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We consider the problem of optimizing the performance of a stochastic system, e.g., a discrete-
event system, where the system performance is evaluated using stochastic simulations. Our objective
is to allocate simulation budget to maximize the probability of correct selection (PCS) of the best
design, where both system performance and gradient information can be obtained simultaneously via
simulation. The objective function is assumed to be quadratic, or can be approximated by a quadratic
regression model. The main contribution of our work is to utilize gradient information to enhance
the efficiency of traditional Optimal Computing Budget Allocation (OCBA). We develop near-optimal
rules that determine design points where simulations should be run and the number of runs allocated
to each point. Our numerical experiments demonstrate that the proposed approach performs much
better than other existing ranking and selection methods, even in cases where derivative information
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is very noisy and its simulation cost is high.
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1. Introduction

Simulation-based optimization, or simply simulation
optimization, is a technique widely used to optimize the perfor-
mance of stochastic systems, e.g., discrete event systems. Com-
pared to analytical approaches, simulation optimization directly
uses simulations to estimate system performance and search for
the best design, making it a widely applicable approach for many
applications in automation science and engineering (Brantley,
Lee, Chen, & Xu, 2014; Peng, Xu, Lee, Hu, & Chen, 2018; Schwartz,
Wang, & Rivera, 2006; Teng, Lee, & Chew, 2007; Zhang, Song,
Dai, & Xu, 2020). Because simulations can be computationally
expensive and simulation output noises can be significant, it is
critical to optimally allocate simulation budget among multiple
designs such that the best design can be selected with the highest
probability possible given a limited computing budget. Formally,
the problem we consider in this paper is to select the best design
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among a finite number of choices, where the performance of
each design must be estimated with some uncertainty through
stochastic simulation sampling, using a given finite simulation
budget. This problem setting has been an active area of research
in simulation and automation literature (Peng, Chong, Chen, & Fu,
2018; Xiao, Chen, & Lee, 2019; Xiao, Gao, & Lee, 2017), with a
comprehensive review presented in Xu et al. (2016). Among many
approaches developed for this problem, the Optimal Computing
Budget Allocation (OCBA) approach (Chen, Gao, Chen, & Shi, 2013;
Chen, He, Fu, & Lee, 2008; Chen, Lin, Yicesan, & Chick, 2000;
Gao, Chen, & Shi, 2017; Gao, Xiao, Zhou, & Chen, 2017; Lee et al.,
2010; Lee, Pujowidianto, Li, Chen, & Yap, 2012; Xiao, Gao, &
Lee, 2019; Xiao, Lee, & Ng, 2013) is one of the most efficient
methods, particularly in the case where the simulation budget is
limited and/or the number of alternatives is large (Branke, Chick,
& Schmidt, 2007; Pasupathy, Hunter, Pujowidianto, Lee, & Chen,
2014). According to Chen and Ryzhov (2019) and Ryzhov (2016),
the expected improvement (El), which is another class of efficient
simulation budget allocation approaches, has the sampling ratios
among non-best designs converge to OCBA’s sampling ratios for
all non-best designs. However, El would let the sampling ratio
for the best design approach 1 asymptotically. In contrast, OCBA’s
asymptotic allocation to the best design is bounded away from 1.

In the framework of OCBA, the problem is studied from the
perspective of allocating a fixed number of simulation replica-
tions to the designs that are critical in the process of identifying
the best design and thus to maximize the probability of correct
selection (PCS). However, previous OCBA works all assume that
only the performance information of designs is available.
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In many simulation settings, not only can the performance of
each design be estimated, but its sensitivity information can also
be obtained, often at the fraction of the simulation budget needed
for estimating the performance, for example, by using the tech-
nique of perturbation analysis (PA) (Fu & Hu, 1997; Glasserman,
1991; Ho & Cao, 1991) or the likelihood ratio (LR) method (Glynn,
1990). Motivated by this fact, we consider the case where the
derivative (gradient) information is also available. In other words,
we are interested in the following question: how to optimally
allocate a fixed amount of simulation budget if the performance
of each design and its corresponding sensitivity (derivative) can
be estimated.

In this paper, we use a setting similar to that of Brantley, Lee,
Chen, and Chen (2013), Brantley et al. (2014), where the under-
lying response surface is approximately quadratic or piecewise
quadratic. Brantley et al. (2013) proposed an Optimal Simulation
Design (OSD) approach that incorporates this quadratic response
surface information in simulation budget allocation. Unlike tra-
ditional R&S methods, this regression based approach requires
simulation of only a subset of the alternative design locations and
so the simulation efficiency can be dramatically enhanced. For
example, the average system time for a customer in a queueing
system may be estimated by simulation output data. The opti-
mization problem then is to determine a service rate within an
interval of feasible values that balances customer system time
and the cost of servers. If the cost of servers is a linear function
of service rates, e.g., determined by how many servers to deploy,
and also the queueing system is an M/M/c system, the objective
function is then approximately quadratic. So OSD would only
require the simulation of a small set of designs and dramatically
increase computational efficiency over traditional R&S methods
that may need to experimentwith many designs. When perform-
ing queueing simulations, we may simultaneously use PA or LR
to estimate the gradient of average system time with respect
to service rate lying in a bounded interval. Our work shows

that sensitivity information can further decrease the number

of the design locations requiring simulation and thus increase
computation efficiency.

Gradient information has been successfully used to improve
the efficiency of parameter estimation in simulation metamod-
els, including linear regression (Fu & Qu, 2014) and stochastic
kriging (Chen, Ankenman, & Nelson, 2013; Qu & Fu, 2014). Nev-
ertheless, as to the best of our knowledge, there has not been
any work that studies the use of gradient information to help
improve the efficiency of R&S methods. In this paper, we make
such an attempt. Specifically, to utilize the simulation budget in
a most efficient way pursuing the maximization of PCS, we want
to determine (i) which designs should be selected for simulation
and (ii) the number of simulation runs for those selected designs.

This paper develops a novel Optimal Computing Budget Al-
location with Gradient information (OCBAG) method to address
these issues. Numerical testing demonstrates that our new
method can enhance simulation efficiency, compared with ex-
isting efficient R&S methods such as OCBA and OSD. By making
full use of gradient information, OCBAG method offers dramatic
further improvements. For example, in comparison with OSD
method, our novel OCBAG method can potentially save half of the
total simulation budget while maintaining the same performance
efficiency. The improvement made by OCBAG method is still
quite significant even when gradient information is noisy and its
simulation cost is high.

The rest of this article is organized as follows. In Section 2,
we introduce the simulation optimization problem setting and
Bayesian framework. Section 3 provides the development of
OCBAG method. Numerical experiments comparing the results
using the new OCBAG method and OSD method are provided
in Section 4. Finally,

Section 6 provides the conclusions and 2
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2. Problem setting
2.1. Problem statement

We consider the problem with the principal goal of selecting
the best design among k designs x;, i € | = {1, 2, ..., k}, where
X; is a scalar. For notational simplicity, we assume that x; is the
smallest and x, is the largest, and let X = {x € R|x; < x < x,}.
Without loss of generality, we consider the minimization problem
shown below where the best design is the one with the smallest
expected performance measure

min y (x) = E[f(x)]. (1)

In this paper, we study the case where the performance measure
is quadratic or approximately quadratic in X, i.e.,

y(xi) = Bo + B1x; + BzX;z- (2)

We denote the unknown model parameters by B = [Bo, B1, B2l

We consider the case where y(x;) can only be estimated via sim-

ulation with homogeneous noise. In addition, the corresponding
gradient information, denoted as g(x;), can also be estimated at
the same time (possibly based on the same simulation) with
homogeneous noise. We assume that the simulation noises of

f(x;) and g(x;), denoted by ¢&; and El are independent normal

random variables, and they are also independent of each other

across replications. Therefore, for replicationj at x;, we have

f(x;) = y(x;) + &, where & ~ N P, 02 y
g(Xi) = B1 + 2B2X[ + Ej’ where 8]. ~N O, 02g .
The parameters 8 are unknown, so is y(x;). However, we can find

an estimate for y(x;), denoted as y(x;), by making full use of both
performance and gradient information based on a generalized

]
:80 1 2
least square estimate. Let 8 [ be the least square
= ,B.B
estimates for the corresponding parameters in (2), then we have
y(x) = Bo + Bix; + Bzx,Z. (3)

In order to obtain ﬁ suppose we run simulations at a number
of x;’s (no simulation at other design points), which we call the
support points and denote by {x; : /i € I,}, where I, C | is the set
of the indices of the support points and |/,| = n < k.

For ease of exposition, we use matrix notation for linear re-
gression. For the support points {x; : i € I,}, we define F as the
2n-dimensional vector containing f(x;) and g(x;), X as the 2n X 3
matrix consisting of rows [1, x;, x¥’] and [0, 1, 2x;], and V as the
2nX2n covariance matrix of the simulation noises of performance
and gradient information:

C C( ) )
F = (f (% ))ie/n ) _ 1, %, X12 i€ln ,
(9(xi))ic, 0, 1, 2x;)ey,
r 2 ... 0 O ... O )
0 g2 0
V= n n A2 n
q
0 ... 0 0 .. 02

Following standard least square regression analysis, we obtain the
generalized least squares estimate for B8 as

B= v xTvt, )
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suggestions for future work using the concepts introduced in this Since the Gauss—Markov conditions are satisfied, the above esti-
article. mates for (B are unbiased and have the minimum variance among
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all unbiased linear estimators (see Draper & Smith, 1998; Fu & Qu,
2014).

We aim to select the design associated with the smallest mean
performance measure from the k designs using a total computing
budget of T simulation samples (replications). Given the general-
ized least squares estimates for the parameters, we can use (3) to
estimate the expected performance measure at each design point.
We designate the design pointwith the smallest estimated mean
performance measure as X, i.€., y(X,) = mini y(x;). Given the
uncertainty of the estimated parameters, x, is a random variable
that is dependent upon the size of the computing budget and
the number of simulation replications allocated to each design
point. We define correct selection asthe event where x, is indeed
the best design and N; as the number of simulation replications
conducted at x; (x; is a support point if N; > 0). Since simulation
is expensive and the computing budget is limited, we seek to de-
velop an allocation policy in order to maximize the probability of
correctly selecting the best design (PCS). This Optimal Computing
Budget Allocation with Gradient information (OCBAG) problem is
described as follows:

max PCS =Ply(xs) <y(xi), Yi=1,2, ..., k} (5)

s.t. N1+N2+"'+Nk:T.

In the constraint in the above problem we have implicitly as-
sumed that the cost of each simulation run at every design point
is one unit.

2.2. A Bayesian regression framework

To solve problem (5), we adopt a Bayesian regression frame-
work as described in Gelman et al. (2013). Using a standard
non-informative prior distribution, one would obtain the same
estimates of B asin classical regression analysis briefly explained
previously. The key difference is with a Bayesian perspective, it
allows us to calculate PCS using the posterior distribution of 8. In
the following, we use B and y(x,) to denote the random variables
whose probability distributions are the posterior distribution of
B and y(x;) conditional on F, respectively. PCS in (5) under the
Bayesian regression framework is defined as Chen and Lee (2011),
Chen, Yicesan, Dai, and Chen (2009):

PCS=P{5/(X,,)sj/(x,-),v/'=1,2,...,k . (6)

Using a non-informative prior distribution and assuming that the
conditional distribution of the simulation output vector F is a
multi-variate normal distribution with mean Xf8 and a covariance
matrix V, DeGroot (2005) shows that the posterior distribution of
B is then (given by
i o))

BIF~N B x'v'x . 7)

Since y(x;) is a linear combination of B elements, the posterior
distribution of y(x;) is normal:

¥(x;) ~ N X;B, X,T<XTV*1X>*1><,-), (8)

where X = [1, x;, x*].

Similar to the approach used in Brantley et al. (2013), we are
also interested in how the PCS given by (6) changes if we conduct
additional simulation runs so that we can make allocations so
as to maximize PCS. See Brantley et al. (2013) for a detailed
discussion of the predictive posterior distributions.

2.3. Simplification
In order to simplify problem (5), we aim to reduce the number

of design locations at which we need to run simulation without
resulting in any information loss. De la Garza (1954) established
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that for a polynomial of degree m and a discrete domain with
more than m + 1 support points, the information in XTV~'X
(without any gradient information) obtained from more than
m + 1 support points will always be attained by using only
m + 1 of the support points. That is to say, we need just three
different support points because of our quadratic model if we

only use the performance information. In our problem setting,
we obtain performance and gradient information simultaneously
after running simulation for each design location. Because gradi-
ent information is equivalent to performance information in the
sense of determining the unknown parameters 8, two support

points provide four observations in the design matrix X (X; =
[1, x;, 2] and X; = [0, 1, 2x;]), which is enough to help solve our
problem. From now on, we refer to the support points as {x51, xsZ}

where Xxs; < Xs,.

Furthermore, given the estimated x,, the assumption that our
underlying function is quadratic allows us to reduce the number
of required comparisons in our PCS calculation in (6) from k — 1
to 2, i.e.,, we have (see Brantley et al., 2013)

PCS =P y(x) <y(x),Vi=12...,k
P ylxa) 2y(x) Nylxz) =2y(x) , (9)

where the identities of x4 and xz depend on whether x;, is an
interior point or a boundary point, as described in the following
three cases:

. Case 1 (Interior Case): ¥/'=1,k;iA=b—1,Z=b+1,
+ Case 2 (Left Boundary Case):b =1; A=2; Z =Kk,
+ Case 3 (Right Boundary Case):b=k;A=1;Z=k— 1.

Let N5, and Ns, be the number of simulation runs allocated at

= ™ and a,, = %2. Then (5)

Xs; and xs,, respectively, and as, T

can be restated as;

max PCS=P y(xa) Zy(x) N y(xz) = j/(xb)}

1
st Oy +as, = 1. (10)

We can estimate covariance matrix V from the samples generated
at the support points and calculate y(x;) using (8). In the next
section, we present an effective way to approximate PCS and
derive approximate solutions to the optimal allocations.

3. Approximate solutions

In the previous section, we show that regardless how the
simulation budget is allocated to the support points, PCS can be
calculated based on the comparisons of x, to its two adjacent
design points, hence, we just need two support points. Now we
are ready to derive our OCBAG allocation policy. In Section 3.1, we
derive alower bound of PCS as an approximation for PCS. We then
develop an efficient approximation for the optimal allocation of
the total simulation budget in Section 3.2. In Section 3.3, we de-
termine the optimal locations of the two support points. Finally,
in Section 3.4, we discuss the algorithmic implementation of the
results from Sections 3.1-3.3.

3.1. A lower bound for PCS

First, we have

PCS = P{y (xa) =y (xs) Ny (xz) = y (%)}
1 =Py (xa) < y(x) Y)?(Xz < y(x)} }
1T=P y(x) <y(x) —P y(xz) <y(x)
+ Py (xa) <y (%) Ny (xz) < y(x)}-
Since the underlying function is quadratic, the last term in the
above equation is simply the probability that x, is the “worst” de-

sign with the largest expected performance measure. This prob-
ability is typically very small so that we can establish an efficient
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lower bound, APCS defined as follows, which can be used as an
approximation for PCS:

PCS = APCS } { }
=1-P y(xa) y(x) —P y(xz) <y(x) .
Let
d(x) =y (x) — (%) :Bz(X? _Xi)+B1 (Xi — Xp) -
Because d(x,) is a linear combination of the elfments o] B d(x,

is also normally distributed, i.e., d(x,) N d(xi), (i , where

d(Xi) (: y(xi) = V(%) a;‘Cé )
G=0,%—x, & —x XVIX
( )
0, X — Xp, X — 32 | (1)
Therefor, we have
{ ! { . }
P y(x)<y(x) =P —d(x)=
| ] [ C. Ol
_ A R I
IO ﬁCi
® 1
=~ R (12)
dx)/ G 2T

where r = (V + d(x;))/ ;. APCS can be calculated based on (12)
with i being replaced by A and Z.

Hereafter, we will use APCS to approximate PCS.In other
words, we replace PCS with APCS in (10) and consider instead
the following optimization problem:

max APCS
st ag, +ag, =1 " (13)
3.2. The optimal allocation policy

In this subsection, we solve (13). As shown in Appendix B, {;
can be simplified as:

151 D:Z',sz (x; — ) Xs; T Xs, — X — Xb)
G—T[a -t ¢ Y, L, (14)
s1 s2 Kl x4 — X5, + 4K]
where
02, = (2Xs, = Xi = Xo)* (Xi = X)? ’
K(xs, — %, P [(Xs; — X5, )2 + 4K]
D:?,sz _ (2xs, — x; — Xb)z(xi - Xb)2 )
K(xs, = X, P [(xs, — X5, 2 + 4K]
K = o0 2.

9
(14) shows that {; and thus APCS are dependent on T and the
allocations of the two support points. The following theorem
provides an optimal allocation policy for (13) for any given two
support points.

Theorem 1. For any given two support points {xS1 ) Xs, }, the optimal
solution to (1,3) is given by

v

Ts,

_ A0 , - _

where A 5. ]

d(xa) d(xa) DA,j
L AN A

C. ). i es) D

X,
+¢ ‘V% ({;3/221, J = 81,82,

and ¢(r) = - - e 2,
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Instead of using (15), in what follows we propose an ap-
proximate but much simpler way to compute a;, and as,. We
note

APCS

1 =P ¥(xa) <J/(Xb) —-P
>1-—2max{P y(xa) <y(x)
>1-=2P y(xu) <y (%)

where {C >}

M = argmax ¢ i%i

i=A,Z i

t (xz) < Y(Xb)}
P y(xz) <y(x)"}

= argmin Wﬁ_

i=A,Z

(16)

In fact, x4 and xz are usually very close to each other since they
are both{ adjacent to Xy Therefore, the gap between APCSand
1 — 2P y(xy) <y(x) is relatively small, especiaglly when T
is large. We propose to use 1 — 2P y(xy) < y(x») to replace
APCS. Wlth slight abuge of notation, hereafter, we set APCS=
1=2P y(xu) <y(x) -

With modified APCS, we can re-solve (13) to obtain

NPT
(). M)0,64
, 2 = , u)*”?
T o) T
ﬁ ) 4 DMs1 d(ZM o DM sp
2¢ v (Cu )3/2 + 2¢ T (Cu )3/2
D,
‘DM,s1‘ + |DM,32‘
2Xs, — Xy — X
— | So M bl , (1 7)
12xs, — Xm = Xp| + 12x5, — Xy — X
2Xs, — Xy — X
asz _ | $1 M b| (1 8)

[2x5, — X — Xp| + |2x5, — Xy — Xp|

The new allocation policy is much easier to compute. Our nu-
merical results in Section 4 demonstrate that it works quite
well.

3.3. Optimal location of support points

Given the simulation budget allocation to the two support
points {x51, xsZ} derived in the previous subsection, we now try
to determine the optimal location for {x51, x32} among all possi-
ble design points. In our derivation, we assume x5, and x;, are
continuous variables in [x1, xx]. Once we obtain the values of Xs,
and x,,, if they do not equal to any of given design points, we can
simply use the design points closest to them.

According to (12), in order to maximize APCS, it is sufficient to
maximize g\g%)_ Given the unbiased properties of our generalized
least squaresMparameter estimators, there would not be large
changes in d(x, ) as we take additional simulation runs. Therefore,
we focus on selecting the best two support points to minimize
the variance of d(xy ), (i) In Appendix B, we show that with the
simulation budget being allocated to xs, and xs, according to (17)
and (18), ¢y, is minimized with the following solutions for Xs, and

Xs,:

{xs
[ v }
Pl N
+xp +Xp )2
X1, Xsz + XMZX - X +4K
Xk—X1
{X1:Xk}
2K < XM tXp X1 txg < _2K . (19)
I { xk x1\/ 2 2 - xkfx}’
( )2
XM T Xp Xy +Xp
i 5 = X — T + 4K, Xk 5
5 if XM+Xp _ x1+Xxk > 2K .
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2n 2 2 Xk—X1
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(19) implies that when the point (xy + x,)/2, which can be
approximately regarded as the optimal solution to the quadratic
objective function over [xq, x,], is in the middle part of the inter-
val, we select the two extreme points x; and x, as support points.
When the point (x), + x,)/2 is very close to an extreme point, we
select the nearest extreme point as one of the two support points
and the other one located such that it is a little fartherthan the
first one from (xy + x,)/2.

To shed more light on our results, we compare them with the
results in Brantley et al. (2013) where gradient information is not
considered. OSD method requires three support points instead of
two in OCBAG because OSD does not use gradient information.
The allocation rolicy of OSDis shown as follows:

\DM,,-|
a=—F—+—++—+ i=tsk (20)
|DM,1l T M M.k
b I+Ip |
where
D _(xs = xm) (xk — xm) — (xs — Xp) (Xk — Xs)
M1 — 3
(x1 = xs) (x1 = Xi)
D, . — (x1 = xm) (% — Xm) = (x1 — Xp) (X — Xv)
M,s — ’
° (Xs - X1) (Xs - Xk)
(X1 = Xm) (Xs — Xm) — (X1 — Xp) (Xs — %)
DM,k =

(xk —x14) (xk — Xxs)

In OSD method, two extreme points {x;, x,} are always chosen
as support points. When (xy + x,)/2 is in the middle half of the
interval, the third support point (x;) is located such that it has
the same distance from (xy + x,)/2 as the nearest extreme point
is from (xy + xp)/2. This makes the design symmetric around
(xm + Xxp)72. When (xy + xp)/2 is in the outer half of the interval,
the third support point (x;) is located at the center of the interval.
Specifically, the location of x, is given as follows:

s 3x1 +Hxk XM +Xxp X9 +Xg .
‘l XM +b—1, |ffﬁ < =5
= se XXy Xy X X1 +3xy .
Xs XM +b—ks if 7k < A < Sk (21)
X(k=1)/25 otherwise.

Since we use additional gradient information while OSD method
does not, there are two critical factors which may affect the
performance of these two methods. The first is the ratio of perfor-
mance and gradient noise variances K = 02/05, and the second
is the computational cost of obtaining gradient information. We
denote K as the relative cost of obtaining gradient information
with respect to the cost of obtaining performance information.
We should point out that the value of Kk does not affect the
allocation policy although in our derivation process we have
implicitly assumed that k = 0. For general K, we can simply
replace the total simulation budget T with &Kand all our results
still hold.

If K = crz/og2 is very small, which means that the variance of
the gradient noise is much bigger than that of the performance
noise, our results are the same as those in Brantley et al. (2013)
because gradient information is not helpful due to its large noise.
In this case, the first support point is located at the nearest
extreme point and the second one is such that it is the same
distance from (xy + x,)/2 as the nearest extreme point is from
(xy + x,)72. On the other hand, if K is large, then our results
show that we should select the two extreme points asthe support
points. In fact, if we can only obtain gradient information from
simulation, the underlying function becomes a linear function.
It is obvious then the two support points should be as far as
possible to minimize the variance of the estimated parameters
(B4, B2). For a moderate K, i.e. the variances of the performance
and gradient estimates are comparable, our method can optimally

7
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3.4. OCBAG algorithm
The following is the algorithm in which we implement the

results in the previous subsections and will be used for the
numerical experiments in Section 4.

Algorithm 1 (OCBAG)

INPUT: k (the number of design points), T (the simulation
budget), x; (i = 1, ..., k, the design points), ny (the number of
initial simulation replications for each support point), §; (the
number of simulation replications allocated to each iteration j);

INITIALIZE: j — O;

Take the two extreme points as the initial support points.
Perform no simulation replications for each support point (set
N10 = N,? = ng) to get the performance and gradientinformation.

LOOP: WHILE ZL N; < T DO

UPDATE:

Estimate the mean, variance, and gradient at each x ;

1: Estimate a quadratic regression model using the
performance and gradient information from all prior
simulation runs;

2: Estimate the mean and variance each Xx; using:

Yy (xi) = Bo + Br1xi + B2x5.

3. Determine the observed best design x, = argmin; y (x;).

4: Based upon the location of x,, determine x4, xz, and xy,
based on the three casesand (16).

5. Determine support points x;, and xs, based on (19).

ALLOCATE: Increase the computing budget by 6.1 and

calculate its allocation aj:” and aﬁ;r1 according to (17) and (18).
SIMULATE: Perform 6,1aZ," and 6,,1aZ" simulations (round to
integers as needed) for support points xs, and xs,. Update Ng, and
N, .
END OF LOOP

4. Numerical experiments

In this section, we compare our OCBAG method with the Op-
timal Simulation Design (OSD) method of Brantley et al. (2013).
When the underlying function is quadratic or approximately
quadratic, Brantley et al. (2013) show that OSD method performs
much better than other traditional allocation procedures, includ-
ing Equal-Allocation (EA), Equal-Allocation and Response Surface
combination method (EA-RS), traditional OCBA method (Branke
et al, 2007; Chen et al.,, 2000), D-optimality design (Atkinson,
Donev, & Tobias, 2007; Liski, Mandal, Shah, & Sinha, 2002).

We conduct experimentswith K = 0.5, 1, and 2. Regard-

ngrifdg SemsHiaNgang gtaaleRPIRIBIAG MERCIENt information,
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we consider two scenarios: K = 0, 1. These two scenarios are
commonly seen in simulation. For example, when the technique
of infinitesimal perturbation analysis (IPA) can be used to obtain
gradient information, we usually have very small K, and in the
case when the finite differenceis used for gradientinformation
we have K = 1.

We use the same four test problems in Brantley et al. (2013) to
compare OCBAG and OSD. In the first experiment, we include the
results from the traditional OCBA method as well for comparison.
Since as we should see that both OCBAG and OSD perform much
better than OCBA,we focus on the comparison between OCBAG
and OSD for the other three experiments. We conduct the first
experimentwith T up to 1000, the second experimentwith T up
to 45,000, and the last two experiments with T up to 10,000. We
repeat 10,000 times for each instance and then calculate the PCS
obtained for each method out of these 10,000 independent macro
replications.

Automatica 134 (2021) 109927
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Fig. 1. Experiment 1: K =0 and K = 0.5, 1, 2.
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Fig. 2. Experiment 1: K =1 and K = 0.5, 1, 2.

4.1. Experiment 1: quadratic function with randomly generated op-
timal solution, 11 design points

The test function and its gradient are given below:
f(x) = (x,—a° + NO, 1),
1
g (x;) = 2x; — 2a + N(0, R)’

We use a design space consisting of 11 evenly spaced design
points from —1to 1,i.e. x; € {—1, —0.8, ... 1}. In order to test the
methods against a diverse set of problems, the stationary point
for the underlying quadratic equation was randomly generated
from auniformly distributed random variable a over interval (—1,
1). The optimal solution is then the design point closest to the
generated a. For OSD method, we set N9 = N° .. , = NJ = 2
and allocate 14 additional runs for each iteration, and for OCBAG
method, we set ny to 2 and allocate 14 runs for each iteration.
For this experiment, we include the results from the traditional
OCBA as well.

The results are illustrated in Figs. 1 and 2, in which we plot
PCS against the total number of simulation runs (T). In Fig. 1,
we compare our OCBAG method with OSD under three different
gradient variances (larger than, equal to, smaller than perfor-
mance variance) with Kk = 0. First, we observe that by using
additional gradient information, OCBAG method clearly produces
better results than OSD method. Furthermore, even when the
gradient noise variance is twice the performance noise variance,
OCBAG still performs much better than OSD. Second, we observe

Automatica 134 (2021) 109927
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Fig. 3. Experiment 1: K =1 and K = 0.5.

that the smaller the gradient noise variance is, the higher the PCS
would be. As shown in Fig. 2, even when k = 1, OCBAG method
still performs better than OSD method though the improvement
is not as large as for kK = 0. Finally, we should point out both
OCBAG and OSD perform much better than OCBA as shown in
the two figures.

To show that OCBAG not only uses gradientinformation, but
does so in an efficient way, we compare OCBAG with the fol-
lowing four benchmark allocation schemes that also use gradient
information:

+ (Ba) There are three support points, with two being the ex-
tremes and one being the middle point. Simulation budget is
allocated equally to these three points.

+ (Bb) There are three support points, with two being the ex-
tremes and one being the middle point. Simulation budget
allocation is proportional to simulation variances.

+ (Bc) There are two support points, and the locations of the
two points are determined by Eq. (19) in this paper. Simulation
budget is allocated equally.

+ (Bd) There are two support points, and the locations of the
two points are determined by Eq. (19) in this paper. Simulation
budget allocation is proportional to simulation variances.

We consider the case with Kk = 1 and K = 0.5. Results
are shown in Fig. 3. We first observe that all four benchmark
allocation schemes outperform OSD. This clearly demonstrates
the benefit of using gradient information in R&S. Furthermore,
OCBAG clearly outperforms that these four benchmark allocation
schemes, demonstrating its efficiency.

4.2. Experiment 2: quadratic function with randomly generated op-
timal solution, 101 design points

This experiment has the same setup asin Experiment 1 except
that we now have 101 evenly spaced design points
{-1, —0.98, ..., 1}. For OSD,we set N{ = Ng_,, = N} = 20
and allocate 99 runs at each iteration as described in Brantley
et al. (2013). For OCBAG, we set ny = 2 and allocate 99 runs at
each iteration.

The results are shown in Figs. 4 and 5. With more designs
points within the same interval, the performance differences
between the best design and its nearest competitors are smaller
relative to the simulation noise. Therefore, PCS for each method
is smaller than in Experiment 1. However, it can be seen from
both Figs. 4 and 5 that OCBAG still significantly outperforms OSD.
Specifically, as Fig. 5 shows, after exhausting the total computing
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Fig. 4. Experiment 2: K =0 and K = 0.5, 1, 2.
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Fig. 5. Experiment 2. K =1 and K = 0.5, 1, 2.

budget, OSD just achieves a 78.7% PCS. In comparison, even when
gradient information has large variance (K 0.5) and the cost
is high (k = 1), OCBAG achieves the same PCS after only about
19,700 runs or about 43.78% of those required by OSD. This
suggests the benefit of OCBAG increases as the number of design
points increases.

4.3. Experiment 3: three local minima, 60 design points

This test function is not quadratic and is a test function from
a classical optimization literature (Térn & Zilinskas, 1989):

f(x)

sin(x;) + sin(10x/3) + In(x;)
— 0.84x; + 3 + N(0, 10),

10 1
cos(x;) + — cos(10x/3) + —
3 X;

g (xi)
10

—0.84 + N(O, —).
K

The performance noise variance is set to 10. There are 60 design
points are evenly spaced between 3 and 8, with the global mini-
mum Xx,7 =~ 5.20 with y(x,; ) = —1.60. This function also has two
local minima at xg = 3.42 with y(xg) =~ 0.16 and x4; = 7.07 with
y(x47) = —1.27. Because this function is not quadratic, we cannot
directly apply OSD or OCBAG. Following Brantley et al. (2013), we
partition the design space into six smaller intervals and each of
the local minimums was in a separate interval. We then equally
allocate the total computing budget to these smaller intervals. For
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Fig. 6. Experiment 3: Kk =0 and K = 0.5, 1, 2.
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T

Fig. 7. Experiment 3: K =1 and K = 0.5, 1, 2.

OSD,we set Ny = N» = N, = 20 and then allocate 99 runs for
each iteration as described in Brantley et al. (2013). For OCBAG,
we set np = 20 and then allocate 99 runs for each iteration.

The results shown in Figs. 6 and 7 are consistentwith the first
two experiments where the underlying functions are quadratic.
OCBAG still outperforms OSD. To illustrate the efficiency im-
provement achieved by OCBAG, as Fig. 7 shows, after exhausting
the total computing budget, OSD just achieves a 82.1% PCS while
OCBAG achieves the same PCS after only about 8000 runs or about
80% of those required by OSD even though the gradient noise
variance is twice the performance noise variance and the costs
of performance and gradient information are equal.

4.4. Experiment 4: one global minimum, asymmetric function, 60
design points

This experiment also uses a non-quadratic test function:

f (xi)

10
10x; + — + N(O, 1),
.

I

g(x;) = 10 — g + N, %).

I
We again use a design space consisting of 60 evenly spaced design
points in [0.5, 2.5]. The global minimum is xg 1.01 with
y(x46 ) = 20. As with the third experiment, we partition the design

space into six partitions. For OSD,we set N; = N,» = N, = 20
and allocate 99 runs for each iteration as described in Brantley

~
~
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Fig. 8. Experiment 4: Kk =0 and K = 0.5, 1, 2.
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Fig. 9. Experiment 4: Kk =1 and K = 0.5, 1, 2.

et al. (2013). For OCBAG, we set np = 20 and allocate 99 runs for
each iteration.

The results, shown in Figs. 8 and 9, are again consistent with
the previous experiments. OCBAG achieves a PCS close 1. From
Fig. 9, OSD achieves a 93.1% PCS after about 10,000 runs while
OCBAG achieves the same PCS after only 5900 runs or about
59% of those required by OSD even though the gradient noise
variance is twice the performance noise variance and the costs
of performance and gradient information are equal.

5. Queueing simulation example

Queueing systems are one of the main application areas for
stochastic simulation, and the earliest application of direct gradi-
ent estimation in simulation was queueing. Therefore, we chose
a simple queueing model to investigate the performance of our
OCBAG method in a setting where direct gradient estimates are
available but where one or more of the assumptions of the
theoretical results are generally not satisfied. For example, the
objective function is not strictly quadratic, the system time per-
formance and its gradient estimate are clearly highly correlated,
and the variance of both the performance and its gradient are not
homogeneous across the range of design space, etc. Specifically,
we consider the first-come, first-served, single-server queue. The
customers arrive according to a Poisson process with constant
rate A and the server has i.i.d. exponential random service times
with rate x. Similar to many simulation optimization settings, we
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Fig. 10. Queueing simulation example.

consider the following objective function:
1
y(x) = E[Sx)] + ex = —— + cx
x —A

where E[S(x)] is the average system time for a customer (queue-
ing or delay time plus service time) and the additional term cxcan
be viewed as a cost on server speed (c is a given constant). Then,
we let ¢ 4 and A = 0.5 and use a design space consisting of
11 evenly spaced design points in [0.55, 1.1]. The global optimal
solution is xg = 0.99 with y(xg) =~ 6. For each design x;, we run
simulation with 5000 customers to get the performance estimate.
At the same time, we use IPA method to obtain the gradient
estimate without the need to run additional simulations. That is
to say, the additional simulation cost of obtaining the gradient
information is approximately equal to 0, i.e. K = 0. We conduct
the queueing experimentwith T up to 800. Then, we repeat
1000 times and calculate the PCS obtained for three method
(OCBAG, OSD and OCBA) out of these 1000 independent macro
replications. For OSD method, we set N = NE’kJr1 =N =2
and allocate 20 additional runs for each iteration, and for OCBAG
method, we set ny to 2 and allocate 20 runs for each iteration.
For this experiment, we include the results from the traditional
OCBAas well. The results are illustrated in Fig. 10.

In spite of the correlated performance and gradient informa-
tion and heterogeneous noise for all designs, OCBAG still performs
better than OSD and traditional OCBA.

6. Conclusion

In this paper, we explore the potential of enhancing R&S
efficiency by incorporating simulation performance and gradient
information into a regression metamodel. Compared to the OSD
method that motivated this work, we show that the inclusion
of gradient information increases the accuracy of the regression
metamodel estimated from noisy simulation output. Numerical
experiments demonstrate that the inclusion of gradient informa-
tion enables OCBAG to consistently outperform OSD and achieves
much higher PCSthan OSD, as well as a state-of-the-art R&S
procedure OCBA. As to the best of our knowledge, this is the first
work to demonstrate that gradient information can be used to
improve the efficiency of an R&S procedure.

Though the use of gradient information and regression meta-
models can dramatically enhance simulation efficiency, they are
also constrained with some typical assumptions such as an un-
derlining quadratic function for performance measures, homoge-
neous simulation noise and independence between performance
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and gradient information. As shown in our numerical experi-
ments, many of these assumptions can be alleviatedif we can
efficiently partition the design space so that we focus only on
a local area of the design space where the assumptions hold.
Specifically, on one hand, we should have more fine partition-
ing near the optimal point in order to have good fitting of the
response surface with a quadratic model. On the other hand,
for areas that have a small probability of containing the optimal
design, we could use just afew rough partitions. Ideally, we want
to have an ‘smart partitioning’ scheme which can maximize the
overall efficiency, e.g.,the probability of correct selection. The in-
tegration of OCBAG method with a smart partitioning mechanism
for general simulation optimization problems is a direction for
future research. Alternatively, another research topic worthwhile
to investigate is the optimal design and budget allocation of other
forms of regression functions, such as a higher order polyno-
mial, that may provide better fit of the response surface. The
dimensional curse is inherently a big challenge faced by any re-

gression like procedures, including our approach. One promising
approach we are taking as another ongoing research is to inte-
grate our OCBAG method with some multi-dimensional search
methods such as the stochastic trust region gradient-free method
(Chang, Hong, & Wan, 2013). Another future research topic is to
derive (near) optimal allocation policies without assuming the
independence between performance and gradient estimates.

Appendix A. Proof of Theorem 1

Proof. Our proof here is similar to that of Theorem 3 in Brantley
et al. (2013). To find the optimal solution to (13) for given sup-
port points( {Xs;5 X5, 1, we) introduce its Lagrangian function Q =
APCS — A "a,, + a;, — 1, where A is the Lagrangian multiplier.
Combining it with (12), we have

| J

Q=1- $(rydr — , (r)dr
d(xa)/" Ca ) dixz)/ &7
-Aa, +a,—1. (A.1)
Using the chain rule, we can establish
332_308{A_6Q652_ (A2)
aq; 80s0a; 9, oq; ’
¢ ).
From (14) and (A.1), we obtain %4- = ¢ fifL) %3% (i = A Z)
b, _ @D
and =7 2 =8, s5). We thus have
J Gj
« . ,
89, dpw) dlw) o" DO
dq; &3 G2 T af
L d02) de) 0?05,
Gz 2T af
=0,
which is equivalent to
[ ¢ D). ,
i é d(%A) d(xa) DA,j
a? Ga. 2(0)¥? a?
G ) 1
d(xz) d(xz) Dz, 2AT
+¢ ~=— 2(C)? a? g2
(z z i

J

Automatica 134 (2021) 109927

Taking ds, +0as, = 1into consideration, we then have (15). Similar
to Brantley et al. (2013), we can further show that E)i is a concave
function of ag, and as,, hence APCSis also a concave function
of a;, and ds, (see Brantley et al., 2013 for more details). This
completes our proof.

Appendix B. Calculation of {;

Given the fact that we only have simulation runs at two
support points x5, and xs,, matrix XTV~'X can be rewritten in
terms of these two support points as:

1 1 0 0
XTV71X = L Xsy  Xsy 1 1

J

( x§1 x§2 2Xs,  2Xs, N
Tas, ( N
I o2 Ta, I 1 Xs 1
2|
_ b's
o? Tas, , l T X5 2 )
L Z yooot 2
Tasy 0 1 2xs,
og
_ T
= 3B
where
D
Y10 Y11 Y12
B= y Ky + V12 2Ky11 + Vi3 ,
Yiz  2Kyn + Vi 4K2KYi2 + Via
Vi/ = asl1 X; + a;lesz'

The determinant and some of the algebraic complements of ma-
trix B can be calculated as follows:

B 2 2 2 2 2 1
[
2 = 4KV22 + C{S1 asz (Xs s S s
—x.) +t4K(x  +x_) ,
1 2 [ 1 2 ]
) . )
By = —2KVz1 — 05,05, X5, + X5,  Xgy — X, T2K ,
\ 72
By = KVao + 05,05, Xs, — X5, + 2K

|B‘ = KC(S1 asz(xs1 - st)z[(xs1 - st)z + 4K]-

Combining them with (11), we have

o, B} B
Gi= K3 “;*2‘ (xi—x)f* +2 ‘5 (xi = Xb)* (Xi + X)
1
B*
+ = (x;i — x,,)2 (x; + xb)2

B

2 2.2 2 2 2
0°(X; — Xp) (2181(2x51 — Xj — Xp)* + (:rsz(2x52 — X;j — Xp)

Tds, 0o, (Xs, — Xs,)2[(Xs, — Xs,)2 + 4K]
0% (X; — Xp)? Us, Uy (Xs, — X5, )* (Xs, + Xs, —
TKQs, s, (Xs, — X5, )2 [(Xs, — X5, ¥ + 4K]
2K02(x,- - xb)2 Qs s, (X5, + Xg — Xi — xb)2
TKQs, Us, (X5, — X5,)2[(Xs, — X5,)? + 4K]
2K % (X = Xp)* O, Oy (X — X5)°
TKQs, as, (xs, — %, [(xs, = X5, + 4K]

X = Xp)*

(B.1)

Since a5, + as, = 1, we can rewrite a; and (7522 as 05, (1 — as,)
and g, (1 — ds,). Substituting them into (B.1) and after some
simplification, we can obtain (14).

Appendix C. Minimizing {y,
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This yields We denote x, = (X, + Xy )/2. For notational simplicity, let
Ts, qs, . T

Iy (A.3) -
as, as, u 02(xy — Xp)? G
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d
d

min{x, — x1, Xx — X},

max{x, — X1, Xx — X;}-
Combining (14) with (17) and (18), we have
g", _ (Xs1 + st - 2Xc)2
v =
Kl(xs, — Xs,)? + 4K]
4(Xs1 - Xc)2 + 8‘XS1 - XcHst - Xc| + 4(X52 - Xc)2
(Xs1 — Xs, )2 [(Xs1 — Xsp )2 + 4K]

To minimize {y is the same as to minimize ZM. We need to
consider two casesin which (xs, — x¢)(xs, — X¢) is either positive
or negative.

Case 1: (Xs; — Xc)(Xs, — Xc) = 0. In this case, we have xs, =
Xs; = Xc OF X5, < X5, < X; (which means that xs, and x,, are on
the same side of point x.), hence
; 4(xs, + X5, — 2X)?

M =

(Xs1 - st)z [(Xs1 - st)z + 4K]

(Xs1 + Xsy — 2Xc)2
Kl(xs, — X5,)? + 4K]
1 (Xs, + Xg — 2%)?

K (X — Xg)?
_ 1 (Xs1 — Xs, )2 + 4(Xs1 - Xc)(xsz - Xc)
K (Xs1 — Xs) )2
1
= —.
K

Case 2: (x5, — Xc)(Xs, — %) < 0. In this case, we have x;, >
Xe = Xs, (Which means that x;, and x;, are on the different sides
of point x.), therefore

4

S

(xs +xs — 2Xc)2
1 2

= + .

(Xs; — Xsp)? + 4K K[(xs1 — X5, + 4K]
If we choose the two support points such that xg, + x5, —2x; = 0,
then

. 4
(M=

. S

(Xsy — X, 2 +4K K

Combining the results from Cases 1 and 2, it is clear that in order
to minimize {;, we should choose the support points Xs, and X,
on different sides of x., i.e., we only need to consider Case 2.
Hence, we rewrite {y, as:

4

Cu

(xs +xs — 2Xc)2
1 2

= +

(X5 = Xs, 2 + 4K Kl(x5, — Xs,)? + 4K]
4K+ (xs, + X5, — 2X)?
Kl(xs, — x5,)2 + 4K] ~

We now further consider two cases:

Case 2.1: x5, —xs, < 2d;. Without loss of generality, we assume
Xe — X1 < Xx — X;. It is clear that to minimize é’M we want to
maximize xs, —Xs, , i.., to keep the two support points as far apart
as possible, and on the other hand to minimize |x;, + X5, — 2Xc|.
Hence, {x,,, xs,} = {x1, x; + 2d;} is the optimal solution and the
minimum of ¢y, is K_J:_dﬁ'

Case 2.2: x5, — X5, = 2d;. We still assume x; — x; < Xx — Xc.
First, in order to increase xs, — X5, and decrease |x;, + X5, — 2%/,
we should select sy = 1. Next, let x;, = x; + 2d; + 6 (6 = 0), we
then have

- 4K + 82
M7 Kl@2d, + 62 + 4K]’
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which_is minimized when
g v Vv
R 2 .
5 = & + 4K, |fd2—d12\/d1+4K—d1,
Lo -a, ifd, —di < & +4K —d;.

Putting the above results together, we have (19). Itis also worth-
while pointing out when xs, or xs, provided by (19) does not
coincide with any of the design points, our derivations here in
fact provide an easy way to choose a design point. Usually, we
can simply choose the one closest to xs, or Xs,.
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