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a b s t r a c t

Customer feedback is widely used to choose a product among various competing
products. Such feedback is most commonly available to consumers via average 0–5 star
ratings. These ratings are based only on opinions of purchasers who decided to rate
a product and reflect a long term average of those available responses. We develop
the SLLN and the CLT applicable to this realistic situation. In particular, we establish a
relationship between the true and the reported long term ratings and study the impact
of the probability of leaving a rating.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Online product reviews have a huge impact on purchase decisions and hence the revenue of manufacturers and sellers.
onsequently, their random structure has been extensively studied in the fields of marketing and operations research. We
annot attempt a comprehensive review in this note that is dedicated to the study of limit problems of probability that
aturally arise in this setting. We develop limit results that account for the fact that many, or even most, purchasers may
ot leave a review. The question we seek to answer, is how the reported average ratings are affected by this consumer
ehavior.
Before formulating the framework we consider and our results, we refer the reader seeking more background to Linden

t al. (2003) who study recommendation algorithms for online sellers, McAuley and Leskovec (2013) who propose a
tatistical model that combines numeric rating and review text, Subbian et al. (2016) who propose recommendations and
atings prediction algorithms and Besbes and Scarsini (2018) who formulate a model accounting for a limited feedback
rom purchasers and study how average ratings impact purchase decisions. These are just a few examples of contributions
n the fields of market and operations research. Our objective is to add a different dimension to such research by
stablishing relevant limit theorems.
The setting of this paper is as follows. Consider U1, . . . ,Un to be a sequence of independent Bernoulli random variables;

i = 1 means that the ith customer leaves a review and Ui = 0 means the ith customer does not leave a review. If Ui = 1,
he customer’s rating, Xi, is observed. The iid assumption means that customers do not interact with each other to decide
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whether to leave a review or not, which is a reasonable assumption for online purchases. The average rating after n
urchases is

Wn =
X1U1 + X2U2 + · · · + XnUn

U1 + U2 + · · · + Un
. (1.1)

n practical scenarios, n can be of the order of thousands or millions, so an asymptotic theory as n → ∞ is suitable. In most
ating systems, Xi is identically distributed on {1, 2, . . . , K }. If the ratings do not change over time and P(Xi = k) = rk,
hen the ‘‘true" rating is R = EXi =

∑K
k=1 krk. We want to understand the convergence of the available, ‘‘incomplete"

verage Wn to R in situations when the ratings change over time. In our theory, we do not assume that the range of the
i is {1, 2, . . . , K }, we formulate general assumptions.
Ratios of random variables have been studied over several decades. Useful results have been obtained by Marsaglia

1965) who addressed several problems related to the ratio of two normal and two uniform random variables. Hinkley
1969) computed the exact distribution of the ratio of two correlated normal random variables and compared it with
n approximation. For other results on the product and ratio of variables, we refer to Lomnicki (1967), Bohrnstedt and
arwell (1978) and Tang and Gupta (1984), and references therein. Most closely related to our work are the results
f Novak and Utev (1990) who studied the asymptotic of the first two moments of the ratio

Zn =
ξ1 + ξ2 + · · · + ξn

η1 + η2 + · · · + ηn
. (1.2)

e now state their main result.

heorem 1.1. Let {ξi, ηi, i ≥ 1} be a pairs of i.i.d. random variables such that P(η1 ≥ 0) = 1 and 0 < E(η1) < ∞. Further,
et a = E(ξ1), b = E(η1), ξi = ξi − ηi(a/b), and consider Zn defined by (1.2).

In order to prove E(Zn) → a/b, it is necessary and sufficient to show that for some m ≥ 1

E(|ξ1|/(η1 + η2 + · · · + ηm)) < ∞. (1.3)

If (1.3) holds and E(|ξ1|η2
1) + E(η4

1) < ∞, then as n → ∞,

|E(Zn) − a/b + n−1b−2E(ξ1η1)| ≤ O(n−2);

and if E(ξ 2
1 (1 + η1) + ξ 2

1 (η1 + η2 + · · · + ηm)−2) < ∞, then as n → ∞

|E(Zn − a/b)2 − n−1b−2E(ξ 2
1 )| ≤ O(n−2).

Assuming that the central limit theorem holds, Novak (1997) and Novak (2000) established Berry–Esseen type
nequalities. In this paper, we establish conditions for the SLLN and the CLT to hold for the ratio Wn in (1.1). In our
etting, the assumption that the ξi and the ηi have the same distribution is violated. We study the behavior of the average
ating under the assumption that the actual ratings may exhibit a general, nonlinear trend. We also allow the probability
f submitting a rating to change over time. In Section 2, we state our main results whose proofs are given in Section 3.

. Main results

Recall that the Xi in (1.1) represent ratings. The following assumption is designed to accommodate ratings that may
volve over time.

ssumption 2.1. The Xi have the form

Xi = g(i) + Yi,

here the Yi are i.i.d. random variables with mean zero and |Yn| ≤ M , a.s., and g is a bounded function. The Un, n ≥ 1,
re independent Bernoulli random variables with P(Ui = 1) = p > 0. The sequences {Yi} and {Ui} are independent.

Note that the expected rating of the ith customer is EXi = g(i). The true average rating is then ḡn = n−1∑n
i=1 g(i).

he question we seek to answer is under what assumptions the recorded average rating Wn given by (1.1) is a good
pproximation to the unobservable ḡn. Our first result states that the distance between Wn and ḡn converges to zero
ith probability 1. In particular, if ḡn has a limit, then Wn converges a.s. to this limit. We note that the probability p of

submitting a rating can be arbitrarily small.

Theorem 2.1. Under Assumption 2.1,⏐⏐⏐⏐⏐Wn −
1
n

n∑
i=1

g(i)

⏐⏐⏐⏐⏐ → 0

with probability 1.
2
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We next state the corresponding CLT. Recall a sequence a(n) is Cesàro summable if limn→∞ n−1∑n
i=1 a(i) exists.

heorem 2.2. If Assumption 2.1 holds and the sequence g2(n) is Cesàro summable, then

√
n

(
Wn −

1
n

n∑
i=1

g(i)

)
d
−→ N

(
0,

(1 − p)Φ1 + Φ2

p

)
, (2.1)

here Φ1 = limn→∞

1
n
∑n

i=1 g
2(i) and Φ2 = EY 2

1 .

The following corollary to Theorems 2.1 and 2.2 applies to the scenario when the ratings do not change over time.

Corollary 2.1. If g(i) = µ, for all i ≥ 1, then limn→∞Wn
a.s.
→ µ, and

√
n (Wn − µ)

d
→ N

(
0,

(1 − p)µ2
+ EY 2

1

p

)
.

We now consider an example when the ratings decline to zero. It illustrates what insights can be gained from
heorems 2.1 and 2.2.

xample 2.1. Suppose for constants C > 0, α > 0,

g(i) = Ci−α, i ≥ 1.

hen 1
n

∑n
i=1 g(i) → 0 and, by Theorem 2.1, Wn

a.s.
→ 0. Regarding the CLT, 1

n

∑n
i=1 g

2(i) → 0, for any α > 0, so Φ1 = 0 and
y Theorem 2.2,

√
nWn

d
→ N

(
0,

1
p
EY 2

1

)
,

rovided n−1/2∑n
i=1 g(i) → 0. We see that if the true ratings tend to zero sufficiently fast, α > 1/2, then the asymptotic

distribution of the observed average ratings is the same as if the true ratings were all equal to zero. Clearly, the zero
rating can be replaced by any fixed value in the above argument.

We now consider the case when customers leave reviews with a non-constant probability. Theorems 2.3 and 2.4
generalize Theorems 2.1 and 2.2, respectively. It is however useful to first prove the theorems with pi = p to see the
central idea of the proof clearly.

Theorem 2.3. Suppose P(Ui = 1) = pi > 0 in Assumption 2.1. Then⏐⏐⏐⏐Wn −

∑n
i=1 g(i)pi∑n

i=1 pi

⏐⏐⏐⏐ → 0

ith probability 1.

heorem 2.4. Suppose P(Ui = 1) = pi > 0 in Assumption 2.1 and the limits

ℓ1 = lim
n→∞

1
n

n∑
i=1

pi(1 − pi)g2(i), ℓ2 = E(Y 2
1 ) lim

n→∞

1
n

n∑
i=1

pi > 0

xist. Then∑n
j=1 pj
√
n

(
Wn −

∑n
i=1 g(i)pi∑n

j=1 pj

)
d

→ N(0, ℓ1 + ℓ2). (2.2)

Theorem 2.4 provides, for example, the following insight. If the ratings are constant, g(i) = µ, then Wn − µ is of
he order

√
n/
∑n

j=1 pj. For the true rating µ to be recovered from incomplete observations, the average sampling rate
n−1∑n

j=1 pj must be much greater that n−1/2. In particular, if the pj decay like a power function, pj ∼ j−κ , for some κ > 0,
the κ cannot be too large. The precise requirement is κ < 1/2.

3. Proofs of the results of Section 2

For ease of reference, we begin by listing several known results. The first two are the Khintchine–Kolmogorov
convergence theorem and Lindeberg’s CLT, see e.g. Kallenberg (1997).

Theorem 3.1. Let {Zi,n, n ≥ 1, 1 ≤ i ≤ n} be a sequence of independent random variables with zero mean. If
lim

∑n EZ2 < ∞, then
∑n Z converges almost surely.
n→∞ i=1 i,n i=1 i,n

3
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Theorem 3.2. Let {Zi,n, n ≥ 1, 1 ≤ i ≤ n} be a sequence of independent random variables with mean zero and finite variance.
onsider Tn =

1
n

∑n
i=1 Zi,n and s2n =

1
n

∑n
i=1 V (Zi,n). If 1. s2n → s2, 2. for every ϵ > 0, 1

n

∑n
i=1 E[Z2

i,nI(|Zi,n| ≥ ϵ
√
n)] → 0, then

nTn =
1

√
n

∑n
i=1 Zi,n

d
−→ N(0, s2).

We will also use the Kronecker lemma, see e.g. Rohatgi and Saleh (2015).

emma 3.1. If
∑

∞

n=1 xn converges to a finite limit and {bn} is an increasing sequence diverging to infinity, then b−1
n
∑n

k=1
kxk → 0.

roof of Theorem 2.1. Set

Zi,n = XiUi −
E(XiUi)∑n
j=1 E(Uj)

n∑
j=1

Uj = XiUi −
g(i)
n

n∑
j=1

Uj. (3.1)

bserve that EZi,n = 0 and for a constant B1,

|Zi,n| ≤ |Xi||Ui| + |g(i)|

⏐⏐⏐⏐⏐
∑n

j=1 Uj

n

⏐⏐⏐⏐⏐ ≤ B1 a.s.

Set Γi,n = i−1Zi,n. The sequence {Γi,n} is also a bounded sequence of mean zero random variables satisfying

lim
n→∞

n∑
i=1

E(Γ 2
i,n) = lim

n→∞

n∑
i=1

1
i2
E(Z2

i,n) ≤ K
∞∑
i=1

1
i2

< ∞,

where K is a constant. By Theorem 3.1, the series
∑n

i=1 Γi,n converges almost surely. Using the Kronecker lemma, given
as Lemma 3.1, we get

1
n

n∑
i=1

Zi,n =
1
n

n∑
i=1

iΓi,n
a.s.
→ 0. (3.2)

ext, observe that

Wn −
1
n

n∑
i=1

g(i) =

∑n
i=1 XiUi −

1
n
∑n

i=1 g(i)
∑n

j=1 Uj∑n
j=1 Uj

=

1
n

∑n
i=1 Zi,n

1
n

∑n
j=1 Uj

.

ince, by the SLLN,
1
n
∑n

j=1 Uj
a.s.
→ p, (3.2) gives

Wn −
1
n

n∑
i=1

g(i) → 0,

with probability 1. This completes the proof.

Proof of Theorem 2.2. Consider the sequence {Zi,n, n ≥ 1, 1 ≤ i ≤ n} defined in (3.1). We begin by verifying the
assumptions of Theorem 3.2. We have verified that |Zi,n| ≤ B1 a.s., where B1 is a constant, so V (Zi,n) is finite. Consider
next the decomposition

Z2
i,n = X2

i U
2
i + g2(i)

⎛⎝1
n

n∑
j=1

Uj

⎞⎠2

− 2g(i)XiUi

⎛⎝1
n

n∑
j=1

Uj

⎞⎠
that gives

E(Z2
i,n) = E[X2

i U
2
i ] + g2(i)E

⎛⎝1
n

n∑
j=1

Uj

⎞⎠2

− 2g(i)E

⎡⎣XiUi

⎛⎝1
n

n∑
j=1

Uj

⎞⎠⎤⎦ .

bserve that

E

⎛⎝1
n

n∑
Uj

⎞⎠2

=
1
n2 [np(1 − p) + n2p2] → p2
j=1

4
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U

and

E

⎡⎣XiUi

⎛⎝1
n

n∑
j=1

Uj

⎞⎠⎤⎦ =
1
n
EXi

⎧⎨⎩EU2
i +

∑
j̸=i

EUiEUj

⎫⎬⎭ → p2g(i).

herefore, using Xi = g(i) + Yi, for each i,

E(Z2
i,n) → pEX2

i + p2g2(i) − 2p2g2(i) = p(1 − p)g2(i) + pEY 2
1 .

It follows that, in the notation of Theorem 3.2,

s2n :=
1
n

n∑
i=1

E(Z2
i,n) → p(1 − p)Φ1 + pΦ2 =: s2. (3.3)

ince |Zi,n| ≤ B1, the Lindeberg condition is also satisfied. Using Theorem 3.2, we thus conclude that

n−1/2
n∑

i=1

Zi,n
d

→ N(0, p(1 − p)Φ1 + pΦ2).

bserving that

n−1/2
n∑

i=1

Zi,n =

∑n
j=1 Uj
√
n

(∑n
i=1 XiUi∑n
j=1 Uj

−
1
n

n∑
i=1

g(i)

)
we obtain

p
√
n

(
Wn −

1
n

n∑
i=1

g(i)

)
d

→ N(0, p(1 − p)Φ1 + pΦ2),

ompleting the proof.

In the remaining two proofs, we use the fact that by the SLLN,

1
n

n∑
j=1

(Uj − pj)
a.s.
→ 0.

Proof of Theorem 2.3. The proof follows by setting

Zi,n = XiUi −
E(XiUi)∑n
j=1 E(Uj)

n∑
j=1

Uj = XiUi −
g(i)pi∑n
j=1 pj

n∑
j=1

Uj. (3.4)

and using similar steps as in the proof of Theorem 2.1.

Proof of Theorem 2.4. Let {Zi,n, n ≥ 1, 1 ≤ i ≤ n} be the sequence random variables defined in (3.4). The idea of the
proof is similar to the proof of Theorem 2.2 with a few technical differences. Observe that

Z2
i,n = X2

i U
2
i + A2

i,n

⎛⎝ n∑
j=1

Uj

⎞⎠2

− 2Ai,nXiUi

⎛⎝ n∑
j=1

Uj

⎞⎠ , Ai,n =
g(i)pi∑n
j=1 pj

.

This gives

E(Z2
i,n) = E(X2

i U
2
i ) + A2

i,nE

⎛⎝ n∑
j=1

Uj

⎞⎠2

− 2Ai,nE

⎧⎨⎩XiUi

⎛⎝ n∑
j=1

Uj

⎞⎠⎫⎬⎭ .

sing Xi = g(i) + Yi, for each i, we get E(X2
i U

2
i ) = pi{g2(i) + E(Y1)2}. Observe that

E

⎛⎝ n∑
j=1

Uj

⎞⎠2

=

n∑
j=1

pj(1 − pj) +

⎛⎝ n∑
j=1

pj

⎞⎠2

and

E

⎧⎨⎩XiUi

⎛⎝ n∑
Uj

⎞⎠⎫⎬⎭ = pig(i) + pig(i)
∑

pj.

j=1 j̸=i

5
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Some algebraic calculations give

E(Z2
i,n) = pig2(i) + piE(Y1)2 + A2

i,n

n∑
j=1

pj(1 − pj) − p2i g
2(i) + o(1).

Setting G2 = supi≥1 g2(i), observe that

A2
i,n

n∑
j=1

pj(1 − pj) =
g2(i)p2i(∑n

j=1 pj
)2 n∑

j=1

pj(1 − pj) ≤
G2∑n
j=1 pj

=
1
n

G2
1
n

∑n
j=1 pj

= O
(
1
n

)
.

his gives

s2n :=
1
n

n∑
i=1

E(Z2
i,n) → ℓ1 + ℓ2 =: s2.

ince |Zi,n| ≤ B1, the Lindeberg condition is also satisfied. Using Theorem 3.2, we conclude that

n−1/2
n∑

i=1

Zi,n
d

→ N(0, ℓ1 + ℓ2).

imilarly as in the proof of Theorem 2.4, it follows that∑n
j=1 pj
√
n

(
Wn −

∑n
i=1 g(i)pi∑n

j=1 pj

)
→ N(0, ℓ1 + ℓ2),

completing the proof.
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