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ABSTRACT
At least 70 per cent of massive OBA-type stars reside in binary or higher order systems.
The dynamical evolution of these systems can lend insight into the origins of extreme
phenomena such as X-ray binaries and gravitational wave sources. In one such dynamical
process, the Eccentric Kozai–Lidov (EKL) mechanism, a third companion star alters the
secular evolution of a binary system. For dynamical stability, these triple systems must have a
hierarchical configuration. We explore the effects of a distant third companion’s gravitational
perturbations on a massive binary’s orbital configuration before significant stellar evolution has
taken place (≤10 Myr). We include tidal dissipation and general relativistic precession. With
large (38 000 total) Monte Carlo realizations of massive hierarchical triples, we characterize
imprints of the birth conditions on the final orbital distributions. Specifically, we find that the
final eccentricity distribution over the range of 0.1–0.7 is an excellent indicator of its birth
distribution. Furthermore, we find that the period distributions have a similar mapping for
wide orbits. Finally, we demonstrate that the observed period distribution for approximately
10-Myr-old massive stars is consistent with EKL evolution.

Key words: binaries: close – binaries: general – stars: kinematics and dynamics – stars: mas-
sive.

1 IN T RO D U C T I O N

Recent observations suggest that massive stellar binaries are preva-
lent in our Galaxy. In fact, more than 70 per cent of OBA and
50 per cent of KGF spectral-type stars likely exist in binaries (e.g.
Raghavan et al. 2010; Sana et al. 2012). Observations of massive
binaries suggest unique orbital parameter distributions compared
to KGF binaries. For example, Duchêne & Kraus (2013) estimate
that 30 per cent of massive stellar binaries have periods less than
10 d, while some power law can represent the slow decline in the
number of systems out to about 104 au. Sana et al. (2012) also find
that the period distribution of OBA stars increases dramatically
towards smaller periods. These findings contrast with those for
KGF stars, which populate a lognormal period distribution peaked
around 105 d (Raghavan et al. 2010). While the period distributions
for these spectral types differ, the eccentricity distribution of OBA
stars may be closer to that of the KGF stars. See Section 3.5 for a
more detailed discussion.

Many short period KGF binaries may in fact occur in a triple
configuration (Tokovinin 1997; Pribulla & Rucinski 2006; Eggle-
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ton, Kisseleva-Eggleton & Dearborn 2007; Tokovinin 2008; Griffin
2012; Moe & Di Stefano 2017). Similarly, massive binaries may
often reside in triple configurations (Zinnecker & Yorke 2007;
Raghavan et al. 2010). While the fraction of massive stars in triples
is not well known, the average number of companions per OB
primary may be at least three times higher than that of low-mass
stars, which have 0.5 companions on average (Preibisch, Weigelt &
Zinnecker 2001; Grellmann et al. 2013).

Dynamical stability arguments imply that these triple systems
must have a hierarchical configuration: the third body orbits the
inner binary on a much wider outer orbit. In this configuration,
coherent gravitational perturbations from the outer body influence
the long-term evolution of the inner orbit. The orbits can be treated
as massive wires that torque each other, where the line-density of
each wire is inversely proportional to the orbital velocity. In this
orbit-averaged, or secular, approximation, the semimajor axis ratio
remains constant. The gravitational potential can be expanded in
terms of this ratio a1/a2, where a1 (a2) is the semimajor axis of
the inner (outer) orbit (Kozai 1962; Lidov 1962). The hierarchical
configuration makes this expansion possible by ensuring that a1/a2

is a small parameter. The lowest order, or quadrupole level, of
approximation is proportional to (a1/a2)2. The next level of approx-
imation is called the octupole level (see Naoz 2016, a recent review).
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This secular dynamical process is referred to as the Eccentric Kozai–
Lidov (EKL) mechanism.

While quasi-secular systems may also exist, we restrict ourselves
to hierarchical systems. This focus is motivated by G-type star
observations, which indicate that the vast majority of systems are
hierarchical (e.g. Tokovinin 2008). Non-secular effects dominate the
dynamics of marginally hierarchical systems, where, for example,
the EKL time-scale is approximately the outer orbital period. These
systems may undergo eccentricity oscillations on an orbital time-
scale (e.g. Antognini et al. 2014; Antonini, Murray & Mikkola
2014), and these oscillations may have a higher amplitude than the
secular case (e.g. Katz & Dong 2012; Bode & Wegg 2014; Grishin,
Perets & Fragione 2018). Assuming that the orbital configurations
of massive triples parallel those of G-dwarfs, we underestimate the
number of binaries that cross the Roche limit (RL) by a few per cent.

The applications of hierarchically configured stellar triples have
been explored extensively in the literature. For example, triples
have important implications for the evolution of sun-like stars (e.g.
Harrington 1969; Mazeh & Shaham 1979; Kiseleva, Eggleton &
Mikkola 1998; Fabrycky & Tremaine 2007; Naoz & Fabrycky
2014; Bataille, Libert & Correia 2018; Moe & Kratter 2018). Triple
dynamics also represents a key formation mechanism for blue-
stragglers (e.g. Perets & Fabrycky 2009; Naoz & Fabrycky 2014;
Fragione 2019). Furthermore, short period compact object binaries,
including black hole, neutron star, and white dwarf binaries, may re-
sult from hierarchical triple dynamics (Thompson 2011; Antonini &
Perets 2012; Katz & Dong 2012; Naoz et al. 2016; Hoang et al.
2018; Toonen et al. 2018; Fragione & Loeb 2019). The evolution
of binaries with a distant massive companion proves essential to
understanding mergers within galactic nuclei (Antonini & Perets
2012; Prodan, Antonini & Perets 2015; Stephan et al. 2016, 2019;
Fragione et al. 2018; Hoang et al. 2018, 2019; Fragione 2019). This
work explores the implications of triple dynamics for massive star
systems, which connect to transient phenomena such as mergers.

We examine the impact of EKL-driven dynamical evolution on
the properties of massive binaries embedded in triples. The birth
orbital configurations of massive binaries are not well constrained.
We therefore explore different possibilities for the period and
eccentricity birth distributions with the objective of discerning the
birth properties from the final results. We test a broad range of
initial distributions, tidal recipes, and efficiencies to identify the
manner in which observed period and eccentricity distributions
map back on to the initial distributions. While point-mass dynamics
coupled with stellar evolution has many interesting consequences
(e.g. Pejcha et al. 2013; Shappee & Thompson 2013; Michaely &
Perets 2014; Stephan et al. 2016, 2019; Fragione & Loeb 2019), we
focus on 10-Myr-old systems, before significant stellar evolution has
taken place. Our simulations include tidal dissipation and general
relativistic precession.

We run 38 sets of Monte Carlo numerical simulations with a
variety of initial conditions and tidal recipes. Each simulation has
1000 systems, bringing the total number of realizations to 38 000.
Section 2 reviews our methods and initial conditions. In Section 3,
we present our results and analyse the statistical distributions of
the inner orbital periods and eccentricities. Section 3.4 investigates
traces of the initial conditions in the final distributions, traces which
persist even after 10 Myr of EKL-driven evolution. Finally, we
consider our simulated results in the context of observations and
discuss the implications in Section 3.5. Our simulations suggest that
the EKL mechanism can re-distribute the orbital periods to match
observed distributions, while the eccentricity distribution retains its
original shape.

2 M E T H O D O L O G Y, N U M E R I C A L S E T-U P, A N D
I N I T I A L C O N D I T I O N S

2.1 Point-mass dynamics

We solve the secular equations of motion for the hierarchical
triple to the octupole-level of approximation, as described in Naoz
et al. (2013a). Stars with masses m1 and m2 compose the inner
binary, while the tertiary body with mass m3 and the inner binary
form an outer binary. The inner (outer) orbit has the following
parameters: a1 (a2), e1 (e2), ω1 (ω2), and i1 (i2) for the semimajor
axis, eccentricity, argument of periapsis, and inclination with respect
to the total angular momentum, respectively. We define itot as i1 +
i2. We include general relativistic (GR) precession following Naoz
et al. (2013b), who demonstrate that GR precession can suppress
or facilitate eccentricity excitations in different parts of phase
space.

We limit our simulations to 10 million years to allow for
comparisons with observed massive stars in young stellar clus-
ters (e.g. Sana et al. 2012). We treat the mass and radius of
each star as constant. Over 10 million years, a 20 M� star,
the largest mass allowed in these simulations, will lose about
three per cent of its mass, and the semimajor axis of its orbit
will expand by 3 per cent. Thus, while the interplay between the
point-mass dynamics and stellar evolution has interesting conse-
quences (e.g. Stephan et al. 2016), it has negligible effect on our
calculations.

2.2 Tidal models

We include tidal dissipation, which acts to circularize and tighten
the inner binary. Following Naoz & Fabrycky (2014), we adopt
the tidal evolution equations of Eggleton & Kiseleva-Eggleton
(2001). These equations implement the equilibrium (E) tide model
of Eggleton, Kiseleva & Hut (1998). Eggleton & Kiseleva-Eggleton
(2001) relate the viscous time-scale tv of a star to the tidal dissipation
time-scale tF using the Love parameter kL, j, where j = 1, 2 for
masses m1 and m2, respectively. The Love parameter quantifies
the quadrupolar deformability of a star. For the primary star with
mass m1,

tF ,1 = tv,1

(
a1

R1

)8
m2

1

m2(m1 + m2)

1

9(1 + 2kL1)2
. (1)

We use kL, j = 0.014 for an n = 3 polytrope (Eggleton & Kiseleva-
Eggleton 2001).

The spin of the stars influences the tidal evolution of the binary.
As we discuss below, our tides are not very efficient, and thus
the spin period may only be important to the lower portion of
the mass distribution (∼1 M�). To accommodate this contribution,
we choose the primary and secondary stars to have spin periods
of 4 d. This 4 d estimate is consistent with magnetic braking
evolution up to the Sun’s current spin rate (Dobbs-Dixon, Lin &
Mardling 2004). We note that the expected period of massive stars
ranges between ∼2 d (e.g. Bouvier 2013) to ∼0.5 d (e.g. Hurley,
Pols & Tout 2013; Stephan et al. 2019). We verify that a choice
of the smaller 1 d spin gives results (not shown to avoid clutter)
consistent with those depicted in this paper, which use a 4 d spin
period.

We also implement a prescription for radiatively damped dynam-
ical (RDD) tides (Zahn 1977) for stars of mass greater than 1.5 M�.
Following Hurley, Tout & Pols (2002) and Zahn (1977), we express
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Table 1. Simulations are named according to tidal prescription and effi-
ciency. In IET and LET simulations, RDD tides are used for stars with
masses greater than 1.5 M�, while E tides with the specified tv are used for
lower mass stars.

Label: name Tidal prescription

LET: Least efficient tides RDD or E tv = 50 yr
IET: Inefficient tides RDD or E tv = 0.5 yr
MET: Moderately efficient tides E tv = 50 yr
SET: Superefficient tides E tv = 0.5 yr
UET: Unrealistically efficient tides E tv = 0.005 yr

the tidal dissipation time-scale as

tF =
(

a1

R1

)9
√

a3
1

Gm1

m1

m2

(
1 + m2

m1

)11/6

× 1

9(1.592 × 10−9)

(
m1

M�

)2.84

. (2)

We note that in a comparison with numerical calculations, Chernov
(2017) suggests that this tidal prescription underpredicts the tidal
efficiency in short-period binaries. Claret & Cunha (1997) find that
Zahn’s formalism fails to account for some observed circularized
systems. The treatment of stellar tides has invoked much debate
(Langer 2009). Noting this lack of accord, Yoon, Woosley & Langer
(2010) include a parameter for the rate of tidal synchronization to
test for its effects. Similarly, we opt to use the equilibrium tide
model for all stars in select simulations, allowing us to treat the
viscous time-scale as a free parameter and tune the tidal efficiency.

We label our simulations according to tidal prescription and
efficiency as detailed in Table 1. Both Hurley et al. (2002) and
Zahn (1977) note the inefficient nature of RDD tides compared to E
tides. We use E tides with tv = 0.005, an unrealistically small value,
in a few simulations for comparative purposes.

2.3 Birth distributions

To explore the influence of initial parameter distributions on
the results, we use several different probability distributions to
draw initial conditions for the Monte Carlo simulations. We label
simulations according to their birth distributions.

The simulations fix the mass of the primary m1 at 10 M�. We
then draw m2 and m3 from uniform distributions of the mass ratios
q1 = m2/m1 and q2 = m3/(m1 + m2), where 0.1 < q < 1. We
discuss simulations that use a Kroupa mass function in Appendix A.
A power law of the form R ∝ Mα derives the stellar radii from
the masses. For most simulations, we use the ZAMS mass–radius
relation R = 1.01M0.57 (Demircan & Kahraman 1991).1 We draw
the inclinations cos i1 (cos i2) of the inner (outer) orbit from a
uniform distribution. In all simulations, we include a spin-orbit
misalignment for the primary (secondary) star ψ1 (ψ2) from a
uniform distribution. These choices stem from an agnostic view of
the formation mechanism of these massive binaries. Like Naoz &
Fabrycky (2014), we adopt an isotropic distribution because it
allows for chaotic processes during formation.

Observations of young (∼ few Myrs old) massive clusters
suggest power-law distributions for period and eccentricity (with

1For comparison purposes, below, we also consider larger radii using R =
1.33M0.55, an empirical fit to observations, and R = 1.61M0.81, the TAMS
mass–radius relation (Demircan & Kahraman 1991).

different indices). The most conservative choice of initial conditions
assumes that the final distributions remain unchanged from the birth
distributions. The most agnostic choice assumes uniform initial
distributions for period and eccentricity. Overall, we test six birth
distribution combinations of eccentricity and period. Below, the
abbreviation for each initial condition is given in parentheses. We
use these abbreviations in the simulation labels.

We use three possible initial distributions for eccentricity. For
populations of massive stars, observations indicate that the proba-
bility density distribution is either f(e) ∝ e−0.5 (‘e05’) (e.g. Sana &
Evans 2011; Sana et al. 2012) or uniform (‘e1’) (e.g. Almeida et al.
2017). We supplement these simulations with ones that assume a
thermal eccentricity distribution (‘e2’).

For the period distribution, we adopt a probability density of
the form f(log P/days) ∝ (log P/days)−0.5 (‘PS’) (e.g. Sana et al.
2012). Since this observed probability density does not necessarily
represent the birth distribution, we also use a uniform distribution in
logarithmic space (‘PU’) for certain simulations. Additionally, Sana
et al. (2017) present observations of 11 young (< 1 Myr) massive
binaries in the open cluster M17 with a low radial-velocity dis-
persion. They offer multiple explanations for the peculiar velocity
dispersion. In one of these explanations, the massive binaries form
at larger periods, with some minimum birth separation, and later
tighten and circularize. Specifically, Sana et al. (2017) suggest that
a lower period cut-off of 9 months is consistent with the velocity
dispersion in M17 within 1σ . To explore this intriguing possibility,
we include a lower period cut-off of 9 months in multiple (‘gap’)
simulations.

2.4 Stability criteria

To ensure that the secular approximation is valid, we apply three
criteria to the initial conditions (Naoz & Fabrycky 2014). The
Mardling & Aarseth (2001) criterion ensures the long-term stability
of the system, where itot denotes the mutual inclination between the
inner and outer orbits in radians:

a2

a1
> 2.8

(
1 + m3

m1 + m2

)2/5 (1 + e2)2/5

(1 − e2)6/5
(1 − 0.3itot) . (3)

We note that this stability criterion does not consider the system’s
lifetime (see e.g. Mylläri et al. 2018), and therefore underpredicts
the number of systems that may undergo EKL oscillations during
the 10-Myr integration time.

The second criterion compares the amplitudes of the octupole
and quadrupole terms to verify that the perturber is weak, i.e. that
higher order terms have a negligible effect. This criterion stipulates
that ε, the ratio of the octupole and quadrupole amplitudes, remains
small:

ε = a1

a2

e2

1 − e2
2

< 0.1. (4)

The last criterion requires that the inner orbit falls outside the RL
to avoid an early merger, before secular effects occur. We use the
RL as defined by Eggleton (1983):

LR,ij = 0.49
(mi/mj )2/3

0.6(mi/mj )2/3 + ln(1 + (mi/mj )1/3)
, (5)

where j = 1, 2 and Ri denotes stellar radius. All of our systems
begin with a1(1 − e1)LR, ij > Ri.

The stability criteria affect the simulated birth distributions. In
Fig. 1, this effect is most apparent in the thermal eccentricity
distribution with no gap. The lack of a gap allows small values
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Figure 1. The possible initial conditions for period and eccentricity.
Top row: Cumulative eccentricity distribution. Second row: Eccentricity
probability density. Third row: Cumulative period distribution. Bottom
row: Period probability density. We consider the initial distributions after
applying stability criteria (see the text). Initial conditions with a gap are
represented by dashed lines. In the top two panels, thermal, uniform,
and f(e) ∝ e−0.5 (Sana & Evans 2011; Sana et al. 2012) are shown in
green, blue, and red, respectively. Note that those simulations with no gap
have fewer high eccentricity systems, a result of having smaller values of
a1i while still needing to satisfy the RL criterion. In the bottom panels,
we show a uniform distribution in logarithmic period (grey lines) and
f(log P/days) ∝ (log P/days)−0.5 (crimson lines) (Sana et al. 2012, 2013).
Since the stability criteria tend to curtail large values of a1, the PU and PS
gap distributions appear similar. We observe a similar albeit less pronounced
effect in the distributions without a gap (solid lines).

of a1. Given the greater abundance of small semimajor axes, the RL
criterion limits the number of high eccentricity systems. Similarly,
the requirement that a1 be small compared to a2 for a hierarchical
triple, a condition reinforced by equations (3) and (4), curtails the
number of inner binaries at large periods (Fig. 1). Due to this effect,
the PU and PS gap period distributions strongly resemble each other,
and the no-gap PU and PS distributions converge at large periods.

Figure 2. Circularization time-scales: We use a Guassian kernel density
estimator to plot smoothed histograms of the circularization times (tcirc)
from the Monte Carlo simulations SET-PU-e1 (solid bright red curve) and
SET-PS-e1-gap (dashed maroon curve). The circularization time is defined
by our stopping condition. The no-gap simulation has an order of magnitude
more circularized systems.

Figure 3. RL-crossing time-scales: Here, we show the smoothed his-
tograms of the RL-crossing time, called tRL, using a Guassian kernel
density estimator for SET-PU-e1 (solid bright red curve) and SET-PS-e1-gap
(dashed maroon curve). We term these systems RL binaries.

2.5 Stopping conditions

We evolve each triple system for 10 Myr. We also include conditions
which, if met, result in an early termination of the integration. We
consider two stopping conditions:

(i) We terminate the simulation once the system tightens and
circularizes because tide-dominated systems become numerically
expensive. We consider a system to be tidally tightened and
circularized when a1 < 2.1Ri,j/LR,ij and e1 < 0.001. Fig. 2
shows the typical circularization time-scales for gap and no-gap
systems.

(ii) If an inner member have crosses the other’s RL, or when
a1(1 − e1)LR, ij < Ri (see equation 5), we terminate the integration.
We denote the time upon which the system crosses the RL as tRL.
In Fig. 3, we show typical tRL. As expected, the gap systems have
systematically longer RL crossing times because they are associated
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2484 S. Rose, S. Naoz and A. M. Geller

Figure 4. Archetypal systems: Here, we show the time evolution of three triple systems. The left, middle, and right columns represent an RL-crossing system,
a system that undergoes weak oscillations, and a tidally circularized system, respectively. The first row shows the inner binary orbital inclination (blue) and
obliquities, or spin-orbit angles, ψ1,2 (orange, green) of the stars; the second row, eccentricities of the inner and outer binaries; and the last row, the inner
semimajor axis, periapsis, and the RL. Note that in the tidally tightened and circularized system, rp and a1 converge while e1 approaches zero. Both simulations
take a 10 M� primary. The left-hand side has initial values m2 = 2.1 M�, m3 = 11.7 M�, a1 = 25.8 au, a2 = 286.7 au, e1 = 0.22, e2 = 0.47, β1 = 178◦, β2 =
33◦, i1 = 104◦, and i2 = 4◦; the middle panel, m2 = 9.6 M�, m3 = 8.3 M�, a1 = 5.5 au, a2 = 327.4 au, e1 = 0.42, e2 = 0.47, β1 = 1.7◦, β2 = 208◦, i1 =
131◦, and i2 = 4.07◦; and the right-hand side, m2 = 6.0 M�, m3 = 12.6 M�, a1 = 7.2 au, a2 = 85.8 au, e1 = 0.77, e2 = 0.42, β1 = 44◦, β2 = 49◦, i1 = 71◦,
and i2 = 4◦.

with longer quadrupole time-scales. The quadrupole time-scale
Tquad depends on P 2

2 /P1, where P1 (P2) correspond to the inner
(outer) orbital period. Typical gap systems have log Tquad > 3.5
with a median log Tquad ∼ 6.7. While the no-gap distribution has a
similar median (log Tquad ∼ 6.8), the distribution is wider and has
more systems with low quadrupole time-scales. The lower limit of
the distribution shifts to a shorter time-scale, log Tquad > 1.5.
Unlike Naoz & Fabrycky (2014), we do not count these systems
as merged products because we expect their merger times to be
a few million years (Stephan et al. 2016), the same order as
the stellar evolution time-scale. The outcome of this interaction
remains highly uncertain without comprehensive eccentric binary
interaction physics. During this process, the stars may or may
not be observed as two distinct stars. Thus, to differentiate these
systems, we term them RL-crossed binaries, or RL binaries for
brevity.
During a mass transfer process complicated by forced eccentricity
oscillations from the tertiary, an observer may detect m1 and m2 as
a binary system. We therefore define a possible observed orbit for
the RL binaries with aF ∼ RRL by assuming angular momentum
conservation, a plausible assumption during the final plunge of the
merger. We also artificially set the eccentricities of RL binaries
to 0.01, which may inflate the number of circularized systems. We
caution that the true properties of these systems are highly uncertain,
and the actual observed periods may vary largely. In Fig. 7, we
denote this uncertainty with arrows.

3 SI MULATED RESULTS

3.1 General outcomes

Each system has three possible general outcomes, shown in Fig. 4.
The final outcome depends mainly on the eccentricity excitations
and the efficiency of the tides, which act to tighten and circularize
the inner orbit. The ‘strength’ of the EKL mechanism, parametrized
by ε (equation 4), combined with the mutual inclination itot of the
system determine the nature of the eccentricity excitations (e.g.
Naoz 2016).

(i) RL crossing: When extreme eccentricity excitations occur on
a shorter time-scale than the tidal forces can circularize the system,
the pericenter approach can become smaller than the RL (equation
5). This type of behaviour is depicted in the left-hand side of Fig. 4.
This outcome is common in the weak-tide regime examined in this
paper.

(ii) Tidal tightening and circularization: During periods of higher
eccentricity induced by the third star, tidal forces can act to shrink
and circularize the inner orbit. The tidal forces decrease the inner
semimajor axis until the inner orbit decouples from the third star.
The decoupling of the outer and inner orbits results in a conservation
of their individual angular momenta. As a result, the typical final
semimajor axis of the inner orbit is ∼2a1,0(1 − e1,0), where the
subscript ‘0’ denotes values at the start of the circularization process.
The right column of Fig. 4 shows an example of this evolution.
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Figure 5. Spin-orbit angle: The final spin-orbit angle and period for both
the primary (top) and secondary (bottom) coloured by final eccentricity.
Circles represent systems from MET-PU-e1, stars from MET-PU-e2, and
triangles from MET-PS-e05. The points at low eccentricity and period but
non-zero spin-orbit angles represent Cassini resonances.

Tidal dissipation also tends to align the spin axes of the stars
with the inner orbit’s angular momentum vector. The spin-orbit
angle ψ1 (ψ2) is defined as the angle between the inner orbit’s
angular momentum and the spin axis of m1 (m2). Fig. 5 shows that
this angle goes to zero in most systems. However, in some cases,
the system can become locked into a resonance, called a Cassini
resonance:

	j = 2
2π/P1

cos ψj + sec ψj

, (6)

where ψ j denotes the spin-orbit angle and 	j, the spin period of
the two stars (j = 1, 2) in the inner orbit (e.g. Fabrycky, Johnson &
Goodman 2007; Naoz & Fabrycky 2014; Stephan et al. 2016).

(iii) Weak oscillations: In many cases, the third star induces only
weak eccentricity and inclination oscillations that do not result in
a dramatic change of the orbital parameters. The middle column
of Fig. 4 shows an example system. While the locations of these
individual systems in the eccentricity distribution shift slightly, they
do not introduce a noticeable net change.

3.2 Eccentricity distribution and the effect of tides

The final eccentricity distribution tends to retain the same shape and
curvature as the birth distribution irrespective of other conditions.
We quantify their similarity and provide predictions in Section 3.4.1.
This result holds for gap and no-gap simulations. To visualize this
trend, we group the results by initial eccentricity distribution in
Fig. 6. The initial period distribution has no discernible effect on
the shape of the final eccentricity distribution.

As expected, tidal efficiency results in more circularized systems,
increasing the vertical axis intercept of the cumulative distribution
as shown in Fig. 6 for no-gap simulations. Less efficient tides
result in an abundance of RL binaries, which can also increase
the vertical axis intercept of the cumulative distribution. Recall that
we artificially set eccentricity of the RL systems to 0.01, which may
inflate the number of circularized systems. Irrespective of efficiency,
tides have no effect on the overall shape or functional form (e.g.
thermal) of the distribution.

3.3 Period distribution and the effect of tides

The final long-period distribution tends to retain the same shape and
curvature as the birth distribution irrespective of other conditions.
We quantify the similarity and provide predictions in Section 3.4.2.

As mentioned above, we treat the RL systems as tight binaries.
Fig. 7 illustrates the strong dependence of the fraction of circularized
systems on tidal efficiency. The dependence of RL system fraction
on tidal efficiency is less pronounced, but generally less efficient
tides result in more RL-crossed systems. Fig. 7 exemplifies this
trade-off between circularized systems and RL-crossed systems,
where the red curves count RL binaries. An RL crossing occurs
when the EKL mechanism drives extreme eccentricity excitations
before tides can shrink and circularize the system. A lower
tidal efficiency therefore gives systems more chances to cross
the RL. With the exception of the blue curves in Fig. 7, we
include RL binaries as short-period systems unless otherwise
noted.

In Fig. 7, the final period distribution for gap simulations appears
bimodal and exhibits a dearth of systems at intermediate periods.
The peak at short-periods consists of RL and tidally tightened
systems. In tidally inefficient (IET) simulations, this peak comprises
RL binaries, while the vast majority of systems remain at long
periods. Even with the most efficient tides (SET), 10 Myr of EKL
evolution fails to fill the gap.

Since tidal efficiency is highly sensitive to stellar radius, larger
radii yield more circularized systems. Additionally, during tidal
capture, angular momentum conservation (e.g. Ford & Rasio 2006)
yields a relation between the final binary separation and the Roche
lobe, which depends linearly on the stellar radius. Therefore, as stars
leave the main sequence and inflate, we expect circularized systems
to have longer periods. To illustrate this behaviour, we consider three
approaches to the mass–radius relation in Fig. 8. Specifically, we
consider the ZAMS mass–radius relation R = 1.01M0.57 (blue line),
as well as R = 1.33M0.55 and the TAMS mass–radius relation, R =
1.61M0.81 (e.g. Demircan & Kahraman 1991) (green and red lines,
respectively). To highlight the differences, we include a gap and
make the tides unrealistically efficient (UET, unrealistic equilibrium
tides). As shown in the figure, the larger radii correspond to longer
periods for the tidally tightened binaries. Additionally, larger radii
result in a more filled gap at intermediate periods. However, even
with unrealistically efficient tides, the TAMS distribution fails to
match observations.

3.4 Predictions: observable signatures of birth properties

3.4.1 Eccentricity

To quantify the degree of similarity between the simulated birth and
final eccentricity distributions, we fit a function of the form

cdfe = κee1
αe + βe, (7)

to the initial and final cumulative distributions, where αe is the index
of the power law and κe and βe are constants. The parameters have
the following limits: 0 < κe < 3, −2 < αe < 2, and 0 < βe < 0.6.
We argue that the vertical axis intercept, βe, must be greater than
or equal to zero because we are fitting a cumulative distribution.
We fit both the initial and final distributions to show consistency
between the two. As depicted in Fig. 9, αe changes by 0.3 at most,
and only for the most efficient tides. We caution that while this trend
holds for hierarchical triple dynamics, we do not account for other
dynamical processes that may alter the eccentricity distribution.

MNRAS 488, 2480–2492 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/2/2480/5529401 by U
niversity of C

alifornia, Los Angeles user on 29 July 2019



2486 S. Rose, S. Naoz and A. M. Geller

Figure 6. No-gap simulation results by eccentricity. We consider the results for no-gap simulations by their eccentricity birth distribution. We create a colour
spectrum based on tidal efficiency and plot the birth eccentricity distribution in black. With the exception of low eccentricities where there is a build-up of
circular systems, the final cumulative distribution strongly resembles the birth distribution.

We vary the range of eccentricity values over which we fit. As
more eccentric systems circularize or cross the RL, they increase
the number of low-eccentricity systems. When fitting over the full
range of eccentricity values, we impose the condition that e1 >

0.01 to absorb all circularized and RL-crossed binary systems into
the vertical-axis intercept. We also fit over the range 0.1 < e1 <

0.7. A fit of the birth distribution over this range better reflects the
function used to generate values because stability criteria target the
extremes.

3.4.2 Orbital period

We use a function of the same form, cdfP = κP log P
αP
1 + βP, with

the same limits on αP, κP, and βP. We fit the period distribution

over the range 1 < log P1 < 3. We select the lower limit to avoid the
newly formed peak of short-period systems. This lower limit must
be adjusted to accommodate the width of the short-period peak,
which will depend on the stellar radii (Fig. 8) and therefore the
age of the binary system when it circularizes. The reason for the
upper limit is twofold: the stability criteria curb the number of long-
period systems, causing our initial distributions to converge at large
period, and observational campaigns may not be sensitive to longer
periods (e.g. Sana et al. 2013). The birth distribution signature
proves much more difficult to discern in the period distributions
than in the eccentricity distributions. We find that the orbital period
distribution is most consistently preserved over this range, 1 <

log P1 < 3. As depicted in Fig. 10,the power α changes by at most
∼0.3 for PU simulations and stays ≤0.5 for PS simulations.
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Figure 7. Tidal efficiency and final period distributions. We show the final
period distributions for three different tidal efficiencies: SET, MET, and
IET, in order of greatest to least efficiency. The red distribution includes
RL-crossed systems as tight binaries with periods calculated from angular
momentum conservation and the RL stopping condition. These systems
therefore appear in a sharp, artificial peak. We use arrows to indicate that
the width and true shape of this peak remain unknown. The blue distribution
does not include RL-crossed systems.

Figure 8. Stellar radii and final period distributions. Here, we show the
dependence of the final inner binary period (P1) probability density on the
mass–radius relation for UET simulations with tv = 0.005. The TAMS (red)
and ZAMS (blue) relations yield the largest and smallest radius, respectively,
for a given mass. Larger radii shift the peak to larger periods.

3.5 Comparison to observations

3.5.1 Eccentricity distribution

Several groups have studied the eccentricity distributions of massive
binaries. Specifically, Almeida et al. (2017) have examined OB-type
spectroscopic systems in the Tarantula region to find that 40 per cent
of systems have small eccentricities (<0.1). Furthermore, their
eccentricity distribution appears uniform. However, the cumulative

Figure 9. Observational signature of the initial eccentricity conditions. We
show the simulated cumulative distribution for select no-gap simulations in
red for the final (initial) distribution, right (left) column. Overplotted is the fit
cdfe = κee

αe
1 + βe for the distribution calculated between two boundaries.

In the blue, dashed line, we mark the 0.1 < e1 < 0.7 boundary, while in
the green, dotted line, we mark the fit over the full range of eccentricity
values. The fit function takes the following form: cdfe = κee

αe
1 + βe. The

final distribution mirrors the initial distribution and thus can serve as an
observational signature.

distribution flattens slightly for high (>0.6) eccentricities, indicat-
ing fewer systems there. In a study of 48 massive systems from
the Cygnus OB2 association, Kobulnicky et al. (2014) also show
a flattening in the cumulative distribution at high eccentricity and
attribute it to an observational bias. While this observed flattening
may indeed reflect observational biases, we do find that our stability
conditions curb the number of high eccentricity systems. As a result,
our initial conditions exhibit flattening at large eccentricities (see
Fig. 1), which persists in the final distribution.

Similar to Almeida et al. (2017), Kobulnicky et al. (2014) note
an abundance of low (<0.1) eccentricity systems and conclude that
the distribution is uniform for e � 0.6. In their review, Duchêne &
Kraus (2013) also suggest that massive binaries follow a uniform
eccentricity distribution, while Sana & Evans (2011) and Sana et al.
(2012) give a probability density of the form f(e) ∝ e−0.5. Moe & Di
Stefano (2017) find a thermal eccentricity distribution, f(e) ∝ e, for
OB-type binaries using the catalogue from Malkov et al. (2012).
However, their finding pertains to wider binaries with periods
between 10 and 100 d, and many of our systems have shorter periods.

We find that the power-law index is a good indicator of the
initial condition. Additionally, Geller et al. (2019) determine that
star cluster dynamics has little to no effect on the shape of the
eccentricity distribution for binaries with modest orbital periods.
These combined results imply that the final distribution resembles
the birth distribution. The birth distribution of population with
uniform eccentricities is therefore also uniform.

3.5.2 Period distribution

Duchêne & Kraus (2013) estimate that 30 per cent of massive
binaries have periods of less than 10 d. Sana & Evans (2011) find
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that 50–60 per cent of systems fall at log P < 1. Similarly, the
data of Almeida et al. (2017) indicate an abundance (∼ 40 per cent)
of short-period (<1 week) systems. Kobulnicky et al. (2014) also
affirm the abundance of short-period binaries.

Counting RL binaries in the no-gap simulations, systems with
log P1 < 1 represent 45 per cent, 36 per cent, and 29 per cent of the
SET, MET, and IET inner binaries, respectively, in Fig. 7. The
superefficient tides (SET, first row) seem too efficient. However,
counting only systems with log P1 < 3.4 to reflect observational
limits, the SET and MET simulations match the estimates of Sana &
Evans (2011) and Kobulnicky et al. (2014) with 51 per cent and
42 per cent short-period (<10 d) systems, respectively. The IET
simulation has 34 per cent. Additionally, observations may not be
sensitive to our so-called RL binaries. In that case, the IET tides
become too inefficient to account for observations. Examining only
tidally tightened systems, the fractions of short-period binaries fall
to 46 per cent, 34 per cent, and 24 per cent of total systems with
log P1 < 3.4 for SET, MET, and IET simulations, respectively.

A power law of the form f(log P/days) ∝ (log P/days)α is often
fitted to the orbital period distribution (e.g. Kobulnicky et al. 2014).
The index of this power law varies in the literature. Sana et al.
(2012) suggest α = −0.55, while Sana et al. (2013) find α =
−0.45. Almeida et al. (2017) conclude that an index between −0.2
and −0.5 reproduces the data well depending on the range over
which they fit. Kobulnicky et al. (2014) suggest that tight binary
peak has some structure: the distribution is not uniform at short
periods.

In Fig. 11, we show the cumulative distributions for all of our
no-gap simulations over the range 0.15 < log P1 < 3.4. Bounded by
the curves cdfP ∝ (log P1)0.8 (Kobulnicky et al. 2014; Almeida et al.
2017) and cdfP ∝ (log P1)0.5 (Sana et al. 2012, 2013), the grey region
depicts the range of power laws fitted to observations. While several
of our simulated results resemble the power laws fitted to the data,
generally, SET and PS simulations seem to overpredict the number
of short-period systems, while IET simulations underpredict the
number of short-period systems.

We perform a Kolmogorov–Smirnov (KS) two-sample test to
compare our final period distributions to observations. We perform
this test both with and without including RL binaries in our
simulated sample. Comparing to the data of Sana et al. (2012),
we cannot reject the null hypothesis that the observations and
simulated results share a parent probability density distribution for
the following simulations: MET-PS-e05, MET-PS-e1, SET-PU-e2,
IET-PS-e05 both with and without RL binaries. We also perform
this test with the data from Kobulnicky et al. (2014) and find
that we cannot reject the null hypothesis for MET-PS-e05 and
IET-PS-e05 without RL binaries; MET-PU-e2 and MET-PU-e05
with RL binaries; and SET-PU-e2 and SET-PU-e1 both with and
without RL binaries. We do not assign much significance to these
results. We have a number of systems, the RL binaries, with poorly
understood periods in MET and IET no-gap simulations, which
hinder a statistical comparison between our results and the data.
Additionally, the data have far fewer systems and are subject to
observational biases: at large periods, the observed distribution
likely diverges from the intrinsic distribution (Sana et al. 2012). The
latter explains why the KS test favours PS and SET simulations,
while the fitted power laws more often coincide with MET-PU
simulations (Fig. 11).

Unlike the no-gap simulations, the gap simulations seem to be in
tension with observations. We plot the cumulative distributions for
the gap simulations with more efficient tides in Fig. 12. The curves
all exhibit a similar behaviour indicative of a bimodal distribution.

Figure 10. Traces of the initial orbital period distribution. We show the
simulated initial (left) and final (right) cumulative no-gap period distribu-
tions. We overplot a fit with of the form cdfP = κP (log P1)αP + βP. We fit
the distribution over the range 1 < log P1 < 3. We find that a signature of
the birth distribution is best preserved over this range.

We again perform a KS test to compare our simulated results with the
observations. The bottom panel of Fig. 12 plots simulation results
with the data from Sana et al. (2012) and Kobulnicky et al. (2014)
that we test. We find that we can reject the null hypothesis that the
simulated distributions and data are drawn from the same parent
probability density distribution. Two major differences separate
our simulated results from the observations: the persistence of
a substantial population of long-period systems and the lack of
intermediate-period binaries, as illustrated by Fig. 7. While the
true separations of RL binaries – and whether they can fall at
intermediate periods – is highly uncertain, a substantial long-period
population will none the less persist.

4 D ISCUSSION

A distant stellar companion can drive the long-term evolution
of a massive stellar binary. Distant companions, which may be
quite common, can therefore alter the observed orbital parameter
distributions for massive binaries. We characterize these effects for
a large variety of birth distributions and tidal efficiencies. We find
the following:

(i) Spin-orbit angle distribution: Fig. 5 plots the spin-orbit angles
and periods of 3000 realizations of massive triples colour coded by
eccentricity. For long-period systems, no trend in spin-orbit angle
and eccentricity exists. However, as systems circularize at periods of
about 10 d, the orbit and stars’ angular momenta align such that the
spin-orbit angle goes to zero, with a few exceptions: occasionally the
spin-orbit angle becomes locked in a (non-zero) resonance, called
a Cassini resonance.

(ii) Eccentricity distribution: The final eccentricity distribution
is an excellent indication of the birth distribution. The cumulative
distribution retains the curvature of the birth distribution. A fit over
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Figure 11. Power laws from observations compared with no-gap results. We plot the cumulative distributions for our no-gap simulations with and without
RL binaries. The grey shaded region encompasses the range of power laws indicated by observations. The curves cdfP ∝ (log P1)0.8 (Kobulnicky et al. 2014;
Almeida et al. 2017) and cdfP ∝ (log P1)0.5 (Sana et al. 2012, 2013) bound the grey region. To avoid visual clutter, we deviate from our preferred presentation
for the period distributions, a probability density, and instead focus on cumulative distributions here.

Figure 12. Upper Panel: Power laws from observations compared with
gap results. We plot the cumulative distributions for select gap simulations
with and without RL binaries. These simulations have more efficient
(SET or MET) tides and therefore the most short-period systems. The
gray shaded region represents observationally constrained power laws. The
curves cdfP ∝ (log P1)0.8 (Kobulnicky et al. 2014; Almeida et al. 2017) and
cdfP ∝ (log P1)0.5 (Sana et al. 2012, 2013) bound this region. Lower Panel:
Probability density with data. We plot the probability densities for select
gap simulations with and without RL binaries. The gray and black dashed
histograms represent data from Kobulnicky et al. (2014) and Sana et al.
(2012), respectively.

the range 0.1 < e1 < 0.7 of a function cdfe ∝ e
αe
1 quantifies this

trend (see Fig. 9). Generally, the change in αe is within 0.3, with
a tendency to flatten – or render more uniform – the eccentricity
distribution.

(iii) Period distribution: A signature of the birth period distri-
bution persists at 1 < log P1 < 3. We fit the period cumulative
distribution with a power law over this range. The index changes
by ∼0.3 for the uniform initial condition and remains �0.5 for
cdfP ∝ (log P1)0.5 (PS) initial condition simulations (Fig. 10).

(iv) Short-period binaries: Observations indicate an abundance
of short-period binaries (e.g. Duchêne & Kraus 2013). In our
simulations, the tidal efficiency determines both the resulting
number of short-period binaries and the dominant type of short-
period system. Less efficient tides give systems more chances to
cross the RL, while efficient tides yield more circularized, tight
binaries. The former results in an artificial peak in our final period
distribution because the final properties of such systems remain
uncertain. Due to angular momentum conservation, the final periods
of short-period systems depend on the stellar radii. We treat the
stellar radii as constant. However, realistically, the radii will expand
as the stars age. Systems which tidally tighten or cross the RL at
later times will therefore fall at longer periods (Fig. 8).

(v) Initial period gap: Sana et al. (2017) suggest that massive
binaries may form with large separations and tighten over time to
match the parameter distributions of older populations. The EKL
mechanism in concert with tidal dissipation represents a channel for
producing hardened binaries. However, the EKL mechanism fails to
build up a sufficient population of short-period binaries if we begin
with a lower period cut-off of 9 months (Fig. 12).
We perform a brief calculation to assess whether type-II migration
may fill a 9 month gap in the inner period distribution. Following
Armitage (2007), the type-II migration time-scale τ can be written
as τ ∼ 2/(3α)(h/a1)−2	−1, where α is related to the viscosity, h
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is the scale height, and h/a1 represents the disc aspect ratio. 	

denotes the angular velocity. A 9-month period corresponds to a
roughly 2 au semimajor axis. Taking the primary and secondary
to have masses 10 and 5 M�, respectively, 	 is approximately
0.7 yr−1. We assume that h/a1 ≈ 0.07 (e.g. Ruge et al. 2013) and
α ≈ 0.01 (Armitage 2007). We find that the time-scale is about
2 × 104 yr. Type-II migration therefore represents a mechanism to
bridge an initial period gap, as suggested by Sana et al. (2017),
with observations of older populations. Acting over a short time-
scale to tighten binaries, type-II migration may fill the gap in the
period distribution. If a binary system undergoing migration has
a third companion, the gas will mostly suppress the gravitational
perturbation of the tertiary star, although the system may develop an
inclination between the disc and the companion (e.g. Martin et al.
2014).

(vi) Comparison with observations: no initial period gap and
moderate tides. We compare our cumulative distributions for the
final inner orbital period with the observationally constrained power
laws in Fig. 11. Many of our results fall in the region bounded
by the power laws indicated by the literature (e.g. Almeida et al.
2017). Howerver, generally, simulations with moderately efficient
tides (MET) and a uniform birth period distribution match observed
distributions well.
Several observations indicate a uniform eccentricity distribution
except at high eccentricity (e.g. Kobulnicky et al. 2014). Only
simulations that begin with a uniform eccentricity distribution
produce a uniform distribution as the end result.

Unlike previous studies of EKL evolution in triple stellar systems
(e.g. Naoz & Fabrycky 2014; Bataille et al. 2018; Moe & Kratter
2018), we find that the final period and eccentricity distributions
carry a clear signature of the initial distributions. This behaviour
is a consequence of the short time-scale of evolution (∼10 Myr)
and the METs of stars with radiative envelopes. We expect that as
stellar evolution increases the stellar radii and causes mass-loss, the
orbital configurations will significantly alter.
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APPENDIX A : SIMULATION PARAMETERS

We run several large Monte Carlo simulations to cover a wide
range of initial conditions. Table A1 describes the 38 sets of Monte
Carlo simulations. Some simulations adopt a Kroupa mass function
with limits 1 M� < m < 20 M� (‘K1’) or 6 M� < m < 20 M�
(‘K6’). We find that the masses affect the results in so far, as
they determine the tidal efficiency. For example, for the former
limits, the abundance of low-mass stars with efficient tides will

result in more circularized systems even when using the IET
prescription.

APPENDI X B: FI TTI NG THE PERI OD
DI STRI BU TI ON

Taking a similar approach to Section 3.4.2, we fit the cumulative no-
gap period distribution over the range 0.15 < log P1 < 3.4, selected
to reflect the limits in, e.g. Almeida et al. (2017) and Sana et al.
(2013), in Fig. B1. With 0.4 < αP ≤ 0.5, PU-MET simulations best
match observationally constrained cumulative distribution functions
that have 0.5 < α < 0.8. We show additional examples in Fig.
B2. The IET-PU distributions are too flat, while either SET or PS
conditions give too pronounced curvature with αP < 0.2. Taking the
observations and our fits at face value, we suggest that moderately
efficient tides – or another model with a similar efficiency – are the
best candidate. However, these fits remain uncertain because of the
RL binaries, included in the cumulative distribution.

We further suggest that cumulative distributions be fitted in two
parts: one where the short-period peak occurs and one for periods
longer that ∼10 d. Since MET-PU simulations yield a similar final
period distribution irrespective of eccentricity initial condition, we
fit the MET-PU-e1 results as an example in Fig. B3.

Table A1. Parameters and birth distributions used by each 10-Myr Monte Carlo simulation. A ‘g’ denotes simulations that include a gap.

Label Radius Mass Eccentricity Period Tides

PU-e1-M10-TAMS TAMS m1 = 10 M� & Uniform q Uniform Uniform SET
PU-e1-M10-Emp Empirical m1 = 10 M� & Uniform q Uniform Uniform SET
PU-e1-M10-ZAMS ZAMS m1 = 10 M� & Uniform q Uniform Uniform SET, MET, IET, UET(g), SET(g), MET(g), IET(g)
PS-e1-M10-ZAMS ZAMS m1 = 10 M� & Uniform q Uniform f(log P) ∝ log P−0.5 SET, MET, SET(g)
PS-e05-M10-TAMS TAMS m1 = 10 M� & Uniform q f(e) ∝ e−0.5 f(log P) ∝ log P−0.5 UET(g)
PS-e05-M10-Emp Empirical m1 = 10 M� & Uniform q f(e) ∝ e−0.5 f(log P) ∝ log P−0.5 UET(g), LET(g)
PS-e05-M10-ZAMS ZAMS m1 = 10 M� & Uniform q f(e) ∝ e−0.5 f(log P) ∝ log P−0.5 MET, IET, UET(g), SET(g), MET(g)
PU-e05-M10-ZAMS ZAMS m1 = 10 M� & Uniform q f(e) ∝ e−0.5 f(log P) ∝ log P−0.5 MET
PU-e2-M10-ZAMS ZAMS m1 = 10 M� & Uniform q Thermal Uniform SET, MET, IET, SET(g), MET(g)
PS-e2-K6-Emp Empirical Kroupa with 6 M� < m < 20 M� Thermal f(log P) ∝ log P−0.5 LET(g)
PS-e05-K6-Emp Empirical Kroupa with 6 M� < m < 20 M� f(e) ∝ e−0.5 f(log P) ∝ log P−0.5 LET(g)
PU-e05-K6-Emp Empirical Kroupa with 6 M� < m < 20 M� f(e) ∝ e−0.5 Uniform LET(g)
PU-e2-K6-Emp Empirical Kroupa with 6 M� < m < 20 M� Thermal Uniform LET(g)
PS-e1-K1-ZAMS ZAMS Kroupa with 1 M� < m < 20 M� Uniform f(log P) ∝ log P−0.5 IET(g)
PU-e1-K1-ZAMS ZAMS Kroupa with 1 M� < m < 20 M� Uniform f(log P) ∝ log P−0.5 IET
PU-e1-K6-ZAMS ZAMS Kroupa with 6 M� < m < 20 M� Uniform f(log P) ∝ log P−0.5 LET
PU-e2-K1-ZAMS ZAMS Kroupa with 1 M� < m < 20 M� Thermal Uniform IET(g)
PS-e05-K1-ZAMS ZAMS Kroupa with 1 M� < m < 20 M� f(e) ∝ e−0.5 f(log P) ∝ log P−0.5 IET(g)
PS-e2-K1-ZAMS ZAMS Kroupa with 1 M� < m < 20 M� Thermal f(log P) ∝ log P−0.5 IET
PU-e05-K1-ZAMS ZAMS Kroupa with 1 M� < m < 20 M� f(e) ∝ e−0.5 Uniform IET
PU-e05-K6-ZAMS ZAMS Kroupa with 6 M� < m < 20 M� f(e) ∝ e−0.5 Uniform LET

MNRAS 488, 2480–2492 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/2/2480/5529401 by U
niversity of C

alifornia, Los Angeles user on 29 July 2019

http://dx.doi.org/10.1051/0004-6361/201630087
http://dx.doi.org/10.1088/0004-637X/766/1/64
http://dx.doi.org/10.1038/s41598-019-39089-2
http://dx.doi.org/10.1093/mnras/stw1220
http://dx.doi.org/10.1088/0004-637X/741/2/82
http://dx.doi.org/10.1111/j.1365-2966.2008.13613.x
http://dx.doi.org/10.1051/0004-6361/201833164
http://dx.doi.org/10.1088/0004-637X/725/1/940
http://dx.doi.org/10.1146/annurev.astro.44.051905.092549


2492 S. Rose, S. Naoz and A. M. Geller

Figure B1. Final period distribution fit. We show the simulated cumulative
distribution in red for the final (initial) distribution, right (left) column.
We overplot a fit with of the form cdfP = κP (log P1)αP + βP. We fit the
distribution over the range 0.15 < log P1 < 3.4 to examine overall trends in
the period distribution.

Figure B2. Final period distribution fit, additional examples. We show the
simulated cumulative distribution in red for the final (initial) distribution,
right (left) column. We overplot a fit with of the form cdfP = κP (log P1)αP +
βP. We fit the distribution over the range 0.15 < log P1 < 3.4 to examine
overall trends in the period distribution.

Figure B3. Example two-part fit of period distribution. We fit the most
promising (PU, MET) simulated results with in two parts, 0.15 < log P1 <

1 and 1 < log P1 < 3. We use the e1 simulation and note that the eccentricity
does not affect this result.

A P P E N D I X C : A D D I T I O NA L EX A M P L E S O F
PERI OD DI STRI BU TI ON TRACES

We apply the method described in Section 3.4.2 to all of our no-gap
simulations to find traces of the initial period distribution in the final
result. We show the other five simulations in Fig. C1. As noted in
Section 3.4.2, the index α of the power law fitted over the range 1
< log P1 < 3 changes by at most ∼0.3 for PU simulations and stays
� 0.5 for PS simulations.

Figure C1. Signature of the initial orbital period distribution. We show the
simulated cumulative distribution in red for the final (initial) distribution,
right (left) column. We overplot a fit with of the form cdfP = κP (log P1)αP +
βP. We fit the distribution over the range 1 < log P1 < 3 to find a signature
of the birth distribution.
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