance may be optimal under a different objective, such as
minimizing regret, but when the goal is to select the optimal
action, as in our setting, MAB-based algorithms would over-
weight exploitation. This leads to our second motivation: Is there
a tree policy that explores suboptimal actions more to ensure the
optimal action is found?

Apart from the lack of exploration as a result of the underlying
MAB model’s objective to minimize regret or maximize cumu-
lative reward, most MCTS algorithms assume that the support
of the reward distribution is bounded and known (typically
assumed to be [0, 1]). With the support of reward distribution
being known, the parameter in the upper confidence term in
UCB is tuned or the reward is normalized. However, a general
tree search problem may likely have an unknown and practically
unbounded range of rewards. In such case, assuming a range can
lead to very poor performance. Therefore, the third motivation
of our research is to relax the known reward support assumption.

To tackle the challenge in balancing exploration and ex-
ploitation with a limited sampling budget for a tree policy, we
model the tree selection problem at each stage as a statistical
ranking & selection (R&S) problem (which is referred to as
BAI in the computer science community) and propose a new tree
policy for MCTS based on an adaptive algorithm from the R&S
community. Similar to the MAB problem, R&S (BAI) assumes
that we are given a set of bandit machines (often referred to as
alternatives in the R&S literature) with unknown reward distri-
butions, and the goal is to select the machine with the highest
mean reward. Developments of BAI under various settings such
as linear bandits and infinitely many arms can be found in [15],

[16],and [17]; see [18] for areview. In this work, we will develop
an MCTS tree policy based on the popular optimal computing
budget allocation (OCBA) framework [19], [20]. OCBA was
first proposed in [21], and aims to maximize the probability of
correctly selecting the action with highest mean reward using a
limited sampling budget. More recent developments of OCBA
under various optimization goals and simulation settings include
addressing multiple objectives [22], subset selection [23], and
input uncertainty [24]. Applications of OCBA in energy and
semiconductor manufacturing include [25], [26].

The objective of the proposed OCBA tree policy is to maxi-
mize the approximate probability of correct selection (APCS),
which is a lower bound on the probability of correctly select-
ing the optimal action at each node. Intuitively, the objective
function of the new OCBA tree selection policy would lead to
an optimal balance between exploration and exploitation with a
limited sampling budget, and thus, help address the drawbacks
of existing work that either pursues pure exploration [11], [12]
or exponentially discourages exploration [14]. Our new OCBA
tree policy also removes the known and bounded support as-
sumption for the reward distribution, because the new OCBA
policy determines the sampling allocation based on the posterior

distribution of each action, which is updated adaptively accord-
ing to samples.

To summarize, the contributions of our work are primarily
algorithmic and computational, and include the following.

1) We propose a new tree policy for MCTS that focuses
on efficiently selecting the optimal action, where UCB is
replaced by OCBA. The new OCBA tree selection policy
also relaxes the UCB assumption of known bounded
support on the reward distribution.

We present a sequential algorithm to implement the new
OCBA tree policy that maximizes the APCS at each
sampling stage, where the selection policy converges to
the optimal action.

To support the OCBA-based MCTS algorithm, we pro-
vide convergence results and bounds based on OCBA the-
ory, which highlights the exploration-exploitation trade-
off of OCBA that is more suitable than UCB for identi-
fying the best action.

4) We demonstrate the efficiency of our algorithm through

numerical experiments.

Remark 1: In much of the computer science/artificial intel-
ligence literature, an algorithm that focuses on determining the
optimal set of actions under a limited budget is defined as a pure
exploration algorithm (see, e.g., [27]-[29]), whereas we view
such algorithms as retaining a balance between exploration and
exploitation, as the analysis in Section III shows. In statistical
R&S, pure exploration algorithms generally imply sampling
based primarily on the variance of each action, which often leads
to sampling suboptimal actions more. This will become clearer
in the Section V, where we show that OCBA-MCTS actually
samples less those highly suboptimal actions and “exploits”
those potential actions more.

The rest of the article is organized as follows. We present
the problem formulation in Section II, and review the proposed
OCBA-MCTS algorithm in Section III. Theoretical analyses, in-
cluding convergence results and exploration—exploitation anal-
ysis, are carried out in Section IV. Proofs are given in the
Appendix. Numerical examples are presented in Section V to
evaluate the performance of our algorithm. Section VI concludes
this article and points to future research directions.

A preliminary version of this work was presented in [1], where
a simpler tree policy (not employing the node representation
adopted in the current work) was used. In addition to improving
the efficiency of the MCTS algorithm, here we show that our pro-
posed algorithm converges asymptotically to the optimal action,
and provide an exploration—exploitation tradeoff analysis, both
analytically and through a more comprehensive set of numerical
experiments.

2)

3)

Il. PROBLEM FORMULATION

Consider a finite horizon MDP M = (X, A, P, R) with hori-
zon length H, finite state space X, finite action space A with
|A| > 1, bounded reward function R = {Ry,t =0, 1,... H},
such that Ry maps a state-action pair to a random variable (r.v.),
and transition function P = {Ps, t =0, 1, ... H}, such that P;
maps a state-action pair to a probability distribution over X . We
assume that Py is unknown and/or | X| and |A| are very large,

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Ll etal.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS

2687

and hence it is not feasible to solve the problem by dynamic
programming. Further define X; and Ay as the available child
states when taking action & and available actions at state X, re-
spectively. Denote by P¢(X, a)(y) the probability of transitioning
to state y € X, from state x € X when taking actiona € Ay in
stage f, and R¢(X, a) the reward in stage f by taking action a in
state x. Let I be the set of all possible nonstationary Markovian
policies m= {m;|m; : X = A, i = 0}.

Bandit-based algorithms for MDPs seek to minimize the
expected cumulative regret, whereas our objective is to identify
the best act; . that leads to maximum total expected reward
given by E['7:61 Re(Xe, m(X¢))] for given xo € X . We first
define the optimal reward-to-go value function for state x in
stage / by |
Re(Xe, me(Xe)) Xi =X,

t=i
i=0,1,...,H—-1
with V4, (x) = 0 forall x € X. Ale~ d=fine

Qi(x, @) = E[Ri(x, a)] + Pu(x, @)(¥)V/iq ()
yEXa

* =
V700 = maE

)

with Qy(x, @) = 0. It is well known [2] that (1) can be written
via the standard Bellman optimality equation

V() = max(E[RA(x, @)] + Ep,xa) Vi1 (Y))

= max(E[R(x, a)] + P(x, @)(Y)V ji1 (V)
X YEXa

= max(Q,(x, a)), i=0,1,...,H -1
max(Qs(x, a)
where Y ~ Pj(x, a)(*) represents the random next state.
Since we are considering a tree search problem, some addi-
tional notation and definitions beyond MDP settings are needed.

Define a state node by a tuple that contains the state and the stage
number:

X=X NEXVxEX, 0=si<H

where X is the set of state nodes. Similarly, we define a state-
action node by a tuple of state, stage number, and action (i.e., a
state node followed by an action)

a=(xa)=(x,i,a) VxeX, 0<i<H, ac A,

Now, we can rewrite the immediate reward function, value
function for state, state-action pair with state node and state-
action node, and state transition distribution, respectively, by

R(@)= R(x, a) := Ri(x, a)
V*(x) = V(%)

Q@)= Q(x, a) == Q(x, a)

P@)= P(x, a) := Pj(x, a).

Similarly, V*(x) and Q(X, a) are assumed to be zero for all
terminal state nodes X. To make our presentation clearer, we
adopt the following definitions based on nodes: Define N (X) and

N (x, a) the number of visits to node X and (X, a), respectively,
X, the set of child state nodes given parent nodes, and Ay the
set of available child actions at node X, respectively.

Traditionally, MCTS algorithms aim at estimating V *(X) and
model the selection process in each stage as an MAB problem,
i.e., view Q(X, a) as a set of bandit machines, where (X, a) are
child state-action nodes of X ([3], [5]), and minimize the regret,
namely,

Q(x, ax)}

min_ {N gnef;\)i(Q(x, a)) —

ai,..
! k=1

={NV*x)— QX ax)}

k=1

for x in stage 1,2,...H, where N and aj are the number of

rollouts/simulations (also known as total sampling budget in

much of R&S literature) and the kth action sampled at state
node X by the tree policy, respectively. The meaning of rollout
will be clearer in Section I11. In this article, our goal is to identify

the optimal action that achieves the highest cumulative reward

at the root with initial state x, that is, find

x
at =arg max Q(Xg,a
Xo g €Ay, (0)

where the root state node Xo = (X, 0). Let Q(x, @) = R(x, @) +

V*(y) be the random cumulative reward by taking action a at

state node X, where y is the random state node reached. Clearly,

O(X, a) is a random variable. We assume Q(X, a) is normally

distributed with known variance, and its mean p(X, a) has a
conjugate normal prior with a mean equals Q(X, a). Hence we
have

Q(x, a) = E[E[Q(x, a)|u(x, a)]].

Remark 2: For our derivations, we assume the variance of the
sampling distribution of O(X, a) is known; however, in practice,
the prior variance may be unknown, in which case estimates
such as the sample variance are used [20].

Consider the noninformative case, i.e., the prior mean
Q(x, @) is unknown, it can be shown that [30] the posterior
of U(x, @) given observations (i.e., samples) is also normal.
For convenience, define the #th sample by QY(x, a). Then the
conditional distribution of u(X, a) given the set of samples

(Q'(x, a), Q%(x, a),..., QNxa)(x, a)) is

a(x, a) ~ N(Qx,), m> @)
where
_ N N
Qx, a)= Nix 3) ~ Qt(x, a)

Ax, a) = p(x, a)l(Q'(x, a), @*(x, a),..., V> (x, a))

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2688

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

and 0%(X, a) is the variance of Q(x, a) and can be approximated
by the sample variance

1 N

N(x, a)

0%(x, @) = Ql(x, a) — Qx, a)

t=1

Remark 3: 1f the samples of Q(X, @) are not normally dis-
tributed, the normal assumption can be justified by batch sam-
pling and the central limit theorem.

Under these settings, our objective is to maximize the proba-
bility of correct selection (PCS) defined by

M ~ ~
PCS=P (Q(x, 8}) = Q(x, a))

a€A,a =ak

3)

for a state node x, where &% is the action that achieves
the highest mean sample Q-value at such node, i.e., & =
arg maxaea, Q(X, a).

PCS is hard to compute because of the intersections in the
(joint) probability. We seek to simplify the joint probability
by changing the intersections to sums using the Bonferroni
inequality to make the problem tractable. By the Bonferroni
inequality, PCS is lower bounded by the APCS, that is,

PCS=1-— P Q(x, &%) = Q(x, a) = APCS.
a€Ax,a =ak

“)

The objective of our new tree policy is to maximize APCS as
given in (4). Compared to MAB’s objective of minimizing the
expected cumulative regret, this objective function will result
in an allocation of sampling budget to alternative actions in a
way that optimally balances exploration and exploitation. This
objective function is motivated by the OCBA algorithm [19],
[20] in the R&S literature. We will present and analyze our
OCBA tree policy in the following sections.

Ill. ALGORITHM DESCRIPTION

In this section, we first briefly describe the main four phases,
i.e., selection, expansion, simulation, and backpropagation, in
an MCTS algorithm. Then, we propose a novel tree policy in
the selection stage that aims at finding the optimal action at each
state node.

A. Canonical MCTS Algorithm

Here we briefly summarize the four phases in a typical MCTS
algorithm. We refer readers to [31] for a complete illustration of
these phases. Algorithm 1 represents a canonical MCTS, with
detailed descriptions of the main phases below.

1) Selection: In this phase, the algorithm will navigate
down the tree from the root state node to an expandable node,
i.e., anode with unvisited child nodes. We assume that expansion
is automatically followed when a state-action is encountered.
Therefore, when determining the path down, there are three
possible situations as follows.

a) If a state-action node is encountered (denoted by (X, a)),

we will land into a new state node y which is obtained by

calling the expansion function. Then, we continue with
the selection algorithm.

b) Ifanexpandable state node (which could be a leafnode) is
encountered, we call the expansion function to add a new
child state-action node and a state node (by automatically
expanding the state-action node) to the path. Then, we
stop the selection phase and return the path from the root
to this state node. Finally, we proceed with the simulation
and backpropagation phase.

c) If an unexpandable state node is encountered (denoted
by X), we employ a free policy to determine which child
action to sample. Then we enter the new state-action node
(%, &) and continue the selection algorithm with this state-
action node. The tree policies can be briefly categorized
into two types: Deterministic, such as UCB1 and several
of'its variants (e.g., UCB-tuned, UCB-E), and stochastic,
such as E-greedy and EXP3; see [31] for a review.

2) Expansion: In this phase, a random child state or state-
action node of the given node is added. If the incoming node
is a state node X, the next node is selected randomly (usually
uniform) from those unvisited child state-action nodes. If the
incoming node is a state-action node (X, &), the subsequent state
node is found by simply sampling from distribution P (X, a)(*).

3) Simulation: In some literature, this phase is also known
as “rollout.” The simulation phase starts with a state node. The
purpose of this step is to simulate a path from this node to a
terminal node and produce a sample of cumulative reward by
taking this path (which is a sample of the value for this node). The
simulated path is taken by a default policy, which is to usually
sample the feasible child sate-action nodes uniformly. With this
node’s value sample, we may proceed to the backpropagation
phase.

4) Backpropagation: This phase simply takes the simulated
node value and updates the values of the nodes in the path
(obtained in selection step) backward.

In the next section, we will propose our tree policy based on
OCBA and illustrate the detailed implementations of the four
phases.

B. OCBA Selection Algorithm

We now present an efficient tree policy to estimate the optimal
actions in every state node by estimating V *(x) and Q(X, a)
for all possible @ € Ax at the state node. Denote the estimates
of V*(x) at node X by V*(x), which is initialized to 0 for all
state nodes. Our algorithm estimates Q(X, &) for each action a
by its sample mean, and selects the action that maximizes the
sample mean as &% . During the process, the estimate of Q(X, a) is
given by (2) and the proposed new OCBA tree policy is applied.
Our algorithm follows the algorithmic framework described in
Section III-A, with the tree policy changed to OCBA and other
mild modifications.

The structure of the proposed OCBA-MCTS algorithm is
shown in Algorithms 1 to 6. There are two major characteristics:
The first is to use the proposed OCBA algorithm for the tree
policy. The second is to require each state-action node to be
expanded ng > 1 times, because we need a sample variance

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Ll etal.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS

2689

for each state-action node, which will become clearer after the
tree policy illustration. The process is run for a prespecified N
times (which will be later referred to as number of rollouts or
sampling budget) from the root state node X, after which a
partially expanded tree is obtained and the optimal action &%,
can be derived.

When steering down the tree and a state node X is visited, the
selection phase, which is illustrated in Algorithm 2, will first
determine if there is a child state-action node that was visited
for less than ng times at the given state node. If there is, then
the state-action node will be sampled and added to the path.
In other words, we try to expand each state node when it is
visited, and require each node to be expanded ng times. If all
the state-action nodes are well expanded, Algorithm 2 will call
Algorithm 3 (OCBA Selection), which calculates the allocation
of samples to child state-a; . n nodes of the current state node
for a total sampling budget aca N (X, @) + 1. To determine the
number of samples allocated to each state-action node, denoted
by (N(x, a1), N(x, a2), ..., N(x, aja,))) (wherea; € Ay, i =
1,..., |Ax]|), the OCBA tree policy first identifies the child state-
action node with the largest sample mean (sample optimal) and
finds the difference between the sample means of the sample
optimum and all other nodes

a := arg max C_)(x, a),
a
bx(a%, a) = Q(x, &%) — Q(x, a), Ya=a.

The set of allocations (N(x, a1), N(x, az),..., N(X, aja)))
that maximizes APCS can be obtained by solving the following
set of equations:

NX, ans1) _ O(X, 8p+1)/Ox(8y, an+1)

N(x, ap) 0(X, an)/Ox(8%, an)
Van, an+1 = 8%, an,an+1 €EAx (5)
N Y 2
Rix, 8) = o(x, 3™\ L)
. 0°(x, @)
a€A,a=aj
DN
N(x, a)= N(x, a) + 1. @)
acA acA

The derivations of (5) to (7) are illustrated in the Appendix.
After the new budget allocation is computed, the algorithm
will select the “most starving” action to sample [20], i.e., sample

a =arg max(N(x, a) = N(x, a)). (®)
acAx

An alternative approach recently proposed in [32] optimizes a

one-step look ahead value function to sequentially determine

the action to sample, and asymptotically achieves the optimal

sampling ratios.

We highlight some major modifications to the canonical
MCTS in the proposed algorithm. First, in the selection phase,
we will try to expand all “expandable” nodes visited when
obtaining a path to leaf. Since the variances of the values of a
state node’s child nodes are required in the proposed tree policy,
we define a state node as expandable if it has child nodes that

are visited less than ng > 1 times. State-action nodes are always
expandable.

At the expansion phase as shown in Algorithm 4, a state-action
node is expanded by simply sampling the transition distribution
P(x, a)(*), and the resulting state node is subsequently added
to the path. The reward by taking the action in the state node is
also recorded and will be used in the backpropagation stage.

In the simulation and backpropagation phases illustrated in
Algorithm 5 and 6, a leaf-to-terminal path is simulated, and its
reward is used to update the value for the leaf node. If we denote
the leaf node and the reward from the simulated path by x,; and
r, respectively, the leaf node value estimate is updated by
M v *(x)) + _r r

N (x,) N (x/)

After updating the leaf state node, we update the nodes in the
path collected in selection stage in reversed order. Suppose we
have a path

Vi (x)) «

©

(X0, (X0, @0), - - -, Xi, (Xj, @7), Xj+1, . - -, Xy)

and the node values of X;+1,..., X; have been updated, the
preceding nodes X; and (X;, a;) are updated through

QN™a(x;, a;) = R(X;, @) + V*(X/+1) (10)
Q(xs, a1) « % Qs ar)
_ L ANxayy . 4.
vy i a) (11)
- Nx;) =1 1 =
V(x;) « 5\);(3(’_) V*(x;) + WQ(XB a;)
(12)
Vx) « (1= ay)V (X)
+ay x) max Q(x;,) (13)

where V() is an intermediate variable that records the average
value of the node through the root-to-leaf path, and a y (x,) €
[0, 1] is a smoothing parameter. The updates are performed
backward to the root node.

Details of the OCBA tree policy are shown in Algorithms 1
to 6.

There are a few points worth emphasizing in Algorithm 3.
First, I\~I(x, a;) is the total number of samples for each action 7
after the allocation. Given present information, i.e., all samples
state node X, OCBA-MCTS assumes now a total number of
v aca N(x, @)+ 1 sampleis availablei. By solving (5~) to (7), the
new budget allocation (N(X, a1), N(X, az),..., N(X, aja)))
that maximizes APCS is calculated. Afterward, one action based
on (8) is selected to sample and move to the next stage. This
“most-starving” implementation of the OCBA policy [19] as
given in Algorithm 3 is fully sequential, as each iteration allo-
cates only one sample to an action before the allocation deci-
sion is recomputed. It is also possible to allocate the sampling

budget in a batch of size A > 1. We use the “most-starving”
scheme, because it has been shown to be more efficient than the

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2690

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

Algorithm 1: MCTS.

Imput: Simulation budget (roll-out munber) N, root
state node xg
Output: &}, V*(xo)
Set simnlation connter n +— 0
while n < N do
path « selection(xg)
leaf + pathlend)
r+ simulate(leaf)
backpropagate(path,r)

ne—n+l
end

return action 45 = argmax,e4 ((xo,4)

Algorithm 2: Selection(xg).

Imput: root state node xq

Sample a root-to-leaf path,

path ()

XXy

while True do

Append state node x o path

N« N(x)+1

if x is a terminal node then
| return path

end

if x is expandable then

4 + expand(x)

¥ + expand({x,4))

Append state-action node (x,4) and leaf state
node y to path

N(x,8) +N(x,d8)+1

N{x) < N(xj+1

return path

else

4 + OCBAselection(x)

Append state-action node (x,4) to path

N{x.d) + N(x,d)+1

X expand({x,d))

end

end

batch sampling scheme [33]. However, the benefit of sampling
in batches for MCTS is that in one iteration, multiple root-
to-leaf paths can be examined, enabling parallelization of the
algorithm.

Second, updating \7(x,—) involves two stages: Updating the
value estimate along the path (12) and taking the maximum
over the values of the child state-action nodes (canonical way
to update). Then the two values are mixed through ay (x,) to
update % (X;), as prior research (e.g., [6], [34]) suggests mixing
withay (x,) = 1(i.e.,asymptotically achieves Bellman update)
ensures more stable updates.

Finally, although we present our algorithm in the context of
solving an MDP, it can be applied to other tree structures such
as MIN-MAX game trees or more general game trees, by setting
the reward function and the max and min operators accordingly.

Algorithm 3: OCBA Selection(X).
Input: state node X _
Identify 8% = arg max, Q(X, a);
0x(a%, @) « Qx, &) — Q(x, a);
Compute new sampling allocation
(N(x, a1), N(x, az),..., N(X, aja)))
by solving (5) to (7);
8 « arg maxaea(N(x, @) — N(x, a));
return &;

Algorithm 4: Expand(x or (x,a)} .
Input: a state node X or a state-action node {X,a)
Output: child node to be added to the tree
if the input node is a state node x then

&+ {feasible actions of state x that has been
sampled less than rg times}

@ + random choice of §

Add (x,4) to the tree if it is unvisited

return 4

else

Sample node (x,4) at state node x and obtain the
child state node y ~ P(x,4)(-)

Add ¥ to the tree if it is unvisited

return y.

end

Algorithm 5: Simulate(x).
Imput: state node x
re0
while True do
if x is not terminal then
find a random child state-action node (x,a) of x
r r+R(x,q)
sample a and obtain the child state node
y~P(x,a)()
Xy
else
| return r
end
end

Algorithm 6: ackpropagate(path, reward)
Input: path to a leaf node path, simulated reward
reward

for node in reversed(path) do
| Update node values through Equations (9) to (13).
end

IV. ANALYSIS OF OCBA-MCTS

In this section, we first discuss how the OCBA tree policy
in OCBA-MCTS balances exploration and exploitation mathe-
matically. Then, we present several theoretical results regarding
OCBA-MCTS. The proofs are given in the Appendix.

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Ll etal.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS

2691

Equations (5) to (7) determine the new sampling budget
allocation. First, (5) shows that the suboptimal state-action
nodes should be sampled proportional to their variances and
inversely proportional to the squared differences between their
sample means and that of the optimal state-action node. This
OCBA property represents a different type of tradeoff between
exploration (sampling actions with high variances) and exploita-
tion (sampling actions with higher sample means) compared to
bandit-based algorithms.

In this part, we present results for OCBA-MCTS. The first
proposition ensures the estimate of the value-to-go function
converges to the true value. The second proposition establishes
that OCBA-MCTS will select the correct action, i.e., the PCS
converges to 1.

Proposition 1 (Asymptotic consistency): Assume the ex-
pected cumulative reward at state-action node (X, @) is a random
variable with nonzero finite variance. Suppose the proposed
OCBA-MCTS algorithm is run with a sampling budget N at
root state node Xo. Then at any subsequent nodes X and (X, a)

Jim Q(x, a) = E[Q(x, a)] = Q(x, a)
Jim V(x)=V*x), VX EX, (x,a) € X X Ax.

Proposition 2 (Asymptotic correctness): Assume the ex-
pected cumulative reward at state-action node (X, &) is a normal
random variable with mean (X, @) and variance 0%(X, @) < o,
ie., Q(x,a) ~ N(u(x, a), 02(x, a)) for 0 =i < H and that
M(X, a) is normally distributed with unknown mean and known
variance. Then the PCS converges to 1 for any state node x € X,
i.e.,

m ~ ~
P (Nh_r}}n Q(x, &) — Jim Qx,a) =0 =1

a€Ax,a=ak

where 8% = arg maxaea, Q(X, a).

The allocation rule obtained by solving (5) and (6) can be
derived using a similar analysis as that in [19], which shows
that at each point of the algorithm when a decision needs to be
made, the action that maximizes the APCS (asymptotically, i.e.,
as N = o) will be selected and sampled. Therefore, the OCBA
tree policy gradually maximizes the overall APCS at the root,
which is a lower bound for PCS.

A lower bound on PCS for the algorithm in the known variance
setting can be derived using (4) by substituting the OCBA alloca-
tion into the APCS expression (right-hand side of the inequality)
and incorporating the normal distribution assumptions on the Q
functions.

Proposition 3 (Lower bound on the probability of correct
selection): Under the same assumptions of Theorem 2, the PCS
at each stage and <t=te is Jower bounded by

PCS=1-
a€Ax,a=ak
* N(x %)
) _ 5X(éx7a) N(x’i.) _ /
0-2(x’ é;) + O'(X, a;(()az(x, a) AEAx, =3} ';-(((Xa;';))

where @(-) is the cdf of standard normal distribution and

o(x, &@)0x (8%, a)?
o(x, a)0x(8, a)

Similar to solving (5) to (7) in the selection stage, the true
variance may not be known in practice, but can be approximated

with the sample variance, which provides an estimate for the PCS
lower bound.

r«(a@ a) =

V. NUMERICAL EXAMPLES

In this section, we evaluate our proposed OCBA-MCTS on
two tree search problems against the well-known UCT [5]. The
effectiveness is measured by PCS, which is estimated by the
fraction of times the algorithm chooses the true optimal action.
We first evaluate our algorithm on an inventory control problem
with random nonnormal rewards. Then we apply our algorithm
to the game of tic-tac-toe. The code is available at [35].

For convenience, we restate the UCT tree policy here. At a
state node X, the UCT policy will select the child state-action
node with the hi¢" * upper confidence bound, i.c.,

:aEAxN(x, a) }
N(x, a) J

(14)

where W, is the “exploration weight.” The original UCT algo-
rithm assumes the value function in each stage is bounded in
[0,1] because it sets We = 1, whereas the support is unknown in
many practical problems. Therefore, in general, w, needs to be
tuned to encourage exploration.

For all experiments, we set the smoothing parameter in (13) in
the backpropagation phase to ay (x) = 1 — ﬁ(x) Since initial
estimates of sample variance can be less accurate with small ng,
we add an initial variance 03 > 0, which decays as the number
of visits grows, to the sample variance to encourage exploration.
Specifically, we set

I
4 { - N 2log
= arg ;Ieli\))((X a)+ we

| N

N(x, a)

0%(x, a) — Q'(x, a) - Qx, @)
=1

+ g2

o/N (X, a)

where the first term is the sample variance, and second term
vanishes as N (X, @) grows.

A. Inventory Control Problem

We now evaluate the performance of OCBA-MCTS using
the inventory control problem in [3]. The objective is to find
the initial order quantity that minimizes the total cost over a
finite horizon. At decision period /, we denote by D; the random
demand in period 7, X; = (X;, i) the state node, where X; is the
inventory level at the end of period 7 (which is also the inventory
at the beginning of period 7+ 1), (Xj, @;) the corresponding
child state-action node with a; being the order amount in period
I, p the per period per unit demand lost penalty cost, h the per
period per unit inventory holding cost, K the fixed (setup) cost
per order, M the maximum inventory level (storage capacity),

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2692

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

and H the number of simulation stages. We set M = 20, initial
state xo =5,h=1,H =3, D; ~ DU(0, 9) (discrete uniform,
inclusive), and consider two different settings for p and K as
follows.

1) Experiment 1: p= 10 and K = 0.

2) Experiment2: p= 1 and K = 5.

The reward function, which in this case is the negative of the

inventory cost in stage 7, is defined by

D,'}—l—
pmax{0, D; — x; — a;j} + K1y5,50;)

R(xj,a;) = — (hmax{0, x; +a; —

where 1 is the indicator function, and the state transition follows:

Xj+1 = max(O, X;j+a;— D,')

where
a; €Ay, ={alx;+a=M}.

For UCT, to accommodate the reward support not being [0, 1],
we adjust the exploration weight when updating a state-action
node, i.e., set W, initially to 1, then in the backpropagation step,
update we by

We = max(we, |QV*(x, a)|)

where QN @) (x, a) is obtained in (10). The initial variance @
is set to 100. For both OCBA-MCTS and UCT, we set the number
of expansions (ng) to 4 for depth 1 state-action nodes (i.e., the
child nodes of the root) and to 2 for all other state action nodes
in Experiment 1, and set ng to 2 for all nodes in Experiment
2. The different values of ng are due to the variance decreasing
with the depth of a node, and Experiment 2 is a relatively easier
problem.

For both experiment settings, each algorithm is repeated 2000
times at each simulation budget level N to estimate PCS. Since
Experiment 1 is a much harder problem compared to Experiment
2, more rollouts (budget) are required. Therefore, N ranges
from 14 000 to 24 000 and from 50 to 200 for Experiments
1 and 2, respectively. The estimated PCS curves for both ex-
periments are illustrated in Fig. 1, where the standard error
(= PCS(1 = PCS)/N) is small and thus omitted for clarity.
OCBA-MCTS achieves better PCS for both experiment setups.
For Experiment 1 (optimal action a; = 4), as shown in Fig. 1(a),
OCBA-MCTS achieves a 5% higher PCS (absolute) compared
to UCT. For Experiment 2 (optimal action af = 0), we see a
15% performance gap between UCT and OCBA-MCTS when
the number of samples is less than 80, after which UCT gradually
closes the gap as OCBA already reaches PCS> 95%.

It is also beneficial to compare the distribution of budget
allocation of OCBA-MCTS and UCT to show the exploration—
exploitation balance of OCBA-MCTS. For convenience, we
label the child actions of the root node from 0 to 15, where
action / denotes ordering 7 units. Figs. 2 and 3 illustrate the
average number of visits, average estimated value function, and
average estimated standard deviation of all child state-action
nodes of the root node over 1000 repeated runs with 24 000 and
170 rollouts for Experiment 1 and Experiment 2, respectively.
Note that although the estimated standard deviation does not

1.00 1

0.95 A

0.90 1

0.85

CS

0.80 A

p

0.75 A

0.70 1

-¥=- UCT
-8~ OCBA

0.65 -

0.60

14000 16000 18000 20000 22000 24000

1.00 A

0.95 -

0.90 A

PCS

0.85

0.80 A

0754 ¢

=¥=- UCT
-8~ OCBA

0.70

120 140 160 180 200
N

(b)

60 80 100

Fig. 1. Estimated PCS as a function of sampling budget achieved by
UCT-MCTS and OCBA-MCTS for inventory control problem, averaged
over 2000 runs. (a) Experiment 1: p = 10, K = 0 and (b) Experiment 2:
p=1,K=5.

play a role in determining the allocation for UCT, we still plot
it for reference. Both figures show that the number of visits to
children nodes is, to some extent, proportional to the estimated
value of the node for UCT. On the other hand, OCBA-MCTS
puts more effort on the estimated optimal and second optimal
actions (actions 4 and 3 for Experiment 1 and actions 0 and 1
for Experiment 2, respectively), as illustrated in Figs. 2(b) and

3(b).

In Experiment 1, where there are two competing actions with
similar estimated values (actions 3 and 4, with action 4 being the
optimal), OCBA-MCTS will spend most of its sampling budget
on those two potential actions and put much lesser effort on
clearly inferior actions, such as actions 6 to 14, compared to
UCT. This strategy makes more sense when the objective is to
identify the best action, and thus, is more suitable for MCTS
problems, as the ultimate goal is to make a decision. It is also
interesting to note that OCBA-MCTS actually allocates slightly
more Vvisits to the competing suboptimal action than the optimal
one (mean 10 781 and 10 350 for actions 3 and 4, respectively),
which will not happen in bandit-based policies, as their goal is to
minimize regret, and thus, will put more effort on exploiting the
estimated optimal action. In Experiment 2, where the optimum is

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Ll et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2693
T T T T T 14000 T T T T T T
-~ Q {14 15
=¥ std . 13500 20
P L=
g # visits 412 _% A =3 30 _g 2
c % {3000 L. g g @
=1 1o © b= -= Q =
2 o e g 115
2 ‘_x’ § 12500 ; 5 v etd 25; ?
I o ki) .]
H 8 % a0m0 g 5 # visits 20 = =
g \ 4 k<] 5] L= E
=z > 6 = = 2 JqwE
X v T 1500 & B 155 z
E L » = & [& &
B v 1# £ {1000 5 E lio & &
11T} gt 5 = 15 %
{2 " “ _sp kil
_3sk HHF {500 is
, RN s, [, e
[{ 2 4 [8 10 12 14 0 lo
Actions 0 2 4 6 8 10 12 14
(a) Actions
(a)
—10 T T T — 30
== Q x' T T T T T T 450
I =¥« std]
o T8 ’.* # visits & {25 & 1onee 133
£ / lc'nu 2 E
- 4 & dJeooo & ¢ 02 Jawg
B -201¥ 20 & i g =5 5
e g g B e g sy
= E
2 -25 " 15% {6000 ¢ 2 mstd 3w g
% 3 & 2 2 # visits g | 20 E
17 = =
5 -30 ‘V 10 E {a000 2 g 3 3
E 3 £ g B 2045 Jis5 9
i % o &] 8 i
_15 s £ Jzo00 E £ g
Wiv = £ quo
ﬂ w —50 110 5
—40 ka0 I ,_‘ L n I I I 1] 1] 45
0 2 4 [8 10 12 14 —-55
Actions P lo
(b) 0 2 4 6 8 10 12 14
Actions
Fig. 2. Sampling distribution for Experiment 1 with N = 24 000, aver- ®)
aged over 2000 runs (action 4 optimal, action 3 near optimal). (a) UCT
and (b) OCBA. Fig. 3. Sampling distribution for Experiment 2 with N = 200, averaged

over 2000 runs (action 0 optimal). (@) UCT and (b) OCBA.

slightly easier to find, although OCBA-MCTS allocates a larger
fraction of samples to suboptimal actions compared to that in
Experiment 1, most of the samples are still allocated to the top
2 actions as shown in Fig. 3(b), whereas UCT performs similar
to that in Experiment 1.

B. Tic-Tac-Toe

In this section, we apply OCBA-MCTS and UCT to the game
of tic-tac-toe to identify the optimal move. Tic-tac-toe is a game
for two players who take turns marking “X” (Player 1) and “O”
(Player2) ona3 X 3 board. The objective for Player 1 (Player 2)
is to mark 3 consecutive “X” (“O”) in a row, column, or diagonal.
If both players act optimally, the game will always end in a draw.

For ease of presentation, we number the spaces sequentially Fig. 5.

as shown in Fig. 4. We use OCBA-MCTS and UCT to represent
Player 2 (who marks “O” on the board). We consider two board
setups: Player 1 already marked “X” space 0 (setup 1) and space

4 (setup 2). The root nodes and optimal actions for Player 2 are
illustrated in Figs. 5 and 6, respectively. Since in setup 2, the
optimal move for Player 2 will be marking any of the corner
spaces [shown in Fig. 6(b)] due to symmetry, we consider it a
correct selection if the algorithm returns any one of the optimal

moves. For both setups, taking any of the suboptimal actions Fig. 6.

will end up in losing the game if Player 1 plays optimally. In

Fig. 4. Action layout.

X

01112
31415
6|7 1|8

O

@

(b)

C

C

X

X

(a)

C

(b)

C

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Tic-tac-toe board setup 1. (a) Root node and (b) Optimal.

Tic-tac-toe board setup 2. (a) Root node and (b) Optimal (any
one of the corner spaces).

2694

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

1.00

0.95 -

0.90 A

0.85 A

PCS

0.80 A

0.75 A

0.70 =¥ = UCT

-8- OCBA

500 600 700 800

(a)

0.90 1

0.85

PCS

0.80 A

0.75 A

- -

ucTt

-8- OCBA

500 600 700 800

N
(b)

Fig. 7. Estimated PCS as a function of sampling budget achieved by
UCT-MCTS and OCBA-MCTS for tic-tac-toe under setup 1, averaged
over 5000 runs. (a) Experiment 3: Player 1 plays randomly and (b)
Experiment 4: Player 1 plays UCT.

this game, Player 2 (MCTS algorithm) makes decisions at even
stages (2,4,...) and Player 1 makes decisions at odd stages
(3, 5,...). The state transitioning is deterministic and Player 1’s
move is modeled using a randomized policy. We consider two
different policies for Player 1 under both setups.
1) Experiment 3: Under setup 1, Player 1 plays randomly,
i.e., with equal probability to mark any feasible space.
2) Experiment 4: Under setup 1, Player 1 plays UCT.
3) Experiment 5: Under setup 2, Player 1 plays randomly,
i.e., with equal probability to mark any feasible space.
4) Experiment 6: Under setup 2, Player 1 plays UCT.

We compare the performance of OCBA-MCTS and UCT on
Player 2 in all four experiments. At state node X, the reward
function for taking action a is defined according to the fol-
lowing rules: Immediately after taking the action, if Player 2
wins the game, R(X, @) = 1, if it leads to a draw, R(X, @) =
0.5; otherwise (Player 2 loses or in any nonterminating state),
R(x, @)= 0. ng is set to 2 across all nodes for both UCT and
OCBA-MCTS. Since the value function for all state-action nodes
is now bounded in [0, 1], we set We = | throughout the entire
experiment for UCT policies. The initial variance 0% is set to

. 40.5
0.55} x e < - 200
o s N7 045 Jurs
E oso} v v p——_ % £
- 150 =
5 c.45} o s ®
] #visits (038 |
g - .-
2 | = E
% 040 A Jwo 3
° Jo.2 2 @
% 0.35F E 75 =2
E £ g
0.0} Jorg 1% >
25
o.25}
1 1 1 1 1 1 0-0 u
1 2 3 4 5 6 7 8
Actions
(a)
0.60 r 40.5
0.55} B B~ . - ™ 200
o 2N 0§ furs
FLE S v -0 z =
g - std g ez
2 045k #uisits {038 [o0 8
g 21704
2 £
] 0.0} E 100 3
b oz 5 w
8 o03s} E s &
£ £ z
o.3of Joad {5
o2s} 25
5 5 5 5 5 5 0.0 o
1 2 3 4 5 6 7 8
Actions
(b)
Fig. 8. Sampling distributions for Experiment 3, averaged over 5000

runs (action 4 optimal). (a) UCT and (b) OCBA.

c.so0} B g - V. 1715
o o v Sy “ 045 15 a
_E 0.45} v == Q é g
g == std € Juzsg
2 040 # visits 0.3 g v
o 0401 i g
s 2 {100 E
] | 2
E 035} 022 s g
£ £ E
5 030} £ 450
b 01% é

w
0.25} 23
: ! : : : : 0.0 o
1 2 3 4 5 6 7 8
Actions
()
. 105
0.55} X . 200
x 7 Se — -
o 050 2 N7 04 5 J17s
& v v --= Q " %
g nast —¥- std § 150%
& # visits §0.3 g
125 §
2 vaof : g 4
[
8 g qwo 3
T 0.35¢ 102 o w
£ I P
£ nao £ g
i oa s 1%
't}
025} 25
: : ; : : : 0.0 o
1 2 3 4 5 6 7 8
Actions
(b)
Fig. 9. Sampling distributions for Experiment 4, averaged over 5000

runs (action 4 optimal). (a) UCT and (b) OCBA.

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Ll et al.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS 2695
1.00 0.350} ' 0.40 130
w 7N _V. /V E
~
0-951 o 0528 v Yo" Se” 0.352'25%
[=
£ 0.300 030 =
0.90 A = il R
'E 0.275 0.25 § I
% 2 15 E
, 0857 % 0250 -0 0.20 & 3
g g ¥ std u.15§ lok
0.80 E 0225 # visits g g
I} 0.10 §
0200} \// LT
0.75 0.05
el b
0.704 v =¥ = UCT Actions
-8 OCBA (a)
0.65 +— T T T T T T
80 100 120 140 160 180 200
N 0.325 . 435
V,
(a) escofit. T N _-N Y 1040 _ {0
o v - - N7 035 8
& 0275} % 125 %
1.00 s 0303 z
3 0250 02s § 2 _;g
] = c
0.95 g 0225} S O.ZOE 115 é
| v std 0.15 2
0.90 1 E 0-200 # visits 0.10 g 110 g
[. k=]
“ parsk & 5
0.85 005]
4] 0.150}
Q | P
0.80 1 0 1 2 3 5 6 7 8
Actions
b
0.75 1 ®)
0.70 7’ Fig. 11. Sampling distributions for Experiment 5, averaged over 5000
: v =v- ucr runs (actions 0, 2, 6, and 8 optimal). (a) UCT and (b) OCBA.
=-@- OCBA
0.65 +— T T T T T T
80 100 120 140 160 180 200
N
(b) 4, the difference is around 5% when N < 500 and soon catches
up as N increases. This is expected, as it becomes easier to
Fig. 10. Estimated PCS as a function of sampling budget achieved by determine the Optimal action when the opponent applies an Al

UCT-MCTS and OCBA-MCTS for tic-tac-toe under setup 2, averaged
over 5000 runs. (a) Experiment 5: Player 1 plays randomly and (b)
Experiment 6: Player 1 plays UCT.

10. For Experiment 4, where Player 1 plays UCT, its goal is to
minimize the reward, therefore, Player 1 will select the action
that minimizest’ * wer confidence bound. i.e.,

i Tlog - %
= 0g N(x,a)
4= arg min X, a) — We If/é’?"a) j

Similar to the previous section, we plot the PCS of the two
algorithms as a function of the number of rollouts, which ranges
from 300 to 800 for Experiments 3 and 4 and the PCS is estimated
over 5000 independent experiments at each rollout level. The
results are shown in Fig. 7, which indicates that the proposed
OCBA-MCTS produces a more accurate estimate of the optimal
action compared to UCT. In setup 1 (i.e., experiments 3 and 4),
both experiments show that OCBA-MCTS is better at finding
the optimal move when the sampling budget is relatively low.
The performance of UCT and OCBA-MCTS becomes compa-
rable when more samples become available. We also note that
there is a greater performance gap between UCT and OCBA-
MCTS in Experiment 3 than in Experiment 4: In Experiment 3,
OCBA-MCTS achieves 15% better PCS, whereas in Experiment

algorithm (i.e., Player 1 has a better chance to take its optimal
action). In this case, space 4 becomes a clear optimum and
therefore Player 2’s UCT algorithm tends to exploit it more,
which leads to better performance.

The sampling distributions for OCBA-MCTS and UCT with
N =700 for both experiments are shown in Figs. 8 and 9.
In this game, since a relatively clear optimum is available,
OCBA-MCTS and UCT behaved differently compared to that
in the inventory control problem. As shown in Figs. 8(a) and
9(a), UCT spends most of the sampling budget exploiting this
action, whereas OCBA will still try to explore other promising
suboptimal actions (e.g., action 2, 6, and 8) and pay less attention
to inferior actions (e.g., 1, 3, and 5) due to its tendency to better
balance exploration and exploitation.

The PCS estimation for setup 2 is shown in Fig. 10, where
the budget ranges from 80 to 200. Since it is an easier setting
(Player 2 has a 50% chance of marking an optimal space even
if choosing randomly), the difference between OCBA-MCTS
and UCT-MCTS is not as significant as that in Experiments 3
and 4, but OCBA still consistently performs better than UCT,
especially when the budget is low. The sampling distribution for
Experiments 5 and 6 are shown in Figs. 11 and 12, respectively.
Similar to previous experiments, the OCBA-MCTS spent more
effort on those equally optimal actions compared to UCT-MCTS,

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2696

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

0.350 30
0.40
o 0.325 035 é 2,
8 0,300 =| Z
g 0.30 § 20%
ﬁ 0.275 025 & ?g
=1 =
% o250 00§ 1= 2
a -o- Q o
§ 0.225 std 015 |30 B
= # visits g g
ﬁ 0.200 \/{ 0.10 E 5
0.05
0175
. laos 1o
0 1 2 3 5 6 7 8
Actions
(a)
0.325 135
040
. 4130
o 0.300 0.35 g g
'§ 0.275 0.30 3 125 £
= '5
£ 0.250 0255 Jop B
3 E|ITE
[=1
éozzs -~ Q "'“E-ng
std 0.15 g
g o.2a0 # visits % 4110 g
il 010 3
0.175 2l
005
£.150
1 1 1 1 1 1 1 1 ulm o n
0 1 2 3 5 6 7 8
Actions
(b)
Fig. 12. Sampling distributions for Experiment 6, averaged over 5000

runs (actions 0, 2, 6, and 8 optimal). (a) UCT and (b) OCBA.

which, again, shows the unique property of OCBA-MCTS in
finding an optimal action instead of minimizing regret.

In summary, the proposed OCBA-MCTS outperforms UCT in
both experiments in finding the optimal action at the root. Since
the objective of the proposed OCBA tree policy is to maximize
PCS, it leads to different budget allocation and better PCS.

VI. CONCLUSION

In this article, we present a new OCBA tree policy for MCTS.
Unlike bandit-based tree policies (e.g., UCT), the new policy
maximizes PCS at the root node, and in doing so, balances the
exploration and exploitation tradeoff differently. Furthermore,
the new OCBA tree policy relaxes the assumption of known
bounded support on the reward distribution, and thus, makes
MCTS more generally applicable.

For future research, we intend to explore the use of a batch
sampling scheme in Algorithm 2, which allocates a batch of
A > 1 samples at each node. With batch sampling and updating,
we may exploit the power of parallel computing to more quickly
identify the optimal action. On the other hand, this sequential al-
gorithm could also benefit from a one-step look ahead policy, as
suggested in [32]. Furthermore, establishing that our algorithm is
E — d-correct and conducting time-complexity analysis are also
important topics for future research. Another important future
research direction is incorporating the uncertainty in sample
variance estimation, as it has been shown that ignoring the
estimation error could potentially lead to performance degrada-
tion [36]. Finally, it is worthwhile to investigate incorporating
other R&S (or BAI) approaches with MCTS.

Algorithm 7: One-stage OCBA.
Imput: Total sampling budget T, initial sample size my
Ontput: Index of optimal action &
Sample each of the k alternatives sy times;
Set counter I; +—ny ¥i=1,2,...,k;

!+ kny;
Calculate J; and 87, Vi=1,2,....k
while ! <=T deo

Compute new budget allocation (f1,5,...,54) by
solying eq. (15)-(17) with budget I+ 1;

Sample { = argmax; << (i — §);
Update J; (and &7 if sample variance is used);
L 41
[1+1;

end

retun b = argmax; icgJ; ;

APPENDIX
CONVERGENCE ANALYSIS

Proof of Proposition 1: To prove that our algorithm correctly
selects the optimal action as the sampling budget goes to infinity,
we first prove that at each stage, the PCS converges to 1. The
process of our algorithm at each single stage is OCBA adapted
from [19]. OCBA tries to identify the alternative with the highest
mean from a set of alternatives with means J; and known vari-
ances 07, i = 1,2, ..., k by efficiently allocating samples that
maximizes APCS. Here we present OCBA again in Algorithm
7 for convenience. The budget allocation process is similar to
(5) to (7). First define

T
JiZ:7' \,,-n
" ' m=1
b:= argmaxj,-
7

8(b, iy :=Jdp — J;, YVi=b

where /; is the number of samples for alternative /, J,-m is the
mth sample of J; for 1 <7<k, 1 <:. =/;. The new alloca-
tions (1, b, ..., I) with budget T >, /; can be obtained by
solving the set of equations

¢ 0;/5(b, i) N

1; ..
7j /86, Vi=j=b (15)
72
h=o — L (16)
i=1,i=p (99
D
=T (17)
i=1

where 0; is the standard deviation of the 7th reward distribution.
As in Remark 2, 0; is assumed to be known, but in practice can
be unknown and approximated by sample standard deviation

A,

m 2

i-, i
0;= 7,171 hea(dp =)

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Ll etal.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS

2697

Since I ",;1 l;=T,when T = o, atleastone ofthe actions
will be sampled infinitely many times, i.e., there exists an index
i, such that /; = o. Then there are two possible cases: / = b
and 7/ =b.

Casel:7=0b

According to (15)

a;/5(b, f) c
l;= 0750,) l;, Nj=i,Jj=h.
Since 07 and (b, /) are positive and finite for all 7, /; —
oo, Vj=h.
Therefore, by (16), /, = . Thus, /; » o for all /=
L2,...,k
Case 2: / = b According to (16)

> g

Ib = Cfb\
02 7 %

i=1,i=b (
Thus there exists an index / = b, such that /; = . By a similar
argument in Case 1, we can conclude that /; = « for all / =
L,2,...,k

Since /; = o, Vi, by applying the strong law of large num-
bers, we have

Ji-» E[Jiwp.lasT » o, Vi=1,2,..., k. (18)

With the convergence analysis from single-stage OCBA, The-
orem | can be proved by induction.

First observe that since N = o, each path is explored in-
finitely many times. Thus the number of samples in each stage
also goes to infinityas N = oo.

panded. If the current state node X is at stage H — 1 (i.e., it
will transit into a terminal node in the next transition), running
Algorithm 3 reduces to a single-stage problem, which is the

same as OCBA in Algorithm 7. Q(X, @) can be viewed as a set of
alternatives for @ € A. From Corollary 18, it is straightforward
that

Nlim C_)(x, a)= Q(x, a).
Therefore, since the reward function is bounded
lim V(x) = li Q X, a
NI V00 7 Jim A0

= max lim QX a)
acAx N -

= V*(x).

Now suppose that the statement is true for all child state nodes y
of a state X, i.e., V (y) = V*(y) and y could be achieved from
X. Then for X, the algorithm also reduces to OCBA. Thus from
Corollary 18 again

lim Q ,a) = 1i _x,a
WL A D= L AX D

= E[R(X, a)] + Ep (x a)[V *(¥)]
= Q(Xx, a)

for all child state-action pair (X, a). It follows that:
Jim V(x) » V*x).

0]

Proof of Proposition 2: We start with the single-stage OCBA,

which assumes that J; is also normally distributed. Define the
single-stage PCS

m

(b-J)=0

i=1,i=b

PCSsingle =P

where J; is the posterior distribution of J; given /; samples Vi =
1,2,..., k. Then, we first show that PCSgjpec = 1 as T — oo.

Similar to (4), PCSgipgle can be lower bounded by APCSg;pgle,
i.e., by the Bonferroni inequality

M
PCS =P

single

J,=J) =0

i=1,i=b

> -
=1- P J—-Ji=<0

i=1,i=b
= APCSsingle .

Thus, to prove that PCSgnge = 1, it suffices to prove
APCSgingle = 1, 1€,

P (Jy,—J)=<0 —0as T— oo.
i=1,i=b

Based on the normality assumption, the posterior distribution is
,-//) Thus, J - J,' ~ N(Jb -

..7,‘, O-g/lb i
+ o2/l). Therefore _ _
> D Jp — J;
o (——)
P (Jhp-Jj)=0 =
i=1,i=b i=1,i=b 0[2;/Ib -+ UIZ/I,'
(19)

where O is the cdf of the standard normal distribution.
Since /; = « forall/ =1,2,..., kand Jp is defined to be the
maximum of all J;, i.e., Jp — J; = 0 forall / = b, (19) becomes

Jo = Ji

P J-J)=<0= ——————
o= J) o021,

i=1,i=b i=1,i=b

as desired.

Since we assume Q(x, a) is normally distributed with known
variance, the posterior distribution of y(X, a) given observations
O(X, a), i.e., Q(x, a), is also a normal random variable. Then,
using the same analysis as that in proving PCSgjpge = 1, we
have

M
P (Jim é(x,é})—l\}im Qx,a) =0 =1

a€Ax,a=3ak

Vi=1,...,H, x€X, ac A

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

2698

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 6, JUNE 2022

Proof of Proposition 3: When the number of samples at node
X is large, we assume that N (X, a) satisfies (5) to (6).
From (5), we have

C N2
_ 0%, A)0x(a% a)
NEDT om0
V3, a=ak. (20)

In this way, we can express the budget allocation to any sub-
optimal action & as the product of the budget allocation to a
particular suboptimal actio» g and the factor

i OO
@ o(x, a)0x(a, 3)

From (6)

D (N(x 2)?)
N(x, @) =o(x, &)\

2
zeA, a=a; O (x, @)
Substituting N (X, &) from (20) yields
(re(3, a))?
N(x, &%) = N(x, a)o(x, 8%\ 2. 7
acAxa=a, O (x, &)
ie.,
I\l/x é*
N &)= ———: i (r(@a)?
O(X, 8%) zea.a=ay "o (x3)

Since PCS is lower bounded by APCS, and the posterior Q(X, @)
is normally distributed with

_ 2
Ax, a) ~ N(Qx, a), %’3)
then
PCS=APCS
=1 - P Qx,a}) < Qx, a)
ac€Ax,a=ak
L > (D((_)(xa) Q(xé))
acAx,a=ak GX(a &,)
>
a€Ax,a=ajk ox(a é)

where the second equality is because Q(x, E Q(x, a) is nor-
mally distributed with mean Q(X, @) — Q(x, &*) and variance

o(x, & D 0% (X, a)
ox(@ &) = Nx 2, N a)
1
N(x) o?(x, a Ot
o (7 a2
o(x, a)o?(x, a)\. ({:Z((ax"a;;_

8EAx,3=2;}

I: : :
Applying inequality o= L, &= T, cifor
positive numbers ¢;’s yields
oz(a &) = : o?(x, ak)+
= N(x, ay) P X
o(x, a%)o%(x, a) x(@ a)
acAy a=ay, 0% 3)
Since APCS is darreacing in 0% (8, 8%), we have
PCS=1-—
a€Ax,a=aj
[A
o \ ox(8,a) N(x, a%))
t r (3a)
o(x at) +o(x, é*)o X8 34 z=2
€ x x
o(x,a)

as desired.

ACKNOWLEDGMENT

The views, opinions, and/or findings expressed are those of
the authors, and should not be interpreted as representing the
official views or policies of the Department of Defense or the
U.S. Government.

REFERENCES

[11 Y. Li, M. C. Fu, and J. Xu, “Monte Carlo tree search with optimal
computing budget allocation,” in Proc. 58th IEEE Conf. Decis. Control,
vol. 3, Dec. 2019, pp. 6332-6337.

[2] D. P. Bertsekas, Dynamic Programming and Optimal Control. Belmont,
MA, USA: Athena Scientific, 1995.

[3] H.S.Chang, M. C. Fu, J. Hu, and S. I. Marcus, “An adaptive sampling al-
gorithm for solving Markov decision processes,” Operations Res., vol. 53,
no. 1, pp. 126-139, 2005.

[4] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Mach. Learn., vol. 47, no. 2/3, pp. 235-256,
2002.

[5] L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo planning,” in
Proc. 17th Eur. Conf. Mach. Learn., pp. 282-293, 2006.

[6] R. Coulom, “Efficient selectivity and backup operators in Monte-Carlo

tree search,” in Proc. Int. Conf. Comput. Games, H. J. van den Herik, P.

Ciancarini, and H. H. L. M. J. Donkers, Eds., 2007, pp. 72—83.

P. Hingston and M. Masek, “Experiments with Monte Carlo Othello,” in

Proc. IEEE Congr. Evol. Comput., Sep. 2007, pp. 4059-4064.

D. Silver et al., “Mastering the game of Go with deep neural networks and

tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

P.-A. Coquelin and R. Munos, “Bandit algorithms for tree search,” 2007,

arXiv:cs/0703062.

M. P.D. Schadd, “Selective search in games of different complexity,” Ph.D.

thesis, department of knowledge engineering, Universiteit Maastricht,

Maastricht, The Netherlands, 2011.

K. Teraoka, K. Hatano, and E. Takimoto, “Efficient sampling method for

Monte Carlo tree search problem,” IEICE Trans. Inf. Syst., vol. 97, no. 3,

pp. 392-398,2014.

E. Kaufmann and W. M. Koolen, “Monte-Carlo tree search by best arm

identification,” in Proc. Adv. Neural Inf. Process. Syst., 1. Guyon, U. V.

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.

Garnett, Eds., , 2017, pp. 4897-4906.

J.-B. Grill, M. Valko, and R. Munos, “Blazing the trails before beating the

path: sample-efficient Monte-Carlo planning,” in Proc. Adv. Neural Inf-

Process. Syst., D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R.

Garnett, Eds., 2016, pp. 4680—4688.

T. L. Lai and H. Robbins, “Asymptotically efficient adaptive allocation

rules,” Adv. Appl. Math., vol. 6, pp. 4-22, Mar. 1985.

[7

—

(8

[l

[9

—

[10]

(1]

[12]

[13]

[14]

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

Ll etal.: OPTIMAL COMPUTING BUDGET ALLOCATION TREE POLICY FOR MCTS

2699

[15] M. Soare, A. Lazaric, and R. Munos, “Best-arm identification in linear
bandits,” in Proc. 27th Int. Conf. Neural Inf. Process. Syst., Cambridge,
MA, USA, 2014, pp. 828-836.

C. Tao, S. Blanco, and Y. Zhou, “Best arm identification in linear bandits
with linear dimension dependency,” in Proc. 35th Int. Conf. Mach. Learn.,
vol. 80, J. Dy and A. Krause, Eds., 10—15 Jul. 2018, pp. 4877-4886.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari, “X-armed bandits,” J.
Mach. Learn. Res., vol. 12, pp. 1655-1695, Apr. 2011.

S. Bubeck and C. Nicolo, Regret Analysis of Stochastic and Nonstochastic
Multi-armed Bandit Problems. Boston, MA, USA: Now, 2012.

C.-H. Chen, J. Lin, E. Yiicesan, and S. E. Chick, “Simulation budget
allocation for further enhancing the efficiency of ordinal optimization,”
Discrete Event Dyn. Syst., vol. 10, no. 3, pp. 251-270, 2000.

C.-H. Chenand L. H. Lee, Stochastic Simulation Optimization: An Optimal
Computing Budget Allocation. 1st ed., River Edge, NJ, USA: World
Scientific, 2010.

C.-H. Chen, “An effective approach to smartly allocate computing budget
for discrete event simulation,” in Proc. 34th IEEE Conf. Decis. Control,
vol. 3, pp. 2598-2603 vol.3, Dec. 1995.

L. H. Lee, E. P. Chew, S. Teng, and D. Goldsman, “Optimal computing
budget allocation for multi-objective simulation models,” in Proc. Winter
Simul. Conf.,vol. 1, Dec., p. 594, 2004.

S. Zhang, L. H. Lee, E. P. Chew, J. Xu, and C.-H. Chen, “A simula-
tion budget allocation procedure for enhancing the efficiency of optimal
subset selection,” IEEE Trans. Autom. Control, vol. 61, no. 1, pp. 62-75,
Jan. 2016.

H. Xiao, F. Gao, and L. H. Lee, “Optimal computing budget allocation
for complete ranking with input uncertainty,” IISE Trans., vol. 52, no. 5,
pp- 489-499, 2020.

A. E. Thanos, M. Bastani, N. Celik, and C. Chen, “Dynamic data driven
adaptive simulation framework for automated control in microgrids,” IEEE
Trans. Smart Grid, vol. 8, no. 1, pp. 209-218, Jan. 2017.

L. Y. Hsieh, E. Huang, and C. Chen, “Equipment utilization enhancement
in photolithography area through a dynamic system control using multi-
fidelity simulation optimization with big data technique,” /EEE Trans.
Semicond. Manuf., vol. 30, no. 2, pp. 166-175, May 2017.

A. Shleyfman, A. Komenda, and C. Domshlak, “On interruptible pure
exploration in multi-armed bandits,” in Proc. 29th AAAI Conf. Artific.
Intell., 2015. pp. 3592-3598.

S. Chen, T. Lin, I. King, M. R. Lyu, and W. Chen, “Combinatorial pure
exploration of multi-armed bandits,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger, Eds., 2014, pp. 379-387.

S. Bubeck, R. Munos, and G. Stoltz, “Pure exploration in multi-armed
bandits problems,” in Proc. Algorithmic Learn. Theory, R. Gavalda,
G. Lugosi, T. Zeugmann, and S. Zilles, Eds., Berlin, Germany, 2009,
pp. 23-37.

M. H. DeGroot, Optimal Statistical Decisions. vol. 82. Hoboken, NJ, USA:
Wiley, 2005.

C. B. Browne et al., “A survey of Monte Carlo tree search methods,” [EEE
Trans. Comput. Intell. Al in Games, vol. 4, no. 1, pp. 1-43, Mar. 2012.

Y. Peng, E. K. P. Chong, C.-H. Chen, and M. C. Fu, “Ranking and
selection as stochastic control,” IEEE Trans. Autom. Control, vol. 63, no. 8,
pp- 2359-2373, Aug. 2018.

C.-H. Chen, D. He, and M. Fu, “Efficient dynamic simulation allocation
in ordinal optimization,” [EEE Trans. Autom. Control, vol. 51, no. 12, pp.
2005-2009, Dec. 2006.

D. R. Jiang, L. Al-Kanj, and W. B. Powell, “Monte Carlo tree search with
sampled information relaxation dual bounds,” Operations Res., vol. 68,
no. 6, pp. 1678-1697, 2020.

[16]

[17]
[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]

[32]

[33]

[34]

[35] Y. Li, “Monte Carlo tree search with optimal computing budget alloca-
tion.” 2021, [Online]. Available: https://github.com/lyc192130/MCTS-
with-OCBA

[36] L O. Ryzhov, “On the convergence rates of expected improvement meth-
ods,” Operations Res., vol. 64, no. 6, pp. 1515-1528,2016.

Yunchuan Li received the bachelor’s degree in automation from Univer-
sity of Electronic Science and Technology of China (UESTC), Chengdu,
China, in 2015, and the Ph.D. degree in electrical and computer en-
gineering from the University of Maryland, College Park, MD, USA, in
2020.

His research interests include optimization and control with applica-
tions to operations research problems.

Michael C. Fu (Fellow, IEEE) received degrees in mathematics and
electrical engineering and computer science from Massachusetts Insti-
tute of Technology, Cambridge, MA, USA, in 1985, and the Ph.D. degree
in applied math from Harvard University, Cambridge, MA, USA, in 1989.

Since 1989, he has been with the University of Maryland, currently
holding the Smith Chair of Management Science. He also served as
the Operations Research Program Director with the National Science
Foundation. His research interests include simulation optimization and
stochastic gradient estimation.

Dr. Fu is a Fellow of the Institute for Operations Research and the
Management Sciences (INFORMS).

Jie Xu (Senior Member, IEEE) received the B.S. degree in electrical
engineering from Nanjing University, Nanjing, China, in 1999, the M.E.
degree in electrical engineering from Shanghai Jiaotong University,
Shanghai, China, in 2002, the M.S. degree in computer science from
The State University of New York, Buffalo, NY, USA, in 2004, and the
Ph.D. degree in industrial engineering and management sciences from
Northwestern University, Evanston, IL, USA, in 2009.

He is currently an Associate Professor of Systems Engineering and
Operations Research with George Mason University, Fairfax, VA, USA.
His research interests are data analytics, stochastic simulation and
optimization, with applications in cloud computing, manufacturing, and
power systems.

Authorized licensed use limited to: George Mason University. Downloaded on June 02,2022 at 18:15:38 UTC from IEEE Xplore. Restrictions apply.

https://github.com/lyc192130/MCTS-with-OCBA
https://github.com/lyc192130/MCTS-with-OCBA
https://github.com/lyc192130/MCTS-with-OCBA

