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You can hear the shape of a billiard table:
Symbolic dynamics and rigidity for flat surfaces
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Abstract. We give a complete characterization of the relationship between the shape of a
Euclidean polygon and the symbolic dynamics of its billiard flow. We prove that the only pairs
of tables that can have the same bounce spectrum are right-angled tables that differ by an affine
map. The main tool is a new theorem that establishes that a flat cone metric is completely
determined by the support of its Liouville current.
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1. Introduction

There is a well-established line of spectral rigidity problems in geometry, where one
tries to show that various discrete invariants of an object determine its geometry.
In 1966, Kac memorably asked if one could hear the shape of a drum; or more
precisely whether the shape of a planar domain is determined by the spectrum of its
Laplacian [28]. In this paper we define a “bounce spectrum” for polygons, recording
the symbolic dynamics of the billiard flow, and we explore the question of how
precisely this determines the polygon, and thus whether one can “hear” the shape of
the polygon from the bounce spectrum.
Every Euclidean polygon P supports a billiard flow, in which a point mass in the

interior travels in a straight line until it hits a wall, then bounces off the wall with
optical reflection: angle of incidence equals angle of reflection. Trajectories hitting
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corners are regarded as singular and discarded. A polygon together with this billiard
flow constitutes a dynamical system called a billiard table (or simply table) below.
Suppose the sides of a simply connected (finite-sided, not necessarily convex)

polygon P are labeled in cyclic order by letters from an ordered alphabet A. Then
for a nonsingular billiard path, 
 WR ! P , we can record the labels of the sides
of P in the order that they are encountered along 
 , forming a bi-infinite sequence
of labels called the bounce sequence, an element of AZ. Here the zeroth term of
the sequence corresponds to the first side encountered on 
.Œ0;1//, and so starting
sooner or later along a trajectory amounts to shifting the corresponding bounce
sequence. The set of all bounce sequences that can occur on P is denoted B.P /
and called the bounce spectrum of the billiard table. This closely resembles the
construction of cutting sequences, a fundamental concept in symbolic dynamics. If
there exist cyclic labelings of the sides of polygons P1 and P2 with letters from A

which induce a bijection of bounce spectra, then we will identify the spectra and
write B.P1/ D B.P2/.
It is immediately clear that applying a similarity (any combination of dilation,

reflection, and rotation) to a polygonal table does not change its bounce spectrum.
Upon investigation, one quickly observes that the coordinate-affine map given
by
�
a 0
0 b

�
preserves optical reflection in horizontal and vertical edges. It follows

that any two rectangles R1; R2 have the same bounce spectrum B.R1/ D B.R2/,
and more generally that B.P1/ D B.P2/ for any two right-angled tables (all angles
in �
2

N) that are related by an affinemap. Outside of this exception, we get the strongest
possible rigidity result: the bounce spectrum determines not only the precise angles
in the polygon, but also the proportions of side lengths.

Bounce theorem. If two simply connected Euclidean polygonsP1; P2 have B.P1/ D
B.P2/, then eitherP1; P2 are right-angled and affinely equivalent, or they are similar
polygons.

Remark. Pursuing the analogy between rigidity for the bounce spectrum and the
length spectrum, we can regard the cyclic labeling of edges as a way to identify sides
in one polygon with sides in the other; this is like themarked length spectral problem
for manifolds, in which a correspondence of curves is specified. It is natural to
wonder about the unmarked problem for billiard tables. In a new preprint, Calderon–
Coles–Davis–Lanier–Oliveira [8] prove that for an arbitrary labeling of the sides of
a polygon, one can “hear” edge adjacency (i.e., detect which labels correspond to
incident edges) from the bounce sequences. Combining this result with ours, we
obtain bounce-spectral rigidity in the unmarked case as well.
This theorem also shows that the Laplace spectrum and the bounce spectrum

contain different information. It is well known that the Laplace spectrum determines
the area and perimeter of a plane domain, fromwhich it follows that rectangles can be
distinguished by their Laplace spectra, while all having the same bounce spectrum.
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On the other hand, the “propeller pair” constructions of Gordon–Webb–Wolpert [20]
have the same Laplace spectrum but, by our main theorem, different bounce spectra.1

In the special case of rational tables (all angles in �Q), there is a well-established
toolkit for studying the billiard flowcentered on the “unfolding” to a closed translation
surface and all the machinery that comes with that. A recent sequence of papers of
Bobok–Troubetzkoy [2–4] culminates in a proof of symbolic rigidity (as in theBounce
theorem above) when one of the tables is assumed to be rational. In fact, their results
are stronger in that setting: they show that only part of the bounce spectrum (the
bounce sequence of a single generic trajectory, or the subset of periodic sequences)
suffices to determine the table.
Our proof works for general tables, and we note that this setting is quite different;

for instance, rational tables have periodic trajectories in a dense set of directions,
while it is unknown if all irrational tables (or even all triangular ones!) have even a
single periodic trajectory.2
Our proof utilizes essentially the entire bounce spectrum in a crucial way. On

the other hand, any set that determines the bounce spectrum clearly also determines
the shape of the table by the Bounce theorem. For example, we have the following
corollary. A generalized diagonal in a Euclidean polygon P is a billiard trajectory

 W Œa; b�! P that starts and ends at a vertex of the polygon. Given a cyclic labeling
of the sides of P , a generalized diagonal induces a finite bounce sequence, and we
let B�.P / denote the countable set of bounce sequences of generalized diagonals.

Corollary 1. If two simply connected Euclidean polygons P1; P2 have B�.P1/ D
B�.P2/, then either P1; P2 are right-angled and affinely equivalent, or they are
similar polygons.

The Bounce theorem is a consequence of a result about geodesic currents assoc-
iated to flat metrics. To state this result, we require a few definitions; see Section 2
below for fuller background. The space of equivalence classes of flat metrics
(nonpositively curved Euclidean cone metrics) on a closed, oriented surface S is
denoted Flat.S/. Associated to each metric ' 2 Flat.S/ is a geodesic current L'
called the Liouville current, which is formally a measure on the double boundary of
the universal cover of S . We affirmatively answer an open question of Bankovic–
Leininger showing that the support of L' determines ', up to affine deformation;
see [1, Section 6]. That is, a flat metric is not only determined by its geodesic current
but even by the support alone, which is quite different from the hyperbolic case where
currents have full support. This Support Rigidity theorem yields the Bounce theorem
via a new unfolding technique we introduce below.

1See also [8, 31], in which the authors investigate what geometric properties of a polygon can be
reconstructed from just a finite part of the bounce spectrum, Laplace spectrum, or length spectrum.

2Indeed, in [38], Schwartz proves that there is a sequence of triangles converging to the .30; 60; 90/
triangle for which the combinatorial length of the shortest periodic billiard trajectory tends to infinity. See
also Hooper [24] for more on instability of periodic trajectories.
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Support Rigidity theorem. Suppose '1; '2 are two unit-area flat metrics whose
Liouville currents have the same support, supp.L'1/ D supp.L'2/. Then '1; '2
differ by an affine deformation, up to isotopy. If either metric has holonomy of order
greater than 2 (i.e., is not induced by a quadratic differential, or does not support
a foliation by straight lines), then equal support implies that '1 and '2 differ by
isometry, isotopic to the identity.
Webriefly describe the steps involved in the proof of the Support Rigidity theorem.

A key observation for carrying out this program is that the support of L' consists
precisely of the closure of the set of nonsingular z'-geodesics in zS ; see Proposition 7
in Section 2.5. We then use a technical device called chains (see Section 2.5) to fix
an identification of the cone points, and from these an identification of the saddle
connections and the nonsingular geodesics, between '1 and '2. This lets us build a
careful correspondence of triangulations between '1 and '2, and even of directions
of travel as trajectories cross the edges of a triangulation. This can be used to show
that the holonomy group (the rotations observed when transporting a tangent vector
around a loop) is the same for the two metrics.
Our goal is to construct an affine map .S; '1/! .S; '2/ isotopic to the identity.

We carry this out by picking a geometric triangulation of S with respect to '1 and
then proving that the map to the corresponding triangulation in '2 can be adjusted
by an isotopy first on the vertices, then on the edges, and finally triangles, to produce
a map which is affine on each of the triangles. Next we must analyze the piecewise
affine maps and show that they are globally affine, and in fact isometries, up to the
controlled exceptions identified in the theorem statement.
To prove the Bounce theorem from the Support Rigidity theorem, we consider

arbitrary nonpositively curved “unfoldings” X of a polygon P and observe that,
as with the unfoldings to translation surfaces in the rational case, the nonsingular
geodesics on X correspond to billiard trajectories in P . We have seen that the set
supp.L'/ coarsely encodes (the closure of) the set of nonsingular '-geodesics. The
bounce spectrum of P records how geodesics cut through edges of a triangulation
and can thus be viewed as providing the same coarse information. From two
polygons P1; P2 with B.P1/ D B.P2/, we can find a pair of nonpositively curved
unfoldings X1; X2 with a common underlying topological surface S such that their
nonsingular geodesics can be identified. Appealing to the Support Rigidity theorem,
we conclude thatX1; X2 differ by an affinemap (generically an isometry, or similarity
if we do not normalize the areas). With some care, this induces a suitable affine
map between P1 and P2. For Corollary 1, we observe that generalized diagonals
correspond to saddle connections in the unfolding and use limits of codings to
understand the nonsingular geodesic as limits of saddle connections.
The ideas used to deduce the Bounce theorem from the Support Rigidity theorem

can be applied to other settings as well: any data that coarsely determines the non-
singular geodesics of a flat surface can be seen to determine the flat metric, up to
affine equivalence. For example, in Section 4 we sketch a similar result for cutting
sequences.
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1.1. Connections to symbolic dynamics literature. The results of Bobok and
Troubetzkoy mentioned above [2–4] are directly relevant to our work, and the results
of Calderon et al. [8] give constructive results on the exact questions treated here.
These are part of a substantial literature relating symbolic dynamics to the geometry
of billiards and associated flat surfaces. Variants on bounce sequences include cutting
sequences and Sturmian sequences. Characterizing the sequences occurring in Veech
surfaces (such as regular polygons and square-tiled surfaces) appears in the work of
Morse and Hedlund from the 1930s and 40s [35, 36] and includes very recent work
of Smillie–Ulcigrai [39, 40], Davis [14, 15], Davis–Pasquinelli–Ulcigrai [16], and
Johnson [27]. Beyond theVeech case, there is a long string of papers of Lopez–Narbel
developing a language-theoretic formulation of generalized Sturmian sequences for
interval exchange transformations, beginning with [30].
Complexity of billiards has been studied via symbolic coding by Katok [29],

Hubert [25], Troubetzkoy [42], and Hubert–Vuillon [26]. From the point of view
of determining geometric information from a bounce sequence, Galperin, Krüger,
and Troubetzkoy [19], for example, prove sharp relationships between periodic
trajectories and periodic bounce sequences, which in turn influenced the Flat Strip
theorem of Hassell–Hillairet–Marzuola [21]; see Theorem 4. We refer the reader
to these works and their references for further discussion of the many connections
between symbolic coding and geometry.

Acknowledgements. The authors would like to thank all the participants and visitors
to the Polygonal Billiards Research Cluster held at Tufts University in Summer 2017.
In particular, we thank Pat Hooper, Rich Schwartz, Caglar Uyanik, and the authors
of [8] for illuminating conversations on billiards and symbolic dynamics. Erlandsson
and Leininger would like to thank the School of Mathematics at Fudan University
and the Mathematics Research Centre and the University of Warwick, respectively,
for their hospitality while this project was being completed.

2. Preliminaries

In this section we discuss background, establish notation, and give preliminary results
we will use in this paper. Throughout, S will denote a closed, oriented surface of
genus at least 2 and pW zS ! S will denote the universal covering map. We also fix
an action of �1S on zS by covering transformations.

2.1. Spaces of geodesics. Fix once and for all an arbitrary hyperbolic metric � on S ,
and let z� D p�.�/ be the pullback to zS , thus specifying an identification of zS with
the hyperbolic plane. Let S11 denote the circle at infinity bounding z�, and equip
it with the action of �1S obtained by extending the action on zS . Given any other
geodesic metric m on S , with the pullback zm D p�.m/ on zS , the identity on zS
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is a �1S -equivariant quasi-isometry to z�, and hence the Gromov boundary of zm is
identified with S11; see [7, Chapter III.H.3]. In particular, we view S11 as the Gromov
boundary of the pullback of any metric on S .
Let G . zS/ denote the set of unordered pairs of distinct points in S11, that is,

G . zS/ D ffx; yg j x; y 2 S11; x ¤ yg D
�
S11 � S

1
1 n�

�
= �;

where� is the diagonal and� is the equivalence relation .x; y/ � .y; x/. The action
of �1S on S11 determines an action on G . zS/.
For any geodesicmetricm onS an zm-geodesic on zS is amap z
 W I ! zS which is an

isometric embedding from a (finite, infinite, or bi-infinite) interval I � R to . zS; zm/.
Below, we will use the term geodesic for the map and its image interchangeably.
If we need to distinguish them, we will refer to parametrized and unparametrized
geodesics. Downstairs on S , an m-geodesic 
 is the composition of an zm-geodesic
with the covering projection; that is, 
 D p ı z
 W I ! S . These are locally isometric
embeddings, but for arbitrary metrics, not all locally isometric embeddings to S are
obtained in this way. However, for nonpositively curved metrics (e.g., the hyperbolic
metric � or flat metrics), every locally isometric embedding 
 W I ! S lifts to an
isometric embedding since zS is a CAT(0) space; see [7, Proposition II.1.4].
We let G . zm/ denote the space of all unparametrized bi-infinite zm-geodesics on zS

given the Chabauty–Fell topology (see [10,18] and [9]), or equivalently the quotient
of the compact–open topology on parametrized geodesics, equipped with the action
of �1S induced by its action on zS . A sequence fz
ng1nD1 in G . zm/ converges to a
geodesic z
 if and only if the geodesics can be parametrized so that the sequence of
parametrized geodesics converges uniformly on compact sets to the parametrization
of z
 . There is a continuous, closed, proper, surjective map

@ zmWG . zm/! G . zS/

defined by setting @ zm.z
/ to be the endpoints at infinity of the geodesic. When zm has
negative curvature, @ zm is a homeomorphism – in particular, @z� is a homeomorphism.
Below, we will build up to a better understanding of @z' for the case of flat metrics '.
We say that pairs fx; yg; fx0; y0g 2 G . zS/ link if the two points x0 and y0 are in

different components of S11 n fx; yg. A pair of zm-geodesics with linking endpoints
necessarily intersect each other, though even when zm is CAT(0), the intersection may
not be transverse; see the left-hand side of Figure 1. If fx; yg; fx0; y0g 2 G . zS/ do
not link, then we say that fx00; y00g is between fx; yg and fx0; y0g if, with respect to
some choice of ordering of each of the three pairs, the six points appear cyclically as

x � x00 � x0 � y0 � y00 � y

as in the right-hand side of Figure 1. The terminology is suggestive of the behavior of
geodesics with those endpoints (although for general metrics, the actual intersection
patterns of geodesics can be more complicated). We write Œfx; yg; fx0; y0g� for the
set of all pairs fx00; y00g between fx; yg and fx0; y0g.
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Figure 1. Left: Two geodesics with linking endpoints that do not meet transversely. Right: A
geodesic z
 00 between geodesics z
 and z
 0, illustrating the notion of betweenness of their
endpoints, fx00; y00g 2 Œfx; yg; fx0; y0g� in G . zS/.

2.2. Geodesic currents. A geodesic current onS is a�1S -invariant Radonmeasure
on G . zS/. Let C.S/ denote the set of all geodesic currents on S with the weak*
topology. Any essential closed curve 
 on S determines a geodesic current of the
same name which is the counting measure on the set of pairs of endpoints on S11
of p�1.
/. In fact, Bonahon proved that currents are a completion of the set of closed
curves, in the sense that the set of real multiples of associated currents

ft � 
 j t 2 RC; 
 � S closed curveg

forms a dense subset of C.S/. The geometric intersection number between two closed
curves 
 and ı is the minimal number of transverse double-points of intersection
among all curves 
 0 and ı0 homotopic to 
 and ı, respectively. This is realized by
the �-geodesic representatives, and Bonahon proved that the geometric intersection
number has a continuous extension to the full space of currents.
Theorem 2 ([5, 6]). There is a continuous, bilinear function

�WC.S/ � C.S/! R

such that for every pair of closed curves 
; ı, with associated geodesic currents of
the same name, �.
; ı/ recovers the geometric intersection number.
Another important class of geodesic currents is the Liouville currents Lm

associated to certain types of metrics m. Liouville currents have the geometricity
property that the intersection form recovers lengths: for every essential closed curve 

on S ,

�.
; Lm/ D `m.
/; (2.1)
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where `m.
/ is the length of the m-geodesic representative of the homotopy class
of 
 . Such currents exist for a wide range of metrics, generalizing the classical
Liouville measure on geodesics in the hyperbolic plane given in terms of cross-
ratios; see [1,6,11–13,17,23,37]. The construction of the Liouville current for a flat
metric and an investigation of its various properties was the focus of [17] and [1].
We describe the key properties in Section 2.5, setting the stage for the more detailed
analysis we will carry out in Section 3.

2.3. Flat metrics, geodesics, and holonomy. A flat metric on S will mean a non-
positively curvedEuclidean conemetric' onS . This is a singularRiemannianmetric,
locally isometric to R2 away from finitely many cone singularities † D †.'/ � S ,
each with cone angle greater than 2� . Since ' is nonpositively curved, any two points
of zS are connected by a unique z'-geodesic. In the complement of the cone points,
geodesics are Euclidean geodesics (straight lines, rays, or segments), and when a
geodesic meets a cone point, it makes angle at least � on both sides; see Figure 2.

� �

� �

Figure 2. Local picture of a geodesic through a cone point.

Geodesics between a pair of cone points which meet no other cone points are
called saddle connections. A geodesic segment, ray, or line containing no cone
points is called nonsingular, and is called singular otherwise. We write G �.z'/ for
the closure in G .z'/ of the set of nonsingular geodesics, and we will call these the
basic geodesics in the metric z'. The following is proved in [1, Section 2.4].
Proposition 3 (Structure of basic geodesics). The geodesics in G �.z'/ are precisely
the following z'-geodesics: (i) the nonsingular ones; (ii) the ones that meet a single
cone point and make cone angle exactly � on one side; and (iii) those that meet two
or more cone points in such a way that they always make cone angle � on one side
and that side switches from right to left or from left to right at most once along their
entire length. Furthermore, there are only countably many of type (iii), and we will
denote that set by G 2.z'/.
Suppose z
0; z
1 2 G �.z'/ are asymptotic in one direction, meaning that the

Hausdorff distance in one direction is finite. Then either we can pass to subrays
z
C0 D z


C
1 that coincide, or else there is an isometric embedding Œ0;1/� Œ0;W �! zS

for some W > 0 such that Œ0;1/ � f0g maps to z
C0 and Œ0;1/ � fW g maps to z

C
1 ;
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see [7, Theorem II.2.13]. In the former case, there is a maximal such common subray,
necessarily emanating from a cone point z� 2 †.z'/, and we say that z
0 and z
1 are
cone-point asymptotic. In the latter case, the embedding of Œ0;1/ � Œ0;W � is called
a flat half-strip.
A flat strip is an isometric embedding R � Œ0;W �! zS , for some W > 0, or the

composition of such an isometric embedding with the projection down to S . Flat
strips in S naturally arise from Euclidean cylinders in S , which are locally isometric
immersions S1r � Œ0;W � ! S where W > 0 and S1r is a circle of length r > 0.
The next result of Hassell–Hillairet–Marzuola [21] (generalizing work of Galperin–
Krüger–Troubetzkoy [19] for billiards) says that all flat strips arise in this way. The
proofs in [19, 21] are easily modified to handle flat half-strips as well.

Theorem 4 (Flat Strip theorem [19,21]). With respect to the metric ' 2 Flat.S/, any
flat strip or flat half-strip in S is contained in a cylinder.

A z'-Euclidean triangle is a z'-geodesic triangle in zS with vertices at the cone
points which is isometric to a geodesic triangle in R2; equivalently, a z'-Euclidean
triangle is a triangle whose sides are z'-saddle connections and which bounds a
2-simplex with no cone points in its interior. (Note: we may refer to either the
2-simplex or its boundary as a triangle.) A '-Euclidean triangle T is the image
in S of a z'-Euclidean triangle zT in zS for which the restriction of pW zS ! S to zT is
injective on the interior. In this case, there is a map from T to a Euclidean triangle
in R2 (though it may not be defined at the vertices) which is an isometry for the
induced path metric on T .
A'-triangulation ofS is a triangulation (more precisely, a�-complex structure in

the sense of [22]) such that every triangle is a '-Euclidean triangle. A '-triangulation
lifts to a z'-triangulation of zS . It was shown in [33] that '-triangulations exist for
quadratic differential metrics, and we note that the same proof is valid for arbitrary
flat metrics.
For a flat metric ', any homotopy class of a curve 
 on S has a '-geodesic

representative; such a representative can be obtained as a uniform limit of constant-
speed parametrizations of homotopic curves whose lengths limit to the infimum over
all representatives. The geodesic representative is either unique (up to parametriz-
ation) or else it is part of a Euclidean cylinder, S1r � Œ0;W � ! S , as above. In this
case the set of geodesic representatives of 
 is precisely the set of core curves (i.e.,
the images of S1r � ftg for t 2 Œ0;W �). If a curve 
 is homotopic to a core curve of
a cylinder, then we say that 
 is a cylinder curve. The set of all homotopy classes of
cylinder curves for ' will be denoted cyl.'/. In general, closed curves will refer to
closed essential curves on S up to homotopy.
Suppose ' is a flat metric on S . Since ' has zero curvature on S n †.'/, we

have a well-defined holonomy homomorphism P' W�1.S n†.'/; �/! SO.2/ given
by parallel transport around loops based at a point � 2 S n†.'/. We will often refer
to the image of P' as the holonomy of '.
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2.4. The space Flat.S / and affine equivalence. We say that two flat metrics '1; '2
are equivalent if there exists an isometry f W .S; '1/! .S; '2/ isotopic to the identity
on S . We then define Flat.S/ to be the set of equivalence classes of unit-area flat
metrics. Wewill use the notation ' for either a particular flat metric or its equivalence
class.
We will also need the following coarser equivalence relation on flat metrics.

We say that two (unit area) flat metrics '1; '2 are affine–equivalent if there is a
map f W .S; '1/ ! .S; '2/, isotopic to the identity, which is real-affine in isometric
local coordinates: for all � 2 S n †.'1/ and orientation preserving, isometric
local coordinates �1WU1 ! R2 and �2WU2 ! R2 about � and f .�/, respectively,
with f .U1/ D U2, we have �2 ı f jU1 D A ı �1 C b, for some A 2 SL.2;R/
and b 2 R2. If f is not an isometry, then at each nonsingular point there is a
direction of maximal stretch. Using the local coordinates we see that the direction of
maximal stretch defines a parallel line field onSn†.'1/. It follows from the existence
of such a parallel line field that the holonomy of '1 is contained in f˙I g < SO.2/.
Consequently, '1 and '2 are defined by quadratic differentials differing by an element
of SL.2;R/ from the usual action of SL.2;R/ on the space of quadratic differentials;
see [34], for example.
Proposition 5. If '1; '2 are two affine-equivalent flat metrics which are not
equivalent, then '1; '2 are defined by quadratic differentials in the same SL.2;R/-
orbit.
In [17], Flat.S/ denoted only the space of flat metrics coming from quadratic

differentials. In the current paper (as well as [1]), the flat metrics coming from
quadratic differentials, which we denote Flat2.S/ � Flat.S/ is a (fairly small)
subspace (characterized, for example, by Proposition 5 as those admitting affine
deformations). The following theorem, proved in [17, Lemma 19], gives a useful
way of deciding when quadratic differential metrics are affine-equivalent.
Theorem 6. If '1 and '2 are quadratic differential metrics on any surface of finite
type, then they are affine-equivalent if and only if their cylinder curves agree.
Remark. Note that this theorem holds for finite-type surfaces, which allows a finite
number of punctures. We will apply it to a closed surface minus the cone points of a
flat metric in the proof of the Support Rigidity theorem in Section 3.5.
When '1 has holonomy with order at least 3, then by appealing to Proposition 5,

affine equivalence implies the stronger conclusion that '1 D '2 in Flat.S/.

2.5. Currents and chains for flat metrics. The fact thatSL.2;R/ orbits in Flat2.S/
are determined by cylinder sets (Theorem 6 above) was used in [17] as a step in
proving that marked simple closed curves are spectrally rigid over Flat2.S/; that is,
the lengths of those curves entirely determine a quadratic differential metric. This
rigidity result was generalized in [1] to all of Flat.S/, although in this setting all
closed curves are needed, not just simple ones. In both [17] and [1], a key object is
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the Liouville current for a flat metric ' 2 Flat.S/. In this section we recall some of
the key properties of the current, particularly relating to its support.
In [17], the Liouville currentL' associated to a flat metric ' is defined as a kind of

average of themeasured foliations in all directions andwhich satisfies the geometricity
property �.˛; L'/ D `'.˛/ for all closed curves ˛. For general ' 2 Flat.S/, the
Liouville current L' is defined in [1] as the push-forward via the “endpoint map”

@z' WG .z'/! G . zS/

of a �1S -invariant measure on G .z'/ obtained from Riemannian geometry. It is also
shown there to have the same geometricity property as in [17]. One of the key facts we
will need here, proved in [1, Proposition 3.4 and Corollary 3.5], involves the support
of L' . Recall from Section 2.3 that the set of basic geodesics G �.z'/ � G .z'/ is the
closure of the set of nonsingular geodesics, and that they are completely described in
Proposition 3. We will write

G �
z' D @z'.G

�.z'// � G . zS/

for the set of endpoints on S11 of the basic geodesics.
Proposition 7. For any ' 2 Flat.S/, the support of its Liouville current is precisely
given by endpoints of basic geodesics:

supp.L'/ D G �
z' � G . zS/:

Next we introduce a key tool from [1] used to study Liouville currents for flat
metrics, the set of chains, a technical device to encode information about cone points
in terms of boundary points. The definition is somewhat technical, and involves an
auxiliary countable subset � � G �

z'
.

Definition 8. Fix a flat metric ' and countable subset � � G �
z'
. Then a .G�

z'
; �/-

chain is a bi-infinite sequence of boundary points x D .: : : ; x0; x1; : : :/ � S
1
1 such

that
(i) fxi ; xiC1g 2 G �

z'
n�,

(ii) xi ; xiC1; xiC2 is a counterclockwise-ordered triple of distinct points, and
(iii) Œfxi ; xiC1g; fxiC1; xiC2g� \ G �

z'
D ffxi ; xiC1g; fxiC1; xiC2gg

for all i . Let the set of .G �
z'
; �/-chains be denoted Chain.G �

z'
; �/.

Remark. This definition is a more concise version of the one given in [1] which
involved first defining chains using G �

z'
and then introducing the countable set later,

and additionally allowed for finite or half-infinite chains. Furthermore, the notation
differs from [1], where thesewere called .L' ; �/-chains. Since the definition depends
only on supp.L'/ D G �

z'
, this notation is more descriptive and will be useful below.

We note that chains may be periodic, and hence may contain only a finite number of
boundary points, repeated infinitely often.
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Achain arises naturally from a cone point � 2 †.z'/ via families of basic geodesics
meeting only � and winding around in a manner such that two successive ones are
cone-point asymptotic. In [1, Proposition 4.1] it was shown that essentially all chains
arise in this way.
The set � is used to discard geodesics meeting more than one cone point. More

precisely, recall that the set G 2.z'/ � G �.z'/ of basic geodesics meeting at least two
cone points is countable, by Proposition 3 (Structure of basic geodesics). We let

G 2
z' D @z'.G

2.z'// � G �
z'

denote the countable set of endpoints of such geodesics, and then require our countable
set � to contain G 2

z'
.

Proposition 9. Suppose � � G �
z'

is any countable set containing G 2
z'

and x 2
Chain.G �

z'
; �/ is any chain. Then there exists a unique cone point � and sequence


 D .: : : ; z
0; z
1; : : :/ � G �.z'/ of geodesics meeting �, and no other cone points,
such that @z'.
/ D x, i.e., @z'.z
i / D fxi ; xiC1g for each i . Moreover, every cone
point is related in this way to some chain.
From this we obtain a well-defined, surjective map from chains to the set of cone

points †.z'/:
@#
z' WChain.G

�
z' ; �/! †.z'/I (2.2)

see [1, Lemma 4.2]. Because @z' is �1-equivariant, so is @#z' .
The upshot of this is that when we have two metrics '1; '2 � Flat.S/ whose

Liouville currents have the same support G �
z'1
D G �

z'2
, we can take� to be a countable

subset containing G 2
z'1
[ G 2

z'2
so that the resulting chains are the same, producing an

identification of the cone points of the two metrics. The following is essentially a
consequence of [1, Lemma 4.4] and the proof of [1, Theorem 5.1].
Proposition 10. Suppose that '1; '2 2 Flat.S/ are two metrics whose Liouville
currents have the same support, which we denote

G � D G �
z'1
D G �

z'2
:

Then for any countable set � � G � containing G 2
z'1
[ G 2

z'2
, we have

Chain.G �; �/ D Chain.G �
z'1
; �/ D Chain.G �

z'2
; �/;

and there exists a �1S -equivariant bijection

zf 0W†.z'1/! †.z'2/

so that zf 0 ı @#
z'1
D @#

z'2
.

Later we will see that by enlarging � further, we can also make the nonsingular
geodesics match up for a pair of metrics '1; '2 as we did here for chains and cone
points.
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2.6. Identifying geodesics. For two flat metrics whose Liouville currents have the
same support, we combine facts we know about basic geodesics and flat strips to
provide a geometrically useful identification of “most of” the basic geodesics for the
two metrics. Recall that having the same support precisely means that G �

z'1
D G �

z'2
, or

in other words the basic geodesics have the same endpoints. Below, we will simply
write

G � D G �
z'1
D G �

z'2
;

for the mutual support of the pair of Liouville currents.
Metrics in Flat.S/ are only defined up to isotopy. In the previous Section 2.5where

chains are defined we recorded the fact that for any two metrics '1; '2 2 Flat.S/
whose Liouville currents have the same support, we can take any countable set �
containing the boundary pairs of “multiple-cone-point geodesics”

G 2
z'1
[ G 2

z'2
� G �

in either metric, and using the chains, produce a �1S -equivariant bijection between
the cone points of the two metrics; see Proposition 10. From arbitrary representatives
of the metrics, we can therefore perform “point-pushing” isotopies on the cone points
so that the two metrics have exactly the same set of cone points †.z'1/ D †.z'2/ in a
way that is compatible with the chains (i.e., so that @#

z'1
D @#

z'2
).

Second, for the same �, we can observe that every pair fx; yg 2 G � n � has
exactly one geodesic in its preimage by both @z'1 and @z'2 ,

j@�1
z'1

�
fx; yg

�
j D 1 D j@�1

z'2

�
fx; yg

�
j:

To see this, note that the only way @�1
z'i
.fx; yg/ can contain more than one geodesic is

if it consists of a (closed) flat strip of parallel geodesics; see [7, Theorem II.2.13]. By
the Flat Strip theorem 4, such a strip covers a maximal cylinder. Since the boundary
of such a cylinder is a concatenation of saddle connections in S , the boundary of the
strip itself is a concatenation of saddle connections in zS , and hence fx; yg 2 G 2

z'i
,

which is a contradiction.
We can then enlarge the countable set� so that for any fx; yg 2 G �n�, either x; y

can be ordered to become part of a bi-infinite (possibly periodic) chain, or else it is the
image of nonsingular geodesics in both z'1 and z'2. This is possible because, for each
i D 1; 2 and for each of the countably many cone points � 2 †.z'i /, there are only
countably many nonsingular rays emanating from � whose endpoints on S11 fail to be
extendable to a bi-infinite chain. Thus, there are countably many geodesics z
 2 G �

z'i
containing a single cone point whose endpoints are not part of a bi-infinite chain. So
by taking � to be the union of the @z'i -images of these, together with G 2

z'1
[ G 2

z'2
, we

obtain the desired property.
Therefore, setting Gi D @�1

z'i
.G � n�/, for i D 1; 2, we can define gWG1 ! G2

to be the bijection
g D @�1

z'2
ı @z'1 jG�n�: (2.3)
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That is, g is the z'2-straightening of each z'1-geodesic in G1, and it sends the set of
singular geodesics to the set of singular geodesics. Furthermore, observe that any
singular geodesic z
 2 Gi containing a cone point � has endpoints in a chain whose
@#
z'i
-image is in a chain determining �. It follows that � is the unique cone point in a

singular geodesic z
 2 G1 if and only if it is the unique cone point in g.z
/ 2 G2.
Proposition 11. For any pair of flat metrics with the same support G �, after
discarding a suitable countable set � � G � the bijection gWG1 ! G2 between
the basic geodesics in the two metrics is a homeomorphism. Furthermore, g.z
/ is
singular if and only if z
 is. In the singular case, the unique cone point of z
 is also
contained in g.z
/.

Proof. Suppose fz
ng1nD1 � G1 is a sequence such that z
n ! z
 2 G1. To
prove g.z
n/ ! g.z
/, it suffices to prove that every subsequence of fg.z
n/g has a
subsequence that converges to g.z
/. For this, observe that f@z'1.z
n/g1nD1 [ f@z'1.z
/g
is compact subset of G . zS/. Therefore, fg.z
n/g1nD1[fg.z
/g is precompact in G .z'2/,
and since G �.z'2/ is a closed subspace containing G2, our subset is precompact
in G �.z'2/. For any subsequence of fg.z
n/gwemay choose a convergent subsequence
fg.z
nk /g

1
kD1

with g.z
nk / ! z
 0 2 G �.z'2/. Then, by definition of g (and the fact
that limits in the Hausdorff space G . zS/ are unique) we have

@z'2.z

0/ D lim

k!1
@z'2.g.z
nk // D lim

k!1
@z'1.z
nk / D @z'1.z
/:

Thus, z
 0 D g.z
/ since @z'2 is one-to-one on G2. Therefore, g is continuous. Revers-
ing the roles of G1 and G2, we see that g�1 is also continuous, and hence g is
a homeomorphism.

We now adopt the machinery needed to define this homeomorphism as a
convention for the remainder of the paper. For two flat metrics '1; '2 with equal
support, we will be able to unambiguously write G � for their mutual support as pairs
of endpoints; � � G � for a countable set as described above; Gi D @z'i .G

� n�/

for the remaining basic geodesics; z† D †.z'1/ D †.z'2/ for the cone points; and
gWG1 ! G2 for the homeomorphism identifying the basic geodesics.

3. Support Rigidity theorem

In this section wewill prove ourmain theorem about Liouville currents of flat metrics.
Support Rigidity theorem. Suppose '1; '2 are two unit-area flat metrics whose
Liouville currents have the same support, supp.L'1/ D supp.L'2/. Then '1; '2
differ by an affine deformation, up to isotopy. If either metric has holonomy of order
greater than 2 (i.e., is not induced by a quadratic differential, or does not support
a foliation by straight lines), then equal support implies that '1 and '2 differ by
isometry, isotopic to the identity.
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For this entire section, we assume that '1 and '2 are flat metrics with equal
support, and we follow the conventions specified above to identify their cone points
and their basic geodesics.

3.1. Cone point partitions. For each i D 1; 2, any geodesic z
 2 Gi divides zS into
two half-planes,H˙i .z
/, which are the closures of the connected components of the
complement of z
 . When z
 is a nonsingular geodesic, each cone point lies in exactly
one of these two half-planes, and thus z
 determines a partition of z† into two disjoint
subsets depending on which side of z
 the point lies. When z
 is singular, it contains
exactly one cone point, and makes cone angle � on one side. We then declare the
cone point to lie on the side opposite the one in which it makes an angle � , and so z

also determines a partition of z† into two disjoint subsets.

Lemma 12 (Cone point partitions are well-defined). For any z
 2 G1, the geodesic z

defines the same partition as its image g.z
/ under the straightening homeomorphism.

The straightening homeomorphism is defined above in (2.3).

Proof. First, suppose that z
 2 G1 is nonsingular, and fix a � 2 z†. After orienting z
 ,
let us suppose HC1 .z
/ is the right half-plane and H�1 .z
/ is the left half-plane. The
orientation of z
 induces an orientation ofg.z
/ and hence a choice of right and left half-
planes HC2 .g.z
// and H�2 .g.z
//. The endpoints @z'1.z
/ D @z'2.g.z
// divide S11
into two components, S1˙1 .z
/, which are the boundaries at infinity of H˙1 .z
/, as
well as that ofH˙2 .g.z
//.
We will show � 2 HC1 .z
/ H) � 2 HC2 .z
/. To prove this, observe that there

is a singular geodesic zı 2 G1 containing � and contained in the interior of HC1 .z
/.
Such a geodesic can be obtained by first parallel translating the direction of z
 to �
along a geodesic segment connecting a point of z
 to � (making appropriate choices at
any cone points encountered along this geodesic segment), then perturbing slightly
to avoid the countably many geodesics through � not in G1. Then � 2 g.zı/. On the
other hand, z
 and g.z
/ have the same endpoints @z'1.zı/ D @z'2.g.

zı//, and these lie
in S1C1 .z
/. If � 2 H�2 .g.z
//, then g.zı/ would have to cross g.z
/ twice, creating a
bigon; see Figure 3. This contradiction shows that � 2 HC2 .g.z
//, as required.
Next, observe that if � 2 z† is on the left-hand side of a sequence of z'i -geodesics

fz
ng � Gi (with respect to a choice of orientations) and z
n ! z
 2 Gi (limiting
as oriented geodesics), then � is also on the left-hand side of z
 , for i D 1; 2. Now
suppose that � 2 z† is any cone point and z
 2 G1 is a geodesic for which � is on the
left-hand side. Choose a sequence of nonsingular geodesics z
n 2 G1 limiting to z
 ,
such that � is on the left-hand side of z
n for all n: this is easy to do if � is not on z
 (then
any sequence will have a tail that has this property). If, on the other hand, � 2 z
 , then
it makes angle � on the right, and any sequence fz
ng � G1 of nonsingular geodesics
limiting to z
 from the right near � will have � on the left-hand side (to find such a
sequence, take any sequence of points approaching � in the interior ofHC1 .z
/ whose
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z


zı

�

g.z
/

g.zı/

�

Figure 3. Switching sides creates a bigon.

tangent vectors limit to the direction of z
 and so that there are nonsingular geodesics
through those points which lie in G1). Now since g is a homeomorphism, it follows
that g.z
n/! g.z
/. Since z
n are all nonsingular, � is on the left-hand side of g.z
n/
by the first part of the proof, and hence also on the left-hand side of g.z
/.

3.2. Identifying triangulations. Recall that given ' 2 Flat.S/, a z'-Euclidean tri-
angle is a triangle with cone point vertices, z'-saddle connection sides, and no cone
points in its interior.

Lemma 13. Every pair x; y 2 z† that determines a saddle connection for z'1 also
determines a saddle connection for z'2; this defines a bijection gsc WG1;sc ! G2;sc
between all z'1-saddle connections and all z'2-saddle connections. Furthermore,
x; y; z 2 z† are vertices of a positively oriented z'1-Euclidean triangle if and only if
they are vertices of a positively oriented z'2-Euclidean triangle.

Proof. To prove the first statement, suppose x; y determines a saddle connection ı
for z'1. This means that there is a z'1-geodesic segment connecting x and y that does
not pass through any other cone points. Now consider the unique z'2-geodesic path
between x and y. Suppose there is a cone point z on this path. We claim that it is
possible to separate z from x and y by a z'1-geodesic, z
 2 G1 as in Lemma 12. Note
that this is impossible in the z'2 metric, since this would create a geodesic bigon; see
Figure 4.
To create the desired separating geodesic, consider the z'1-geodesic segment

from z to x and the z'1-geodesic segment from z to y. There must be sub-segments
of each of these that do not intersect ı. This is because in the z'1 metric, z is not
on the saddle connection ı. We denote these sub-segments as ˛ and ˇ in Figure 4,
below. Any geodesic not passing through x, y or z and transversally intersecting
both ˛ and ˇ will separate z from x and y. It is possible to find the required
geodesic z
 2 G1 by perturbing an arbitrary such z'1-geodesic to one in G1. This
completes the proof of the first statement.
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Figure 4. Failure to preserve saddle connections creates a bigon.

To prove the second statement, suppose that x, y, z are the vertices of a
z'1-Euclidean triangle zT . From the above, there are z'2-saddle connections forming
a complete graph on x, y, z. Further, these saddle connections bound a connected
component, which we call zT 0. We need to show that zT 0 does not contain any cone
points, hence x, y, z form a z'2-Euclidean triangle, and that this triangle zT 0 has the
same orientation as zT .
Let ˛ be the saddle connection between x and z. There is a sequence of

nonsingular geodesics fz̨ng in G1, intersecting zT 0 which limits to ˛ in zT . Let ˇ
and ı be the saddle connections between y and z and between x and z, respectively.
Define similarly sequences f žng and fzıng. For large enoughN , z̨N defines a partition
that separates z from x and zıN a partition that separates z from y. Consider
the intersection of corresponding two half-planes containing z. The boundary of
this region determines an interval Ix on S11. Similarly ˛N ; žN , z and žN ; zıN ; y
determine intervals Iy and Iz on S1, respectively; see the left-hand side of Figure 5.
Give the triangle bounded by z̨N , žN , and 
N the same orientation as zT 0. Note
that the orientation of the intervals Ix; Iy ; Iz along S11 determine the orientation of
the triangle (although we note that the intersection pattern of the geodesics in the
z'2-metric is not a priori the same; see the right-hand side of Figure 5). Moreover,
the 6 intervals determined by Ix; Iy ; Iz and their complements partition S11 in such
a way that the z'1-geodesics obtained by straightening z̨N and žN separate vertex x
from the other vertices of zT . Similarly the straightening of z̨N and zıN separate
vertex z from y and x and the straightening of žN and zıN separate vertex y from z
and x. This results in a triangle whose orientation must agree with both zT 0 and zT
and hence the orientation of zT and zT 0 must agree.
Finally, if w is a cone point inside zT 0, we similarly approximate the side of zT 0

by geodesics z̨N ; žN ; zıN 2 G2 which together separate this cone point from
the cone points x; y; z in the z'2-metric, and hence, since g�1WG2 ! G1 is a
homeomorphism, induces such a separation in the z'1-metric as well, contradicting
that zT is a z'-Euclidean triangle.
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Figure 5. Left-hand side: Approximating the sides ˛; ˇ; 
 of zT 0 with nonsingular geodesics
and the resulting intervals Ix ; Iy ; Iz on S1. Right-hand side: Potential change of intersection
pattern.

In fact, gsc also defines a bijection between all z'1-geodesics that are concatenation
of saddle connections and the set of all such z'2-geodesic concatenations:

Proposition 14. Consider a z'1-geodesic z
1 D � � � ı0ı1 � � � which is a finite, infinite,
or bi-infinite concatenation of saddle connections. Then z
2 D � � �gsc.ı1/gsc.ı2/ � � �
is a z'2-geodesic. We write z
2 D g.z
1/.

Proof. Recall that a concatenation of saddle connections is a geodesic segment if and
only if the angle between any two consecutive saddle connections measure at least �
on either side. Let

z
1 D � � � ı0ı1 � � �

be a z'1-geodesic segment which is a concatenation of saddle connections. Then by
Lemma 13,

z
2 D � � �gsc.ı1/gsc.ı2/ � � �

is a concatenation of z'2-saddle connections. Suppose gsc.ıi / is a saddle connection
between cone points y and x and gsc.ıiC1/ a saddle connection between x and z and
that they meet at x in an angle less than � on one side. Then, similar to the proof of
Lemma 13, there is a nonsingular z'2-geodesic that induces a partition separating x
from y and z; see Figure 6. But since ıi and ıiC1 make up a geodesic segment in
the z'1-metric, this gives us a z'1-geodesic bigon, a contradiction. Hence the angle
between two consecutive saddle connections must be at least � on both sides, and
hence z
2 is a z'2-geodesic segment.

Consider now any '1-triangulation T of S . Recall that this means that the vertex
set is precisely † and each triangle is a '1-Euclidean triangle. We lift to a �1S -
invariant triangulation zT of zS . By Lemma 13, we can extend the identity from z† to
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y

x

z

�

˛

Figure 6. If the angle � between two consecutive saddle connections measures less than � there
is a nonsingular geodesic ˛ separating x from y and z.

itself to a �1S -equivariant map

zfT W
zS ! zS

which sends each triangle in zT to a Euclidean z'2-triangle, and is orientation
preserving and affine on the corresponding 2-simplices. This map descends to a
map fT WS ! S which is also affine on each 2-simplex in T . Since the orientation
on each triangle is preserved by fT , and fT has degree 1, it follows that fT is a
homeomorphism. Our goal is to show that, when '1 has holonomy greater than 2,
this map is in fact an isometry. Since the areas of '1 and '2 are both 1, if we prove
that the interior angles of the triangles in T are preserved by fT , then fT must be an
isometry.
Adjusting '2 by an isotopy, we can assume that the '1-saddle connections which

are the edges of T are also '2-saddle connections. In particular, T is also a '2-tri-
angulation. Moreover, through a further isotopy, we can assume that fT and QfT are
the identity on each of the edges in the triangulation. This is convenient to assume
throughout the following, and so we make the following additional assumption. In
addition to the conventions adopted at the end of Section 2.6 to identify G1 and G2
homeomorphically, we further assume that we have fixed a '1-triangulation T which
is also a '2-triangulation, and let zT be its lift to zS . We also assume that the identity
on .S; '1/! .S; '2/ is affine on each triangle.
For each triangle T of T and each i D 1; 2, choose an isometry from T (with its

induced pathmetric) to a Euclidean trianglewith respect to'i (as noted in Section 2.3,
this may not be well-defined on the vertices). Using this, we identify the unit tangent
space at each point of each triangle (other than the vertices) with S1. Given � 2 S1
and a triangle T of T , we can then unambiguously refer to the 'i -direction � of T .
We let S1i .T / denote the 'i -directions of T .
We do the same for triangles of zT in zS , choosing isometries from triangles in zT

to Euclidean triangles by composing the covering map p with the isometries of the
corresponding triangles inT . Observe that by construction, for any zT in zT andx 2 zT ,
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the derivative dpx sends z'i -direction � to 'i -direction � in T D p. zT /. Thus, for
any triangle zT in zT with T D p. zT /, we use this to identify S1i .T / D S

1
i .
zT /.

With this convention, we are now able to talk about common triangulations
and associated directions in a consistent way, for example in proving the following
corollary to Proposition 14.

Corollary 15. Two currents with the same support have the same cylinder curves:
cyl.'1/ D cyl.'2/. Moreover, we can homotope any '1-cylinder curve to a '2-cyl-
inder curve in S n†.

Proof. Lift any '1-cylinder to an infinite strip in zS . The boundary is a pair of
bi-infinite geodesics, z
˙ which are each concatenations of z'1-saddle connections.
Moreover, these remain a boundedHausdorff distance apart (Hausdorff distance equal
to the width of the strip, in fact). Now observe that g.z
˙/ is a pair of asymptotic z'2-
geodesics which are concatenations of z'2-saddle connections. These must bound an
infinite strip, invariant under a cyclic group (since the same is true of the strip bounded
by z
˙), and hence the quotient is a '2-cylinder whose core curve is homotopic to
the core curve of the '1-cylinder. Thus cyl.'1/ � cyl.'2/. A symmetric argument
proves the reverse containment.
To see that the cylinder curves are homotopic in S n † we fix a triangulation T

of S . Let z
 be a z'1-geodesic contained in some z'1-strip. Note that any z'2-geodesic
in the corresponding z'2-strip defines the same partition of z† as z'1. This follows by
approximating the z'1-geodesic by nonsingular geodesics z
n in G1 and applying g
to these. Each g.z
n/ define the same partition as z'1. By passing to a subsequence,
g.z
n/ converges to a z'2 geodesic in the z'2-strip. However, all z'2 geodesics in the z'2-
strip determine the same partition. Now, take a nonsingular '1-representative 
1 of
a cylinder curve 
 . The ordered and oriented edges of T crossed by 
 determine the
homotopy class of 
 in S n†. However, a nonsingular '2-geodesic representative 
2
of the homotopy class of 
 must cross the same set of ordered and oriented edges,
since their lifts z
1 and z
2 to zS determine the same partition of z† in zS . Hence, 
1
and 
2 must be homotopic in S n†.

3.3. Parallelism preserved. Suppose zT is any triangle in zT , i 2 f1; 2g, and z
 2 Gi
is a geodesic nontrivially intersecting the interior of zT . Define G �. zT ; z
/ to be the
closure of the set of geodesics in G �.z'i / intersecting zT in an arc parallel to the arc
of intersection z
 \ zT . We say that z
 is z'i -generic for zT if G �. zT ; z
/ � Gi .
Before stating the main technical result of this section, we describe the structure

of the set G �. zT ; z
/ for the triangle zT , classifying the possibilities for how these
geodesics parallel to z
 hit a particular side ı of each triangle, and allowing us to
essentially parametrize the leaves of this foliation by where it hits ı.

Lemma 16. Fix i 2 f1; 2g, a triangle zT in zT , and a z'i -generic geodesic z
 2 Gi .
Then the intersection of the geodesics of G �. zT ; z
/ with zT defines a foliation by
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zT

ı

Figure 7. The foliation of a triangle zT from a z'i -generic geodesic z
 . The geodesics on the top
and bottom of this figure are the unique geodesics in G�. zT ; z
/ which do not meet the interior
of zT . The side ı meets every geodesic in G�. zT ; z
/.

parallel geodesic segments meeting each side of zT transversely. One side ı of zT
nontrivially intersects every geodesic in G �. zT ; z
/, defining a function

hWG �. zT ; z
/! ı

that sends each geodesic to its point of intersection with ı. For any x 2 ı, the
preimage h�1.x/ consists of either (1) one nonsingular geodesic, (2) one singular
geodesic through one of the two endpoints of ı, or (3) two cone-point asymptotic
geodesics meeting zT in the same geodesic arc.

Proof. The geodesics of G �. zT ; z
/ intersect zT in the leaves of a parallel geodesic
foliation by definition. To see that this foliation meets the sides transversely, we
observe that otherwise one of the sides is part of a leaf. Since such a leaf is a
geodesic that contains both endpoints of that side, hence two cone points, it is not
in Gi , contradicting the z'i -genericity assumption.
To find the unique side ı of zT intersecting every geodesic inG �. zT ; z
/, we consider

an isometry from zT (with the z'i -metric) to a triangle in R2 for which the foliation is
horizontal. The unique side connecting the highest and lowest vertices is (the image
of) ı; see Figure 7.
Finally, recall that all geodesics in Gi are either nonsingular and uniquely

determined by any arc contained in it, or singular and contain exactly one cone
point. In the latter case, any arc ˇ in a singular geodesic z
 0 2 Gi not containing
the (unique) cone point of z
 0 is contained in exactly one other geodesic z
 00 2 G1,
cone-point asymptotic to z
 0. These two statements imply the claim about the fibers
of h.

With this basic structure in hand, the goal of this section is to prove that the map g
preserves the parallel structure described above.
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Proposition 17 (Parallelism is preserved). Suppose zT is a triangle in zT and z
 2 G1
is a z'1-generic geodesic meeting zT . Then g.z
/ is a z'2-generic geodesic and

G �
�
zT ; g.z
/

�
D g

�
G �. zT ; z
/

�
:

We will need the following construction in the proof of this proposition. Suppose
z
0; z
1 2 Gi is a pair of cone-point asymptotic geodesics. For each j D 0; 1, we
write z
j D z
�j [ z


C

j as a union of rays based at the (unique) cone point � in z
j ,
so that z
C0 D z


C
1 . The union of the negative rays z
�0 [ z
�1 bounds a closed slit

space containing z
C0 D z

C
1 which we denote S.z
0; z
1/; see Figure 8. The boundary

of S.z
0; z
1/ is precisely z
�0 [ z
�1 and contains the single cone point �, making an
interior angle of 2� .

2�
�

z
0

z
1

z
�0

z
�1

z
C0 D z

C
1

S.z
0; z
1/

H0

H1

Figure 8. The “slit space” S.z
0; z
1/ is a union of half-planes H0 and H1 bounded by geo-
desics z
0 and z
1, respectively, along their maximal common sub-ray z
C0 D z


C

1
based at the

cone point �.

Next we observe that these slit spaces hit the cone points in the same way as their
g-images.
Lemma 18. If z
0; z
1 2 G1 are cone-point asymptotic geodesics, then so are g.z
0/,
g.z
1/ and

S.z
0; z
1/ \ z† D S.g.z
0/; g.z
1// \ z†:

Proof. As already noted S.z
0; z
1/ is a union of closed half-planes H0 and H1
bounded by z
0 and z
1, respectively; see Figure 8. We have

S.z
0; z
1/ \ z† D .H0 \ z†/ [ .H1 \ z†/:

Similarly,
S.g.z
0/; g.z
1// D H

0
0 [H

0
1;

where H 00;H 01 are closed half-planes bounded by g.z
0/ and g.z
1/, respectively.
Since cone-point partitions are preserved by g (Lemma 12), we have

H 00 \
z† D H0 \ z† and H 01 \

z† D H1 \ z†;

and the lemma follows.
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Proof of Proposition 17. From our basic observations about how the foliation meets
each triangle (Lemma 16), there is a unique side ı of the triangle zT that meets all
the geodesics in G �. zT ; z
/. For all z
 0 2 G �. zT ; z
/, the two endpoints of ı (which are
cone points) lie in different subsets of the partition of z† determined by z
 0, so since
the partition is preserved (Lemma 12), the same is true for g.z
 0/. Since ı is also a
z'2-geodesic (by our convention identifying geodesics), this property of the partitions
implies g.z
 0/ \ ı ¤ ;.
Let z
˛; z
! denote the geodesics of G �. zT ; z
/ intersecting the endpoints of ı (i.e.,

the unique pair of geodesics in G �. zT ; z
/ that are disjoint from the interior of zT ) and
set

G �0 .
zT ; z
/ D G �. zT ; z
/ n fz
˛; z
!g:

Note that g.G �0 . zT ; z
// consists of geodesics intersecting the interior of zT (and so
also the interior of ı).

Claim. For all z
 0 2 G �0 .
zT ; z
/, the images g.z
/ and g.z
 0/ intersect zT in parallel

arcs.

Let us first establish that the proposition follows from this claim. Observe that
the claim implies g.G �0 . zT ; z
// � G �. zT ; g.z
//; and since g is continuous, we can
extend this to both z
˛ and z
! , and therefore

g.G �. zT ; z
// � G �. zT ; g.z
//:

Now suppose z
 00 2 G �. zT ; g.z
// is any geodesic and consider its z'1-straightening.
Observe that z
 00 has no transverse intersections with any geodesic in g.G �. zT ; z
//
and lies between g.z
˛/ and g.z
!/. Considering the endpoints on the circle at infinity,
we see that a z'1-straightening of z
 00 lies between z
˛ and z
! and has no transverse
intersections with any geodesic from G �. zT ; z
/. But such a z'1-geodesic would have
to intersect zT in a leaf of the foliation of zT coming from G �. zT ; z
/, and would thus
be a geodesic in G �. zT ; z
/. Therefore, z
 00 2 g.G �. zT ; z
// proving that

G �. zT ; g.z
// � g.G �. zT ; z
//;

and hence G �. zT ; g.z
// D g.G �. zT ; z
//, as required. Therefore, all that remains is
to prove the claim.

Proof of Claim. For the remainder of this proof, set gDG �. zT ; z
/ and g0DG �0 .
zT ; z
/

to make the notation less cumbersome. We start by defining Z1 to be the subsurface
of zS foliated by geodesics from g. It has singular z'1-geodesic boundary. The proof
strategy will be to define a corresponding Z2 and to show that it can be “zipped up”
to a nonsingular Euclidean subsurface with a well-defined notion of angle. This will
let us conclude that parallelism is suitably maintained.
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z
˛

z
!

z
0

z
1
z
 0

z
�0 [ z

�
1

ı

Z1

Figure 9. The surfaceZ1 together with the geodesic segment ı intersected by all geodesics in g,
the nonsingular boundary components z
˛ and z
! , a pair fz
0; z
1g 2 P g0 defining a singular
boundary component z
�

0
[ z
�

1
, and another generic geodesic z
 0 2 g0.

We will need an alternative description of Z1 as follows. From Lemma 16 on
the structure of the geodesics in g, all singular geodesics in g0 occur in cone-point
asymptotic pairs, and we consider the set of all such pairs:

P g0 D ffz
0; z
1g j z
0; z
1 2 g0; cone-point asymptoticg;

which has an obvious map to cone points. Let H .z
˛/ and H .z
!/ denote the half-
spaces bounded by z
˛ and z
! , respectively, containing ı. Then, we have

Z1 D H .z
˛/ \H .z
!/ \
\

fz
0;z
1g2Pg0

S.z
0; z
1/;

where S.z
0; z
1/ is the slit space bounded by the union of subrays z
�0 and z
�1 of z
0
and z
1, respectively. That Z1 is a subsurface follows from this description since the
boundaries of the half planes and slit spaces in the intersection form a locally finite set.
The boundary of Z1 decomposes as the union of the boundaries of these half-planes
and slit spaces, which are precisely z
˛ , z
! , and the union of pairs of rays z
�0 [z
�1 , one
for each fz
0; z
1g 2 P g0. Each boundary component of the form z
�0 [ z
�1 contains
exactly one cone point and makes cone angle 2� on the interior. There are no cone
points in the interior of Z1. Although there are cone points (the endpoints of ı) on
the two boundary components, z
˛ and z
! , the interior cone angle in Z1 is � ; see
Figure 9 for an illustration of the various features of Z1.
From this description, we obtain a subsurface of zS for the z'2-metric in an exactly

similar way:

Z2 D H .g.z
˛// \H .g.z
!// \
\

fz
0;z
1g2Pg0

S.g.z
0/; g.z
1//:

The boundary of Z2 decomposes just like Z1. By Lemma 12 and Lemma 18,
Z2 has no cone points in the interior and exactly one cone point on each boundary
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yZ2

Z2

…

ı

g.z
0/

g.z
1/
g.z
 0/

….g.z
0// D ….g.z
1//

….g.z
 0// ….ı/

Figure 10. The surface Z2 and nonsingular quotient …WZ2 ! yZ2, together with: g.z
 0/ 2
g.g0/, the cone-point asymptotic pair fg.z
0/; g.z
1/g 2 g.P g0/, and ı, as well as their images
under…. The angle between ı and g.z
 0/ is equal to the angle between….ı/ and….g.z
 0//.

component. For each pair fz
0; z
1g 2 P g0, the corresponding boundary component
of Z2 is of the form

g.z
0/
�
[ g.z
1/

�

and has interior cone angle 2� at the unique cone point it contains, while g.z
˛/
and g.z
!/ have interior cone angle � at their cone point.
We now construct a quotient nonsingular Euclidean surface …WZ2 ! yZ2 by

“zipping up the slits”: we isometrically identify the pair of rays g.z
0/� and g.z
1/�,
for each fz
0; z
1g 2 P g0. Away from the cone points, … is a local isometric em-
bedding, and it is a local isometry away from @Z2. In particular,….ı/ is a geodesic
arc connecting the boundary components ….g.z
˛// and ….g.z
!//, and for any
geodesic z
 0 2 g0, ….g.z
 0// is a geodesic in yZ2 intersecting ….ı/ in the same
angle that g.z
 0/ intersects ı. Observe that for any pair fz
0; z
1g 2 P g0 we have
….g.z
0// D ….g.z
1//; see Figure 10.
Now let z
 0 2 g0 be any disjoint geodesic distinct from z
 , and suppose that g.z
 0/

and g.z
/ intersect ı in different angles. The same is then true of the images in yZ2.
Since yZ2 is simply connected and complete with geodesic boundary, the developing
map is globally defined and injective, and is thus an isometric embedding to a closed
subset of R2. Therefore, the images of ….g.z
 0// and ….g.z
//, being bi-infinite
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lines in R2 making different angles with the image of ….ı/ must intersect. On the
other hand, z
 0 and z
 are disjoint, and hence so are g.z
 0/ and g.z
/. By construction
of yZ2,….g.z
 0// and….g.z
// are also disjoint, and hence so are their images in R2.
This is impossible, and so g.z
 0/ and g.z
/ intersect ı in the same angle, proving the
claim.

Since the claim proves the proposition, we are done.

3.4. Holonomy preserved. Our next goal is to use this preservation of parallelism
to conclude that holonomy is also preserved.
Suppose that zT is a triangle in zT and z
 2 Gi is a z'i -generic geodesic for zT

(and so intersecting the interior of zT ). Observe that any other geodesic in G �. zT ; z
/

intersecting the interior of zT is also z'i -generic for zT . Therefore, if � 2 S1i . zT / is the
direction in zT of z
 , we can unambiguously refer to � as a z'i -generic direction, and
we write

G �. zT ; �/ D G �. zT ; z
/:

If T is the image T D p. zT / in S , then we have an identification of the space of
directions S1i . zT / D S1i .T /, and we define a direction in S

1
i .T / to be 'i -generic

if it is z'i -generic in S1i . zT /. Since G1 is invariant under the action of �1S , this is
independent of the choice of triangle zT in the preimage of T . Note that for any
triangle T , there are only countably many non-'i -generic directions.
Let � denote the dual graph of the 1-skeleton T .1/, which we view as embedded

transversely and minimally intersecting T .1/. An edge path ıW Œ0; 1�! � has initial
vertex ı.0/ in some unique triangle T of T and terminal vertex in a unique triangle T 0
of T . We say that ı is an edge path of � from T to T 0, and we denote the initial and
terminal vertices as vT D ı.0/ and vT 0 D ı.1/. Given such a path ı and direction
� 2 S1i .T /, we can 'i -parallel translate � along ı to obtain a 'i -direction Pı;'i .�/
in T 0. The parallel translate Pı;'i .�/ depends only on the homotopy class of ı, rel
endpoints, in � (or equivalently in S n †/ since the metric is Euclidean away from
the cone points. In particular, if vT 2 �.0/ is the base point in T then this defines the
'i -holonomy homomorphism

P'i W�1.�; vT / Š �1.S n†; vT /! SO.2/;

by P'i .Œı�/ � � D Pı;'i .�/ for any loop ı based at vT . The isomorphism

�1.�; vT / Š �1.S n†; vT /

is induced by inclusion. We note that the map P'i has no dependence on the base
point. This is justified by the fact that the fundamental groups based at any two
points differ by an isomorphism which is canonical, up to inner isomorphism, and
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since SO.2/ is abelian, the resulting holonomy homomorphism differs from the one
based at vT in this prescribed way. In particular, we may write

P'i W�1.S n†/! SO.2/

without any confusion.
Given a triangle T of T , we say that a direction � 2 S1i .T / is 'i -stably generic if

for every triangle T 0 in T and path ı from T to T 0, Pı;'i .�/ 2 S
1
i .T

0/ is 'i -generic.
It follows that for any path ı in � from T to T 0, the direction � 2 S1i .T / is 'i -stably
generic if and only if Pı;'i .�/ 2 S

1
i .T

0/ is 'i -stably generic. Since there are only
countably many homotopy classes of paths between any two vertices of � , and only
countably many non-'i -generic directions in S1i .T /, for any T in T , it follows that
there are only countably many non-'i -stably generic directions in S1i .T /. We denote
the complementary set of 'i -stably generic directions in T by

�.T; 'i / D f� 2 S
1
i .T / j � is 'i -stably generic in T g:

The next result is the key to determining angles of triangles when the holonomy
is infinite.
Proposition 19 (Defining angles). For every triangle T 2 T there is an orientation-
preserving homeomorphism

FT WS
1
1 .T /! S12 .T /;

which is �1.�; vT /-equivariant with respect to the holonomy homomorphisms:

FT .P'1.ı/ � �/ D P'2.ı/ � FT .�/:

Furthermore, if zT is a triangle in zT with p. zT / D T and � 2 �.T; '1/, then
FT .�/ 2 �.T; '2/ and

g.G �. zT ; �/
�
D G �. zT ; FT .�//:

By the last statement, FT is determined by g via the stably generic geodesic
foliations of zT .

Proof. Fix any triangle zT in zT . According to Proposition 17, for any z'1-generic
direction � 2 S11 .

zT / and z'1-geodesic z
 intersecting zT in direction � , we have
that g.z
/ is a z'2-generic geodesic, and we can uniquely define F zT .�/ 2 S

1
2 .
zT / to be

the z'2-generic direction of g.z
/. This uniquely determines a bijection F zT from the
set of z'1-generic directions in S11 . zT / to the z'2-generic directions in S12 . zT / satisfying

g.G �. zT ; �// D g.G �. zT ; z
// D G �. zT ; g.z
// D G �. zT ; F zT .�//:

Consider any three directions �1, �2, �3 appearing cyclically in this order
around S11 . zT / and let z
1, z
2, z
3 be z'1-geodesics through a single point x in the
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interior of zT in each of these directions, respectively. The forward endpoints on
the circle at infinity for each of these geodesics is the same as for their images
by g, and hence F zT .�1/, F zT .�2/, F zT .�3/ also appear cyclically in the same
order around S12 . zT /. That is, F zT preserves the cyclic ordering. It follows that
for T D p. zT /, F zT uniquely extends to a homeomorphism

FT WS
1
1 .T /! S12 .T /:

By construction, the last condition of the proposition is satisfied.
Next, suppose zT ; zT 0 are triangles that share an edge ze, let T D p. zT / and

T 0 D p. zT 0/ with e D p.ze/ 2 T \ T 0 the image of the shared edge, and let ı be
the edge of � dual to e with zı a lift of ı intersecting ze. Suppose � 2 S11 .T / is any
'1-stably generic direction and z
 is a geodesic intersecting zT in the direction � , and
suppose that z
 crosses ze. From the property of FT we have already proved, we know
that the direction of g.z
/ in zT is FT .�/. Since z
 and g.z
/ cross ze, both intersect zT 0.
Parallel transport along an arc of z
 contained in the union zT [ zT 0 or along zı (or
equivalently along ı via the identification from the covering p) both define the same
maps

Pı;'1 WS
1
1 .T /! S11 .T

0/;

and it follows that the direction of z
 in zT 0 is Pı;'1.�/. Similarly, the direction
of g.z
/ in zT 0 is Pı;'2.FT .�//. On the other hand, applying what we already proved
about FT 0 , we know that the direction of g.z
/ in zT 0 is FT 0.Pı;'1.�//. That is,

FT 0 ı Pı;'1.�/ D Pı;'2 ı FT .�/: (3.1)

Since this is true on a dense set in S11 .T /, it is true on all of S11 .T /, by continuity.
If ı D ı1ı2 � � � ık is any edge path connecting vertices vT0 ; vT1 ; : : : ; vTk (so

that ıj is an edge from vTj�1 to vTj ), then by repeatedly applying equation (3.1) we
have

Pı;'2 ı FT0 D Pı2���ık ;'2 ı FT1 ı Pı1;'1

D Pı3���ık ;'2 ı FT2 ı Pı1ı2;'1 D � � � D FTk ı Pı;'1 :

The fact that FT is equivariant with respect to the holonomy homomorphisms P'1
and P'2 now follows by taking ı in this equation to be a loop based at a vertex
of � .

Corollary 20. '1 and '2 induce the same holonomy homomorphism

P'1 D P'2 W�1.S n†/! SO.2/:

Proof. For every 
 2 �1.�; vT / D �1.S n†; vT /, Proposition 19 implies that FT is
an orientation-preserving topological conjugacy between P'1.
/ and P'2.
/. Any
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rotation is determined by the cyclic ordering on any orbit and its action on this
cyclically ordered set. Consequently, P'1.
/ D P'2.
/, and since 
 was arbitrary,

P'1 D P'2 :

When the holonomy is infinite, we get the most information about the homeo-
morphism FT .
Corollary 21. If P'1.�1.�// is infinite, then for each triangle T , the map FT is an
isometric identification of the circle of directions in the two metrics. In particular,
FT conjugates P'1 to P'2 inside SO.2/.
To emphasize this last point, we note that FT is a priori a topological conjugacy,

but when the holonomy is infinite, it is in fact an isometric conjugacy.

Proof. Since P'1.�1.�; vT // is an infinite, finitely generated abelian group, there
exists an element Œı� 2 �1.�; vT / such that P'1.Œı�/ has infinite order. Then
both P'1.Œı�/ and P'2.Œı�/ are irrational rotations, topologically conjugate by the
homeomorphism FT . It follows that their angles of rotation are equal, and FT is an
isometry on the orbit of any point by hP'1.Œı�/i. Since this orbit is dense, FT is an
isometry.

From this, we easily deduce the following, which essentially proves the Support
Rigidity theorem when the holonomy has infinite order.
Corollary 22. If P'1.�1.�// is infinite, then the '1-interior angle at any vertex of
any triangle T of T is equal to the '2-interior angle of the same vertex.

Proof. Let zT be a triangle with p. zT / D T and for each i D 1; 2, let‚i . zT / � S1i . zT /
be the set of six z'i -directions parallel to the sides of zT (each side is considered with
both orientations so appears twice). For every � 2 S1i . zT / n ‚i . zT /, the foliation
of zT determined by G �. zT ; �/ is transverse to each of the sides. Furthermore, for any
such � , the side which meets every leaf defines a locally constant function

hi WS
1
i .
zT / n‚i . zT /! sides. zT /:

This function changes values at precisely each of the six directions in‚i . zT /. In fact,
hi changes value from one side to another at the direction of the third side. Now note
that for a z'1-generic direction � , we have h1.�/ D h2.FT .�//, by Proposition 19.
Consequently,

FT .‚1. zT // D ‚2. zT /:

Therefore, since the previous result shows that FT is an isometry, the z'1-directions
of the three sides of zT differ from the z'2-directions by an isometry, and consequently,
the z'1-angles and z'2-angles of zT agree. Pushing back down to T proves the corollary.
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3.5. Proof of the Support Rigidity theorem. We are now ready to put together all
the pieces and show that a flat metric is determined (up to affine equivalence) by its
support.

Proof of the Support Rigidity theorem. We continue to assume, without loss of gen-
erality, that '1 and '2 are representatives chosen so that we can identify geodesics
and triangulations as above. The proof of the Support Rigidity theorem divides into
two cases, depending on whether the holonomy is finite or infinite.

Case 1. The holonomy of '1 is infinite.

For every triangle T of T and every vertex of T , the interior '1-angle is equal
to the interior '2-angle (Corollary 22), and thus, the '1-metric and '2-metric on T
are similar. Since the identity .S; '1/ ! .S; '2/ is already affine on each triangle
T 2 T , it is in fact a similarity, and so it scales distances by a constant factor cT .
When two triangles share an edge, their scaling factors must be equal. Since S is
connected, cT D cT 0 for any two triangles T; T 0 of T , and hence '1 and '2 differ
by some global scalar c > 0. Since both '1 and '2 have unit area, the scalar c must
equal 1, and hence '1 D '2.

Case 2. The holonomy of '1 is finite.

Since the two metrics induce the same holonomy homomorphism (Corollary 20),
we can let � WS 0 ! S denote the branched cover corresponding to the kernel of
this homomorphism P'i . More precisely, S 0 is the metric completion of the cover
of S n† corresponding to the kernel, and � is the extension of the covering map to
the completion (which sends completion points †0 of S 0 to appropriate points of †).
Write '0i D ��.'i / for the pullback of 'i to S 0, for i D 1; 2. Since the cover was
constructed from the kernel, both of these metrics have trivial holonomy.
Moreover, the cylinder sets are equal in the two metrics (Corollary 15), and the

homotopy from a cylinder curve for '1 to a cylinder curve for '2 occurs is in the
complement of †. Now observe that the cylinders for '0i are precisely the preimages
of the cylinders for 'i under � , for i D 1; 2, and hence cyl.'01/ D cyl.'02/ on S 0 n†0.
By passing to these covers we are now in Flat1 and we may invoke Theorem 6
to conclude from the equality of cylinder sets that '01 and '02 are affine-equivalent
on S 0 n†0. Let f 0 be the affine map, isotopic to the identity on S 0 n†0, which extends
by the identity over †0.
Now every triangle T 2 T is covered by a triangle T 0 � ��1.T /, and the map

f 0jT 0 W .T
0; '01/!

�
f 0.T 0/; '02

�
is affine. By our convention for triangulations, the identity .T 0; '01/ ! .T 0; '02/ is
also affine. So, since f 0 is isotopic to the identity rel †0, it follows that for each
edge e of T 0, f 0.e/ is the unique '02-geodesic representative of the isotopy class
(namely, the straight segment). Since e is already a '02-geodesic, these must be equal.
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That is, f 0.T 0/ D T 0. Since both the identity and f 0 are affine maps from .T 0; '01/
to .T 0; '02/, they must be equal. Since T 0 was an arbitrary triangle in the preimage
of an arbitrary triangle of T , it follows that f 0 is the identity. Therefore, the identity
.S; '1/! .S; '2/ is affine, and hence '1 and '2 are affine equivalent.
If the holonomy has order greater than 2, then affine-equivalent flat metrics are

actually equal (Proposition 5), so '1 D '2. This completes the proof.

4. Bounce theorem and related results

We are now ready to prove our main theorem on billiards. We begin by recalling the
statement.

Bounce theorem. If finite sided, simply connected Euclidean polygons P1; P2 have
B.P1/ D B.P2/, then either P1; P2 are right-angled and affinely equivalent, or they
are similar polygons.

In Section 4.2–4.4 we describe corollaries of this result, and other applications of the
ideas in the proof.

4.1. Proof of the Bounce theorem. We view billiard trajectories in P as unit speed
piecewise geodesic paths � WR! P . Recall also that with respect to a cyclic labeling
of the edges from an ordered alphabet A, the bounce spectrum B.P / is the set of
all bounce sequences (sequences of letters from A) that can occur along billiard
trajectories.
In order to prove the Bounce theorem, we will heavily use the results of the last

section. To do this, we relate billiard trajectories to nonsingular geodesics on flat
surfaces.

Definition 23 (Unfolding). SupposeP is a simply connected Euclidean polygon with
n vertices, X is an oriented surface of negative Euler characteristic, and G is a finite
group acting faithfully on X with quotient P . Then the quotient map r WX ! P is
called a folding map. We pull back the flat metric on P by r to a metric on X . If
the preimage of every vertex in P is a cone point with angle more than 2� , then X
together with its pullback metric is called an unfolding of P .
We also give an equivalent constructive definition of an unfolding of P and

introduce some notation. This highlights that unfoldings are tessellated by lifts of P
and that each tile is a fundamental domain for the action of G. For the following
description, refer to Figure 11 throughout.
Let DP be the double of P , obtained by gluing two copies of P along

corresponding edges. There is an involution interchanging the two copies of P and
a natural quotient map qWDP ! P given by identifying all corresponding points.
Let DP ı be DP with the vertices of the copies of P removed. Note that DP ı
is a topological sphere with n punctures. Let �ıWXı ! DP ı be a finite-sheeted
regular cover such that the involution onDP ı interchanging the two copies of P lifts
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q

XXı

�ı �
r D q ı � (folding map)

DP ı DP
P

Figure 11. A genus–2 unfolding of P .

to Xı. Both Xı and DP ı have a flat metric induced by the metric on P . Let X
be the metric completion of Xı. As above, we assume that the cone angles are
more than 2� . The covering map can be extended to a regular branched covering
map � WX ! DP . Then X is an unfolding of P , and the map r D q ı � is a folding
map. Furthermore, G is the group generated by the deck group of � WX ! DP

and a lift of the involution on DP . In particular, it follows that for any edge of the
tessellation there is an element in G that locally acts as a reflection in this edge. The
quotient of X by G is precisely P .
Remark. In contrast to the theory of rational billiards, we are considering all
unfoldings, not just those that carry an induced translation structure. The angle
condition ensures that X is nonpositively curved. We will use this construction to
pass to simultaneous unfoldings of a pair of polygons P1; P2 to flat surfaces X1; X2
with the same underlying topology S .
Lemma 24. For an unfolding as above, if 
 WR ! X is a unit speed nonsingular
geodesic, then r ı 
 WR ! P is a billiard trajectory on P . In fact, this defines a
bijection between G-orbits of nonsingular geodesics in X and billiard trajectories
on P .
Viewing r WXı ! P ı as a Euclidean orbifold cover (andP as a reflector orbifold),

this lemma follows from standard orbifold generalizations of covering space theory;
see [41, Chapter 13]. However, the proof is very constructive, so we sketch it here.

Proof of Lemma 24. Fix a nonsingular geodesic 
 on X . Since r is a local isometry
away from the edges of the tessellation by copies of P , it follows that r ı 
 is a
concatenation of geodesic segments between the edges of P . Moreover, we know
that for every edge of the tessellation, there is an element of G that acts locally as a
reflection in that edge. Thus r ı 
 has optical reflection at each point of intersection
with an edge of P (see Figure 12), and r ı 
 defines a billiard trajectory on P .
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ze 2 r�1.e/

r

r ı 


e

Figure 12. The image of a nonsingular geodesic 
 on X under r has optical reflection at points
of intersection with an edge e of P .

Conversely, given a billiard trajectory, any lift to X is a piecewise geodesic path
and optical reflection is preciselywhat is needed to ensure that this piecewise geodesic
is in fact an actual geodesic. Hence every nonsingular geodesic is a lift of a billiard
trajectory, and by definition of unfolding, any two lifts differ by an element inG.

Proof of the Bounce theorem. Suppose B.P1/ D B.P2/. By counting observed
labels, this implies that P1 and P2 have the same number of edges. This allows
us to construct a homeomorphism f WP1 ! P2 respecting the cyclic labeling from
the alphabetA. We assume the restriction of f to each edge of P1 is affine onto the
image edge of P2.
The map f WP1 ! P2 lifts to a homeomorphism Df WDP1 ! DP2, and we

denote the restriction to the complements of the vertices by Df ıWDP ı1 ! DP ı2 ,
which is also a homeomorphism. For each i D 1; 2, we choose compact,
nonpositively curved unfoldings Xi and denote the folding map ri WXi ! Pi . We
assume that the preimage of every vertex by ri is a cone point of angle greater
than 2� . The folding maps factor through branched coverings Xi ! DPi which
restrict to (unbranched) covering maps Xıi ! DP ıi , and we can therefore identify
the fundamental group �1Xıi as a subgroup �1X

ı
i < �1DP

ı
i . By passing to further

finite-sheeted branched covers, we can assume that

Df�.�1X
ı
1 / D �1X

ı
2

and hence Df lifts to a homeomorphism F WX1 ! X2 fitting into a commutative
diagram

X1

��

F // X2

��
DP1

Df //

��

DP2

��
P1

f // P2:



454 M. Duchin, V. Erlandsson, C. J. Leininger and C. Sadanand CMH

Recall that for each i D 1; 2, Xi has a tessellation whose tiles are copies of Pi . The
map F sends tiles of X1 to tiles of X2 by construction. Furthermore, the edges of
the tessellation are labeled according to the labels on the original polygon, and F is
affine on the edges and preserves the labeling.

Claim. The map F WX1 ! X2 is isotopic to an affine map F 0WX1 ! X2 such that
F 0 D F on the edges of the tessellation.

Proof. Suppose 
1WR! X1 is any bi-infinite nonsingular geodesic. By Lemma 24,
the projection to P1 is a billiard trajectory with bounce sequence b. This sequence is
precisely the sequence of labels on edges of the tessellation crossed by 
1. Since F
preserves the labels on the edges of the tessellation, F ı
1 crosses the edges creating
the same sequence b. Since B.P1/ D B.P2/, this is also the bounce sequence of a
billiard trajectory in P2, which lifts to a bi-infinite nonsingular geodesic 
2WR! X2
(again by Lemma 24) and produces the same sequence of labels according to the
edges it crosses. By composing with an element of the group G associated to X2,
we can assume that 
2 crosses the same set of edges as F ı 
1, in the same
direction. In particular, after reparametrizing if necessary, we can find a homotopy
between F ı 
1 and 
2 in Xı2 with uniformly bounded length traces (that is, the
homotopyHt WR! Xı2 , t 2 Œ0; 1�, from F ı 
1 to 
2 has the property that the paths
t 7! Ht .x/ have uniformly bounded length, independent of x 2 R; in fact, the length
is bounded by the diameter of P2 with its induced path metric).
Now let '1 be the given flat metric on S D X1 and '2 the pullback of the

flat metric on X2 by the map F . Observe that by construction, '1 and '2 have
the same set of cone points. The previous paragraph shows that any bi-infinite
nonsingular z'1-geodesic in the universal cover z
1WR ! zS is uniformly close to
a bi-infinite nonsingular z'2-geodesic z
2WR ! zS . Moreover, these are homotopic
in the complement of the (common) cone point set z†. Therefore the metrics have
the same set of endpoints of basic geodesics: G �

z'1
D G �

z'2
. Furthermore, since

the homotopy between a nonsingular z'1-geodesic and a corresponding z'2-geodesic
occurs within zS n z†, it follows that these geodesics define the same partition of z†.
Next, recall that our identification of chains (Proposition 10) gives us a �1S -in-

variant bijection z† ! z†, and in the proof of the Support Rigidity theorem we
extended this to a �1S -equivariant affine map from . zS; z'1/ ! . zS; z'2/, �1S -equi-
variantly isotopic to the identity. In fact, since any nonsingular z'1-geodesic defines
the same partition of z† as a corresponding nonsingular z'2-geodesic and since any
cone point can be uniquely determined byfinitelymany such partitions, it follows from
Proposition 12 (Cone point partitions are well-defined) that this bijection z†! z† is
the identity.
Therefore, we have determined that the identity on zS is �1S -equivariantly

isotopic, rel z†, to a �1S -equivariant affine map ẑ W . zS; z'1/ ! . zS; z'2/. Since
each edge of the (lifted) tessellation of zS by copies of P1 is both a z'1-saddle
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connection as well as a z'2-saddle connection, and the identity is already an affine
map, it follows that ẑ is the identity on these edges. Equivalently, the induced map
ˆW .S; '1/! .S; '2/ is an affinemap, isotopic to the identity, which is the identity on
the edges of the tessellation by copies ofP1. The compositionF 0 D F ıˆWX1 ! X2
is an affinemap, is isotopic toF , agreeing withF on the edges of the tessellation.

With the claim in hand, we finish the proof of the Bounce theorem. If P1 is not
a right-angled polygon, then there is a vertex with interior angle not in �

2
N; by an

appropriate choice of unfolding X1 of P1, we can assume that the holonomy of X1
has order greater than 2 (specifically, we can force the holonomy around the cone
point corresponding to the chosen vertex to have order greater than 2). By the Support
Rigidity theorem, the affine map F 0WX1 ! X2 is a similarity (here we must allow
a similarity, rather than isometry, since the two metrics have not been normalized to
unit area). In this case, the map F 0WX1 ! X2 descends to a similarity f 0WP1 ! P2,
preserving the labeling, as required.
If P1 is a right-angled polygon, then the affine map F 0WX1 ! X2 still descends

to a map f 0WP1 ! P2, but we also note that it descends to an affine map
Df 0WDP1 ! DP2 on the doubles, sending each of the two copies of P1 onto one of
the copies of P2. By rotating if necessary, we may assume that P1 has horizontal and
vertical sides. Pick a horizontal side e1 ofP1, and rotateP2 so that the corresponding
side e2 of P2 is also horizontal. The derivative of f 0WP1 ! P2 therefore has the
form

�
a b
0 c

�
for some a; b; c 2 R. On the other hand, from Df 0, we see that f 0

extends to an affine map from the reflection of P1 over e1 to the reflection of P2
over e2, and hence its derivative commutes with the reflection in the x-axis. An easy
computation shows that b D 0, and hence P2 is also right-angled.

4.2. Generalized diagonals. Next, we prove Corollary 1, which states that the
(finite) bounce sequences of all generalized diagonals – billiard trajectories starting
and ending at a vertex – determine the shape of the polygon. For the proof, we will
need some additional setup.
Given a polygon P with labels in A D f1; : : : ; ng, add a “dummy” label to

form A0 D f0; 1; : : : ; ng, and view B.P / as a subset of AZ � AZ
0 . A generalized

diagonal � W Œa; b� ! P determines a finite bounce sequence, which we extend by 0
to a bi-infinite sequence in AZ

0 , so for example the sequence .1; 2; 3/ extends to
.: : : ; 0; 0; 1; 2; 3; 0; 0; : : :/. We are interested in certain types of elements .bn/ 2 AZ

0 ,
characterized by where they are zero and nonzero. Specifically, let I � Z be such
that bn 2 A for all n 2 I and bn D 0 for n 62 I , then we say that .bn/ is finite
if I D Œa; a0�, forward infinite if I D Œa;1/, backward infinite if I D .�1; a�,
and bi-infinite if I D Z, for appropriate a; a0 2 Z. Thus, the bounce sequence of a
generalized diagonal is a finite sequence inAZ

0 in this terminology.
We topologizeA0 with the discrete topology andAZ

0 with the product topology,
making it compact by Tychonoff’s theorem. We then view the full bounce spec-
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trum B.P / and the generalized diagonals B�.P / as subspaces of AZ
0 . We consider

their closures
B.P / � AZ and B�.P / � AZ

0 :

The closure on the left can be taken inside AZ
0 instead, but since AZ is a closed

subset, the closure is contained in this smaller set. In fact, these closures can be
constructed in a more geometric way, as we now describe.
First take any unfolding r WX ! P with symmetry group G (so that X=G D P )

and consider the natural tiling of X by copies of P . As in the proof of the Bounce
theorem, the nonsingular geodesics 
 on X , up to the action of G, correspond
bijectively to billiard trajectories; recording the edge labels encountered by 
 on the
copies of P in X produces its bounce sequence.
Next, we note that each basic geodesic also has an associated bounce sequence

which records the labels from P crossed by 
 in order. Here we say that 
 crosses a
side e of a copy of P if either (a) it intersects the interior of e transversely in a point,
(b) it contains e as a subsegment and switches from making angle � on the left to
angle � on the right (or vice versa) at the endpoints of e, or (c) it contains an endpoint
of e and makes supplementary angles with that side. Condition (c) is equivalent to
saying that 
 contains the endpoint v of e, and that e lies on the side of 
 which
makes angle � at v. When 
.0/ is at a vertex, there are finitely many ways to decide
which of the edge crossings (in the sense of (b) and (c)) is recorded in the index-0
position. This means that there are a uniformly bounded number of such sequences
for a given 
 (with the bound depending on the angles of the polygon), and they all
differ by shifts.
Now consider any sequence of bounce sequences bn converging in AZ to a

sequence b 2 AZ. For each bn choose a bi-infinite nonsingular geodesic 
nWR! X

having bn as its associated bounce sequence and such that 
n.0/ lies on an edge
labeled by the zeroth term of bn. After passing to a subsequence if necessary, we
can assume that 
n converges to a basic geodesic 
 in X (or more precisely, the
projection to X of a basic geodesic in the universal cover). By the construction
of bounce sequences for basic geodesics, b is one of the bounce sequences for 

(which is unique unless 
.0/ is at a vertex). Since every basic geodesic is a limit of
nonsingular geodesics, it follows that B.P / consists precisely of the set of bounce
sequences of basic geodesics.
One can carry out a similar construction for limits of generalized diagonals,

recalling that a generalized diagonal on P is the image of a saddle connection
on X . Suppose we have a sequence of bounce sequences bn 2 B�.P / limiting
to b 2 AZ

0 . For each bn consider an associated saddle connection 
nW Œa; a0� ! X ,
with a � 0 � a0, such that 
.0/ lies on an edge corresponding to the zeroth term
of bn. Pass to a subsequence so that 
n converges to a geodesic 
 . If the lengths of 
n
are uniformly bounded, then 
n must eventually be constant, and so bn D b for n
sufficiently large. Since this case is trivial, we assume that the length of 
n tends
to infinity. In this case, 
 is either a bi-infinite basic geodesic or a basic geodesic
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�

� 
�

Figure 13. Replacing a singular basic geodesic 
 with a perturbation 
� . The sides crossed by 

are easily read off from 
� .

ray (i.e., a subray of a basic geodesic). As above, we can associate (a finite set of)
bounce sequences to 
 and b is one of these. Thus, all sequences b in B�.P / are
bounce sequences of saddle connections, basic geodesics, or basic geodesic rays (i.e.,
subrays of basic geodesics emanating from a cone point).
We will need the following lemma that allows us to detect, via B�.P /, the

bounce sequences of basic geodesics that meet cone points. The only real difficulty
in the proof comes from the awkward definition of the bounce sequence(s) for a
basic geodesic described above, and the fact that periodic sequences arise as bounce
sequences of both singular and nonsingular basic geodesics.

Lemma 25. A sequence b D .bn/ 2 B.P / is the bounce sequence of a singular basic
geodesic if and only there exists a forward infinite (respectively, backward infinite)
sequence b0 D .b0n/ 2 B�.P / and integer N such that, bn D b0n for all n > N

(respectively, n < N ).

Proof. First choose an unfolding r WX ! P , and let pW zX ! X denote the universal
covering. Consider the tessellation of zX by copies of P and let zG be the symmetry
group, so that zX= zG D P .
Given any basic geodesic 
 W I ! zX defined on an interval I � R and � > 0, we

can perturb 
 to a path 
�W I ! zX , so that d.
�.t/; 
.t// < � and 
� transversely
crosses the interiors of the edges of the tessellation of zX by copies of P according to
the bounce sequence b of 
 , and is disjoint from the cone points (if 
 is nonsingular,

 D 
�). A path 
� with this property is unique up to homotopy in the complement
of the cone points through paths with this property; see Figure 13.
Next suppose 
 with bounce sequence b D .bn/ and 
 0 with bounce sequence

b0 D .b0n/ are two basic geodesics and bn D b0n for all n > N , for some integer N .
Further suppose that 
 is nonsingular and let 
 0� be as above. As in the proof of
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the Bounce theorem (see the proof of the claim), after applying an element of zG,
we can assume that subrays of 
 and 
 0� cross the same P -tiles in the same order.
In particular, 
 and 
 0� are asymptotic in the forward direction. Since 
 0 and 
 0�
are � apart, 
 and 
 0 are forward asymptotic. Then either 
 and 
 0 are cone point
asymptotic, or there are subrays that bound a half-strip. The former cannot happen
because 
 contains no cone points. Therefore, 
 and 
 0 contain subrays that bound
a half-strip. In particular, their bounce sequences are necessarily periodic in the
forward direction by Theorem 4. We can make a similar argument if bn D b0n for
all n < N .
Now we let 
 be any basic geodesic with bounce sequence b D .bn/ 2 B.P /.

If 
 is singular, then let 
 0 be a basic geodesic subray of 
 starting at a cone point. Its
bounce sequence b0 D .b0n/ 2 B�.P / has bn D b0n for all n sufficiently large. Next,
suppose that there is a basic geodesic ray 
 0 emanating from a cone point with bounce
sequence b0 D .b0n/ 2 B�.P / and bn D b0n for all n sufficiently large (the argument
for negative infinite sequences is similar). We suppose that 
 is nonsingular, and
prove that there is a singular geodesic with the same bounce sequence as 
 . Extend 
 0
to a bi-infinite singular basic geodesic 
 00 with bounce sequence b00 D .b00n/. Note
that b00n D b0n D bn for all sufficiently large n. By the previous paragraph, since 
 is
nonsingular and 
 00 is singular, it must be the case that there are subrays of each that
bound a half-strip. Therefore, b (and hence b0) are periodic in the forward direction
by Theorem 4. This implies that 
 is entirely contained in a flat strip (because it
is nonsingular). The boundary geodesic 
 000 of the flat strip has the same bounce
sequence as 
 , and is singular. This completes the proof of the lemma.

We are now ready for the proof of Corollary 1.
Corollary 1. If two simply connected Euclidean polygons P1; P2 have B�.P1/ D
B�.P2/, then either P1; P2 are right-angled and affinely equivalent, or they are
similar polygons.

Proof. By the Bounce theorem, it is enough to show that B�.P / uniquely deter-
mines B.P /. First note that any bi-infinite limit of saddle connections is easily seen
to be a limit of nonsingular geodesics. Consequently, we have

B�.P / \AZ
D B.P /: (4.1)

Each b 2 B.P / is the bounce sequence of a basic geodesic, so it suffices do
determine which b 2 B.P / are bounce sequences of nonsingular geodesics – this is
exactly B.P /.
For this, we apply Lemma25 and note thatwe can decide ifb 2 B.P / is the bounce

sequence of a singular geodesic from the set B�.P /. Any b that is a bounce sequence
for both a singular and nonsingular geodesic is a periodic bounce sequence, as shown
in the proof of Lemma 25. By a result of Gal’perin–Krüger–Troubetzkoy [19], any
periodic bounce sequence is the bounce sequence of a periodic billiard trajectory, and
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hence of a nonsingular geodesic. Therefore, B.P / is given by removing from B.P /
all bounce sequences of singular geodesics (determined by B�.P /), then adding back
in the periodic bounce sequences that were removed in the process.

4.3. The case of rational billiards. We note that we can also deduce the following
stronger version of the Bounce theorem (first proved by Bobok-Troubetzkoy [4] using
different methods) under the assumption that all angles of P1 are rational multiples
of � : If two tables P1 and P2, with sides cyclically labeled by A have the same
periodic bounce spectra, and P1 is rational, then P1 and P2 are either similar or
they are right-angled and affinely equivalent. Here the periodic bounce spectrum
refers to the subset Bp.P / � B.P / consisting of all periodic bounce sequences. In
fact, a bounce sequence is periodic if and only if the corresponding billiard trajectory
is periodic, as shown in [19].
To see how we can prove this result using the methods presented here, we first

explain why P1 being rational and having the same periodic bounce spectrum as P2
implies thatP2 is also rational. If all angles ofP1 are rational multiples of � , then we
can unfold to a translation surface S D X1 with flat metric '1 (that is, '1 has trivial
holonomy). We also choose a nonpositively curved unfoldingX2 ofP2 with the same
underlying topological surface S and let '2 be the pullback of the metric on X2, as
in the proof of the Bounce theorem. Since X1 is a translation surface, a result of
Vorobets [43] shows that tangent vectors to core geodesics of cylinders are dense
in T 1X1; see also [32]. Consequently, the endpoints of the lifts of cylinder curves
are dense in the support of the Liouville current L'1 . Since Bp.P1/ determines the
cylinder curves in X1, it also determines supp.L'1/, and consequently all its chains.
As pointed out in [1, Section 6], the chains also determine the angles of the cone
points, and hence we know all the cone points of '1 as well as their cone angles.
Although we do not know a priori that endpoints of lifts of cylinder curves for '2 are
dense in supp.L'2/, we do know that the closure of these endpoints is contained in
supp.L'2/. Since Bp.P1/ D Bp.P2/, it follows that the two metrics have the same
set of cylinder curves, and hence supp.L'1/ � supp.L'2/.
From this one can show that a generic3 chain for the '1-metric is also a chain for

the '2-metric, giving a �1S -equivariant injection from the cone points of z'1 to those
of z'2 in zS . Therefore, there is a cone-angle-preserving injection from the cone points
of '1 to those of '2. By Gauss–Bonnet, this accounts for all cone points, and thus
the injection is actually a bijection. Therefore, the angles of P2 must be the same as
those of P1 and, in particular, all angles of P2 are rational multiples of � as well.

3Chains are defined in [1] in terms of pairs of geodesics in supp.L'/ which are asymptotic to each
other in one direction, with no other geodesics from supp.L'/ between them. It is conceivable that
two such geodesics in the set supp.L'1/ � supp.L'2/ may nonetheless have a geodesic in supp.L'2/
between them. This can happen only countably many times (i.e., non-generically) as a consequence of
Theorem 4, and so we may ignore these.
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Figure 14. Two combinatorially equivalent octagons and the bijection f . There are two periodic,
vertical trajectories shown in the left octagon: one has cutting sequence f: : : ; A;A;A; : : :g and
the other has cutting sequence f: : : ; E;E;E; : : :g.

Once we know both tables are rational, applying [43] again, we can deduce that
supp.L'1/ D supp.L'2/. Now we can follow the proof of the Bounce theorem above
verbatim to complete the argument.

4.4. Cutting sequences. We end by explaining how the application of the Support
Rigidity theorem to theBounce theoremcan be extended to other settings, in particular
to the context of cutting sequences. Recall that a cutting sequence is a symbolic
coding of linear trajectories on translation surfaces, constructed by gluing polygons;
see, for example, [16, 40]. More generally, suppose we have a Euclidean polygon P
and we glue pairs of edges by isometries, obtaining an orientable surface S with
cone metric '. Given a cyclic labeling of the edges of P , the side pairing defines
an equivalence relation on the labels. Consider a bi-infinite geodesic 
 on S that
avoids the vertices of P . Recording the labels crossed by 
 determines a bi-infinite
symbolic coding of the geodesic, which we call its cutting sequence. We note that
each edge actually has two labels (since the edges are paired) and we record the one
at which we enter, not the one from which we exit; see Figure 14. We note that our
definition of a cutting sequence is different from the usual definition since this double
labeling essentially records the direction in which a geodesic crosses an edge instead
of just the edge it crosses.
Let P1; P2 be two cyclically labeled, oriented polygons with side pairings given

by isometries as above. We say that P1 and P2 are combinatorially equivalent if
they have the same set of labels, and if the side pairings induce the same equivalence
relations; see Figure 14. We claim that ifwe have combinatorially equivalent polygons
with the same set of cutting sequences, then the polygons can only differ by an affine
deformation. To see this, note that combinatorial equivalence implies that there is
a homeomorphism P1 ! P2 respecting the labelings and pairings, and hence a
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homeomorphism of the resulting glued surfaces f WS1 ! S2. If the corresponding
two metrics '1; '2 have all cone angles greater than 2� , then since the cutting
sequences determine the bi-infinite geodesics, the Support Rigidity theorem applies
as in the proof of the Bounce theorem above to produce an affine map from .S1; '1/
to .S2; '2/ that restricts to an affine homeomorphism P1 ! P2. If not, we can pass
to finite-sheeted covers of S1 and S2 that are non-positively curved, and run the same
argument there.
Theorem 26. Let P1; P2 be two labeled, oriented, simply connected polygons with
side pairings given by isometries. If P1 and P2 are combinatorially equivalent and
have the same set of cutting sequences, then they are affinely equivalent.
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