
Automatica 134 (2021)  109927 

 
 

Contents lists available  at ScienceDirect 
 

 

Automatica 
 

journal  homepage:  www.elsevier.com/locate/automatica 

 
 
 

Optimal Computing Budget Allocation for regression with gradient 

information✩
 

Tianxiang Wang a , Jie Xu b , Jian-Qiang Hu a ,∗, Chun-Hung Chen b 

a Department  of Management Science, School of Management, Fudan University,  Shanghai, 200433, China 
b Department  of Systems Engineering and Operations Research, George Mason University,  Fairfax, VA 22030, United States of America 

 
 

a r t i c l e i n f o a b s t r a c t 
 

Article history: 

Received 30 March 2020 

Received in revised form  13 April  2021 

Accepted 10 August 2021 

Available  online   xxxx 
 

Keywords: 

Simulation optimization 

Stochastic systems 

Gradient information 

Computing budget allocation 

Quadratic model 

We  consider  the  problem  of  optimizing the  performance  of  a stochastic  system,  e.g., a discrete- 

event system, where the system performance  is evaluated using stochastic simulations.  Our objective 

is to  allocate  simulation budget  to  maximize  the  probability of correct  selection  (PCS)  of the  best 

design, where both system performance  and gradient  information can be obtained simultaneously via 

simulation. The objective function  is assumed to be quadratic, or can be approximated by a quadratic 

regression model.  The main  contribution of our  work  is to  utilize  gradient  information to  enhance 

the efficiency  of traditional Optimal  Computing  Budget Allocation  (OCBA). We develop near-optimal 

rules that determine  design points where simulations should be run and the number  of runs allocated 

to each point.  Our numerical  experiments  demonstrate  that  the proposed approach performs  much 

better than other existing  ranking  and selection methods, even in cases where derivative  information 

is very noisy and its simulation cost is high. 

© 2021 Elsevier Ltd. All rights reserved. 

 
 
 

1. Introduction 

 
Simulation-based optimization,  or  simply simulation 

optimization, is a technique widely used to optimize the perfor- 

mance  of stochastic  systems, e.g., discrete  event  systems. Com- 

pared  to analytical approaches,  simulation optimization directly 

uses simulations to estimate system performance and search for 

the best design, making  it a widely applicable approach for many 

applications in  automation science  and  engineering (Brantley, 

Lee, Chen, & Xu, 2014; Peng, Xu, Lee, Hu, & Chen, 2018; Schwartz, 

Wang,  & Rivera,  2006; Teng, Lee, & Chew,  2007; Zhang,  Song, 

Dai, & Xu, 2020). Because simulations can be computationally 

expensive  and simulation output noises can be significant, it is 

critical to  optimally allocate  simulation budget  among  multiple 

designs such that the best design can be selected with the highest 

probability possible  given  a limited computing budget.  Formally, 

the problem we consider  in this paper is to select the best design 

 
✩  T. Wang  and  J.-Q. Hu  were  supported  in  part  by  the  National   Natural 

Science Foundation  of China (NSFC) under  Grants 71720107003,  72033003,  and 

71571048.   J.   Xu  was  supported  in  part  by  the  National   Science Foundation 

under  Grant  DMS-1923145.  C.-H. Chen was supported in  part  by  the  National 

Science Foundation   under  Awards  FAIN 2123683.  The  material in  this  paper 

was presented  at the 2019 INFORMS international conference,  June 8–13, 2019, 

Cancun, Mexico.  This paper  was recommended for  publication in  revised  form 

by Associate Editor  Rong Su under  the direction of Editor  Christos G. Cassandras. 
∗  Corresponding  author. 

E-mail addresses: wangtx16@fudan.edu.cn (T. Wang), jxu13@gmu.edu 

(J. Xu), hujq@fudan.edu.cn  (J.-Q. Hu), cchen9@gmu.edu (C.-H. Chen). 

among  a finite number of  choices,  where   the  performance of 

each design  must  be estimated with some uncertainty through 

stochastic  simulation  sampling, using  a given  finite simulation 

budget.  This problem setting  has been an active  area of research 

in simulation and automation literature (Peng, Chong, Chen, & Fu, 

2018; Xiao, Chen, & Lee, 2019; Xiao, Gao, & Lee, 2017),  with a 

comprehensive review presented  in Xu et al. (2016). Among many 

approaches  developed  for  this  problem, the  Optimal Computing 

Budget Allocation (OCBA) approach (Chen, Gao, Chen, & Shi, 2013; 

Chen, He, Fu, & Lee, 2008; Chen, Lin,  Yücesan, & Chick,  2000; 

Gao, Chen, & Shi, 2017; Gao, Xiao, Zhou, & Chen, 2017; Lee et al., 

2010; Lee, Pujowidianto, Li,  Chen, &  Yap, 2012; Xiao,  Gao, & 

Lee, 2019; Xiao,  Lee, &  Ng, 2013)  is  one  of  the  most  efficient 

methods,  particularly in the case where  the simulation budget  is 

limited and/or  the number of alternatives is large (Branke, Chick, 

& Schmidt,  2007; Pasupathy, Hunter,  Pujowidianto, Lee, & Chen, 

2014). According to Chen and Ryzhov (2019)  and Ryzhov (2016), 

the expected improvement (EI), which is another class of efficient 

simulation budget  allocation approaches, has the sampling ratios 

among  non-best designs converge  to OCBA’s sampling ratios  for 

all  non-best designs. However, EI would let  the  sampling ratio 

for the best design approach 1 asymptotically. In contrast,  OCBA’s 

asymptotic allocation to the best design is bounded  away from  1. 

In the  framework of OCBA, the  problem is studied  from  the 

perspective of  allocating a fixed  number of  simulation replica- 

tions  to the designs that  are critical in the process of identifying 

the  best design  and thus  to maximize the  probability of correct 

selection  (PCS). However, previous OCBA works  all  assume that 

only  the performance information of designs is available. 
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In many  simulation settings,  not  only  can the performance of 

each design be estimated, but its sensitivity information can also 

be obtained,  often at the fraction of the simulation budget needed 

for  estimating the  performance, for  example,  by using  the  tech- 

nique  of perturbation analysis (PA) (Fu & Hu, 1997; Glasserman, 

1991; Ho & Cao, 1991) or the likelihood ratio  (LR) method (Glynn, 

1990).  Motivated by  this  fact,  we  consider  the  case where  the 

derivative (gradient) information is also available. In other words, 

we  are interested in  the  following question: how  to  optimally 

allocate  a fixed  amount of simulation budget  if the performance 

of each design  and its corresponding sensitivity (derivative) can 

be estimated. 

2. Problem  setting 

 
2.1. Problem statement 

 
We consider  the problem with the principal goal of selecting 

the best design  among  k designs xi , i ∈ I = {1, 2, . . . , k}, where 

xi  is a scalar. For notational simplicity, we assume that  x1  is the 

smallest  and xk  is the largest, and let  X  = {x ∈ R|x1  ≤ x ≤ xk }. 

Without loss of generality, we consider the minimization problem 

shown  below  where  the best design is the one with the smallest 

expected  performance measure 

In this paper, we use a setting  similar to that  of Brantley,  Lee, 

Chen, and Chen (2013),  Brantley  et al. (2014),  where  the under- 
min 
i∈I 

y (xi ) = E [f (xi )] .  (1) 

lying  response  surface  is approximately quadratic or  piecewise 

quadratic. Brantley  et al. (2013)  proposed  an Optimal Simulation 

Design (OSD) approach  that  incorporates this quadratic response 

surface  information in  simulation budget  allocation. Unlike  tra- 

ditional R&S methods,  this  regression  based approach  requires 

simulation of only a subset of the alternative design locations and 

so the  simulation efficiency can be dramatically enhanced.  For 

example,  the  average system  time  for  a customer in a queueing 

system  may  be estimated by  simulation output data. The opti- 

mization problem then  is to determine a service  rate  within  an 

interval of  feasible  values  that  balances  customer system  time 

and the cost of servers. If the cost of servers is a linear  function 

of service rates, e.g., determined by how  many  servers to deploy, 

and also the queueing  system  is an M/M/c system, the objective 

In this paper, we study  the case where  the performance measure 

is quadratic or approximately quadratic in X , i.e., 

y (xi ) = β0 + β1 xi + β2 x
2 .                                                        (2) 

We denote  the unknown model  parameters by β = [β0 , β1 , β2 ]. 

We consider  the case where  y(xi ) can only  be estimated via sim- 

ulation with homogeneous  noise. In addition, the corresponding 

gradient information, denoted  as g (xi ), can also be estimated at 

the same time  (possibly based on the same simulation) with 

homogeneous   noise.  We  assume  that  the  simulation noises  of 

f (xi )  and  g (xi ), denoted  by  εj  and  ε′,  are  independent normal 

random variables,  and they  are also independent of each other 

across replications. Therefore,  for replication j at xi , we have 
function is  then  approximately  quadratic. So OSD would only 

require the simulation of a small  set of designs and dramatically f (xi ) = y(xi ) + εj ,  where  εj ∼ N 
(
0, σ 2 

)
; 

j 
,    where  ε

j 
∼ N 

(
0, σg 

)
.
 

increase  computational efficiency over  traditional R&S methods 

that may need to experiment with many designs. When perform- 

ing  queueing  simulations, we  may  simultaneously use PA or LR 

to  estimate the  gradient of  average  system  time  with  respect 

to  service  rate  lying   in  a  bounded   interval. Our  work  shows 

g (xi ) = β1 + 2β2 xi + ε′                        ′                     2
 

 

The parameters β are unknown, so is y(xi ). However, we can find 

an estimate for y(xi ), denoted  as ŷ(xi ), by making  full  use of both 

performance and  gradient information  based  on  a generalized 

β0 1 2 

]

 
that   sensitivity information  can  further decrease  the  number 

least  square  estimate.  Let β̂ [ 
=  , β , β 

be the  least  square 

of  the  design  locations requiring simulation and  thus  increase 

computation efficiency. 

Gradient  information has been successfully  used to  improve 

the  efficiency of parameter estimation in  simulation metamod- 

els, including linear  regression  (Fu & Qu, 2014)  and  stochastic 

kriging (Chen, Ankenman, & Nelson, 2013; Qu & Fu, 2014). Nev- 

ertheless,  as to  the  best  of  our  knowledge, there  has not  been 

any  work that  studies  the  use of  gradient information  to  help 

improve the  efficiency of R&S methods.  In this  paper,  we  make 

such an attempt. Specifically,  to utilize the simulation budget  in 

a most efficient way pursuing the maximization of PCS, we want 

to determine (i) which designs should  be selected for simulation 

and (ii)  the number of simulation runs for those selected designs. 

This paper  develops  a novel  Optimal Computing Budget  Al- 

location with Gradient  information (OCBAG) method to address 

estimates  for the corresponding parameters in (2), then we have 

ŷ (xi ) = β̂ 
0 + β̂ 

1 xi + β̂ 
2 x

2 .                                                        (3) 

In  order  to  obtain  β̂ , suppose  we  run  simulations at a number 

of xi ’s (no simulation at other  design  points),  which we  call the 

support points  and denote  by {xi : i ∈ In }, where  In  ⊂ I is the set 
of the indices  of the support points  and |In | = n ≤ k. 

For ease of exposition, we  use matrix notation for  linear  re- 

gression. For the  support points  {xi  : i ∈ In }, we define  F  as the 
2n-dimensional vector  containing f (xi ) and g (xi ), X as the 2n × 3 

matrix consisting of rows  [1, xi , x
2 ] and [0, 1, 2xi ], and V as the 

n×2n covariance matrix of the simulation noises of performance 
and gradient information: 

( 
(f (x ))i∈In     

) 

,   X

 ( (
1, x , x2 

) ) 
these   issues.  Numerical  testing   demonstrates  that   our   new  

F =  i =  
i    i  i∈In , 

method can enhance  simulation  efficiency, compared  with ex- 

isting  efficient R&S methods such as OCBA and OSD. By making 

full  use of gradient information, OCBAG method offers  dramatic 

further  improvements. For  example,  in  comparison with  OSD 

method,  our novel OCBAG method can potentially save half of the 

total  simulation budget while maintaining the same performance 

efficiency. The  improvement made  by  OCBAG method is  still 

quite  significant even when  gradient information is noisy and its 

simulation cost is high. 

The rest  of this  article  is organized  as follows. In  Section  2, 

 
⎛ 

⎜ 
⎜ 
⎜ 

V = 
⎜

 ⎜ ⎜ 
⎜ 
⎝ 

(g (xi ))i∈In 

 
 

. 
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. 
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(0, 1, 2xi )i∈In 
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we  introduce the  simulation optimization problem setting  and 

Bayesian framework. Section 3 provides the development of 

OCBAG method.   Numerical experiments comparing the  results 

Following standard  least square regression analysis, we obtain the 

generalized least squares estimate for β as 

1
 

using  the  new  OCBAG method and  OSD method are  provided 

in  Section  4.  Finally,   Section  6  provides  the  conclusions  and 
β̂ = 

(
X 

T 
V 

−1 
X 
)−

 X 
T 
V 

−1 
F .  (4) 
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suggestions for future work using the concepts introduced in this 

article. 

Since the Gauss–Markov conditions are satisfied,  the above esti- 

mates for β are unbiased and have the minimum variance among 
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2 

β̂ 

i 

 
all unbiased linear estimators (see Draper & Smith, 1998; Fu & Qu, 

2014). 

We aim to select the design associated with the smallest  mean 

performance measure from  the k designs using a total  computing 

budget of T simulation samples (replications). Given the general- 

ized least squares estimates  for the parameters,  we can use (3) to 

estimate the expected performance measure at each design point. 

We designate the design point with the smallest  estimated mean 

performance measure  as xb , i.e., ŷ(xb )  = mini∈I  ŷ(xi ). Given  the 
uncertainty of the estimated parameters,  xb  is a random variable 

that  is dependent upon  the  size of  the  computing budget  and 

the  number of  simulation replications allocated  to  each design 

point.  We define correct  selection  as the event where  xb is indeed 

the  best design  and Ni  as the  number of simulation replications 

conducted at xi (xi  is a support point if Ni  > 0). Since simulation 

is expensive  and the computing budget is limited, we seek to de- 

velop an allocation policy  in order  to maximize the probability of 

correctly selecting  the best design (PCS). This Optimal Computing 

Budget Allocation with Gradient  information (OCBAG) problem is 

described  as follows: 

that  for  a polynomial of degree  m and  a discrete  domain with 

more  than  m + 1  support points,  the  information in  X T V −1 X 

(without any  gradient information)  obtained from   more  than 

m  + 1  support points   will always  be  attained by  using  only 

m + 1 of the  support points.  That is to  say, we  need just  three 

different support points  because of  our  quadratic model  if we 

only  use the  performance information.  In  our  problem setting, 

we obtain  performance and gradient information simultaneously 

after  running simulation for each design location. Because gradi- 

ent information is equivalent to performance information in the 

sense of  determining the  unknown parameters β, two  support 

points  provide four  observations in  the  design  matrix X (Xi    = 
[1, xi , xi 

] and Xi  = [0, 1, 2xi ]), which is enough  to help  solve our 

problem. From now on, we refer to the support points  as {xs1 
, xs2 

} 
where  xs1  

< xs2 
. 

Furthermore, given the estimated xb , the assumption that  our 
underlying function is quadratic allows  us to reduce the number 

of required comparisons in our PCS calculation in (6) from  k − 1 

to 2, i.e., we have (see Brantley  et al., 2013) 

PCS  = P 
{
ỹ (xb ) ≤ ỹ (xi ) , ∀i = 1, 2, . . . , k

}
 

max  PCS = P {y (xb ) ≤ y (xi ) , ∀i = 1, 2, . . . , k} 
s.t. N1 + N2 + · · · + Nk  = T . 

 

(5) = P 
{
ỹ (xA ) ≥ ỹ (xb )  ∩ ỹ (xZ ) ≥ ỹ (xb )

} 
,  (9) 

where  the  identities of  xA  and  xZ   depend  on  whether xb  is an 
In  the  constraint in  the  above  problem we  have  implicitly  as- 

sumed that  the cost of each simulation run at every design point 

is one unit. 

 
2.2. A Bayesian regression framework 

interior point or a boundary point,  as described  in the following 

three  cases: 

• Case 1 (Interior Case): b ̸= 1, k; A = b − 1; Z = b + 1, 

• Case 2 (Left Boundary  Case): b = 1; A = 2; Z = k, 
• Case 3 (Right  Boundary  Case): b = k; A = 1; Z = k − 1. 

To solve problem (5), we adopt  a Bayesian regression  frame- 
Let Ns

 and Ns
 be the number of simulation runs allocated  at 

work as described   in  Gelman  et  al.  (2013).  Using  a standard  
1  2 

Ns1
 Ns2

 

non-informative prior distribution, one  would obtain  the  same 

estimates  of β as in classical regression  analysis briefly explained 

xs1  
and xs2 

, respectively, and αs1   
= 

can be restated  as: 
T     

and αs2   
= T   

. Then (5) 

previously. The key difference is with a Bayesian perspective,  it 

allows  us to calculate  PCS using the posterior distribution of β. In 

the following, we use β̃ and ỹ(xi ) to denote  the random variables 

whose  probability distributions are the  posterior distribution of 

β and y(xi ) conditional on F , respectively. PCS in  (5)  under  the 

Bayesian regression framework is defined as Chen and Lee (2011), 

Chen, Yücesan, Dai, and Chen (2009): 

PCS = P 
{
ỹ (xb ) ≤ ỹ (xi ) , ∀i = 1, 2, . . . , k

} 
.                              (6) 

Using a non-informative prior distribution and assuming  that  the 

conditional distribution of  the  simulation output vector  F  is  a 

multi-variate normal distribution with mean X β and a covariance 

matrix V , DeGroot (2005) shows that the posterior distribution of 

β is then  given  by 

max       PCS = P 
{
ỹ (xA ) ≥ ỹ (xb )  ∩ ỹ (xZ ) ≥ ỹ (xb )

} 

.         (10) 
s.t. αs1  

+ αs2  
= 1. 

We can estimate covariance matrix V from the samples generated 

at  the  support points  and  calculate  ỹ(xi ) using  (8).  In  the  next 

section,  we  present  an  effective way  to  approximate PCS and 

derive  approximate solutions to the optimal allocations. 

 
3. Approximate solutions 

 
In the previous section, we show that  regardless how  the 

simulation budget  is allocated  to the support points,  PCS can be 

calculated  based on  the  comparisons of  xb   to  its  two  adjacent 

design  points,  hence, we just  need two  support points.  Now  we 

are ready to derive our OCBAG allocation policy. In Section 3.1, we 

derive a lower bound of PCS as an approximation for PCS. We then 

β̃ |F  ∼ N 

(

 , 
(
X 

T 
V 

−1 
X 
)−1 

) 
.  (7) develop  an efficient approximation for  the  optimal allocation of 

the total  simulation budget  in Section 3.2. In Section 3.3, we de- 

Since ỹ(xi ) is a linear  combination of β̂  elements,  the  posterior 

distribution of ỹ(xi ) is normal: 

ỹ(xi ) ∼ N 
(
Xiβ̂, X T (X T V −1 X )−1 Xi 

) 
,  (8) 

where  X T  = [1, xi , x
2 ]. 

termine the optimal locations of the two  support points.  Finally, 

in Section 3.4, we discuss the algorithmic implementation of the 

results  from  Sections 3.1–3.3. 

 
3.1. A lower bound for PCS 

i i 

Similar to the approach  used in Brantley  et al. (2013),  we are 

also interested in how the PCS given by (6) changes if we conduct 

additional simulation runs  so that  we  can make  allocations so 

as to  maximize PCS. See Brantley   et  al.  (2013)  for  a detailed 

discussion  of the predictive posterior distributions. 

 
2.3. Simplification 

 
In order to simplify problem (5), we aim to reduce the number 

of design locations at which we need to run  simulation without 

resulting in any information loss. De la Garza (1954)  established 

First, we have 

PCS  = P {ỹ (xA ) ≥ ỹ (xb ) ∩ ỹ (xZ ) ≥ ỹ (xb )} 

= 1 − P {ỹ (xA ) ≤ ỹ (xb ) ∪ ỹ (xZ ) ≤ ỹ (xb )} 

= 1 − P 
{
ỹ (xA ) ≤ ỹ (xb )

} 
− P 

{
ỹ (xZ ) ≤ ỹ (xb )

}
 

+ P {ỹ (xA ) ≤ ỹ (xb ) ∩ ỹ (xZ ) ≤ ỹ (xb )}. 

Since the  underlying function is quadratic, the  last  term  in  the 

above equation is simply the probability that xb is the ‘‘worst’’ de- 

sign with the largest  expected  performance measure. This prob- 

ability is typically very small so that  we can establish  an efficient 
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1 
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1  2 

2 

g 

√ 

A A,j 
2  

− ≤ − 

x 

2 

ˆ 

σ 

α 
2 

2 

, 

s2 

√ 
ζ 

⎪ 

 
lower bound,  APCS defined  as follows, which can be used as an 

approximation for PCS: 

PCS  ≥ APCS 

= 1 − P 
{
ỹ (xA ) ≤ ỹ (xb )

} 
− P 

{
ỹ (xZ ) ≤ ỹ (xb )

} 
. 

Let 

Instead  of  using  (15),  in  what   follows we  propose  an  ap- 

proximate but  much  simpler way  to  compute αs1   
and  αs2 

. We 

note 
 

APCS 

= 1 − P 
{
ỹ (xA ) ≤ ỹ (xb )

} 
− P 

{
ỹ (xZ ) ≤ ỹ (xb )

}
 

{ } { } 

d̃ (xi ) ≡ ỹ (xi ) − ỹ (xb ) = β̃ 
2 

(
x

2 − x2 
) 

+ β̃ 
1 (xi − xb ) .

 ≥ 1 − 2 max{P ỹ (xA ) ≤ ỹ (xb )  , P ỹ (xZ ) ≤ ỹ (xb )  } 
i b  { } 

Because d̃ (xi ) is a linear  combination of the  elements  of β̃ , d̃ (xi ) 
≥ 1 − 2P ỹ (xM ) ≤ ỹ (xb )  , 

is  also  normally distributed, i.e., d̃ (xi )  ∼  N 

[ 
ˆ (xi ) , ζi 

]
,  where 

d̂ (xi ) = ŷ (xi ) − ŷ (xb ) and 

ζi   = 
(
0, xi − xb , x

2 − x2 
) (

XT V−1 X
) 

where 
{ 

M = argmax    ϕ 
i=A,Z 

( 
d̂ (xi ) 

)}
 

√← 
i 

 
 
= argmin 

i=A,Z 

{ 
d̂ (xi ) 

}
 

√← 
i 

 
 
.  (16) 

i  b 

T In fact, xA  and xZ  are usually  very  close to each other  since they (
0, xi − xb , x

2 − x2 
) 

.  (11)
 

i  b 

Therefor,  we have 

P 
{
ỹ (xi ) ≤ ỹ (xb )

} 
= P 

{
−d̃ (xi ) ≥  

}
 

0 

are both  adjacent  to  xb . Therefore,  the  gap between APCS and 

1 − 2P 
{
ỹ (xM ) ≤ ỹ (xb )

} 
is  relatively small,  especially   when  T 

is large.  We  propose  to  use 1 − 2P 
{
ỹ (xM ) ≤ ỹ (xb )

} 
to  replace 

APCS. With slight  abuse of  notation, hereafter, we  set  APCS = 

∫ ∞ 
1

 [  (  )]2 1 − 2P 
{
ỹ (xM ) ≤ ỹ (xb )

}
. 

= √   
0 2π ζi 

e
− v− −d̂ (xi )

 
/2ζi 

dv With modified APCS, we can re-solve  (13) to obtain 
√ 

d(xM )D
2

 ∫ ∞  
1  2

 
( 

d̂ (xM ) 
) ̂  

M ,s1
 

=  √  e
−r  /2 

dr ,  (12) 
2ϕ    √

ζM
 

 

(ζM
 )3/2 

d̂ (xi )/
√

ζi 
2π αs1   

=  √   √   
( 

d̂ (x   ) 
) 

d̂ (xM )D
2 ( 

d(x
 

) 
) 

d̂ (xM
 )D2 

where  r = (v + d̂ (xi ))/
√

ζi . APCS can be calculated  based on (12) 
with i being replaced  by A and Z . 

Hereafter,   we  will use  APCS to  approximate PCS. In  other 

2ϕ    √
ζM

 

|DM ,s1 
| 

= 

 
(ζM 

s1 

)3/2       + 2ϕ    √ M 
ζM 

 
(ζM 

M ,s2 

)3/2 

words,  we  replace  PCS with APCS in  (10)  and  consider  instead 

the following optimization problem: 

|DM ,s1 
| + |DM ,s2 

| 
|2xs2  

− xM  − xb | 
= 

 

 
,  (17) 

max  APCS 

s.t. αs1  
+ αs2  

= 1. 
.  (13) 

 

 
αs2   

= 

|2xs1  
− xM  − xb | + |2xs2  

− xM  − xb | 
|2xs1  

− xM  − xb | 

 

 
.  (18) 

3.2. The optimal  allocation  policy 
 

In this  subsection,  we solve (13). As shown  in Appendix B, ζi 

can be simplified as: 

|2xs1  
− xM  − xb | + |2xs2  

− xM  − xb | 

The new  allocation policy  is much  easier  to  compute.  Our  nu- 

merical results   in  Section  4  demonstrate that   it works   quite 

well. 

2  2 
i,s1

 
2 
i,s2

 (xi − xb )
2 
(
xs

 + xs2
 − xi − xb 

)
 

ζi  = 
T 

[ 
αs     

+  
s     

+
 K 

(
xs    − xs  

)
 

 

+ 4K ] 
],  (14) 3.3. Optimal location of support points 

where 
 

D
2 

 

 
(2xs    − xi − xb )

2 (xi − xb )
2

 

Given  the  simulation budget  allocation to  the  two  support 

points  {xs1 
, xs2 

} derived  in  the  previous subsection,  we  now  try 

to determine the  optimal location for  {xs1 
, xs2 

} among  all  possi- 
i,s1   

= 
K (xs  s    

2  2
 

ble  design  points.  In  our derivation, we  assume x
 

and x
 

are
 

1  
− x 

2 
) [(xs1  

− xs2 
) + 4K ] s1 s2 

2  2  continuous variables  in [x1 , xk ]. Once we obtain  the values of xs1
 

D2  
(2xs1  

− xi − xb ) (xi − xb )  
,
 

and x
 

, if they do not equal to any of given design points,  we can
 

i,s2   
= 

K (xs  s    
2  2

 

1  
− x 

2 
) [(xs1  

− xs2 
) 

K = σ 2 /σ 2 . 

+ 4K ] simply use the design points  closest to them. 

According to (12), in order to maximize APCS, it is sufficient to 

maximize 
d̂ (xM ) . Given the unbiased properties of our generalized

 

(14) shows that  ζi and thus APCS are dependent on T and the 

allocations of the two  support points.  The following theorem 

provides an optimal allocation policy  for  (13)  for  any given  two 

support points. 

 
Theorem  1. For any given two support points {xs1 

, xs2 
}, the optimal 

solution to (13) is given by 

√
ζM 

least  squares  parameter  estimators, there  would not  be  large 

changes in d̂ (xM ) as we take additional simulation runs. Therefore, 

we  focus on selecting  the  best two  support points  to  minimize 
the variance of d̃ (xM ), (ζM ). In Appendix B, we show that  with the 

simulation budget being allocated  to xs1  
and xs2  

according  to (17) 
and (18), ζM  is minimized with the following solutions for xs1  

and 
√

qs
 √

qs
 xs2 

: 

αs1  
= √

q

 1       

+ 
√

q

 and  αs2

 = √←
q

 2           
,  (15) 

+  q 
{xs  s

 

s1 s2 s1 s2 

1 
, x 

2 
} 

⎧ { √ 
2  

} 
where 

( 
d̂ (x  ) 

) 
d̂ (xA ) D

2
 

⎪ x1 , ⎪ ⎪ 

xM +xb 

2  
+ 

( 
xM +xb 

2  
− xi 

)
 

 
2K

 

+ 4K   , 

qj   = ϕ 
A 

 

(ζA )
3/2 

⎪ if 
xM +xb

 

⎨ {x1 , xk }, 

x1 +xk    ; 
2  xk −x1 

2 
=    2K  

 
xM +xb

 
x1 +xk

 
   2K  

 (19)
 ( 

d̂ (xZ ) 
) 

d̂ (xZ ) DZ ,j
 ⎪ if − 

xk −x1   
< 2  

−  
2  

≤ 
xk −x1 

; 
+ ϕ  √

ζ
 

(ζ )3/2 ,   j = s1 , s2 , 
{ √ 

⎪ 
M +xb 

( xM +xb 
)2 

} 

K , x  ,
 

Z Z ⎪ 
2  

− ⎪ 
xk −  

2 
+ 4  k 

and ϕ(r ) =    1   
e−r  /2 .

 ⎩ if 
xM +xb  − x1 +xk   >

 2K    .
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T. Wang, J.  Xu, J.-Q. Hu et al. Automatica  134 (2021) 109927 

7 

 

 

⎧ 

< 

< ; 

; 

g 

g 

 

(19)  implies that   when   the  point (xM   + xb )/2,  which can  be 

approximately regarded  as the optimal solution to the quadratic 

objective function over [x1 , xk ], is in the middle part  of the inter- 

val, we select the two  extreme points  x1  and xk  as support points. 

When  the point (xM  + xb )/2 is very close to an extreme point,  we 

select the nearest extreme point as one of the two  support points 

and the other  one located  such that  it is a little farther than  the 

first  one from  (xM  + xb )/2. 

To shed more light on our results, we compare  them  with the 

results in Brantley  et al. (2013) where  gradient information is not 

considered.  OSD method requires  three support points  instead  of 

two  in  OCBAG because OSD does not  use gradient information. 

The allocation policy  of OSD is shown  as follows: 
⏐
DM ,i 

⏐ 

3.4. OCBAG algorithm 

 
The following is the algorithm in which we implement the 

results   in  the  previous subsections   and  will be  used  for  the 

numerical experiments in Section 4. 

 
 
Algorithm 1 (OCBAG) 
 
INPUT: k (the number of design points),  T (the simulation 

budget),  xi (i = 1, . . . , k, the design points),  n0  (the number of 

initial simulation replications for each support point), θj  (the 

number of simulation replications allocated  to each iteration j); 

INITIALIZE: j ← 0; 
Take the two  extreme points  as the initial support points. 

αi = ⏐ ⏐ 
⏐ ⏐ 

⏐ ⏐ ,    i = 1, s, k,  (20)
 

Perform  n0  simulation replications for each support point (set
 

⏐DM ,1 
⏐ + 

⏐ ⏐ 
M ,s 

 

M ,k N 0  0 

⏐D ⏐ + ⏐D ⏐ 
1  = Nk  = n0 ) to get the performance and gradient information. 

where LOOP: WHILE 
∑k

 
i=1 

Ni  < T DO 
{ 

(xs − xM ) (xk  − xM ) − (xs − xb ) (xk  − xb ) 
} 

,
 UPDATE: 

Estimate  the mean, variance, and gradient at each x
 

DM ,1   = 
(x1  − xs ) (x1  − xk ) 

i 

1:  Estimate  a quadratic regression  model  using the { 
(x1  − xM ) (xk  − xM ) − (x1  − xb ) (xk  − xb ) 

} 

,
 performance and gradient information from  all prior 

DM ,s  = 
(xs − x1 ) (xs − xk ) simulation runs; 

2:  Estimate  the mean and variance  each xi using:
 { 

(x1  − xM ) (xs − xM ) − (x1  − xb ) (xs − xb ) 
} 

.
  

y (x )  β
  

β x  β x2
 

DM ,k   = 
(x  x ) (x  x )

 ˆ      i   = ˆ 
0 + ˆ 

1   i + ˆ 
2   i 

. 
k −  1 k −  s 3:  Determine the observed best design xb  = argmini ŷ (xi ). 

In  OSD method,  two  extreme points  {x1 , xk } are always  chosen 

as support points.  When  (xM  + xb )/2 is in the middle half of the 

interval, the  third support point (xs ) is located  such that  it has 

the same distance from  (xM  + xb )/2 as the nearest extreme point 

4:  Based upon  the location of xb , determine xA , xZ , and xM 

based on the three  cases and (16). 

5:  Determine support points  xs1  
and xs2  

based on (19). 

ALLOCATE: Increase the computing budget  by θj+1  and 
j+1 j+1 

is from  (xM   + xb )/2.  This  makes  the  design  symmetric around calculate  its allocation αs1      
and αs2      

according  to (17) and (18). 
j+1

 
j+1

 

(xM  + xb )/2. When  (xM  + xb )/2 is in the outer  half of the interval, 
the third support point (xs ) is located at the center of the interval. 

Specifically,  the location of xs is given  as follows: 

SIMULATE: Perform  θj+1 αs1      
and θj+1 αs2      

simulations (round to 

integers  as needed) for support points  xs1  
and xs2 

. Update Ns1 
and 

Ns2 
. 

 
xs = 

⎨ xM +b−1 ,  if 

xM +b−k ,  if 

3x1 +xk 

4  
≤ 

x1 +xk 

2 

xM +xb 

2 
xM +xb 

2  
≤ 

x1 +xk 

2 
x1 +3xk 

4 

 

 
(21) 

END OF LOOP 

⎩ 
x(k−1)/2 ,  otherwise. 

Since we use additional gradient information while OSD method 

does not, there are two  critical factors which may affect the 

performance of these two  methods. The first  is the ratio  of perfor- 

mance and gradient noise variances  K = σ 2 /σ 2 , and the second 
is the computational cost of obtaining gradient information. We 

denote  κ as the  relative cost of obtaining gradient information 

with respect  to  the  cost of obtaining performance information. 

We  should  point out  that  the  value  of  κ  does  not  affect  the 

allocation policy   although in  our  derivation process  we  have 

implicitly assumed  that  κ  =  0. For general  κ , we  can simply 

replace the total  simulation budget T with  
 T   

and all our results 
1+κ 

 
4. Numerical experiments 

 
In this  section,  we compare  our OCBAG method with the Op- 

timal Simulation Design (OSD) method of Brantley  et al. (2013). 

When  the underlying function is quadratic or approximately 

quadratic, Brantley  et al. (2013)  show that  OSD method performs 

much  better  than other  traditional allocation procedures,  includ- 

ing Equal-Allocation (EA), Equal-Allocation and Response Surface 

combination method (EA-RS), traditional OCBA method (Branke 

et al., 2007; Chen et al., 2000), D-optimality design (Atkinson, 

Donev, & Tobias, 2007; Liski, Mandal,  Shah, & Sinha, 2002). 

We  conduct   experiments with  K   =  0.5, 1, and  2. Regard- 
ing  the  computational cost  of  obtaining gradient information,

 
still  hold. 

If K = σ 2 /σ 2  is very  small,  which means that  the variance  of 
the  gradient noise is much  bigger  than  that  of the  performance 

noise, our  results  are the same as those in Brantley  et al. (2013) 

because gradient information is not helpful due to its large noise. 

In  this  case, the  first   support point  is  located  at  the  nearest 

extreme point and  the  second  one  is such  that  it is  the  same 

distance  from  (xM  + xb )/2 as the  nearest  extreme point is from 
(xM   + xb )/2.  On the  other  hand,  if K  is large,  then  our  results 
show that we should select the two extreme points  as the support 

points.  In fact, if we  can only  obtain  gradient information from 

simulation, the  underlying function becomes  a linear  function. 

It is  obvious  then  the  two  support points  should  be as far  as 

possible  to  minimize the  variance  of the  estimated parameters 

(β̂ 
1 , β̂ 

2 ). For a moderate K , i.e. the variances  of the performance 

and gradient estimates are comparable,  our method can optimally 

utilize performance and gradient information. 
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we  consider  two  scenarios:  κ  = 0, 1. These two  scenarios  are 

commonly seen in simulation. For example,  when  the technique 
of infinitesimal perturbation analysis (IPA) can be used to obtain 

gradient information, we  usually  have very  small  κ , and in  the 

case when  the  finite difference is used for  gradient information 

we have κ = 1. 

We use the same four test problems in Brantley  et al. (2013) to 

compare  OCBAG and OSD. In the first  experiment, we include the 

results from  the traditional OCBA method as well  for comparison. 

Since as we should  see that  both  OCBAG and OSD perform much 

better  than  OCBA, we focus on the  comparison between OCBAG 

and OSD for  the  other  three  experiments. We  conduct  the  first 

experiment with T up to 1000, the second experiment with T up 

to 45,000, and the last two  experiments with T up to 10,000. We 

repeat 10,000 times  for each instance  and then  calculate  the PCS 

obtained for each method out of these 10,000 independent macro 

replications. 
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Fig. 1.  Experiment 1: κ = 0 and K = 0.5, 1, 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.  Experiment 1: κ = 1 and K = 0.5, 1, 2. 

 
 

4.1. Experiment 1: quadratic  function  with  randomly  generated op- 

timal  solution, 11 design points 

 
The test function and its gradient are given  below: 

Fig. 3.  Experiment 1: κ = 1 and K = 0.5. 

 

 
that  the smaller  the gradient noise variance is, the higher  the PCS 

would be. As shown  in Fig. 2, even when  κ = 1, OCBAG method 

still  performs better  than  OSD method though the improvement 

is not  as large  as for  κ  = 0. Finally,  we  should  point out  both 

OCBAG and  OSD perform much  better  than  OCBA as shown  in 

the two  figures. 

To show  that  OCBAG not  only  uses gradient information, but 

does so in  an efficient way,  we  compare  OCBAG with the  fol- 

lowing four benchmark allocation schemes that  also use gradient 

information: 

• (Ba) There  are three  support points,  with two  being  the  ex- 

tremes  and one being  the  middle point.  Simulation budget  is 

allocated  equally  to these three  points. 

• (Bb)  There  are three  support points,  with two  being  the  ex- 
tremes  and  one  being  the  middle point.   Simulation  budget 

allocation is proportional to simulation variances. 

• (Bc) There  are  two  support points,  and  the  locations of  the 
two  points  are determined by Eq. (19) in this paper. Simulation 

budget  is allocated  equally. 

• (Bd)  There  are two  support points,  and  the  locations of  the 
two  points  are determined by Eq. (19) in this paper. Simulation 

budget  allocation is proportional to simulation variances. 

f (xi ) = (xi − a)2  + N (0, 1), 
 

We  consider   the  case with  κ =  1  and  K =  0.5.  Results 
1 

g (xi ) = 2xi − 2a + N (0, 
K 

),
 

We  use a design  space consisting of  11  evenly  spaced  design 

points  from  −1 to 1, i.e. xi ∈ {−1, −0.8, . . . 1}. In order to test the 

methods against  a diverse  set of problems, the  stationary point 

for  the  underlying quadratic equation was  randomly generated 

from  a uniformly distributed random variable  a over interval (−1, 

1). The optimal solution is then  the  design  point closest  to  the 

are  shown  in  Fig. 3. We  first  observe  that  all  four  benchmark 

allocation schemes  outperform OSD. This  clearly  demonstrates 

the  benefit  of  using  gradient information  in  R&S. Furthermore, 

OCBAG clearly  outperforms that  these four  benchmark allocation 

schemes, demonstrating its efficiency. 

 
4.2. Experiment 2: quadratic  function  with  randomly  generated op- 

timal  solution, 101 design points 

generated  a. For OSD method,  we  set N 0   = N 0 = N 0   = 2 
1  (k+1)/2 k 

and allocate  14 additional runs for each iteration, and for OCBAG 

method,  we  set n0  to  2 and allocate  14 runs  for  each iteration. 

For this  experiment, we  include the  results  from  the  traditional 

OCBA as well. 

The results  are illustrated in  Figs. 1 and 2, in  which we  plot 

PCS against  the  total  number of  simulation runs  (T ). In  Fig. 1, 

we compare  our OCBAG method with OSD under  three  different 

gradient variances  (larger  than,  equal  to,  smaller   than  perfor- 

mance  variance)  with κ  =  0. First,  we  observe  that  by  using 
additional gradient information, OCBAG method clearly  produces 

better   results  than  OSD method.   Furthermore, even  when  the 

gradient noise variance  is twice the performance noise variance, 

OCBAG still  performs much  better  than OSD. Second, we observe 

This experiment has the same setup as in Experiment 1 except 

that     we    now     have    101    evenly     spaced    design    points 

{−1, −0.98, . . . , 1}. For OSD, we  set N 0   = N 0  = N 0   = 20 
1  (k+1)/2 k 

and  allocate  99 runs  at  each iteration as described  in  Brantley 

et al. (2013).  For OCBAG, we set n0   = 2 and allocate  99 runs  at 
each iteration. 

The results  are shown  in  Figs. 4 and  5. With more  designs 

points  within the same interval, the performance differences 

between the best design and its nearest competitors are smaller 

relative to the simulation noise. Therefore,  PCS for  each method 

is smaller  than  in  Experiment 1. However, it can be seen from 

both Figs. 4 and 5 that  OCBAG still  significantly outperforms OSD. 

Specifically,  as Fig. 5 shows, after exhausting the total  computing 
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Fig. 4.  Experiment 2: κ = 0 and K = 0.5, 1, 2. Fig. 6.  Experiment 3: κ = 0 and K = 0.5, 1, 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.  Experiment 2: κ = 1 and K = 0.5, 1, 2. 

 

 
budget, OSD just achieves a 78.7% PCS. In comparison, even when 

gradient information has large variance  (K  = 0.5) and the  cost 

is high  (κ = 1), OCBAG achieves the  same PCS after  only  about 

19,700  runs  or  about  43.78% of  those  required by  OSD. This 

suggests the benefit  of OCBAG increases as the number of design 

points  increases. 

 
4.3. Experiment 3: three local minima,  60 design points 

 
This test function is not  quadratic and is a test function from 

a classical optimization literature (Törn & Žilinskas,  1989): 

f (xi ) = sin(xi ) + sin(10xi /3) + ln(xi ) 

− 0.84xi  + 3 + N (0, 10), 
10  1 

Fig. 7.  Experiment 3: κ = 1 and K = 0.5, 1, 2. 

 
 
OSD, we set N1  = Nk/2  = Nk  = 20 and then  allocate  99 runs for 

each iteration as described  in Brantley  et al. (2013).  For OCBAG, 

we set n0  = 20 and then  allocate  99 runs for each iteration. 

The results  shown  in Figs. 6 and 7 are consistent with the first 

two  experiments where  the  underlying functions are quadratic. 

OCBAG still   outperforms OSD. To  illustrate the  efficiency im- 

provement achieved by OCBAG, as Fig. 7 shows, after  exhausting 

the total  computing budget,  OSD just achieves a 82.1% PCS while 

OCBAG achieves the same PCS after only about 8000 runs or about 

80% of  those  required by  OSD even  though the  gradient  noise 

variance  is twice the  performance noise  variance  and the  costs 

of performance and gradient information are equal. 

 
4.4. Experiment 4: one global minimum, asymmetric function, 60 

design points 
g (xi ) = cos(xi ) + cos(10xi /3) 

3  xi 

10 
 
This experiment also uses a non-quadratic test function: 

− 0.84 + N (0,  
K 

).
 

The performance noise variance  is set to 10. There are 60 design 

points  are evenly  spaced between 3 and 8, with the global mini- 

 
10 

f (xi ) = 10xi  + 
i 

10 

 
+ N (0, 1), 
 

1 

mum  x27  ≈ 5.20 with y(x27 ) ≈ −1.60. This function also has two 

local minima at x6  ≈ 3.42 with y(x6 ) ≈ 0.16 and x47  ≈ 7.07 with 

y(x47 ) ≈ −1.27. Because this function is not quadratic, we cannot 

directly apply OSD or OCBAG. Following Brantley  et al. (2013), we 

partition the  design  space into  six smaller  intervals and each of 

the local minimums was in a separate interval. We then  equally 

allocate the total  computing budget to these smaller  intervals. For 

g (xi ) = 10 − 
x2   

+ N (0, 
K 

).
 

 
We again use a design space consisting of 60 evenly spaced design 

points   in  [0.5, 2.5].  The global  minimum is  x16     ≈  1.01  with 

y(x16 ) ≈ 20. As with the third experiment, we partition the design 

space into  six partitions. For OSD, we set N1  = Nk/2   = Nk  = 20 

and allocate  99 runs  for  each iteration as described  in  Brantley 
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Fig. 8.  Experiment 4: κ = 0 and K = 0.5, 1, 2. Fig. 10.  Queueing simulation example. 

 

 
consider  the following objective function: 
 

1 
y(x) = E [S (x)] + cx = 

− λ 
+ cx

 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.  Experiment 4: κ = 1 and K = 0.5, 1, 2. 

where  E [S (x)] is the average system time  for a customer (queue- 

ing or delay time plus service time) and the additional term cx can 

be viewed as a cost on server speed (c is a given constant).  Then, 

we  let  c = 4 and λ = 0.5 and use a design  space consisting of 

11 evenly  spaced design points  in [0.55, 1.1]. The global optimal 
solution is x9  ≈ 0.99 with y(x9 ) ≈ 6. For each design xi , we run 
simulation with 5000 customers  to get the performance estimate. 

At  the  same  time,  we  use IPA method to  obtain  the  gradient 

estimate without the need to run  additional simulations. That is 

to  say, the  additional simulation cost of obtaining the  gradient 

information is approximately equal to 0, i.e. κ = 0. We conduct 
the  queueing   experiment with  T up  to  800.  Then,  we  repeat 

1000  times   and  calculate   the  PCS obtained for  three  method 

(OCBAG, OSD and OCBA) out  of these 1000  independent macro 

replications. For OSD method,  we  set N 0   = N 0 = N 0   = 2 
et al. (2013). For OCBAG, we set n0  = 20 and allocate  99 runs for 1  (k+1)/2 k 

each iteration. 

The results,  shown  in Figs. 8 and 9, are again consistent with 

the  previous experiments. OCBAG achieves a PCS close 1. From 

Fig. 9, OSD achieves a 93.1% PCS after  about  10,000  runs  while 

OCBAG achieves  the  same  PCS after  only  5900  runs  or  about 

59% of  those  required by  OSD even  though the  gradient  noise 

variance  is twice the  performance noise  variance  and the  costs 

of performance and gradient information are equal. 

 
5. Queueing simulation example 

 
Queueing  systems  are one of the  main  application areas for 

stochastic  simulation, and the earliest  application of direct  gradi- 

ent estimation in simulation was queueing.  Therefore,  we chose 

a simple  queueing  model  to investigate the  performance of our 

OCBAG method in a setting  where  direct  gradient estimates  are 

available   but  where   one  or  more   of  the  assumptions  of  the 

theoretical results  are generally not satisfied. For example, the 

objective function is not  strictly quadratic, the system  time  per- 

formance  and its gradient estimate are clearly  highly correlated, 

and the variance of both the performance and its gradient are not 

homogeneous  across the  range of design  space, etc. Specifically, 

we consider  the first-come, first-served, single-server queue. The 

customers  arrive  according  to  a Poisson process  with constant 

rate λ and the server has i.i.d. exponential random service times 

with rate x. Similar to many simulation optimization settings,  we 

and allocate  20 additional runs for each iteration, and for OCBAG 

method,  we  set n0  to  2 and allocate  20 runs  for  each iteration. 

For this  experiment, we  include the  results  from  the  traditional 

OCBA as well.  The results  are illustrated in Fig. 10. 

In spite  of the  correlated performance and gradient informa- 

tion and heterogeneous  noise for all designs, OCBAG still  performs 

better  than  OSD and traditional OCBA. 

 
6. Conclusion 

 
In  this  paper,  we  explore   the  potential of  enhancing   R&S 

efficiency by incorporating simulation performance and gradient 

information into  a regression  metamodel. Compared  to the  OSD 

method that  motivated this  work,  we  show  that  the  inclusion 

of gradient information increases the  accuracy of the  regression 

metamodel estimated from  noisy simulation output. Numerical 

experiments demonstrate that  the inclusion of gradient informa- 

tion  enables OCBAG to consistently outperform OSD and achieves 

much  higher   PCS than  OSD, as well   as a state-of-the-art R&S 

procedure OCBA. As to the best of our knowledge, this is the first 

work to  demonstrate that  gradient information can be used to 

improve the efficiency of an R&S procedure. 

Though  the use of gradient information and regression  meta- 

models  can dramatically enhance simulation efficiency, they  are 

also constrained with  some typical assumptions such as an un- 

derlining quadratic function for performance measures, homoge- 

neous simulation noise and independence between performance 
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and  gradient information.  As shown   in  our  numerical experi- 

ments,  many  of  these  assumptions can be alleviated if we  can 

efficiently partition the  design  space so that  we  focus  only  on 

a local  area  of  the  design  space where  the  assumptions hold. 

Specifically,  on  one hand,  we  should  have more  fine  partition- 

ing  near  the  optimal point in  order  to  have good  fitting of the 

response  surface  with a quadratic model.  On  the  other  hand, 

for areas that  have a small  probability of containing the optimal 

design, we could use just a few rough partitions. Ideally, we want 

Taking αs1 
+αs2  

= 1 into consideration, we then have (15). Similar 

to Brantley  et al. (2013), we can further show that D2   is a concave 

function of  αs1   
and  αs2 

, hence  APCS is also a concave  function 

of αs1   
and  αs2   

(see Brantley  et al., 2013  for  more  details).  This 
completes  our proof. 

 
Appendix B. Calculation  of ζi 

 
Given  the  fact  that   we  only   have  simulation runs  at  two 

to have an ‘smart  partitioning’ scheme which can maximize the support points  xs1   
and  xs1 

, matrix X V −1
 X can be rewritten in 

overall  efficiency, e.g., the probability of correct  selection.  The in- terms  of these two  support points  as: 

tegration of OCBAG method with a smart partitioning mechanism 

for  general  simulation optimization  problems is a direction for 
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future research. Alternatively, another research topic  worthwhile 

to investigate is the optimal design and budget allocation of other 

forms  of  regression  functions, such  as a higher   order  polyno- 
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mial,  that  may  provide better  fit of  the  response  surface.  The 

dimensional curse is inherently a big challenge  faced by any re-
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grate  our  OCBAG method with some  multi-dimensional  search 

methods such as the stochastic  trust  region  gradient-free method 

(Chang, Hong, & Wan, 2013). Another future research topic  is to 

derive  (near)  optimal allocation policies  without assuming  the 

independence between performance and gradient estimates. 
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Appendix A. Proof of Theorem  1 

( 
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)
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γij = α i  
x
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Proof. Our proof  here is similar to that  of Theorem  3 in Brantley 
s1   s1 s2   s2 

et al. (2013).  To find  the  optimal solution to (13)  for  given  sup- 

port  points  {xs1 
, xs2 

}, we  introduce its  Lagrangian  function Q  = 

The determinant and some of the algebraic  complements of ma- 

trix B can be calculated  as follows: 

APCS − λ 
(
αs1  

+ αs2  
− 1

)
,  where  λ is the  Lagrangian  multiplier. 

B
∗
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d1  = min{xc − x1 , xk − xc }, 
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To minimize ζM   is  the  same  as to  minimize ζ̂M . We  need  to 

consider  two  cases in which (xs1  
− xc )(xs2  

− xc ) is either  positive 

or negative. 

Case 1: (xs1  
− xc )(xs2  
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the same side of point xc ), hence 

4(xs    + xs   − 2xc )
2 

 
References 

 
Atkinson,  A., Donev, A., & Tobias, R. (2007).  Optimum  experimental designs, with 

SAS, volume 34. Oxford  University Press. 

Branke,  J.,  Chick,  S.  E., &  Schmidt,  C. (2007).  Selecting  a selection  procedure. 

Management Science, 53(12), 1916–1932. 

Brantley,  M. W., Lee, L. H., Chen, C. H., & Chen, A. (2013).  Efficient  simulation 

budget  allocation with regression.  IIE Transactions, 45(3), 291–308. 

Brantley,  M. W., Lee, L. H., Chen, C. H., & Xu, J.  (2014).  An efficient simulation ζ̂M   = 
s1 

− xs2 )
2 [(xs − xs2 

2
 

)2  + 4K ] budget  allocation method  incorporating regression  for  partitioned  domains. 

Automatica, 50(5), 1391–1400. 
(xs1  

+ xs2  
− 2xc ) Chang,   K.   H.,   Hong,   L.   J.,    &   Wan,   H.   (2013).    Stochastic    trust-region 

+ 
K [(xs − xs  )

2  + 4K ] response-surface  method  (STRONG)—A new  response-surface  framework for 

1 (xs   + xs   − 2xc )
2

 
simulation optimization. INFORMS Journal on Computing, 25(2), 230–243. 

Chen, X., Ankenman,  B. E., & Nelson, B. L. (2013).  Enhancing  stochastic  kriging 
= 

K (xs1 
− xs  )

2 

2
 

metamodels  with gradient  estimators.  Operations Research, 61(2), 512–528. 

Chen, W., Gao, S.,  Chen, C. H., &  Shi, L. (2013).  An  optimal sample  allocation 
1 (xs1  

− xs2 
) + 4(xs1  

− xc )(xs2  
− xc ) strategy  for  partition-based random  search. IEEE Transactions on Automation 

= 
K 

1 
≥ 

K 
.
 

(xs1
 − xs  )

2 
Science and Engineering, 11(1), 177–186. 

Chen,  C. H.,  He,  D., Fu, M.,  &  Lee, L. H.  (2008).  Efficient   simulation  budget 

allocation for  selecting  an  optimal subset.  INFORMS  Journal on Computing, 

20(4), 579–595. 

Chen, C. H., &  Lee, L. H. (2011).  Stochastic simulation  optimization: An optimal 

Case 2: (xs1  
− xc )(xs2   

− xc )  ≤ 0. In this  case, we  have xs2   
≥ 

xc  > xs1  
(which means that  xs1  

and xs2  
are on the different sides 

of point xc ), therefore 

4  (xs   + xs   − 2xc )
2 

1  2 

computing  budget allocation,  volume 1. World scientific. 

Chen, C. H., Lin, J., Yücesan, E., & Chick, S. E. (2000). Simulation budget allocation 

for further enhancing  the efficiency  of ordinal optimization. Discrete Event 

Dynamic Systems, 10(3), 251–270. 

Chen, Y., & Ryzhov, I. O. (2019).  Complete  expected  improvement converges to 

an optimal budget  allocation.  Advances in Applied Probability, 51(1), 209–235.
 

ζ̂M  = 
s1 

− xs2 )
2  + 4K 

+ 
K [(xs − xs2 

. 
)2  + 4K ] Chen, C. H., Yücesan, E., Dai, L., & Chen, H. C. (2009).  Optimal budget  allocation 

for  discrete-event simulation experiments. IIE Transactions, 42(1), 60–70. 

If we choose the two  support points  such that  xs1 
+ xs2 

− 2xc  = 0, 
then 

DeGroot, M. H. (2005). Optimal statistical decisions, volume 82. John Wiley  & Sons. 

Draper,  N. R., & Smith,  H. (1998).  Applied regression analysis, volume 326. John 

Wiley  & Sons. 

ζ̂M  = 
s1 

4 

− xs2
 

1 
< . 

)2  + 4K  K 

Fu, M.  C., & Hu,  J.  Q. (1997).  Conditional  Monte  Carlo: Gradient  estimation  and 

optimization applications. Kluwer Academic. 

Fu, M. C., & Qu, H. (2014).  Regression models  augmented  with direct  stochastic 

Combining the results  from  Cases 1 and 2, it is clear that  in order 

to minimize ζ̂M   we should  choose the support points  xs1  
and xs2

 

on  different sides of  xc , i.e., we  only  need  to  consider  Case 2. 
Hence, we rewrite ζ̂M  as: 

 

4  (xs   + xs   − 2xc )
2 

1  2 

gradient  estimators.  INFORMS Journal on Computing, 26(3), 484–499. 

Gao, S., Chen, W., & Shi, L. (2017).  A new  budget  allocation framework for  the 

expected  opportunity cost. Operations Research, 65(3), 787–803. 

Gao, S., Xiao, H., Zhou, E., & Chen, W. (2017). Robust ranking  and selection  with 

optimal computing budget  allocation.  Automatica, 81, 30–36. 

De la  Garza, A. (1954).  Spacing  of  information in  polynomial regression.  The 

Annals of Mathematical  Statistics, 25(1), 123–130. 

ζ̂M  = 
s1 

− xs2 )
2  + 4K 

+ 
K [(xs 

2
 

− xs2 )
2  + 4K ] 

Gelman,  A., Carlin,  J.  B., Stern, H. S.,  Dunson,  D. B., Vehtari,  A., & Rubin,  D. B. 

(2013).  Bayesian data analysis (pp. 353–357).  CRC Press. 

4K + (xs1  
+ xs2  

− 2xc )  
.
 Glasserman,  P.  (1991).   Gradient  estimation   via  perturbation   analysis.  Kluwer 

Academic.
 

= 
K [(xs1 

− xs  )
2  + 4K ] 

 
Glynn, P. W. (1990). Likelihood ratio  gradient  estimation for  stochastic  systems. 

Communications of the ACM, 33(10), 75–84. 
We now  further consider  two  cases: 

Case 2.1: xs2 
−xs1  

≤ 2d1 . Without loss of generality, we assume 

xc  − x1   < xk  − xc . It is clear  that  to  minimize ζ̂M   we  want  to 

maximize xs2 
−xs1 

, i.e., to keep the two  support points  as far apart 

as possible, and on the other  hand to minimize |xs1  
+ xs2  

− 2xc |. 
Hence, {xs1 

, xs2 
} = {x1 , x1  + 2d1 } is the optimal solution and the 

minimum of ζ̂M  is   
   1    

. 
K +d2

 

Case 2.2: xs2  
− xs1  

≥ 2d1 . We still  assume xc  − x1  < xk  − xc . 
First, in order  to increase xs2 

− xs1  
and decrease |xs1  

+ xs2  
− 2xc |, 

we should  select s1 = 1. Next, let xs2  
= x1 + 2d1  + δ (δ ≥ 0), we 

then  have 

4K + δ2 

Ho,  Y. C., &  Cao, X. R. (1991).  Perturbation  analysis  of  discrete event  dynamic 

systems. Kluwer Academic. 

Lee, L. H.,  Chen,  C. H.,  Chew,  E. P., Li,  J.,   Pujowidianto,  N.  A.,  &  Zhang,  S. 

(2010).  A  review   of  optimal  computing budget  allocation algorithms for 

simulation optimization problem.  International Journal of Operations Research, 

7(2), 19–31. 

Lee, L. H.,  Pujowidianto,  N.  A., Li,  L. W.,  Chen,  C. H.,  &  Yap,  C. M.  (2012). 

Approximate simulation budget  allocation for  selecting  the  best  design  in 

the presence of stochastic constraints.  IEEE Transactions on Automatic Control, 

57(11), 2940–2945. 

Liski, E. P., Mandal,  N. K., Shah, K. R., & Sinha, B. (2002). Topics in optimal  design, 

volume 163. Springer  Science & Business Media. 

Pasupathy, R., Hunter,  S. R., Pujowidianto, N. A., Lee, L. H., & Chen, C. H. (2014). 

Stochastically  constrained ranking  and selection  via SCORE. ACM Transactions 

on Modeling and Computer Simulation,  25(1), 1–26. 

Peng, Y., Chong, E. K., Chen, C. H., & Fu, M. C. (2018).  Ranking  and selection  as 

ζ̂M  = 
K [(2d 

, 
+ δ)2 + 4K ] 

stochastic  control.  IEEE Transactions on Automatic  Control, 63(8), 2359–2373. 

http://refhub.elsevier.com/S0005-1098(21)00451-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb1
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb2
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb3
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb4
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb5
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb6
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb7
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb8
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb9
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb10
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb11
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb11
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb12
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb13
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb14
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb14
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb15
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb15
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb15
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb16
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb16
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb17
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb18
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb18
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb19
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb19
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb20
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb20
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb21
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb22
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb22
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb23
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb24
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb25
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb26
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb27
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb28
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb28


15 

T. Wang, J.  Xu, J.-Q. Hu et al. Automatica  134 (2021) 109927  

 

 
Peng, Y., Xu, J., Lee, L. H., Hu, J., & Chen, C. H. (2018).  Efficient  simulation sam- 

pling  allocation using  multifidelity models.  IEEE Transactions on Automatic 

Control, 64(8), 3156–3169. 

Qu, H., & Fu, M. C. (2014).  Gradient  extrapolated stochastic  kriging.  ACM 

Transactions on Modeling and Computer Simulation,  24(4), 1–25. 

Ryzhov,  I.  O.  (2016).   On  the   convergence   rates  of  expected   improvement 

methods.  Operations Research, 64(6), 1515–1528. 

Schwartz,  J. D., Wang, W., & Rivera, D. E. (2006). Simulation-based optimization 

of  process control policies  for  inventory management in  supply  chains. 

Automatica, 42(8), 1311–1320. 

Teng, S., Lee, L. H., & Chew, E. P. (2007). Multi-objective ordinal optimization for 

simulation optimization problems.  Automatica, 43(11), 1884–1895. 

Törn, A., & Žilinskas,  A. (1989).  Global optimization, volume 350. Springer. 

Xiao,  H., Chen, H., &  Lee, L. H.  (2019).  An  efficient simulation procedure  for 

ranking  the top  simulated designs in  the presence of stochastic  constraints. 

Automatica, 103, 106–115. 

Xiao,  H., Gao, S.,  &  Lee, L. H. (2017).  Simulation budget  allocation for 

simultaneously  selecting   the   best   and   worst    subsets.   Automatica,   84, 

117–127. 

Xiao, H., Gao, F., & Lee, L. H. (2019).  Optimal computing budget  allocation for 

complete  ranking  with input uncertainty. IISE Transactions, 1–11. 

Xiao, H., Lee, L. H., & Ng, K. M. (2013). Optimal computing budget  allocation for 

complete  ranking.  IEEE  Transactions on Automation  Science and Engineering, 

11(2), 516–524. 

Xu, J.,  Huang, E., Hsieh, L., Lee, L. H., Jia, Q. S., & Chen, C. H. (2016).  Simulation 

optimization in  the  era of Industrial 4.0 and the  Industrial Internet. Journal 

of Simulation,  10(4), 310–320. 

Zhang, F., Song, J., Dai, Y., & Xu, J.  (2020).  Semiconductor wafer  fabrication pro- 

duction planning using multi-fidelity simulation optimisation. International 

Journal of Productions Research, 1–16. 
 

 
 

Tianxiang Wang is a Postdoctoral  Researcher in School 

of  Management,  Fudan University. His  research  inter- 

ests include  financial engineering,  stochastic  optimiza- 

tion  via simulation, and operations  management.  He 

received  his  BS degree  in  Mathematics Sciences from 

Fudan University and his Ph.D. degree in  Management 

Science and Engineering  from  Fudan University. 

Jie Xu received  the  Ph.D. degree in  industrial engi- 

neering and management sciences from  Northwestern 

University, the  M.S. degree  in  computer science from 

The  State  University  of  New  York,  Buffalo,  the  M.E. 

degree in electrical  engineering from  Shanghai Jiaotong 

University, and the B.S. degree in electrical  engineering 

from   Nanjing   University.  He  is  currently  an  Asso- 

ciate Professor of Systems Engineering and Operations 

Research at George Mason University. His research 

interests are data analytics, stochastic simulation and 

optimization, with  applications in   cloud   computing, 

manufacturing, and power  systems. 
 

 
Jian-Qiang Hu is the  Distinguished Professor of Fudan 

University and the Hongyi Professor of Management 

Science in  School  of  Management,   Fudan  University. 

He  received   his  B.S. degree  in  applied   mathematics 

from  Fudan University, China, and  M.S. and  Ph.D. de- 

grees in applied  mathematics from  Harvard  University. 

His  research  interests   include  discrete-event  stochas- 

tic systems, simulation, stochastic optimization, with 

applications in supply  chain management,  financial 

engineering,  and healthcare.   He won the Outstanding 

Simulation Publication Award  from  INFORMS Simula- 

tion   Society  twice   (1998,  2019)  and  the  Outstanding  Research Award   from 

Operations  Research Society of China in  2020.   He has been on editorial board 

of  Automatica,  Operation  Research, IIE Transaction on Design and Manufacturing, 

and Journal of the Operations Research Society of China. 

 
Chun-Hung  Chen received his Ph.D. from  Harvard  Uni- 

versity.  He is a Professor at George Mason  University 

and  had  been faculty  with University of  Pennsylvania 

and  National   Taiwan   University.  He  has  served   as 

a Department Editor  for IIE Transactions, Department 

Editor  for Asia-Pacific Journal of Operational Research, 

Associate  Editor   for  IEEE Transactions  on  Automation 

Science and Engineering, Associate Editor  for IEEE Trans- 

actions on Automatic  Control, Area Editor  for  Journal of 

Simulation Modeling Practice and Theory. Dr. Chen is the 

author  of two  books, including a best seller:  ‘‘Stochastic 

Simulation  Optimization: An Optimal  Computing Budget Allocation’’.  He is an IEEE 

Fellow. 

http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb29
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb30
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb31
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb32
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb33
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb34
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb35
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb36
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb37
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb38
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb39
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40
http://refhub.elsevier.com/S0005-1098(21)00451-9/sb40

