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Multiple Imputation for Nonignorable Item
Nonresponse in Complex Surveys Using
Auxiliary Margins

Olanrewaju Akande and Jerome P. Reiter

Abstract We outline a framework for multiple imputation of nonignorable item
nonresponse when the marginal distributions of some of the variables with missing
values are known. In particular, our framework ensures that (i) the completed datasets
result in design-based estimates of totals that are plausible, given the margins, and
(ii) the completed datasets maintain associations across variables as posited in the
imputation models. To do so, we propose an additive nonignorable model for nonre-
sponse, coupled with a rejection sampling step. The rejection sampling step favors
completed datasets that result in design-based estimates that are plausible given
the known margins. We illustrate the framework using simulations with stratified
sampling.

1 Introduction

Many surveys suffer from item nonresponse that may be nonignorable. This can
complicate analysis or dissemination of survey data. In some settings, we can lever-
age auxiliary information from other data sources to help adjust for the effects of
nonignorable nonresponse. For example, suppose that in a simple random sample, a
question on sex suffers from item nonresponse, so that 70% of the respondents are
women. Suppose we know that the target population includes 50% men and 50%
women. This implies that respondents with missing values of sex are more likely
to be men than women. Thus, if we impute values for the missing sexes, we should
impute more “male” than “female”.

Generalizing this example, we desire to leverage reliable estimates of low-
dimensional margins for variables with item nonresponse—available, for example,
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from high quality surveys or administrative databases—when imputing missing
items. However, we do not want to use solely these population margins to inform
the imputations. We also should take advantage of observed information in other
variables, so as to preserve multivariate relationships as best as possible. In the case
where the data are from a complex survey, we also need to somehow account for the
survey design weights in the imputations (Reiter et al., 2006; Zhou et al., 2016). We
are not aware of any principled ways to do all this simultaneously when performing
multiple imputation for item nonresponse.

In this chapter, we propose a framework for multiple imputation of missing
items in complex surveys that leverages auxiliary margins. Our approach is to use
the auxiliary margins to identify additive nonignorable (AN) models (Hirano et
al., [1998; Hirano et al., 2001), with an additional requirement that the completed
datasets result in plausible design-based estimates of the known margins. We do so by
fusing the AN model with large sample results under frequentist (survey-weighted)
paradigms. In this way, we ensure that imputations are influenced by relationships
in the data and the auxiliary information, while being faithful to the survey design
through survey weights.

Our work connects to several areas of research in which Stephen Fienberg made
key contributions. In particular, the methods are examples of using marginal infor-
mation (Fienberg, [1970; Chen & Fienberg, [1974), and of course handling missing
values (Bishop & Fienberg,|[1969; Fienberg,|1972; Chen & Fienberg,[1976), in the
analysis of contingency tables. Our approach also uses Bayesian techniques for offi-
cial statistics and survey sampling, a perspective that he championed for many areas
including disclosure limitation, record linkage, and the analysis of categorical data.

The remainder of this chapter is organized as follows. In Section 2 we review
the AN model. In Section[3] we present our approach. In Section[d] we illustrate the
performance of the approach using simulation studies with stratified sampling. In
Section 3] we conclude and discuss possible extensions. For clarity, we present the
methodology for data that does not have unit nonrespondents. We discuss extensions
to scenarios including unit nonrespondents in Section

2 Review of the AN Model

Our review the AN model closely follows the review in Akande (2019, Chapter 4).
For additional discussion of the AN model, see Nevo (2003), Bhattacharya (2008),
Das et al. (2013), Deng et al. (2013), Schifeling et al. (2015), Si et al. (2015),
and Sadinle & Reiter (2019). Although the AN model was developed originally
for handling nonignorable attrition in longitudinal studies with refreshment samples
(Hirano et al., [1998; Deng et al., 2013), it can be applied to our setting by viewing
the data from the refreshment samples as auxiliary information, as we now describe.

2.1 Notation

Let D comprise data from the survey of i = 1,...,n individuals, and A com-
prise data from the auxiliary database. Let X = (Xj,..., X,,) represent the p vari-
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ables in both A and D, where each X; = (Xix,..., Xu)! for k = 1,...,p.
Let Y = (Y1,...,Y,) represent the ¢ variables in O but not in A, where each
Ye = Mk, .. ,Ynk)T for k = 1,...,q9. We assume that A only contains sets of
marginal distributions for variables in X, summarized from some external database
and measured with negligible error. We disregard variables in ‘A but not D, as the
margins for these variables generally do not provide much information about the
missing values in D.

We also introduce variables to account for item nonresponse. For each k =

1,...,p, let Rz = (Rfk, el R;k)T, where each Rl’.“k = 1 if individual i would not
respond to the question on Xy in D, and R;, = 0 otherwise. Similarly, for each
k=1,....q.let R} = (R},.....R,)", where each R}, = 1 if individual i would

not respond to the question on Y in O and Riy . = 0 otherwise.

Finally, for simplicity, we use generic notations such as f and n for technically dif-
ferent functions and parameters respectively, although their actual meanings should
be clear within each context. For example, f, n9, and 11 need not be the same
in the conditional probability mass functions Pr(X; = 1|Y;) = f(no + n1Y;) and
Pr(Y1 = 11X1) = f(n70 + mX1).

2.2 AN model specification

To make the AN model specification easy to follow, we work with an example
where D comprises only two binary variables, X; and Y;. Following our notation,
A contains the auxiliary marginal distribution for X; but no auxiliary marginal
distribution for Y;. For simplicity, we also suppose X suffers from item nonresponse
but Y; is fully observed. Thus, we need a model for Rf, the fully observed vector
of item nonresponse indicators for X;. We assume that we do not need to include a
model for Rf , since there is no nonresponse in Y;. The observed and auxiliary data
take the form shown in Table[I(a). The incomplete contingency table representing the
joint distribution of (X1, Y1, RY), with observed and auxiliary marginal probabilities
excluded, is shown in Table[I(b).

Due to the empty cells in the contingency table in Table [I{b), we cannot fit a
fully saturated model to these data. To see this, we use a pattern mixture model
factorization (Glynn et al., [1986; Little, [1993) to characterize the joint distribution
of (X1,Y1, Ri‘). The factorization, which we write as

Pr(X; =x,Y1 =y,R{ =r)=Pr(X; =x|Y1 =y,R{ =7) 0
X Pr(Y1 = y|R} =r)Pr(Ry =7),
can be fully parameterized using seven parameters: the four values of 6y, = Pr(X; =
1Y, = y,Rf =7r), 7y = Pr(Y; = 1|R} =r) and g = Pr(R} = 1). Five of the
seven parameters, that is, g, mo, 71, 6po, and 619, can be directly estimated from
the observed data alone, as long as the sample data is representative of the target
population. Unfortunately, the observed data contain no information about 6y; and
011. We need to make assumptions about the missingness mechanism to estimate the
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Table 1 Set-up for the AN model with two binary variables Y; and Xj. Y) is fully observed, and
X suffers from item nonresponse. We know the population margin for X;. Here, “v/” represents
observed components and “?” represents missing components.

X |1 | R} Ry =0 Ry =
.. v 0 X =0 X1=1[{X=0[X;=1
Original data { 5 v T Y =0 7 7 5 5
Auxiliary margin —( v ? ? Y =1 v v ? ?
(a) Data (b) Contigency table

full joint distribution. For example, we could set 6g; = 0o and 611 = 69, resulting
in a missing at random (MAR) mechanism.

The auxiliary marginal distributions provide information that we can use to specify
such identifying assumptions. In our two-variable example, the auxiliary marginal
distribution of X; provides one linear constraint about 8g; and 6;;. We write this
constraint as

Pr(X; =1)-Pr(X; = 1,Y1 =y,R{ =0) =q [6o1 (1 =) +Opymi] . (2)

Although does not provide enough information to identify both 6y; and 611, it
does increase the number of estimable parameters from five to six.

The AN model takes advantage of this additional constraint. In particular, the AN
model assumes that the reason for item nonresponse in X; depends on X; and Y
through a function that is additive in X; and Y;. We have

(X1, Y1) ~ f(X1,Y1]©) (3)
Pr(RY = 11X1,Y1) = h(no + m X1 +n2Y1), “4)

where O, ng, 171, and 77, represent the parameters in f and h. Here, h(a) should be
a strictly increasing function satisfying lim,—,_« #(a) = 0 and lim,—« h(a) = 1.
The models in (@) and (@) represent a selection model factorization (Little,|1995) of
the joint distribution of (Y1, X1, Ri‘ ), instead of the pattern mixture factorization in
(. Hirano er al. (2001) prove that the AN model is likelihood-identified for general
distributions, such as probit and logistic regression models. The interaction term
between X and Y; is not allowed, as additivity is necessary to enable identification
of the model parameters.

The AN model is appealing in that it includes ignorable and nonignorable models
as special cases. For example, (71 = 0,772 = 0) results in a missing completely
at random (MCAR) mechanism, (17 # 0,772 = 0) results in a MAR mechanism,
and 72 # O results in a missing not at random (MNAR) mechanism. In particular,
(m = 0,m2 # 0) results in the nonignorable model of Hausman & Wise (1979). This
allows the data determine an appropriate mechanism from among these possibilities.
The AN model does rely on the assumption of additivity of the response model in X
and Y7, which may be reasonable in practice. Deng et al. (2013) describe sensitivity
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analysis for non-zero interaction effects. Hirano et al. (2001)) suggest results are not
overly sensitive to the choice of A.

It is possible to use mechanisms other than the AN model to estimate up to six
unique parameters (in our example here). For example, one can set either 8g; or 61,
equal to zero. Setting 8p; = O but 6;; # 0 implies that all nonrespondents cannot
have X; = 1 whenever Y; = 0. On the other hand, setting 611 = 0 but y; # 0 implies
that all nonrespondents cannot have X; = 1 whenever Y; = 1. Both assumptions
seem more restrictive than setting an interaction effect in the model for R{ to zero,
and we do not recommend adopting them unless the specific application at hand
justifies such strong assumptions. As another example, one can set g, = 61 + b for
some constant b. With b = 0, this equates to §* = 8y = 611, which then simplifies
to
_ Pr(X; =1) = (1-¢q) [6oo(1 = m0) + O1070]

q

This constraint implies conditional independence between Y| and X for nonrespon-
dents. This seems a strong assumption in general.

These two options, as well as other mechanisms which we do not cover here,
are seemingly more restrictive than the AN assumptions or do not maximize all
available information. The AN model does not force analysts to make as many
untestable assumptions as most of the other mechanisms do, while allowing analysts
to estimate as many parameters as possible with auxiliary data. However, the AN
model as developed by Hirano et al. (1998) and Hirano et al. (2001) does not
incorporate complex survey designs directly. We now extend the model to do so.

9*

&)

3 Extending the AN Model to Account for Complex
Surveys

Let N represent the number of units in the population from which the n survey units
in D are sampled. Let W = (wy, ..., w,), where each w; is the base weight for the ith
unit in the sample D. Here, we let w; = 1/x;, where 7; is the probability of selection
of the ith unit. We present methods where weights are not subject to calibration or
nonresponse adjustments, although one could use the approach for adjusted weights
as well. Let the superscript “pop” represent the population counterparts of the survey
variables. For example, XP°P and Y?°P represent the population based counterparts
of X and Y respectively, where each X; € XP°P and ¥; € YP°P. We do not observe
values of XP°P or YP°P for all non-sampled units in the population.

To present the methodology, we continue to work with the two variable example
in Section[2.2] with one minor modification. We now let Y} be a categorical variable
with three levels, that is, ¥; € {1,2,3}. We do so to show that our approach can
extend to non-binary variables. The data and incomplete contingency table take
similar forms to Table[I] with weights now included and Y; having three levels.

Following our discussions in Section2.2] we once again cannot fit a fully saturated
model to the data. However, we can uniquely estimate seven of the nine parameters in
a fully saturated model. Without any auxiliary information, we can fit the following
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model to the observed data as a default option within the missing data literature. We
have

Yy ~ f(0) (6)
Pr(X; = 1]¥1) = g(ao + a1;1[Y1 = j]) (7N
Pr(R} = 1X1,Y1) = h(yo +y1;1[Y1 = j]), 3

resulting in a MAR mechanism, where j = 1,2,3. We set @11 = 0 and y1; = 0
to ensure the model is identifiable; the model then only contains seven parameters
as desired. For more flexibility however, we seek to fit a nonignorable model that
includes y,X; in (8), so that (8) becomes the AN model

Pr(Ry = 1|X(,Y1) = h(yo +y1;1[Y1 = j] + y2X1). )

To do so, we need to incorporate at least one constraint on the remaining parameters.
When the survey design is complex, it may not be sufficient to use the auxiliary
margin to force an extra constraint on the remaining parameters as we did in Section
2.2 since that approach does not incorporate the survey weights directly. To account
for the survey weights, we take a different approach.

In practice, the most common marginal information is the population total (or
mean) of some of the variables. For example, for totals, we know that

N
Ty = Z XP°P = N x Pr(XP°P = 1), (10)
i=1

where Pr(X[°” = 1) is the true auxiliary marginal probability. A classical design-
unbiased estimator of T in this case is the Horvitz-Thompson estimator (Horvitz &
Thompson, |1952), henceforth referred to as HT estimator, which is

TX=Z%=ZW,-XH. (11)

ieD ! ieD

In large enough samples, finite population central limit theorems ensure that Tx is
approximately normally distributed around T, with a variance Vx that is estimated
using design-based principles (Fuller, 2009). Thus, for fully observed data, we have

D wiXin ~ N(Tx, Vx). (12)
ieD

When the data contain nonresponse, we cannot compute Tx directly. However, it
is reasonable to expect this unobserved value of fX to be distributed around Tx as
governed by (12). Thus, when we impute the missing values for X, it is reasonable
to require any completed dataset to produce a value of Ty that is plausible under (I2)
as well. We operationalize this logic as follows. For all i € D, let X7 = X;; when
R =0, and let X] be an imputed value when R}, = 1. We impose the probabilistic
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constraint,
Z wi X% ~ N(Tx, Vx). (13)
i€eD
In this way, we favor imputations consistent with (I3) when generating imputed
values for X under the posterior predictive distribution implied by (@), (7) and (9).
Using a probabilistic constraint, as opposed to a deterministic constraint that T be
as close to Tx as possible, reflects uncertainty about Tx more appropriately. Here, we
assume Vy is pre-specified and treated as known; for example, it could be based on
previous knowledge or an average of estimates from preliminary sets of completed
data. We discuss considerations with unknown Vx further in Section[3
We incorporate into a Markov chain Monte Carlo (MCMC) sampler for the
model parameters through a Metropolis algorithm. At each MCMC iteration ¢, let
the current draw of each X7| be Xl.’;(t) and let T;(Z) = Dien w,-X;(t). We use the
following sampler at iteration ¢ + 1.

S1. Foralli € D, ie.,i=1,...,n,set X = X;; when R}, = 0. When R}| =
1, generate a candidate X| for the missing X;; from the following posterior
predictive distribution implied by (7)) and (@). We have

Pr(X] =1]...) « g(@o +a1j1[Yi1 = j1) h(yo +y1;1[Yi = j]1 +v2X}}), (14)

i)

using the current posterior draws of the parameters at iteration ¢ + 1, where “. . .
represents conditioning on all other variables and posterior draws of all parameters
in the model.

S2. LetT§ = Y;eqp wiX},. Calculate the acceptance ratio,

N(T}:;Tx, Vx)

p=—2—" (15)
N Ty, V)
S3. Draw a value u from u ~ Unif(0,1). If u < p, accept the proposed candidate

(X7,...,X2), and set X;(Hl) = X}, for i = 1,...,n. Otherwise, reject the

proposed candidate, and set Xl.’i(”l) = Xl.’;(’) fori=1,...,n.

Intuitively, these steps reject completed datasets that yield highly improbable design-
based estimates of Ty, while simultaneously allowing us to estimate y,X; in (©).
Although provides a stochastic constraint, whereas using the auxiliary margins
as in Section[2.2]forms linear constraints, y, X is still estimable when using (I3)), as
we show using the simulations in Section ]

We recommend that analysts monitor the acceptance ratio of the missing data
sampler in Steps S1 to S3, as with any Metropolis sampler. In cases where the
acceptance ratio is considerably low, analysts can inflate or tune Vx or consider
other methods of generating more realistic imputations from the implied posterior
predictive distribution. In our simulation scenarios in Section [ there is no need
to do so as the samplers mix adequately. We do not worry about cases where the
acceptance ratio is high because we view as a constraint rather than a target
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distribution. Therefore, we interpret a high acceptance ratio as the sampler doing a
good job of generating imputations that respect the survey design, as desired.

4 Simulations with Stratified Sampling

In this section, we illustrate the approach described in Section [3| via simulation
studies with stratified sampling. We create ten populations, each of size N = 50000
split into two strata: 70% of units are in stratum 1 (N7 = 35000), and 30% of units
are in stratum 2 (N, = 15000). For each observation in each population, we generate
values of a three-valued Y; and binary X; using

Y;1 ~ Discrete(01, 62, 83) (16)
X;1|Y;1 ~ Bernoulli(nx,); ®'(nx,) = ap +ai;1[Y; = j], 17

for j € {2,3}, where nx,, = Pr[X;; = 1|Y¥;1]. Here, the Discrete distribution refers
to the multinomial distribution with sample size equal to one, and @~ is the inverse
cumulative distribution function of the standard normal distribution. We set § =
(01, 62,603) = (0.5,0.15,0.35) in stratum 1, and 8 = (0.1, 0.45,0.45) in stratum 2.
This ensures that the joint distributions of ¥; and X; differ across strata. We set
different values for ap, @12, and @13 to explore how the strength of the relationship
between X; and Y; affects results.

For each of the ten simulation runs, we randomly select n = 5000 observations
from the corresponding population using stratified simple random sampling. We
sample n; = 1500 units from stratum 1 and 7, = 3500 units from stratum 2.
This disproportionate sampling allocation ensures that the base weights matter in
the estimation of finite population quantities. The survey weights w; = Ni/n; =
35000/1500 = 23.33 forall units in stratum 1 and w; = N /ny = 15000/3500 = 4.29
for all units in stratum 2.

We introduce item nonresponse in X for each of the simulation runs by generating
missingness indicators from an AN model. For each i € D in each population, we
sample the missingness indicator from a Bernoulli distribution with probability

@ '(Pr[RY = 1Y;1, Xut]) = yo + yi;1[Yi1 = j] +v2 X1, (18)

where j € {2,3}. We set different values for yg, y12, y13 and y, to investigate
how departures from an ignorable missing mechanism affect the performance of the
imputation strategies. All sets result in approximately 30% missing values in X].

After making the missing values, we use several approaches to impute the item
nonresponse in X;. For each approach, we use (16) and as the models for the
survey variables. We use different methods for specifying and estimating the selection
model, in particular for incorporating the weights and auxiliary information. The
approaches include the following.

1. MAR+Weight: We incorporate the survey weights by including w; as a covariate
in (I7). Since there is a one-to-one mapping between weights and strata in our
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simulation setup, we incorporate w; by adding an indicator variable S; for strata,
so that we have

Xi1|Y;1 ~ Bernoulli(ry,,); @ '(nx,,) = ap+a1; 1Y = j] + a2 l[S; = 2]
(19)

as the model for X; instead of (I7). We exclude the parameter for 1[S; = 1] in
(19 to ensure identifiability. Additionally, since y, X;1 in (I8) cannot be identified
from the observed data alone, we exclude vy, X;; in (I8), so that we have

@ '(Pr[RY = 1[Yi1, Xa1]) = yo + y1;1[Yi1 = Jj]. (20)

This is a MAR model for the item nonresponse. This approach represents a default
approach analysts might use in this scenario. It does not use auxiliary information
about the margin of Xj.

2. AN+Weight: We use (I9) to incorporate the weights and fit the AN model in (I8).
However, we do so without using any auxiliary information. Although y; X;; in
(18D is not identifiable as previously discussed, the model can be estimated (albeit
not accurately) under the Bayesian paradigm because of the prior distribution.
This represents a naive application of a nonignorable modeling strategy.

3. AN+Constraint: We fit the AN model in (I8), using the method in Section
to incorporate the auxiliary information and survey design. We incorporate the
auxiliary total Tx, and survey weights through the constraint in (I3). We set Vx
equal to approximately the theoretical variance of Tx without any missing values.

4. AN+Constraint+Weight: We combine the AN+Weight and AN+Constraint ap-
proaches. Specifically, we follow the AN+Constraint method but use (I9) instead
of to further control for the weights.

We use non-informative priors for all parameters. Specifically, we use the
Dirichlet(1, 1, 1) distribution as the prior distribution for (61, 6,, 83), and a standard
multivariate normal distribution as the prior distribution for the set of parameters
in each probit model in to (20). We fit all models using MCMC sampling. We
run each MCMC sampler for 10,000 iterations, discarding the first 5,000 as burn-in,
resulting in 5,000 posterior samples. We create L = 50 multiply imputed datasets,
Z =2V, ..., 25%), from every 100" posterior sample. From each completed
dataset Z<l), we compute the design-based estimates of Ty, @y, @12, and @13, along
with the corresponding standard errors, using the survey-weighted generalized lin-
ear models option in the R package, “survey”. Although there are differing opinions
associated with using survey weights in regression modeling (Pfeffermann, [1993;
Gelman, 2007), we use them to ensure all analyses account for the selection effects
in the survey design. We also compute estimates of vy, v; and y> (which do not
depend on the weights by design), along with the corresponding standard errors,
from each completed dataset, using the generalized linear models option in the R
package, “‘stats”.

Within any simulation run, we combine all the estimates across all multiply-
imputed datasets using multiple imputation (MI) rules (Rubin, [1987). As a brief
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Table 2 Simulation scenarios presented in Section 4]

Scenario Association (X7, Y;) Departure from ignorable missingness Margins

1 Strong Large Population only
2 Weak Small Population only
3 Strong Large Both strata
4 Weak Small Both strata

review of MI, let g be the point estimator of some estimand of interest Q in a
completed dataset, and let u be the estimator of its variance. For [ = 1,..., L, let g;
and u; be the values of ¢ and u# in completed dataset 7" The MI point estimate of O
isqr = Zl’; 1 1/ L, and the corresponding MI estimate of the variance of gy, is given
by Ty = (1+1/L)by +iip, where by = 3, (q1—G1)*/(L—1) and iip, = 3= uy/L.
We write g7 and T;" to represent the values of g, and T in the simulation run
indexed by m, where m = 1, ..., 10.

We consider eight simulation scenarios resulting from a 2 X 2 X 2 factorial design.
The factors include strong and weak associations among X; and Y7; large and small
departures from ignorable missingness mechanisms; and, margins for X; known
either for the entire population only (Tx ) or for each of the two strata. In the interest
of space, we report detailed results only for the four scenarios described in Table
In each scenario, we report averages of MI estimates across the 10 runs, including

Z,l,?:l q7'/10 for the point estimate of each estimand Q, and ,/Zrl,?:l T/"/10 as a
measure of the corresponding standard error. For comparison, we also report results
before introduction of missing data, using the average of the ten point estimates and
the square root of the average of the variance estimates.

4.1 Results for scenario 1 and scenario 2

In scenario 1, we set g = 0.5, (a2, a13) = (-0.5,-1), vo = =0.25, (y12,713) =
(0.1,0.3), and y, = —1.1. This represents a strong relationship between ¥; and X,
and a nonresponse mechanism that deviates substantially from an ignorable mech-
anism. Here, Ty is known only for the entire population and not for the individual
strata.

For each method, Table[3(a) displays the average of the ten HT estimates for Tx
and the square root of the average of the variances of these estimates in scenario
1. AN+Constraint and AN+Constraint+Weight offer the most accurate estimates,
whereas AN+Weight and MAR+Weight offer the least accurate estimates. Control-
ling for the weights in the model for X; as in the AN+Constraint+Weight method
apparently decreases the standard error in comparison to AN+Constraint. It also in-
creases the acceptance ratios in the MCMC samplers. The standard error associated
with AN+Weight is much higher than all other methods. This is due primarily to the
weak identification issues associated with using the AN model without any auxiliary
information, resulting in greater uncertainty from the nonresponse mechanism.

Table[3lb) also shows survey-weighted estimates of ag, @12, @13, Y0, Y12, Y13 and
2, along with the corresponding standard errors, again combined across all ten simu-
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Table 3 Results for scenario 1: overall auxiliary margin for X, strong relationship between Y; and
X and strong nonignorable nonresponse.

Tx Acceptance Ratio
Method Mean SE  Mean Range
Population 25026 — —
Mo Missing Data 25275 582 — —
MAR-+Weight 30579 670 —
AN+Weight 28222 2789 — —
AN+Constraint 24993 741 .82 [.79, .84]

AN+Constraint+Weight 25019 718 .83 [.80, .86]

(a) HT estimates for Tx under each method, the corresponding stan-
dard errors, and acceptance ratios. “Population” is the value of Tx
in the population of N = 50000 individuals. “No Missing Data” is
the weighted estimate based on the sampled data before introducing
item nonresponse. For AN+Constraint and AN+Constraint+Weight,
the estimated Monte Carlo standard errors of }; :,?: 1 47 /10 are less
than 150, ruling out chance error as explanation for the improved per-
formance of these two models over AN+Weight and MAR+Weight.

MAR+W AN+W AN+C AN+C+W
Par. Truth Mean SE Mean SE Mean SE Mean SE
[o 24 .50 74 .05 .63 .13 49 .05 49 .05

(<3P -50  -45 07 -47 07 -49 07 -49 .06
a3 -1.00 -8 .07 -92 .10 -98 .06 -98 .06

Yo  -25 -88 .04 -63 35 -22 07 -23 .07
y2 10 29 05 21 .11 .10 .06 .10 .06
yi3 30 .63 .05 48 .17 27 07 27 .07
ya L1000  — — 48 57 -115 .14 -1.15 .13

(b) Survey-weighted estimates of «y, @2, @13, Y0, Y12, Y13 and
>, along with the corresponding standard errors. “MAR+W” is
MAR+Weight, “AN+W” is AN+Weights, “AN+C” is AN+Constraint,
and "AN+C+W” is "AN+Constraint+Weight”. Standard errors of the
averaged point estimates are small enough to rule out chance error as
explanations for the improved performance of AN+C and AN+C+W
over MAR+W and AN+W.

lation runs. Here, both AN+Constraint and AN+Constraint+Weight give nearly iden-
tical results and closely estimate the true parameter estimates. The AN+Constraint
and AN+Constraint+Weight approaches outperform the other choices in this sce-
nario. AN+Weight and MAR+Weight again give the least accurate results.
Inscenario 2, we weaken both the relationship between the variables of interest and
the nonignorable nonresponse. We set ap = 0.15 and (a2, @13) = (-0.45,-0.15)
to reflect a weak relationship between Y} and Xj, and we set yg = —1, (y12,v13) =
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Table 4 Results for scenario 2: overall auxiliary margin for X;, weak relationship between Y; and
X and weak nonignorable nonresponse.

Tx Acceptance Ratio
Method Mean SE  Mean Range
Population 24677 — — —
Mo Missing Data 24742 570 — —
MAR-+Weight 26098 662 — —
AN+Weight 23705 2519 — —
AN+Constraint 24666 698 79 [.77,.81]
AN+Constraint+Weight 24653 705 79 [.77, .81]

(a) HT estimates for Tx under each method, the corresponding stan-
dard errors, and acceptance ratios. “Population” is the value of Tx
in the population of N = 50000 individuals. “No Missing Data” is
the weighted estimate based on the sampled data before introducing
item nonresponse. For AN+Constraint and AN+Constraint+Weight,
the estimated Monte Carlo standard errors of }; :,?: 1 G7*/10 are less
than 150, ruling out chance error as explanation for the improved per-
formance of these two models over AN+Weight and MAR+Weight.

MAR+W AN+W AN+C AN+C+W
Par. Truth Mean SE Mean SE Mean SE Mean SE
[o 24 15 .19 .05 12 .08 15 .05 15 .05

@, A5 -48 06 -43 08 -45 .06 -45 .06
@3 15 -04 07 -23 21 -15 07 -16 .07

v 100 -1.12 .05 -97 21 -1.00 .06 -1.00 .06
yia  -60 -57 07 -64 .10 -61 .07 -61 .07
yi3 140 142 06 141 06 142 .06 142 .06
ya =20 — — 44 47 -23 08 -23 .08

(b) Survey-weighted estimates of «y, @2, @13, Y0, Y12, Y13 and
>, along with the corresponding standard errors. “MAR+W” is
MAR+Weight, “AN+W” is AN+Weights, “AN+C” is AN+Constraint,
and "AN+C+W” is "AN+Constraint+Weight”. Standard errors of the
averaged point estimates are small enough to rule out chance error as
explanations for the improved performance of AN+C and AN+C+W
over MAR+W and AN+W.

(-0.6,1.4) and y, = —0.2 to reflect a small departure from an ignorable nonresponse
mechanism. Tx is known only for the entire population.

Tables [4(a) and [4(b) present results of 10 simulation runs of scenario 2. Once
again, the AN+Constraint and AN+Constraint+Weight outperform the other meth-
ods. AN+Constraint has a slightly smaller standard error for Tx in scenario 2 than
AN+Constraint+Weight. Also, MAR+Weight performs much better in scenario 2
than in scenario 1. In the presence of a weakly nonignorable nonresponse mecha-
nism, there appears to be little degradation when using a MAR model. In addition,
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whatever degradation or bias that should have been attributed to the survey de-
sign appears to be taken care of by including the strata indicator in the model
for X;. AN+Weight performs worse than the other three methods. Unlike before,
AN-+Weight actually underestimates rather than overestimates Tx in this scenario.
Overall, the range of acceptance ratios has decreased slightly from the previous
scenario.

We note that we find similar overall conclusions in the two other scenarios where
we know the margin of Tx only for the whole population.

4.2 Results for scenario 3 and scenario 4

We next investigate the performance of the approaches when we know the auxiliary
margin of X in each stratum. In this case, it is possible to implement the constraint
in (13) for each stratum. For each stratum s € {1, 2}, we require that

Ny
> wiX = - DX~ N v, 1)
Si=s; S Si=s;
i€eD i€eD

where T)((S) is the auxiliary total of X{"°” for stratum s, and V;(S) is the corresponding
variance associated with it. For the AN+Constraint and AN+Constraint+Weight
methods, we implement this constraint by applying the Metropolis steps S1 to S3 in
Section 3] within each stratum.

We first set the parameters as in Section 1] to reflect a strong relationship
between Y; and Xj, and strong nonignorable nonresponse mechanism. Table [5(a)
shows the average HT estimates for Tx, the standard error under each method
and the acceptance ratios by strata. Table [Blb) shows survey-weighted estimates
of ap, @12, @13, Y0, Y12, Y13 and >, and the corresponding standard errors. The
overall conclusions are qualitatively similar to those in Section[£.1] Incorporating the
auxiliary margin by strata in AN+Constraint and AN+Constraint+Weight reduces
the standard errors. AN+Weight and MAR+Weight again yield the least accurate
results. The range of acceptance ratios are much wider suggesting that there is a
smaller set of combinations of imputed values that fulfill the constraints within each
stratum, than with the combined constraint.

We also set the parameters as in Section.T]to reflect a weak relationship between
Y1 and X1, and a weakly nonignorable nonresponse mechanism. Tables[6(a) and[6lb)
display the results. The conclusions are qualitatively similar to those in previous
simulations. The primary difference is that implementing the constraint by strata
reduces the standard errors for AN+Constraint and AN+Constraint+Weight.

Results for the remaining two scenarios with known population totals per stratum
are qualitatively similar to those presented here.
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Table 5 Results for scenario 3: auxiliary margin for X; within each stratum, strong relationship
between Y; and X and strong nonignorable nonresponse.

Tx Acceptance Ratio
Stratum 1 Stratum 2
Method Mean SE  Mean Range  Mean Range
Population 24994 — — — — —
Mo Missing Data 25043 580 — — —
MAR+Weight 30447 668 — — — —
AN+Weight 28488 3034 — — —
AN+Constraint 25062 665 81 [.66,.91] 80 [.74, .83]
AN+Constraint+Weight 25070 667 .80 [.61,.90] 79 [.74, .84]

(a) HT estimates for Tx under each method, the corresponding standard errors, and ac-
ceptance ratios by strata. “Population” is the value of Tx in the population of N = 50000
individuals. “No Missing Data” is the weighted estimate based on the sampled data before
introducing item nonresponse. For AN+Constraint and AN+Constraint+Weight, the esti-
mated Monte Carlo standard errors of Zi:l):l G7'/10 are less than 250, ruling out chance
error as explanation for the improved performance of these two models over AN+Weight

and MAR+Weight.

MAR+W AN+W AN+C AN+C+W
Par. Truth Mean SE Mean SE Mean SE Mean SE
[o 24 .50 74 .05 .64 .13 .50 .05 .50 .05

@ -50  -45 07 -46 08 -50 .07 -50 .07
@3 -1.00 -89 .07 -90 .12 -1.00 .06 -1.00 .07

Yo -25 -89 04 -73 44 -27 06 -27 .06
Y12 .10 30 .05 22 .11 12 .06 12 .06
Y13 .30 .65 .05 52 .19 31 .06 31 .06
v2  -1.10 — — -41 .69 -1.08 .09 -1.08 .09

(b) Survey-weighted estimates of @y, @2, @13, vo, Y12, Y13 and
2, along with the corresponding standard errors. “MAR+W” is
MAR+Weight, “AN+W” is AN+Weights, “AN+C” is AN+Constraint,
and "AN+C+W” is "AN+Constraint+Weight”. Standard errors of the
averaged point estimates are small enough to rule out chance error as
explanations for the improved performance of AN+C and AN+C+W
over MAR+W and AN+W.

5 Discussion

The results suggest that the approach in Section 3] can allow survey analysts to in-
corporate survey weights and auxiliary information when imputing nonresponse in
complex surveys. In particular, AN+Constraint and AN+Constraint+Weight appear
to outperform the default option of controlling for the weights in the joint model
for the variables in 9. The MAR+Weight approach offers good results when the
nonresponse mechanism is only weakly nonignorable; we expect that this method
should perform even better for fully ignorable nonresponse mechanisms. However,
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Table 6 Results for scenario 4: auxiliary margin for X; within each stratum, weak relationship
between Y; and X and weak nonignorable nonresponse.

Tx Acceptance Ratio
Stratum 1 Stratum 2

Method Mean SE  Mean Range  Mean Range
Population 24724 — — — — —
Mo Missing Data 24613 569 — —
MAR+Weight 25969 669 — — — —
AN+Weight 23551 3038 — — — —
AN+Constraint 24710 651 719 .60, .87] 76 [.68,.79]
AN+Constraint+Weight 24689 672 J7 0 [.59, .86] 75 [.66,.78]

(a) HT estimates for Tx under each method, the corresponding standard errors, and ac-
ceptance ratios by strata. “Population” is the value of Tx in the population of N = 50000
individuals. “No Missing Data” is the weighted estimate based on the sampled data be-
fore introducing item nonresponse. For AN+Constraint and AN+Constraint+Weight, the
estimated Monte Carlo standard errors of Zi:l):l G7'/10 are less than 350.

MAR+W AN+W AN+C AN+C+W
Par. Truth Mean SE Mean SE Mean SE Mean SE
[o 24 15 .18 .05 12 .09 15 .05 15 .05

@p 45 -48 06 -44 08 -46 .06 -46 .06
@3 -15  -05 .07 -24 25 -14 07 -14 .07

vo -1.00 -1.09 .05 -97 26 -98 .06 -98 .06
Y12 -60 -60 .07 -68 .12 -64 .07 -64 .07
Y13 140 138 .05 137 .06 138 .06 138 .06
0% -20 — — S50 62 -21 .07 -21 .07

(b) Survey-weighted estimates of @y, @2, @13, vo, Y12, Y13 and
2, along with the corresponding standard errors. “MAR+W” is
MAR+Weight, “AN+W” is AN+Weights, “AN+C” is AN+Constraint,
and "AN+C+W” is "AN+Constraint+Weight”.

the results based on AN+Constraint and AN+Constraint+Weight are the most con-
sistently best across the different scenarios. Of course, these results are based on
a limited set of simulation scenarios, and the methods could perform differently in
other scenarios.

Opportunities for extensions of this approach exist as future research topics. First,
future work could explore extensions of the approach to other sampling designs,
in particular when weights have many unique values. Preliminary simulations, not
shown here, suggest that our approach also can work well for many valued, unequal
weights. However, generating plausible imputations that satisfy the constraint can
be challenging whenever the set of combinations of imputed values that result in
completed datasets that satisfy the constraint is small compared to the set of all
possible combinations. When this is the case, we have found that one needs efficient
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samplers for generating proposals for the imputations. Finding general strategies for
such proposals is an important topic for future work.

Second, as we suggested in Section[3] there are opportunities to investigate dif-
ferent approaches to specifying the constraints involving T, in particular how to set
the variance Vx. In the simulations we used the theoretical design-based variance,
estimated via resampling from the true generative process, but this would need to
be approximated in practice. Future research could examine the effectiveness of
using the types of approximations described in Section Bl Additionally, one could
investigate how different values of Vx affect the performance of the methodology.
For example, using very small Vx could lead to a more efficient estimation of T ;
however, forcing the completed datasets to match very closely on Tx could affect the
relationships among X and Y in the completed data in unpredictable ways. It also
could lead to a less efficient MCMC sampler, since the set of imputations consistent
with (I3) would be smaller.

Third, future research could adapt this approach to other model specifications.
For example, one could extend the approach to nonparametric models and semi-
parametric models like those in Kim & Yu (2011)) and Morikawa et al. (2017).

Fourth, one could extend the framework to handle imputation for unit nonresponse
as well. In particular, we conjecture that analysts can follow the framework developed
by Akande (2019, Chapter 4), who extends the AN model to unit nonresponse as
well as item nonresponse in more than one variable in simple random samples. We
expect that analysts can add the probabilistic constraint on the completed-data totals
on top of the models in Akande (2019, Chapter 4). We note that this requires survey
weights for the unit nonrespondents, which often are not available.

Finally, we work with base weights instead of more complex “adjusted” weights,
which are often inflated to adjust for nonresponse or poststratification. Since we
take a model-based approach to handling survey nonresponse, there is no obvious
justification for using adjusted weights that already account for the nonresponse. In
fact, using such adjusted weights assumes that the weights are fixed, which is not
often true as pointed out by Fienberg (2010). Since agencies often release those
adjusted weights in practice, instead of the base weights, future work would explore
the extension of our approach to adjusted weights as well.
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