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A UNIVERSAL CANNON-THURSTON MAP AND THE

SURVIVING CURVE COMPLEX

FUNDA GÜLTEPE, CHRISTOPHER J. LEININGER, AND WITSARUT PHO-ON

Abstract. Using the Birman exact sequence for pure mapping class groups,
we construct a universal Cannon-Thurston map onto the boundary of a curve
complex for a surface with punctures we call surviving curve complex. Along
the way we prove hyperbolicity of this complex and identify its boundary as a
space of laminations. As a corollary we obtain a universal Cannon-Thurston
map to the boundary of the ordinary curve complex, extending earlier work of
the second author with Mj and Schleimer [Comment. Math. Helv. 86 (2011),
pp. 769–816].

1. Introduction

Given a closed hyperbolic 3-manifold M that fibers over the circle with fiber
a surface S, Cannon and Thurston [CT07] proved that the lift to the universal
covers H2 → H3 of the inclusion S → M extends to a continuous π1(S)-equivariant
map of the compactifications. This is quite remarkable as the ideal boundary map
S1∞ → S2∞ is a π1S-equivariant, sphere–filling Peano curve. For a type-preserving,
properly discontinuous action of the fundamental group π1S of a hyperbolic surface
(closed or punctured) on H3 existence of an equivariant map S1∞ → S2∞, called
a Cannon-Thurston map, was proved in various situations (see [Min94, ADP99,
McM01,Bow07]), with Mj [Mj14a] proving the existence in general. See Section 1.1
for a discussion of more general notions of Cannon-Thurston maps.

Suppose that S is a hyperbolic surface with basepoint z ∈ S, and write Ṡ =
S � {z}. The curve complex of Ṡ is a δ–hyperbolic space on which π1S = π1(S, z)
acts via the Birman exact sequence. In [LMS11], the second author, Mj, and
Schleimer constructed a universal Cannon-Thurston map when S is a closed surface
of genus at least 2. Here we complete this picture, extending this to all surfaces S
with complexity ξ(S) ≥ 2.

Theorem 1.1 (Universal Cannon-Thurston map). Let S be a connected, orientable
surface with ξ(S) ≥ 2. Then there exists a subset S1A0

⊂ S1∞ and a continuous,

π1S–equivariant, finite-to-one surjective map ∂Φ0 : S
1
A0

→ ∂C(Ṡ). Moreover, if

∂i : S1∞ → S2∞ is any Cannon-Thurston map for a proper, type-preserving, isometric
action on H3 without accidental parabolics, then there exists a map q : ∂i(S1A0

) →
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∂C(Ṡ) so that ∂Φ0 factors as

S1A0 ∂i
��

∂Φ0

��
∂i(S1A0

)
q

�� ∂C(Ṡ).

A continuous, π1S–equivariant map defined on a π1S–invariant subset A ⊆ S1∞
to the Gromov boundary of some Gromov hyperbolic metric space equipped with
an action of π1S, will be called an A–Cannon-Thurston map. When A = S1∞,
we will call this a Cannon-Thurston map (making the notion of Cannon-Thurston
map defined above into a special case). Theorem 1.1, in particular, proves the
existence of an S1A0

–Cannon-Thurston map. We could also require that the map is

a continuous extension of a map of H2 to the Gromov hyperbolic space in question.
Our maps satisfy this property as well, though the properties we are primarily
interested in are reflected in the boundary behavior only, so we have chosen to use
this terminology.

For the reader familiar with Cannon-Thurston maps in the setting of cusped
hyperbolic surfaces, the finite-to-one condition may seem unnatural. We address
this below in the process of describing the subset S1A0

⊂ S1∞. First, we elaborate
on the universal property of the theorem (that is, the “moreover” part).

Let p : H = H2 → S denote the universal cover.1 A proper, type-preserving,
isometric action of π1S on a H3 has quotient hyperbolic 3-manifold homeomorphic
to S × R. Each of the two ends (after removing cusp neighborhoods) is either
geometrically finite or simply degenerate. In the latter case, there is an associated
ending lamination that records the asymptotic geometry of the end; see [Thu78,
Bon86,Min10,BCM12]. The Cannon-Thurston map S1∞ → S2∞ for such an action
is an embedding if both ends are geometrically finite; see [Flo80]. If there are
one or two degenerate ends, the Cannon-Thurston map is a quotient map onto a
dendrite or the entire sphere S2∞, respectively, where a pair of points x, y ∈ S1∞
are identified if and only if x and y are ideal endpoints of a leaf or complementary
region of the p−1(L) for (one of) the ending lamination(s) L; see [CT07,Min94,
Bow07, Mj14b]. A more precise version of the universal property is thus given
by the following. Here EL(S) is the space of ending laminations of S, which are
all possible ending laminations of ends of hyperbolic 3–manifolds as above; see
Section 2.6 for definitions.

Theorem 1.2. Given two distinct points x, y ∈ S1A0
, ∂Φ0(x) = ∂Φ0(y) if and only

if x and y are the ideal endpoints of a leaf or complementary region of p−1(L) for
some L ∈ EL(S).

When S has punctures, ∂C(Ṡ) is not the most natural “receptacle” for a universal
Cannon-Thurston map. Indeed, there is another hyperbolic space whose boundary
naturally properly contains ∂C(Ṡ). The surviving curve complex of Ṡ, denoted

Cs(Ṡ) is the subcomplex of C(Ṡ) spanned by curves that “survive” upon filling z

back in. In Section 4, we prove that Cs(Ṡ) is hyperbolic. One could alternatively
verify the axioms due to Masur and Schleimer [MS13], or try to relax the conditions
of Vokes [Vok] to prove hyperbolicity; see Section 4.

1We will mostly be interested in real hyperbolic space in dimension 2, so will simply write
H = H2.
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The projection Π: Cs(Ṡ) → C(S) was studied by the second author with Kent
and Schleimer in [KLS09] where it was shown that for any vertex v ∈ C(S), the
fiber Π−1(v) is π1S–equivariantly isomorphic to the Bass-Serre tree dual to the
splitting of π1S defined by the curve determined by v; see also [Har86],[HV17]. As

such, there is a π1S–equivariant map Φv : H → Π−1(v) ⊂ Cs(Ṡ); see Section 2.4.
As we will see, the first part of Theorem 1.1 is a consequence of the following; see
Section 8.

Theorem 1.3. For any vertex v ∈ C, the map Φv : H → Cs(Ṡ) has a continuous
π1(S)–equivariant extension

Φv : H ∪ S1A → Cs
(Ṡ)

and the induced map

∂Φ = Φv|S1A : S1A → ∂Cs(Ṡ)

is surjective and does not depend on v. Moreover, ∂Φ is equivariant with respect to
the action of the pure mapping class group PMod(Ṡ).

The subset S1A ⊂ S1∞ is defined analogously to the set A ⊂ S1∞ in [LMS11].
Specifically, x ∈ S1A if and only if any geodesic ray r ⊂ H starting at any point and
limiting to x at infinity has the property that every essential simple closed curve
α ⊂ S has nonempty intersection with p(r); see Section 8. It is straightforward to
see that S1A is the largest set on which a Cannon-Thurston map can be defined to

∂Cs(Ṡ).
As we explain below, S1A0

� S1A and a pair of points in S1A0
are identified by

∂Φ0 if and only if they are identified by ∂Φ, and thus ∂Φ is also finite-to-one on
S1A0

. It turns out that the “finite-to-one property” precisely describes the difference

between S1A and S1A0
. To state this precisely, let Z ⊂ ∂Cs(Ṡ) be the set of points x

for which ∂Φ−1(x) is infinite.

Proposition 1.4. We have S1A�S1A0
= ∂Φ−1(Z).

The analogue of Theorem 1.2 is also valid for Φ.

Theorem 1.5. Given two distinct points x, y ∈ S1A, ∂Φ(x) = ∂Φ(y) if and only
if x and y are the ideal endpoints of a leaf or complementary region of p−1(L) for
some L ∈ EL(S).

It is easy to see that for any ending lamination L ∈ EL(S), the endpoints at
infinity of any leaf of p−1(L) (and hence also the non parabolic fixed points of
complementary regions) are contained in S1A, though this a fairly small subset; for
example, almost-every point x ∈ S1∞ has the property that any geodesic ray limiting
to x has dense projection to S. The complementary regions that contain parabolic
fixed points are precisely the regions with infinitely many ideal vertices. Together
with Proposition 1.4 provides another description of the difference S1A�S1A0

; see
Corollary 8.10.

A important ingredient in the proofs of the above theorems is an identification
of the Gromov boundary ∂Cs(Ṡ), analogous to Klarreich’s Theorem [Kla99b]; see

Theorem 2.12. Specifically, we let ELs(Ṡ) denote the space of ending laminations

on Ṡ together with ending laminations on all proper witnesses of Ṡ; see Section 2.3.
We call ELs(Ṡ) the space of surviving ending laminations. A more precise statement
of the following is proved in Section 6; see Theorem 6.1
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Theorem 1.6. There is a PMod(Ṡ)–equivariant homeomorphism ∂Cs(Ṡ)→ELs(Ṡ).

To describe the map ∂Φ0 in Theorem 1.1 we consider the map ∂Φ: S1A → ∂Cs(Ṡ)

from Theorem 1.3, composed with the homeomorphism ∂Cs(Ṡ) → ELs(Ṡ) from

Theorem 1.6. Since EL(Ṡ) is a subset of ELs(Ṡ), we can simply take S1A0
⊂ S1A to

be the subset that maps onto EL(Ṡ), and compose the restriction ∂Φ to this subset

with the homeomorphism EL(Ṡ) → ∂C(Ṡ) from Klarreich’s Theorem. The more
geometric description of S1A0

is obtained by a more detailed analysis of the map ∂Φ
carried out in Section 8.

1.1. Historical discussion. In [Flo80], Floyd constructed a parameterization of
the limit set of a geometrically finite group via an equivariant, continuous map from
a certain boundary of the group he called the group completion (in fact, the map
may be 2-to-1 at some points). Cannon and Thurston’s map S1∞ → S2∞ described
above in the case of fibers of closed hyperbolic 3-manifolds fibering over the circle
can be thought of as an extension of Floyd’s since the group completion of the
fundamental group of the fiber can be naturally identified with S1∞, and the limit
set of the fiber group acting on H3 is S2∞. Their work was a significant departure
from that of Floyd’s as the intrinsic and extrinsic geometry of the fiber H2 in
H3 are drastically different. Cannon and Thurston’s results were circulated in a
preprint around 1984 and inspired works of many others before it was published
in 2007 [CT07]. The existence of a Cannon-Thurston map, as it then became
known, was proved by Minsky [Min94] for closed surface Kleinian groups of bounded
geometry and by Klarreich [Kla99a] and Mj (Mitra) [Mit98b] for hyperbolic 3-
manifold groups of bounded geometry with an incompressible core and without
parabolics (here the domain boundary is not necessarily a circle). Alperin-Dicks-
Porti [ADP99] proved the existence of the Cannon-Thurston map for the fiber of
the figure eight knot complement, McMullen [McM01] for arbitrary punctured torus
Kleinian groups, and then Bowditch [Bow07, Bow13] for more general punctured
surface Kleinian groups of bounded geometry. Mj completed the investigation for
all finitely generated Kleinian surface groups without accidental parabolics, first for
closed and then for punctured surfaces in a series of papers that culminated in the
two papers [Mj14a] and [Mj14b], the latter with an appendix by S. Das. Existence
for more general Kleinian groups (and their boundaries) followed in the work of
Das-Mj [DM16] and Mj [Mj17]. We refer the reader to the survey [Mj18] for further
discussion.

Moving beyond real hyperbolic spaces, it is now classical that a quasi-isometric
embedding of one Gromov hyperbolic space into another extends to an embedding
of the Gromov boundaries, which most closely relates to Floyd’s work mentioned
above. One of the first generalizations of Cannon and Thurston’s work outside the
setting of Kleinian groups is due to Mj in [Mit98a]. He proved that given a short
exact sequence

1 → H → Γ → G → 1

of infinite word hyperbolic groups, there is an equivariant, continuous, surjective
map of Gromov boundaries ∂H → ∂Γ, also referred to as a Cannon-Thurston map
in this setting (again, H is distorted when |G| = ∞). In this case the Cannon-
Thurston map ∂H → ∂Γ is defined between the Gromov boundary ∂H of the fiber
group H and the Gromov boundary ∂Γ of its extension Γ. This was extended to the
case of relatively hyperbolic groups by Pal in [Pal10]. Mj defined an algebraic ending
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lamination associated to points in the Gromov boundary of the base group G in
[Mit97], and recent work of Field [Fie20] proves that the quotient of ∂H in terms
of such an ending lamination is a dendrite (c.f. the Kleinian discussion above); see
also Bowitch [Bow13].

Mj’s early work on Kleinian groups in [Mit98b] mentioned above was in fact a
consequence of a more general result, proving the existence of a Cannon-Thurston
map for certain vertex subgroups of graphs of groups (c.f. [BF92]). In [MP11],
Mj and Pal extended this even further to the case of trees of relatively hyperbolic
spaces. In 2013 Baker and Riley gave the first example of a hyperbolic subgroup
of a hyperbolic group with no continuous Cannon-Thurston map ([BR13]); see also
Matsuda [MO14]. On the other hand, Baker and Riley ([BR20]) proved existence of
Cannon-Thurston maps even under arbitrarily heavy distortion of a free subgroup
of a hyperbolic group.

For free groups and their hyperbolic extensions, Cannon-Thurston maps are bet-
ter understood than arbitrary hyperbolic extensions. Kapovich and Lustig charac-
terized the Cannon-Thurston maps for hyperbolic free-by-cyclic groups with fully
irreducible monodromy [KL15]. Later Dowdall, Kapovich and Taylor characterized
Cannon-Thurston maps for hyperbolic extensions of free groups coming from convex
cocompact subgroups of outer automorphism group of the free group [DKT16].

We note that we have only discussed a few of the many results on the existence
and structure of Cannon-Thurston-type maps, and only in some of the “classical”
settings. For a sample of related results, see e.g. [Lei09,Mj14b,MR18, JKLO16,
Gué16,Fen92,Fra15,Fen16,Mou18,BCG+18,DHS17]).

1.2. Outline. In Section 2, we give preliminaries on curve complexes, witnesses and
Gromov boundary of a hyperbolic space along with basics of spaces of laminations.
In particular, Section 2.4 is devoted to the construction of the survival map and
in Section 2.5 the relation between cusps and witnesses via the survival map is
described. In Section 3, we define survival paths in Cs(Ṡ) and give an upper bound
on the survival distance ds in terms of projection distances into curve complexes of
witnesses. In Section 4 we prove the hyperbolicity of Cs(Ṡ). Section 5 is devoted to

the distance formula for Cs(Ṡ), a-la Masur-Minsky, and as a result we prove that

survival paths are uniform quasi-geodesics in Cs(Ṡ). In Section 6 we explore the

boundary of the survival curve complex Cs(Ṡ) and prove that it is homeomorphic

to the space of survival ending laminations on Ṡ, a result analogous to that of
Klarreich [Kla99b]. In Section 7 we extend the definition of survival map to the
closures of curve complexes. Finally in Section 8, we prove Theorem 1.3 and the
rest of the theorems from the introduction. Specifically, we prove the existence and
continuity of the map ∂Φ in Section 8.1 and its surjectivity in Section 8.2. Finally,
in Section 8.3 we prove the universal property of ∂Φ as well as constructing the
map ∂Φ0.

2. Preliminaries

Throughout what follows, we assume S is surface of genus g ≥ 0 with n 	= 0
punctures, and finite complexity ξ(S) = 3g−3+n ≥ 2. We fix a complete hyperbolic
metric of finite area on S and a locally isometric universal covering p : H → S. We
also fix a point z ∈ S, and write Ṡ to denote either the punctured surface S�{z} or
the surface with an additional marked point (S, z), with the situation dictating the
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intended meaning when it makes a difference. We sometimes refer to the puncture
produced by removing z as the z–puncture. We further choose z̃ ∈ p−1(z) ⊂ H and
use this to identify π1S = π1(S, z) with the covering group of p : H → S, acting by
isometries.

2.1. Notation and conventions. Let x, y, C,K ≥ 0 with K ≥ 1. We write

x
K,C


 y to mean x ≤ Ky + C. We also write

x
K,C� y ⇐⇒ x

K,C


 y and x
K,C

� y.

When the constants are clear from the context or independent of any varying quan-
tities and unimportant, we also write x 
 y as well as x � y. In addition, we will
use the shorthand notation {{x}}C to denote the cut-off function giving value x if
x ≥ C and 0 otherwise.

Any connected simplicial complex will be endowed with a path metric obtained
by declaring each simplex to be a regular Euclidean simplex with side lengths equal
to 1. The vertex set of a connected simplicial complex will be denoted with a
subscript 0, and the distance between vertices will be an integer computed as the
minimal length of a path in the 1–skeleton. By a geodesic between a pair of vertices
v, w in a simplicial complex, we mean either an isometric embedding of an interval
into the 1–skeleton with endpoints v and w or the vertices encountered along such
an isometric embedding, with the situation dictating the intended meaning.

2.2. Curve complexes. By a curve on a surface Y (possibly S, Ṡ, or a subsurface
of one of these), we mean an essential (homotopically nontrivial and nonperiph-
eral), simple closed curve. We often confuse a curve with its isotopy class. When
convenient, we take the geodesic representative with respect to a complete finite
area hyperbolic metric on the surface with geodesic boundary components (if any).
A multi-curve is a disjoint union of pairwise non-isotopic curves, which we also
confuse with its isotopy class and geodesic representative when convenient. We
write i(α, β) for the geometric intersection number of isotopy classes α and β of
multicurves, which is the minimal number of intersection points of a representative
of α with a representative of β.

The curve complex of a surface Y with ξ(Y ) ≥ 2 is the complex C(Y ) whose
vertices are curves (up to isotopy) and whose k–simplices are multi-curves with
k + 1 components. According to work of Masur-Minsky [MM99], curve complexes
are Gromov hyperbolic. For other proofs, see [Bow06,Ham07] as well as [Aou13,
Bow14,CRS14,HPW15] which prove uniform bounds on δ.

Theorem 2.1. For any surface Y , C(Y ) is δ–hyperbolic, for some δ > 0.

The surviving complex Cs(Ṡ) is defined to be the subcomplex of the curve com-

plex C(Ṡ), spanned by those curves that do not bound a twice-punctured disk,

where one of the punctures is the z–puncture. Given curves α, β ∈ Cs
0(Ṡ), we write

ds(α, β) for the distance between α and β (in the 1–skeleton).

2.3. Witnesses for Cs(Ṡ) and subsurface projection to witnesses. A sub-

surface of Ṡ is either Ṡ itself or a component Y ⊂ Ṡ of the complement of a small,
open, regular neighborhood of a (representative of a) multi-curve A; we assume Y
is not a pair of pants (a sphere with three boundary components/punctures). The
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boundary of Y , denoted ∂Y , is the sub-multi-curve of A consisting of those compo-
nents that are isotopic into Y . As with (multi-)curves, subsurfaces are considered
up to isotopy, in general, but when convenient we will choose a representative of
the isotopy class without comment.

Definition 2.2. A witness for Cs(Ṡ) is a subsurface W ⊂ Ṡ such that for every

α ∈ Cs(Ṡ) no representative of (the isotopy class defined by) α can be made disjoint
from W .

Remark 2.3. Witnesses were introduced in a more general setting by Masur and
Schleimer in [MS13] where they were called holes.

Clearly, Ṡ is a witness. Note that if β is the boundary of a twice-punctured disk
D, one of which is the z–puncture, the complementary component W ⊂ S with
∂W = β is a witness. To see this, we observe that any curve α in Cs(Ṡ) that can
be isotoped disjoint from W must be contained in D, but the only such curve in
Ṡ is β. It is clear that these two types of subsurfaces account for all witnesses.
We let Ω(Ṡ) denote the set of witnesses and Ω0(Ṡ) = Ω(Ṡ)� {Ṡ} the set of proper
witnesses. We note that any proper witness W is determined by its boundary curve,
∂W : if W 	= Ṡ, then W is the closure of the component of Ṡ�∂W not containing
the z–puncture.

An important tool in what follows is the subsurface projection of curves in Cs(Ṡ)
to witnesses; see [MM00].

Definition 2.4 (Projection to witnesses). Let W ⊆ Ṡ be a witness for Cs(Ṡ) and

α ∈ Cs
0(Ṡ) a curve. We define the projection of α to W , πW (α) as follows. If W = Ṡ

or if α is contained in W , then πW (α) = α. If W 	= Ṡ, then πW (α) is the set of
curves

πW (α) =
⋃

∂(N (α0 ∪ ∂W )),

where (1) we have taken representatives of α and W so that α and ∂W intersect
transversely and minimally, (2) the union is over all complementary arcs α0 of
α�∂W that meet W , (3) N (α0 ∪ ∂W ) is a small regular neighborhood of the
union, and (4) we have discarded any components of ∂(N (α0 ∪ ∂W )) that are not
essential curves in W . The projection πW (α) is always a subset of C(W ) with
diameter at most 2; see [MM00, Lemma 2.3]. We note that πW (α) is never empty
by definition of a witness.

Given α, β ∈ Cs
0(Ṡ) and a witness W , we define the distance between α and β in

W by
dW (α, β) = diam{πW (α) ∪ πW (β)}.

Note that if W = Ṡ, then dṠ(α, β) is simply the usual distance between α and

β in C(Ṡ). According to [MM00, Lemma 2.3], projections to witnesses satisfy a
2–Lipschitz projection bound.

Proposition 2.5. For any two distinct curves α, β ∈ Cs(Ṡ) and witness W , we

have dW (α, β) ≤ 2ds(α, β). In fact, for any path v0, . . . , vn in C(Ṡ) connecting α
to β, such that πW (vj) 	= ∅ for all j, we have dW (α, β) ≤ 2n.

We should mention that in [MM00] Masur and Minsky consider the projection

map from C(Ṡ) to C(W ) and prove the second statement. Since Cs(Ṡ) is a subcom-

plex of C(Ṡ) for which every curve has nonempty projection, the first statement
follows from the second.
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We will also need the following key fact about projections from [MM00, Theo-
rem 3.1].

Theorem 2.6 (Bounded geodesic image theorem). Given a surface Y , there ex-
ists M > 0 with the following property. For any geodesic G in C(Y ) and proper
subsurface W � Y so that πY (v) 	= ∅ for all vertices v of G, we have

diamW (πW (G)) < M,

where πW (G) denotes the image of the geodesic G in W .

We assume (as we may) that M ≥ 8, as this makes some of our estimates cleaner.
In fact, there is a uniform M that is independent of Y in this theorem, given by
Webb [Web15].

2.4. Construction of the survival map. Consider the forgetful map

Π : Cs(Ṡ) → C(S)
induced from the inclusion Ṡ → S. By definition of Cs(Ṡ), Π is well defined since

every curve in Cs(Ṡ) determines a curve in C(S). Each point v ∈ C(S) determines a
weighted multi-curve: v is contained in the interior of a unique simplex, which cor-
responds to a multi-curve on S, and the barycentric coordinates determine weights
on the components of the multicurve. The weighted multicurve determines an ac-
tion on a simplicial R–tree Tv, dual the preimage of the multicurve in S̃, with edge
lengths determined by the weights. We call Tv the Bass-Serre tree associated v (the
action on the simplicial tree defines the splitting of π1S determined by the under-
ling multicurve of v by Bass-Serre theory). According to [KLS09, Theorem 7.1],
the fiber of the map Π is naturally π1S–equivariantly identified with the Bass-Serre
tree, Π−1(v) = Tv.

An important tool in our analysis is the survival map

Φ : C(S)×H → Cs(Ṡ).

The construction of the analogous map when S is closed is described in [LMS11].
Since there are no real subtleties that arise, we describe enough of the details of
the construction for our purposes, and refer the reader to that paper for details.
Before getting to the precise definition of Φ, we note that for every v ∈ C(S), the
restriction of Φ to H ∼= {v}×H will be denoted Φv : H → Cs(Ṡ), and this is simpler
to describe: Φv π1S–equivariantly factors as H → Tv → Π−1(v), where the action
of π1S on H comes from our reference hyperbolic structure on S, the associated
covering map p : H → S, and choice of basepoint z̃ ∈ p−1(z).

To describe Φ in general, it is convenient to construct a more natural map from
which Φ is defined as the descent to a quotient. Specifically, we will define a map

Φ̃: C(S)×Diff0(S) → Cs(Ṡ),

where Diff0(S) is the component of the group of diffeomorphisms of S containing
the identity (all diffeomorphisms of S are assumed to extend to diffeomorphisms of

the closed surface obtained by filling in the punctures). To define Φ̃, first for each
curve α ∈ C0(S), we let α denote the geodesic representative in our fixed hyperbolic
metric on S, and choose once and for all ε(α) > 0 so that for any two vertices α, α′,
i(α, α′) is equal to the number of components of Nε(α)(α) ∩ Nε(α′)(α

′). If f(z) is

disjoint from the interior of Nε(α)(α), then Φ̃(α, f) = f−1(α), viewed as a curve on
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Ṡ. If f(z) is contained in the interior of Nε(α)(α), then we let α± denote the two

boundary components of this neighborhood, and define Φ̃(α, f) to be a point of the
edge between the curves f−1(α−) and f−1(α+) determined by the relative distance
to α+ and α−. For a point s ∈ C(S) inside a simplex Δ of dimension greater than
0, we use the neighborhoods of curves (defined by {ε(α)}α∈C0(S) as above) as well

as the barycentric coordinates of s inside Δ to define Φ̃(s, f) ∈ Π−1(s) ⊂ Π−1(Δ);
see [LMS11, Section 2.2] for details.

Next we note that the isotopy from the identity to f lifts to an isotopy from

the identity to a canonical lift f̃ of f . The map Φ is then defined from our choice
z̃ ∈ p−1(z) and the canonical lift by the equation

Φ(α, f̃(z̃)) = Φ̃(α, f).

Alternatively, we have the evaluation map ev : Diff0(S) → S, ev(f) = f(z), which

lifts to a map ẽv : Diff0(S) → H (given by ẽv(f) = f̃(z̃), where again f̃ is the
canonical lift), and then Φ is defined as the descent by idC(S)×ẽv:

C(S)×Diff0(S)

˜Φ

�����
����

���
����

�

idC(S) ×ẽv

��
C(S)×H

Φ
�� Cs(Ṡ).

Note that every w̃ ∈ H is w̃ = f̃(z̃) for some f ∈ Diff0(S) (indeed, ẽv defines a
locally trivial fiber bundle). As is shown in [LMS11, Lemma 2.1,Proposition 2.2],
Φ(α, w̃) is well defined independent of the choice of such a diffeomorphism f with

f̃(z̃) = w̃ since any two differ by an isotopy fixing z, and Φ is π1S–equivariant
(where the points z̃ is used to identify the fundamental group with the group of
covering transformations). It is straightforward to see that Φ(α, ·) is constant on
components of H�p−1(Nε(α)(α)): two points w̃, w̃′ in such a component are given

by w̃ = f̃(z̃) and w̃′ = f̃ ′(z̃) where f and f ′ are isotopic by an isotopy ft, so that
ft(z) remains outside Nε(α)(α) for all t.

2.5. Cusps and witnesses. Lemma 2.7 relates Φ to the proper witnesses. Let
P ⊂ ∂H denote the set of parabolic fixed points of the action of π1(S) on H.
Assume that for each x ∈ P, we choose a horoball Hx invariant by the parabolic
subgroup Stabπ1S(x), the stabilizer of x in π1S. We further assume, as we may,
that (1) the union of the horoballs is π1S–invariant, (2) the horoballs are pairwise
disjoint (so all projected to pairwise disjoint cusp neighborhoods of the punctures),
and (3) the horoballs all project disjoint from Nε(α)(α) for all curves α. Recall that

any proper witness W ⊂ Ṡ is determined by its boundary curve, ∂W .

Lemma 2.7. There is a π1S–equivariant bijection W : P → Ω0(Ṡ) determined by

(1) ∂W(x) = f−1(∂p(Hx)),

for any f ∈ Diff0(S) with f̃(z̃) in the interior of the horoball Hx. Moreover,
Φ(C(S)×Hx) = C(W(x)), we have Φ(Π(u) ×Hx)) = u for all u ∈ C(W(x)), and
Stabπ1S(x) acts trivially on C(W(x)).

From the lemma (and as illustrated in the proof) Φ|C(S)×Hx
defines an isomor-

phism C(S) → C(W(x)) inverting the isomorphism Π|C(W(x)) : C(W(x)) → C(S).
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Proof. For any f ∈ Diff0(S) with w̃ = f̃(z̃) ∈ Hx and any curve v ∈ C0(S), we have
Φ(v, w̃) = Φ̃(v, f) = f−1(v). On the other hand, f−1(∂p(Hx)) is the boundary of
a twice punctured disk containing the z puncture, and hence f−1(∂p(Hx)) is the
boundary of a witness we denote W(x). Since v and ∂p(Hx) are disjoint,

Φ(v, w̃) ∈ C(W(x)) ⊂ Cs(Ṡ).

The same proof that Φ(v,w̃) is well defined (independent of the choice of f ∈Diff0(S)

with f̃(z̃) = w̃), shows f−1(∂p(Hx)) is independent of such a choice of f (up to
isotopy). Therefore, W is well defined by (1). Since v ∈ C0(S) was arbitrary and
Φ(v, ·) is constant on components of the complement of p−1(Nε(v)(v)), we have

Φ(C(S)×Hx) ⊂ C(W(x)).

Given u ∈ C(W(x)), we view u as a curve disjoint from f−1(∂p(Hx)) and hence
f(u) is disjoint from p(Hx). There is an isotopy of f(u) to v = Π(u) fixing p(Hx)
(since p(Hx) is just a neighborhood of the cusp) and hence an isotopy of u to
f−1(v) disjoint from f−1(∂p(Hx)). This implies Φ({v} × Hx) = u, proving that
Φ(C(S) × Hx) = C(W(x)), as well as the formula Φ(Π(u) × Hx) = u for all u ∈
C(W(x)).

Next observe that for any proper witness W , the subcomplex C(W ) ⊂ Cs(Ṡ)
uniquely determines W . Therefore, the property that Φ(C(S) × Hx) = C(W(x)),
together with the π1S–equivariance of Φ implies that W is π1S–equivariant. All
that remains is to show that W is a bijection. Let C1, . . . , Cn be the pairwise
disjoint horoball cusp neighborhoods of the punctures obtained by projecting the
horoballs Hx for all x ∈ P.

For any proper witness W , there is a diffeomorphism f : S → S, isotopic to the
identity by an isotopy ft which is the identity on W for all t, and so that f(z) ∈ Ci,
for some i. Note that there is an arc connecting z to the ith puncture which is
disjoint from both ∂W and ∂Ci. It follows that ∂W and ∂Ci are isotopic in S,
and thus by further isotopy (no longer the identity on W ) we may assume that

f(∂W ) = ∂Ci. Therefore, f−1(∂Ci) = ∂W . Observe that the canonical lift f̃ has

f̃(z̃) ∈ Hx for some x ∈ P with p(Hx) = Ci. Therefore, f
−1(∂p(Hx)) = W , and so

W(x) = W , so W is surjective.
To see that W is injective, suppose x, y ∈ P are such that W(x) = W(y). The

two punctures surrounded by ∂W(x) and by ∂W(y) are therefore the same, hence
there exists an element γ ∈ π1S so that γ · x = y. By π1S–equivariance, we must
have

γ · ∂W(x) = ∂W(γ · x) = ∂W(y) = ∂W(x).

Choose a representative loop for γ with minimal self-intersection and denote this γ0.
If γ0 is simple closed, then the mapping class associated to γ is the product of Dehn
twists (with opposite signs) in the boundary curves of a regular neighborhood of

γ0. Otherwise, γ0 fills a subsurface Y ⊂ Ṡ and is pseudo-Anosov on this subsurface
by a result of Kra [Kra81] (see also [KLS09]). It follows that γ · ∂W(x) = ∂W(x) if
and only if γ0 is disjoint from ∂W(x), which happens if and only if f(γ0) ⊂ p(Hx)
(up to isotopy relative to f(z)). In the action of π1S on H, the element γ sends

f̃(z̃) to γ · f̃(z̃), and these are the initial and terminal endpoints of the f̃–image of

the lift of γ0 with initial point z̃. On the other hand, f̃(z̃) ∈ Hx, and hence so is

γ · f̃(z̃), which means that γ is fixes x. Therefore, y = γ · x = x, and thus W is
injective. �
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2.6. Spaces of laminations. We refer the reader to [Thu88], [CEG06], [FLP12],
and [CB88] for details about the topics discussed here. By a lamination on a surface
Y we mean a compact subset of the interior of Y foliated by complete geodesics with
respect to some complete, hyperbolic metric of finite area, with (possibly empty)
geodesic boundary; the geodesics in the foliation are uniquely determined by the
lamination and are called the leaves. For example, any simple closed geodesic α
is a lamination with exactly one leaf. For a fixed complete, finite area, hyperbolic
metric on Y , all geodesic laminations are all contained in a compact subset of the
interior of Y . For any two complete, hyperbolic metrics of finite area, laminations
that are geodesic with respect to the first are isotopic to laminations that are
geodesic with respect to the second. In fact, we can remove any geodesic boundary
components, and replace the resulting ends with cusps, and this remains true.
We therefore sometimes view laminations as well-defined up to isotopy, unless a
hyperbolic metric is specified in which case we assume they are geodesic.

A complementary region of a lamination L ⊂ Y is the image in Y of the closure of
a component of the preimage in the universal covering; intuitively, it is the union of
a complementary component together with the “leaves bounding this component”.
We view the complementary regions as immersed subsurfaces with (not necessarily
compact) boundary consisting of arcs and circles (for a generic lamination, the
immersion is injective, though in general it is only injective on the interior of the
subsurface). We will also refer to the closure of a complementary component in the
universal cover of Y as a complementary region (of the preimage of a lamination).

We write GL(Y ) for the set of laminations on the surface Y , dropping the ref-
erence to Y when it is clear from the context. The set of essential simple closed
curves, up to isotopy (i.e. the vertex set of C(Y )) is thus naturally a subset of
GL(Y ). A lamination is minimal if every leaf is dense in it, and it is filling if its
complementary regions are ideal polygons, or one-holed ideal polygons where the
hole is either a boundary component or cusp of Y . A sublamination of a lami-
nation is a subset which is also a lamination. Every lamination decomposes as a
finite disjoint union of simple closed curves, minimal sublaminations without closed
leaves (called the minimal components), and biinfinite isolated leaves (leaves with
a neighborhood disjoint from the rest of the lamination).

There are several topologies on GL that will be important for us (in what follows,
and whenever discussing convergence in the topologies, we view laminations as
geodesic laminations with respect to a fixed complete hyperbolic metric of finite
area; the resulting topology and convergence is independent of the choice of metric).
The first is a metric topology called the Hausdorff topology (also known as the
Chabauty topology), induced by the Hausdorff metric on the set of all compact
subsets of a compact space (in our case, the compact subset of the surface that
contains all geodesic laminations) defined by

dH(L,L′) = inf{ε > 0 | L ⊂ Nε(L′) and L′ ⊂ Nε(L)}.

If a sequence of {Li} converges to L in this topology, we write Li
H−→ L. The

following provides a useful characterization of convergence in this topology; see
[CEG06, Lemma I.3.1.3, Lemma I.4.1.8].

Lemma 2.8. We have Li
H−→ L if and only if

(1) for all x ∈ L there is a sequence of points xi ∈ Li so that xi → x, and
(2) for every subsequence {Lik}∞k=1, if xik ∈ Lik , and xik → x, then x ∈ L.
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This lemma holds not just for Hausdorff convergence of laminations, but for
any sequence of compact subsets of a compact metric space with respect to the
Hausdorff metric.

The set GL can also be equipped with a weaker topology called the coarse Haus-
dorff topology, [Ham06], introduced by Thurston in [Thu78] where it was called the
geometric topology (see also [CEG06] where it was Thurston topology). If a sequence

{Li} converges to L in the coarse Hausdorff topology, then we write Li
CH−−→ L. The

following describes convergence in this topology; see [CEG06, Lemma I.4.1.11].

Lemma 2.9. We have Li
CH−−→ L if and only if condition (1) holds from Lemma 2.8.

Corollary 2.10 gives a useful way of understanding coarse Hausdorff convergence.

Corollary 2.10. We have Li
CH−−→ L if and only if every Hausdorff convergent

subsequence converges to a lamination L′ containing L.

Since any lamination has only finitely many sublaminations, from the corollary
we see that while limits are not necessarily unique in the coarse Hausdorff topology,
a sequence can have only finitely many limits. An ending lamination is a minimal,
filling lamination, and we let EL = EL(Y ) denote the space of ending lamina-
tions on Y , equipped with the coarse Hausdorff topology. As suggested by the
name, these are precisely the laminations that occur as the ending laminations of a
type preserving, proper, isometric action on hyperbolic 3–space without accidental
parabolics as discussed in the introduction.

A measured lamination is a lamination L together with an invariant transverse
measure μ; that is, an assignment of a measure on all arcs transverse to the lam-
ination, satisfying natural subdivision properties, which is invariant under isotopy
of arcs preserving transversality with the lamination. The support of a measured
lamination (L, μ) is the sublamination |μ| ⊆ L with the property that a transverse
arc has positive measure if and only if the intersection with |μ| is nonempty, and
is a union of minimal components and simple closed geodesics. We often assume
that (L, μ) has full support, meaning L = |μ|. In this case, we sometimes write μ
instead of (L, μ).

The space ML = ML(Y ) of measured laminations on Y is the set of all mea-
sured laminations of full support equipped with the weak* topology on measures
on an appropriate family of arcs transverse to all laminations. Given an arbitrary
measured lamination, (L, μ), we have (|μ|, μ) is an element of ML, and so every
measured lamination determines a unique point of ML. We let FL ⊂ ML denote
the subspace of measured laminations whose support is an ending lamination (i.e. it
is in EL). We write PML and PFL for the respective projectivizations of ML
and FL, obtained by taking the quotient by scaling measures, with the quotient
topologies. The following will be useful in the sequel; see [Thu78, Chapter 8.10].

Proposition 2.11. The map PML → GL, given by μ �→ |μ|, is continuous with
respect to the coarse Hausdorff topology on GL.

For the surface Ṡ, we consider the subspace

ELs(Ṡ) :=
⊔

W∈Ω(Ṡ)

EL(W ) ⊂ GL(Ṡ),
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which is the union of ending laminations of all witnesses of Ṡ. Similarly, we will
write FLs(Ṡ) ⊂ ML(Ṡ) for those measured laminations supported on laminations

in ELs(Ṡ), and PFLs(Ṡ) ⊂ PML(Ṡ) for its projectivization.

2.7. Gromov boundary of a hyperbolic space. A δ–hyperbolic space X can
be equipped with a boundary at infinity, ∂X as follows. Given x, y ∈ X and a
basepoint o ∈ X , the Gromov product of x and y based at o is given by

〈x, y〉o =
1

2
(d(x, o) + d(y, o)− d(x, y)) .

Up to a bounded error (depending only on δ), 〈x, y〉o is the distance from o to
a geodesic connecting x and y. The quantity 〈x, y〉o is estimated by the distance
from the basepoint o to a quasi-geodesic between x and y. There is an additive
and multiplicative error in the estimate that depends only on the hyperbolicity
constant and the quasi-geodesic constants. Using slim triangles, we also note that
for all x, y, z ∈ X ,

〈x, y〉o � min{〈x, z〉o, 〈y, z〉o},
where the constants in the coarse lower bound depend only on the hyperbolicity
constant.

A sequence {xn} ⊂ X is said to converge to infinity if limm,n→∞〈xm, xn〉o = ∞.
Two sequences {xn} and {yn} are equivalent if limm,n→∞〈ym, xn〉 = ∞. The
points in ∂X are equivalence classes of sequences converging to infinity, and if
{xk} ∈ x ∈ ∂X , then we say {xk} converges to x and write xk → x in X = X ∪∂X .
The topology on the boundary is such that a sequence {xn}n ⊂ ∂X converges to a
point x ∈ ∂X if there exist sequences {xn

k}k representing xn for all n, and {xm}m
representing x so that

lim
n→∞

lim inf
k,m→∞

〈xn
k , xm〉o = ∞.

For details see, e.g. [BH99,KB02].
Klarreich [Kla99b] proved that the Gromov boundary of the curve complex is

naturally homeomorphic to the space of ending laminations equipped with the quo-
tient topology from FL ⊂ ML using the geometry of the Teichmuller space.2

Hamenstädt [Ham06] gave a new proof, endowing EL with the coarse Hausdorff
topology (which for EL is the same topology as the quotient topology), also pro-
viding additional information about convergence. Yet another proof of the version
we use here was given by Pho-On [PO17].

Theorem 2.12. For any surface Y equipped with a complete hyperbolic metric
of finite area (possibly having geodesic boundary), there is a homeomorphism

FY : ∂C(Y ) → EL(Y ) so that αn → x if and only if αn
CH−−→ FY (x).

2.8. Laminations and subsurfaces. Lemma 2.13 relates coarse Hausdorff con-
vergence of a sequence to coarse Hausdorff convergence of its projection to witnesses
in an important special case.

Lemma 2.13. If {αn} ⊂ Cs
0(Ṡ) and L ∈ EL(W ) for some witness W , then αn

CH→ L
if and only if πW (αn)

CH→ L.

2In fact, Klarreich worked with the space of measured foliations, an alter ego of the space of
measured laminations.
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Note that for each n, πW (αn) is a union of curves, which are not necessar-
ily disjoint. In particular, πW (αn) is not necessarily a geodesic laminations, so
we should be careful in discussing its coarse Hausdorff convergence. However,
viewing the union as a subset of C(W ), it has diameter at most 2, and hence if
an, a

′
n ⊂ πW (αn) are any two curves, for each n, and L ∈ EL(W ), then an and

a′n either both coarse Hausdorff converge to L or neither does (by Theorem 2.12).
Consequently, it makes sense to say that πW (αn) coarse Hausdorff converges to a
lamination in EL(W ).

Proof. For the rest of this proof we fix a complete hyperbolic metric on Ṡ and
realize W ⊂ Ṡ as an embedded subsurface with geodesic boundary. Let us first

assume πW (αn)
CH→ L ∈ EL(W ). After passing to an arbitrary Hausdorff convergent

subsequence, we may assume αn
H→ L′. It suffices to show that L ⊂ L′.

Let 
1n, . . . , 
rn ⊂ αn ∩ W be the decomposition into isotopy classes of arcs
of intersection: that is, each 
jn is a union of all arcs of intersection of αn with
W so that any two arcs of αn ∩ W are isotopic if and only if they are contained
in the same set 
jn (we may have to pass to a further subsequence so that each
intersection αn ∩ W consists of the same number r of isotopy classes, which we
do). For each 
jn, let α

j
n ⊂ πW (αn) be the geodesic multi-curve produced from the

isotopy class 
jn by surgery in the definition of projection. Note that αj
n and 
jn

have no transverse intersections. Pass to a further subsequence so that αj
n

H→ Lj

and 
jn
H→ L′

j ; here, each 
jn is a compact subset of W so Hausdorff convergence to a

closed set still makes sense, though L′
j are not necessarily geodesic laminations. By

Corollary 2.10 (and the discussion in the paragraph preceding this proof), L ⊂ Lj ,
for each j. Appealing to Lemma 2.8, it easily follows that L′ ∩W = L′

1 ∪ · · · ∪ L′
r.

Since ajn has no transverse intersections with 
jn, L′
j has no transverse intersections

with Lj , for each j. Therefore, L has no transverse intersections with L′ ∩W , and
since L ⊂ W , L′ has no transverse intersections with L. Since L ∈ EL(W ), it
follows that L ⊂ L′, as required.

Now in the opposite direction we assume that αn
CH→ L ∈ EL(W ). Let 
1n, . . . ,


rn ⊂ αn ∩ W and α1
n, . . . , α

r
n ⊂ πW (αn) be as above, so that for each j (after

passing to a subsequence) we have


jn
H→ Lj and αj

n
H→ L′

j .

Similar to the above, L ⊂ L1 ∪ · · · ∪Lr and since 
jn has no transverse intersections
with αj

n, L′
j has no transverse intersections with L. Since L is an ending lami-

nation, L ⊂ L′
j . Since the convergent subsequence was arbitrary, it follows that

πW (αn)
CH→ L. �

Finally, we note that just as curves can be projected to subsurfaces, whenever
a lamination minimally intersects a subsurface in a disjoint union of arcs, we may
use the same procedure to project laminations.

3. Survival paths

To understand the geometry of Cs(Ṡ), the Gromov boundary, and the Cannon-
Thurston map we eventually construct, we will make use of some special paths we
call survival paths. To describe their construction, we set the following notation.
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Given a witness W ⊆ Ṡ and x, y ∈ C(W ), let [x, y]W ⊂ C(W ) denote a geodesic
between x and y.

Definition 3.1 is reminiscent of hierarchy paths from [MM00], though our situa-
tion is considerably simpler.

Definition 3.1. Given x, y ∈ Cs(Ṡ), let [x, y]Ṡ be any C(Ṡ)–geodesic. If W � Ṡ
is a proper witness such that ∂W is a vertex of [x, y]Ṡ , we say that W is a witness
for [x, y]Ṡ . Note that if W is a witness for [x, y]Ṡ , then the immediate predecessor
and successor x′, y′ to ∂W in [x, y]Ṡ are necessarily contained in C(W ) (hence also

in Cs(Ṡ)) and we let [x′, y′]W ⊂ C(W ) be a geodesic (which we also view as a path

in Cs(Ṡ)). Replacing every consecutive triple x′, ∂W, y′ ⊂ [x, y]Ṡ with the path

[x′, y′]W produces a path from x to y in Cs(Ṡ) which we call a survival path from x
to y, and denote it σ(x, y). We call [x, y]Ṡ the main geodesic of σ(x, y) and, if W
is witness for [x, y]Ṡ , we call the corresponding C(W )–geodesic [x′, y′]W the witness
geodesic of σ(x, y) for W , and also say that W is a witness for σ(x, y).

An immediate corollary of Theorem 2.6, we have

Corollary 3.2. For any x, y ∈ Cs(Ṡ) and proper witness W , if dW (x, y) ≥ M ,
then W is a witness for [x, y]Ṡ , for any geodesics [x, y]Ṡ between x and y.

Proof. Since dW (x, y) ≥ M , it follows by Theorem 2.6 that some vertex of [x, y]Ṡ
has empty projection toW . But the only multi-curve in C(Ṡ) with empty projection
to W is ∂W , hence ∂W is a vertex of [x, y]Ṡ . �

No two consecutive vertices of [x, y]Ṡ can be boundaries of a witness (since any
two such boundaries nontrivially intersect). Therefore, Lemma 3.3 follows.

Lemma 3.3. For any x, y ∈ Cs(Ṡ) and geodesics [x, y]Ṡ , there are at most
dṠ(x,y)

2
witnesses for [x, y]Ṡ . �

Lemma 3.4 estimates the lengths of witness geodesics on a survival path.

Lemma 3.4. Given a survival path σ(x, y) and a witness W for σ(x, y), the initial
and terminal vertices x′ and y′ of the witness geodesic segment [x′, y′]W satisfy

dW (x, x′), dW (y, y′) < M.

Consequently, dW (x′, y′) satisfies

dW (x′, y′)
0,2M� dW (x, y).

Proof. By Theorem 2.6 applied to the subsegments of [x, y]Ṡ from x to x′ and y′ to y
proves the first inequality. The second is immediate from the triangle inequality. �

Finally we have the easy half of a distance estimate (c.f. [MM00]). The other
half will be included in Section 5 as it requires additional tools to be developed.

Lemma 3.5. For any x, y ∈ Cs(Ṡ) and k ≥ M , we have

ds(x, y) ≤ 2k2 + 2k
∑

W∈Ω(Ṡ)

{{dW (x, y)}}k.

Recall that Ω(Ṡ) denotes the set of all witnesses for Cs(Ṡ) and that {{x}}k is the
cut-off function giving value x if x ≥ k and 0 otherwise.
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Proof. Since σ(x, y) is a path from x to y, it suffices to prove that the length
of σ(x, y) is bounded above by the right-hand side. For each witness W whose
boundary appears in [x, y]Ṡ , we have replaced the length two segment {x′, ∂W, y′}
with [x′, y′]W , which has length dW (x′, y′). By Lemma 3.4 we have

dW (x′, y′) < 2M + dW (x, y).

If dW (x, y) ≥ k ≥ M , this implies the length dW (x′, y′) of [x′, y′]W is less
than 3dW (x, y). Otherwise, the length is less than 3k. Let W1, . . . , Wn denote the
witnesses for x, y whose boundaries appear in [x, y]Ṡ . By Lemma 3.3, n ≤ 1

2dṠ(x, y),
half the length of [x, y]Ṡ . Further note that by Corollary 3.2, if dW (x, y) ≥ k ≥ M ,
then W is one of the witnesses Wj , for some j.

Combining all of these (and the fact that k ≥ M > 2) we obtain the following
bound on the length of σ(x, y), and hence ds(x, y):

ds(x, y) ≤ dṠ(x, y) +

n∑
j=1

3max{dWj
(x, y), k} ≤ dṠ(x, y) + 3

n∑
j=1

({{dWj
(x, y)}}k + k)

= dṠ(x, y) + 3nk + 3
n∑

j=1

{{dWj
(x, y)}}k ≤ ( 3k2 + 1)dṠ(x, y) + 3

n∑
j=1

{{dWj
(x, y)}}k

≤ 2k({{dṠ(x, y)}}k + k) + 3

n∑
j=1

{{dWj
(x, y)}}k ≤ 2k2 + 2k

∑
W∈Ω(Ṡ)

{{dW (x, y)}}k.

�
Lemma 3.6. Given x, y ∈ Cs(Ṡ), if W is not a witness for [x, y]Ṡ, then

diamW (σ(x, y)) < M + 4.

Proof. Since W is not a witness for [x, y]Ṡ , every z ∈ [x, y]Ṡ has nonempty projec-
tion to W . Therefore, diamW ([x, y])Ṡ < M by Theorem 2.6. If w′ ∈ C(W ′) is on
a witness geodesic segment of σ(x, y), then dṠ(w

′, ∂W ′) = 1 so dW (w′, ∂W ′) ≤ 2
by Proposition 2.5. Since ∂W ′ ∈ [x, y]Ṡ , the lemma follows by the triangle inequal-
ity. �
Lemma 3.7. Suppose that σ(x, y) is a survival path and that x′, y′ ∈ σ(x, y) with
x ≤ x′ < y′ ≤ y, with respect to the ordering from σ(x, y). Then if x′, y′ lie on the
main geodesic [x, y]Ṡ , then the subpath of σ(x, y) from x′ to y′ is a survival path.

If W,W ′ are proper witnesses for x, y and x′ ∈ C(W ) and y′ ∈ C(W ′) then the
same conclusion holds, provided the subsegments of C(W ) and C(W ′) in σ(x, y)
between x′ and y′ have length at least 2M . The same is true if only one of x′ or
y′ lies in the curve graph of a proper witness (assuming the same lower bound on
relevant length).

Proof. When x′, y′ are on the main geodesic, this is straightforward, since in this
case, the subsegment of the main geodesic between x′ and y′ serves as the main
geodesic for a survival path between x′ and y′.

There are several cases for the second statement. The proofs are all similar, so
we just describe one case where, say, x′ ∈ [x′′, y′′]W ⊂ C(W ) with

x ≤ x′′ ≤ x′ ≤ y′′ ≤ y′ ≤ y,

and y′ is in the main geodesic. The assumption in this case means that in C(W ), the
distance between x′ and y′′ is at least 2M . Lemma 3.4 implies that dW (y′′, y) < M ,
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and so by the triangle inequality, dW (x′, y) > M . Therefore, by Theorem 2.6 any
geodesic from x′ to y must pass through ∂W . In particular, the path that starts
at x′, travels to ∂W , then continues along the subsegment of [x, y]Ṡ from ∂W to

y′, is a geodesic in C(Ṡ). We can easily build a survival path from x′ to y′ using
this geodesic that is a subsegment of σ(x, y), as required. The other cases are
similar. �
3.1. Infinite survival paths. A consequence of [MM00, Theorem 6.13] of Masur-
Minsky is that for any surface Z and any two points in C̄(Z) = C(Z)∪∂C(Z), where
∂C(Z) is the Gromov boundary, there is a geodesic “connecting” these points. Given
x, y ∈ C̄(Z), we let [x, y]Z denote such a geodesic.

The construction of survival paths above can be carried out for geodesic lines
and rays in C(Ṡ), replacing any length two path x′, ∂W, y′ with a C(W ) geodesic
from x′ to y′ to produce a survival ray or survival line, respectively. More generally,
given a geodesic segment or ray of C(Ṡ) we can construct other types of survival
rays and survival lines. Specifically, first construct a survival path as above or as
just described, then append to one or both endpoints an infinite witness ray (or
rays). For example, for any two distinct witnesses W and W ′ and points z, z′ in the
Gromov boundaries of C(W ) and C(W ′), respectively, we can construct a survival
line that starts and ends with geodesic rays in C(W ) and C(W ′), limiting to z and
z′, respectively, and having main geodesic being a segment. In this way, we see
that survival lines, paths and rays can thus be constructed for any pair of distinct
points in

z, z′ ∈
⋃

W∈Ω(Ṡ)

C̄(W ),

and we denote such by σ(z, z′), as in the finite case. From this discussion, we have
the following.

Lemma 3.8. For any distinct pair of elements

z, z′ ∈
⋃

W∈Ω(Ṡ)

C̄(W )

there exists a (possibly infinite) survival path σ(z, z′) “connecting” these points. �
Proposition 3.9 allows us to extend certain properties of survival paths to infinite

survival paths (e.g. quasi-geodesic property; see Corollary 5.12).

Proposition 3.9. Any infinite survival path (line or ray) is an increasing union
of finite survival paths.

Proof. This follows just as in the proof of Lemma 3.7. �
Remark 3.10. Unless otherwise stated, the term “survival path” will be reserved
for finite survival paths. “Infinite survival path” will mean either survival ray or
survival line.

4. Hyperbolicity of the surviving curve complex

In this section we prove Theorem 4.1 using survival paths. The proof appeals
to Proposition 4.3, due to Masur-Schleimer [MS13] and Bowditch ([Bow14]), which
gives criteria for hyperbolicity.

Theorem 4.1. The complex Cs(Ṡ) is Gromov-hyperbolic.
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Remark 4.2. There are alternate approaches to proving Theorem 4.1. For example,
Masur and Schleimer provide a collection of axioms in [MS13] whose verification
would imply hyperbolicity. Another approach would be to show that Vokes’ condi-
tion for hyperbolicity in [Vok] which requires an action of the entire mapping class
group can be relaxed to requiring an action of the stabilizer of z, which is a finite
index subgroup of the mapping class group. We have chosen to give a direct proof
using survival paths since it is elementary and illustrates their utility.

The condition for hyperbolicity we use is the following; see [MS13,Bow14].

Proposition 4.3. Given ε > 0, there exists δ > 0 with the following property.
Suppose that G is a connected graph and for each x, y ∈ V (G) there is an associated
connected subgraph ς(x, y) ⊆ G including x, y. Suppose that,

(1) For all x, y, z ∈ V (G),

ς(x, y) ⊆ Nε(ς(x, z) ∪ ς(z, y)).

(2) For any x, y ∈ V (G) with d(x, y) ≤ 1, the diameter of ς(x, y) in G is at
most ε.

Then, G is δ–hyperbolic.

We will apply Proposition 4.3 to the graph Cs(Ṡ), and for vertices x, y ∈ Cs(Ṡ),
the required subcomplex is a (choice of some) survival path σ(x, y). Note that if
x, y are distance one apart, then σ(x, y) = [x, y], which has diameter 1. Therefore,
as long as ε ≥ 1, condition (2) in Theorem 4.3 will be satisfied. We will show that
condition (1) holds for any survival paths connecting a triple of points x, y, z, which
we express briefly by saying that x, y, z span ε–slim survival triangles. We will first
prove this statement under some additional hypotheses on the triple x, y, z.

Lemma 4.4. Given R > 4, there exists ε > 0 with the following property. If
x, y, z ∈ Cs(Ṡ) are any three points such that dW (u, v) ≤ R for all proper witness

W � Ṡ and every u, v ∈ {x, y, z}, then x, y, z span ε–slim survival triangles.

Proof. First note that by Lemma 3.4, the length of any witness geodesic of any
one of the three sides is at most R + 2M ; we will use this fact throughout the
proof without further mention. We also observe that by Theorem 2.6, for any
w ∈ σ(x, y) ∩ [x, y]Ṡ and any proper witness W � Ṡ, at least one of dW (x,w) or
dW (y, w) is at most M .

Next suppose w is on a subsegment [x′, y′]W ⊂ σ(x, y) for some proper witness
W of σ(x, y). Observe that w is within R+2M

2 = R
2 + M from either x′ or y′

and so by Theorem 2.6 and the triangle inequality, one of dW (w, x) or dW (w, y)
is at most R

2 + 2M . If W ′ is any other proper witness, we claim that dW ′(x,w)

or dW ′(y, w) is at most M + 2 ≤ R
2 + 2M . To see this, note that either ∂W ′

lies in [x, ∂W ]Ṡ ⊂ [x, y]Ṡ , in [∂W, y]Ṡ ⊂ [x, y]Ṡ , or neither. In the first two cases,
dW ′(∂W, y) ≤ M or dW ′(∂W, x) ≤ M , respectively, by Theorem 2.6, while in the
third case both of these inequalities hold. Therefore, since w and ∂W are disjoint,
dW ′(∂W,w) ≤ 2, and hence dW ′(x,w) or dW ′(y, w) is at most M + 2 ≤ R

2 + 2M .
Now let w ∈ σ(x, y) be any vertex and w0 ∈ [x, y]Ṡ ∩ σ(x, y) the nearest vertex

along σ(x, y), and observe that dṠ(w,w0) ≤ 2. Since C(Ṡ) is δ–hyperbolic (for
some δ > 0), there is a vertex w′

0 ∈ [x, z]Ṡ ∪ [y, z]Ṡ with dṠ(w0, w
′
0) ≤ δ. Without

loss of generality, we assume w′
0 ∈ [x, z]Ṡ . Choose w′ ∈ σ(x, z) to be w′ = w′

0 if
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w′
0 ∈ σ(x, z) or one of the adjacent vertices of [x, z]Ṡ if w′

0 is the boundary of a
witness. Then dṠ(w

′
0, w

′) ≤ 1, so

dṠ(w,w
′) ≤ δ + 3.

Now suppose W � Ṡ is a proper witness. Then at least one of dW (w, x) or
dW (w, y) is at most R

2 + 2M as is at least one of dW (w′, x) or dW (w′, z). If

dW (w, x), dW (w′, x) ≤ R
2 + 2M , then applying the triangle inequality, we see that

dW (w,w′) ≤ R+ 4M.

If instead, dW (x,w) ≤ R
2 +2M and dW (w′, z) ≤ R

2 +2M , then the triangle inequality
implies

dW (w,w′) ≤ dW (w, x) + dW (x, z) + dW (z, w′) ≤ 2R+ 4M.

The other two possibilities are similar, and hence dW (w,w′) ≤ 2R+ 4M .
Applying Lemma 3.5 with k = M , recalling that by Lemma 3.3 there are at

most
dṠ(w,w′)

2 ≤ δ+3
2 proper witnesses for any geodesic [w,w′]Ṡ , we have

ds(w,w′) ≤ 2M2 + 2M
∑

W∈Ω(Ṡ)

{{dW (w,w′)}}M

≤ 2M2 + 2M
(
δ + 3 + δ+3

2 (2R+ 4M)
)
.

Setting ε equal to the right-hand side (which really depends only on R, since M
and δ are independent of anything), completes the proof. �

Subdividing an n–gon into triangles we can prove the following extension of
Lemma 4.4.

Corollary 4.5. Given R > 0 let ε > 0 be as in Lemma 4.4. If n ≥ 3 and x1,
. . . , xn ∈ Cs(Ṡ) are such that for all proper witness W � S dW (xi, xj) ≤ R for all
1 ≤ i, j ≤ n, then for all w ∈ σ(xi, xi+1), there exists j 	= i and w′ ∈ σ(xj , xj+1)
(with all indices taken modulo n) such that ds(w,w′) ≤ �n

2 �ε.

Proof. The proof is by induction on n with base case n = 3 following from
Lemma 4.4. Suppose n ≥ 4 and that the statement is true for all indices less than
n. Reindexing if necessary, we may assume that w ∈ σ(xn, x1). Set m = �n

2 �. From
Lemma 4.4 there is some point w′′ on σ(x1, xm)∪σ(xm, xn) such that ds(w,w′′) ≤ ε

2 .
Since k = max{m,n − m + 1} ≤ n

2 + 1 < n, we can apply the inductive hypoth-
esis to either x1, . . . , xm or xm, . . . , xn (depending on where w′′ lies) and find
w′ ∈ σ(xj , xj+1) with ds(w′′, w′) ≤ �k

2 �ε. If n ≥ 7,

ds(w,w′) ≤ ds(w,w′′) + ds(w′′, w′) ≤ ε+ �k
2 �ε

≤ (1 + k
2 + 1

2 )ε ≤ (n/2+1
2 + 3

2 )ε ≤ (n4 + 2)ε ≤ �n
2 �ε,

where the last inequality uses the fact that n ≥ 7. Variations of this argument
show that for n = 4 or 5, ds(w,w′) ≤ 2ε ≤ �n

2 �ε, while for n = 6, one gets
ds(w,w′) ≤ 3ε = �n

2 �ε. �
For the remainder of the proof (and elsewhere in the paper) it is useful to make

Definition 4.6.

Definition 4.6. Given vertices x, y, z ∈ Cs(Ṡ) and R > 0, consider the proper
witnesses with projection at least R:

ΩR(x, y) = {W ∈ Ω0(Ṡ) | dW (x, y) > R},
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and set
ΩR(x, y, z) = ΩR(x, y) ∪ ΩR(x, z) ∪ ΩR(y, z).

In words, ΩR(x, y) is the set of all proper witnesses for which x and y have
distance greater than R. By Lemma 3.3, ΩR(x, y) is finite.

Lemma 4.7. For any three vertices x, y, z ∈ Cs(Ṡ) and R ≥ 2M , there is at most
one W ∈ ΩR(x, y, z) such that

W ∈ ΩR/2(x, y) ∩ ΩR/2(x, z) ∩ ΩR/2(y, z).

Proof. Suppose there exist two distinct

W,W ′ ∈ ΩR/2(x, y) ∩ ΩR/2(x, z) ∩ ΩR/2(y, z).

Then by Theorem 2.6, ∂W, ∂W ′ are (distinct) vertices in any C(Ṡ)–geodesic between
any two vertices in {x, y, z}. Choose geodesics [x, ∂W ]Ṡ , [y, ∂W ]Ṡ , and [z, ∂W ]Ṡ ,
and note that concatenating any two of these (with appropriate orientations) pro-
duces a geodesic between a pair of vertices in {x, y, z}. Since ∂W ′ 	= ∂W must also

lie on all C(Ṡ)–geodesics between these three vertices, it must lie on at least one of
the geodesic segments to ∂W ; without loss of generality, suppose ∂W ′ ∈ [x, ∂W ]Ṡ .
If ∂W ′ is not a vertex of either [y, ∂W ]Ṡ or [z, ∂W ]Ṡ , then our geodesic from y
to z does not contain ∂W ′, a contradiction. Without loss of generality, we may
assume ∂W ′ ∈ [y, ∂W ]Ṡ . But then the geodesic subsegment between x and ∂W ′ in
[x, ∂W ]Ṡ together with the geodesic subsegment between ∂W ′ and y in [y, ∂W ]Ṡ is
also a geodesics (as above) and does not pass through ∂W , a contradiction. �

Proof of Theorem 4.1. Let x, y, z ∈ Cs(Ṡ). By the triangle inequality, if W ∈
Ω2M (x, y), then at least one of dW (x, z) or dW (y, z) is greater than M . By
Lemma 4.7, there is at most one W such that both are greater than M . If such W
exists, denote it W0 and write D0 = {W0}; otherwise, write D0 = ∅. Define

Dx = {W ∈ Ω2M (x, y, z)�D0 | dW (x, y) > M, dW (x, z) > M}
(and defineDy, Dz similarly). We can then express Ω2M (x, y, z) as a (finite) disjoint
union

Ω2M (x, y, z) = Dx �Dy �Dz �D0.

By Theorem 2.6, the C(Ṡ)–geodesics [x, y]Ṡ and [x, z]Ṡ contain ∂W for all
W ∈ Dx, and we write

Dx = {W 1
x ,W

2
x , . . . ,W

mx
x }

so that x1 = ∂W 1
x , x2 = ∂W 2

x , . . . , xmx
= ∂Wmx

x appear in this order along [x, y]Ṡ
and [x, z]Ṡ . Similarly write

Dy = {W 1
y , . . . ,W

my
y } and Dz = {W 1

z , . . . ,W
mz
z }.

The C(Ṡ)–geodesic triangle between x, y, and z must appear as in the examples
illustrated in Figure 1.

We now subdivide each of the survival paths σ(x, y), σ(x, z), and σ(y, z) into
subsegments as follows. In this subdivision, σ(x, y) is a concatenation of witness
geodesics for each witness W in Dx ∪ Dy ∪ D0 and complementary subsegments
connecting consecutive such witness geodesics. The complementary segments are
themselves survival paths obtained as concatenations of C(Ṡ)–geodesic segments
and witness geodesic segments for witnesses for which dW (x, y) ≤ 2M . The paths
σ(x, z) and σ(y, z) are similarly described concatenations. Applying Lemma 3.4,
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x

x1

x2

x3 y2 y1 y

z1

z

x

x1

x2

∂W0 y1 y

z1

z

Figure 1. Geodesic triangles in C(Ṡ): Here xj = ∂W j
x , yj = ∂W j

y ,

and zj = ∂W j
z , and {x1, x2, x3} ⊂ [x, y]Ṡ ∩ [x, z]Ṡ , {y1, y2} ⊂

[x, y]Ṡ ∩ [y, z]Ṡ , and {z1} ⊂ [x, z]Ṡ ∩ [y, z]Ṡ . The left triangle has
D0 = ∅, while the triangle on the right has D0 = {W0}, hence
∂W0 ∈ [x, y]Ṡ ∩ [x, z]Ṡ ∩ [y, z]Ṡ . Note: there may be more vertices
in common to pairs of geodesics than the vertices xj , yj , zj . Fur-
thermore, there may be various degenerations, e.g. Dx = D0 = ∅,
in which case the three bigons in the upper left-hand portion of
the left figure disappears and x3 becomes x.

all of the witness segments that appear in the complementary segments (and are
thus not from witnesses in Ω2M (x, y, z)) have length at most 4M .

Let w ∈ σ(x, y) be any point. We must show that there is some

w′ ∈ σ(x, z) ∪ σ(y, z)

so that ds(w,w′) is uniformly bounded. There are two cases (which actually divide
up further into several sub-cases), depending on whether or not w lies on a witness
geodesics for a witness W ∈ Ω2M (x, y, z).

Suppose first that w lies on a witness geodesic [x′, y′]W ⊂ σ(x, y) forW ∈ Dx. By
definition of Dx, W ∈ ΩM (x, y) ∩ΩM (x, z), and so there is also a witness geodesic

[x′′, z′′]W ⊂ σ(x, z). Since there are Ṡ–geodesics [x, x′]Ṡ , [x, x
′′]Ṡ , [y

′, y]Ṡ , [z
′′, z]Ṡ so

that every vertex has a nonempty projection to C(W ), and since dW (y, z) < M
(again, by definition of Dx), Theorem 2.6 and the triangle inequality imply

(2)
dW (x′, x′′) ≤ dW (x′, x) + dW (x, x′′) ≤ 2M and

dW (y′, z′′) ≤ dW (y′, y) + dW (y, z) + dW (z, z′′) ≤ 3M.

So [x′, y′]W and [x′′, z′′]W are C(W )–geodesics whose starting and ending points are
within distance 3M of each other. Since C(W ) is δ–hyperbolic for some δ > 0, it
follows that there is some w′ ∈ [x′′, z′′]W ⊂ σ(x, z) so that dW (w,w′) ≤ 2δ + 3M .

Since C(W ) is a subgraph of Cs(Ṡ), ds(w,w′) ≤ 2δ+3M . We can similarly find the
required w′ if w is in a witness geodesic segment for a witness W ∈ Dy.

Next suppose w lies in the witness geodesic [x′, y′]W0
⊂ σ(x, y), for W0 ∈ D0

(if D0 	= ∅). The argument in this sub-case is similar to the previous one, as we
now describe. Let [x′′, z′′]W0

⊂ σ(x, z) and [y′′, z′]W0
⊂ σ(y, z) be the W0–geodesic

segments. Arguing as in the proof of (2), we see that the endpoints of these three
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geodesic segments in C(W ) satisfy

dW0
(x′, x′′), dW0

(y′, y′′), dW0
(z′, z′′) ≤ 2M.

Since C(W0) is δ–hyperbolic, we can again easily deduce that for some

w′ ∈ [x′′, z′′]W0
∪ [y′′, z′]W0

⊂ σ(x, z) ∪ σ(y, z),

we have ds(w,w′) ≤ dW0
(w,w′) ≤ 3δ + 2M .

Finally, we assume w ∈ σ(x, y) lies in a complementary subsegment

σ(x′, y′) ⊂ σ(x, y)

of all Ω2M (x, y, z)–witness subsegments of σ(x, y) as described above. Consequently,
we have that x′, y′ ∈ [x, y]Ṡ ∩ σ(x, y) both lie on one side of one of the “bigons” in
Figure 1 (cases (1) and (2) below) or on one side of the single central “triangle” (case
(3) below, which happens whenD0 = ∅). Thus, depending on which complementary
subsegment we are looking at, we claim that one of the following must hold:

(1) there exists σ(x′′, z′′) ⊂ σ(x, z) so that ds(x′, x′′), ds(y′, z′′) ≤ 3M ,
(2) there exists σ(y′′, z′′) ⊂ σ(y, z) so that ds(y′, y′′), ds(x′, z′′) ≤ 3M , or
(3) there exists σ(x′′, z′′) ⊂ σ(x, z) and σ(y′′, z′) ⊂ σ(y, z) so that ds(x′, x′′),

ds(y′, y′′), ds(z′, z′′) ≤ 3M .

The proofs of these statements are very similar to the proof in the case that w ∈ Dx

or Dy. If σ(x′, y′) is a complementary segment which is part of a bigon and x′ is
in C(W ) for some W ∈ Dx (or x = x′′), then we are in case (1) and we take
the corresponding complementary segment σ(x′′, z′′) ⊂ σ(x, z) of the bigon with
x′′ ∈ C(W ) (or x′′ = x). It follows that all vertices of [x′, y]Ṡ , [y, z]Ṡ , and [z, x′′]Ṡ
have nonempty projections to W , so by Theorem 2.6 and the triangle inequality we
have

ds(x′, x′′) ≤ dW (x′, x′′) ≤ dW (x′, y) + dW (y, z) + dW (z, x′′) ≤ 3M.

On the other hand, y′, z′′ ∈ C(W ′) for some W ′ ∈ Dx ∪D0 and similarly

ds(y′, z′′) ≤ dW ′(y′, z′′) ≤ dW ′(y′, x) + dW ′(x, z′′) ≤ 2M < 3M,

and so the conclusion of (1) holds. If y′ ∈ C(W ) for someW ∈ Dy, then a symmetric
argument proves (2) holds. The only other possibility is that D0 = ∅, x′ ∈ C(W ),
and y′ ∈ C(W ′), where W ∈ Dx and W ′ ∈ Dy, so that σ(x′, y′) is a segment of the
“triangle”. A completely analogous argument proves that condition (3) holds.

In any case, note that the two subsegments of the bigon (respectively, three seg-
ments of the central triangle), together with segments in curve complexes of proper
witnesses give a quadrilateral (respectively, hexagon) of survival paths. Further-
more, by the triangle inequality and applications of Proposition 2.5 and Theo-
rem 2.6, one can show that there is a uniform bound R > 0 to the projections to all
proper witnesses of the vertices of this quadrilateral (respectively, hexagon). We
briefly sketch the proof of the existence of such an R in case (1), with the other cases
being similar. First, suppose W ∈ Dx is the witness with x′x′′ ∈ C(W ) (that is, at
one “end” of the bigon). Then dW (x′, x′′) ≤ 3M while dW (x′, y′), dW (x′′, z′′) < M
by Theorem 2.6 and dW (y′′, z′′) ≤ 4 by Proposition 2.5 since there is a path of length
at most two connecting y′′ to z′′ such that all vertices have nonempty projection to
W . A same argument (and bound) applies to W ′ ∈ Dx ∪D0 with y′, z′′ ∈ C(W ′)
(that is, at the other end of the bigon). For any other witness W ′′ 	= W,W ′, the
vertices of the paths of length at most two from x′ to x′′ and y′ to z′′ have nonempty
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projection W ′′ and hence dW ′′(x′, x′′), dW ′′(y′, z′′) ≤ 4 by Proposition 2.5. If the
vertices of the subsegments [x′, y′]Ṡ ⊂ [x, y] have nonempty projections to W ′′,
then dW ′′(x′, y′) < M by Theorem 2.6. If on the other hand, some vertex of
[x′, y′]Ṡ has empty projection to W ′′, then from the order on D2M (x, y), we must
have W ′′ 	∈ D2M (x, y) and so by the triangle inequality and Theorem 2.6 we have
dW ′′(x′, y′) ≤ dW ′′(x′, x) + dW ′′(x, y) + dW ′′(y, y′) < 4M . In any case, we see
that dW ′′(x′, y′) < 4M , and another application of the triangle inequality gives
dW ′′(x′′, z′′) ≤ 4M + 8. Thus, R = 4M + 8 suffices. Let ε > 0 be the constant
from Lemma 4.4 for this R. By Corollary 4.5, there is some w′ on one of the other
sides of this quadrilateral/hexagon so that ds(w,w′) ≤ 3ε. It may be that w′ is
in σ(x, z) or σ(y, z), or that it lies in one of the witness segments. As described
above, these segments have length at most 3M , and so in this latter case, we can
find w′′ ∈ σ(x, z) ∪ σ(y, z) with ds(w,w′′) ≤ 3ε+ 3M .

Combining all the above, we see that there is always some w′ ∈ σ(x, z) ∪ σ(y, z)
with ds(w,w′) bounded above by

max{3ε+ 3M, 2δ + 3M, 4δ + 2M}.
This provides the required uniform bound on thinness of survival paths, and com-
pletes the proof of the theorem. �

5. Distance formula

In this section we prove Theorem 5.1.

Theorem 5.1. For any k ≥ max{M, 24}, there exists K ≥ 1, C ≥ 0 so that

ds(x, y)
K,C�

∑
W∈Ω(Ṡ)

{{dW (x, y)}}k,

for all x, y ∈ Cs(Ṡ).

Recall that here x
K,C� y is shorthand for the condition 1

K (x−C) ≤ y ≤ Kx+C
and that {{x}}k = x if x ≥ k and 0, otherwise. Note that we have already proved
an upper bound on ds(x, y) of the required form in Corollary 3.5 and thus we need
only prove the lower bound.

Remark 5.2. As with Theorem 4.1, another approach to this theorem would be
to follow Masur-Schleimer [MS13] or Vokes [Vok]. As with Theorem 4.1 we give a
proof using survival paths, which is straightforward and elementary.

One of the main ingredients in our proof is the following due to Behrstock [Beh04]
(see [Man10] for the version here).

Lemma 5.3 (Behrstock inequality). Assume that W and W ′ are witnesses for

Cs(Ṡ) and u ∈ C(Ṡ) with nonempty projection to both W and W ′. Then

dW (u, ∂W ′) ≥ 10 ⇒ dW ′(u, ∂W ) ≤ 4.

We will also need the following application which we use to provide an ordering
on the witnesses for a pair x, y ∈ Cs(Ṡ) having large enough projection distances.
A more general version was proved in [BKMM12] (see also [CLM12]) and is related
to the partial order on domains of hierarchies from [MM00]. The version we will
use is the following.
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Proposition 5.4. Suppose k ≥ 14 and W,W ′ are witnesses in the set Ωk(x, y) for

vertices x, y ∈ Cs(Ṡ). Then the following are equivalent:

(1) dW ′(y, ∂W ) ≥ 10 (2) dW (y, ∂W ′) ≤ 4
(3) dW (x, ∂W ′) ≥ 10 (4) dW ′(x, ∂W ) ≤ 4.

Proof. By Lemma 5.3 we have (1) ⇒ (2) and (3) ⇒ (4). To prove (2) ⇒ (3) we use
triangle inequality:

dW (x, ∂W ′) ≥ dW (x, y)− dW (y, ∂W ′) ≥ k − 4 ≥ 10

since k ≥ 14. The proof of (4) ⇒ (1) is identical to the proof that (2) ⇒ (3). �

Definition 5.5. For any k ≥ 14, we define a relation < on Ωk(x, y), declaring
W < W ′ forW,W ′ ∈ Ωk(x, y), if any of the equivalent statements of the Proposition
5.4 is satisfied.

Lemma 5.6. For any k ≥ 20, the relation < is a total order on Ωk(x, y).

Proof. We first prove that any two element W,W ′ ∈ Ωk(x, y) are ordered. If not,
then that means Proposition 5.4 (3) fails to hold as stated, or with y replacing x,
and thus we have dW (y, ∂W ′) < 10 and dW (x, ∂W ′) < 10. Hence,

dW (x, y) ≤ dW (x, ∂W ′) + dW (y, ∂W ′) < 20 ≤ k

which contradicts the assumption that W ∈ Ωk(x, y).
The relation is clearly anti-symmetric, so it remains to prove that it is transitive.

To that end, let W < W ′ < W ′′ in Ωk(x, y), and assume W 	< W ′′, hence W ′′ < W .
Since W < W ′ and W ′′ < W , we have dW (y, ∂W ′) ≤ 4 and dW (x, ∂W ′′) ≤ 4. So
by the triangle inequality

dW (∂W ′, ∂W ′′) ≥ dW (x, y)− dW (y, ∂W ′)− dW (x, ∂W ′′) ≥ k − 8 > 10.

Then by Lemma 5.3, we have

dW ′(∂W, ∂W ′′) ≤ 4.

So, appealing to the fact that W < W ′ and W ′ < W ′′ and Proposition 5.4 the
triangle inequality implies

20 ≤ k ≤ dW ′(x, y) ≤ dW ′(x, ∂W ) + dW ′(∂W, ∂W ′′) + dW ′(∂W ′′, y) ≤ 12,

a contradiction. �

Lemma 5.7 is also useful in the proof of Theorem 5.1.

Lemma 5.7. Let x, y, u ∈ Cs(Ṡ) be vertices, W,W ′ ∈ Ωk(x, y) with k ≥ 20, and
W < W ′. Then,

dW (u, y) ≥ 14 ⇒ dW ′(u, x) ≤ 8.

Proof. From our assumptions, the definition of the order on Ωk(x, y), and the tri-
angle inequality we have

dW (u, ∂W ′) ≥ dW (u, y)− dW (y, ∂W ′) ≥ 14− 4 = 10.

By Lemma 5.3, we have dW ′(u, ∂W ) ≤ 4. Thus, by the definition of the order on
Ωk(x, y) and the triangle inequality, we have

dW ′(u, x) ≤ dW ′(u, ∂W ) + dW ′(∂W, x) ≤ 4 + 4 = 8.

�
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We are now ready to prove the lower bound in Theorem 5.1, which we record in
Proposition 5.8.

Proposition 5.8. Fix k ≥ max{M, 24}. Given vertices x, y ∈ Cs(Ṡ) we have

ds(x, y) ≥ 1

96

∑
W∈Ω(Ṡ)

{{dW (x, y)}}k.

Proof. Let [x, y] be a geodesic between x, y in Cs(Ṡ), and denote its vertices

x = x0, x1, . . . , xn−1, xn = y.

So, n = ds(x, y) is the length of [x, y]. Let m = |Ωk(x, y)| (which is finite since
k ≥ M), suppose m > 0, and write

Ωk(x, y) = {W1 < W2 < · · · < Wm}.
For each 1≤j<m let 0≤ ij≤n be such that dWj

(xij , y)≥14 and dWj
(x�, y) ≤ 13

for all 
 > ij . That is, xij is the last vertex z ∈ [x, y] for which dWj
(z, y) ≥ 14.

Then, if j′ > j, so Wj < Wj′ , Lemma 5.7 implies dWj′ (xij , x) ≤ 8 and so

dWj′ (xij , y) ≥ dWj′ (x, y)− dWj′ (xij , x) ≥ k − 8 ≥ 24− 8 = 16.

Since the projection πWj′ is 2–Lipschitz (see Proposition 2.5) and xij and xij+1 are

distance 1 in Cs(Ṡ), we have

dWj′ (xij+1, y) ≥ dWj′ (xij , y)− dWj′ (xij , xij+1) ≥ 16− 2 ≥ 14.

Therefore, i1 < i2 < · · · < im−1. Set i0 = 0 and im = n.
Given 1 ≤ j < m, dWj

(xij+1, y) ≤ 13 and again appealing to Proposition 2.5,
we have

dWj
(xij , y) ≤ dWj

(xij , xij+1) + dWj
(xij+1, y) ≤ 2 + 13 ≤ 15.

Observe this inequality is trivially true for j = m since y = xn = xim and so the
left-hand side is at most 2 in this case. Another application of Lemma 5.7 implies
dWj

(x, xij−1
) ≤ 8 for all 1 ≤ j ≤ m (the case j = 1 is similarly trivial). Therefore

(3) dWj
(xij−1

, xij ) ≥ dWj
(x, y)− dWj

(x, xij−1
)− dWj

(xij , y) ≥ dWj
(x, y)− 23,

for all 1 ≤ j ≤ m.
Appealing one more time to Proposition 2.5, together with Inequality (3), we

have

ds(x, y) = n =

m∑
j=1

ij − ij−1 ≥ 1

2

m∑
j=1

dWj
(xij−1

, xij ) ≥
1

2

m∑
j=1

(dWj
(x, y)− 23).

Next, observe that since dWj
(x, y) ≥ k ≥ 24 we have

dWj
(x, y)− 23 ≥ 1

24
dWj

(x, y).

Since Cs(Ṡ) ⊂ C(Ṡ) is a subcomplex, we have ds(x, y) ≥ dṠ(x, y) and so

2ds(x, y) ≥ dṠ(x, y) +
1

48

∑
W∈Ωk(x,y)

dW (x, y) ≥ 1

48

∑
W∈Ω(Ṡ)

{{dW (x, y)}}k.

�
Proof of Theorem 5.1. Given k ≥ max{M, 24}, let K = max{2k, 96} and C = 2k2.
The theorem then follows from Corollary 3.5 and Proposition 5.8. �
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As a consequence of the Theorem 5.1 we have the following two facts.

Corollary 5.9. Given a proper witness W � Ṡ, the inclusion map C(W ) ↪→ Cs(Ṡ)
is a quasi-isometric embedding.

Corollary 5.10. Survival paths are uniform quasi-geodesics in Cs(Ṡ).

Moreover, we have

Lemma 5.11. Survival paths can be reparametrized to be uniform quasi-geodesics
in C(Ṡ).

Proof. Let σ(x, y) be a survival path with main geodesic [x, y]Ṡ . For every

proper witness W � Ṡ, if there is a W–witness geodesic segment in σ(x, y), we
reparametrize along this segment so that it is traversed along an interval of length
2. Since such W–witness geodesic segments replaced geodesic subsegments of [x, y]Ṡ
of length 2, and since they lie in the 1–neighborhood of ∂W , this clearly defines the
required reparametrization. �

Corollary 5.12. Any infinite survival path is a uniform quasi-geodesic in Cs(Ṡ).

Proof. This is immediate from Corollary 5.10 and Proposition 3.9. �

6. Boundary of the surviving curve complex Cs(Ṡ)

Recall that we denote the disjoint union of ending lamination spaces of all wit-
nesses by

ELs(Ṡ) :=
⊔

W∈Ω(Ṡ)

EL(W ).

We call this the space of surviving ending laminations of Ṡ, and give it the coarse
Hausdorff topology.

In this section we will prove Theorem 1.6 from the introduction. In fact, we will
prove the following more precise version, that will be useful for our purposes.

Theorem 6.1. There exists a homeomorphism F : ∂Cs(Ṡ) → ELs(Ṡ) such that for

any sequence {αn} ⊂ Cs(Ṡ), αn → x in C̄s(Ṡ) if and only if αn
CH−−→ F(x).

We denote the Gromov product of α, β ∈ Cs(Ṡ) based at o ∈ Cs(Ṡ) by 〈α, β〉so,
and recall that the Gromov boundary ∂Cs(Ṡ) of Cs(Ṡ) is defined to be the set of
equivalence classes of sequences {αn} which converge at infinity with respect to
〈 , 〉so. Throughout the rest of this section we will use (without explicit mention)
the fact that the Gromov product between a pair of points (in any hyperbolic space)
is uniformly estimated by the minimal distance from the basepoint to a point on a
uniform quasi-geodesic between the points.

Lemma 6.2. For all witnesses W ⊆ Ṡ, ∂C(W ) is a subspace of ∂Cs(Ṡ).

Proof. For each proper witness W � Ṡ, Corollary 5.9 implies that ∂C(W ) embeds

into ∂Cs(Ṡ). For W = Ṡ, we proceed as follows. Given a point in ∂C(Ṡ), we
construct a survival ray ending at that point. By Corollary 5.12 this ray is a quasi-
geodesic, and so reading off its endpoint at infinity defines a map ∂C(Ṡ) → ∂Cs(Ṡ).

For x, y ∈ ∂C(Ṡ), the biinfinite survival path between x and y is a quasi-geodesic,
again by Corollary 5.12, which implies that this map is injective. �
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Proposition 6.3 says that the subspaces from the lemma are all disjoint.

Proposition 6.3. For any two witnesses W 	= W ′ for Ṡ, ∂C(W ) ∩ ∂C(W ′) = ∅.

Proof. Let x ∈ ∂C(W ) and x′ ∈ ∂C(W ′). Then by Lemma 3.8, there is a biinfinite
survival path σ(x, x′) and by Corollary 5.12 this survival path is a quasi-geodesic.
Hence x 	= x′. �

We now have a natural inclusion of the disjoint union of Gromov boundaries⊔
W∈Ω(Ṡ)

∂C(W ) ⊂ ∂Cs(Ṡ).

In fact, this disjoint union accounts for the entire Gromov boundary.

Lemma 6.4. We have ⊔
W∈Ω(Ṡ)

∂C(W ) = ∂Cs(Ṡ).

Proof. Let x ∈ ∂Cs(Ṡ) and αn → x ∈ ∂Cs(Ṡ), and we assume without loss of

generality that {αn} is a quasi-geodesic in Cs(Ṡ) and that the first vertex is the
basepoint α0 = o. If dṠ(αn, o) → ∞ as n → ∞, then given R > 0, let N > 0 be
such that dṠ(αn, o) ≥ R for all n ≥ N . For any m ≥ n ≥ N , the subsegment of the
quasi-geodesics, {αn, αn+1, . . . , αm}, is some bounded distance D to σ(αn, αm) in

Cs(Ṡ), by hyperbolicity and Corollary 5.10. Therefore, since ds ≥ dṠ , the distance

in C(Ṡ) from any point of σ(αn, αm) to o is at least R −D. So the distance from
any point of [αn, αm]Ṡ to o is at least R −D − 1. Letting R → ∞, it follows that

〈αn, αm〉o → ∞ in C(Ṡ). Consequently, {αn} converges to a point in ∂C(Ṡ), so
x ∈ ∂C(Ṡ). For the rest of the proof, we may assume that dṠ(αn, o) is bounded by
some constant 0 < R < ∞ for all n.

By the distance formula 5.1,

ds(α0, αn)
K,C�

∑
W∈Ω(Ṡ)

{{dW (α0, αn)}}k,

and since ds(α0, αn) → ∞, there is some Wn so that dWn
(α0, αn) → ∞. Therefore,

by Corollary 3.2, Wn is a witness for σ(α0, αn) for each n ∈ N.
We would like to show that there is a unique witness W such that

dW (α0, αn) → ∞. To do that, let h > 0 be the maximal Hausdorff distance in

Cs(Ṡ) between σ(α0, αn) and {αk}nk=0, for all n ≥ 0 (which is finite by hyperbolic-

ity of Cs(Ṡ) and Corollary 5.10).

Claim 6.5. Given n ∈ N, if dW (α0, αn) ≥ M + 2h + 2 for some witness W � Ṡ,
then W is a witness for σ(α0, αm), for all m ≥ n.

Proof. Suppose W is a witness as in the claim and let m ≥ n. Let α′
n ∈ σ(α0, αm)

be such that ds(αn, α
′
n) ≤ h. If W is not a witness for σ(α0, αm), then every vertex

of the main geodesic [α0, αm]Ṡ of σ(α0, αm) has nonempty projection to W . By
Proposition 2.5 and the triangle inequality we have,

dW (α0, αn) ≤ dW (α0, α
′
n) + dW (αn, α

′
n)

≤ dW (α0, α
′
n) + 2ds(αn, α

′
n) ≤ dW (α0, α

′
n) + 2h.
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If α′
n ∈ [α0, αm]Ṡ , then since every vertex of this geodesic has nonempty projection

to W , it follows that dW (α0, α
′
n) < M . If α′

n 	∈ [α0, αm]Ṡ , then there is a witness
W ′ for [α0, αm]Ṡ such that dṠ(α

′
n, ∂W

′) = 1, so appealing to Proposition 2.5 we
have dW (α0, α

′
n) < M + 2. In any case,

dW (α0, αn) ≤ dW (α0, α
′
n) + 2h < M + 2h+ 2,

which is a contradiction. This proves the claim. �

Since dWn
(α0, αn) → ∞, there exists n0 > 0 such that

dWn0
(α0, αn0

) ≥ M + 2h+ 2,

and hence for all m ≥ n0, Wn0
is a witness for σ(α0, αm). Let Ω([α0, αn]Ṡ) be the

set of proper witnesses for [α0, αn]Ṡ , and set

Ωn =
∞⋂

m=n

Ω([α0, αm]Ṡ).

Note that Ωn ⊂ Ωn+1 for all n and that Ωn is nonempty for all n ≥ n0. Each
Ωn contains no more than R/2 elements by Lemma 3.3 since dṠ(αn, o) ≤ R. Thus
the (nested) union Ω∞ is given by Ω∞ = ΩN for some N ≥ n0. The boundaries
of the witnesses in Ω∞ lie on the geodesic [α0, αm]Ṡ for all m ≥ N , and we let
W∞ ∈ Ω∞ be the one furthest from α0. Without loss of generality, we may assume
that [α0, αm]Ṡ and [α0, αm′ ]Ṡ all agree on [α0, ∂W∞], for all m,m′ ≥ N .

For any m ≥ N and any witness W of [α0, αN ]Ṡ with ∂W further from α0 than
∂W∞, note that dW (α0, αm) < M + 2h + 2: otherwise, by Claim 6.5 W would be
a witness for [α0, αm′ ]Ṡ for all m′ ≥ m and so W ∈ Ω∞ with ∂W further from α0

than ∂W∞, a contradiction to our choice of W∞.
For any n ≥ N , let βn be the last vertex of σ(α0, αn) in C(W∞). By the previous

paragraph, together with Theorem 2.6, Lemma 3.4, and the bound

dṠ(βn, αn) ≤ dṠ(α0, αn) ≤ R,

we see that the subpath of σ(α0, αn) from βn to αn has length bounded above by
some constant C > 0, independent of n. In particular, ds(αn, βn) ≤ C. There-

fore, αn and βn converge to the same point x on the Gromov boundary of Cs(Ṡ).

Since βn ∈ C(W∞), which is quasi-isometrically embedded in Cs(Ṡ), it follows that
x ∈ ∂C(W∞), as required. �

Lemma 6.6 provides a convenient tool for deciding when a sequence in Cs(Ṡ)
converges to a point in ∂C(W ), for some proper witness W .

Lemma 6.6. Given {αn} ⊂ Cs(Ṡ) and x ∈ ∂C(W ) ⊂ ∂Cs(Ṡ) for some witness W ,
then αn→x if and only if πW (αn) → x.

Proof. Throughout, we assume o = α0, the basepoint, which without loss of gener-
ality we assume lies in W , and let {βn} ⊂ C(W ) be any sequence converging to x,
so that for the Gromov product in C(W ) we have 〈βn, βm〉Wo → ∞ as n,m → ∞.

Since σ(αn, βm) is a uniform quasi-geodesic by Corollary 5.10 it follows that

ds(o, σ(αn, βm)) � 〈αn, βm〉so,
with uniform constants (where the distance on the left is the minimal distance from
o to the survival path).
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Let δn,m be the first point of intersection of σ(αn, βm) with C(W ) (starting from
αn). By Lemma 3.4, dW (δn,m, αn) < M . Consequently, because δn,m ∈ C(W ) and
πW (αn) ⊂ C(W ), this means

ds(δn,m, πW (αn)) ≤ dW (δn,m, πW (αn)) = dW (δn,m, αn) < M.

Therefore, the curve πW (αn) ∈ C(W ) ⊂ Cs(Ṡ) is within distance M of the uniform

quasi-geodesic σ(αn, βm), and so by hyperbolicity, the Cs(Ṡ)–geodesic from (any
curve in) πW (αn) to βm lies in a uniformly bounded neighborhood of σ(αn, βm).
Thus

〈πW (αn), βm〉so � ds(o, [πW (αn), βm]) � ds(o, σ(αn, βm)) � 〈αn, βm〉so.
If αn → x, then the right-hand side of the above coarse inequality tends to infinity,
and hence so does the left-hand side. This implies πW (αn) → x.

Next suppose that πW (αn) → x ∈ ∂C(W ). As noted above, we have

〈αn, πW (αn)〉so � ds(o, [αn, πW (αn)]),

and so it suffices to show that the right-hand side tends to infinity as n → ∞. Since
πW (αn) → x ∈ ∂C(W ), we have dW (o, αn) → ∞, and setting δn to be the first point
of σ(αn, o) in C(W ), Lemma 3.4 implies that ds(δn, πW (αn)) ≤ dW (δn, αn) < M .
Therefore, σ(αn, o) passes within ds–distance M of πW (αn) on its way to o. Since
σ(αn, o) is a uniform quasi-geodesic by Corollary 5.10, it follows that [αn, πW (αn)]
is uniformly Hausdorff close to the initial segment Jn ⊂ σ(αn, o) from αn to δn.
Since the closest point of Jn to o is, coarsely, the point δn, which is uniformly close
to πW (αn), we have

〈αn, πW (αn)〉so � ds(o, [αn, πW (αn)])

� ds(o, Jn) � ds(o, δn) � ds(o, πW (αn)) � dW (o, αn) → ∞.

Therefore, αn and πW (αn) converge together to x ∈ ∂C(W ). This completes the
proof. �

Proof of Theorem 6.1. By Lemma 6.4, for any x ∈ ∂Cs(Ṡ), there exists a witness

W ⊆ Ṡ so x ∈ ∂C(W ). Let F(x) = FW (x), where FW : ∂C(W ) → EL(W ) is the
homeomorphism given by Theorem 2.12. This defines a bijection

F : ∂Cs(Ṡ) → ELs(Ṡ).

We let x ∈ ∂Cs(Ṡ) with αn → x in C̄s(Ṡ), and prove that αn coarse Hausdorff

converges to F(x). Let W ⊆ Ṡ be the witness with x ∈ ∂C(W ). According to

Lemma 6.6, πW (αn) → x in C̄(W ). By Theorem 2.12, πW (αn)
CH→ FW (x) = F(x),

and by Lemma 2.13, αn
CH→ F(x), as required.

To prove the other implication, we suppose that αn
CH→ L, for some L ∈ ELs(Ṡ),

and prove that αn → x in C̄s(Ṡ) where F(x) = L. Let W ⊆ S be the witness

with L ∈ EL(W ). By Lemma 2.13, πW (αn)
CH→ L. By Theorem 2.12, πW (αn) → x

in C̄(W ) where FW (x) = L. By Lemma 6.6, αn → x in C̄s(Ṡ) and therefore
F(x) = FW (x) = L, by definition.

All that remains is to show that F is a homeomorphism. Throughout the re-
mainder of this proof, we will frequently pass to subsequences, and will reindex
without mention. We start by proving that F is continuous. Let {xn} ⊂ ∂Cs(Ṡ)
with xn → x as n → ∞. Pass to any Hausdorff convergent subsequence so that
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F(xn)
H−→ L for some lamination L. If we can show that F(x) ⊆ L, then this will

show that the original sequence coarse Hausdorff converges to F(x), and thus F
will be continuous.

For each n, let {αn
k}∞k=1 ⊂ Cs(Ṡ) be a sequence with αn

k → xn as k → ∞. Since
xn → x, we may pass to subsequences so that for any sequence {kn}, we have

αn
kn

→ x as n → ∞. From the first part of the argument, αn
k

CH−−→ F(xn) as k → ∞,

for all n. For each n, pass to a subsequence so that αn
k

H−→ Ln, thus F(xn) ⊆ Ln.
By passing to yet a further subsequence for each n, we may assume dH(αn

k ,Ln) <
1
n

for all k; in particular, this holds for k = 1. Now pass to a subsequence of {Ln} so

that Ln
H→ Lo for some lamination Lo, it follows that αn

1
H→ Lo, as n → ∞. Since

αn
1 → x (from the above, setting kn = 1 for all n), this implies that F(x) ⊆ Lo.

Since F(xn) ⊆ Ln we have L ⊆ Lo. If F(x) ∈ EL(Ṡ) then it is the unique mini-
mal sublamination of Lo, and since L ⊆ Lo, we have F(x) ⊆ L. If F(x) ∈ EL(W )
for some proper witness, then either F(x) is the unique minimal sublamination of
Lo, or Lo contains F(x) ∪ ∂W . Since ∂W does not intersect the interior of W ,
whereas L ⊂ Lo is a sublamination that does nontrivially intersects the interior of
W , it follows that F(x) ⊆ L. Therefore we have F(x) ⊆ L in both cases, and so F
is continuous.

To prove continuity of G = F−1, suppose that Ln
CH−−→ L, and we must show

G(Ln) → G(L). We first pick a sequence of curves αn
k such that αn

k → G(Ln) in

C̄s(Ṡ). Then, αn
k

CH−−→ Ln as k → ∞, by the first part of the proof, and after passing

to subsequences as necessary, we may assume: (i) αn
k

H→ L′
n as k → ∞, and hence

Ln ⊆ L′
n for all n; (ii) dH(αn

k ,L′
n) <

1
n for all k; and (iii) 〈αn

k , α
n
� 〉o ≥ min{k, 
}+n,

for all k, 
, n.

Now pass to any Hausdorff convergent subsequence L′
n

H→ L′. It suffices to show
that for this subsequence G(Ln) → G(L). Observe that we also have L ⊆ L′ and
by (ii) above we also have αn

kn
→ L′ as n → ∞, for any sequence {kn}. Thus, for

example, we can conclude that αn
1

CH→ L, and so by the first part of the proof we
have αn

1 → G(L).
As equivalence classes of sequences, we thus have that G(Ln) = [{αn

k}] and
G(L) = [{αm

1 }]. We further observe that by hyperbolicity and the conditions above,
for all k, n,m we have

〈αm
1 , αn

k 〉o � min{〈αm
1 , αn

1 〉o, 〈αn
1 , α

n
k 〉o} ≥ min{〈αm

1 , αn
1 〉o, 1 + n}.

Therefore,

sup
m

lim inf
k,n→∞

〈αm
1 , αn

k 〉o � sup
m

lim inf
n→∞

〈αm
1 , αn

1 〉o = ∞,

from which it follows that G(Ln) → G(L), as required. This completes the proof.
�

Proof of Theorem 1.6. Let F : ∂Cs(Ṡ) → ELs(Ṡ) be the homeomorphism from

Theorem 6.1. It suffices to show that F is PMod(Ṡ)–equivariant. For this, let

f ∈ PMod(Ṡ) be any mapping class and x ∈ ∂Cs(Ṡ) any boundary point. If

{αn} ⊂ Cs(Ṡ) is any sequence with αn → x in C̄s(Ṡ), then f · αn → f · x since f

acts by isometries on Cs(Ṡ). Applying Theorem 6.1 to the sequence {f ·αn} we see

that f · αn
CH→ F(f · x). On the other hand we also have f · αn

CH→ f · F(x), since
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f acts by homeomorphisms on the space of laminations with the coarse Hausdorff
topology. Therefore, f · F(x) = F(f · x), as required. �

7. Extended survival map

We start by introducing some notation before we define the extended survival
map. First observe that there is an injection C(S) → PML(S) given by sending
a point in the interior of the simplex {v0, . . . , vk} with barycentric coordinates
(s0, . . . , sk) to the projective class, [s0v0 + · · · + skvk]; here we are viewing
s0v0 + · · · skvk as a measured geodesic lamination with support v0 ∪ . . . ∪ vk and
with the transverse counting measure scaled by si on the ith component, for each i.
We denote the image by PMLC(S), which by construction admits a bijective map
PMLC(S) → C(S) (inverse to the inclusion above).

By Theorem 2.12, ∂C(S) ∼= EL(S), and so it is natural to define

PMLC̄(S) = PMLC(S) ∪ PFL(S),

and we extend the bijection PMLC(S) → C(S) to a surjective map

PMLC(S) → C(S).

By Proposition 2.11 and Theorem 2.12, this is continuous at every point of PFL(S).
Similar to the survival map Φ̃ defined in Section 2.4, we can define a map

Ψ̃: PML(S)×Diff0(S) → PML(Ṡ).

This is defined by exactly the same procedure as in Section 2.4 of [LMS11], which
goes roughly as follows: If μ is a measured lamination with no closed leaves in its

support |μ|, and if f(z) 	∈ |μ|, then Ψ̃(μ, f) = f−1(μ). When |μ| contains closed
leaves we replace those with the foliated annular neighborhoods of such curves
defined in Section 2.4). When the f(z) lies on a leaf of |μ| (or the modified |μ|
when there are closed leaves) we “split |μ| apart at f(z)”, then take the f−1–

image. The same proof as that given in [LMS11, Proposition 2.9] shows that Ψ̃ is
continuous.

As in Section 2.4 (and in [LMS11]) via the lifted evaluation map ẽv: Diff0(S)→H,

given by ẽv(f) = f̃(z̃) (for f̃ the canonical lift), the map Ψ̃ descends to a continuous,
π1S–equivariant map Ψ making the following diagram commute:

PML(S)×Diff0(S)

PML(S)×H PML(Ṡ).

Ψ̃

Ψ

idPML(S)×ẽv

By construction, the restriction ΨC = Ψ|PMLC(S)×H and Φ agree after composing
with the bijection between PMLC(S) and C(S) in the first factor. Since Φ maps

C(S)×H onto Cs(Ṡ), if we define PMLCs(Ṡ) to be the image of Cs(Ṡ) via the map

Cs(Ṡ) → PML(Ṡ) defined similarly to the one above, then the following diagram
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of π1S–equivariant maps commutes, with the vertical arrows being bijections

(4) PMLC(S)×H
ΨC ��

��

PMLCs(Ṡ)

��
C(S)×H

Φ �� Cs(Ṡ).

Similar to PMLC̄(S) = PMLC(S) ∪ PFL(S) above, we define

PMLC̄s(Ṡ) = PMLCs(Ṡ) ∪ PFLs(Ṡ),

where, recall, PFLs(Ṡ) is the space of measured laminations on Ṡ whose support

is contained in ELs(Ṡ). Then ΨC extends to a map

ΨC̄ : PMLC̄(S)×H → PMLC̄s(Ṡ).

The fact that Ψ([μ], w) is in PFLs(Ṡ) for any w ∈ H and [μ] ∈ PFL(S) is straight-
forward from the definition (c.f. [LMS11, Proposition 2.12]): for generic w, Ψ([μ], w)
is obtained from [μ] by adding the z–puncture in one of the complementary com-
ponents of |μ| and adjusting by a homeomorphism. With this, it follows that the

map Φ extends to a map Φ̂ making the following diagram, extending (4), commute.

PMLC̄(S)×H
ΨC̄ ��

��

PMLC̄s(Ṡ)

��
C̄(S)×H

Φ̂ �� C̄s(Ṡ)

We will call the map Φ̂ : C̄(S)×H → Cs(Ṡ) the extended survival map. Vertical
maps in the diagram are natural maps which take projective measured laminations
to their supports and they send PFL(S)×H onto EL(S)×H and PFLs(Ṡ) onto

ELs(Ṡ).

Lemma 7.1. The extended survivial map Φ̂ is π1S–equivariant and is continuous
at every point of ∂C(S).

Proof. To prove the continuity statement, we use the homeomorphism F from The-
orem 6.1 to identity ∂Cs(Ṡ) with ELs(Ṡ). Now suppose {Ln} ∈ C(S), L ∈ ∂C(S),
Ln → L and {xn} be a sequence in H such that xn → x. Passing to a subsequence,
there is a measure μn on Ln and a measure μ on L such that μn → μ in ML(S).
Since Ψ is continuous on PFL(S)×H

Ψ([μn], xn) → Ψ([μ], x).

By Proposition 2.11 this implies,

|Ψ(μn, xn)| CH−→ |Ψ(μ, x)|.

On the other hand, Ψ(FL(S)×H) ⊂ FLs(Ṡ), and by Theorem 6.1 this means

Φ̂(Ln, xn) → Φ̂(L, x)

in C̄s(Ṡ), since |Ψ̂(μn, xn)| = Φ̂(Ln, xn) and |Ψ̂(μ, x)| = Φ̂(L, x).
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The π1S–equivariance follows from that of Φ on Cs(Ṡ) and continuity at the
remaining points. �

The following useful fact and its proof are identical to the statement and proof
of [LMS11, Lemma 2.14].

Lemma 7.2. Fix (L1, x1), (L2, x2) ∈ EL(S) × H. Then Φ̂(L1, x1) = Φ̂(L2, x2) if
and only if L1 = L2 and x1, x2 are on the same leaf of, or in the same complemen-
tary region of, p−1(L1) ⊂ H.

Suppose that L ∈ EL(S), x ∈ P ⊂ ∂H is a parabolic fixed point, Hx ⊂ H

is the horoball based at x as in Section 2.5, and U ⊂ H is the complementary
region of p−1(L) containing Hx. Given y ∈ U , choose any f ∈ Diff(S) so that

f̃(z̃) = y, so that Φ̂(L, y) = f−1(L). Observe that p(U) is a complementary region

of L containing a puncture (corresponding to x), and hence Φ̂(L, y) is a lamination
with two punctures in the complementary component f−1(p(U)) (one of which is

the z-puncture). Therefore, Φ̂(L, y) is an ending lamination in a proper witness.
More precisely, by Lemma 7.2, we may assume y ∈ Hx without changing the image
Φ̂(L, y), and then as in the proof of Lemma 2.7, f−1(∂p(Hx)) is the boundary of

the witness W(x) which is disjoint from Φ̂(L, x). Thus, Φ̂(L, y) ∈ EL(W(x)).
In fact, every ending lamination on a proper witness arises as such an image as

Lemma 7.3 shows.

Lemma 7.3. Suppose L0 ∈ EL(W ) is an ending lamination in a proper witness

W � Ṡ. Then there exists L ∈ EL(S), x ∈ P, a complementary region U of p−1(L)
containing Hx, and y ∈ Hx so that W(x) = W and Φ̂(L, y) = L0.

Proof. Note that the inclusion of W ⊂ Ṡ is homotopic through embeddings to a
diffeomorphism, after filling in z (since after filling in z, ∂W is peripheral). Con-
sequently, after filling in z, L0 is isotopic to a geodesic ending lamination L on S.
Let f : S → S be a diffeomorphism isotopic to the identity with f(L0) = L. Then

L0 = f−1(L) = Ψ̃([μ], f) where [μ] is the projective class of any transverse measure
on L.

Next, observe that f(z) lies in a complementary region V of L which is a punc-
tured polygon (since ∂W is a simple closed curve disjoint from L0 bounding a twice
punctured disk including the z-puncture). Let U ⊂ H be the complementary region
of p−1(L) that projects to V . Then U is an infinite sided polygon invariant by a

parabolic subgroup fixing some x ∈ P. Now let f̃ : H → H be the canonical lift as in

Section 2.4 and let y′ = f̃(z̃), so that by definition Ψ̃([μ], f) = Ψ([μ], y′) = Φ̂(L, y′).
By Lemma 7.2, for any y ∈ Hx ⊂ U , it follows that Φ̂(L, y) = Φ̂(L, y′) = L0.
From the remarks preceeding this lemma, it follows that L0 ∈ EL(W(x)). Since
EL(W ) ∩ EL(W ′) = ∅, unless W = W ′, it follows that W(x) = W , completing the
proof. �

8. Universal Cannon-Thurston maps

In this section we will prove the following.

Theorem 1.3. For any vertex v ∈ C, the map Φv : H → Cs(Ṡ) has a continuous
π1(S)–equivariant extension

Φv : H ∪ S1A → Cs
(Ṡ)
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and the induced map
∂Φ = Φv|S1A : S1A → ∂Cs(Ṡ)

is surjective and does not depend on v. Moreover, ∂Φ is equivariant with respect to
the action of the pure mapping class group PMod(Ṡ).

Before proceeding, we describe the subset S1A ⊂ ∂H2 in Theorem 1.3.

Definition 8.1. Let Y ⊆ S be a subsurface. A point x ∈ ∂H fills Y if,

• the image of every geodesic ray ending at x projected to S intersects ev-
ery curve which intersects Y nontrivially (i.e. any curve that cannot be
homotoped to be disjoint from Y ), and,

• there is a geodesic ray r ⊂ H ending at x with p(r) ⊂ Y .

Now let S1A ⊂ ∂H be the set of points that fill S.

We note that when x 	∈ S1A, there is a ray r ending at x so that p(r) is contained
in a proper subsurface Y � S. The boundary of this subsurface is an essential curve
v in S and Φv(r) ⊂ Tv is a bounded diameter set. Thus, restricting to the set S1A
is necessary (c.f. [LMS11, Lemma 3.4]).

Given the modifications to the setup, the existence of the extension of Theo-
rem 1.3 follows just as in the case that S is closed in [LMS11]; this is outlined in
Section 8.1. The surjectivity requires more substantial modification, however, and
this is carried out in Section 8.2. The proof of the universal property of ∂Φ, as
well as the discussion of ∂Φ0 : ∂C(S) → ∂C(Ṡ), Theorem 1.1, and the relationship
to Theorem 1.3 is carried out in Section 8.3.

8.1. Quasiconvex nesting and existence of Cannon-Thurston maps. In this
section we will prove the existence part of Theorem 1.3.

Theorem 8.2. For any vertex v ∈ C(S), the induced survival map Φv : H → Cs(Ṡ)
has a continuous, π1(S)–equivariant extension to

Φv : H ∪ S1A → Cs
(Ṡ)).

Moreover, the restriction ∂Φv = Φv|S1A : S1A → ∂Cs(Ṡ) does not depend on the choice

of v.

In particular, we may denote the restriction as ∂Φ: S1A → ∂Cs(Ṡ), without
reference to the choice of v. To prove this theorem, we will use the following from
[LMS11, Lemma 1.9], which is a mild generalization of a lemma of Mitra in [Mit98a].

Lemma 8.3. Let X and Y be two hyperbolic metric spaces, and F : X → Y a
continuous map. Fix a basepoint y ∈ Y and a subset A ⊂ ∂X. Then there is a
continuous map

F : X ∪A → Y ∪ ∂Y,

with F (A) ⊂ ∂Y if and only if for all s ∈ A there is a neighborhood basis Bi ⊂ X∪A
of s and a collection of uniformly quasiconvex sets Qi ⊂ Y such that:

• F (Bi ∩X) ⊂ Qi, and
• dY (y,Qi) → ∞ as i → ∞.

Moreover, ⋂
i

Qi =
⋂
i

∂Qi = {F (s)}

determines F (s) uniquely, where ∂Qi = Q̄i ∩ ∂Y .
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Given the adjustments already made to our setup, the proof of Theorem 8.2 is
now nearly identical to [LMS11, Theorem 3.6], so we just recall the main ingredients,
and explain the modifications necessary in our setting.

For the rest of the section we fix a biinfinite geodesic γ in H so that p(γ) is a
closed geodesic that fills S (i.e. nontrivially intersects every essential simple closed
curve or arc on S). As in [LMS11], we construct quasi-convex sets from such γ as
follows. Define

X (γ) = Φ(C(S)× γ),

where Φ is the survival map. Let H±(γ) denote the two half spaces bounded by γ
and define the sets

H ±(γ) = Φ(C(S)×H±(γ)).

The proofs of the following two facts about these sets are identical to the quoted
results in [LMS11].

• [LMS11, Proposition 3.1]: X (γ), H ±(γ) are simplicial subcomplexes of

Cs(Ṡ) spanned by their vertex sets and are weakly convex (meaning every
two points in the set are joined by some geodesic contained in the set). This
follows by explicitly constructing a simplicial retraction to each of these sets
from Cs(Ṡ).

• [LMS11, Proposition 3.2]: We have,

H +(γ) ∪ H −(γ) = Cs(Ṡ)

and

H +(γ) ∩ H −(γ) = X (γ).

Now we consider a set {γn} of pairwise disjoint translates of γ by the action of
π1(S, z) on H so that the corresponding (closed) half spaces nest:

H+(γ1) ⊃ H+(γ2) ⊃ · · ·

Since the action is properly discontinuous on H, there is a x ∈ ∂H such that

(5)

∞⋂
n=1

H+(γn) = {x}.

Here, H+(γn) is the closure in H. For such a sequence, we say {γn} nests down
on x.

On the other hand, if r ⊂ H is a geodesic ray ending in some point x ∈ ∂H which
is not a parabolic fixed point, p(r) intersects p(γ) infinitely many times, and thus r
intersects infinitely many translates of γ in H. Hence, we can find a sequence {γn}
which nests down on x. In particular, for any element x ∈ S1A has a sequence {γk}
that nests down on x.

The main ingredient in the proof of existence of the extension is Proposition 8.4.

Proposition 8.4. If {γn} nests down to x ∈ S1A, then for a basepoint b ∈ Cs(Ṡ)
we have

ds(b,H +(γn)) → ∞ as n → ∞.

The proof is nearly identical to that of [LMS11, Proposition 3.5], but since it’s
the key to the proof of existence, we sketch it for completeness.
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Sketch of proof. Because of the nesting in H, we have nesting in Cs(Ṡ),

H +(γ1) ⊃ H +(γ2) ⊃ · · · .

Without loss of generality, we choose the basepoint b ∈ H −(γ1) (hence in H −(γn)
for all n). We must show that for any R > 0, there exists N > 0 so that
ds(b,H +(γn)) ≥ R, for all n ≥ N . The first observation is that because

Π: Cs(Ṡ) → C(S) is simplicial (hence 1–Lipschitz), it suffices to find N > 0 so
that ds(b,H +(γn) ∩ Π−1(BR(Π(b))) ≥ R for all n ≥ N . Here BR(Π(b)) is the
subcomplex spanned by the set of vertices distance at most R from Π(b) (recall
that distances are computed in the 1–skeleton; see Section 2.1).

To prove this, one can use an inductive argument to construct an increasing
sequence N1 < N2 < . . . < NR+1 so that

X (γNj
) ∩ X (γNj+1

) ∩Π−1(BR(Π(b))) = ∅.

Before explaining the idea, we note that this implies that

{H +(γNj
) ∩Π−1(BR(Π(b)))}R+1

j=1

are properly nested: a path from b to H +(γNR+1
) inside Π−1(BR(Π(b))) must pass

through a vertex of H +(γNj
), for each j, before entering the next set. Therefore,

the path must contain at least R + 1 vertices, and so have length at least R. This
completes the proof by taking N = NR+1, since then a geodesic from b to a point
of H +(γNR+1

) will have length at least R (if it leaves Π−1(BR(Π(b))), then it’s
length is greater than R).

The main idea to find the sequence N1 < N2 < . . . < NR+1 is involved in the
inductive step. If we have already found N1 < N2 < . . . < Nk−1, and we want
to find Nk, we suppose there is no such Nk, and derive a contradiction. For this,
assume

X (γNk−1
) ∩ X (γn) ∩Π−1(BR(Π(b))) 	= ∅,

for all n > Nk−1, and let un be a vertex in this intersection (since it is a nonempty
subcomplex, there is such a vertex). Set vn = Π(un), and recall that

Φ−1
vn (un) = Un ⊂ H

is a component of the complement the ε(vn)–neighborhood of the preimage in H of
the geodesic representative of vn in S; that is, {vn} × Un = Φ−1(un) (see Section
2.4). Therefore, un ∈ X (γNk−1

) ∩ X (γn) implies γNk−1
∩ Un 	= ∅ and γn ∩ Un 	= ∅

(since X (γk) = Φ(C(S)×γk)). After passing to subsequences and extracting a limit,
we find a geodesic from a point on γNk−1

(or one of its endpoints in ∂H) to x, which
projects to have empty transverse intersection with vn in S. Since vn is contained
in the bounded set BR(Π(b)), any subsequential Hausdorff limit does not contain
an ending lamination on S, by Theorem 2.12, and so any ray with no transverse
intersections is eventually trapped in a subsurface (a component of the minimal
subsurface of the maximal measurable sublamination of the Hausdorff limit). This
contradicts the fact that x ∈ S1A, and completes the sketch of the proof. �

We are now ready for the proof of the existence part of Theorem 1.3.

Proof of Theorem 8.2. The existence and continuity of Φv follows by verifying the
hypotheses in Lemma 8.3.
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Fix a basepoint b ∈ Cs(Ṡ) and let {γn} be a sequence nesting to a point x ∈ S1A.
The collection of sets

{H+(γn) ∩ (H ∪ S1A)}∞n=1

is a neighborhood basis of x in H ∪ S1A. By definition of H +(γn)

Φv(H+(γn)) = Φ({v} × H+(γn)) ⊂ H +(γn),

for all n. By Proposition 8.4, ds(b,H +(γn)) → ∞ as n → ∞. Since the sets
{H +(γn)} are weakly convex, hence uniformly quasi-convex, Lemma 8.3 implies
that we have a continuous map Φv defined on x ∈ S1A given by

{Φv(x)} =

∞⋂
n=1

H +(γn).

Since the sets on the right-hand side do not depend on the choice of v, and since
x ∈ S1A, we also write ∂Φ(x) = Φv(x), and note that ∂Φ: S1A → ∂Cs(Ṡ) does not
depend on v. �

Observe that for all x ∈ S1A, we have

(6) ∂Φ(x) =
∞⋂

n=1

∂H +(γn),

where {γn} is any sequence nesting down on x, because the intersection of the
closure is in fact the intersection of the boundaries.

8.2. Surjectivity of the Cannon-Thurston map. We start with Lemma 8.5.

Lemma 8.5. For any v ∈ C0(S) we have

∂Cs(Ṡ) ⊂ Φv(H).

The analogous statement for S closed is [LMS11, Lemma 3.12], but the proof
there does not work in our setting. Specifically, the proof in [LMS11] appeals to
Klarreich’s theorem about the map from Teichmüller space to the curve complex,
and extension to the boundary of that; see [Kla99b]. In our situation, the analogue

would be a map from Teichmüller space to Cs(Ṡ), to which Klarreich’s result does
not apply.

Proof. We first claim that if X ⊂ ∂Cs(Ṡ) is closed and PMod(Ṡ)–invariant then

either X = ∅ or X = ∂Cs(Ṡ). This is true since the set PA of fixed points of pseudo-

Anosov elements of PMod(Ṡ) is dense in EL(Ṡ) and EL(Ṡ) is dense in ELs(Ṡ). As

a result, PA is dense in ∂Cs(Ṡ). Since any nonempty, closed, pure mapping class

group invariant subset of ∂Cs(Ṡ) has to include PA, the claim is true.

Now we will show that ∂Cs(Ṡ) ∩ Φv(H) contains a PMod(Ṡ)–invariant set. For
this, first let PA0 ⊂ PA be the set of pseudo-Anosov fixed points for elements
in π1S < PMod(Ṡ). Since the π1(S) action leaves Φv(H) invariant, and since

pseudo-Anosov elements act with north-south dynamics on Cs
(Ṡ), it follows that

PA0 ⊂ Φv(H). Next, we need to show that f(PA0) = PA0 for f ∈ PMod(Ṡ). For
any point x ∈ PA0, let γ ∈ π1(S) be a pseudo-Anosov element with γ(x) = x. Then
fγf−1 fixes f(x), but fγf−1 is also a pseudo-Anosov element of π1(S), since π1(S)

is a normal subgroup of PMod(Ṡ). So, f(PA0) ⊂ PA0, since x ∈ PA0 was arbitrary.

Applying the same argument to f−1, we find f(PA0) = PA0. Since f ∈ PMod(Ṡ)

was arbitrary, PA0 is PMod(Ṡ)–invariant.
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Therefore, PA0 is a nonempty closed PMod(Ṡ)–invariant subset of ∂Cs(Ṡ) ∩
Φv(H), and so both of these sets equal ∂Cs(Ṡ). �

To prove the surjectivity, we will need Proposition 8.6. The exact analogue for
S closed is much simpler, but is false in our case (as the second condition suggests);
see [LMS11, Proposition 3.13]. To state the proposition, recall that P ⊂ H denotes
the set of parabolic fixed points; see Section 2.5.

Proposition 8.6. If {xn} is a sequence of points in H with limit x ∈ ∂H�S1A, then
one of the following holds:

(1) Φv(xn) does not converge to a point of ∂Cs(Ṡ); or
(2) x ∈ P and Φv(xn) accumulates only on points in ∂C(W(x)).

To prove this, we will need Lemma 8.7. For the remainder of this paper, we
identify the points of ∂Cs(Ṡ) with ELs(Ṡ) via Theorem 6.1.

Lemma 8.7. Suppose x ∈ P and {xn} ⊂ H with xn → x. If Φv(xn) → L in

∂Cs(Ṡ), then L ∈ ∂C(W(x)).

Proof. We suppose Φv(xn) → L in ∂Cs(Ṡ). Let H = Hx ⊂ H be the horoball
based at x disjoint from all chosen neighborhoods of geodesics used to define Φ as
in Sections 2.4 and 2.5. Applying an isometry if necessary, we can assume that
x = ∞ in the upper-half plane model and H = {z ∈ C | Im(z) ≥ 1} is stabilized
by the cyclic, parabolic group 〈g〉 < π1(S, z). By Lemma 2.7, the Φv–image of H
is a single point Φv(H) = {u}. Note that the projection of the horoball at any
height ε > 0 to Π−1(v) = Tv has bounded diameter. Thus, if Im(xn) > ε > 0
for some ε > 0, then Φv(xn) remains a bounded distance from u, and hence does

not converge to any L ∈ ∂Cs(Ṡ). Therefore, it must be that Im(xn) → 0 and
consequently Re(xn) → ±∞.

We may pass to a subsequence so that the hyperbolic geodesics [xn, xn+1]
nontrivially intersect H. From this we find a sequence of points yn ∈ H and
curves vn ∈ C(S) so that un = Φ(vn, yn) → L as n → ∞; indeed, as in [LMS11,

Lemma 3.11] one can find a Cs(Ṡ)–geodesic in Φ(C(S) × γn) = X (γn), where γn
is a geodesic in H containing [xn, xn+1] in a small neighborhood. According to
Lemma 2.7, Φ(C(S)×H) = C(W(x)), and so Φ(vn, yn) ∈ C(W(x)). Consequently,
L ∈ ∂C(W(x)), as required. �

Proof of Proposition 8.6. We suppose Φv(xn) → L ∈ ∂Cs(Ṡ) and argue as in
[LMS11]. Specifically, the assumption that x ∈ ∂H�S1A means that a ray r ending at
x, after projecting to S, is eventually trapped in some proper, π1–injective subsur-
face Y ⊂ S, and fills Y if Y is not an annulus. If Y is not an annular neighborhood
of a puncture, then we arrive at the same contradiction from [LMS11, Proposi-
tion 3.13]. On the other hand, if Y is an annular neighborhood of a puncture, then
by Lemma 8.7, L ∈ ∂C(W(x)), as required. �

Combined with Theorem 8.2, the following completes the proof of Theorem 1.3.

Theorem 8.8. The Cannon-Thurston map

∂Φ : S1A → ∂Cs(Ṡ)

is surjective and PMod(Ṡ)–equivariant.
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Proof. Let L ∈ ∂Cs(Ṡ). Then, by Lemma 8.5 L = limΦv(xn) for some sequence
{xn} ∈ H. Passing to a subsequence, assume that xn → x in ∂H. If x ∈ S1A we are
done since by continuity at every point of S1A we have,

L = limΦv(xn) = Φv(x) = ∂Φ(x).

If x /∈ S1A, then by Proposition 8.6, x ∈ P and L ∈ ∂C(W ), where W = W(x).

By Lemma 6.6, πW (Φv(xn)) → L ∈ ∂C(W ). Let g ∈ π1(Ṡ) be the generator of
Stabπ1S(x). As in the proof of Lemma 8.7, xn is not entirely contained in any
horoball based at x, and hence it must be that there exists a sequence {kn} such
that gkn(xn) → ξ where ξ ∈ ∂H is some point such that ξ 	= x. Since g is a Dehn
twist in ∂W , it does not affect πW (Φv(xn)). Thus πW (Φv(g

kn(xn))) → L and hence
Φv(g

kn(xn)) → L ∈ ∂C(W(x)) by another application of Lemma 6.6. Therefore,
the sequence {Φv(g

kn(xn))} and point ξ( 	= x) do not satisfy the conclusions of
Lemma 8.6, and hence {gkn(xn)} and ξ don’t satisfy the hypotheses, which means
ξ ∈ S1A. This then implies

L = lim
n→∞

Φv(g
kn(xn)) = Φv(ξ),

again appealing to continuity of Φ.
The proof of PMod(Ṡ)–equivariance is identical to the proof of [LMS11, Theo-

rem 1.2]. The idea is to use π1S–equivariance, and prove ∂Φ(φ · x) = φ · ∂Φ(x) for
φ ∈ PMod(Ṡ) and x in the dense subset of S1A consisting of attracting fixed points
of elements δ ∈ π1S whose axes project to filling closed geodesics on S. The point
is that such points x are attracting fixed points in ∂H of δ, but their images are
also attracting fixed points in ∂Cs(Ṡ) since δ is pseudo-Anosov by Kra’s Theorem

[Kra81], when viewed as an element of PMod(Ṡ). The fact that φ(x) and φ(∂Φ(x))

are the attracting fixed points of φδφ−1 in ∂H and ∂Cs(Ṡ), respectively, finishes
the proof. �

8.3. Universality and the curve complex. Theorem 1.5 on the universality is
an analog of [LMS11, Corollary 3.10]. While the statement is similar, it should
be noted that in [LMS11], the map is finite-to-one, though this is not the case
here since some of the complementary regions of the preimage in H of laminations
in S are infinite sided ideal polygons, and whose sides accumulate to a parabolic
fixed point. We follow [LMS11] where possible, and describe the differences when
necessary.

Theorem 1.5. Given two distinct points x, y ∈ S1A, ∂Φ(x) = ∂Φ(y) if and only
if x and y are the ideal endpoints of a leaf or complementary region of p−1(L) for
some L ∈ EL(S).

The “universality” may not be clear from the given statement, but comes from
the fact that if ∂i : S1 → S2 is the Cannon-Thurston map (i.e. continuous, equivari-
ant map) induced from a proper, type-preserving, isometric action of π1S on H3,
then a pair of points in S1 are identified by ∂i if and only if they are ideal endpoints
of a leaf or complementary region of p−1(L), where L is (one of) the ending lami-
nation(s) of the action; see [CT07,Min94,Bow07,Mj14b]. These laminations are in
EL(S), and hence if points in S1A are identified by ∂i, then they are also identified

by ∂Φ. Therefore, there is a map q : ∂i(S1A) → ∂Cs(Ṡ) (that identifies ∂i–images of
points that are identified by ∂Φ) so that q ◦ ∂i|S1A = ∂Φ.



138 FUNDA GÜLTEPE ET AL.

The proof will require a few additional facts. The first is the analogue of [LMS11,
Proposition 3.8] which states that the intersections at infinity of the images of the
half-spaces satisfy

(7) ∂H +(γ) ∩ ∂H −(γ) = ∂X (γ),

where as above, γ is a geodesics that projects to a closed, filling geodesic in S.
The next is the analogue in our setting of [LMS11, Lemma 3.9]. To describe this,
recall that the element δ ∈ π1S stabilizing γ is a pseudo-Anosov mapping class
when viewed in PMod(Ṡ) by a theorem of Kra [Kra81]. Let ±L ∈ EL(Ṡ) ⊂ ∂Cs(Ṡ)
be the attracting and repelling fixed points (i.e. the stable/unstable laminations).
Then we have

(8) ∂X (γ) = Φ̂(∂C(S)× γ) ∪ {±L}.

The proofs of these facts are identical to those in [LMS11], and we do not repeat
them.

Proof of Theorem 1.5. Given x, y ∈ S1A, first suppose that there is an ending lam-
ination L ∈ EL(S) and E ⊂ H which is either a leaf or complementary region of
p−1(L), so that x and y are ideal vertices of E. Let {γx

n}, {γy
n} be π1S–translates

of the geodesic γ (as above, which projects to a filling geodesic) that nest down on
x and y, respectively. Then by (6), we have

∂Φ(x) =
∞⋂

n=1

∂H +(γx
n) and ∂Φ(y) =

∞⋂
n=1

∂H +(γy
n).

By Lemma 7.2, Φ̂({L} × E) is a single point, which we denote

Φ̂({L} × E) = L0 ∈ ELs(Ṡ).

Now observe that because γx
n intersects E for all sufficiently large n, (8) implies

L0 ∈
∞⋂

n=1

Φ̂({L} × γx
n) ⊂

∞⋂
n=1

∂X (γx
n) ⊂

∞⋂
n=1

∂H +(γx
n) = ∂Φ(x).

Therefore, ∂Φ(x) = L0. The exact same argument shows ∂Φ(y) = L0, and hence

∂Φ(x) = L0 = ∂Φ(y),

as required.
Now suppose ∂Φ(x) = ∂Φ(y) = L0 ∈ ELs(Ṡ). Again by (6) there are sequences

{γx
n} and {γy

n} (π1S-translates of γ) nesting down to x and y respectively so that

∞⋂
n=1

∂H +(γx
n) = L0 =

∞⋂
n=1

∂H +(γy
n).

Because the intersections are nested, this implies that for all n we have

L0 ∈ ∂H +(γx
n) ∩ ∂H +(γy

n).
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Passing to a subsequence if necessary, we may assume that for all n,
H +(γx

n) ⊂ H −(γy
n) and H +(γy

n) ⊂ H −(γx
n). Therefore, for all n we have

L0 ∈ ∂H +(γx
n) ∩ ∂H +(γy

n)

=
(
∂H +(γx

n) ∩ ∂H −(γy
n)

)
∩

(
∂H +(γy

n) ∩ ∂H −(γx
n)

)
=

(
∂H +(γx

n) ∩ ∂H −(γx
n)

)
∩

(
∂H +(γy

n) ∩ ∂H −(γy
n)

)
= ∂X (γx

n) ∩ ∂X (γy
n).

The last equality here is an application of (7). Combining this with the description
of L0 above and (8), we have

∂Φ(x)=∂Φ(y)=L0=

∞⋂
n=1

(∂X (γx
n)∩∂X (γy

n))=

∞⋂
n=1

(Φ̂(∂C(S)×γx
n)∩ Φ̂(∂C(S)×γy

n)).

For the last equation where we have applied (8), we have used the fact that the
stable/unstable laminations of the pseudo-Anosov mapping classes corresponding
to δxn and δyn in π1S stabilizing γx

n and γy
n, respectively, are all distinct, hence L0 is

not one of the stable/unstable laminations.
From the equation above, we have Lx

n,Ly
n ∈ EL(S) and xn ∈ γx

n, yn ∈ γy
n so

that Φ̂(Lx
n, xn) = Φ̂(Ly

n, yn) = L0, for all n. According to Lemma 7.2, there exists
L ∈ EL(S) so that Lx

n = Ly
n = L for all n, and there exists a leaf or complementary

region E of p−1(L) so that xn, yn ∈ E. Since γx
n and γy

n nest down on x and
y, respectively, it follows that xn → x and yn → y as n → ∞. Therefore, x, y
are endpoints of a leaf of p−1(L) or ideal endpoints of a complementary region of
p−1(L), as required. �

We can now easily deduce the following, which also proves Proposition 1.4.

Proposition 8.9. Given that L0 ∈ ELs(Ṡ), ∂Φ−1(L0) is infinite if and only if
L0 ∈ EL(W ) for some proper witness W .

Proof. Theorem 1.5 implies that for L0 ∈ ELs(Ṡ), ∂Φ−1(L0) contains more than
two points if and only if there is a lamination L ∈ EL(S) and a complementary
region U of p−1(L) so that ∂Φ−1(L0) is precisely the set of ideal points of U .

Moreover, in this case the proof above shows that L0 = Φ̂({L} × U).
On the other hand, Lemma 7.3 and the paragraph preceding it tell us that

L0 ∈ ELs(Ṡ) is contained in EL(W ) for a proper witness W � Ṡ if and only if it is

given by L0 = Φ̂({L} × U) where L ∈ EL(S) and U is the complementary region
of p−1(L) containing Hx, where x ∈ P with W = W(x).

Finally, we note that a complementary region of a lamination L ∈ EL(S) has
infinitely many ideal vertices if and only if it projects to a complementary region
of L containing a puncture, and this happens if and only if it contains a horoball
Hx for some x ∈ P.

Combining all three of the facts above proves the proposition. �

Now we define S1A0
⊂ S1A to be those points that map by ∂Φ to EL(Ṡ) and

then define ∂Φ0 : S
1
A0

→ ∂C(Ṡ) = EL(Ṡ) to be the “restriction” of ∂Φ to S1A0
.

Theorem 1.2 is a consequence of the Theorem 1.5 since ∂Φ0 is the restriction of ∂Φ
to S1A0

. Then Proposition 1.4 is immediate from Proposition 8.9 and the definitions.
Theorem 1.1 then follows from Theorem 1.2 and Theorem 1.3 (see the discussion
after the restatement of Theorem 1.5 at the start of this subsection).



140 FUNDA GÜLTEPE ET AL.

We end with an alternate description of S1A0
. For L ∈ EL(S), consider the

subset SL ⊂ ∂H consisting of all ideal endpoints of complementary components of
p−1(L) which have infinitely many such ideal endpoints. That is, SL is the set of
ideal endpoints of complementary regions that project to complementary regions
of L that contain a puncture. The following is thus an immediate consequence of
Theorem 1.5 and Proposition 8.9.

Corollary 8.10. The set of points S1A0
⊂ S1A ⊂ ∂H that map to EL(Ṡ) ⊂ ELs(Ṡ)

is

S1A0
= S1A�

⋃
L∈EL(S)

SL.

�
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