
RESEARCH ARTICLE
Beta turn propensity and a model polymer scaling exponent
identify intrinsically disordered phase-separating proteins
Received for publication, July 28, 2021, and in revised form, October 19, 2021 Published, Papers in Press, October 26, 2021,
https://doi.org/10.1016/j.jbc.2021.101343

Elisia A. Paiz1 , Jeffre H. Allen2, John J. Correia3 , Nicholas C. Fitzkee4 , Loren E. Hough5,6,* , and
Steven T. Whitten1,*
From the 1Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, USA; 2Department of
Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; 3Department of Cell and Molecular Biology, University of
Mississippi Medical Center, Jackson, Mississippi, USA; 4Department of Chemistry, Mississippi State University, Mississippi State,
Mississippi, USA; 5Department of Physics and 6BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA

Edited by Karen Fleming
The complex cellular milieu can spontaneously demix, or
phase separate, in a process controlled in part by intrinsically
disordered (ID) proteins. A protein’s propensity to phase
separate is thought to be driven by a preference for protein–
protein over protein–solvent interactions. The hydrodynamic
size of monomeric proteins, as quantified by the polymer
scaling exponent (v), is driven by a similar balance. We hy-
pothesized that mean v, as predicted by protein sequence,
would be smaller for proteins with a strong propensity to phase
separate. To test this hypothesis, we analyzed protein databases
containing subsets of proteins that are folded, disordered, or
disordered and known to spontaneously phase separate. We
find that the phase-separating disordered proteins, on average,
had lower calculated values of v compared with their non-
phase-separating counterparts. Moreover, these proteins had
a higher sequence-predicted propensity for β-turns. Using a
simple, surface area-based model, we propose a physical
mechanism for this difference: transient β-turn structures
reduce the desolvation penalty of forming a protein-rich phase
and increase exposure of atoms involved in π/sp2 valence
electron interactions. By this mechanism, β-turns could act as
energetically favored nucleation points, which may explain the
increased propensity for turns in ID regions (IDRs) utilized
biologically for phase separation. Phase-separating IDRs, non-
phase-separating IDRs, and folded regions could be distin-
guished by combining v and β-turn propensity. Finally, we
propose a new algorithm, ParSe (partition sequence), for pre-
dicting phase-separating protein regions, and which is able to
accurately identify folded, disordered, and phase-separating
protein regions based on the primary sequence.

Protein liquid–liquid phase separation (LLPS) is increasingly
recognized as an important organizing phenomenon in cells.
LLPS is a reversible process whereby complex protein mixtures
spontaneously demix into liquid droplets that are enriched in a
particular protein; concomitantly, surrounding regions are
depleted of that protein (1). This demixing transition is thought
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to provide temporal and spatial control over intracellular in-
teractions by assembling collections of proteins into structures
called membraneless organelles (2), a key step in the regulatory
function of P bodies, the nucleolus, and germ granules (3–5).
The physical mechanisms responsible for LLPS are not fully
understood, but it is known to be facilitated primarily, though
not exclusively (6, 7), by proteins that are intrinsically disor-
dered (ID) or contain large ID regions (IDRs) (2, 8, 9) proteins
termed intrinsically disordered proteins (IDPs). The propensity
for a particular protein to phase separate is, in general, deter-
mined by the balance of intramolecular and solvent in-
teractions. In part, based on mechanistic insights into the
nature of these interactions, several groups have developed
sequence-based predictors to identify LLPS regions (10–12).

The same interactions that drive LLPS have also been hy-
pothesized to affect hydrodynamic size of monomeric IDRs.
The hydrodynamic size of IDRs has been found to vary sub-
stantially with the primary sequence (13, 14) and appears
important for the function of IDRs. For example, some IDPs
regulate the remodeling of cellular membranes, and their size
controls curvature at membrane surfaces (15, 16). Conceptu-
ally, favorable interactions with the solvent give rise to mean
ensemble dimensions for the polymer that are elongated and
swollen when compared with the compacted dimensions
observed when self-interactions dominate. One framework to
quantify this relationship is derived from polymer theories
developed for long homopolymers (17, 18). Despite some
limitations (19), homopolymer theories have been successful in
describing the properties of short, heteropolymeric IDRs
(20–25). In particular, the polymer scaling exponent, v, has
been used to extract information on the balance of protein-self
and protein–solvent interactions (13, 26, 27). This exponent is
obtained experimentally from the dependence of size (e.g.,
hydrodynamic radius, Rh, or radius of gyration, Rg) on polymer
length, N, in the power law relationship, Rh / Nν.

Because biomolecular LLPS includes the exchange of
macromolecule–solvent interactions for macromolecule–
macromolecule interactions (28–30), v could be a predictor
of LLPS potential among heteropolymeric IDRs (19, 24, 25, 31).
Numerous studies have already found that the hydrodynamic
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Sequence features identifying protein phase separation
dimensions of some IDRs are correlated to the temperature
dependence of the demixing transition (24, 32, 33). Moreover,
Dignon and coworkers found in molecular simulations that the
critical temperature of phase separation and the internal scaling
exponent, vint, which is a variation on v calculated as the
average intrachain pairwise distance in a single chain, Ri−j /
ji−jjvint (34), are correlated properties (19). However, whether
the scaling exponent of a monomeric IDR can predict its po-
tential for LLPS remains unclear.

We (14, 22, 35) and others (13, 36) have developed
sequence-based methods to predict the hydrodynamic di-
mensions of IDPs, allowing us to test whether an IDP’s po-
tential to phase separate can be predicted from its monomeric
scaling exponent, v. We hypothesize that the same self-
interactions that facilitate LLPS will reduce the mean Rh (and
thus v) for IDRs competent to phase separate into protein-rich
droplets when compared with IDRs that are not (19, 24, 25, 31).
Indeed, this trend is evident and shown schematically in
Figure 1. Moreover, we find that β-turn propensity (37–39) is
higher for phase separating IDRs, and we develop a simple
surface area-based approach to show how β-turns can reduce
the desolvation penalty in LLPS. Using these observations, we
developed the computer algorithm ParSe (partition sequence)
for predicting folded, phase-separating ID, and non-phase-
separating ID regions given only the primary sequence. A
basic version of the algorithm has been made web-accessible at:
folding.chemistry.msstate.edu/utils/parse.html. We find that
the predictions from ParSe had strong correlations to other
predictors of protein phase separation (10, 12, 40), indicating
that β-turns and v may provide physically meaningful insight
into the diverse molecular mechanisms driving LLPS.
Results

Sequence calculated polymer scaling exponent, vmodel, is
reduced in IDRs from proteins that exhibit LLPS when
compared with IDRs in general

Proteins have modular structures, which can consist of
folded regions and IDRs. Among the IDRs, some potentially
Figure 1. IDR propensity for LLPS predicted from hydrodynamic size. A, the
be predicted from sequence. The inset compares predicted to observed for a se
Figure S1. B, converting sequence calculated Rh to v normalizes the hydrodynami
the solvent (cartoon shows waters) over self are likely to exhibit swollen structur
separated states. The inset in this panel is based on v distributions calculated in
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drive phase separation, and some do not. For example, the
685-residue Sup35 protein from yeast has three domains (41);
the ID N-terminal prion domain (residues 1–124), the ID
middle domain (residues 125–254), and the folded (42)
C-terminal catalytic domain (residues 255–685). Of these
domains, only the N-terminal prion domain mediates phase
separation (41). Here, the word domain is used to identify a
protein region that has distinctive features or properties and
not necessarily to indicate a globular structure (41, 43). For the
present work, we use domain and region interchangeably in
this manner, though with a preference for using region. The
goal of this work is to determine if IDRs that drive phase
separation show differences in predicted hydrodynamic di-
mensions of their equilibrium conformational ensembles as
compared with IDRs that do not (19, 24, 25, 31). Specifically,
we hypothesize that when excised from the parent protein,
compacted ensemble dimensions would indicate high LLPS
potential for the disordered polypeptide, while elongated sizes
would indicate low LLPS potential (Fig. 1).

To test this idea against large numbers of proteins, we used a
sequence-based calculation of the radius of hydration (Rh) that
has been found to be accurate for monomeric IDPs (14, 35, 44).
Figure S1A shows predicted and experimental mean Rh for a
set of 23 IDPs (35, 44–61), demonstrating overall good
agreement. This IDP set is identified in Table S1. The sequence
calculated Rh uses the net charge and intrinsic chain propensity
for the polyproline II backbone conformation (see Experi-
mental Procedures), both known to promote elongated hy-
drodynamic dimensions in disordered ensembles (13, 14). To
normalize Rh to the chain length, and distinguish compacted
versus elongated predicted dimensions, we converted the
sequence calculated value to a polymer scaling exponent by,

vmodel ¼ logðRh=RoÞ=logðNÞ; (1)

where N is the number of residues, and Ro is 2.16 Å obtained
from simulated IDP ensembles (62). Experimental Ro for the
set of 23 IDPs is �2.1 Å (Fig. S1B), showing good agreement.
For these 23 IDPs, which are not known to phase separate and
mean Rh determined experimentally for monomeric IDPs (or excised IDRs) can
t of 23 IDPs (listed in Table S1). Rh is in Å. A full-scale version of this inset is in
c size to the protein chain length. C, IDRs that strongly prefer interactions with
es and remain monomeric rather than drive transitions to protein-rich phase-
two different sequence sets; a full-scale version of the inset is in Figure S2.



Sequence features identifying protein phase separation
thus referred to as the null set, the mean ± σ (standard devi-
ation) in vmodel was 0.558 ± 0.019 (Table 1).

Next, we compiled a list of IDRs from proteins annotated to
phase separate. We began with the IDRs from 43 proteins
verified to exhibit phase separation behavior in vitro, previ-
ously collated by Vernon et al. (10). To this set, we added IDRs
from 59 human proteins listed in the PhaSePro database as
showing LLPS behavior (63), and 18 IDRs annotated “liquid-
liquid phase separation” (IDPO:00041) in the DisProt database
(64). Duplicate entries from merging the three sources were
removed, as were IDRs with N < 20. To identify IDRs in the
Vernon et al. protein set, we used the GeneSilico MetaDis-
order service that predicts the presence of ID in a sequence
(65). The PhaSePro database already annotates each entry with
its predicted IDRs from using IUPred2 (66), which we kept for
this analysis. Because DisProt is manually curated for verified
cases of ID, we assumed LLPS annotated IDRs in DisProt
lacked folded regions (i.e., each was fully ID). In total, this
resulted in 224 IDRs from proteins with known phase sepa-
ration behavior. The IDRs are identified in Table S2. This set
was designated as the testing set. Trends identified in the
testing set were used to analyze the entire human proteome,
the full DisProt database, and the full PhaSePro database (see
below).

On average, vmodel was reduced in the IDRs from known
LLPS proteins, compared with the null set (i.e., the 23 IDPs not
known to phase separate). The mean vmodel was 0.542 ± 0.020
for the testing set IDRs (Table 1). The vmodel distribution
overlapped between the two sets (Fig. S2C), testing and null.
Possibly contributing to the statistical overlap in vmodel be-
tween the two sets, most IDRs in the testing set have not been
verified to drive phase separation, suggesting the set may
contain some that do not. Like Sup35 and its two IDRs, only
one of which directly mediates a demixing transition (41),
proteins in the testing set could have IDRs not necessary for
LLPS. Indeed, most testing set proteins have >1 predicted IDR
(Table S2). Or, simply, the overlap could be a consequence of
the small difference in means. Despite this unknown, a two-
sample z-test using the variances gave a one-tail p-value of
8.2e-05 (Table 1), indicating the two sets are statistically
different in mean vmodel. Though the distribution of vmodel

values in both sets was similar to normal (Fig. S2, A and B), the
nonparametric Mann–Whitney U test that does not assume
normal distributions was also used and likewise shows the null
and testing sets as statistically different in mean vmodel

(Table S3).
We sought to determine if we could distinguish IDRs known

to drive LLPS from folded regions. In order to compile a list of
folded regions, we took folded regions from the same proteins
Table 1
Summary of mean vmodel in the protein sequence sets

Set # Sequences vmodel
a

Null set 23 0.558 ± 0.019
Testing set 224 0.542 ± 0.020
Folded set 82 0.536 ± 0.008

a Mean ± standard deviation.
b One-tail p-value calculated using the set variances.
as we had previously taken the IDR regions to form the testing
set. We used the Protein Data Bank (67) to identify those re-
gions (N ≥ 20) in the testing set proteins that are verified to
adopt stable, globular structures, finding 82 such regions
(Table S2). Compared with the ID-based testing and null sets,
the mean vmodel was slightly lower in this set of folded se-
quences and found to be 0.536 ± 0.008 (Table 1). It is
important to note that the equation used to predict Rh from
sequence, and thus calculate vmodel, was developed for IDPs
and not designed for use with folded proteins. For a folded
protein, experimental v is often �0.3 (26) rather than the
calculated values for vmodel here that are >0.5. Sequence
calculated vmodel determined by Equation 1 represents the
mean hydrodynamic dimensions when the polypeptide is
disordered and omits effects that are associated with hydro-
phobic collapse and folding. In concept, vmodel approximates
the dimensions of the unfolded chain prior to collapse or the
formation of cooperative units of structure.
Sequence calculated β-turn propensity is elevated in IDRs from
proteins that exhibit LLPS

Because vmodel was calculated from the primary sequence,
we determined the differences in composition between the
testing, null, and folded sets. Particularly, we were interested in
identifying those amino acid types that are either depleted or
enriched in the testing set when compared with the null and
folded sets. For example, the branched amino acids, I, L, and V,
are each depleted in the testing set, whereas P, G, and S are
enriched, relative to both the other sets (Fig. 2A). While
additional amino acid types show depletion in the testing set
compared with the folded and null sets (e.g., C and E) or
enrichment, (e.g., N and Q), specific mention of I, L, V, P, G,
and S is made for two reasons. First, I, L, and V have infrequent
occurrence in the β-turn in surveys of stable, protein struc-
tures (37), while P, G, and S are preferred in this secondary
structure type (38). As such, this result predicts the intrinsic
propensity for β-turn is higher, on average, in the testing set
when compared with the null and folded sets. Second, studies
involving elastin-like polypeptide (ELP), a protein sequence
known to undergo LLPS (68–70), have implicated transient
β-turn structures in the protein–protein interactions that
mediate condensate formation (71–73). The results shown in
Figure 2A predict a role for the β-turn in protein-based LLPS
that could be widespread in use and not limited to ELP-based
systems.

To determine if β-turn propensities are elevated in IDRs
from LLPS proteins, we calculated the mean intrinsic β-turn
propensity from sequence in the null, testing, and folded sets
z-test with null setb z-test with folded setb

0.5 8.8e-08
8.2e-05 2.7e-04
8.8e-08 0.5
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Figure 2. Composition differences among the sequence sets reveal that protein classes can be separated using vmodel and β-turn propensity.
A, composition ratio is the percent composition of each amino acid type, identified by its one-letter code, in the training set divided by the percent
composition in the null (black columns) and folded sets (gray columns). The two columns labeled ILV and PGS represent combining I + L + V and P + G + S
content, respectively. Comparing sequence calculated vmodel in each set, testing (blue), null (red), and folded (black), to sequence calculated β-turn pro-
pensity using single position scales from (B) Levitt (37) and (C) Chou and Fasman (38), and (D) four position scales from Hutchinson and Thorton (39). Data
points and error bars show the mean and standard deviations in each set.

Sequence features identifying protein phase separation
(Table 2). By using the amino acid scale of turn propensity
developed by Levitt (37), which is reproduced in Table S4, we
find that the mean for the testing set was 1.152 ± 0.087. In
comparison, the mean intrinsic turn propensity was lower in
both the null and folded sets. A two-sample z-test using the
variances indicated that the mean values for intrinsic β-turn
propensity were statistically different when compared between
the three sets (Table 2); identical conclusions were obtained
from the Mann–Whitney U test (Table S3).
The three sets of protein regions, folded, null (IDRs), and
testing (LLPS IDRs) form separate protein classes according to
their mean values of vmodel and β-turn propensity

Figure 2B compares the mean vmodel of each set (i.e., testing,
null, and folded) to the mean intrinsic β-turn propensity,
showing that they typically occupy different regions in this
plot. These results are robust to choice of scale that was
employed for the sequence-based calculation of β-turn; the
average intrinsic β-turn propensity was lowest in the folded
set. For example, Figure 2, C and D show identical results are
obtained, whereby the mean intrinsic β-turn propensity is the
highest in the testing set, when the amino acid scale from
Chou and Fasman is used instead (38), or when specificity for
amino acid type in the four different turn positions (i, i + 1, i +
2, i + 3) is used (39). The increased propensity for β-turn in the
testing set is a curious result considering reverse turns are
prevalent in globular structures (74) and often found at the
protein surface (75) because it allows the polypeptide chain to
fold back onto itself.
Table 2
Summary of mean β-turn propensity in the protein sequence sets

Set # Sequences β-turn propensitya

Null set 23 1.062 ± 0.082
Testing set 224 1.152 ± 0.087
Folded set 82 0.969 ± 0.039

a Mean ± standard deviation, calculated using the scale from Levitt (37).
b One-tail p-value calculated using the set variances.
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β-turn structures reduce chain-associated solvent waters,
potentially driving intramolecular contacts

To understand why β-turn structures might be associated
with sequences that undergo LLPS, we investigated the bal-
ance of self and solvent interactions for this conformation. In
lieu of large-scale molecular dynamics simulations, we
considered the distribution of surface water molecules as
captured by the conditional hydrophobic accessible surface
area (CHASA). In the CHASA calculations, sterically allowed
solvent waters are placed near protein hydrophilic groups
under the assumption that these waters will form hydrogen
bonds with the peptide; then, hydrophobic surface area cal-
culations are performed with these solvent waters present
(76). We hypothesized that turn structures would facilitate
protein–protein contacts because they had larger accessible
hydrophobic patches even in the presence of bound solvent
water molecules.

We randomly generated 1000 structures containing β-turns
and 1000 nonturn structures of the ELP-derived peptide
sequence GVPGVG (68–70), a sequence where transient
β-turns have been implicated in self-association (71–73). Total
accessible surface area (ASA), hydrophobic ASA, and CHASA
are all lower in β-turn versus nonturn ensembles (Table S5),
consistent with prior studies (72). Fewer hydration waters are
associated with turn structures (37.1 ± 0.1 versus 44.4 ± 0.1
waters), meaning that the penalty for desolvation in LLPS will
likely be lower for IDPs that preferentially sample the β-turn
conformation. In addition, fixed conformations of β-turns also
expose large contiguous regions of hydrophobic surface area
relative to the random conformations (Fig. 3). The CHASA-
placed solvation waters in GVPGVG are clustered when the
z-test with null setb z-test with folded setb

0.5 6.4e-08
2.6e-07 8.9e-142
6.4e-08 0.5



Figure 3. β-turn effects on protein–protein interactions. A, conforma-
tions are shown for the ELP repeat GVPGVG, including sterically allowed,
CHASA-generated solvation waters (see text). The upper panel shows a
representative turn conformation, where hydrophobic accessible surface
area is clustered. The lower panels show two representative random coil
conformations, and no such clustering is observed. B, surface area for C, O,
N atoms in the peptide bond when CHASA waters have been placed for the
central turn residues in turn (left) and random coil (right) ensembles. Error
bars represent the 95% confidence interval calculated over 1000 confor-
mations. The significance is calculated using the Welch and Brown–Forsythe
one-way ANOVA test for nonequivalent variances with Games–Howell post
hoc analysis (****p < 0.0001; ns is not significant). The inset demonstrates
which peptide bonds are plotted: orange (between V2 and P3), yellow
(between P3 and G4), or green (between G4 and V5).

Sequence features identifying protein phase separation
peptide is in a β-turn conformation (Fig. 3A, top), exposing
contiguous segments of hydrophobic accessible surface area
for residues V2 and P3. Representative structures of nonturn
conformations (Fig. 3A, bottom) do not exhibit these clusters.
The contiguous hydrophobic segments present in β-turns may
facilitate protein–protein association; two fixed β-turns can
associate and bury a large relative fraction of hydrophobic
accessible surface area (�110 Å2 per turn; based on docking
with the GOLD software package). Finally, the π electrons sp2

hybridized atoms of the peptide bond (π/sp2 interactions) are
thought to facilitate LLPS (10, 77), and CHASA also suggests a
role for peptide bond exposure in β-turns. The combined
surface areas of the C, O, and N atoms differ significantly for
the central residues in the β-turn ensemble vis-a-vis the
random coil ensemble (Fig. 3B), and this may reflect differ-
ences in a potential for peptide π/sp2 interactions. Other
nonturn, multiturn, multivalent interactions are equally
important to LLPS, but the solvent water considerations,
elucidated by CHASA, suggest a plausible reason for why
β-turn propensity is elevated in our testing set of LLPS-
competent IDRs.
Sequence calculated internal scaling exponent, vint, does not
identify IDRs from LLPS proteins

When combined with vmodel, several amino acid scales of
intrinsic β-turn propensity showed the ability to separate
protein classes (Fig. 2, B–D). Based on this result, we sought
to determine if a different sequence-based calculation of
v likewise could be used to identify IDRs that drive LLPS. We
began with previous work using computationally determined
vint values to predict phase separating properties (36). Similar
to our work predicting mean Rh from the primary sequence,
SAXS data was used to develop a predictor of vint. The
calculation uses sequence hydropathy decoration, SHD, and
sequence charge decoration, SCD,

vint ¼ a,SHDþb,SCDþc; (2)

where a, b, and c are simulation-derived fitting parameters
found to be −0.0423, 0.0074, and 0.701, respectively (36).
SHD is calculated from sequence by N−1P

i
P

j,j>i(λi + λj)
|j-i|−1, where λ is the amino acid specific hydropathy (78)
normalized to have values from 0 to 1 (36). SCD is calculated
from sequence by N−1P

i
P

j,j>i(qiqj)|j − i|1/2, where q is the
amino acid specific charge (79). For the null set, the mean vint
was 0.494 ± 0.083. For the testing set, it was 0.508 ± 0.085. A
two-sample z-test comparing vint in the null and testing sets
gave a one-tail p-value of 0.23, providing no evidence for a
statistical difference in the means of the two sets. Moreover,
sequence calculated vint and vmodel were not correlated when
compared (R2 = 0.002, Fig. S3). Consistent with the lack of
correlation between vint and vmodel, vint finds the testing and
null sets as statistically similar. As such, these two repre-
sentations of scaling exponents may exhibit different pre-
diction capabilities for identifying LLPS proteins and protein
regions. Sequence patterning is important, and especially
J. Biol. Chem. (2021) 297(5) 101343 5



Sequence features identifying protein phase separation
hydropathy and charge decoration, but it may not exclusively
capture LLPS potential.
Sequence calculated turn propensity and vmodel predict
protein regions driving LLPS

Next, we sought to determine if the observed differences in
mean vmodel and mean β-turn propensity between the null,
testing, and folded sets (Fig. 2B) could be used to identify re-
gions within the protein that match the LLPS class and thus
predict the specific protein regions that support a demixing
transition. For the initial test, vmodel and β-turn propensity
were calculated for each Sup35 domain. The sequence of the
N-terminal prion domain that mediates phase separation (41)
gave 0.531 and 1.183 for vmodel and β-turn propensity,
respectively, which matched the testing set averages (Fig. 4A).
In contrast, sequences representing the ID middle and folded
C-terminal domains gave values for vmodel and β-turn pro-
pensity that were most like the null and folded sets, respec-
tively (Fig. 4A).

To analyze proteins without using predefined boundaries
for different regions, we apply a 25-residue window and then
slide this window across the whole sequence in 1-residue steps,
as shown schematically in Figure 4B. The choice of 25 residues
for the window size was arbitrary. For each 25-residue window,
Figure 4. Predicting protein regions that drive LLPS. A, sequence calculat
domain (blue square), the ID middle domain (red square), and the folded C-term
B, a sliding window algorithm was used to identify regions within a protein tha
contiguous stretch of 25-residues, or “window,” in the primary sequence. C, eac
propensity for the window placed it in the PS, ID, or Folded sector, respectively
residue of the window. N- and C-terminal residues not belonging to a central w
respectively. In this plot, the calculated values of vmodel and β-turn for the whole
(N ≥ 20) that were 90% of only one label P, D, or F were colored blue, red, or
sliding window calculation was applied to the whole sequences of six addition
Striped represents ≥50% identity to a known LLPS IDR (blue) or folded protei
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vmodel and β-turn propensity were calculated from the amino
acid sequence of the window. We mapped these values onto a
β-turn propensity versus vmodel plot, which was divided into
sectors labeled PS, ID, and Folded. Sector boundaries were
defined by the mean and standard deviations in vmodel and
β-turn propensity in the null set (Fig. 4A). To demonstrate this
scheme, Figure 4C shows the results from using this algorithm
on the full Sup35 sequence, where each small dot in the figure
represents a different 25-residue window. The Sup35 primary
sequence was then assigned a new three-letter code: P, D, or F
based on window localization into the PS, ID, or Folded sec-
tors. We then identified regions in the sequence of length ≥20
residues that were at least 90% of only one of these labels and
color-coded those identified regions (Fig. 4D).

We sought to determine if our algorithm would similarly
identify regions of proteins with diverse reported mechanisms
driving LLPS. Figure 4, E–P shows the results from applying
this algorithm, ParSe, to the whole sequences of six additional
proteins that have been characterized in vitro and verified to
exhibit LLPS. The phase separation of FUS (Fig. 4, E and F)
under physiological-like protein concentration is known to
require the full-length sequence (80). FUS also has a short,
folded domain, the RNA recognition motif (RRM) spanning
residues 285–371 (81). The silk-wrapping protein, spidroin-1
(Fig. 4, G and H), consists of a repeat folded region (82) with
ed vmodel and β-turn propensity for the Sup35 domains—the ID N-terminal
inal domain (black square)—is compared with the set averages (see Fig. 2B).
t match the LLPS class. β-turn propensity and vmodel are calculated for each
h window is assigned a label of P, D, or F depending on if vmodel and β-turn
, of a β-turn propensity versus vmodel plot. This label was given to the central
indow position were assigned the label of the first window and last window,
protein sequence are shown by the larger, white dot. D, contiguous regions

black, respectively, to represent predicted PS, ID, or folded regions. E–P, the
al proteins, identified in the figure by name and UniProt accession number.
n (black).



Figure 5. Long regions matching the LLPS IDR class are rarely found in

Sequence features identifying protein phase separation
intervening, short IDRs that mediate phase separation via
hydrophobic amino acids (83). The N terminus (residues
1–236) of DDX4 (Fig. 4, I and J) uses a network of charge,
hydrophobic, cation-π, and aromatic interactions to drive
phase separation, mostly from F and R residues (3, 84). The
R- and G-rich N terminus (residues 1–168) of LAF-1 (Fig. 4, K
and L) is used for both phase separation and binding ssRNA
(4), while its core domain (residues 231–628) represents a
RecA-like DEAD box helicase containing ATP and RNA-
binding sites (85). The ID C terminus (residues 648–708) of
LAF-1 is not required for phase separation in vitro (4) and so
may have been incorrectly predicted by the algorithm. LLPS of
SSB proteins (Fig. 4, M and N) is thought to be driven by the
low sequence complexity ID linker region (86) that connects a
highly conserved N terminus OB fold (87) to a C-terminal
peptide motif. In elF4G2 (Fig. 4, O and P), a small N- and
Q-rich region (residues 13–97) has been shown to be sufficient
for LLPS (88). Also, modeling based on sequence similarity
(89) has been used to predict two structured domains in
elF4G2, one that was identified by ParSe. For the proteins
GRB2 (6) and SPOP (7) that drive phase separation and are
mostly folded (90, 91), ParSe did not find any regions with high
LLPS potential (Fig. S4). In summary, our algorithm predicted
regions driving LLPS in proteins with a variety of reported
mechanisms, indicating that v and β-turn propensity may
represent a unifying property driving LLPS.

We noticed that within eIF4G2, LAF-1, and DDX4 that
regions previously annotated as folded contained some sec-
tions we predicted to be PS or ID. As our analysis is designed
for disordered and not ordered regions, we sought to deter-
mine an error rate for misclassifying ordered domains. We
took as a larger database of folded domains the set of >14,000
proteins listed by SCOPe (Structural Classification of Proteins
extended, version 2.07) that represent the globular fold classes
across families and superfamilies (92, 93). Using β-turn pro-
pensity and vmodel calculated for the full domain of each pro-
tein found in SCOPe, we found that 95.4% resided in the
folded sector of the β-turn propensity versus vmodel plot. This is
comparable to other established ID predictors. For example,
using metapredict (94), selected because it can quickly process
large numbers of sequences, we found 99.5% of sequences to
have average disorder scores less than 0.5 (indicating folded).
Of the proteins in the SCOPe database with average disorder
score greater than 0.5 by metapredict, only half were also
identified as not folded by ParSe, indicating that combining an
established ID predictor with our classification scheme could
improve its fidelity.
the human proteome, the DisProt database, and folded proteins. The
sliding window calculation was used to identify regions in proteins that
were ≥90% labeled P (see Fig. 4), which are referred to in this figure as
phase separating, PS, regions. Shown by the y-axis is the percent of proteins
in a set with a PS region at least as long as the length indicated by the x-
axis. The human proteome (UniProt reference proteome UP000005640) is
given by the solid, black line; the DisProt database (minus “liquid-liquid
phase separation” annotated entries) is given by the dashed red line; and the
SCOPe database (version 2.07), representing a wide selection of folded
proteins, is given by the black, stippled line. In comparison, long PS regions
predicted by ParSe are enriched in the set of in vitro sufficient LLPS proteins
(solid, blue line), the DisProt “liquid–liquid phase separation” annotated IDPs
(open, blue circles), the PhaSePro database (stippled, blue line), and the set of
in vitro insufficient LLPS proteins (open, blue squares).
Long regions with both high β-turn propensity and low vmodel

are rare in the human proteome

We noticed that most proteins found in the testing set had
not just IDRs with a high average β-turn propensity and low
average predicted vmodel, but that they tended to contain long
(≥50 residues) stretches labeled by ParSe to be “P.” To deter-
mine whether this feature is unique to proteins driving LLPS,
we measured the prevalence of regions predicted from
sequence to have high LLPS potential in the human proteome
(Fig. 5). These were identified as regions with at least 90% of
residue positions labeled as “P” by ParSe (Fig. 4B). We found
that �70% of the human proteome had a region at least one
residue in length with predicted high LLPS potential (i.e., a
single P-labeled position), while only �4% have such a region
that is at least 50 residues in length. This result shows that few
human proteins possess a region of substantial length (≥50
residues) that combines high β-turn propensity with low
vmodel.

Next, we repeated this calculation for the set of 43 proteins
assembled by Vernon et al. (10) that have been verified in vitro
to exhibit phase separation behavior. Figure 5 shows that
almost 90% of these “in vitro sufficient” LLPS proteins have a
region predicted by our algorithm to have high LLPS potential
that is 50 residues in length or longer. Vernon et al. (10) also
prepared a set of 18 additional proteins observed in cellulo to
exhibit phase separation behavior that were found through
in vitro characterization not to phase separate as purified
proteins (Table S6). Labeled as “in vitro insufficient,” less than
a third of these proteins (28%) contain a 50-residue or longer
region with high LLPS potential; however, �60% have a
20-residue or longer region with high β-turn propensity and
low vmodel. The DisProt database, minus the LLPS annotated
IDPs, mirrored the human proteome result, demonstrating
that ID alone is not sufficient to trigger LLPS prediction by
ParSe. The LLPS-annotated IDPs in the DisProt database were
J. Biol. Chem. (2021) 297(5) 101343 7
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enriched in P-labeled regions, giving results in between the
in vitro sufficient and in vitro insufficient Vernon et al. protein
sets, while the PhaSePro database (all proteins) gave results
that were most like the in vitro insufficient LLPS proteins. The
set of proteins in SCOPe were mostly devoid of regions pre-
dicted to have high LLPS potential by ParSe (Fig. 5). Thus,
while proteins containing long, contiguous P-labeled regions
are highly represented in proteins known to undergo LLPS,
these regions appear relatively unique to this class of proteins.
Supporting this observation, using the Mann–Whitney U test
indicates that the distributions of predicted PS region lengths
shown in Figure 5 are each significantly different from the
others, especially when comparing sets known to be enriched
for LLPS to the sets that are not (Table S7).
β-turn propensity to vmodel ratio is correlated with other
predictors of phase separation

Having demonstrated that ParSe was able to identify regions
driving phase separation, we next sought to determine whether
this algorithm was recognizing similar sequence features as
other predictors of phase separation (95, 96). Existing pre-
dictors are based on molecular mechanisms thought to drive
phase separation (10–12), experimental databases of nonspe-
cific protein interactions (97), or machine learning outputs
based on sequence databases (40). Phase separation may be
promoted by many different mechanisms, including β-sheet
interactions that also drive prion formation (12), interactions
with nucleic acids (11), arginine and tyrosine content (80), and
multivalent protein–protein interactions (98). As a result,
different predictors will be able to identify different proteins,
and any correlation between predictors may indicate an
evolutionary relationship between different mechanisms
(95, 96).

To facilitate a direct comparison to other predictors, we
sought to collapse our predictions to a single value. We
noticed that sequences with higher β-turn propensity and
lower vmodel, and thus larger values of this ratio, were found
primarily in the testing set. We hypothesized that rmodel, the
ratio of β-turn propensity to vmodel, would be maximized in
IDRs that drive LLPS. Consistent with this idea, mean rmodel

(±σ) was 2.1 ± 0.2, 1.9 ± 0.1, and 1.8 ± 0.1 in the testing, null,
and folded sets, respectively. We then compared rmodel for the
sequences in each set to PScore (10), granule propensity from
catGRANULE (11), PSPredict score (40), and LLR from
PLAAC (12). We limited our analysis to sequences at least 140
amino acids in length, a PScore requirement, so the same se-
quences could be compared across all predictors. In addition,
we compared rmodel calculated from sliding windows to
residue-level values provided by PScore and CatGRANULE.
The strength of the correlation between all predictors on our
testing, null, and folded sets, and their combination, was
measured by calculating the coefficient of determination
(R2, Fig. S5, A–F).

Consistent with ParSe’s ability to recognize sequences
driving LLPS that utilize a variety of mechanisms (Fig. 4), we
found strong correlation between rmodel and all four of the
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predictors, with generally higher R2 values than the other
pairwise comparisons; granule propensity and PScore are
also generally well correlated (Fig. 6). For example, four of
the six pairwise comparisons with R2 above 0.5 are with
rmodel. The pairwise correlation between predictors was, very
generally, higher for the testing set than either the null or
folded sets. Similarly, the residue-level correlation between
rmodel and PScore was higher for the testing than the folded
and null sets (Fig. S5E). On the other hand, because the
testing set typically had high values, whereas the folded set
low values, the correlations in the combined set containing
all of the training, folded, and null sets, were most often
stronger than within each individual set. We speculate that
the relatively higher correlation within the testing set than
null or folded sets is the result of evolutionary pressure for
phase separating IDRs to utilize multiple mechanisms to
drive phase separation, e.g., containing both cation–π in-
teractions and a high β-turn propensity within the same
sequences. As a first step toward testing this hypothesis, we
created a set of 100 random sequences with the same average
amino composition as the testing set. The residue level
correlation between rmodel and PScore was significantly
reduced with scrambled sequences, indicating that the in-
dividual sequences efficiently combine LLPS mechanisms in
a way that is not reflected in the amino acid composition
averaged across many sequences (Fig. S5E). This is consis-
tent with previous proposals that patterns of self and solvent
interactions in a sequence may feature prominently in
mechanisms promoting LLPS and for determining conden-
sate specificity (10, 98–100).
Discussion

The hydrodynamic dimensions of proteins have long been
studied to investigate folding mechanisms (101), properties
of the denatured state ensemble (102), and the physical
characteristics of IDPs (3, 13, 19, 21, 23). By normalizing
hydrodynamic size to the chain length, the predicted poly-
mer scaling exponent, v, provides a simple metric that re-
ports on the net balance of self and solvent interactions. This
is similar, though not identical to the original intended use of
v to describe the flexible homopolymer whereby subunit–
subunit interactions are all equivalent, as are, separately,
subunit–solvent interactions (18). Because IDPs are hetero-
polymers and contain varying, spatially organized, local in-
teractions, v reflects a phenomenological parameterization
rather than an exact description of molecular forces present.
While there are real limitations to the applicability of
applying concepts developed for long homopolymers to
heteropolymeric proteins, numerous studies, including this
work, support the view that properties, such as v, derived for
homopolymers, can be successfully applied to biological
IDPs to help understand their observed solution behavior
(19, 24, 25, 31–33).

Here, we have used sequence-based calculations of mean Rh,
which has been found to match the measured values from
many IDPs (14, 35, 44), to test the widespread notion that



Figure 6. Comparing phase separation predictors. A, pairwise correlations, R2, for rmodel, PScore, catGRANULE granule propensity, PLAAC LLR score, and
PSPredictor score calculated for the sequences when combining the testing, null, and folded sets. Grayscale indicates the magnitude of R2; the mean and
standard deviation for all pairwise combinations in the combined set are shown. B, the mean pairwise R2 of each predictor, with error bars showing
standard deviation, for the combined set correlations (A). C, pairwise correlations, R2, calculated for the individual sets: testing (top), null (middle), and
folded (bottom). The mean and standard deviation for all pairwise combinations within a set are shown. Plots of pairwise correlations involving rmodel are
in Figure S5.
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lower v is associated with the potential for LLPS of
IDRs (19, 24, 25, 31). Using vmodel, obtained from sequence
calculated Rh, we find that IDRs from proteins that exhibit
LLPS have, on average, reduced vmodel when compared with
non-phase-separating IDRs, but with significant statistical
overlap between the two sets (Fig. S2). Thus, it is unlikely that
vmodel, by itself, has significant predictive power for LLPS.
However, β-turn propensity also is different in the different
protein classes (Table 2), consistent with the enhancement of
the accessibility of π/sp2 electronic interactions in β-turns
relative to random conformations (Fig. 3). β-turn propensity,
when combined with vmodel, shows the ability to predict pro-
tein regions: for folded, phase separating, and non-phase-
separating IDRs (Fig. 4). Protein regions having low vmodel

combined with high β-turn propensity are rare in the human
proteome and especially rare in folded proteins, while enriched
in known LLPS proteins (Fig. 5). Because many proteins and
peptides can be induced to form phase-separated states under
different solution conditions (103, 104), we hypothesize that
protein regions having low vmodel combined with high β-turn
propensity identify IDRs that drive phase separation under
mostly mild, physiological-like conditions. Other sequence-
based predictors of protein LLPS, for example, PSCORE (10)
and catGRANULE (11), similarly identify only a small subset of
the human proteome as exhibiting high LLPS potential. Our
work also builds on the recent finding that phase-separating
IDRs are less hydrophobic by traditional scales than non-
phase-separating IDRs, yet more compact (105, 106). The
compaction appears to occur through other mechanisms than
hydrophobicity, including cation–π and charged interactions
(10, 80, 106), as well as a high propensity for β-turns (Fig. 4).

To predict protein regions in a given primary sequence,
based on calculations of vmodel and β-turn propensity, we have
written the ParSe algorithm and have made it available online
(see Data availability). In addition to predicting the locations of
protein regions, ParSe outputs rmodel, the ratio of β-turn pro-
pensity to vmodel, both for the whole sequence and at the res-
idue level. Using ParSe, we found that proteins that phase
separate as purified components have long predicted PS re-
gions, while in cellulo observed LLPS proteins that do not
phase separate as purified components seem to, in general,
have shorter predicted PS regions. When compared, rmodel

showed strong correlations to other phase separating pre-
dictors, and notably those predictors that are based on
mechanisms thought to promote LLPS (Fig. 6). As the ParSe
model does not directly evaluate features proposed by other
mechanisms, namely the patterning of either cation–π, π–π, or
charged amino acids or nucleic acid binding; the correlation
between these metrics points to an evolutionary constraint to
include multiple sequence features in regions that promote
LLPS (10, 11, 95). More generally, the correlation between
predictors that are based on disparate molecular mechanisms
will be useful for determining which molecular features are
typically combined in LLPS proteins and which LLPS proteins
instead rely on unique molecular grammars (80, 95, 96, 98,
100, 105, 106).
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Experimental procedures

Protein databases

Lists of proteins that exhibit LLPS behavior were obtained
from Vernon et al. (10), the PhaSePro database (63), and the
DisProt database (107), chosen because each contains protein
lists that have been curated manually for experimentally
verified cases of LLPS. From the Vernon set, we segregated
proteins that phase separate in vitro as purified components
(Table S2) from those that do not (Table S5). From DisProt,
protein sequences that phase separate were found by search
using the disorder function ontology identifier for LLPS,
IDPO:00041 (64). A set of IDPs not known to phase separate
but with monomeric experimental mean Rh, rather than
sequence-predicted mean Rh, was assembled from literature
reports (35, 44–62). The human proteome reference set
UP000005640 (108), the Structural Classification of Proteins –
extended (SCOPe) database version 2.07 (92, 93), and the
consensus disordered regions from the DisProt database
(2021_06) excluding those regions with the ontology identifier
for LLPS, were used as additional negative controls, i.e.,
sequence lists not enriched for LLPS behavior.
Mean Rh sequence calculation

The hydrodynamic dimensions of disordered protein en-
sembles depend strongly on sequence composition. For IDPs,
the mean Rh has been shown to be accurately predicted from
the intrinsic bias for the polyproline II (PPII) conformation
(14, 44) and sequence estimates of the protein net charge
(22, 35). The equation to calculate mean Rh for a disordered
sequence is

Rh ¼ 2:16�A ,N ð0:503−0:11,lnð1−fPPII ÞÞ þ 0:26 , jQnet j− 0:29,N0:5;

(3)

where N is the number of residues, fPPII is the fractional
number of residues in the PPII conformation, and Qnet is the
net charge (22). fPPII is estimated from

P
PPPII,i/N, where

PPPII,i is the experimental PPII propensity determined for
amino acid type i in unfolded peptides (109) and the sum-
mation is over the protein sequence. Qnet is determined from
the number of lysine and arginine residues minus the number
of glutamic acid and aspartic acid.
Disorder prediction

The presence of intrinsic disorder in proteins and protein
regions can be predicted from sequence with good confidence
(110). The GeneSilico MetaDisorder service (65) was used to
calculate the disorder tendency at each position in a sequence
from the consensus prediction of 13 primary methods. Resi-
dues with a disorder tendency >0.5 are predicted to be
disordered, while those with disorder tendency <0.5 are pre-
dicted to be ordered. To minimize misidentification, we
selected ID regions as those with at least 20 contiguous residue
positions having disorder tendency ≥0.7. When the GeneSilico
10 J. Biol. Chem. (2021) 297(5) 101343
MetaDisorder service was offline or otherwise unavailable, the
IUPred2 long predictor (66) was used instead.

Calculation of β-turn propensity

The propensity to form β-turn structures was calculated byP
scalei/N, where scalei is the value for amino acid type i in

the normalized frequencies for β-turn from Levitt (37). The
summation is over the protein sequence containing N number
of amino acids. Calculations using the Chou–Fasman
normalized β-turn frequencies (38) followed an identical
method. Calculations that account for specificity in the four
different turn positions (i, i + 1, i + 2, i + 3) used the turn
potentials from Hutchinson and Thorton (Table 2 in (39)),
where a four-residue window with each residue position in the
window a turn position was slid across the protein sequence in
one-residue increments. For a sequence, the summation of
turn potentials in a window was divided by 4, and the overall
sum of windows was divided by the number of windows.

Calculating vmodel and β-turn propensity in 25-residue
windows for identifying LLPS regions

Our goal was to calculate vmodel in a manner that was sen-
sitive to the composition of the window, while also main-
taining some independence from the window length that was
arbitrarily selected. For example, vmodel calculated for all
25-residue windows in the Sup35 primary sequence gives the
average value of 0.531. If the window size is doubled by
doubling the number of each amino acid type in the window
sequence, the average vmodel changes to 0.540 despite the same
fractional compositions of amino acids in the windows and the
same number of windows. Owing to the second and third
terms in Equation 3, identical fractional compositions of
amino acids can yield different vmodel depending on window
length. To avoid this, we calculated the average vmodel for all
25-residue windows in Sup35 at multiples of 1×, 2×, 3×, etc.,
where “1×” means the amino acid distributions are identical to
the native sequence, “2×” doubles the occurrence of each
amino acid type in a window, “3×” triples the occurrence, and
so forth. By this scheme, the fractional ratio of each amino acid
type in a window is constant. We found that the average
calculated vmodel for 25-residue windows stabilized for multi-
ples ≥4×. Specifically, for fractional compositions obtained
from a biological sequence, vmodel became length-independent
for N ≥ 100 while also remaining highly sensitive to changes in
the fractional composition. Based on this finding, vmodel for a
25-residue window was calculated from sequence by first
multiplying the number of each amino acid type in the window
sequence by 4 and then by calculating vmodel for the resulting
100-residue length. The β-turn propensity for a 25-residue
window was calculated without modification to the method
as described above and used the normalized turn frequencies
from Levitt (37).

ParSe calculation

For an input primary sequence, whereby the amino acids
are restricted to the 20 common types, ParSe first reads the
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sequence to determine its length, N, and the number of each
amino acid type. Using these sequence-defined values, Qnet

and fPPII are calculated (described above) and used with N to
determine Rh by Equation 3, which in turn is used to
determine vmodel by Equation 1. β-turn propensity is calcu-
lated as the sequence sum divided by N (described above)
from the normalized frequencies by Levitt (37). rmodel is
determined by the ratio of β-turn propensity to vmodel. Next,
ParSe uses a sliding window scheme (Fig. 4B) to calculate
vmodel and β-turn propensity for every 25-residue segment of
the primary sequence (described above). This window
scheme can be applied to proteins with N >25. The values of
vmodel and β-turn propensity calculated for a window
determine the window’s localization to a PS, ID, or Folded
sector in a β-turn propensity versus vmodel plot (Fig. 4C). The
sector boundaries are shown in Figure 4A, and these
boundaries are defined by the mean and standard deviation
in β-turn propensity and vmodel calculated in the null set
(Tables 1 and 2). If a window, based on its β-turn propensity
and vmodel values, is localized to the PS sector, the central
residue in that window is labeled “P,” whereas localization to
the ID sector labels the central residue position “D”, and
localization to the Folded sector labels the residue “F.”
N- and C-terminal residues not belonging to a central win-
dow position are assigned the label of the central residue in
the first and last window, respectively, of the whole
sequence. Protein regions predicted by ParSe to be PS, ID, or
Folded are determined by finding contiguous residue posi-
tions of length ≥20 that are ≥90% of only one label P, D, or F,
respectively. When overlap occurs between adjacent
predicted regions, owing to the up to 10% label mixing
allowed, this overlap is split evenly between the two adjacent
regions.

PSCORE calculation

PSCORE, which is a phase separation propensity predictor
(10), was calculated by computer algorithm using the Python
script and associated database files available at https://doi.
org/10.7554/eLife.31486.022.

Granule propensity calculation

Granule propensity was calculated by using the cat-
GRANULE (11) webtool available at http://www.tartaglialab.
com.

PLAAC LLR calculation

LLR score, which identifies prion-containing sequences (12),
was calculated by using the webtool available at http://plaac.wi.
mit.edu.

PSPredictor calculation

PSPredictor score, which predicts phase separation potential
(40), was calculated by using the webtool available at http://
www.pkumdl.cn:8000/PSPredictor.
Metapredict calculation

Metapredict score (94), which predicts the presence of
ID in a sequence, was calculated by computer algorithm
using the Python script available at http://metapredict.net.

Computer generation of disordered ensembles

Structures of GVPGVG were generated by a random search
of conformational space using a hard sphere collision model
(111). This model uses van der Waals atomic radii (112, 113)
as the only scoring function to eliminate grossly improbable
conformations. The procedure to generate a random
conformer starts with a unit peptide and all other atoms for a
chain are determined by the rotational matrix (114). Backbone
atoms are generated from the dihedral angles u, ψ, and ω and
the standard bond angles and bond lengths (115). Backbone
dihedral angles are assigned randomly, using a random
number generator based on Knuth’s subtractive method (116).
(u, ψ) is restricted to the allowed Ramachandran regions (117)
to sample conformational space efficiently. For peptide bonds,
ω had a Gaussian fluctuation of ±5% about the trans form
(180�) for nonproline residues. Proline sampled the cis form
(0�) at a rate of 10% (118). Of the two possible positions of the
Cβ atom in nonglycine residues, the one corresponding to L-
amino acids was used. The positions of all other side chain
atoms were determined from random sampling of rotamer
libraries (119). Structures adopting the type II β-turn were
identified as those with (u, ψ) angles of (−60� ± 15�, 120� ±
15�) and (80� ± 15�, 0� ± 15�) for P3 and G4, respectively,
while also containing a hydrogen bond connecting the
carbonyl oxygen of V2 to the amide proton of V5. Structures
were generated until we had 1000 turn and 1000 nonturn
structures of the peptide GVPGVG. A variety of structural
measurements were taken on each ensemble, and statistical
convergence was confirmed by comparing the average values
of the first 500 structures to the average over the entire
ensemble. Specifically, the average total accessible surface
area, end-to-end distance, and radius of gyration for the first
500 structures were found to be within one standard deviation
of the average over the entire ensemble, suggesting that
additional conformations did not alter the measurements
beyond the first 500 structures.

CHASA analysis and molecular docking

Computer generated structures, described above, were
processed using the CHASA module (76) of the LINUS soft-
ware package (120, 121). Two structures containing turns were
docked using the GOLD/HERMES molecular docking soft-
ware version 2020.1 (122). After hydrogen atoms were added,
docking used the ChemPLP scoring function. The beta carbon
on the third proline residue defined the binding site. Valine
side chains were sampled using the built-in rotamer library,
and all backbone torsions were held fixed in their original
conformation. HERMES was used to calculate the buried hy-
drophobic accessible surface area upon formation of the
complex.
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Data availability

The ParSe algorithm written in Fortran, Parse.f, can be
downloaded at https://github.com/stevewhitten/Parse, https://
doi.org/10.5281/zenodo.5138428. A webtool version can be
used at http://folding.chemistry.msstate.edu/utils/parse.html.
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