
Automatica 134 (2021) 109927

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Optimal Computing Budget Allocation for regression with gradient

information✩

Tianxiang Wang a , Jie Xu b , Jian-Qiang Hu a ,∗, Chun-Hung Chen b

a Department of Management Science, School of Management, Fudan University, Shanghai, 200433, China
b Department of Systems Engineering and Operations Research, George Mason University, Fairfax, VA 22030, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:

Received 30 March 2020

Received in revised form 13 April 2021

Accepted 10 August 2021

Available online xxxx

Keywords:

Simulation optimization

Stochastic systems

Gradient information

Computing budget allocation

Quadratic model

We consider the problem of optimizing the performance of a stochastic system, e.g., a discrete-

event system, where the system performance is evaluated using stochastic simulations. Our objective

is to allocate simulation budget to maximize the probability of correct selection (PCS) of the best

design, where both system performance and gradient information can be obtained simultaneously via

simulation. The objective function is assumed to be quadratic, or can be approximated by a quadratic

regression model. The main contribution of our work is to utilize gradient information to enhance

the efficiency of traditional Optimal Computing Budget Allocation (OCBA). We develop near-optimal

rules that determine design points where simulations should be run and the number of runs allocated

to each point. Our numerical experiments demonstrate that the proposed approach performs much

better than other existing ranking and selection methods, even in cases where derivative information

is very noisy and its simulation cost is high.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Simulation-based optimization, or simply simulation

optimization, is a technique widely used to optimize the perfor-

mance of stochastic systems, e.g., discrete event systems. Com-

pared to analytical approaches, simulation optimization directly

uses simulations to estimate system performance and search for

the best design, making it a widely applicable approach for many

applications in automation science and engineering (Brantley,

Lee, Chen, & Xu, 2014; Peng, Xu, Lee, Hu, & Chen, 2018; Schwartz,

Wang, & Rivera, 2006; Teng, Lee, & Chew, 2007; Zhang, Song,

Dai, & Xu, 2020). Because simulations can be computationally

expensive and simulation output noises can be significant, it is

critical to optimally allocate simulation budget among multiple

designs such that the best design can be selected with the highest

probability possible given a limited computing budget. Formally,

the problem we consider in this paper is to select the best design

✩ T. Wang and J.-Q. Hu were supported in part by the National Natural

Science Foundation of China (NSFC) under Grants 71720107003, 72033003, and

71571048. J. Xu was supported in part by the National Science Foundation

under Grant DMS-1923145. C.-H. Chen was supported in part by the National

Science Foundation under Awards FAIN 2123683. The material in this paper

was presented at the 2019 INFORMS international conference, June 8–13, 2019,

Cancun, Mexico. This paper was recommended for publication in revised form

by Associate Editor Rong Su under the direction of Editor Christos G. Cassandras.
∗ Corresponding author.

E-mail addresses: wangtx16@fudan.edu.cn (T. Wang), jxu13@gmu.edu

(J. Xu), hujq@fudan.edu.cn (J.-Q. Hu), cchen9@gmu.edu (C.-H. Chen).

among a finite number of choices, where the performance of

each design must be estimated with some uncertainty through

stochastic simulation sampling, using a given finite simulation

budget. This problem setting has been an active area of research

in simulation and automation literature (Peng, Chong, Chen, & Fu,

2018; Xiao, Chen, & Lee, 2019; Xiao, Gao, & Lee, 2017), with a

comprehensive review presented in Xu et al. (2016). Among many

approaches developed for this problem, the Optimal Computing

Budget Allocation (OCBA) approach (Chen, Gao, Chen, & Shi, 2013;

Chen, He, Fu, & Lee, 2008; Chen, Lin, Yücesan, & Chick, 2000;

Gao, Chen, & Shi, 2017; Gao, Xiao, Zhou, & Chen, 2017; Lee et al.,

2010; Lee, Pujowidianto, Li, Chen, & Yap, 2012; Xiao, Gao, &

Lee, 2019; Xiao, Lee, & Ng, 2013) is one of the most efficient

methods, particularly in the case where the simulation budget is

limited and/or the number of alternatives is large (Branke, Chick,

& Schmidt, 2007; Pasupathy, Hunter, Pujowidianto, Lee, & Chen,

2014). According to Chen and Ryzhov (2019) and Ryzhov (2016),

the expected improvement (EI), which is another class of efficient

simulation budget allocation approaches, has the sampling ratios

among non-best designs converge to OCBA’s sampling ratios for

all non-best designs. However, EI would let the sampling ratio

for the best design approach 1 asymptotically. In contrast, OCBA’s

asymptotic allocation to the best design is bounded away from 1.

In the framework of OCBA, the problem is studied from the

perspective of allocating a fixed number of simulation replica-

tions to the designs that are critical in the process of identifying

the best design and thus to maximize the probability of correct

selection (PCS). However, previous OCBA works all assume that

only the performance information of designs is available.

https://doi.org/10.1016/j.automatica.2021.109927

0005-1098/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2021.109927
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
mailto:wangtx16@fudan.edu.cn
mailto:jxu13@gmu.edu
mailto:hujq@fudan.edu.cn
mailto:cchen9@gmu.edu
https://doi.org/10.1016/j.automatica.2021.109927

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

2

σ 2 . . . 0 0 . . . 0

.

0 . . . σ 2 0 . . . 0

0 . . . 0 σ 2 . . . 0

g

.

.
. . .

 .
.

0 . . . 0 0 . . . σ 2
g

i

j

ˆ ˆ ˆ

i

i

2

⎜

.

.

⎟

In many simulation settings, not only can the performance of

each design be estimated, but its sensitivity information can also

be obtained, often at the fraction of the simulation budget needed

for estimating the performance, for example, by using the tech-

nique of perturbation analysis (PA) (Fu & Hu, 1997; Glasserman,

1991; Ho & Cao, 1991) or the likelihood ratio (LR) method (Glynn,

1990). Motivated by this fact, we consider the case where the

derivative (gradient) information is also available. In other words,

we are interested in the following question: how to optimally

allocate a fixed amount of simulation budget if the performance

of each design and its corresponding sensitivity (derivative) can

be estimated.

2. Problem setting

2.1. Problem statement

We consider the problem with the principal goal of selecting

the best design among k designs xi , i ∈ I = {1, 2, . . . , k}, where

xi is a scalar. For notational simplicity, we assume that x1 is the

smallest and xk is the largest, and let X = {x ∈ R|x1 ≤ x ≤ xk }.

Without loss of generality, we consider the minimization problem

shown below where the best design is the one with the smallest

expected performance measure

In this paper, we use a setting similar to that of Brantley, Lee,

Chen, and Chen (2013), Brantley et al. (2014), where the under-
min
i∈I

y (xi) = E [f (xi)] . (1)

lying response surface is approximately quadratic or piecewise

quadratic. Brantley et al. (2013) proposed an Optimal Simulation

Design (OSD) approach that incorporates this quadratic response

surface information in simulation budget allocation. Unlike tra-

ditional R&S methods, this regression based approach requires

simulation of only a subset of the alternative design locations and

so the simulation efficiency can be dramatically enhanced. For

example, the average system time for a customer in a queueing

system may be estimated by simulation output data. The opti-

mization problem then is to determine a service rate within an

interval of feasible values that balances customer system time

and the cost of servers. If the cost of servers is a linear function

of service rates, e.g., determined by how many servers to deploy,

and also the queueing system is an M/M/c system, the objective

In this paper, we study the case where the performance measure

is quadratic or approximately quadratic in X , i.e.,

y (xi) = β0 + β1 xi + β2 x
2 . (2)

We denote the unknown model parameters by β = [β0 , β1 , β2].

We consider the case where y(xi) can only be estimated via sim-

ulation with homogeneous noise. In addition, the corresponding

gradient information, denoted as g (xi), can also be estimated at

the same time (possibly based on the same simulation) with

homogeneous noise. We assume that the simulation noises of

f (xi) and g (xi), denoted by εj and ε′, are independent normal

random variables, and they are also independent of each other

across replications. Therefore, for replication j at xi , we have
function is then approximately quadratic. So OSD would only

require the simulation of a small set of designs and dramatically f (xi) = y(xi) + εj , where εj ∼ N
(
0, σ 2

)
;

j
, where ε

j
∼ N

(
0, σg

)
.

increase computational efficiency over traditional R&S methods

that may need to experiment with many designs. When perform-

ing queueing simulations, we may simultaneously use PA or LR

to estimate the gradient of average system time with respect

to service rate lying in a bounded interval. Our work shows

g (xi) = β1 + 2β2 xi + ε′ ′ 2

The parameters β are unknown, so is y(xi). However, we can find

an estimate for y(xi), denoted as ŷ(xi), by making full use of both

performance and gradient information based on a generalized

β0 1 2

]

that sensitivity information can further decrease the number

least square estimate. Let β̂ [
= , β , β

be the least square

of the design locations requiring simulation and thus increase

computation efficiency.

Gradient information has been successfully used to improve

the efficiency of parameter estimation in simulation metamod-

els, including linear regression (Fu & Qu, 2014) and stochastic

kriging (Chen, Ankenman, & Nelson, 2013; Qu & Fu, 2014). Nev-

ertheless, as to the best of our knowledge, there has not been

any work that studies the use of gradient information to help

improve the efficiency of R&S methods. In this paper, we make

such an attempt. Specifically, to utilize the simulation budget in

a most efficient way pursuing the maximization of PCS, we want

to determine (i) which designs should be selected for simulation

and (ii) the number of simulation runs for those selected designs.

This paper develops a novel Optimal Computing Budget Al-

location with Gradient information (OCBAG) method to address

estimates for the corresponding parameters in (2), then we have

ŷ (xi) = β̂
0 + β̂

1 xi + β̂
2 x

2 . (3)

In order to obtain β̂ , suppose we run simulations at a number

of xi ’s (no simulation at other design points), which we call the

support points and denote by {xi : i ∈ In }, where In ⊂ I is the set
of the indices of the support points and |In | = n ≤ k.

For ease of exposition, we use matrix notation for linear re-

gression. For the support points {xi : i ∈ In }, we define F as the
2n-dimensional vector containing f (xi) and g (xi), X as the 2n × 3

matrix consisting of rows [1, xi , x
2] and [0, 1, 2xi], and V as the

n×2n covariance matrix of the simulation noises of performance
and gradient information:

(
(f (x))i∈In

)

, X

 ((
1, x , x2

))
these issues. Numerical testing demonstrates that our new

F = i =
i i i∈In ,

method can enhance simulation efficiency, compared with ex-

isting efficient R&S methods such as OCBA and OSD. By making

full use of gradient information, OCBAG method offers dramatic

further improvements. For example, in comparison with OSD

method, our novel OCBAG method can potentially save half of the

total simulation budget while maintaining the same performance

efficiency. The improvement made by OCBAG method is still

quite significant even when gradient information is noisy and its

simulation cost is high.

The rest of this article is organized as follows. In Section 2,

⎛

⎜
⎜
⎜

V =
⎜

 ⎜ ⎜
⎜
⎝

(g (xi))i∈In

.
. .

.

. .

(0, 1, 2xi)i∈In

⎞

.
. ⎟ ⎟ ⎟

⎟
⎟
⎟
⎟
⎠

we introduce the simulation optimization problem setting and

Bayesian framework. Section 3 provides the development of

OCBAG method. Numerical experiments comparing the results

Following standard least square regression analysis, we obtain the

generalized least squares estimate for β as

1

using the new OCBAG method and OSD method are provided

in Section 4. Finally, Section 6 provides the conclusions and
β̂ =

(
X

T
V

−1
X
)−

 X
T
V

−1
F . (4)

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

3

suggestions for future work using the concepts introduced in this

article.

Since the Gauss–Markov conditions are satisfied, the above esti-

mates for β are unbiased and have the minimum variance among

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

4

2

β̂

i

all unbiased linear estimators (see Draper & Smith, 1998; Fu & Qu,

2014).

We aim to select the design associated with the smallest mean

performance measure from the k designs using a total computing

budget of T simulation samples (replications). Given the general-

ized least squares estimates for the parameters, we can use (3) to

estimate the expected performance measure at each design point.

We designate the design point with the smallest estimated mean

performance measure as xb , i.e., ŷ(xb) = mini∈I ŷ(xi). Given the
uncertainty of the estimated parameters, xb is a random variable

that is dependent upon the size of the computing budget and

the number of simulation replications allocated to each design

point. We define correct selection as the event where xb is indeed

the best design and Ni as the number of simulation replications

conducted at xi (xi is a support point if Ni > 0). Since simulation

is expensive and the computing budget is limited, we seek to de-

velop an allocation policy in order to maximize the probability of

correctly selecting the best design (PCS). This Optimal Computing

Budget Allocation with Gradient information (OCBAG) problem is

described as follows:

that for a polynomial of degree m and a discrete domain with

more than m + 1 support points, the information in X T V −1 X

(without any gradient information) obtained from more than

m + 1 support points will always be attained by using only

m + 1 of the support points. That is to say, we need just three

different support points because of our quadratic model if we

only use the performance information. In our problem setting,

we obtain performance and gradient information simultaneously

after running simulation for each design location. Because gradi-

ent information is equivalent to performance information in the

sense of determining the unknown parameters β, two support

points provide four observations in the design matrix X (Xi =
[1, xi , xi

] and Xi = [0, 1, 2xi]), which is enough to help solve our

problem. From now on, we refer to the support points as {xs1
, xs2

}
where xs1

< xs2
.

Furthermore, given the estimated xb , the assumption that our
underlying function is quadratic allows us to reduce the number

of required comparisons in our PCS calculation in (6) from k − 1

to 2, i.e., we have (see Brantley et al., 2013)

PCS = P
{
ỹ (xb) ≤ ỹ (xi) , ∀i = 1, 2, . . . , k

}

max PCS = P {y (xb) ≤ y (xi) , ∀i = 1, 2, . . . , k}
s.t. N1 + N2 + · · · + Nk = T .

(5) = P
{
ỹ (xA) ≥ ỹ (xb) ∩ ỹ (xZ) ≥ ỹ (xb)

}
, (9)

where the identities of xA and xZ depend on whether xb is an
In the constraint in the above problem we have implicitly as-

sumed that the cost of each simulation run at every design point

is one unit.

2.2. A Bayesian regression framework

interior point or a boundary point, as described in the following

three cases:

• Case 1 (Interior Case): b ̸= 1, k; A = b − 1; Z = b + 1,

• Case 2 (Left Boundary Case): b = 1; A = 2; Z = k,
• Case 3 (Right Boundary Case): b = k; A = 1; Z = k − 1.

To solve problem (5), we adopt a Bayesian regression frame-
Let Ns

 and Ns
 be the number of simulation runs allocated at

work as described in Gelman et al. (2013). Using a standard
1 2

Ns1
 Ns2

non-informative prior distribution, one would obtain the same

estimates of β as in classical regression analysis briefly explained

xs1
and xs2

, respectively, and αs1
=

can be restated as:
T

and αs2
= T

. Then (5)

previously. The key difference is with a Bayesian perspective, it

allows us to calculate PCS using the posterior distribution of β. In

the following, we use β̃ and ỹ(xi) to denote the random variables

whose probability distributions are the posterior distribution of

β and y(xi) conditional on F , respectively. PCS in (5) under the

Bayesian regression framework is defined as Chen and Lee (2011),

Chen, Yücesan, Dai, and Chen (2009):

PCS = P
{
ỹ (xb) ≤ ỹ (xi) , ∀i = 1, 2, . . . , k

}
. (6)

Using a non-informative prior distribution and assuming that the

conditional distribution of the simulation output vector F is a

multi-variate normal distribution with mean X β and a covariance

matrix V , DeGroot (2005) shows that the posterior distribution of

β is then given by

max PCS = P
{
ỹ (xA) ≥ ỹ (xb) ∩ ỹ (xZ) ≥ ỹ (xb)

}

. (10)
s.t. αs1

+ αs2
= 1.

We can estimate covariance matrix V from the samples generated

at the support points and calculate ỹ(xi) using (8). In the next

section, we present an effective way to approximate PCS and

derive approximate solutions to the optimal allocations.

3. Approximate solutions

In the previous section, we show that regardless how the

simulation budget is allocated to the support points, PCS can be

calculated based on the comparisons of xb to its two adjacent

design points, hence, we just need two support points. Now we

are ready to derive our OCBAG allocation policy. In Section 3.1, we

derive a lower bound of PCS as an approximation for PCS. We then

β̃ |F ∼ N

(

 ,
(
X

T
V

−1
X
)−1

)
. (7) develop an efficient approximation for the optimal allocation of

the total simulation budget in Section 3.2. In Section 3.3, we de-

Since ỹ(xi) is a linear combination of β̂ elements, the posterior

distribution of ỹ(xi) is normal:

ỹ(xi) ∼ N
(
Xiβ̂, X T (X T V −1 X)−1 Xi

)
, (8)

where X T = [1, xi , x
2].

termine the optimal locations of the two support points. Finally,

in Section 3.4, we discuss the algorithmic implementation of the

results from Sections 3.1–3.3.

3.1. A lower bound for PCS

i i

Similar to the approach used in Brantley et al. (2013), we are

also interested in how the PCS given by (6) changes if we conduct

additional simulation runs so that we can make allocations so

as to maximize PCS. See Brantley et al. (2013) for a detailed

discussion of the predictive posterior distributions.

2.3. Simplification

In order to simplify problem (5), we aim to reduce the number

of design locations at which we need to run simulation without

resulting in any information loss. De la Garza (1954) established

First, we have

PCS = P {ỹ (xA) ≥ ỹ (xb) ∩ ỹ (xZ) ≥ ỹ (xb)}

= 1 − P {ỹ (xA) ≤ ỹ (xb) ∪ ỹ (xZ) ≤ ỹ (xb)}

= 1 − P
{
ỹ (xA) ≤ ỹ (xb)

}
− P

{
ỹ (xZ) ≤ ỹ (xb)

}

+ P {ỹ (xA) ≤ ỹ (xb) ∩ ỹ (xZ) ≤ ỹ (xb)}.

Since the underlying function is quadratic, the last term in the

above equation is simply the probability that xb is the ‘‘worst’’ de-

sign with the largest expected performance measure. This prob-

ability is typically very small so that we can establish an efficient

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

5

d

−1
ζ ζ

M M ,

D D
1

1 [
1 2

2

g

√

A A,j
2

− ≤ −

x

2

ˆ

σ

α
2

2

,

s2

√
ζ

⎪

lower bound, APCS defined as follows, which can be used as an

approximation for PCS:

PCS ≥ APCS

= 1 − P
{
ỹ (xA) ≤ ỹ (xb)

}
− P

{
ỹ (xZ) ≤ ỹ (xb)

}
.

Let

Instead of using (15), in what follows we propose an ap-

proximate but much simpler way to compute αs1
and αs2

. We

note

APCS

= 1 − P
{
ỹ (xA) ≤ ỹ (xb)

}
− P

{
ỹ (xZ) ≤ ỹ (xb)

}

{ } { }

d̃ (xi) ≡ ỹ (xi) − ỹ (xb) = β̃
2

(
x

2 − x2
)

+ β̃
1 (xi − xb) .

 ≥ 1 − 2 max{P ỹ (xA) ≤ ỹ (xb) , P ỹ (xZ) ≤ ỹ (xb) }
i b { }

Because d̃ (xi) is a linear combination of the elements of β̃ , d̃ (xi)
≥ 1 − 2P ỹ (xM) ≤ ỹ (xb) ,

is also normally distributed, i.e., d̃ (xi) ∼ N

[
ˆ (xi) , ζi

]
, where

d̂ (xi) = ŷ (xi) − ŷ (xb) and

ζi =
(
0, xi − xb , x

2 − x2
) (

XT V−1 X
)

where
{

M = argmax ϕ
i=A,Z

(
d̂ (xi)

)}

√←
i

= argmin

i=A,Z

{
d̂ (xi)

}

√←
i

. (16)

i b

T In fact, xA and xZ are usually very close to each other since they (
0, xi − xb , x

2 − x2
)

. (11)

i b

Therefor, we have

P
{
ỹ (xi) ≤ ỹ (xb)

}
= P

{
−d̃ (xi) ≥

}

0

are both adjacent to xb . Therefore, the gap between APCS and

1 − 2P
{
ỹ (xM) ≤ ỹ (xb)

}
is relatively small, especially when T

is large. We propose to use 1 − 2P
{
ỹ (xM) ≤ ỹ (xb)

}
to replace

APCS. With slight abuse of notation, hereafter, we set APCS =

∫ ∞
1

 [()]2 1 − 2P
{
ỹ (xM) ≤ ỹ (xb)

}
.

= √
0 2π ζi

e
− v− −d̂ (xi)

/2ζi

dv With modified APCS, we can re-solve (13) to obtain
√

d(xM)D
2

 ∫ ∞
1 2

(

d̂ (xM)
) ̂

M ,s1

= √ e
−r /2

dr , (12)
2ϕ √

ζM

(ζM
)3/2

d̂ (xi)/
√

ζi
2π αs1

= √ √
(

d̂ (x)
)

d̂ (xM)D
2 (

d(x

)
)

d̂ (xM
)D2

where r = (v + d̂ (xi))/
√

ζi . APCS can be calculated based on (12)
with i being replaced by A and Z .

Hereafter, we will use APCS to approximate PCS. In other

2ϕ √
ζM

|DM ,s1
|

=

(ζM

s1

)3/2 + 2ϕ √ M
ζM

(ζM

M ,s2

)3/2

words, we replace PCS with APCS in (10) and consider instead

the following optimization problem:

|DM ,s1
| + |DM ,s2

|
|2xs2

− xM − xb |
=

, (17)

max APCS

s.t. αs1
+ αs2

= 1.
. (13)

αs2

=

|2xs1
− xM − xb | + |2xs2

− xM − xb |
|2xs1

− xM − xb |

. (18)

3.2. The optimal allocation policy

In this subsection, we solve (13). As shown in Appendix B, ζi

can be simplified as:

|2xs1
− xM − xb | + |2xs2

− xM − xb |

The new allocation policy is much easier to compute. Our nu-

merical results in Section 4 demonstrate that it works quite

well.

2 2
i,s1

2
i,s2

 (xi − xb)
2
(
xs

 + xs2
 − xi − xb

)

ζi =
T

[
αs

+
s

+
 K

(
xs − xs

)

+ 4K]
], (14) 3.3. Optimal location of support points

where

D
2

(2xs − xi − xb)

2 (xi − xb)
2

Given the simulation budget allocation to the two support

points {xs1
, xs2

} derived in the previous subsection, we now try

to determine the optimal location for {xs1
, xs2

} among all possi-
i,s1

=
K (xs s

2 2

ble design points. In our derivation, we assume x

and x

are

1
− x

2
) [(xs1

− xs2
) + 4K] s1 s2

2 2 continuous variables in [x1 , xk]. Once we obtain the values of xs1

D2
(2xs1

− xi − xb) (xi − xb)
,

and x

, if they do not equal to any of given design points, we can

i,s2
=

K (xs s
2 2

1
− x

2
) [(xs1

− xs2
)

K = σ 2 /σ 2 .

+ 4K] simply use the design points closest to them.

According to (12), in order to maximize APCS, it is sufficient to

maximize
d̂ (xM) . Given the unbiased properties of our generalized

(14) shows that ζi and thus APCS are dependent on T and the

allocations of the two support points. The following theorem

provides an optimal allocation policy for (13) for any given two

support points.

Theorem 1. For any given two support points {xs1

, xs2
}, the optimal

solution to (13) is given by

√
ζM

least squares parameter estimators, there would not be large

changes in d̂ (xM) as we take additional simulation runs. Therefore,

we focus on selecting the best two support points to minimize
the variance of d̃ (xM), (ζM). In Appendix B, we show that with the

simulation budget being allocated to xs1
and xs2

according to (17)
and (18), ζM is minimized with the following solutions for xs1

and
√

qs
 √

qs
 xs2

:

αs1
= √

q

 1

+
√

q

 and αs2

 = √←
q

 2
, (15)

+ q
{xs s

s1 s2 s1 s2

1
, x

2
}

⎧ { √
2

}
where

(
d̂ (x)

)
d̂ (xA) D

2

⎪ x1 , ⎪ ⎪

xM +xb

2
+

(
xM +xb

2
− xi

)

2K

+ 4K ,

qj = ϕ
A

(ζA)
3/2

⎪ if
xM +xb

⎨ {x1 , xk },

x1 +xk ;
2 xk −x1

2
= 2K

xM +xb

x1 +xk

 2K

 (19)
 (

d̂ (xZ)
)

d̂ (xZ) DZ ,j
 ⎪ if −

xk −x1
< 2

−
2

≤
xk −x1

;
+ ϕ √

ζ

(ζ)3/2 , j = s1 , s2 ,
{ √

⎪
M +xb

(xM +xb
)2

}

K , x ,

Z Z ⎪
2

− ⎪
xk −

2
+ 4 k

and ϕ(r) = 1
e−r /2 .

 ⎩ if
xM +xb − x1 +xk >

 2K .

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

6

2 2 2π
√

xk −x1

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

7

⎧

<

< ;

;

g

g

(19) implies that when the point (xM + xb)/2, which can be

approximately regarded as the optimal solution to the quadratic

objective function over [x1 , xk], is in the middle part of the inter-

val, we select the two extreme points x1 and xk as support points.

When the point (xM + xb)/2 is very close to an extreme point, we

select the nearest extreme point as one of the two support points

and the other one located such that it is a little farther than the

first one from (xM + xb)/2.

To shed more light on our results, we compare them with the

results in Brantley et al. (2013) where gradient information is not

considered. OSD method requires three support points instead of

two in OCBAG because OSD does not use gradient information.

The allocation policy of OSD is shown as follows:
⏐
DM ,i

⏐

3.4. OCBAG algorithm

The following is the algorithm in which we implement the

results in the previous subsections and will be used for the

numerical experiments in Section 4.

Algorithm 1 (OCBAG)

INPUT: k (the number of design points), T (the simulation

budget), xi (i = 1, . . . , k, the design points), n0 (the number of

initial simulation replications for each support point), θj (the

number of simulation replications allocated to each iteration j);

INITIALIZE: j ← 0;
Take the two extreme points as the initial support points.

αi = ⏐ ⏐
⏐ ⏐

⏐ ⏐ , i = 1, s, k, (20)

Perform n0 simulation replications for each support point (set

⏐DM ,1
⏐ +

⏐ ⏐
M ,s

M ,k N 0 0

⏐D ⏐ + ⏐D ⏐
1 = Nk = n0) to get the performance and gradient information.

where LOOP: WHILE
∑k

i=1

Ni < T DO
{

(xs − xM) (xk − xM) − (xs − xb) (xk − xb)
}

,
 UPDATE:

Estimate the mean, variance, and gradient at each x

DM ,1 =
(x1 − xs) (x1 − xk)

i

1: Estimate a quadratic regression model using the {
(x1 − xM) (xk − xM) − (x1 − xb) (xk − xb)

}

,
 performance and gradient information from all prior

DM ,s =
(xs − x1) (xs − xk) simulation runs;

2: Estimate the mean and variance each xi using:
 {

(x1 − xM) (xs − xM) − (x1 − xb) (xs − xb)
}

.

y (x) β

β x β x2

DM ,k =
(x x) (x x)

 ˆ i = ˆ
0 + ˆ

1 i + ˆ
2 i

.
k − 1 k − s 3: Determine the observed best design xb = argmini ŷ (xi).

In OSD method, two extreme points {x1 , xk } are always chosen

as support points. When (xM + xb)/2 is in the middle half of the

interval, the third support point (xs) is located such that it has

the same distance from (xM + xb)/2 as the nearest extreme point

4: Based upon the location of xb , determine xA , xZ , and xM

based on the three cases and (16).

5: Determine support points xs1
and xs2

based on (19).

ALLOCATE: Increase the computing budget by θj+1 and
j+1 j+1

is from (xM + xb)/2. This makes the design symmetric around calculate its allocation αs1
and αs2

according to (17) and (18).
j+1

j+1

(xM + xb)/2. When (xM + xb)/2 is in the outer half of the interval,
the third support point (xs) is located at the center of the interval.

Specifically, the location of xs is given as follows:

SIMULATE: Perform θj+1 αs1
and θj+1 αs2

simulations (round to

integers as needed) for support points xs1
and xs2

. Update Ns1
and

Ns2
.

xs =

⎨ xM +b−1 , if

xM +b−k , if

3x1 +xk

4
≤

x1 +xk

2

xM +xb

2
xM +xb

2
≤

x1 +xk

2
x1 +3xk

4

(21)

END OF LOOP

⎩
x(k−1)/2 , otherwise.

Since we use additional gradient information while OSD method

does not, there are two critical factors which may affect the

performance of these two methods. The first is the ratio of perfor-

mance and gradient noise variances K = σ 2 /σ 2 , and the second
is the computational cost of obtaining gradient information. We

denote κ as the relative cost of obtaining gradient information

with respect to the cost of obtaining performance information.

We should point out that the value of κ does not affect the

allocation policy although in our derivation process we have

implicitly assumed that κ = 0. For general κ , we can simply

replace the total simulation budget T with
 T

and all our results
1+κ

4. Numerical experiments

In this section, we compare our OCBAG method with the Op-

timal Simulation Design (OSD) method of Brantley et al. (2013).

When the underlying function is quadratic or approximately

quadratic, Brantley et al. (2013) show that OSD method performs

much better than other traditional allocation procedures, includ-

ing Equal-Allocation (EA), Equal-Allocation and Response Surface

combination method (EA-RS), traditional OCBA method (Branke

et al., 2007; Chen et al., 2000), D-optimality design (Atkinson,

Donev, & Tobias, 2007; Liski, Mandal, Shah, & Sinha, 2002).

We conduct experiments with K = 0.5, 1, and 2. Regard-
ing the computational cost of obtaining gradient information,

still hold.

If K = σ 2 /σ 2 is very small, which means that the variance of
the gradient noise is much bigger than that of the performance

noise, our results are the same as those in Brantley et al. (2013)

because gradient information is not helpful due to its large noise.

In this case, the first support point is located at the nearest

extreme point and the second one is such that it is the same

distance from (xM + xb)/2 as the nearest extreme point is from
(xM + xb)/2. On the other hand, if K is large, then our results
show that we should select the two extreme points as the support

points. In fact, if we can only obtain gradient information from

simulation, the underlying function becomes a linear function.

It is obvious then the two support points should be as far as

possible to minimize the variance of the estimated parameters

(β̂
1 , β̂

2). For a moderate K , i.e. the variances of the performance

and gradient estimates are comparable, our method can optimally

utilize performance and gradient information.

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

8

we consider two scenarios: κ = 0, 1. These two scenarios are

commonly seen in simulation. For example, when the technique
of infinitesimal perturbation analysis (IPA) can be used to obtain

gradient information, we usually have very small κ , and in the

case when the finite difference is used for gradient information

we have κ = 1.

We use the same four test problems in Brantley et al. (2013) to

compare OCBAG and OSD. In the first experiment, we include the

results from the traditional OCBA method as well for comparison.

Since as we should see that both OCBAG and OSD perform much

better than OCBA, we focus on the comparison between OCBAG

and OSD for the other three experiments. We conduct the first

experiment with T up to 1000, the second experiment with T up

to 45,000, and the last two experiments with T up to 10,000. We

repeat 10,000 times for each instance and then calculate the PCS

obtained for each method out of these 10,000 independent macro

replications.

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

9

Fig. 1. Experiment 1: κ = 0 and K = 0.5, 1, 2.

Fig. 2. Experiment 1: κ = 1 and K = 0.5, 1, 2.

4.1. Experiment 1: quadratic function with randomly generated op-

timal solution, 11 design points

The test function and its gradient are given below:

Fig. 3. Experiment 1: κ = 1 and K = 0.5.

that the smaller the gradient noise variance is, the higher the PCS

would be. As shown in Fig. 2, even when κ = 1, OCBAG method

still performs better than OSD method though the improvement

is not as large as for κ = 0. Finally, we should point out both

OCBAG and OSD perform much better than OCBA as shown in

the two figures.

To show that OCBAG not only uses gradient information, but

does so in an efficient way, we compare OCBAG with the fol-

lowing four benchmark allocation schemes that also use gradient

information:

• (Ba) There are three support points, with two being the ex-

tremes and one being the middle point. Simulation budget is

allocated equally to these three points.

• (Bb) There are three support points, with two being the ex-
tremes and one being the middle point. Simulation budget

allocation is proportional to simulation variances.

• (Bc) There are two support points, and the locations of the
two points are determined by Eq. (19) in this paper. Simulation

budget is allocated equally.

• (Bd) There are two support points, and the locations of the
two points are determined by Eq. (19) in this paper. Simulation

budget allocation is proportional to simulation variances.

f (xi) = (xi − a)2 + N (0, 1),

We consider the case with κ = 1 and K = 0.5. Results
1

g (xi) = 2xi − 2a + N (0,
K

),

We use a design space consisting of 11 evenly spaced design

points from −1 to 1, i.e. xi ∈ {−1, −0.8, . . . 1}. In order to test the

methods against a diverse set of problems, the stationary point

for the underlying quadratic equation was randomly generated

from a uniformly distributed random variable a over interval (−1,

1). The optimal solution is then the design point closest to the

are shown in Fig. 3. We first observe that all four benchmark

allocation schemes outperform OSD. This clearly demonstrates

the benefit of using gradient information in R&S. Furthermore,

OCBAG clearly outperforms that these four benchmark allocation

schemes, demonstrating its efficiency.

4.2. Experiment 2: quadratic function with randomly generated op-

timal solution, 101 design points

generated a. For OSD method, we set N 0 = N 0 = N 0 = 2
1 (k+1)/2 k

and allocate 14 additional runs for each iteration, and for OCBAG

method, we set n0 to 2 and allocate 14 runs for each iteration.

For this experiment, we include the results from the traditional

OCBA as well.

The results are illustrated in Figs. 1 and 2, in which we plot

PCS against the total number of simulation runs (T). In Fig. 1,

we compare our OCBAG method with OSD under three different

gradient variances (larger than, equal to, smaller than perfor-

mance variance) with κ = 0. First, we observe that by using
additional gradient information, OCBAG method clearly produces

better results than OSD method. Furthermore, even when the

gradient noise variance is twice the performance noise variance,

OCBAG still performs much better than OSD. Second, we observe

This experiment has the same setup as in Experiment 1 except

that we now have 101 evenly spaced design points

{−1, −0.98, . . . , 1}. For OSD, we set N 0 = N 0 = N 0 = 20
1 (k+1)/2 k

and allocate 99 runs at each iteration as described in Brantley

et al. (2013). For OCBAG, we set n0 = 2 and allocate 99 runs at
each iteration.

The results are shown in Figs. 4 and 5. With more designs

points within the same interval, the performance differences

between the best design and its nearest competitors are smaller

relative to the simulation noise. Therefore, PCS for each method

is smaller than in Experiment 1. However, it can be seen from

both Figs. 4 and 5 that OCBAG still significantly outperforms OSD.

Specifically, as Fig. 5 shows, after exhausting the total computing

10

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

+

x

i

Fig. 4. Experiment 2: κ = 0 and K = 0.5, 1, 2. Fig. 6. Experiment 3: κ = 0 and K = 0.5, 1, 2.

Fig. 5. Experiment 2: κ = 1 and K = 0.5, 1, 2.

budget, OSD just achieves a 78.7% PCS. In comparison, even when

gradient information has large variance (K = 0.5) and the cost

is high (κ = 1), OCBAG achieves the same PCS after only about

19,700 runs or about 43.78% of those required by OSD. This

suggests the benefit of OCBAG increases as the number of design

points increases.

4.3. Experiment 3: three local minima, 60 design points

This test function is not quadratic and is a test function from

a classical optimization literature (Törn & Žilinskas, 1989):

f (xi) = sin(xi) + sin(10xi /3) + ln(xi)

− 0.84xi + 3 + N (0, 10),
10 1

Fig. 7. Experiment 3: κ = 1 and K = 0.5, 1, 2.

OSD, we set N1 = Nk/2 = Nk = 20 and then allocate 99 runs for

each iteration as described in Brantley et al. (2013). For OCBAG,

we set n0 = 20 and then allocate 99 runs for each iteration.

The results shown in Figs. 6 and 7 are consistent with the first

two experiments where the underlying functions are quadratic.

OCBAG still outperforms OSD. To illustrate the efficiency im-

provement achieved by OCBAG, as Fig. 7 shows, after exhausting

the total computing budget, OSD just achieves a 82.1% PCS while

OCBAG achieves the same PCS after only about 8000 runs or about

80% of those required by OSD even though the gradient noise

variance is twice the performance noise variance and the costs

of performance and gradient information are equal.

4.4. Experiment 4: one global minimum, asymmetric function, 60

design points
g (xi) = cos(xi) + cos(10xi /3)

3 xi

10

This experiment also uses a non-quadratic test function:

− 0.84 + N (0,
K

).

The performance noise variance is set to 10. There are 60 design

points are evenly spaced between 3 and 8, with the global mini-

10

f (xi) = 10xi +
i

10

+ N (0, 1),

1

mum x27 ≈ 5.20 with y(x27) ≈ −1.60. This function also has two

local minima at x6 ≈ 3.42 with y(x6) ≈ 0.16 and x47 ≈ 7.07 with

y(x47) ≈ −1.27. Because this function is not quadratic, we cannot

directly apply OSD or OCBAG. Following Brantley et al. (2013), we

partition the design space into six smaller intervals and each of

the local minimums was in a separate interval. We then equally

allocate the total computing budget to these smaller intervals. For

g (xi) = 10 −
x2

+ N (0,
K

).

We again use a design space consisting of 60 evenly spaced design

points in [0.5, 2.5]. The global minimum is x16 ≈ 1.01 with

y(x16) ≈ 20. As with the third experiment, we partition the design

space into six partitions. For OSD, we set N1 = Nk/2 = Nk = 20

and allocate 99 runs for each iteration as described in Brantley

11

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

x

Fig. 8. Experiment 4: κ = 0 and K = 0.5, 1, 2. Fig. 10. Queueing simulation example.

consider the following objective function:

1
y(x) = E [S (x)] + cx =

− λ
+ cx

Fig. 9. Experiment 4: κ = 1 and K = 0.5, 1, 2.

where E [S (x)] is the average system time for a customer (queue-

ing or delay time plus service time) and the additional term cx can

be viewed as a cost on server speed (c is a given constant). Then,

we let c = 4 and λ = 0.5 and use a design space consisting of

11 evenly spaced design points in [0.55, 1.1]. The global optimal
solution is x9 ≈ 0.99 with y(x9) ≈ 6. For each design xi , we run
simulation with 5000 customers to get the performance estimate.

At the same time, we use IPA method to obtain the gradient

estimate without the need to run additional simulations. That is

to say, the additional simulation cost of obtaining the gradient

information is approximately equal to 0, i.e. κ = 0. We conduct
the queueing experiment with T up to 800. Then, we repeat

1000 times and calculate the PCS obtained for three method

(OCBAG, OSD and OCBA) out of these 1000 independent macro

replications. For OSD method, we set N 0 = N 0 = N 0 = 2
et al. (2013). For OCBAG, we set n0 = 20 and allocate 99 runs for 1 (k+1)/2 k

each iteration.

The results, shown in Figs. 8 and 9, are again consistent with

the previous experiments. OCBAG achieves a PCS close 1. From

Fig. 9, OSD achieves a 93.1% PCS after about 10,000 runs while

OCBAG achieves the same PCS after only 5900 runs or about

59% of those required by OSD even though the gradient noise

variance is twice the performance noise variance and the costs

of performance and gradient information are equal.

5. Queueing simulation example

Queueing systems are one of the main application areas for

stochastic simulation, and the earliest application of direct gradi-

ent estimation in simulation was queueing. Therefore, we chose

a simple queueing model to investigate the performance of our

OCBAG method in a setting where direct gradient estimates are

available but where one or more of the assumptions of the

theoretical results are generally not satisfied. For example, the

objective function is not strictly quadratic, the system time per-

formance and its gradient estimate are clearly highly correlated,

and the variance of both the performance and its gradient are not

homogeneous across the range of design space, etc. Specifically,

we consider the first-come, first-served, single-server queue. The

customers arrive according to a Poisson process with constant

rate λ and the server has i.i.d. exponential random service times

with rate x. Similar to many simulation optimization settings, we

and allocate 20 additional runs for each iteration, and for OCBAG

method, we set n0 to 2 and allocate 20 runs for each iteration.

For this experiment, we include the results from the traditional

OCBA as well. The results are illustrated in Fig. 10.

In spite of the correlated performance and gradient informa-

tion and heterogeneous noise for all designs, OCBAG still performs

better than OSD and traditional OCBA.

6. Conclusion

In this paper, we explore the potential of enhancing R&S

efficiency by incorporating simulation performance and gradient

information into a regression metamodel. Compared to the OSD

method that motivated this work, we show that the inclusion

of gradient information increases the accuracy of the regression

metamodel estimated from noisy simulation output. Numerical

experiments demonstrate that the inclusion of gradient informa-

tion enables OCBAG to consistently outperform OSD and achieves

much higher PCS than OSD, as well as a state-of-the-art R&S

procedure OCBA. As to the best of our knowledge, this is the first

work to demonstrate that gradient information can be used to

improve the efficiency of an R&S procedure.

Though the use of gradient information and regression meta-

models can dramatically enhance simulation efficiency, they are

also constrained with some typical assumptions such as an un-

derlining quadratic function for performance measures, homoge-

neous simulation noise and independence between performance

12

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

i,j

x

σ
⎟

σ

(
xs s

B
∗

√

2

α

s1 s

α
j

2

T

2

⎜
g

()

2

j

1

D

j

and gradient information. As shown in our numerical experi-

ments, many of these assumptions can be alleviated if we can

efficiently partition the design space so that we focus only on

a local area of the design space where the assumptions hold.

Specifically, on one hand, we should have more fine partition-

ing near the optimal point in order to have good fitting of the

response surface with a quadratic model. On the other hand,

for areas that have a small probability of containing the optimal

design, we could use just a few rough partitions. Ideally, we want

Taking αs1
+αs2

= 1 into consideration, we then have (15). Similar

to Brantley et al. (2013), we can further show that D2 is a concave

function of αs1
and αs2

, hence APCS is also a concave function

of αs1
and αs2

(see Brantley et al., 2013 for more details). This
completes our proof.

Appendix B. Calculation of ζi

Given the fact that we only have simulation runs at two

to have an ‘smart partitioning’ scheme which can maximize the support points xs1
and xs1

, matrix X V −1
 X can be rewritten in

overall efficiency, e.g., the probability of correct selection. The in- terms of these two support points as:

tegration of OCBAG method with a smart partitioning mechanism

for general simulation optimization problems is a direction for

T −1

⎛
1 1 0 0

⎞

future research. Alternatively, another research topic worthwhile

to investigate is the optimal design and budget allocation of other

forms of regression functions, such as a higher order polyno-

X V X = ⎝ xs1
xs1

1 1 ⎠
x2 2

s1
xs2

2xs1
2xs2 ⎛

T αs1

⎞

2 ⎛ 2 ⎞

mial, that may provide better fit of the response surface. The

dimensional curse is inherently a big challenge faced by any re-

σ ⎜ T αs1

⎜
σ 2

⎟ 1 xs1

⎟
⎜

xs1

⎟

gression like procedures, including our approach. One promising
 ⎜

T αs2

⎟ 1 xs2 s2

approach we are taking as another ongoing research is to inte-

⎜

2

⎟ ⎝
0 1 2xs1

⎠

grate our OCBAG method with some multi-dimensional search

methods such as the stochastic trust region gradient-free method

(Chang, Hong, & Wan, 2013). Another future research topic is to

derive (near) optimal allocation policies without assuming the

independence between performance and gradient estimates.

where

⎝

T

=
σ 2

B,

T αs2

⎠

2
g

0 1 2xs2

Appendix A. Proof of Theorem 1

(
γ10 γ11 γ12

)

B = γ11 K γ10 + γ12 2K γ11 + γ13 ,
γ12 2K γ11 + γ13 4K 2K γ12 + γ14

γij = α i
x
j + αi

x
j .

Proof. Our proof here is similar to that of Theorem 3 in Brantley
s1 s1 s2 s2

et al. (2013). To find the optimal solution to (13) for given sup-

port points {xs1
, xs2

}, we introduce its Lagrangian function Q =

The determinant and some of the algebraic complements of ma-

trix B can be calculated as follows:

APCS − λ
(
αs1

+ αs2
− 1

)
, where λ is the Lagrangian multiplier.

B
∗

2 2 2 2 2
]

Combining it with (12), we have

22 = 4K γ22 + αs1
αs2

[
(xs s s s

∫ ∞ ∫ ∞

1
− x

2
)

B
∗

+ 4K (x
1

+ x
2
) ,

[
2

]

23 = −2K γ21 − αs1
αs2

(
xs1

+ xs2

)

1
− x

2

)
 + 2K ,

Q = 1 −
d̂ (xA)/

√
ζA

ϕ(r)dr −
d̂ (xZ)/

√
ζZ

ϕ(r)dr

33 = K γ20 + αs1
αs2

[
2

xs1
− xs2

]
+ 2K ,

− λ
(
αs1

+ αs2
− 1

)
. (A.1) 2 2

Using the chain rule, we can establish

|B| = K αs1
αs2

(xs1
− xs2

) [(xs1
− xs2

)

Combining them with (11), we have

+ 4K].

∂ Q ∂ Q ∂ ζA ∂ Q ∂ ζZ

λ. (A.2)

σ
[

B∗ B∗

∂ αj

= −
∂ ζA ∂ αj

−
∂ ζZ ∂ αj

−
ζi =

 22 (x − x)2 + 2
 23 (x − x)2 (x + x)

From (14) and (A.1), we obtain ∂ Q = ϕ

(
d̂ (xi)

)

d̂ (xi)

(i = A, Z)

i b
T |B|

B∗

i b i b
|B|]

∂ζi
 ζi 2(ζi)

3/2 + 33 (x − x)2 (x + x)2

∂ζi

−σ 2 Di,j

i b i b
|B|

and
∂ αj

=
T 2 (j = s1 , s2). We thus have

j σ 2 (xi − xb)
2 α2 (2xs

 − xi − xb)
2 + α2 (2xs

 − xi − xb)
2

s1 1

2
=

2

 s2 2

2
∂ Q

(
d̂ (xA)

)
 d̂ (xA) σ 2 DA,j

T αs1
αs2

(xs1
− xs2

) [(xs1
− xs2

) + 4K]
ϕ √

2 2 2 2

∂ αj

=
 ζA 2 (ζA)

3/2 T α2 σ (xi − xb) αs1
αs2

(xs1
− xs2

) (xs1
+ xs2

− xi − xb)
+

2 2

(
d̂ (xZ)

)

d̂ (xZ)

σ 2 D 2
Z ,j

TK αs1

αs2
(xs1

− xs2
) [(xs1

− xs2
) + 4K]

− λ 2K σ 2 (xi − xb)
2 αs αs (xs

+ xs

− xi − xb)
2

+ ϕ √
ζ

2 (ζ)3/2 T α2

1 2 1 2 +
Z Z j TK αs1

 αs2
 (xs1

 − xs2
)2 [(xs − xs2

)2 + 4K]
= 0,

2K σ 2 (x − x)2 α
 α (x

 − x)2

which is equivalent to

i
+

TK αs s s

b s1 s2 s1 s2

2 2
s

(B.1)

1
α

2
(x

1
− x

2
) [(xs1

− xs2
)
 + 4K]

1

[(
d̂ (xA)

)

ϕ √ d̂ (xA)
2
A,j

Since αs1 + αs2 = 1, we can rewrite α2
 and α2

2
as αs1 (1 − αs2

)
2 ζA

2 (ζA)

3/2 α2

and αs2
(1 − αs1

). Substituting them into (B.1) and after some
simplification, we can obtain (14). (

d̂ (xZ)
)

 d̂ (xZ) D
Z ,j

]

=

2λT

.

+ ϕ √
ζ
 2 (ζ)3/2 α2 σ 2 Appendix C. Minimizing ζM

Z Z j

13

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

1 =
2

This yields

We denote xc = (xb + xM)/2. For notational simplicity, let
√

qs

αs1

√
qs

αs2

. (A.3)

ζ̂M =
T

σ 2 (xM − xb)
2

ζM ,

14

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

d2

2

1 2

1

1 2

1 2

2

2

2

1

s1

2

(x

(x
1

(x

(x
1

1

d1 = min{xc − x1 , xk − xc },

d2 = max{xc − x1 , xk − xc }.

which is minimized when
⎧ √ √

d2 2

⎨
δ∗ = 1

+ 4K , if d2 − d1 ≥ d
1

+ 4K − d1 ; √
Combining (14) with (17) and (18), we have

2

⎩ d2 − d1 , if d2 − d1 ≤ 1
+ 4K − d1 .

(xs1
+ xs2

− 2xc) Putting the above results together, we have (19). It is also worth-

ζ̂M =
K [(x − xs2

)2 + 4K]
+

while pointing out when xs1

or xs2
provided by (19) does not

4(xs1
− xc) + 8|xs1

− xc ||xs2
− xc | + 4(xs2

− xc)
.
 coincide with any of the design points, our derivations here in

2 2 fact provide an easy way to choose a design point. Usually, we
(xs1

− xs2
) [(xs1

− xs2
) + 4K]

can simply choose the one closest to xs1 or xs2
.

To minimize ζM is the same as to minimize ζ̂M . We need to

consider two cases in which (xs1
− xc)(xs2

− xc) is either positive

or negative.

Case 1: (xs1
− xc)(xs2

− xc) ≥ 0. In this case, we have xs2
>

xs1
≥ xc or xs1

< xs2
≤ xc (which means that xs1

and xs2
are on

the same side of point xc), hence

4(xs + xs − 2xc)
2

References

Atkinson, A., Donev, A., & Tobias, R. (2007). Optimum experimental designs, with

SAS, volume 34. Oxford University Press.

Branke, J., Chick, S. E., & Schmidt, C. (2007). Selecting a selection procedure.

Management Science, 53(12), 1916–1932.

Brantley, M. W., Lee, L. H., Chen, C. H., & Chen, A. (2013). Efficient simulation

budget allocation with regression. IIE Transactions, 45(3), 291–308.

Brantley, M. W., Lee, L. H., Chen, C. H., & Xu, J. (2014). An efficient simulation ζ̂M =
s1

− xs2)
2 [(xs − xs2

2

)2 + 4K] budget allocation method incorporating regression for partitioned domains.

Automatica, 50(5), 1391–1400.
(xs1

+ xs2
− 2xc) Chang, K. H., Hong, L. J., & Wan, H. (2013). Stochastic trust-region

+
K [(xs − xs)

2 + 4K] response-surface method (STRONG)—A new response-surface framework for

1 (xs + xs − 2xc)
2

simulation optimization. INFORMS Journal on Computing, 25(2), 230–243.

Chen, X., Ankenman, B. E., & Nelson, B. L. (2013). Enhancing stochastic kriging
=

K (xs1
− xs)

2

2

metamodels with gradient estimators. Operations Research, 61(2), 512–528.

Chen, W., Gao, S., Chen, C. H., & Shi, L. (2013). An optimal sample allocation
1 (xs1

− xs2
) + 4(xs1

− xc)(xs2
− xc) strategy for partition-based random search. IEEE Transactions on Automation

=
K

1
≥

K
.

(xs1
 − xs)

2
Science and Engineering, 11(1), 177–186.

Chen, C. H., He, D., Fu, M., & Lee, L. H. (2008). Efficient simulation budget

allocation for selecting an optimal subset. INFORMS Journal on Computing,

20(4), 579–595.

Chen, C. H., & Lee, L. H. (2011). Stochastic simulation optimization: An optimal

Case 2: (xs1
− xc)(xs2

− xc) ≤ 0. In this case, we have xs2
≥

xc > xs1
(which means that xs1

and xs2
are on the different sides

of point xc), therefore

4 (xs + xs − 2xc)
2

1 2

computing budget allocation, volume 1. World scientific.

Chen, C. H., Lin, J., Yücesan, E., & Chick, S. E. (2000). Simulation budget allocation

for further enhancing the efficiency of ordinal optimization. Discrete Event

Dynamic Systems, 10(3), 251–270.

Chen, Y., & Ryzhov, I. O. (2019). Complete expected improvement converges to

an optimal budget allocation. Advances in Applied Probability, 51(1), 209–235.

ζ̂M =
s1

− xs2)
2 + 4K

+
K [(xs − xs2

.
)2 + 4K] Chen, C. H., Yücesan, E., Dai, L., & Chen, H. C. (2009). Optimal budget allocation

for discrete-event simulation experiments. IIE Transactions, 42(1), 60–70.

If we choose the two support points such that xs1
+ xs2

− 2xc = 0,
then

DeGroot, M. H. (2005). Optimal statistical decisions, volume 82. John Wiley & Sons.

Draper, N. R., & Smith, H. (1998). Applied regression analysis, volume 326. John

Wiley & Sons.

ζ̂M =
s1

4

− xs2

1
< .

)2 + 4K K

Fu, M. C., & Hu, J. Q. (1997). Conditional Monte Carlo: Gradient estimation and

optimization applications. Kluwer Academic.

Fu, M. C., & Qu, H. (2014). Regression models augmented with direct stochastic

Combining the results from Cases 1 and 2, it is clear that in order

to minimize ζ̂M we should choose the support points xs1
and xs2

on different sides of xc , i.e., we only need to consider Case 2.
Hence, we rewrite ζ̂M as:

4 (xs + xs − 2xc)
2

1 2

gradient estimators. INFORMS Journal on Computing, 26(3), 484–499.

Gao, S., Chen, W., & Shi, L. (2017). A new budget allocation framework for the

expected opportunity cost. Operations Research, 65(3), 787–803.

Gao, S., Xiao, H., Zhou, E., & Chen, W. (2017). Robust ranking and selection with

optimal computing budget allocation. Automatica, 81, 30–36.

De la Garza, A. (1954). Spacing of information in polynomial regression. The

Annals of Mathematical Statistics, 25(1), 123–130.

ζ̂M =
s1

− xs2)
2 + 4K

+
K [(xs

2

− xs2)
2 + 4K]

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B.

(2013). Bayesian data analysis (pp. 353–357). CRC Press.

4K + (xs1
+ xs2

− 2xc)
.
 Glasserman, P. (1991). Gradient estimation via perturbation analysis. Kluwer

Academic.

=
K [(xs1

− xs)
2 + 4K]

Glynn, P. W. (1990). Likelihood ratio gradient estimation for stochastic systems.

Communications of the ACM, 33(10), 75–84.
We now further consider two cases:

Case 2.1: xs2
−xs1

≤ 2d1 . Without loss of generality, we assume

xc − x1 < xk − xc . It is clear that to minimize ζ̂M we want to

maximize xs2
−xs1

, i.e., to keep the two support points as far apart

as possible, and on the other hand to minimize |xs1
+ xs2

− 2xc |.
Hence, {xs1

, xs2
} = {x1 , x1 + 2d1 } is the optimal solution and the

minimum of ζ̂M is
 1

.
K +d2

Case 2.2: xs2
− xs1

≥ 2d1 . We still assume xc − x1 < xk − xc .
First, in order to increase xs2

− xs1
and decrease |xs1

+ xs2
− 2xc |,

we should select s1 = 1. Next, let xs2
= x1 + 2d1 + δ (δ ≥ 0), we

then have

4K + δ2

Ho, Y. C., & Cao, X. R. (1991). Perturbation analysis of discrete event dynamic

systems. Kluwer Academic.

Lee, L. H., Chen, C. H., Chew, E. P., Li, J., Pujowidianto, N. A., & Zhang, S.

(2010). A review of optimal computing budget allocation algorithms for

simulation optimization problem. International Journal of Operations Research,

7(2), 19–31.

Lee, L. H., Pujowidianto, N. A., Li, L. W., Chen, C. H., & Yap, C. M. (2012).

Approximate simulation budget allocation for selecting the best design in

the presence of stochastic constraints. IEEE Transactions on Automatic Control,

57(11), 2940–2945.

Liski, E. P., Mandal, N. K., Shah, K. R., & Sinha, B. (2002). Topics in optimal design,

volume 163. Springer Science & Business Media.

Pasupathy, R., Hunter, S. R., Pujowidianto, N. A., Lee, L. H., & Chen, C. H. (2014).

Stochastically constrained ranking and selection via SCORE. ACM Transactions

on Modeling and Computer Simulation, 25(1), 1–26.

Peng, Y., Chong, E. K., Chen, C. H., & Fu, M. C. (2018). Ranking and selection as

ζ̂M =
K [(2d

,
+ δ)2 + 4K]

stochastic control. IEEE Transactions on Automatic Control, 63(8), 2359–2373.

http://refhub.elsevier.com/S0005-1098(21)00451-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb11
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb11
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb13
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb14
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb14
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb15
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb15
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb15
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb16
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb16
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb18
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb18
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb19
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb19
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb20
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb20
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb22
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb22
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb28
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb28

15

T. Wang, J. Xu, J.-Q. Hu et al. Automatica 134 (2021) 109927

Peng, Y., Xu, J., Lee, L. H., Hu, J., & Chen, C. H. (2018). Efficient simulation sam-

pling allocation using multifidelity models. IEEE Transactions on Automatic

Control, 64(8), 3156–3169.

Qu, H., & Fu, M. C. (2014). Gradient extrapolated stochastic kriging. ACM

Transactions on Modeling and Computer Simulation, 24(4), 1–25.

Ryzhov, I. O. (2016). On the convergence rates of expected improvement

methods. Operations Research, 64(6), 1515–1528.

Schwartz, J. D., Wang, W., & Rivera, D. E. (2006). Simulation-based optimization

of process control policies for inventory management in supply chains.

Automatica, 42(8), 1311–1320.

Teng, S., Lee, L. H., & Chew, E. P. (2007). Multi-objective ordinal optimization for

simulation optimization problems. Automatica, 43(11), 1884–1895.

Törn, A., & Žilinskas, A. (1989). Global optimization, volume 350. Springer.

Xiao, H., Chen, H., & Lee, L. H. (2019). An efficient simulation procedure for

ranking the top simulated designs in the presence of stochastic constraints.

Automatica, 103, 106–115.

Xiao, H., Gao, S., & Lee, L. H. (2017). Simulation budget allocation for

simultaneously selecting the best and worst subsets. Automatica, 84,

117–127.

Xiao, H., Gao, F., & Lee, L. H. (2019). Optimal computing budget allocation for

complete ranking with input uncertainty. IISE Transactions, 1–11.

Xiao, H., Lee, L. H., & Ng, K. M. (2013). Optimal computing budget allocation for

complete ranking. IEEE Transactions on Automation Science and Engineering,

11(2), 516–524.

Xu, J., Huang, E., Hsieh, L., Lee, L. H., Jia, Q. S., & Chen, C. H. (2016). Simulation

optimization in the era of Industrial 4.0 and the Industrial Internet. Journal

of Simulation, 10(4), 310–320.

Zhang, F., Song, J., Dai, Y., & Xu, J. (2020). Semiconductor wafer fabrication pro-

duction planning using multi-fidelity simulation optimisation. International

Journal of Productions Research, 1–16.

Tianxiang Wang is a Postdoctoral Researcher in School

of Management, Fudan University. His research inter-

ests include financial engineering, stochastic optimiza-

tion via simulation, and operations management. He

received his BS degree in Mathematics Sciences from

Fudan University and his Ph.D. degree in Management

Science and Engineering from Fudan University.

Jie Xu received the Ph.D. degree in industrial engi-

neering and management sciences from Northwestern

University, the M.S. degree in computer science from

The State University of New York, Buffalo, the M.E.

degree in electrical engineering from Shanghai Jiaotong

University, and the B.S. degree in electrical engineering

from Nanjing University. He is currently an Asso-

ciate Professor of Systems Engineering and Operations

Research at George Mason University. His research

interests are data analytics, stochastic simulation and

optimization, with applications in cloud computing,

manufacturing, and power systems.

Jian-Qiang Hu is the Distinguished Professor of Fudan

University and the Hongyi Professor of Management

Science in School of Management, Fudan University.

He received his B.S. degree in applied mathematics

from Fudan University, China, and M.S. and Ph.D. de-

grees in applied mathematics from Harvard University.

His research interests include discrete-event stochas-

tic systems, simulation, stochastic optimization, with

applications in supply chain management, financial

engineering, and healthcare. He won the Outstanding

Simulation Publication Award from INFORMS Simula-

tion Society twice (1998, 2019) and the Outstanding Research Award from

Operations Research Society of China in 2020. He has been on editorial board

of Automatica, Operation Research, IIE Transaction on Design and Manufacturing,

and Journal of the Operations Research Society of China.

Chun-Hung Chen received his Ph.D. from Harvard Uni-

versity. He is a Professor at George Mason University

and had been faculty with University of Pennsylvania

and National Taiwan University. He has served as

a Department Editor for IIE Transactions, Department

Editor for Asia-Pacific Journal of Operational Research,

Associate Editor for IEEE Transactions on Automation

Science and Engineering, Associate Editor for IEEE Trans-

actions on Automatic Control, Area Editor for Journal of

Simulation Modeling Practice and Theory. Dr. Chen is the

author of two books, including a best seller: ‘‘Stochastic

Simulation Optimization: An Optimal Computing Budget Allocation’’. He is an IEEE

Fellow.

http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb34
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40

