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Abstract

We construct a theory of real scalar fields that interpolates between two different theories: a
Lee—Wick theory with N propagator poles, including N — 1 Lee—Wick partners, and a nonlocal
infinite-derivative theory with kinetic terms modified by an entire function of derivatives with
only one propagator pole. Since the latter description arises when taking the N — oo limit, we
refer to the theory as “asymptotically nonlocal.” Introducing an auxiliary-field formulation of the
theory allows one to recover either the higher-derivative form (for any N) or the Lee-Wick form
of the Lagrangian, depending on which auxiliary fields are integrated out. The effective scale that
regulates quadratic divergences in the large-N theory is the would-be nonlocal scale, which can
be hierarchically lower than the mass of the lightest Lee-Wick resonance. We comment on the

possible utility of this construction in addressing the hierarchy problem.
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I. INTRODUCTION

When the Higgs boson was discovered at the Large Hadron Collider (LHC) in 2012 at
a mass of 125 GeV, an immediate question was: why is it so light compared to the Planck
scale at 10! GeV? The standard model, in its present form, does not provide a mechanism
that protects the Higgs mass from picking up large radiative corrections from Planck-scale
physics. And if there was no such mechanism, then the observed Higgs mass had to be
the result of an incredibly fine-tuned almost-cancellation between the bare mass and its
corrections.

This has been dubbed the “hierarchy problem,” and while there have been many proposed
solutions, in this paper we would like to focus on the Lee-Wick approach [1]. The Lee—
Wick standard model [2] provides an inherent mechanism to address the hierarchy problem:
supplementing the spectrum of the standard model by TeV-scale Lee-Wick partner particles
with wrong-sign kinetic and mass terms leads to a cancellation of quadratic divergences in
scalar self-energies, with the precise spectrum of Lee-Wick resonances left for experiments to
determine. These models have been shown to be unitary, provided certain prescriptions are
adopted in momentum space to deal with the different pole structure [3] (see also [4]), are
causal at the macroscopic level [5], have subsequently been generalized to include additional
partner particles [6, 7], and have garnered much attention in the phenomenological literature
as well [8]. However, to date, no such Lee-~Wick partner particles have been found up to
Vs ~ O(10) TeV [9], and while shifting these masses to higher, unprobed energies would in
principle be permissible, it would no longer provide a convincing solution of the hierarchy
problem.

The last decades have also seen the development of nonlocal field theories [10-15], in
particular those without additional degrees of freedom, sometimes referred to as “ghost-
free” theories. While these Lorentz-invariant nonlocal theories were originally intended as
simple generalizations of Pauli-Villars regularization schemes [16-18] they have since been
rediscovered in p-adic string theory and non-commutative geometry [19-22]. A large body
of research has been devoted to a better understanding of ab initio nonlocal theories, and
recent work and applications include regular bouncing cosmologies [23], nonlocality in string
theory [24, 25], regularization of the gravitational field via nonlocality [26-28], as well as the

role of the Wick rotation vis-a-vis unitarity and causality [29-34]. For a review of infinite-



derivative quantum field theory see Ref. [35], and for additional references we refer the reader
to Ref. [36].

In nonlocal theories, the scale of nonlocality is set by a free parameter that we will call
M.; in ghost-free models, this scale does not correspond to the mass of a resonance as there
are no corresponding poles in the propagator. Given the current status of LHC searches for
new particles, this is potentially a desirable property for a realistic nonlocal extension of the
standard model. One might expect that non-resonant effects on scattering amplitudes would
allow M to be as low as the typical, TeV-scale collider bounds on new physics that does
not violate flavor, CP or Lorentz invariance. In the present work, we develop a simple scalar
toy model that interpolates between a Lee—~Wick and a nonlocal theory, where the latter is
obtained as the number of Lee-Wick resonances tends to infinity and the spectrum of heavy
particles decouples. What is interesting about this “asymptotically nonlocal” theory is that
the would-be nonlocal scale, M,;, becomes the effective regulator of scalar loop diagrams,
while remaining hierarchically lower than the mass of the lightest Lee-Wick resonance. (For
another proposal in which the effective scale of nonlocality is expected to be much lower
than a cutoff scale see [37].) In the case where the number of Lee-Wick resonances is finite
but large, the hierarchy problem in this particular model is resolved even as the Lee-Wick
resonances are decoupled from the low-energy effective theory.

It should be stressed that our goal is to construct specific Lee-Wick theories with N
propagator poles that have the decoupling and divergence properties described above. These
higher-derivative theories are strictly local and avoid a pathology of the nonlocal theory that
they approach, namely, the inability to Wick rotate in Minkowski space leading to a loss
of unitarity [29-34]. Our finite-N Lee-Wick theories are treated as fundamental and are
of interest in their own right; the significance of the N — oo limiting form is only in that
it suggests an organizing principle that assures the emergence of a derived mass scale that
regulates loop integrals, one that is hierarchically smaller than the lightest Lee-Wick partner
mass. Our approach is in some sense analogous to dimensional deconstruction [38, 39], where
interesting four-dimensional theories can be defined whose properties may be understood in
terms of a five-dimensional limiting theory, even though one is never actually interested
in taking or exactly reproducing the limit. Just as a deconstructed model should not be
thought of as a truncation of a five-dimensional theory for the purposes of approximation,

the same perspective applies to the finite /N theories that we are about to present.



This paper is organized as follows: In Sec. II, we develop our basic framework of an aux-
iliary field theory, and prove that integrating out the auxiliary fields results in an effectively
higher-derivative theory, and—in the limit of infinitely many auxiliary fields—results in a
manifestly nonlocal theory; we refer to this as asymptotic nonlocality. In Sec. I1I, we match
this theory to a Lee-~Wick theory, and as an application in Sec. IV we compute the scalar
self-energy at finite and infinite N, at one loop. We show for this simple model that asymp-
totic nonlocality can indeed separate the scale of the lightest Lee-~Wick resonances from the
scale that characterizes the convergence of loop diagrams. We summarize our findings in
Sec. V and suggest that no impediments exist to generalizing this framework to Abelian

gauge theories, non-Abelian gauge theories, and, in principle, the entire standard model.

II. FRAMEWORK

Consider the following (nongeneric) theory of N real scalar fields ¢;, and N —1 real scalar

fields x;:
N-1
L= =5 000y = V(o) = s [0, = (60— 0)/e3] (2.1)
j=1

Here, the a; are N —1 constants with dimension of length, and we have set all the coefficients
of the terms involving the y; to one, for simplicity. The signature of the metric is (+, —, —, —)

and O = 0,0". Functionally integrating over the ; leads to the constraints

O¢; — (¢j41 — ¢5)/as =0, forj=1...N—1. (2.2)

Equation (2.2) is exact at the quantum level, since functionally integrating over the y;,
which appear linearly in the Lagrangian, yields a functional delta function in the generating
functional for the correlation functions of the theory.! This delta function allows one to
perform the functional integration over N — 1 of the ¢; fields, which we will take as those
with j = 2... N; this yields a theory for ¢,. It is instructive first to consider the case where
the a; are all equal, i.e., a; = a. Then recursive application of Eq. (2.2) implies

2 N-1
ON = (1+ ]\f_D1> ¢1 (2.3)

! Note that taking the a; — 0 limit in Eq. (2.2) transforms the difference ¢;1 — ¢; into a derivative with
respect to a new parameter; the approach of exchanging nonlocality for locality in a higher-dimensional

space has been explored in Refs. [40, 41]; see also [42].
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where (> = (N — 1) a®. Letting N — oo while holding ¢ fixed one finds

b =" "1, (2.4)

such that the resulting Lagrangian takes the form
1
‘Coo = —5 ¢1 O €£2D ¢1 — V(¢1) . (25)

This is a familiar form found in the literature on nonlocal quantum field theories, with the
scale of nonlocality fixed by the parameter ¢. It is important to note that the O operator
appearing in the exponential is not necessarily the best choice for a nonlocal theory defined in
Minkowski spacetime due to time-dependent instabilities [43, 44]. However, our construction
holds if one replaces the y; O¢;-terms in Eq. (2.1) with x; D¢;, where D can be any ;-
independent differential operator that one would like to appear in the exponential. Inter
alia, this includes the Lorentz-violating possibility that D = V2, discussed in Ref. [45].
The choice of a single a; = a is convenient for the purpose of illustration, but it has the

following drawback: at finite /V, the propagator of the theory,

7
Dr(p?) =
F(p°) p2(1—a2p2)N*1’

cannot be written as a sum over simple poles. [Here we have assumed, for simplicity, that

(2.6)

there is no ¢; mass term in the potential V(¢;).] Alternatively, Eq. (2.6) can be written as
a sum over simple poles, but only in a limit where the wave function renormalization of all
but one factor diverges. In what follows, we avoid this problem by assuming that the a; are

nondegenerate. The higher-derivative form of the theory is then given by

N-—1 €2|:]
Ly = —%9251[‘ [1_[1 <1 + NJ_ 1)] o1 —Vi(gn) , (2.7)

where K? =(N-1) af, and where the propagator now takes the form

pe = ST (-2 2

1
)
P

One would expect that the same limiting form of the Lagrangian, Eq. (2.5), is obtained when
N — oo and the ¢; approach a common, nonvanishing value. This finite-/V theory provides a
spectrum of nondegenerate states that alternate between ordinary particles and ghosts [18],

i.e., particles whose propagators have wrong-sign residues. This is what one would expect in



Lee-Wick theories that have additional higher-derivative quadratic terms [7] beyond those
found in the Lee-Wick standard model [2], see also [11]. The physics of the theory at
large but finite NV is not strictly equivalent to that of the limit N — oo where additional
pathologies arise (see Sec. I). Nevertheless, by working with local theories at finite N, we
inherit a desirable feature of the limiting theory, namely a derived scale that regulates loop
integrals and that can be hierarchically smaller than the mass scale of the lightest Lee—~Wick

partner, a;'. We show this explicitly later.

III. LEE-WICK FORM OF THE THEORY

At finite N, the theory described in the previous section predicts N physical poles, as
can be seen from Eq. (2.8), which follows immediately from the higher-derivative form of
the theory for ¢;. We obtained this higher-derivative form by integrating out N — 1 of
the 2 N — 1 scalar fields in Eq. (2.1). The theory can also be written in a form without
higher-derivatives, in which there is a separate field corresponding to each of the N poles,
with canonical quadratic terms up to overall signs; in the case of the Lee-Wick standard
model, this has been called the Lee-Wick form of the theory [2], a terminology we adopt
here. The same form can be achieved in the present model by integrating out a different
choice of N — 1 fields that appear linearly in Eq. (2.1). Let us illustrate this in the present
section, in the cases where N = 2 and N = 3, and comment on generalizations that are

required for arbitrary N at the end.

A. Case N =2

For the case of N = 2, let us represent the field basis by ¥ = (¢1, x1, ¢2). The quadratic

terms in Eq. (2.1) may then be written as
1
EQuad = _é\IIT(KD_'_M)\Ij ) (31)

where the matrices K and M are given by

0 1 1/2 0 1/a2 0
K=11 0 0 and M= 1/a? 0 —1/a® | . (3.2)
1/2 0 0 0 —1/a?> 0



We seek an invertible matrix Sy such that Ky = ST K Sy and My = STM S, are simultane-

ously diagonal (or as close to it as possible). With the choice

1 -1 0
So=1|[0 1/2 ¢ , (3.3)
1 0 —2¢

where ¢ is an arbitrary nonvanishing real parameter, one finds

100 0 0 0
Ko=|0-10| and My=]0 —1/a®2 0 . (3.4)
00 0 0 0 4&/a

A number of comments are in order. A combination of unitary rotations and rescalings
are sufficient to put the kinetic matrix in the form shown in Eq. (3.4). The remaining
transformations needed to diagonalize M must preserve the form of K [for example, an
SO(1,1) rotation in the upper-left two-by-two block]; the matrix Sy encodes all of these
transformations. The mass of the W3 field appears to be dependent on an arbitrary parameter
&, but Ky reveals that this linear combination of the original fields has no kinetic term and
hence does not correspond to a physical degree of freedom. As before, integrating out N — 1
fields (in this case, the one field W3, whose functional integral can be performed exactly)
leaves one with a theory with two physical degrees of freedom, an ordinary particle (with
vanishing mass by our initial choice), and a Lee-Wick partner with mass 1/a?. This matches
our expectation from the higher-derivative form of the theory, including the correct locations
of the poles. Note that the form of Sy ensures that the potential V' (¢;) has no dependence
on the auxiliary field ¥s.



B. Case N =3

Let us further strengthen our intuition for extracting the Lee-Wick form of the theory

by considering the theory with NV = 3. In this case, the kinetic and mass matrices are

0 1.0 0 1/2 0 1/at 0 0 0
1 000 0 /a2 0 —1/a2 0 0

K=l 0 00 1 0 and M = 0 —1/a2 0 /a2 0 ;
00 10 0 0 0 12 0 —1/a
120 0 0 0 0 0 0 -1/ 0

(3.5)

in the field basis ¥ = (¢1, x1, P2, X2, ¢3). Again, we seek an invertible matrix (called S3)

that performs a simultaneous diagonalization. In this case, only a block diagonalization is

possible. With the choice

1L =5 —7= 0 0
—1 —1
0y 0 i 82
Ss=| 1 0 Vy—1 —/5 0 (3.6)
0 L 1 11 1
2V/9V—1  2y—1 2y
1 0 0 —;% 3

where y = a?/a3 > 1 and £ is again an arbitrary nonvanishing real parameter, one finds that

Ky = S?)TKS;), and M, = S3TMS;>, are given by

1 0000 0 0 0 0 0
0-10 0 0 0—1/a> 0 0 0

Ko=|[00 100 and Mo=|0 0 1/a2 0 0 : (3.7)
00 0-10 0 0 0 0 -
00000 0 0 0 ——=~ 0

aras
The two-by-two block in the lower-right of Ky and M, cannot be simultaneously diagonalized,
and also depends on an undetermined parameter £&. Both are indications that this block
corresponds to degrees of freedom that are unphysical. The field ¥5 only appears linearly
through M, and it can be functionally integrated, leaving a functional delta function that
sets W, equal to zero. As before, integrating out N —1 fields (in this case ¥, and ¥5) we are

left with fields that represent the physical degrees of freedom expected in the Lee-Wick form
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of the theory, i.e., two Lee—~Wick partners, one of which is a ghost. The mass spectrum again
matches our expectation from the higher-derivative form of the theory (see also Ref. [7]).
In analogy to our previous results, the form of S5 ensures that the potential V' (¢;) has no

dependence on the auxiliary fields ¥, and V.

C. General structure

Based on our gained intuition, let us now make some more general comments applicable
to general N. In our loop calculation discussed in the next section, we will focus on the mass
renormalization of the field W;. As it turns out, it is most easily determined by working
in the higher-derivative form of the theory for ¢;, and by extracting the part of this field
on external lines that corresponds to the lightest physical mass eigenstate ¥;. Based on
Egs. (3.3) and (3.6) we see that this part is easily identified as having unit coefficient, i.e.,
¢1 = ¥y 4 ---. This fact is true for arbitrary N, which can be verified by considering the

partial fraction decomposition of the higher-derivative propagator for nondegenerate aj,

=

~1
l

2

P

(1—ap) :—bg—l—zp_l/a (3.8)

which holds algebraically for

-1 for N =2

bo=1 and b= (3.9)

— H (1- a?/az)fl for N >3
J#k
The wave function renormalization of the lightest mass eigenstate, i.e., by = 1, ensures that a
self-energy diagram with two external ¢; lines and one with two external ¥, lines are related
by a relative factor of +1. We also note in passing that the b, above are in agreement with
the square of the elements of the first rows of Sy and S, respectively, providing a useful
consistency check.
With the basic structures in the finite-N theory understood, let us now apply these

techniques to study the quadratic divergences in such a theory.



IV. QUADRATIC DIVERGENCES

As we remarked in the previous section, the field W; represents the lightest physical
state, and it is interesting to consider its mass renormalization, generated by a suitable
self-interaction V' (¢1). We shall work in the higher-derivative theory (2.7) where we choose

a quartic self-interaction

A
V(o) = 2ot (4.)
At one-loop, the self-energy for the ¢;-field, M?(k?), is given by
A [ dYp A [ dp 1 .
A r2(7.2 - 2 2 2
j=1

where k is the external line momentum and we have inserted the higher-derivative propagator
(2.8). The two external ¢; lines can be reexpressed in terms of the tree-level mass eigenstates
VU, using the type of decomposition described in the previous section. We focus here on the
case of two external Wy lines, which does not alter any numerical factors in Eq. (4.2); mixing
effects induced at one-loop between ¥, and ¥, for j > 1, become negligible in the limit of
interest, 7.e., where the tree-level masses are taken such that latter states are decoupled. It
is our goal to compute this self-energy for finite NV, as well as the asymptotic form of this
result as N — oo. In what follows, we will employ the notation m? =1/ a? and assume that
all masses are nondegenerate. As shown in the previous section, these masses correspond to
the poles of the higher-derivative propagator, and match those of the Lee-Wick theory as
well, in both cases appearing with residues of alternating sign.

For N that is finite but not large, we will see that the self-energy scale is set by the smallest
of the Lee-Wick partner masses m?, as expected. This means that protecting the lightest
scalar mass from large radiative corrections would not allow us to decouple the spectrum of
Lee—~Wick partner states. A different conclusion is reached when N becomes large, as we will
show by constructing an exactly solvable, nondegenerate mass-parametrization that allows

us to perform the N — oo limit analytically. In this case, we will prove that the one-loop

contribution to the scalar mass squared is set by the nonlocal scale M% = 1/¢2, where
2
m
M2~ O (ﬁ) , (4.3)
where m; is the mass of the lightest Lee-Wick resonance. This provides a mechanism of

achieving a hierarchical separation of scales.
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A. Partial Fraction Method at Finite N

We first note that the higher-derivative propagator Dp(p?) in Eq. (4.2) has the partial
fraction decomposition given in Eq. (3.8). Each term of the right-hand-side is of a form
suitable for Wick rotation, without any unusual prescriptions required in Lee—~Wick theories
for more complicated denominators [3]. As a result, we can do the same on the left-hand-side
and study the self-energy of interest by working in Euclidean space from the start (p° — ip%,
and p?> — —p%). Hence,

1 V-

-1 N[ -1
o ] :—327T2/0 duH +a u) , (44)

2
J:

2)\

—iM?(k?) =

where we have defined u = p%. The expression on the right of Eq. (4.4) can be written in
terms of partial fractions. We assume N > 3 and find

N— 1 N-1

j=1 j=1 j=1 J
ik

which allows easy integration of each term in the sum; this leaves us with

N—1 N-1 9
m=

—iMA(K?) = *Inm;, where dj= 1_[1 m . (4.6)
J#k

Here we have expressed the result in terms of the resonance masses, and we have used at an
intermediate step that

> dymi =0, (4.7)

k=1

which holds for N > 3. For N = 2, no such cancellation can occur and one is instead left
with a result that diverges logarithmically with the cutoff. In the case where N = 3 one

finds

2 2 2
M) = T 1n(ﬂg). (4.8)

3272 m3 — m} m3
Notice that if my > my, the radiative correction to the bare mass squared is positive and
with magnitude set by the lightest Lee~Wick partner mass m?. The same is true for larger N,
provided we are far from the asymptotic case considered below; when the additional states
beyond the first three are made heavy they decouple, leaving the same N = 3 effective

theory, so that the scale of the result is again set by m? when m3 is also made heavy.
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Last, let us note that the general expression in Eq. (4.6) is valid for an arbitrary choice
of nondegenerate m;. This will be of use in confirming the results of the next subsection,
where we consider the limiting form for the self-energy as N — oo that follows from a

specific parametrization of the spectrum.

B. Exactly Solvable Model at Infinite NV

We expect asymptotic nonlocality to be obtained in the theory defined by Eq. (2.7) if the
Lee—~Wick masses approach a common value as they are simultaneously decoupled and their
number is taken to infinity. Here we implement a concrete ansatz that allows us to achieve
this result and to arrive at a closed-form expression for the scalar self-energy. Consider the

parametrization

2 j 26
2 _ (9 )22 4.
a; (2 N) AN (4.9)

where ¢ denotes the scale of nonlocality. For algebraic convenience we use factors of N rather
than NV — 1 in this parametrization of a;, which reproduces identical large-/N asymptotics.
For the masses, this parametrization amounts to

3 1
mZ’:_ ; 1%1’
J 22_%

(4.10)

consistent with Eq. (4.3). This parametrization provides for a nondegenerate mass spectrum,
for any finite IV, a desired feature we discussed earlier. In Fig. 1 we plot the first few mass
values mj2 for different values of N.
Equation (4.9) allows us to evaluate the product in Eq. (4.4) directly. One can prove the
identity
N—-1 N-1
(1+alpy) = <2§2ij3) P(1+N+%,N—1> : (4.11)

j=1
where P(a,n) is the Pochhammer symbol (sometimes also called “rising factorial”) given by

P(a,n) = (a), = %. (4.12)

In the limiting case of large N we may employ the Stirling identity,

e

(N +1) ~ V21N (ﬂ)N : (4.13)
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0 20 40 60 80 100

FIG. 1: We plot the first seven masses for the parametrization (4.10), rescaled by a factor of N,
for j =1 to 7 (bottom to top). In the large-N limit, all masses tend to a common large Lee—Wick

value (here normalized to unity).

and after some manipulations arrive at

2, 14 202 1
IE%OH —I—a]pE = ¢ {1 <1—|——7 Eﬁ)pET—f—O(m)} . (4.14)

i1
The limit point corresponds to a nonlocal exponential propagator, as one could have ex-
pected from previous considerations. However, our calculations prove that for nondegen-
erate masses one recovers the exponential propagator as well, which one may regard as
a non-trivial consistency check. Perhaps more importantly, this calculation demonstrates
the emergence of the nonlocal scale as one appropriately decouples an infinite number of
Lee-Wick resonances, i.e., how asymptotic nonlocality is achieved.

As a side note, it is well known that analytic continuation in the presence of nonlocal

operators of the form "

is non-trivial due to the existence of essential singularities in the
complex momentum plane for such entire functions [46]. Our construction sidesteps these
difficulties. For finite N we simply have a Lee—Wick theory in which suitable CLOP-type
prescriptions can presumably be used to guarantee the proper behavior of the quantum
theory [3]; see also [4].

At any rate, the subsequent integration over the Euclidean momentum can be performed
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analytically and one finds the following simple result for the self-energy:

(4.15)

A [ . A AM?
1 M2 k2 — / d —py — — nl )
A MAR) = 15z | deepee 32722 3212

Note that this result is finite and its scale is set purely by /¢, as opposed to the finite-and-
not-so-large N case where the scale is set by the lightest Lee-Wick resonance mass. In other
words, the large-/N limit has provided us with a hierarchical separation between the scale
of the lightest Lee-Wick resonance and the potentially much lighter nonlocal scale. This
suggests an interesting approach to evading experimental constraints on new particles in

more realistic higher-derivative theories that are designed to address the hierarchy problem.

C. Large-N Comparison

One may wonder whether the different approaches we have presented in Secs. [V A and
IV B agree with one another. In other words, do the dj prefactors in Eq. (4.6), computed in
the higher-derivative theory at finite N, conspire to give the nonlocal scale that emerges in
Eq. (4.15) in the large-N limit? The analytic calculations would imply that this the case,
and upon substituting our mass parametrization (4.10) into the exact result (4.6) we can
confirm this correspondence numerically as well. This is shown in Fig. 2.

Having the general result (4.6) at our disposal, we may also probe different mass
parametrizations. For example, the parametrization

2 (N—j)"\b+1¢
aj_(1+ N >b+2ﬁ’ beN, (4.16)

also reproduces the limit (4.15). This supports the notion that (i) our results are independent
of how exactly one chooses to lift the degeneracy in the Lee—Wick spectrum, and (ii) that
the relevant scale is indeed the asymptotically nonlocal scale. The only two requirements
on the mass functions m; seem to be nondegeneracy as well as the scaling behavior that
m? ~ N as N — oo. It is interesting to ponder the ultraviolet completions that would
lead to higher-derivative theories with similar spectra; however, this would likely require an
understanding of Planck-scale physics that goes beyond a quantum field theory description.

The numerical results for the one-loop amplitude that we have computed in our local,
higher-derivative theory demonstrate that the regulator of loop diagrams in the limit of large

but finite NV is well approximated by the nonlocal scale that appears in the limiting form of
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FIG. 2: For our parametrization (4.10) we compare the self-energy at finite NV (solid line), given
by Eq. (4.6), to the value obtained in the N — oo limit (dashed line), given by Egs. (4.14) and

(4.15). It is clear that for large N the results converge.

the theory. We expect that the scale that regulates divergences in higher-loop diagrams is no
different, based on a dimensional argument: in the large- N limit, the Lagrangian approaches
a form where the nonlocal scale is the only one available to regulate divergences, and no
small dimensionless factors appear in the theory. This implies that our results should persist
in higher-order perturbative calculations, though we do not consider those in the present

work.

V. CONCLUSIONS

Higher-derivative quadratic terms have received substantial attention as a means of ob-
taining improved ultraviolet behavior of loop amplitudes. When these terms are of finite
order in the number of derivatives, as in the Lee-Wick standard model [2], additional poles
in the two-point function appear that correspond to new particles; these might be expected
at the TeV scale if they participate in a solution to the hierarchy problem. So far, no
such states have been observed experimentally. On the other hand, in theories with higher-

derivative quadratic terms of infinite order, as in models where the O operator appears as
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1 N-1
£quad = _5 (le(/)N - Z Xi [D(/)] - ((/)j+1 - (z)])/(l']ﬂ
j=1

fields: ¢1, X1, ---» ON—1, XN=1, PN
integrate out field redefinition
all x; U= (U, ..., Pon1)
1 N-1 12N
Laua = =5 &1 O] (1 +a30) ¢ Lonad = —= Z YKIO+ M)W,
j=1 ij=1
fields: ¢ fields: Uy, ..., Uon_1
N — o0, i
» integrate out
2
v v, Uono
4= N-1 N+1, y YaN-—1
1 2 1 N
Equad = *5 ¢1De€ D¢1 777777777777777777777777777777 quad - _5 Z 1)J+1\Ij]‘(D + m?)\I/] ’
fields: ¢ fields: ¥y, ..., ¥y

FIG. 3: A schematic overview of the quadratic terms of the different theories developed in this
paper, and how they are interrelated. In the large-N limit, the Lee—Wick resonances tend to

infinity, whereas the scale of nonlocality ¢ remains finite.

the argument of an entire function, there are no new particles, but there are other compli-
cations: the simplest formulation of such nonlocal theories in Minkowski spacetime violate
unitarity [29, 31-34], a problem related to the fact that there are directions in the complex
p° plane where loop integrands diverge. Another technical complication lies in the fact that
entire functions typically possess essential singularities in the complex plane, making a Wick
rotation considerably more involved. While several ways have been proposed to avoid this
problem in nonlocal theories [46], we present a different approach to the problem in the
present work: Formulating a higher-derivative theory with N propagator poles that can
be made unitary following the same prescriptions as in conventional Lee—~Wick theories, it
approaches the desired nonlocal form (the exponential of a differential operator) as N — oc.

We call this “asymptotic nonlocality.” At the same time, the mass spectrum of Lee—Wick
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partners is decoupled in a specific way. Even away from the N — oo limit, the effective
regulator in loop amplitudes is set by the would-be nonlocal scale, which can be hierarchi-
cally separated from the scale of the lightest Lee-Wick partner. In the present work, we
demonstrate this via a simple scalar model and develop a theory of auxiliary fields that
relates the higher-derivative and Lee-Wick forms of the theory; see Fig. 3 for a schematic
overview. It is known that the Lee-Wick approach may be generalized to gauge theories,
as has been shown in the Lee-Wick standard model [2], as well as in a higher-derivative
extension thereof involving more than one Lee-Wick partner particle [7]. We will study the
generalization of the present work to spontaneously broken gauge theories and fields of other
spin in a separate publication.

There are other issues that are also worthy of further investigation. The form of our theory
is nongeneric, as would be expected since the form of the (well-studied) nonlocal theory that
it is designed to match when N — oo is also nongeneric. It would be worthwhile to study
the renormalization of the theory, how it corresponds to the renormalization of the nonlocal
theory, and whether this leads to any qualitative changes in the properties of amplitudes. It
would also be interesting to construct the argument for power-counting renormalizability for
gauge theories in our auxiliary-field construction for arbitrary NN, similar to what has been
achieved for conventional Lee-~Wick theories. A generalization to asymptotically nonlocal
gravity would also be of interest.

The asymptotically nonlocal model presented here provides a convenient interpolation
between conventional Lee-Wick theories and nonlocal quantum field theories, while keeping
the best features of both. We look forward to investigating theories of this type in a variety

of contexts in future work.
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