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This article develops a set of inferential methods for functional factor models that have been extensively used in modelling
yield curves. Our setting accommodates both temporal dependence and heteroskedasticity. First, we introduce an estimation
approach based on minimizing the least-squares loss function and establish the consistency and asymptotic normality of the
estimators. Second, we propose a goodness-of-fit test that allows us to determine whether a specific model fits the data. We
derive the asymptotic distribution of the test statistics, and this leads to a significance test. A simulation study establishes
the good finite-sample performance of our inferential methods. An application to US and UK yield curves demonstrates the
generality of our framework, which can accommodate both sparsely and densely observed yield curves.

Received 27 March 2021; Revised 5 December 2021; Accepted 25 January 2022

Keywords: Yield curve; functional time series; functional factor model; estimation; goodness-of-fit test; heteroscedasticity.

MOS subject classification: 62F03, 62F05, 62F10, 62F12, 60F05.

1. INTRODUCTION

For three decades, models akin to the Nelson–Siegel model have been used to quantify the term structure of various
economic and financial variables, including yields, spot rates, and futures, with hundreds of papers using it in
various contexts. The general modelling paradigm is well known, but we recall it to be able to explain several
issues. At each period i, which generally corresponds to day, week, or month, we observe a curve Xi(t), where the
argument t corresponds to the time to the expiration of a contact or to the maturity of a fixed-income investment.
Nelson and Siegel (1987) introduced the following three curves:

f1(t; 𝜆) = 1, f2(t; 𝜆) =
1 − e−𝜆t

𝜆t
and f3(t; 𝜆) =

1 − e−𝜆t

𝜆t
− e−𝜆t,

known as the ‘level’, the ‘slope’, and the ‘curvature’. The essence of the modelling approach is that each curve Xi

can be in some sense approximated by a linear combination of the above three curves: Xi(t) ≈
∑3

𝓁=1bi,𝓁f𝓁(t; 𝜆). This
is definitely not the only approach to modelling the term structure. At about the same time, Bliss and Fama (1987)
proposed a fully non-parametric approach which fits a smooth curve to the data. However, the Nelson–Siegel
paradigm has become much more popular, chiefly because of its ability to reduce term structure to the vector
[b1,𝓁 , b2,𝓁 , b3,𝓁]. Various formal or informal statistical approaches are easier to apply to three-dimensional vectors
than to curves. It has been, however, immediately recognized that such a reduction is possible only if the value
of the shape parameter 𝜆 is available. Nelson and Siegel (1987), in fact, used different values of 𝜆 for different
periods, but it is now a common practice to fix 𝜆 over the time period under consideration. This fixed value is
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either based on past experience, for example, the value given in Diebold and Rudebusch (2013), or is estimated in
some way prior to further analysis. It is well known that with slightly different ‘fixed’ values of 𝜆, the coefficients
bi,𝓁 can take on very different, often erratically behaved, values, limiting their usefulness and interpretability. Such
findings are discussed in Vermani (2012) and Annaert et al. (2013), among others. The Nelson–Siegel model is
highly nonlinear in its four parameters, which may cause estimation difficulties.

The objective of this article is to develop estimation and testing theory and methodology for a broad class of
yield curve models, which includes the Nelson–Siegel model. Our approach is based on established principles of
statistical inference, which involve the specification of model parameters and structure of model errors. It allows us
to formulate results on consistency and asymptotic distribution of parameter estimators and derive a goodness-of-fit
test. This test permits us to evaluate the admissibility of a specific model over a specific time period within the
Neyman–Pearson testing paradigm. Existing literature, including Diebold et al. (2006) and Diebold and Li (2006),
focuses on practical aspects of yield curve fitting and forecasting. Our study is different, and complementary,
because we provide a set of inferential methods based on a general statistical framework. It is hoped that the
rigorous and general development presented in this article will be a useful addition to a large body of applied work
on models of this type.

We consider functional observations X1(t),X2(t), … ,XN(t) defined on the interval  . We assume that these
observations follow the model

Xi(t) =
K∑

𝓁=1

bi,𝓁,0f𝓁(t;𝝀0) + 𝜀i(t), with E𝜀i(t) = 0, t ∈  , 1 ≤ i ≤ N, (1.1)

where the random coefficients satisfy

bi,𝓁,0 = c𝓁,0 + ei,𝓁 with Eei,𝓁 = 0, 1 ≤ 𝓁 ≤ K and 1 ≤ i ≤ N. (1.2)

Under model (1.1) and (1.2),

EXi(t) =
K∑

𝓁=1

c𝓁,0f𝓁(t;𝝀0), t ∈  and 1 ≤ i ≤ N,

that is, the mean of the observations can be written as a linear combination of the functions f1(t;𝝀0),
f2(t;𝝀0), … , fK(t;𝝀0), where the functions f1, f2, … , fK are known, and 𝝀0 ∈ Rd is the true value of an unknown
parameter. The parameter vector specifying the model is

a = (c1, c2, … , cK ,𝝀
⊤)⊤ ∈ RK+d, (1.3)

where the subscript 0 indicates the true values. As explained above, in most current applications 𝝀 is considered as
a fixed value obtained in some way. In subsequent analyses, the curves fk(t;𝝀0) are treated as given deterministic
functions. We will call these functions functional factors, or simply factors. In our approach, we focus on the
estimation of the whole parameter vector a.

To give an idea of the scope of the models in current use, and consequently the scope of the theory and method-
ology we develop, we list several examples. All functions of t are defined on a compact interval  ⊂ [0,∞).
While historical data are generally available at discrete subsets, which do not need to be regularly spaced,
contracts of any maturities can be traded, so factor models of the type we study have traditionally been con-
sidered on a continuous domain  . As we will see in Section 4, some data are available as densely observed
curves.

Example 1.1. (Svensson 1994). Compared to the Nelson–Siegel model, in this model 𝝀0 = (𝜆0,1, 𝜆0,2)⊤
is a two-dimensional parameter. There are four factor functions. The first three coincide with those of the
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Nelson–Siegel model, that is,

f1(t;𝝀0) = 1, f2(t;𝝀0) =
1 − e−𝜆0,1t

𝜆0,1t
, f3(t;𝝀0) =

1 − e−𝜆0,1t

𝜆0,1t
− e−𝜆0,1t.

The fourth function, which adds a second ‘hump’, is the same as the curvature function in the Nelson–Siegel model
but uses 𝜆0,1 < 𝜆0,2, that is,

f4(t;𝝀0) =
1 − e−𝜆0,2t

𝜆0,2t
− e−𝜆0,2t.

Filipović (1999) points out that the Nelson–Siegel model is not arbitrage free. Diebold and Rudebusch (2013)
argue that the four-factor model in Example 1.1 is not arbitrage free either. An arbitrage-free model requires that
each curvature factor is paired with a slope factor with the same rate of mean reversion, which is impossible with
a single slope factor used in Example 1.1. Example 1.2 gives an arbitrage-free model.

Example 1.2. (Christensen et al. 2009). The five factors (with 𝜆0,1 < 𝜆0,2)

f1(t;𝝀0) = 1, f2(t;𝝀0) =
1 − e−𝜆0,1t

𝜆0,1t
, f3(t;𝝀0) =

1 − e−𝜆0,2t

𝜆0,2t
,

f4(t;𝝀0) =
1 − e−𝜆0,1t

𝜆0,1t
− e−𝜆0,1t and f5(t;𝝀0) =

1 − e−𝜆0,2t

𝜆0,2t
− e−𝜆0,2t,

are used to get an arbitrage-free model.

Example 1.3. (Chambers et al. 1984). The polynomials of

f1(t) = 1, f2(t) = t, … , fK(t) = tK ,

were used by Chambers et al. (1984) to model zero-coupon yield curves. Polynomials are able to approximate
smooth functions if K is sufficiently large. This model does not contain the parameter 𝝀.

Example 1.4. (Yallup 2012). The exponential model

f1(t; 𝜆0) = 1, f2(t; 𝜆0) = e−𝜆0t, f3(t; 𝜆0) = e−2𝜆0t, … , fK(t; 𝜆0) = e−K𝜆0t,

is an alternative to the polynomial model of Example 1.3. The Bank of Canada uses this model with K = 9 to
estimate yield curves on Canadian bond data (cf. Bank for International Settlements, 2005). Similar to Example 1.3,
the exponential functions form a basis as well, so a linear combination of the fi should capture EXi if K is large.
However, by choosing 𝜆0 suitably, a relatively small K can be used.

The models outlined in the above examples are often used in economic and finance research. Our objective is to
develop inference for them. There are alternative non-parametric approaches that may be advantageous in some
respects, see for example, Hays et al. (2012).

Our methodology and theory can accommodate temporally dependent and heteroscedastic functional errors 𝜀i

in (1.1) and multi-variate errors ei,𝓁 in (1.2), as specified in Assumptions 2.5 and 2.6. The vector of coefficients
cannot only follow an unknown time series model, but this model can change within the time period over which
observations are available. This approach thus substantially extends homoskedastic parametric models such as the
AR(1) in Diebold et al. (2006) and VAR(1) in Diebold and Li (2006). We emphasize that our theory does not
use any specific model for the coefficients, but rather uses a general non-parametric assumption on the temporal
dependence, broadly similar to a mixing condition. In different contexts, heteroskedastic errors were considered
by Cavaliere et al. (2011), Xu (2015), and Górecki et al. (2018), among others.

J. Time Ser. Anal. (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
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There are several novel mathematical techniques used in the proofs of the results stated in Section 2. The broadest
innovation is the treatment of functional factor models under the assumption of a changing stochastic structure of
the errors. We developed several approaches, which may be useful in similar contexts. To prove the almost sure
convergence in Theorem 2.1, we must study the behaviour of the variances 𝜉i = ∫ [Xi(t) − EXi(t)]2dm(t). We
use a blocking technique by considering 2k ≤ N < 2k+1. This allows us to obtain delicate bounds in probability
via Menshov’s inequality, and then apply the Borel–Cantelli lemma. The proof of Theorem 2.2 is built up of
very complex manipulations revealing the asymptotic distribution, which has a non-trivial form. The proofs of the
remaining results use this form to justify the goodness-of-fit test. It would not have been possible to derive this
test without knowing the precise limit. Numerical implementation of our method is not trivial either. The structure
of the yields data must be taken into account. We provide precise algorithms.

The remainder of the article is organized as follows. Section 2 is dedicated to the development of the asymptotic
theory for the models discussed above. This theory is conditional on the availability of suitable long-run covari-
ance estimators, which remain consistent under heteroskedastic errors. Such estimators are studied in Section 3.
Section 4 illustrates the statistical methodology and theory derived in this article by applying it to US and UK yield
curves. Finite-sample properties of our methods are explored in Section 5. Online Supporting Information con-
tains the proofs of the results stated in Sections 2 and 3, details of the numerical implementation of our methods,
as well as additional results and figures.

2. ASSUMPTIONS AND LARGE-SAMPLE RESULTS

We work within the Hilbert space L2 = L2(m) of square integrable functions defined on the compact interval
 ⊂ [0,∞). The integration over  is denoted simply by ∫ . To be able to handle various forms of data, we consider
an abstract positive measure m on  . This can be a discrete counting measure, which is convenient in many
applications. We assume that the functions f𝓁(t;𝝀) are elements of L2 for any admissible value of the parameter
vector 𝝀. The functional observations Xi and the errors 𝜀i are random elements of L2.

Our approach consists in minimizing the least-squares loss function

UN(a) =
1
N

N∑
i=1

∫
(

Xi(t) −
K∑

𝓁=1

c𝓁f𝓁(t;𝝀)

)2

dm(t), (2.1)

where a is given by (1.3). The estimator âN is thus defined by

âN = arg max
a∈A

UN(a). (2.2)

We begin by listing the assumptions on the measure m, the parameter space A, and other objects in (1.1) and
(1.2).

Assumption 2.1. The measure m satisfies one of the following assumptions:

(i) m((−∞, t]) = m(t), a function increasing by jumps at finitely many points in  ,
or

(ii) m(B) = ∫B m∗(t)dt for all Borel subsets B of  with a function m∗(t), bounded on  .

Assumption 2.1(ii) means that the measure m is absolutely continuous with respect to the Lebesgue measure on
 and its Radon–Nikodym derivative is bounded on  .

Assumption 2.2. The parameter space A ⊂ RK+d is a compact set and a0 is an interior point of A.

Let C ⊂ RK and 𝚲 ⊂ Rd such that A ⊂ C × 𝚲.
We assume that the functions are smooth functions of 𝝀.

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. (2022)
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Assumption 2.3. Each function f𝓁(t;𝝀) is continuous in t ∈  and |f𝓁(t;𝝀) − f𝓁(t;𝝀
′)| ≤ C||𝝀 − 𝝀′|| with some

C > 0 for all 1 ≤ 𝓁 ≤ K and 𝝀,𝝀′ ∈ 𝚲.

The next condition requires that the model is uniquely defined.

Assumption 2.4. For every a ∈ A, such that a ≠ a0, the set

 (a) =

{
t ∶

K∑
𝓁=1

c𝓁f𝓁(t;𝝀) ≠
K∑

𝓁=1

c𝓁,0f𝓁(t;𝝀0)

}

has positive measure, m( (a)) > 0.

The above assumption means that the true mean curve corresponds only to the true parameter a0.
We model heteroscedasticity by assuming that the errors 𝔢i = (ei,1, ei,2, … , ei,K , 𝜀i(t))⊤ are piecewise Bernoulli

shifts. In particular, between the break points kj in Assumption 2.5, these errors are strictly stationary. Their
dependence is quantified in Assumption 2.6.

Assumption 2.5. The changes occur at times k1 = ⌊N𝜏1⌋ < k2 = ⌊N𝜏1⌋ < · · · < kM = ⌊N𝜏M⌋ with 0 = 𝜏0 <
𝜏1 < 𝜏2 < · · · < 𝜏M < 𝜏M+1 = 1.

We use the convention of k0 = 0 and kM+1 = N . In contrast to Bardsley et al. (2017), we do not require that
𝜏1, 𝜏2, … , 𝜏M are known.

The piecewise Bernoulli shifts are defined in the following assumption:

Assumption 2.6. Let 𝔢i = (ei,1, ei,2, … , ei,K , 𝜀i(t))⊤ = gj(𝜂i, 𝜂i−1, 𝜂i−2, …), kj−1 < i ≤ kj, 1 ≤ j ≤ M + 1, where
gj, 1 ≤ j ≤ M + 1 are non-random functionals defined on ∞ with values in RK × L2, and  is a measurable
space. Also, 𝜂i = 𝜂i(t, 𝜔) is jointly measurable in (t, 𝜔),−∞ < i < ∞. The sequence 𝔢i,−∞ < i < ∞ can be
approximated with ν–dependent sequences 𝔢i,v = (ei,1,v, ei,2,v, … , ei,K,v, 𝜀i,v(t))⊤ in the sense that

∞∑
v=1

(E(ei,𝓁 − ei,𝓁,v)2)1∕2 < ∞ for all 1 ≤ 𝓁 ≤ K, (2.3)

and

∞∑
v=1

(
E ∫ (𝜀i(t) − 𝜀i,v(t))2(t)dm(t)

)1∕2

< ∞, (2.4)

where 𝔢i,v = gj(𝜂i, 𝜂i−1, 𝜂i−2, … , 𝜂i−v+1, 𝜼
∗
i,v), kj−1 < i ≤ kj, 1 ≤ j ≤ M + 1, 𝜼∗i,v = (𝜂∗i,v,i−v, 𝜂

∗
i,v,i−v−1, 𝜂

∗
i,v,i−v−2, …),

and the 𝜂∗i,v,r’s are independent copies of 𝜂0, independent of {𝜂i,−∞ < i <∞}.

The idea of approximation of a stationary sequence with random variables which exhibit finite dependence first
appeared in Ibragimov (1962). Examples of models that satisfy Assumption 2.6 (and similar assumptions that
follow) are discussed in Chapter 16 of Horváth and Kokoszka (2012). Basically, all stationary time series models
in practical use can be represented as Bernoulli shifts, see Wu (2005), Shao and Wu (2007), Aue et al. (2009),
Hörmann and Kokoszka (2010), Horváth et al. (2013), Kokoszka et al. (2015), and Zhang (2016), among many
other contributions. The nonlinear moving average representation admits heteroskedastic models for the errors,
like those studied in Hörmann et al. (2013).

Theorem 2.1. If (1.1), (1.2), and Assumptions 2.1–2.6 are satisfied, then âN → a0 a.s.

To derive the limit distribution of N1∕2(âN−a0), we need to introduce further notation and additional assumptions.

J. Time Ser. Anal. (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
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Assumption 2.7. The functions f𝓁(t;𝝀), 1 ≤ 𝓁 ≤ K, are twice continuously differentiable in a neighbourhood
of 𝝀0.

Let f(t,𝝀) = ((f1(t;𝝀), f2(t;𝝀), … , fK(t;𝝀))⊤ and

𝔣(t;𝝀) =

(
f(t,𝝀)⊤,

K∑
𝓁=1

c𝓁,0g𝓁,1(t;𝝀),
K∑

𝓁=1

c𝓁,0g𝓁,2(t;𝝀), … ,

K∑
𝓁=1

c𝓁,0g𝓁,d(t;𝝀)

)⊤

, (2.5)

where

g𝓁,j(t;𝝀) =
𝜕f𝓁(t;𝝀)
𝜕𝜆j

, 1 ≤ 𝓁 ≤ K, 1 ≤ j ≤ d,

𝝀 = (𝜆1, 𝜆2, … , 𝜆d)⊤. Also, with ej = (ej,1, ej,2, … , ej,K)⊤ we define for 1 ≤ i ≤ M + 1

lim
N→∞

1
ki − ki−1

E

(
ki∑

j=ki−1+1

eje
T
j

)
= Di, (2.6)

lim
N→∞

1
ki − ki−1

E

(
ki∑

j=ki−1+1

ej𝜀j(t)

)
= di(t), (2.7)

and

lim
N→∞

1
ki − ki−1

E

(
ki∑

j=ki−1+1

𝜀j(t)𝜀j(s)

)
= di(s, t). (2.8)

We note that the existence of Di,di(t), and di(s, t) follows from Assumption 2.6. Let Γ(t) be a Gaussian process
with EΓ(t) = 0 and

(t, s) = EΓ(t)Γ(s)

=
M+1∑
i=1

(𝜏i − 𝜏i−1)
(
f⊤(t)Dif(s) + f⊤(t)di(s) + f⊤(s)di(t) + di(t, s)

)
.

To derive the limit distribution of N1∕2(âN −a0), we need to replace (2.3) and (2.4) with mildly stronger conditions.

Assumption 2.8. There are 𝜅1 > 2, 𝜅2 > 2, and C > 0 such that

(E(ei,𝓁 − ei,𝓁,v)𝜅1)1∕𝜅1 < Cv−𝜅2 for all 1 ≤ 𝓁 ≤ K, (2.10)

and (
E ∫ (𝜀i(t) − 𝜀i,v(t))𝜅1(t)dm(t)

)1∕𝜅1

< Cv−𝜅2 , (2.11)

where ei,𝓁,v and 𝜀i,v(t), 1 ≤ i ≤ N, 1 ≤ 𝓁 ≤ K are defined in Assumption 2.6.

The next assumption is needed to have a non-degenerate limit.

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. (2022)
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Assumption 2.9. The matrix 𝔅 defined by

𝔅 = ∫ 𝔣(t;𝝀0)𝔣⊤(t;𝝀0)dm(t) (2.12)

is non-singular. (The vector 𝔣(t;𝝀) is defined in (2.5).)

We note that Assumption 2.9 means that the coordinates of 𝔣(t;𝝀0) are linearly independent, that is, f1, f2, … , fK

and their derivatives with respect to 𝝀 are linearly independent at 𝝀0 as a function of t in L2.

Theorem 2.2. If (1.1), (1.2), and Assumptions 2.1–2.9 are satisfied, then we have that

N1∕2(âN − a0) → 𝝃 = 𝔅−1

(
∫ Γ(t)𝔣(t,𝝀0)dm(t)

)
.

It is clear that 𝝃 is a (K + d)-dimensional normal random variable with E𝝃 = 0, and the covariance matrix

ℭ = E𝝃𝝃⊤ = 𝔅−1

(
∫∫ 𝔣(t;𝝀0)(t, s)𝔣⊤(s;𝝀0)dm(t)dm(s)

)
𝔅−1.

We discuss the estimation of ℭ in Section 3.
We now proceed to results that will allow us to investigate whether a specific model defined by (1.1) and (1.2)

fits the data, that is, the goodness-of-fit testing. Recall that the estimator for a0 has the form

âN =
(

ĉ1,N , … , ĉK,N , 𝝀̂
⊤

N

)⊤
∈ RK+d.

Our testing procedure is based on a functional of the process

ZN(t) = N−1∕2
N∑

i=1

(
Xi(t) −

K∑
𝓁=1

ĉ𝓁,Nf𝓁(t; 𝝀̂N)

)
, t ∈  .

If the null limit distribution of the process {ZN(t), t ∈  } can be established, in a suitable function space, then
any continuous functional of this process can serve as a test statistic. In this article, we focus on the L2 norm with
respect to another abstract measure, n, which can be taken to be m.

Assumption 2.10. The measure n satisfies one of the following assumptions:

(i) n((−∞, t]) = n(t), a function increasing only at the jump points on m. (Not all jump points of m need to be
used.)
or

(ii) n(B) = ∫B n∗(t)dm(t) for all Borel subsets B of  with a function n∗(t), bounded on  .

The testing procedure needs a simple modification of Assumption 2.8. We require higher moments and
v-approximability in L2 with respect to the measure n on  .

Assumption 2.11. There are 𝜅1 > 4, 𝜅2 > 4, and C > 0 such that

(E(ei,𝓁 − ei,𝓁,v)𝜅1 )1∕𝜅1 < Cv−𝜅2 for all 1 ≤ 𝓁 ≤ K, (2.13)

and (
E ∫ (𝜀i(t) − 𝜀i,v(t))𝜅1(t)dn(t)

)1∕𝜅1

< Cm−𝜅2 , (2.14)

where ei,𝓁,v and 𝜀i,v(t), 1 ≤ i ≤ N, 1 ≤ 𝓁 ≤ K are defined in Assumption 2.6.

J. Time Ser. Anal. (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12642 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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To formulate the null limit distribution of our goodness-of-fit statistic, we introduce Gaussian processes
{Γ0

N(t), t ∈  } defined by

Γ0
N(t) = ΓN(t) −

(
∫ ΓN(u)𝔣T (u;𝝀0)dm(u)

)
𝔅−1𝔣(t;𝝀0), t ∈  ,

where the processes ΓN have the same distribution as the Gaussian process Γ with covariances (2.9). The existence
of the sequence {ΓN} is part of the claim of the following theorem. Each process Γ0

N is clearly Gaussian and its
distribution does not depend on N.

Theorem 2.3. If (1.1), (1.2), and Assumptions 2.2–2.11 are satisfied, then

∫ (ZN(t) − Γ0
N(t))

2dn(t) = oP(1).

Let {Γ0(t), 0 ≤ t ≤ 1}={Γ0
N(t), 0 ≤ t ≤ 1}. We note that EΓ0(t) = 0 and

(t, s) = (t, s) −
(
∫ (s, u)𝔣⊤(u;𝝀0)dm(u)

)
𝔅−1𝔣(t;𝝀0)

−
(
∫ (t, v)𝔣⊤(v;𝝀0)dm(v)

)
𝔅−1𝔣(s;𝝀0)

+ 𝔣⊤(t;𝝀0)𝔅−1

{
∫∫ 𝔣(u;𝝀0)(u, v)𝔣⊤(v;𝝀0)dm(u)dm(v)

}
𝔅−1𝔣(s;𝝀0).

Next, we discuss the consistency of the testing procedure. Under the alternative, model (1.1)–(1.2) does not fit
the data, which is formalized in the following assumption:

Assumption 2.12. The sequence {Xi} is strictly stationary in L2(m) and

inf
a∈A∫

(
EX1(t) −

K∑
𝓁=1

c𝓁f𝓁(t;𝝀)

)2

dn(t) > 0,

where a = (c1, c2, … cK ,𝝀
⊤)⊤, and A is defined in Assumption 2.2.

Theorem 2.4. If Assumptions 2.2,2.3,2.5,2.8, and 2.12 are satisfied, then we have that

1
N ∫ Z2

N(t)dn(t) P→ c0

with some c0 > 0.

The distributions of functionals of Γ0 depend on several unknown parameters, so it is not immediately obvious
how to use Theorem 2.3 to test the validity of Nelson–Siegel-type models. We now explain how critical values
can be obtained.

Theorem 2.3 implies that

T̂N = ∫ Z2
N(t)dn(t)


→ ∫ (Γ0(t))2dn(t). (2.15)

By the spectral theorem, there are non-negative eigenvalues 𝜁1 ≥ 𝜁2 ≥ 𝜁3 ≥ · · · and corresponding orthonormal
eigenfunctions 𝜙1(t), 𝜙2(t), 𝜙3(t), … satisfying

𝜁i𝜙i(t) = ∫ (t, s)𝜙i(s)dn(s), i = 1, 2, … (2.16)

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12642
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According to the Karhunen–Loéve expansion

∫ (Γ0(t))2dn(t) =
∞∑

j=1

𝜁j 2
j , (2.17)

where 1,2, … are independent standard normal random variables. The eigenvalues in (2.17) are unknown, so
we need to estimate them from the observations. Assume that ̂N is an L2 estimator of , that is,

∫∫ (̂N(t, s) −(t, s))2dn(t)dn(s) = oP(1). (2.18)

A construction leading to such an estimator is described in Section 3. Using again the spectral theorem, there
are non-negative empirical eigenvalues 𝜁1,N ≥ 𝜁2,N ≥ 𝜁3,N ≥ … and corresponding orthonormal eigenfunctions
𝜙̂1,N(t), 𝜙̂2,N(t), 𝜙̂3,N(t), … such that

𝜁 i,N𝜙̂i,N(t) = ∫ ̂N(t, s)𝜙̂i,N(s)dn(s). (2.19)

Putting together (2.16), (2.18), and (2.19), we obtain automatically (cf. Horváth and Kokoszka, 2012, p. 34)

|𝜁 i,N − 𝜁i| = oP(1)

for every fixed i. Hence

𝜒2
L,N =

L∑
j=1

𝜁 j,N 2
j (2.20)

is a good approximation for the distribution of the integral in (2.17) if L and N are suitably large. Thus, if we
compute the estimates 𝜁 i,N , we can approximate the null distribution of the test statistics T̂N in (2.15). These
estimates can be obtained by numerically solving (2.19). If the critical value is defined by

P{𝜒2
L,N > cL,N(𝛼)} = 𝛼, (2.21)

then under the null hypothesis we have that

lim
L→∞

lim
N→∞

P

{
∫ Z2

N(t)dn(t) > cL,N(𝛼)
}

= 𝛼, (2.22)

and under the alternative

lim
L→∞

lim
N→∞

P

{
∫ Z2

N(t)dn(t) > cL,N(𝛼)
}

= 1. (2.23)

Thus, our procedure has asymptotic size 𝛼 and it is consistent. Conditions (2.22) and (2.23) are verified in the
online Supporting Information.

3. ESTIMATION OF ℭ, (t, s) AND 
The estimation of the matrix 𝔅 is conceptually easy. Recall that

𝔅(𝝀) = ∫ 𝔣(t;𝝀)𝔣⊤(t;𝝀)dm(t).

J. Time Ser. Anal. (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12642 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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The plug-in estimator for 𝔅 is

𝔅̂N = 𝔅(𝝀̂N). (3.1)

The continuity of 𝔅(𝝀) in a neighbourhood of 𝝀0 and Theorem 2.1 immediately imply that

𝔅̂N

P
→ 𝔅(𝝀0) = 𝔅. (3.2)

Thus we need to consider only

ℭ1 = ∫∫ 𝔣(t;𝝀0)(t, s)𝔣⊤(s;𝝀0)dm(t)dm(s)

to construct an estimator for ℭ.
Let

uj(t) =
K∑

𝓁=1

ej,𝓁f𝓁(t;𝝀0) + 𝜀j(t), t ∈  . (3.3)

The observations, Xi(t), 1 ≤ i ≤ N, as well as the errors form heterogenous sequences. Thus, we need to verify if
the standard methods can be used to estimate ℭ1 as well as (t, s). We write

N∑
i=1

ui(t) =
M+1∑
𝓁=1

k𝓁∑
j=k𝓁−1+1

uj(t)

and observe that

E

{(
N∑

i=1

ui(t)

)(
N∑

i′=1

ui′ (s)

)}
=

M+1∑
𝓁,𝓁′=1

E

{(
k𝓁∑

j=k𝓁−1+1

uj(t)

)(
k𝓁′∑

j′=k𝓁′−1+1

uj′ (s)

)}
.

Using Assumption 2.11, we get that

lim
N→∞

1
N

E

{(
k𝓁∑

j=k𝓁−1+1

uj(t)

)(
k𝓁′∑

j′=k𝓁′−1+1

uj′ (s)

)}
= 0,

if 𝓁 ≠ 𝓁′ and

lim
N→∞

1
k𝓁 − k𝓁−1

E

{(
k𝓁∑

j=k𝓁−1+1

uj(t)

)(
k𝓁∑

j′=k𝓁−1+1

uj′ (s)

)}
= f⊤(t)D𝓁f(s) + f⊤(t)d𝓁(s) + f⊤(s)d𝓁(t) + d𝓁(t, s).

Thus we get

lim
N→∞

E

{(
N∑

i=1

ui(t)

)(
N∑

i′=1

ui′ (s)

)}
= (t, s).

The estimation of ℭ1 is based on the projection vectors

vi = ∫ ui(t)𝔣(t;𝝀0)dm(t).

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. (2022)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12642
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The residuals of the model are

qi(t) = Xi(t) −
K∑

𝓁=1

ĉ𝓁,Nf𝓁(t; 𝝀̂N), t ∈  ,

so we estimate vi with

v̂i = ∫ qi(t)𝔣(t; 𝝀̂N)dm(t).

The data are heteroscedastic, but we show that the long-run covariance matrix estimator still can be used. As usual,
we start with the estimation of the covariances of lag 𝓁:

𝔙̂𝓁 = 1
N − 𝓁

N−𝓁∑
i=1

v̂iv̂
⊤

i .

The estimator for ℭ1 is

ℭ̂1 = 𝔙̂0 +
N−1∑
𝓁=1

J

(
𝓁
h

)
(𝔙̂𝓁 + 𝔙̂⊤

𝓁 ), (3.4)

where J is a kernel function. In a similar manner, we can define an estimator for (t, s) which satisfies (2.18). The
estimator is based on the sample covariances defined for 𝓁 ≥ 0 by

𝛾̂𝓁,N(t, s) =
1

N − h

N−h∑
i=1

qi(t)qi+𝓁(s).

We note that Eqi(t)qi+h(s) depends on i because of the heteroscedasticity of the data. However, we show that the
classical kernel estimator for the long-run variance of sums of dependent variance can still be used. The proof of
(2.18) requires new arguments under our more general assumptions. The estimator is defined by

̂N(t, s) = 𝛾̂0,N(t, s) +
N−1∑
𝓁=1

J

(
𝓁
h

)
(𝛾̂𝓁,N(t, s) + 𝛾̂𝓁,N(s, t)). (3.5)

The following conditions on the kernel J and the window (smoothing parameter) h are standard.

Assumption 3.1. (i) J(0) = 1 (ii) J(u) = 0, if |u| > c∗ with some c∗ > 0 (iii) J is Lipschitz continuous on the real
line.

Assumption 3.2. h = h(N) → ∞ and h∕N → 0, as N → ∞.

Theorem 3.1. If (1.1), (1.2), and Assumptions 2.2–3.2 are satisfied, then

∫∫
(̂N(t, s) − (t, s))2

dn(t)dn(s) = oP(1).

Since

ℭ̂1 = ∫∫ 𝔣(t; 𝝀̂N)̂N(t, s)𝔣⊤(t; 𝝀̂N)dm(t)dm(s),

we have the following immediate consequence of Theorem 3.1.

J. Time Ser. Anal. (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12642 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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Corollary 3.1. If (1.1), (1.2), and Assumptions 2.2–3.2 are satisfied, then

ℭ̂1

P
→ ℭ1.

Now it is easy to find an estimator for (t, s)

̂N(t, s) = ̂N(t, s) −
(
∫ ̂N(s, u)𝔣⊤(u; 𝝀̂N)dm(u)

)
𝔅̂−1

N 𝔣(t; 𝝀̂N)

−
(
∫ ̂N(t, v)𝔣⊤(v; 𝝀̂N)dm(v)

)
𝔅̂−1

N 𝔣(s; 𝝀̂N)

+ 𝔣⊤(t; 𝝀̂N)𝔅̂−1
N

{
∫∫ 𝔣(u; 𝝀̂N)̂N(u, v)𝔣⊤(v; 𝝀̂N)dm(u)dm(v)

}
𝔅̂−1

N 𝔣(s; 𝝀̂N),

where 𝔅̂N is defined in (3.1). Observing that 𝔣(s;𝝀) is continuous in 𝝀, Theorem 2.1, (3.2), and Theorem 3.1 imply
that (2.18) holds.

4. APPLICATION TO US AND UK YIELD CURVES

This section demonstrates our estimation method and the goodness-of-fit test by applying them to the yield curves
in the United States and the United Kingdom. Our framework is general and can accommodate both sparsely and
densely observed data. Researchers have the freedom to choose the measures m and n. They can be the counting
measure, potentially with some weights, the Lebesgue measure, or any absolutely continuous measure with a
specific density of  . For the sake of conserving space, the method of parameter estimation is demonstrated by
the traditional Nelson–Siegel model, and other models can be estimated in the same manner.1 The goodness-of-fit
test is illustrated by a range of models.2

4.1. US Yield Curves

The website of the Board of Governors of the Federal Reserve System provides daily nominal interest rates for
selected non-inflation-indexed US Treasury securities.3 The market yields are calculated from composites of quo-
tations on actively traded treasury securities in the over-the-counter market. Such a calculation method provides
yields at fixed maturities even if there is no outstanding security with one of those exact maturities. The maturities
are at fixed at 1, 3, 6, 12, 24, 36, 60, 84, 120, 240, and 360 months. Since the data are sparsely observed at these
maturities, we set m and n as the counting measure for the US yield curves. This corresponds to the established way
of fitting yield curves to such data. Additionally, we produce yield curves in the form of functional data from the
discrete observations using the linear interpolation.4 The data we used in this study are daily yield curves from 1
January 1980 to 31 August 2020. For the purpose of demonstration, we investigate the Nelson–Siegel model over

1 For the empirical application, we impose a common sense restriction that the hump in the Nelson–Siegel model cannot occur before the
first available maturity or after the last available maturity. The numerical method to minimize the least-squares loss function in (2.1) is the
‘interior-point’ algorithm provided by the ‘fmincon’ function in MATLAB. This algorithm is a local minimizer, rather than the global mini-
mizer. We repeat the numerical method 100 times with different random initial values and choose the final solution as the one giving minimum
value in the objective function among 100 trials. In this way, the global minimum can generally be reached. However, there is no guarantee
and, in principle, the global minimum need not be unique.
2 In the models of Svensson (1994) and Christensen et al. (2009), we have the assumption of 𝜆0,1 < 𝜆0,2. Combined with Assumption 2.2
(compactness), this means that we actually assume 𝜆0,2 −𝜆0,1 > c, for some positive c. Practically, we restrict 𝜆0,2 −𝜆0,1 > 0.05 in our empirical
applications.
3 https://www.federalreserve.gov/releases/h15/default.htm. Accessed on 12 September 2020.
4 If the data are available at densely observed maturities and may also suffer measurement errors, it is more appropriate to use a smoothing
procedure with a basis expansion as a means to construct functional data (see, Ramsay and Silverman, 2005; Kokoszka and Reimherr, 2017).

wileyonlinelibrary.com/journal/jtsa © 2022 The Authors. J. Time Ser. Anal. (2022)
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Table I. Parameter estimates of the Nelson–Siegel model on US yield curves.

Start Jan 1980 Jul 1981 Jul 1990 Mar 2001 Dec 2007 Feb 2020
End Jul 1980 Nov 1982 Mar 1991 Nov 2001 Jun 2009 Aug 2020∗

No. of observations 147 352 185 188 395 147

ĉ1 10.999 13.446 8.637 4.837 4.735 1.908
(0.181) (0.167) (0.068) (0.198) (0.070) (0.039)

ĉ2 1.352 −3.566 −1.566 −1.792 −3.679 −1.563
(0.670) (0.699) (0.099) (0.308) (0.123) (0.093)

ĉ3 −1.373 5.908 −1.645 4.803 −2.099 −1.729
(0.267) (0.432) (0.112) (0.346) (0.339) (0.118)

𝜆̂ 0.070 0.124 0.096 0.010 0.036 0.020
(0.010) (0.010) (0.005) (0.001) (0.002) (0.001)

Note: ∗ indicates that the last contraction period ends at the most recent available date. The numbers in parentheses are the standard deviation
of the estimated parameters.

Table II. p-values of the goodness-of-fit test for different models on US yield curves.

Start Jan 1980 Jul 1981 Jul 1990 Mar 2001 Dec 2007 Feb 2020
End Jul 1980 Nov 1982 Mar 1991 Nov 2001 Jun 2009 Aug 2020∗

Nelson and Siegel (1987) 12.1% 0.0% 0.0% 0.0% 0.6% 44.8%
Svensson (1994) 0.2% 0.0% 0.0% 0.0% 0.0% 0.3%
Christensen et al. (2009) 0.0% 0.0% 0.0% 0.0% 0.0% 0.2%
Chambers et al. (1984) 18.3% 0.0% 0.1% 0.0% 23.3% 40.4%
Yallup (2012), K = 7 100.0% 100.0% 100.0% 0.0% 7.9% 7.5%
Yallup (2012), K = 8 100.0% 100.0% 100.0% 0.0% 100.0% 79.0%
Yallup (2012), K = 9 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Note: ∗ indicates that the last contraction period ends at the most recent available date.

six most recent contraction periods. The dates of US contraction periods are obtained from the National Bureau
of Economic Research.5

We apply our estimation method to the yield curves in each contraction period. Table I reports estimated
parameters of the Nelson–Siegel Model. As can be observed, the level parameter ĉ1 has a substantial reduction
from 11.00% in 1980 to 1.91% in 2020. The slope parameter ĉ2 is positive in the first contraction period (Jan
1980–Jul 1980), indicating that the yield curve is inverted. In the other five periods, the yield curves are generally
upward-sloping with negative ĉ2. The curvature parameter ĉ3 is positive in the second (Jul 1981–Nov 1982) and
fourth (Mar 2001–Nov 2001) contraction periods, implying the upside hump in yield curves. The negative ĉ3 in
the other four periods indicates the downside hump in the shape of yield curves. 𝜆̂ controls the exponential decay
rate and the location of hump. We find that 𝜆̂ changes in different periods, unlike Diebold and Li (2006), who
assume that 𝜆 is constant.

Next, we apply our goodness-of-fit test to a range of yield curve models, including Nelson and Siegel (1987),
Svensson (1994), Christensen et al. (2009), Chambers et al. (1984), and Yallup (2012). We set the polynomial
basis up to the fourth degree in the model of Chambers et al. (1984), as suggested in their original paper. We also
consider different numbers of exponential basis in the model of Yallup (2012) in order to explore the effects of
more basis functions. Table II shows the p-values of the goodness-of-fit test for those models on US yield curves.
The general pattern is that more factor functions enable larger flexibility in the yield curve modelling, which results
in fewer rejections by the goodness-of-fit test. The Nelson–Siegel model is the most parsimonious model among

5 https://www.nber.org/cycles.html. Note that the most recent contraction period starts from February 2020 and does not terminate yet. We
use the data up to August 2020, which is the most available period at the time of this research.
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Table III. Brexit timeline.

Period label Key events in the period Period

P0 Before Brexit initiative 01/01/2014 – 16/12/2015
P1 Leading up to the EU referendum 17/12/2015 – 22/06/2016
P2 Referendum 23/06/2016 – 07/06/2017
P3 General election 08/06/2017 – 10/12/2017
P4 Close of phase 1 11/12/2017 – 25/06/2018
P5 EU (withdrawal) Act becomes law 26/06/2018 – 15/01/2019
P6 The meaningful vote 16/01/2019 – 23/07/2019
P7 Boris Johnson becomes PM 24/07/2019 – 30/01/2020
P8 UK left EU & COVID-19 31/01/2020 – 31/08/2020

the considered candidates, and it cannot be rejected in the first and last contraction periods, but can be rejected at
5% significance level in other periods. The model of Yallup (2012) with K = 9, used by the Bank of Canada, is the
most flexible one among all models, and it cannot be rejected in all contraction periods. It is also interesting to see
that the Nelson–Siegel model outperforms the models of Svensson (1994) and Christensen et al. (2009), based on
the number of rejections. This can be possibly explained by the additional uncertainty of parameter estimates in
the extra factor functions, in particular when the second hump is not present. We note that while the Nelson–Siegel
model may not offer a good fit, it may be useful for other purposes.

4.2. UK Yield Curves

The Bank of England provides daily estimated nominal government yield curves for the United Kingdom on their
website.6 We choose to use the short-end curves with monthly resolution.7 Unlike the sparsely observed US yield
data, the short-end of the UK yield data is densely observed. It should be emphasized that the estimated yield
data in the United Kingdom is derived from spline-based smoothing methods. Specifically, Bank of England used
the ‘variable roughness penalty’ (VRP) method of Anderson and Sleath (1999) to fit a curve to the data, with
constraints imposed to ensure that the overall curve is continuous and smooth. One can say that the Bank of
England has already converted the discrete data to functional data by penalized smoothing. Since the UK yields
are available at densely observed time points, m and n are set to be the Lebesgue measure because it can take into
account more information contained in the curves.

For the UK yield curves, we focus on the recent years because of the frequent change in the uncertainty related
to the Brexit, which has a substantial impact on the shape of yield curves that can reflect expectations on the future
of the UK economy. According to Walker (2020), the timeline of Brexit can be summarized in Table III. We are
interested in the evolution of the parameters of the Nelson–Siegel Model in different periods related to the Brexit.
Our sample period is from 1 January 2014 to 31 August 2020, containing 1685 trading days in total. Figure 1 shows
the UK yield curves in the whole sample period, and Figure S1 in the online Supporting Information presents the
mean yield curves in different periods related to the Brexit.

Table IV presents the estimated parameters of the Nelson–Siegel Model. The first two parameters, ĉ1 and ĉ2,
are associated with level and slope of the yield curves. There is a general pattern that ĉ1 decreases and ĉ2 increases
as time moving on to the later periods related to the Brexit. This indicates that the yield curves gradually move to
a lower level and become flatter, which is consistent with the observation in Figure 1. The curvature parameter ĉ3

6 https://www.bankofengland.co.uk/statistics/yield-curves. Accessed on 12 September 2020.
7 The Bank of England provides two types of estimated yield curves with different maturity range. The short-end curves have the maturity
at monthly resolution ranging from 1 month to 5 years. The long-end curves have half-year resolution ranging from 0.5 year to a very large
maturity (25 or 40 years). The short-end curves in the United Kingdom is available at more maturities because they are based on the yields of
generalized collateral (GC) repo agreements, in additional to gilts (UK government bond). The Bank of England use GC repo to conduct its
Open Market Operations, and the GC repo contracts are actively traded for maturities up to 1 year.
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Figure 1. UK yield curves.

Table IV. Parameter estimates of the Nelson–Siegel model on UK yield curves.

Period label P0 P1 P2 P3 P4 P5 P6 P7 P8
No. of observations 497 128 242 131 134 142 131 133 146

ĉ1 2.765 1.928 2.479 2.508 2.082 1.952 1.574 0.512 0.415
(0.076) (0.044) (0.150) (0.078) (0.153) (0.071) (0.109) (0.033) (0.151)

ĉ2 −2.272 −1.352 −2.338 −2.126 −1.605 −1.198 −0.778 0.288 −0.222
(0.087) (0.063) (0.160) (0.088) (0.166) (0.093) (0.109) (0.037) (0.195)

ĉ3 −3.305 −2.843 −3.099 −3.023 −1.129 −1.636 −1.560 −0.676 -0.757
(0.109) (0.066) (0.142) (0.104) (0.093) (0.028) (0.067) (0.046) (0.250)

𝜆̂ 0.070 0.062 0.030 0.030 0.030 0.038 0.032 0.059 0.031
(0.001) (0.002) (0.002) (0.001) (0.005) (0.003) (0.002) (0.003) (0.008)

Note: The numbers in parentheses are the standard deviation of the estimated parameters.

is negative in all periods, indicating a downside hump in the shape of the yield curves. In terms of 𝜆̂, it starts from
0.070 in P0 and decreases to 0.030 in P2 and generally stays at that level afterwards, except for a bounce in P7.

We further perform the goodness-of-fit test for the same range of yield curve models. Table V shows the p-values
of the goodness-of-fit test for different models on UK yield curves. A remarkably similar pattern as in Section 4.1
is observed. At the 5% significance level, the Nelson–Siegel model cannot be rejected in P5 and P6, while the
model of Yallup (2012) with K = 9 cannot be rejected in all periods. Additionally, the Nelson–Siegel model has
less number of rejections than the models of Svensson (1994) and Christensen et al. (2009). Again, this can be
explained by the estimation uncertainty in the parameters related to the second hump, which may not exist.

When assessing goodness-of-fit, we assume that one model should be suitable for a given stretch of data. We
addressed this issue by considering relatively short time periods. However, the partitions into these shorter periods
may not be optimal. It might be useful to develop a change point detection and estimation procedure for these
models, and use the resulting data-driven partitions. We hope that our work will motivate research in this direction.

5. FINITE-SAMPLE PERFORMANCE

We now examine the finite-sample performance of our estimation method and the goodness-of-fit test. We first
describe the data-generating process (DGP) designed to be in line with the characteristics of the empirical yield
curves in the United States and the United Kingdom analysed in Section 4. We simulate realizations of the
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Table V. p-values of the goodness-of-fit test for different models on UK yield curves.

Period label P0 P1 P2 P3 P4 P5 P6 P7 P8

Nelson and Siegel (1987) 1.90% 1.23% 3.64% 1.91% 0.00% 25.76% 16.98% 0.43% 4.51%
Svensson (1994) 0.00% 0.00% 0.03% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Christensen et al. (2009) 90.54% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Chambers et al. (1984) 0.00% 4.85% 16.67% 12.79% 0.39% 10.44% 3.49% 0.47% 0.33%
Yallup (2012), K = 7 47.41% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Yallup (2012), K = 8 99.98% 10.17% 25.76% 98.25% 86.18% 0.00% 33.60% 0.11% 4.72%
Yallup (2012), K = 9 100.00% 99.60% 100.00% 100.00% 99.85% 95.23% 99.91% 12.26% 58.49%

Nelson–Siegel model

Xi(t) = bi,1f1(t; 𝜆) + bi,2f2(t; 𝜆) + bi,3f3(t; 𝜆) + 𝜀i(t), t ∈ [0,360], 1 ≤ i ≤ N, (5.1)

where the random coefficients follow

bi,𝓁 = c𝓁 + ei,𝓁 , 1 ≤ 𝓁 ≤ 3, 1 ≤ i ≤ N, (5.2)

and the factor functions are

f1(t; 𝜆) = 1, f2(t; 𝜆) =
1 − e−𝜆t

𝜆t
and f3(t; 𝜆) =

1 − e−𝜆t

𝜆t
− e−𝜆t, t ∈ [0,360].

The true values of the model parameters are set to be c1 = 7.579, c2 = −2.098, c3 = −0.162, and 𝜆 = 0.0609. The
chosen values are taken from Diebold and Li (2006).

Recall that Assumptions 2.5 and 2.6 allow for heteroscedasticity in the errors. This enables us to con-
sider both homoscedastic and heteroscedastic errors to check the robustness of the developed methods. Under
homoscedasticity, the errors of the random coefficients in (5.2) are generated by

ei,𝓁 ∼ i.i.d.  (0, 𝜎2
b ), 1 ≤ 𝓁 ≤ 3, 1 ≤ i ≤ N.

The error term 𝜀i(t) in (5.1) is generated by

𝜀i(t) =
R∑

r=1

𝜉i,r𝜓r(t), 1 ≤ i ≤ N,

where 𝜓r(t) are Fourier basis functions, and 𝜉i,r follows an autoregressive process

𝜉i,r = 𝜌𝜉i−1,r + Zi,r, and Zi,r ∼ i.i.d.  (0, 𝜎2
Zr
), 1 ≤ r ≤ R. (5.3)

Under heteroscedasticity, the errors are generated by

{
ei,𝓁 ∼ i.i.d.  (0, 𝜎2

b ), 1 ≤ i < k∗,

ei,𝓁 ∼ i.i.d.  (0, 2𝜎2
b ), k∗ ≤ i ≤ N.
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The error term 𝜀i(t) is generated by

𝜀i(t) =
⎧⎪⎨⎪⎩
∑R

r=1𝜉i,r𝜓r(t), 1 ≤ i < k∗,∑R
r=1

√
2𝜉i,r𝜓r(t), k∗ ≤ i ≤ N,

and 𝜉i,r follows the same autoregressive process in (5.3). For the parameters to generate errors under both
homoscedasticity and heteroscedasticity, we set R = 5, 𝜎b = 0.2, 𝜎Z1

= 0.1, 𝜎Z2
= 0.05, 𝜎Z3

= 0.05, 𝜎Z4
= 0.025,

𝜎Z5
= 0.025, and 𝜌 = 0.1 or 0.5. For the heteroscedastic errors, we set k∗ = N∕2.

As shown in Section 4, the US yields data are sparsely observed, while the UK data come in the form of
densely observed yield curves. In order to closely mimic the characteristics of the empirical data, we devise two
specific versions of DGPs: functional DGP and discrete DGP. For the functional DGP, the data are simulated
in the domain of t ∈ [0,360], which is already in the form of functional data. For the discrete DGP, the data is
first generated only at 11 fixed maturities, t ∈ {1, 3, 6, 12, 24, 36, 60, 84,120, 240,360}, and then linear interpola-
tion is employed to convert discrete data into continuous curves as functional data. To compare the two DGPs,
Figure S2 in the online Supporting Information shows one realization of simulated yield curves based on the
functional DGP (upper panel) and the discrete DGP (lower panel) of sample size N = 100 with heteroscedastic
errors.

Before presenting the simulation results, it is worthwhile to discuss two practical issues: the measures and the
kernel estimators. Since our framework allows us to choose various measures m and n, we have explored many
options and found that the Lebesgue measure is suitable for the functional DGP and the counting measure is
appropriate for the discrete DGP. In the following, the reported simulation results for the functional DGP are based
on the Lebesgue measure and those for the discrete DGP on the counting measure. The kernel estimator of ℭ̂1

in (3.4) and ̂N(t, s) in (3.5) needs the specification of the kernel and the smoothing bandwidth, and we use the
flat-top kernel

J(u) =
⎧⎪⎨⎪⎩

1, 0 ≤ |u| < 0.5,

2 − 2|u|, 0.5 ≤ |u| < 1,

0, |u| ≥ 1,

with the bandwidth h = log(N). Our simulations show that this bandwidth produces stable and satisfactory results.
In Section D of the online Supporting Information, we show that the test is not sensitive to the bandwidth choice.
Data-driven methods of bandwidth selection might improve the results further. Politis (2003) studies adaptive
bandwidth for scalar data and Rice and Shang (2017) propose a plug-in bandwidth selection for functional data.

5.1. Parameter Estimation

Based on the two DGPs, we investigate the consistency and the normality in finite samples of the estimator devel-
oped in Section 2. It is also of interest to compare the asymptotic standard deviation of the estimator in Theorem 2.2
with the sample standard deviation. In Section B of the online Supporting Information, we provide a practical
step-by-step algorithm to implement our estimation approach and the details of using a quasi-Newton method
to numerically minimize the least-squares loss function in (2.1), together with an improved algorithm with fast
computation if the resolution (sampling frequency) of yield curves is monthly.

We generate 1000 independent realizations of the two DGPs, and record the estimated values of a =
(c1, c2, c3, 𝜆). The summary statistics of estimated parameters are reported in Tables VI and VII for the functional
DGP and the discrete DGP respectively. Generally, the consistency of the four parameters is well supported by the
simulation results for the two DGPs because the bias and standard deviation become smaller with the increase in

J. Time Ser. Anal. (2022) © 2022 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12642 Journal of Time Series Analysis published by John Wiley & Sons Ltd.



18 L. HORVATH, ET AL.

Table VI. Summary statistics of the estimated parameters for simulated data based on the functional DGP.

Homoskedastic errors (𝜌 = 0.1) Heteroscedastic errors (𝜌 = 0.1)

ĉ1 ĉ2 ĉ3 𝜆̂ ĉ1 ĉ2 ĉ3 𝜆̂

N = 100 Mean 7.579 −2.099 −0.127 0.060 7.579 −2.098 −0.130 0.060
SD 0.020 0.020 0.101 0.003 0.026 0.025 0.111 0.003
Skewness 0.136 −0.003 1.818 −1.759 −0.112 0.035 1.647 −1.531
Kurtosis 2.639 3.139 6.901 6.699 3.380 3.143 6.503 6.130
Median of asy. SD 0.019 0.019 0.061 0.002 0.023 0.023 0.073 0.002

N = 200 Mean 7.579 −2.098 −0.145 0.060 7.579 −2.098 −0.140 0.060
SD 0.014 0.014 0.070 0.002 0.017 0.017 0.089 0.002
Skewness 0.033 −0.045 2.536 −2.457 0.001 −0.011 2.181 −2.094
Kurtosis 2.821 2.967 12.583 12.341 3.289 2.889 9.079 8.727
Median of asy. SD 0.014 0.014 0.044 0.001 0.017 0.017 0.052 0.001

N = 500 Mean 7.579 −2.098 −0.156 0.061 7.579 −2.098 −0.148 0.061
SD 0.009 0.009 0.043 0.001 0.011 0.011 0.063 0.002
Skewness −0.119 −0.072 4.027 −3.944 0.113 −0.176 3.475 −3.401
Kurtosis 2.934 2.771 31.858 31.070 3.174 2.980 19.601 19.166
Median of asy. SD 0.009 0.009 0.028 0.001 0.011 0.011 0.035 0.001

Homoskedastic errors (𝜌 = 0.5) Heteroscedastic errors (𝜌 = 0.5)

ĉ1 ĉ2 ĉ3 𝜆̂ ĉ1 ĉ2 ĉ3 𝜆̂

N = 100 Mean 7.578 −2.097 −0.122 0.060 7.578 −2.097 −0.112 0.060
SD 0.020 0.020 0.128 0.004 0.025 0.025 0.149 0.004
Skewness −0.105 −0.004 1.092 −0.933 0.001 −0.049 0.955 −0.789
Kurtosis 2.985 3.227 4.378 3.963 2.898 3.144 3.797 3.448
Median of asy. SD 0.019 0.019 0.100 0.003 0.023 0.023 0.115 0.003

N = 200 Mean 7.579 −2.098 −0.120 0.060 7.579 −2.098 −0.122 0.060
SD 0.014 0.014 0.113 0.003 0.017 0.017 0.122 0.003
Skewness −0.040 0.028 1.477 −1.300 0.026 −0.230 1.216 −1.045
Kurtosis 2.863 3.060 5.666 5.038 2.910 3.263 4.754 4.221
Median of asy. SD 0.014 0.014 0.076 0.002 0.017 0.017 0.091 0.003

N = 500 Mean 7.579 −2.098 −0.141 0.060 7.579 −2.098 −0.135 0.060
SD 0.009 0.009 0.077 0.002 0.011 0.011 0.093 0.003
Skewness 0.145 0.063 2.156 −1.966 −0.004 0.000 1.941 −1.783
Kurtosis 3.211 2.679 9.883 8.784 2.768 2.703 8.068 7.381
Median of asy. SD 0.009 0.009 0.048 0.001 0.011 0.011 0.059 0.002

Note: The measure m is the Lebesgue measure. The true values for the parameters are c1,0 = 7.579, c2,0 = −2.098, c3,0 = −0.162, and
𝜆0 = 0.0609.

sample size. Additionally, the median of the asymptotic standard deviation obtained by Theorem 2.2 is close to
the standard deviation in the simulations.8 Importantly, our estimation procedure is robust to the heteroscedastic
errors in the data. Compared to those based on the functional DGP, the estimated parameters based on the discrete
DGP follow a normal distribution more closely. This is also reflected in the QQ-plots. For example, Figure S3 in
the online Supporting Information shows QQ-plots under the discrete DGP with heteroskedastic errors for sample
size N = 100. For homoskedastic errors and larger sample sizes, the QQ-plots look even better.

8 We report the median of the asymptotic standard deviation, rather than the mean, because of the outliers.
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Table VII. Summary statistics of the estimated parameters for simulated data based on the discrete DGP.

Homoskedastic errors (𝜌 = 0.1) Heteroscedastic errors (𝜌 = 0.1)

ĉ1 ĉ2 ĉ3 𝜆̂ ĉ1 ĉ2 ĉ3 𝜆̂

N = 100 Mean 7.579 −2.098 −0.157 0.061 7.579 −2.098 −0.157 0.061
SD 0.020 0.020 0.044 0.001 0.024 0.024 0.054 0.001
Skewness 0.081 0.040 0.838 −0.826 0.015 −0.079 0.884 −0.817
Kurtosis 2.718 2.906 4.132 4.343 2.798 2.773 3.813 3.863
Median of asy. SD 0.019 0.019 0.037 0.001 0.023 0.023 0.045 0.001

N = 200 Mean 7.579 −2.098 −0.160 0.061 7.579 −2.098 −0.159 0.061
SD 0.014 0.015 0.029 0.001 0.017 0.018 0.039 0.001
Skewness -0.036 −0.051 0.814 −0.684 −0.077 0.101 0.937 −0.776
Kurtosis 2.944 3.081 5.270 5.189 2.787 2.822 4.783 4.623
Median of asy. SD 0.014 0.014 0.027 0.001 0.017 0.017 0.033 0.001

N = 500 Mean 7.579 −2.098 −0.162 0.061 7.579 −2.098 −0.161 0.061
SD 0.009 0.009 0.018 0.000 0.011 0.011 0.022 0.001
Skewness −0.054 −0.007 0.373 −0.260 0.097 0.052 0.492 −0.349
Kurtosis 3.227 3.405 3.424 3.212 3.122 2.943 3.526 3.185
Median of asy. SD 0.009 0.009 0.017 0.000 0.011 0.011 0.021 0.001

Homoskedastic errors (𝜌 = 0.5) Heteroscedastic errors (𝜌 = 0.5)

ĉ1 ĉ2 ĉ3 𝜆̂ ĉ1 ĉ2 ĉ3 𝜆̂

N = 100 Mean 7.579 −2.098 −0.151 0.061 7.581 −2.097 −0.151 0.061
SD 0.020 0.019 0.071 0.002 0.025 0.025 0.077 0.002
Skewness −0.050 −0.022 0.824 −0.756 0.126 0.036 0.537 −0.451
Kurtosis 2.861 2.987 3.551 3.463 2.971 2.951 2.464 2.558
Median of asy. SD 0.019 0.019 0.056 0.002 0.023 0.023 0.068 0.002

N = 200 Mean 7.579 −2.098 −0.158 0.061 7.579 −2.098 −0.154 0.061
SD 0.014 0.014 0.051 0.001 0.017 0.017 0.062 0.002
Skewness 0.118 0.117 0.922 −0.900 0.121 0.037 0.917 −0.781
Kurtosis 2.867 3.445 4.070 3.999 3.084 2.903 3.425 3.351
Median of asy. SD 0.014 0.014 0.042 0.001 0.017 0.017 0.050 0.001

N = 500 Mean 7.579 −2.098 −0.159 0.061 7.579 −2.097 −0.157 0.061
SD 0.009 0.009 0.029 0.001 0.011 0.011 0.040 0.001
Skewness 0.039 0.045 0.688 −0.618 0.022 0.035 0.992 −0.942
Kurtosis 3.153 3.191 4.753 4.597 3.029 3.113 5.005 4.814
Median of asy. SD 0.009 0.009 0.027 0.001 0.011 0.011 0.033 0.001

Note: The measure function m is the counting measure. The true values for the parameters are c1,0 = 7.579, c2,0 = −2.098, c3,0 = −0.162, and
𝜆0 = 0.0609.

5.2. The goodness-of-fit test

We study the empirical size and power of the goodness-of-fit test developed in Section 2. In Section C of the online
Supporting Information, we provide the detailed steps for implementing our test. Under the null hypothesis, we
simulate the data based on the functional DGP and the discrete DGP using 1000 independent replications, and cal-
culate the test statistics T̂N in (2.15) and approximate its limit distribution by (2.20). For each replication, we com-
pare the test statistics T̂N with the critical values obtained by (2.21) to decide the rejection of the null hypothesis.

Table VIII shows the empirical size of the test for the functional DGP in Panel A and for the discrete DGP
in Panel B. Generally, the empirical size is close to the theoretical levels for the two DGPs, with a tendency to
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Table VIII. Empirical size of the goodness-of-fit test.

Significance level 10% 5% 1% 10% 5% 1%

Panel A: the functional DGP
Homoscedastic errors (𝜌 = 0.1) Heteroscedastic errors (𝜌 = 0.1)

N = 100 12.3% 6.5% 2.0% 12.7% 6.9% 1.6%
N = 200 10.6% 4.8% 1.0% 12.5% 5.6% 1.4%
N = 500 10.0% 5.1% 1.5% 11.2% 5.8% 1.3%

Homoscedastic errors (𝜌 = 0.5) Heteroscedastic errors (𝜌 = 0.5)

N = 100 13.7% 7.9% 1.8% 14.2% 8.8% 2.8%
N = 200 14.1% 7.4% 1.3% 11.5% 6.3% 1.5%
N = 500 10.3% 6.1% 1.2% 12.6% 7.5% 1.9%

Panel B: the discrete DGP
Homoscedastic errors (𝜌 = 0.1) Heteroscedastic errors (𝜌 = 0.1)

N = 100 13.0% 7.1% 2.1% 12.7% 7.5% 2.0%
N = 200 10.6% 5.1% 1.7% 11.6% 7.2% 2.1%
N = 500 11.3% 6.1% 0.8% 10.5% 5.0% 0.8%

Homoscedastic errors (𝜌 = 0.5) Heteroscedastic errors (𝜌 = 0.5)

N = 100 16.2% 8.6% 3.5% 16.3% 8.7% 2.6%
N = 200 15.7% 7.8% 2.8% 13.5% 7.0% 2.0%
N = 500 12.7% 6.5% 1.6% 12.0% 6.9% 1.9%

over-reject, which becomes smaller as the sample size increases. The size under 𝜌 = 0.5 is marginally higher than
the size under 𝜌 = 0.1. This is expected because the convergence rate is slower under stronger dependence. Our
goodness-of-fit test is robust to heteroscedasticity in the data. We also employed the technique of circular block
bootstrap (Politis and Romano, 1992) to improve the size of the test. Details are provided in Section E of the online
Supporting Information.

Under the alternative hypothesis, we generate the data from the Svensson (1994) model (two humps)
and test the goodness-of-fit of the Nelson–Siegel model (one hump). Explicitly, we generate realizations of
the form

Xi(t) =
4∑

𝓁=1

bi,𝓁f𝓁(t;𝝀) + 𝜀i(t), t ∈ [0,360], 1 ≤ i ≤ N, (5.4)

where the random coefficients follow (1.2) and the functions f𝓁(t;𝝀) are as specified in Example 1.1.
Depending on the combination of parameter values in (5.4), we have the following four alternatives:

HA,1: c1 = 7.579, c2 = −2.098, c3 = −0.162, c4 = −0.040, and 𝜆1 = 0.0609, 𝜆2 = 0.15,
HA,2: c1 = 7.579, c2 = −2.098, c3 = −0.162, c4 = −0.040, and 𝜆1 = 0.0609, 𝜆2 = 0.30,
HA,3: c1 = 7.579, c2 = −2.098, c3 = −0.162, c4 = −0.081, and 𝜆1 = 0.0609, 𝜆2 = 0.15,
HA,4: c1 = 7.579, c2 = −2.098, c3 = −0.162, c4 = −0.081, and 𝜆1 = 0.0609, 𝜆2 = 0.30.

We choose those specific parameter combinations in order to explore the empirical power performance under
different scenarios. Essentially, there is an additional hump at the maturity of 12 months under HA,1 and HA,3, and
at the maturity of 6 months under HA,2 and HA,4. The magnitude of the second hump is around a quarter of the
first hump under HA,1 and HA,2, and half under HA,3 and HA,4. The other settings of the DGPs under the alternative
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Table IX. Empirical power of the goodness-of-fit test at the 5% significance level.

Panel A: the functional DGP
Homoscedastic errors (𝜌 = 0.1) Heteroscedastic errors (𝜌 = 0.1)

HA,1 HA,2 HA,3 HA,4 HA,1 HA,2 HA,3 HA,4

N = 50 18.5% 23.7% 50.9% 66.2% 12.6% 18.4% 38.4% 51.2%
N = 100 26.6% 40.8% 81.9% 91.7% 20.5% 30.5% 63.8% 79.5%
N = 200 50.3% 67.7% 98.8% 100.0% 34.7% 51.9% 91.0% 97.8%

Homoscedastic errors (𝜌 = 0.5) Heteroscedastic errors (𝜌 = 0.5)

N = 50 15.3% 17.2% 31.5% 43.2% 13.6% 13.3% 23.5% 34.8%
N = 100 19.3% 20.2% 41.4% 72.5% 14.7% 12.7% 31.6% 47.6%
N = 200 24.0% 34.3% 73.6% 97.2% 16.0% 23.0% 54.1% 82.5%

Panel B: the discrete DGP
Homoscedastic errors (𝜌 = 0.1) Heteroscedastic errors (𝜌 = 0.1)

HA,1 HA,2 HA,3 HA,4 HA,1 HA,2 HA,3 HA,4

N = 50 39.3% 36.8% 84.6% 83.3% 28.0% 29.7% 70.4% 70.1%
N = 100 56.9% 56.9% 98.1% 97.5% 44.5% 42.7% 91.2% 92.3%
N = 200 79.9% 81.2% 100.0% 100.0% 63.3% 64.9% 99.4% 99.5%

Homoscedastic errors (𝜌 = 0.5) Heteroscedastic errors (𝜌 = 0.5)

N = 50 31.2% 38.0% 73.2% 84.4% 23.9% 28.6% 60.6% 70.6%
N = 100 47.0% 53.3% 95.4% 97.6% 34.7% 42.7% 84.9% 89.8%
N = 200 73.5% 81.3% 99.9% 100.0% 54.9% 66.1% 98.6% 99.6%

hypothesis are the same as those of the null hypothesis. Based on 1000 replications, Table IX shows the empirical
power of the test at 5% significance level for the functional DGP in Panel A and for the discrete DGP in the Panel
B. The test can achieve high power even under small sample sizes, such as N = 50. The power is higher under the
discrete DGP than under the functional DGP. With a higher value of 𝜌, the power deteriorates slightly under the
functional DGP but not under the discrete DGP. Additionally, the heteroscedasticity marginally reduces the power
of the test. Comparing the four alternatives, the empirical power is higher if (1) the two humps are further apart
(under HA,2 and HA,4), and (2) the second hump has a larger magnitude (under HA,3 and HA,4).
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