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A UNIVERSAL CANNON-THURSTON MAP AND THE
SURVIVING CURVE COMPLEX

FUNDA GULTEPE, CHRISTOPHER J. LEININGER, AND WITSARUT PHO-ON

ABSTRACT. Using the Birman exact sequence for pure mapping class groups,
we construct a universal Cannon-Thurston map onto the boundary of a curve
complex for a surface with punctures we call surviving curve complex. Along
the way we prove hyperbolicity of this complex and identify its boundary as a
space of laminations. As a corollary we obtain a universal Cannon-Thurston
map to the boundary of the ordinary curve complex, extending earlier work of
the second author with Mj and Schleimer [Comment. Math. Helv. 86 (2011),
pp. 769-816].

1. INTRODUCTION

Given a closed hyperbolic 3-manifold M that fibers over the circle with fiber
a surface S, Cannon and Thurston [CT07] proved that the lift to the universal
covers H? — H3 of the inclusion S — M extends to a continuous 1 (S)-equivariant
map of the compactifications. This is quite remarkable as the ideal boundary map
SL, — S2 is a m1S-equivariant, spherefilling Peano curve. For a type-preserving,
properly discontinuous action of the fundamental group m1.S of a hyperbolic surface
(closed or punctured) on H? existence of an equivariant map S, — S2_, called
a Cannon-Thurston map, was proved in various situations (see [Min94,[ADP99,
McMO01Bow07]), with Mj [Mjl4a] proving the existence in general. See Section [l
for a discussion of more general notions of Cannon-Thurston maps.

Suppose that S is a hyperbolic surface with basepoint z € S, and write § =
S~ {z}. The curve complex of S is a §-hyperbolic space on which m S = 7(S, z)
acts via the Birman exact sequence. In [LMSTI], the second author, Mj, and
Schleimer constructed a universal Cannon-Thurston map when S is a closed surface
of genus at least 2. Here we complete this picture, extending this to all surfaces S
with complexity £(S) > 2.

Theorem 1.1 (Universal Cannon-Thurston map). Let S be a connected, orientable
surface with £(S) > 2. Then there exists a subset S}% C S, and a continuous,
m S—equivariant, finite-to-one surjective map 0Pq: 8}40 — 8C(S). Moreover, if
9i: S, — S2. is any Cannon- Thurston map for a proper, type-preserving, isometric
action on H? without accidental parabolics, then there exists a map q: 8@'(S}40) —
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dC(S) so that Oy factors as
0

T .
8Y, o> 9i(8Y,) ——= 9C(S).

A continuous, 7 S—equivariant map defined on a 7; S—invariant subset A C Sl
to the Gromov boundary of some Gromov hyperbolic metric space equipped with
an action of 719, will be called an A-Cannon-Thurston map. When A = S},
we will call this a Cannon-Thurston map (making the notion of Cannon-Thurston
map defined above into a special case). Theorem [[LI] in particular, proves the
existence of an S}‘lofCannon—Thurston map. We could also require that the map is
a continuous extension of a map of H? to the Gromov hyperbolic space in question.
Our maps satisfy this property as well, though the properties we are primarily
interested in are reflected in the boundary behavior only, so we have chosen to use
this terminology.

For the reader familiar with Cannon-Thurston maps in the setting of cusped
hyperbolic surfaces, the finite-to-one condition may seem unnatural. We address
this below in the process of describing the subset S} C SL,. First, we elaborate
on the universal property of the theorem (that is, the “moreover” part).

Let p: H = H? — S denote the universal cover[] A proper, type-preserving,
isometric action of 7,5 on a H? has quotient hyperbolic 3-manifold homeomorphic
to S x R. Each of the two ends (after removing cusp neighborhoods) is either
geometrically finite or simply degenerate. In the latter case, there is an associated
ending lamination that records the asymptotic geometry of the end; see [Thu78|
Bon86,Min10,BCM12]. The Cannon-Thurston map S., — S% for such an action
is an embedding if both ends are geometrically finite; see [Flo80]. If there are
one or two degenerate ends, the Cannon-Thurston map is a quotient map onto a
dendrite or the entire sphere S%, respectively, where a pair of points z,y € SL,
are identified if and only if x and y are ideal endpoints of a leaf or complementary
region of the p~1(L) for (one of) the ending lamination(s) £; see [CTOT7,Min94,
Bow(7,[Mj14b]. A more precise version of the universal property is thus given
by the following. Here £L£(.5) is the space of ending laminations of S, which are
all possible ending laminations of ends of hyperbolic 3—manifolds as above; see
Section for definitions.

Theorem 1.2. Given two distinct points x,y € S}%, 0Do(z) = 0Dy (y) if and only
if © and y are the ideal endpoints of a leaf or complementary region of p~*(L) for
some L € EL(S).

When S has punctures, 9C(S) is not the most natural “receptacle” for a universal
Cannon-Thurston map. Indeed, there is another hyperbolic space whose boundary
naturally properly contains 8C(S). The surviving curve complex of S, denoted
CS(S") is the subcomplex of C (S) spanned by curves that “survive” upon filling z
back in. In Section [ we prove that CS(S’) is hyperbolic. One could alternatively
verify the axioms due to Masur and Schleimer [MS13], or try to relax the conditions

of Vokes [Vok] to prove hyperbolicity; see Section [l

I'We will mostly be interested in real hyperbolic space in dimension 2, so will simply write
H = H2.
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The projection I1: C*(S) — C(S) was studied by the second author with Kent
and Schleimer in [KLS09] where it was shown that for any vertex v € C(S), the
fiber I1-%(v) is 7 S—equivariantly isomorphic to the Bass-Serre tree dual to the
splitting of 715 defined by the curve determined by v; see also [Har86],[HV1T]. As
such, there is a 715 equivariant map @, : H — I~ '(v) C C*(S); see Section X4l
As we will see, the first part of Theorem [[.1lis a consequence of the following; see
Section B

Theorem 1.3. For any vertex v € C, the map ®, : H — CS(S) has a continuous
m1(S) —equivariant extension
T, - HUSY = C°(9)
and the induced map
0P = 5U|S}4 : S — acs(9)
1s surjective and does not depend on v. Moreover, 0® is equivariant with respect to

the action of the pure mapping class group PMod(5).

The subset SY C S. is defined analogously to the set A C SL, in [LMSII].
Specifically, z € SY if and only if any geodesic ray r C H starting at any point and
limiting to x at infinity has the property that every essential simple closed curve
a C S has nonempty intersection with p(r); see Section[8 It is straightforward to
see that SY is the largest set on which a Cannon-Thurston map can be defined to
acs(S).

As we explain below, S}% C SY and a pair of points in S}% are identified by
09 if and only if they are identified by 0®, and thus 0® is also finite-to-one on
S}%. It turns out that the “finite-to-one property” precisely describes the difference

between S}L‘ and S}%. To state this precisely, let Z C 8CS(S') be the set of points x
for which 9®~1(z) is infinite.

Proposition 1.4. We have Sy~S, = 0971(Z).
The analogue of Theorem is also valid for ®.

Theorem 1.5. Given two distinct points x,y € S, 0®(z) = 0®(y) if and only
if # and y are the ideal endpoints of a leaf or complementary region of p~(L) for
some L € EL(S).

It is easy to see that for any ending lamination £ € £L£(S), the endpoints at
infinity of any leaf of p~!(£) (and hence also the non parabolic fixed points of
complementary regions) are contained in Sl;, though this a fairly small subset; for
example, almost-every point = € Sl has the property that any geodesic ray limiting
to « has dense projection to S. The complementary regions that contain parabolic
fixed points are precisely the regions with infinitely many ideal vertices. Together
with Proposition [[L4] provides another description of the difference SY~\S. . see
Corollary B10

A important ingredient in the proofs of the above theorems is an identification

of the Gromov boundary 9C?(S), analogous to Klarreich’s Theorem [Kla99b; see

Theorem 2121 Specifically, we let £L£5(S) denote the space of ending laminations
on S together with ending laminations on all proper witnesses of S; see Section [Z.3]

We call ££°(.5) the space of surviving ending laminations. A more precise statement
of the following is proved in Section [6} see Theorem
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Theorem 1.6. There is a PMod(S)—equivariant homeomorphism 0C*(S)— EL?(S).
To describe the map 99 in Theorem [Tl we consider the map 9®: Sl — aC* (S)

from Theorem [[3] composed with the homeomorphism 9C*(S) — £L£°(S) from
Theorem Since £L(S) is a subset of ££°(S), we can simply take S} C S4 to

be the subset that maps onto ££(.5), and compose the restriction 9® to this subset
with the homeomorphism ££(S) — dC(S) from Klarreich’s Theorem. The more
geometric description of 8«140 is obtained by a more detailed analysis of the map 0®
carried out in Section [8

1.1. Historical discussion. In [Flo80], Floyd constructed a parameterization of
the limit set of a geometrically finite group via an equivariant, continuous map from
a certain boundary of the group he called the group completion (in fact, the map
may be 2-to-1 at some points). Cannon and Thurston’s map S, — SZ  described
above in the case of fibers of closed hyperbolic 3-manifolds fibering over the circle
can be thought of as an extension of Floyd’s since the group completion of the
fundamental group of the fiber can be naturally identified with S!_, and the limit
set of the fiber group acting on H? is S2,. Their work was a significant departure
from that of Floyd’s as the intrinsic and extrinsic geometry of the fiber H? in
H3 are drastically different. Cannon and Thurston’s results were circulated in a
preprint around 1984 and inspired works of many others before it was published
in 2007 [CTO7]. The existence of a Cannon-Thurston map, as it then became
known, was proved by Minsky [Min94] for closed surface Kleinian groups of bounded
geometry and by Klarreich [Kla99a] and Mj (Mitra) [Mit98b] for hyperbolic 3-
manifold groups of bounded geometry with an incompressible core and without
parabolics (here the domain boundary is not necessarily a circle). Alperin-Dicks-
Porti [ADP99] proved the existence of the Cannon-Thurston map for the fiber of
the figure eight knot complement, McMullen [McMOT] for arbitrary punctured torus
Kleinian groups, and then Bowditch [Bow07,[Bow13|] for more general punctured
surface Kleinian groups of bounded geometry. Mj completed the investigation for
all finitely generated Kleinian surface groups without accidental parabolics, first for
closed and then for punctured surfaces in a series of papers that culminated in the
two papers [MjI4a] and [Mj14b], the latter with an appendix by S. Das. Existence
for more general Kleinian groups (and their boundaries) followed in the work of
Das-Mj [DM16] and Mj [Mj17]. We refer the reader to the survey [Mj18] for further
discussion.

Moving beyond real hyperbolic spaces, it is now classical that a quasi-isometric
embedding of one Gromov hyperbolic space into another extends to an embedding
of the Gromov boundaries, which most closely relates to Floyd’s work mentioned
above. One of the first generalizations of Cannon and Thurston’s work outside the
setting of Kleinian groups is due to Mj in [Mit98a]. He proved that given a short
exact sequence

1-H->T—-G—1

of infinite word hyperbolic groups, there is an equivariant, continuous, surjective
map of Gromov boundaries 9H — JI', also referred to as a Cannon-Thurston map
in this setting (again, H is distorted when |G| = 00). In this case the Cannon-
Thurston map 0H — OI' is defined between the Gromov boundary dH of the fiber
group H and the Gromov boundary 0T of its extension I". This was extended to the
case of relatively hyperbolic groups by Pal in [Pall0]. Mj defined an algebraic ending
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lamination associated to points in the Gromov boundary of the base group G in
[Mit97], and recent work of Field [Fie20] proves that the quotient of OH in terms
of such an ending lamination is a dendrite (c.f. the Kleinian discussion above); see
also Bowitch [Bow13].

Mj’s early work on Kleinian groups in [Mit98b] mentioned above was in fact a
consequence of a more general result, proving the existence of a Cannon-Thurston
map for certain vertex subgroups of graphs of groups (c.f. [BF92]). In [MPII],
Mj and Pal extended this even further to the case of trees of relatively hyperbolic
spaces. In 2013 Baker and Riley gave the first example of a hyperbolic subgroup
of a hyperbolic group with no continuous Cannon-Thurston map ([BR13]); see also
Matsuda [MO1I4]. On the other hand, Baker and Riley ([BR20]) proved existence of
Cannon-Thurston maps even under arbitrarily heavy distortion of a free subgroup
of a hyperbolic group.

For free groups and their hyperbolic extensions, Cannon-Thurston maps are bet-
ter understood than arbitrary hyperbolic extensions. Kapovich and Lustig charac-
terized the Cannon-Thurston maps for hyperbolic free-by-cyclic groups with fully
irreducible monodromy [KL15]. Later Dowdall, Kapovich and Taylor characterized
Cannon-Thurston maps for hyperbolic extensions of free groups coming from convex
cocompact subgroups of outer automorphism group of the free group [DKT16].

We note that we have only discussed a few of the many results on the existence
and structure of Cannon-Thurston-type maps, and only in some of the “classical”
settings. For a sample of related results, see e.g. [Lei09,Mj14blMR18, [ JKLO16,
Guél6l[Fen92 [Fralbl[FenT6,Moul8BCG™ 18, [DHSIT]).

1.2. Outline. In Section] we give preliminaries on curve complexes, witnesses and
Gromov boundary of a hyperbolic space along with basics of spaces of laminations.
In particular, Section 2.4]is devoted to the construction of the survival map and
in Section the relation between cusps and witnesses via the survival map is
described. In Section Bl we define survival paths in C*(S) and give an upper bound
on the survival distance d® in terms of projection distances into curve complexes of

witnesses. In Section Flwe prove the hyperbolicity of C*(.S). Section[His devoted to

the distance formula for C*(.9), a-la Masur-Minsky, and as a result we prove that
survival paths are uniform quasi-geodesics in CS(S). In Section [l we explore the
boundary of the survival curve complex CS(S' ) and prove that it is homeomorphic
to the space of survival ending laminations on S, a result analogous to that of
Klarreich [KIa99b]. In Section [0 we extend the definition of survival map to the
closures of curve complexes. Finally in Section [§, we prove Theorem [[3] and the
rest of the theorems from the introduction. Specifically, we prove the existence and
continuity of the map 0® in Section [R] and its surjectivity in Section Finally,
in Section B3] we prove the universal property of 9® as well as constructing the
map 0.

2. PRELIMINARIES

Throughout what follows, we assume S is surface of genus g > 0 with n # 0
punctures, and finite complexity £(S) = 3g—3+n > 2. We fix a complete hyperbolic
metric of finite area on S and a locally isometric universal covering p: H — S. We
also fix a point z € S, and write S to denote either the punctured surface S ~qz} or
the surface with an additional marked point (S, z), with the situation dictating the
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intended meaning when it makes a difference. We sometimes refer to the puncture
produced by removing z as the z—puncture. We further choose z € p~1(2) C H and
use this to identify 715 = 71 (S, z) with the covering group of p: H — S, acting by
isometries.

2.1. Notation and conventions. Let z,y,C, K > 0 with K > 1. We write
K,C
r = ytomean x < Ky + C. We also write

K,C K,C K,C
T X y S r X yandzx > y.
When the constants are clear from the context or independent of any varying quan-
tities and unimportant, we also write z < y as well as ¢ < y. In addition, we will
use the shorthand notation {z}}¢ to denote the cut-off function giving value z if
x > C and 0 otherwise.

Any connected simplicial complex will be endowed with a path metric obtained
by declaring each simplex to be a regular Euclidean simplex with side lengths equal
to 1. The vertex set of a connected simplicial complex will be denoted with a
subscript 0, and the distance between vertices will be an integer computed as the
minimal length of a path in the 1-skeleton. By a geodesic between a pair of vertices
v,w in a simplicial complex, we mean either an isometric embedding of an interval
into the 1-skeleton with endpoints v and w or the vertices encountered along such
an isometric embedding, with the situation dictating the intended meaning.

2.2. Curve complexes. By a curve on a surface Y (possibly S, S, or a subsurface
of one of these), we mean an essential (homotopically nontrivial and nonperiph-
eral), simple closed curve. We often confuse a curve with its isotopy class. When
convenient, we take the geodesic representative with respect to a complete finite
area hyperbolic metric on the surface with geodesic boundary components (if any).
A multi-curve is a disjoint union of pairwise non-isotopic curves, which we also
confuse with its isotopy class and geodesic representative when convenient. We
write i(a, 8) for the geometric intersection number of isotopy classes a and 8 of
multicurves, which is the minimal number of intersection points of a representative
of a with a representative of 3.

The curve complex of a surface Y with £(Y) > 2 is the complex C(Y') whose
vertices are curves (up to isotopy) and whose k—simplices are multi-curves with
k + 1 components. According to work of Masur-Minsky [MM99], curve complexes
are Gromov hyperbolic. For other proofs, see [Bow00,[Ham07] as well as [Aoul3|
Bow14l[CRS14HPW15|] which prove uniform bounds on 4.

Theorem 2.1. For any surface Y, C(Y) is §—hyperbolic, for some 6 > 0.

The surviving complex C*(S) is defined to be the subcomplex of the curve com-
plex C(S5), spanned by those curves that do not bound a twice-punctured disk,
where one of the punctures is the z—puncture. Given curves «, 8 € C§(5), we write

d*(a, B) for the distance between o and 8 (in the 1-skeleton).

2.3. Witnesses for C*(S) and subsurface projection to witnesses. A sub-
surface of S is either S itself or a component ¥ C S of the complement of a small,
open, regular neighborhood of a (representative of a) multi-curve A; we assume Y’
is not a pair of pants (a sphere with three boundary components/punctures). The
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boundary of Y, denoted 9Y, is the sub-multi-curve of A consisting of those compo-
nents that are isotopic into Y. As with (multi-)curves, subsurfaces are considered
up to isotopy, in general, but when convenient we will choose a representative of
the isotopy class without comment.

Definition 2.2. A witness for C*(S) is a subsurface W C S such that for every

a € C%(S) no representative of (the isotopy class defined by) « can be made disjoint
from W.

Remark 2.3. Witnesses were introduced in a more general setting by Masur and
Schleimer in [MS13] where they were called holes.

Clearly, S is a witness. Note that if 3 is the boundary of a twice-punctured disk
D, one of which is the z—puncture, the complementary component W C S with
OW = j is a witness. To see this, we observe that any curve a in C*(S) that can
be isotoped disjoint from W must be contained in D, but the only such curve in
Sis B. Tt is clear that these two types of subsurfaces account for all witnesses.
We let Q(S) denote the set of witnesses and €4(S) = Q(S) ~ {S} the set of proper
witnesses. We note that any proper witness W is determined by its boundary curve,
OW: if W # S, then W is the closure of the component of S~\dW not containing
the z—puncture.

An important tool in what follows is the subsurface projection of curves in C* (S )

to witnesses; see [MMO0].

Definition 2.4 (Projection to witnesses). Let W C S be a witness for C*(5) and
a € C§(S) a curve. We define the projection of a to W, mw () as follows. If W = S
or if a is contained in W, then my (o) = a. If W # S, then my () is the set of
curves

mw(a) = U OWN (g UOW)),

where (1) we have taken representatives of o and W so that o and OW intersect
transversely and minimally, (2) the union is over all complementary arcs ag of
a~OW that meet W, (3) M(ap U OW) is a small regular neighborhood of the
union, and (4) we have discarded any components of (N (ag U OW)) that are not
essential curves in W. The projection my («) is always a subset of C(W) with
diameter at most 2; see [MMO00, Lemma 2.3]. We note that 7y («) is never empty
by definition of a witness.

Given a, 8 € C§(S) and a witness W, we define the distance between o and 8 in
W by
dw (o, B) = diam{mw () U (8) }.
Note that if W = S, then d¢(a, B) is simply the usual distance between o and
B in C(S). According to [MMOQ, Lemma 2.3], projections to witnesses satisfy a
2-Lipschitz projection bound.

Proposition 2.5. For any two distinct curves a, 8 € CS(S’) and witness W, we

have dw (o, 8) < 2d°(a, 8). In fact, for any path vy, ..., v, in C(S) connecting «
to B, such that ww (v;) # 0 for all j, we have dw (e, 5) < 2n.

We should mention that in [MMO0O] Masur and Minsky consider the projection

map from C(S) to C(W') and prove the second statement. Since C*(S) is a subcom-

plex of C(S) for which every curve has nonempty projection, the first statement
follows from the second.
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We will also need the following key fact about projections from [MMO00, Theo-
rem 3.1].

Theorem 2.6 (Bounded geodesic image theorem). Given a surface Y, there ex-
ists M > 0 with the following property. For any geodesic G in C(Y') and proper
subsurface W C'Y so that my (v) # 0 for all vertices v of G, we have

dlamw(ﬂ'w(g)) < M,
where Ty (G) denotes the image of the geodesic G in W.

We assume (as we may) that M > 8, as this makes some of our estimates cleaner.
In fact, there is a uniform M that is independent of Y in this theorem, given by
Webb [Web15].

2.4. Construction of the survival map. Consider the forgetful map

IT: C3(S5) — C(5)
induced from the inclusion § — S. By definition of C*(S), IT is well defined since

every curve in C*(S) determines a curve in C(S). Each point v € C(S) determines a
weighted multi-curve: v is contained in the interior of a unique simplex, which cor-
responds to a multi-curve on S, and the barycentric coordinates determine weights
on the components of the multicurve. The weighted multicurve determines an ac-
tion on a simplicial R—tree T;,, dual the preimage of the multicurve in S, with edge
lengths determined by the weights. We call T,, the Bass-Serre tree associated v (the
action on the simplicial tree defines the splitting of 715 determined by the under-
ling multicurve of v by Bass-Serre theory). According to [KLS09, Theorem 7.1],
the fiber of the map II is naturally 7. S—equivariantly identified with the Bass-Serre
tree, II71(v) = T,,.
An important tool in our analysis is the survival map

®:C(S) x H — C*(9).

The construction of the analogous map when S is closed is described in [LMSTI].
Since there are no real subtleties that arise, we describe enough of the details of
the construction for our purposes, and refer the reader to that paper for details.
Before getting to the precise definition of ®, we note that for every v € C(S5), the
restriction of ® to H 2 {v} x H will be denoted ®,: H — C5(S), and this is simpler
to describe: ®, 7 S—equivariantly factors as H — T, — II-1(v), where the action
of 1.5 on H comes from our reference hyperbolic structure on .S, the associated
covering map p: H — S, and choice of basepoint z € p~1(2).

To describe ® in general, it is convenient to construct a more natural map from
which @ is defined as the descent to a quotient. Specifically, we will define a map

®: C(S) x Diffy(S) — C*(89),
where Diff((.5) is the component of the group of diffeomorphisms of S containing
the identity (all diffeomorphisms of S are assumed to extend to diffeomorphisms of
the closed surface obtained by filling in the punctures). To define <T>, first for each
curve a € Cy(S), we let a denote the geodesic representative in our fixed hyperbolic
metric on S, and choose once and for all e(a«) > 0 so that for any two vertices a, o/,
i(a, @) is equal to the number of components of Ny (a) N Neory(a'). If f(2) is

disjoint from the interior of N(4)(c), then ®(a, f) = f (), viewed as a curve on
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S. If f(z) is contained in the interior of Ne(ay (@), then we let at denote the two

boundary components of this neighborhood, and define &)(oz, f) to be a point of the
edge between the curves f~!(a_) and f~!(ay ) determined by the relative distance
to a4 and a—. For a point s € C(.S) inside a simplex A of dimension greater than
0, we use the neighborhoods of curves (defined by {e(a)}scc,(s) as above) as well

as the barycentric coordinates of s inside A to define ®(s, f) € II"1(s) C I (A);
see [LMS11], Section 2.2] for details.

Next we note that the isotopy from the identity to f lifts to an isotopy from
the identity to a canonical lift fof f. The map & is then defined from our choice
Z € p~1(2) and the canonical lift by the equation

(o, f(7) = ®(a, f).
Alternatively, we have the evaluation map ev: Diff((S) — S, ev(f) = f(z), which

lifts to a map év: Diffg(S) — H (given by ev(f) = f(Z), where again f is the
canonical lift), and then & is defined as the descent by id¢(g) xév:

idC(S) Xé}/l \

C(S)xH — Cs(S).
Note that every @ € H is @ = f(Z) for some f € Diffo(S) (indeed, év defines a
locally trivial fiber bundle). As is shown in [LMS11l Lemma 2.1,Proposition 2.2],
O (e, w) is well defined independent of the choice of such a diffeomorphism f with
f(%) = w since any two differ by an isotopy fixing z, and ® is m.S—equivariant
(where the points Z is used to identify the fundamental group with the group of
covering transformations). It is straightforward to see that ®(«,-) is constant on

components of Hxp™!(N(q)()): two points w,w’ in such a component are given

by w = f(%) and @' = :fV’(E') where f and f’ are isotopic by an isotopy fi, so that
Jt(z) remains outside N,(q)(c) for all ¢.

2.5. Cusps and witnesses. Lemma [2.7] relates ® to the proper witnesses. Let
P C OH denote the set of parabolic fixed points of the action of mq(S) on H.
Assume that for each z € P, we choose a horoball H, invariant by the parabolic
subgroup Stab,, s(z), the stabilizer of = in 71.5. We further assume, as we may,
that (1) the union of the horoballs is 7; S—invariant, (2) the horoballs are pairwise
disjoint (so all projected to pairwise disjoint cusp neighborhoods of the punctures),
and (3) the horoballs all project disjoint from N¢(4)(c) for all curves a. Recall that

any proper witness W C S is determined by its boundary curve, OW.

Lemma 2.7. There is a w1S—equivariant bijection W: P — Qo(S) determined by
(1) OW(z) = f~1(9p(Hy)),

for any f € Diffq(S) with f(Z) in the interior of the horoball H,. Moreover,
O(C(S) x Hy) = C(W(x)), we have ®(I1(u) x Hy)) = u for all u € CW(x)), and
Stabr,s(x) acts trivially on COW(x)).

From the lemma (and as illustrated in the proof) ®|c(s)xm, defines an isomor-
phism C(S) — C(W(x)) inverting the isomorphism IT|¢yy(q)): CONV(x)) — C(S).
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Proof. For any f € Diffo(S) with @ = f(%) € H, and any curve v € Cy(S), we have
®(v,w) = ®(v, f) = f~1(v). On the other hand, f~1(dp(H,)) is the boundary of
a twice punctured disk containing the z puncture, and hence f~1(dp(H,)) is the
boundary of a witness we denote W(z). Since v and dp(H,) are disjoint,

(v, w) € COW(z)) C C*(9).
The same proof that ®(v,w) is well defined (independent of the choice of f € Diff(.S)
with f(2) = w), shows f~1(dp(H,)) is independent of such a choice of f (up to
isotopy). Therefore, W is well defined by (). Since v € Cy(S) was arbitrary and
®(v,-) is constant on components of the complement of p~'(N,(,)(v)), we have

o(C(S) x H,) C C(W(x)).

Given u € C(W(x)), we view u as a curve disjoint from f~!(dp(H,)) and hence
f(uw) is disjoint from p(H,). There is an isotopy of f(u) to v = II(u) fixing p(H,,)
(since p(H,;) is just a neighborhood of the cusp) and hence an isotopy of u to
f~1(v) disjoint from f~1(dp(H,)). This implies ®({v} x H,) = u, proving that
O(C(S) x H,) = C(W(x)), as well as the formula ®(II(u) x H,) = u for all u €

Next observe that for any proper witness W, the subcomplex C(W) C C*(95)
uniquely determines W. Therefore, the property that ®(C(S) x H,) = COW(z)),
together with the m;.S—equivariance of ® implies that W is w1 S—equivariant. All
that remains is to show that W is a bijection. Let Ci, ..., C, be the pairwise
disjoint horoball cusp neighborhoods of the punctures obtained by projecting the
horoballs H,, for all x € P.

For any proper witness W, there is a diffeomorphism f: S — S, isotopic to the
identity by an isotopy f; which is the identity on W for all ¢, and so that f(z) € C;,
for some i. Note that there is an arc connecting z to the i*"* puncture which is
disjoint from both W and 0C;. It follows that OW and OC; are isotopic in S,
and thus by further isotopy (no longer the identity on W) we may assume that
f(OW) = 8C;. Therefore, f~1(8C;) = OW. Observe that the canonical lift f has
f(2) € H, for some x € P with p(H,) = C;. Therefore, f~1(dp(H,)) = W, and so
W(z) = W, so W is surjective.

To see that W is injective, suppose x,y € P are such that W(x) = W(y). The
two punctures surrounded by OW(z) and by OW(y) are therefore the same, hence
there exists an element v € w15 so that v -z = y. By 7 .S—equivariance, we must
have

v-OW(x) = OW(y-x) = W(y) = OW(x).
Choose a representative loop for v with minimal self-intersection and denote this ~q.
If g is simple closed, then the mapping class associated to -y is the product of Dehn
twists (with opposite signs) in the boundary curves of a regular neighborhood of
~o- Otherwise, 7y fills a subsurface Y C S and is pseudo-Anosov on this subsurface
by a result of Kra [Kra81] (see also [KLS09]). It follows that v - OW(x) = OW(x) if
and only if vp is disjoint from W (x), which happens if and only if f(vo) C p(H,)
(up to isotopy relative to f(z)). In the action of 7.5 on H, the element 7 sends
f(2) to v f(2), and these are the initial and terminal endpoints of the f-image of
the lift of v with initial point Z. On the other hand, f(é) € H,, and hence so is
v - f(é), which means that v is fixes z. Therefore, y = v-x = x, and thus W is
injective. ([l
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2.6. Spaces of laminations. We refer the reader to [Thu88], [CEG06|, [FLP12],
and [CB8g| for details about the topics discussed here. By a lamination on a surface
Y we mean a compact subset of the interior of Y foliated by complete geodesics with
respect to some complete, hyperbolic metric of finite area, with (possibly empty)
geodesic boundary; the geodesics in the foliation are uniquely determined by the
lamination and are called the leaves. For example, any simple closed geodesic o
is a lamination with exactly one leaf. For a fixed complete, finite area, hyperbolic
metric on Y, all geodesic laminations are all contained in a compact subset of the
interior of Y. For any two complete, hyperbolic metrics of finite area, laminations
that are geodesic with respect to the first are isotopic to laminations that are
geodesic with respect to the second. In fact, we can remove any geodesic boundary
components, and replace the resulting ends with cusps, and this remains true.
We therefore sometimes view laminations as well-defined up to isotopy, unless a
hyperbolic metric is specified in which case we assume they are geodesic.

A complementary region of a lamination £ C Y is the image in Y of the closure of
a component of the preimage in the universal covering; intuitively, it is the union of
a complementary component together with the “leaves bounding this component”.
We view the complementary regions as immersed subsurfaces with (not necessarily
compact) boundary consisting of arcs and circles (for a generic lamination, the
immersion is injective, though in general it is only injective on the interior of the
subsurface). We will also refer to the closure of a complementary component in the
universal cover of YV as a complementary region (of the preimage of a lamination).

We write GL(Y) for the set of laminations on the surface Y, dropping the ref-
erence to Y when it is clear from the context. The set of essential simple closed
curves, up to isotopy (i.e. the vertex set of C(Y)) is thus naturally a subset of
GL(Y). A lamination is minimal if every leaf is dense in it, and it is filling if its
complementary regions are ideal polygons, or one-holed ideal polygons where the
hole is either a boundary component or cusp of Y. A sublamination of a lami-
nation is a subset which is also a lamination. Every lamination decomposes as a
finite disjoint union of simple closed curves, minimal sublaminations without closed
leaves (called the minimal components), and biinfinite isolated leaves (leaves with
a neighborhood disjoint from the rest of the lamination).

There are several topologies on GL that will be important for us (in what follows,
and whenever discussing convergence in the topologies, we view laminations as
geodesic laminations with respect to a fixed complete hyperbolic metric of finite
area; the resulting topology and convergence is independent of the choice of metric).
The first is a metric topology called the Hausdorff topology (also known as the
Chabauty topology), induced by the Hausdorff metric on the set of all compact
subsets of a compact space (in our case, the compact subset of the surface that
contains all geodesic laminations) defined by

dy(L,L') =inf{e >0 | L C N(L') and L' C N.(L)}.
If a sequence of {£;} converges to £ in this topology, we write L; H, £, The

following provides a useful characterization of convergence in this topology; see
[CEGO06, Lemma 1.3.1.3, Lemma 1.4.1.8].

Lemma 2.8. We have L; LNy if and only if

(1) for all x € L there is a sequence of points x; € L; so that x; — x, and
(2) for every subsequence {L;, }32 4, if xi, € Li,, and z;,, — x, then x € L.
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This lemma holds not just for Hausdorff convergence of laminations, but for
any sequence of compact subsets of a compact metric space with respect to the
Hausdorff metric.

The set GL can also be equipped with a weaker topology called the coarse Haus-
dorff topology, [Ham06], introduced by Thurston in [Thu78] where it was called the
geometric topology (see also [CEGO6] where it was Thurston topology). If a sequence

{L;} converges to L in the coarse Hausdorff topology, then we write £; CH, L. The
following describes convergence in this topology; see [CEG06, Lemma 1.4.1.11].

Lemma 2.9. We have L; Hor if and only if condition (1) holds from Lemma 28

Corollary 210 gives a useful way of understanding coarse Hausdorff convergence.

Corollary 2.10. We have L; Hor if and only if every Hausdorff convergent
subsequence converges to a lamination L' containing L.

Since any lamination has only finitely many sublaminations, from the corollary
we see that while limits are not necessarily unique in the coarse Hausdorff topology,
a sequence can have only finitely many limits. An ending lamination is a minimal,
filling lamination, and we let ££ = EL(Y) denote the space of ending lamina-
tions on Y, equipped with the coarse Hausdorff topology. As suggested by the
name, these are precisely the laminations that occur as the ending laminations of a
type preserving, proper, isometric action on hyperbolic 3—space without accidental
parabolics as discussed in the introduction.

A measured lamination is a lamination £ together with an invariant transverse
measure p; that is, an assignment of a measure on all arcs transverse to the lam-
ination, satisfying natural subdivision properties, which is invariant under isotopy
of arcs preserving transversality with the lamination. The support of a measured
lamination (£, i) is the sublamination |u| C £ with the property that a transverse
arc has positive measure if and only if the intersection with |u| is nonempty, and
is a union of minimal components and simple closed geodesics. We often assume
that (£, u) has full support, meaning £ = |u|. In this case, we sometimes write u
instead of (L, u).

The space ML = ML(Y) of measured laminations on Y is the set of all mea-
sured laminations of full support equipped with the weak* topology on measures
on an appropriate family of arcs transverse to all laminations. Given an arbitrary
measured lamination, (£, u), we have (|p|, ) is an element of ML, and so every
measured lamination determines a unique point of ML. We let FL C ML denote
the subspace of measured laminations whose support is an ending lamination (i.e. it
is in £L£). We write PML and PFL for the respective projectivizations of ML
and FL, obtained by taking the quotient by scaling measures, with the quotient
topologies. The following will be useful in the sequel; see [Thu78, Chapter 8.10].

Proposition 2.11. The map PML — GL, given by p — |u|, is continuous with
respect to the coarse Hausdorff topology on GL.

For the surface S, we consider the subspace

ELo(S):= || eLcow)cgL(s),
wWeQ(s)
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which is the union of ending laminations of all witnesses of S. Similarly, we will
write FL*(S) € ML(S) for those measured laminations supported on laminations
in ££5(5), and PFL(S) C PML(S) for its projectivization.

2.7. Gromov boundary of a hyperbolic space. A §—hyperbolic space X can
be equipped with a boundary at infinity, 0X as follows. Given z,y € X and a
basepoint o € X, the Gromov product of z and y based at o is given by

() = 5 (d(z,0) + d(y,0) — d(z,)).

Up to a bounded error (depending only on ¢), (x,y), is the distance from o to
a geodesic connecting x and y. The quantity (x,y), is estimated by the distance
from the basepoint o to a quasi-geodesic between = and y. There is an additive
and multiplicative error in the estimate that depends only on the hyperbolicity
constant and the quasi-geodesic constants. Using slim triangles, we also note that
for all z,y,z € X,
(2, y)o = min{(z, 2)o, (Y, 2)0},

where the constants in the coarse lower bound depend only on the hyperbolicity
constant.

A sequence {z,,} C X is said to converge to infinity if im,, n— oo (Tm, Tn)o = 00.
Two sequences {z,} and {y,} are equivalent if lim,, oo (Ym,Tn) = 0o. The
points in OX are equivalence classes of sequences converging to infinity, and if
{x}} € x € OX, then we say {z} converges to x and write 7, — 7 in X = X UJX.
The topology on the boundary is such that a sequence {z"},, C 90X converges to a
point = € 0X if there exist sequences {x} }; representing z” for all n, and {x,, }m
representing x so that

lim liminf (z}}, 2,,), = oc.
n—00 k,m—o00

For details see, e.g. [BH99,[KB02|.

Klarreich [Kla99b] proved that the Gromov boundary of the curve complex is
naturally homeomorphic to the space of ending laminations equipped with the quo-
tient topology from FL C ML using the geometry of the Teichmuller spaceE
Hamenstddt [Ham06] gave a new proof, endowing £L£ with the coarse Hausdorff
topology (which for £L£ is the same topology as the quotient topology), also pro-
viding additional information about convergence. Yet another proof of the version
we use here was given by Pho-On [PO17].

Theorem 2.12. For any surface Y equipped with a complete hyperbolic metric
of finite area (possibly having geodesic boundary), there is a homeomorphism

Fy: 0C(Y) = EL(Y) so that o, — x if and only if o, <o, Fy (z).

2.8. Laminations and subsurfaces. Lemma [2.13] relates coarse Hausdorff con-
vergence of a sequence to coarse Hausdorff convergence of its projection to witnesses
in an important special case.

Lemma 2.13. If{a,} C C5(S) and L € EL(W) for some witness W, then o, e

if and only if mw (cuw,) L.

2In fact, Klarreich worked with the space of measured foliations, an alter ego of the space of
measured laminations.
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Note that for each n, my (a,) is a union of curves, which are not necessar-
ily disjoint. In particular, my (a,) is not necessarily a geodesic laminations, so
we should be careful in discussing its coarse Hausdorff convergence. However,
viewing the union as a subset of C(W), it has diameter at most 2, and hence if
an,a, C mw(a,) are any two curves, for each n, and £ € EL(W), then a,, and
a,, either both coarse Hausdorff converge to £ or neither does (by Theorem 2.12)).
Consequently, it makes sense to say that my (ay,) coarse Hausdorff converges to a
lamination in EL(W).

Proof. For the rest of this proof we fix a complete hyperbolic metric on S and
realize W C S as an embedded subsurface with geodesic boundary. Let us first

assume myy () Lree L(W). After passing to an arbitrary Hausdorff convergent

subsequence, we may assume o, A £/ 1t suffices to show that £ C L.

Let ¢L, ..., " C a, N W be the decomposition into isotopy classes of arcs
of intersection: that is, each # is a union of all arcs of intersection of a, with
W so that any two arcs of a, N W are isotopic if and only if they are contained
in the same set ¢/ (we may have to pass to a further subsequence so that each
intersection «,, N W consists of the same number r of isotopy classes, which we
do). For each ¢, let o C mw (ay,) be the geodesic multi-curve produced from the
isotopy class # by surgery in the definition of projection. Note that aJ and ¢

. . . H .
have no transverse intersections. Pass to a further subsequence so that o, = £’

and £, A E;-; here, each £/ is a compact subset of W so Hausdorff convergence to a
closed set still makes sense, though E; are not necessarily geodesic laminations. By
Corollary 2.T0] (and the discussion in the paragraph preceding this proof), £ C £/,
for each j. Appealing to Lemma 28 it easily follows that L/ N W = £ U---U L.
Since aj, has no transverse intersections with £, £} has no transverse intersections
with £7, for each j. Therefore, £ has no transverse intersections with £’ N W, and
since £ C W, £’ has no transverse intersections with £. Since £ € EL(W), it
follows that £ C L', as required.

Now in the opposite direction we assume that o, 5 £ € ELW). Let £}, ...,
0 Ca, MW and o), ..., ol C mw(a,) be as above, so that for each j (after
passing to a subsequence) we have

- H . - H ,
=L and o) = L.
Similar to the above, £ C £'U---UL" and since #, has no transverse intersections

with o, L’ has no transverse intersections with £. Since £ is an ending lami-

nation, £ C E;. Since the convergent subsequence was arbitrary, it follows that
CH

Ww(an) = L. O

Finally, we note that just as curves can be projected to subsurfaces, whenever
a lamination minimally intersects a subsurface in a disjoint union of arcs, we may
use the same procedure to project laminations.

3. SURVIVAL PATHS

To understand the geometry of C*(5), the Gromov boundary, and the Cannon-
Thurston map we eventually construct, we will make use of some special paths we
call survival paths. To describe their construction, we set the following notation.
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Given a witness W C S and z,y € C(W), let [z,ylw C C(W) denote a geodesic
between x and y.

Definition Bl is reminiscent of hierarchy paths from [MMO00Q], though our situa-
tion is considerably simpler.

Definition 3.1. Given x,y € C*(S), let [z,y]s be any C(S)-geodesic. If W C S
is a proper witness such that OW is a vertex of [z,y]¢, we say that W is a witness
for [x,y]¢. Note that if W is a witness for [z, y]¢, then the immediate predecessor
and successor z’, 3 to OW in [x,y]¢ are necessarily contained in C(W) (hence also
in C*(S)) and we let [2/,4/]w C C(W) be a geodesic (which we also view as a path

in C*(S)). Replacing every consecutive triple z’,0W,y" C [z,y]¢ with the path
[2/,y/']w produces a path from z to y in C*(S) which we call a survival path from z
to y, and denote it o(z,y). We call [x,y]s the main geodesic of o(x,y) and, if W
is witness for [z,y]¢, we call the corresponding C(W)-geodesic [2/,y'|w the witness

geodesic of o(x,y) for W, and also say that W is a witness for o(x,y).

An immediate corollary of Theorem 2.6 we have

Corollary 3.2. For any x,y € C°(S) and proper witness W, if dw (z,y) > M,
then W is a witness for [x,y]g, for any geodesics [x,y]s between x and y.

Proof. Since dw (z,y) > M, it follows by Theorem that some vertex of [z,y]¢

has empty projection to W. But the only multi-curve in C(S) with empty projection
to W is OW, hence OW is a vertex of [z,y]¢. O

No two consecutive vertices of [x,y]¢ can be boundaries of a witness (since any
two such boundaries nontrivially intersect). Therefore, Lemma follows.

Lemma 3.3. For any z,y € C*(S) and geodesics [z, ylg, there are at most M

witnesses for [x,y]¢. O
Lemma [34] estimates the lengths of witness geodesics on a survival path.

Lemma 3.4. Given a survival path o(z,y) and a witness W for o(x,y), the initial
and terminal vertices ¥’ and y' of the witness geodesic segment [x',y'|lw satisfy

dw(x, (E/), dW(ya y,) < M.
Consequently, dw (z',y’) satisfies

0,2M
dw(z',y') = dw(z,y).

Proof. By Theorem[2.8lapplied to the subsegments of [z, y]¢ from x to 2’ and 3’ to y
proves the first inequality. The second is immediate from the triangle inequality. [

Finally we have the easy half of a distance estimate (c.f. [MMO0Q]). The other
half will be included in Section [l as it requires additional tools to be developed.

Lemma 3.5. For any x,y € C*(S) and k > M, we have
d*(z,y) <207 +2k Y fdw(z,y)

We(s)

Recall that ©(S5) denotes the set of all witnesses for C*(.S) and that {z}} is the
cut-off function giving value x if z > k and 0 otherwise.
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Proof. Since o(x,y) is a path from z to y, it suffices to prove that the length
of o(x,y) is bounded above by the right-hand side. For each witness W whose
boundary appears in [z, y]s, we have replaced the length two segment {z’,0W,y'}
with [z, y']w, which has length dw (2, y"). By Lemma B4 we have

dw(z',y") < 2M + dw (z,y).

If dw(z,y) > k > M, this implies the length dw (z/,y’) of [2/,y']lw is less
than 3dw (z,y). Otherwise, the length is less than 3k. Let Wy, ..., W,, denote the
witnesses for z, y whose boundaries appear in [z, y]¢. By LemmaB.3] n < %ds(m, Y),
half the length of [x,y|s. Further note that by Corollary B2 if dw (z,y) > k > M,
then W is one of the witnesses W}, for some j.

Combining all of these (and the fact that k¥ > M > 2) we obtain the following
bound on the length of o(z,y), and hence d*(x, y):

ds(xvy) < ds(.T, y) + Z3max{de ('Ta y)7 k} < ds(a:,y) + 32({{dWJ (l‘,y)}}k + k)

= dg(x,y) +3nk +3 Z{{dwj (@, )} < (3 +1)dg(z,y) +3 Z{{dwj (=, 9) Br

< 2k({dg(z, ) Pr +5) + 3> fdw, (@9 P <26>+2k > Ldw(@,y) s
j=1 Wea(s)
O

Lemma 3.6. Given z,y € C*(S), if W is not a witness for [x,y]g, then
diamwy (o (z,y)) < M + 4.

Proof. Since W is not a witness for [z,y]g, every z € [x,y]¢ has nonempty projec-
tion to W. Therefore, diamy ([z,y])¢ < M by Theorem 26 If w' € C(W’) is on
a witness geodesic segment of o(x,y), then dg(w',0W’) = 1 so dw (w',0W’) < 2
by Proposition 23l Since OW' € [z, 9]¢, the lemma follows by the triangle inequal-
ity. O

Lemma 3.7. Suppose that o(x,y) is a survival path and that x',y' € o(x,y) with
x <z’ <y <y, with respect to the ordering from o(x,y). Then if 2,y lie on the
main geodesic [x,y|g, then the subpath of o(x,y) from ' to y' is a survival path.

If W, W' are proper witnesses for x,y and ' € C(W) and y' € C(W’) then the
same conclusion holds, provided the subsegments of C(W) and C(W') in o(x,y)
between x’' and y' have length at least 2M. The same is true if only one of ' or
y' lies in the curve graph of a proper witness (assuming the same lower bound on
relevant length).

Proof. When z’,y’ are on the main geodesic, this is straightforward, since in this
case, the subsegment of the main geodesic between z’ and 3’ serves as the main
geodesic for a survival path between z’ and v/’

There are several cases for the second statement. The proofs are all similar, so
we just describe one case where, say, «’ € [z, y"]w C C(W) with

xgx/lgxlgy/lgy/§y7

and ¢/ is in the main geodesic. The assumption in this case means that in C(W), the
distance between 2’ and y” is at least 2M. LemmaBA4limplies that dw (y”,y) < M,
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and so by the triangle inequality, dw (2’,y) > M. Therefore, by Theorem any
geodesic from z’ to y must pass through OW. In particular, the path that starts
at ', travels to OW, then continues along the subsegment of [z,y]¢ from OW to
Y/, is a geodesic in C(S). We can easily build a survival path from z’ to ¢ using
this geodesic that is a subsegment of o(x,y), as required. The other cases are
similar. O

3.1. Infinite survival paths. A consequence of [MMO0O, Theorem 6.13] of Masur-
Minsky is that for any surface Z and any two points in C(Z) = C(Z)UdC(Z), where
0C(Z) is the Gromov boundary, there is a geodesic “connecting” these points. Given
z,y € C(Z), we let [x,y]z denote such a geodesic.

The construction of survival paths above can be carried out for geodesic lines
and rays in C(S), replacing any length two path z/, W,y with a C(W) geodesic
from z’ to ' to produce a survival ray or survival line, respectively. More generally,
given a geodesic segment or ray of C (S) we can construct other types of survival
rays and survival lines. Specifically, first construct a survival path as above or as
just described, then append to one or both endpoints an infinite witness ray (or
rays). For example, for any two distinct witnesses W and W’ and points z, 2’ in the
Gromov boundaries of C(W) and C(W'), respectively, we can construct a survival
line that starts and ends with geodesic rays in C(W) and C(W’), limiting to z and
2, respectively, and having main geodesic being a segment. In this way, we see
that survival lines, paths and rays can thus be constructed for any pair of distinct
points in

e |J cw),
we(S)
and we denote such by o(z,2), as in the finite case. From this discussion, we have
the following.

Lemma 3.8. For any distinct pair of elements
2,72 € U C(W)
wWeQ(S)
there exists a (possibly infinite) survival path o(z,z") “connecting” these points. [

Proposition [3.9 allows us to extend certain properties of survival paths to infinite
survival paths (e.g. quasi-geodesic property; see Corollary (E.12]).

Proposition 3.9. Any infinite survival path (line or ray) is an increasing union
of finite survival paths.

Proof. This follows just as in the proof of Lemma [3.7 O

Remark 3.10. Unless otherwise stated, the term “survival path” will be reserved
for finite survival paths. “Infinite survival path” will mean either survival ray or
survival line.

4. HYPERBOLICITY OF THE SURVIVING CURVE COMPLEX

In this section we prove Theorem (1] using survival paths. The proof appeals
to Proposition [3] due to Masur-Schleimer [MS13] and Bowditch ([Bow14]), which
gives criteria for hyperbolicity.

Theorem 4.1. The complex C3(S) is Gromouv-hyperbolic.
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Remark 4.2. There are alternate approaches to proving Theorem .1l For example,
Masur and Schleimer provide a collection of axioms in [MS13] whose verification
would imply hyperbolicity. Another approach would be to show that Vokes’ condi-
tion for hyperbolicity in [Vok] which requires an action of the entire mapping class
group can be relaxed to requiring an action of the stabilizer of z, which is a finite
index subgroup of the mapping class group. We have chosen to give a direct proof
using survival paths since it is elementary and illustrates their utility.

The condition for hyperbolicity we use is the following; see [MS13|[Bow14].

Proposition 4.3. Given € > 0, there exists 6 > 0 with the following property.
Suppose that G is a connected graph and for each x,y € V(G) there is an associated
connected subgraph ¢(x,y) C G including x,y. Suppose that,

(1) Forall z,y,z € V(G),
(z,y) S Nels(z,2) Us(z,y))-

(2) For any x,y € V(G) with d(z,y) < 1, the diameter of ¢(x,y) in G is at
most €.

Then, G is 6—hyperbolic.

We will apply Proposition 3 to the graph C5(S), and for vertices z,y € C(S9),
the required subcomplex is a (choice of some) survival path o(x,y). Note that if
x,y are distance one apart, then o(z,y) = [z, y], which has diameter 1. Therefore,
as long as € > 1, condition (2) in Theorem will be satisfied. We will show that
condition (1) holds for any survival paths connecting a triple of points x, y, z, which
we express briefly by saying that x,y, z span e—slim survival triangles. We will first
prove this statement under some additional hypotheses on the triple x,y, 2.

Lemma 4.4. Given R > 4, there exists ¢ > 0 with the following property. If

x,y,z € C°(S) are any three points such that dy (u,v) < R for all proper witness
W C S and every u,v € {x,y,z}, then x,y,z span e—slim survival triangles.

Proof. First note that by Lemma [B4] the length of any witness geodesic of any
one of the three sides is at most R + 2M; we will use this fact throughout the
proof without further mention. We also observe that by Theorem 2.6, for any
w € o(x,y) N [z,ylg and any proper witness W C S, at least one of dyy (x,w) or
dw (y,w) is at most M.

Next suppose w is on a subsegment [2/,y']w C o(z,y) for some proper witness
W of o(z,y). Observe that w is within 224 = £ 4 \f from either 2’ or y’
and so by Theorem and the triangle inequality, one of dy (w,z) or dw (w,y)
is at most g +2M. If W' is any other proper witness, we claim that dy-(x,w)
or dy(y,w) is at most M + 2 < £ 4+ 2M. To see this, note that either OW’
lies in [x,0W]g C [z,9y]g, in [OW,ylg C [x,y]g, or neither. In the first two cases,
dw (OW,y) < M or dw(0W,z) < M, respectively, by Theorem [Z6] while in the
third case both of these inequalities hold. Therefore, since w and 0W are disjoint,
dw (W, w) < 2, and hence dy(z,w) or dyw(y,w) is at most M + 2 < % + 2M.

Now let w € o(x,y) be any vertex and wg € [z,y]s N o(x,y) the nearest vertex
along o(z,y), and observe that dg(w,wp) < 2. Since C(S) is 6-hyperbolic (for
some 0 > 0), there is a vertex wy € [z, 2]¢ U [y, 2] ¢ with dg(wo,w)) < 6. Without
loss of generality, we assume wy € [z, 2]¢g. Choose w' € o(x,2) to be w' = wy if
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wy € o(x,z) or one of the adjacent vertices of [z, 2] if wyf is the boundary of a
witness. Then dg(wp,w’) <1, so

dg(w,w") <5+ 3.

Now suppose W C Sis a proper witness. Then at least one of dy (w,z) or
dw(w,y) is at most & + 2M as is at least one of dy (w',x) or dw(w',2). If
dw (w, x), dw (v, z) < % + 2M, then applying the triangle inequality, we see that

dw (w,w") < R+ 4M.

If instead, dyw (z, w) < §+2M and dy (v, 2) < g—I—QM, then the triangle inequality
implies
dw (w,w") < dw (w, z) + dw(x, 2) + dw (z,w") < 2R+ 4M.
The other two possibilities are similar, and hence dy (w,w’) < 2R+ 4M.
Applying Lemma with k& = M, recalling that by Lemma there are at
ds‘(ﬂ;w’) < 5%3

most proper witnesses for any geodesic [w,w’], we have

d*(w,w') < 2M? +2M Z {dw (w,w") s
We(s)
<2M? +2M (6 + 3+ %52 (2R + 4M)) .

Setting € equal to the right-hand side (which really depends only on R, since M
and § are independent of anything), completes the proof. |

Subdividing an n—gon into triangles we can prove the following extension of
Lemma [£4]

Corollary 4.5. Given R > 0 let € > 0 be as in Lemma B4 If n > 3 and x4,
.y Tn €C3(8S) are such that for all proper witness W C S dyy (x;, zj) < R for all
1 <14,5 <mn, then for all w € o(z;,it1), there exists j # i and W' € o(z;,T41)
(with all indices taken modulo n) such that d*(w,w") < [F]e.

Proof. The proof is by induction on n with base case n = 3 following from
Lemma [£4] Suppose n > 4 and that the statement is true for all indices less than
n. Reindexing if necessary, we may assume that w € o(xy,z1). Set m = [§]. From
Lemma[.4lthere is some point w” on o(x1, 2p )Uo (T4, T, ) such that d* (w,w”) < 5.
Since k = max{m,n —m + 1} < § 4+ 1 < n, we can apply the inductive hypoth-
esis to either xy, ..., x,, or Ty, ..., z, (depending on where w” lies) and find
w' € o(xj, xj41) with d*(w”, w') < [Ele. If n > 7,
d*(w,w') < d*(w,w") + d°(w",w') < e+ [£]e
SOA+5+3)e< (B +Pe< (F+2e< T3l

where the last inequality uses the fact that n > 7. Variations of this argument
show that for n = 4 or 5, d*(w,w’) < 2¢ < [§]e, while for n = 6, one gets
d*(w,w') < 3e=[F]e. O

For the remainder of the proof (and elsewhere in the paper) it is useful to make
Definition

Definition 4.6. Given vertices z,y,z € C*(S) and R > 0, consider the proper
witnesses with projection at least R:

Qr(z,y) ={W € QO(S’) | dw(x,y) > R},



118 FUNDA GULTEPE ET AL.

and set
QR(I7 Y, Z) = QR('ra y) ) QR(xv Z) ) QR(y7 Z)

In words, Qr(z,y) is the set of all proper witnesses for which x and y have
distance greater than R. By Lemma B3 Qg(z,y) is finite.

Lemma 4.7. For any three vertices x,y,z € CS(S) and R > 2M, there is at most
one W € Qg(z,y, z) such that

W € Qrya(z,y) N Qrj2(x,2) N Qr/2(Y, 2).
Proof. Suppose there exist two distinct
Wa W'e QR/Z(xa y) N QR/Z(xﬂ Z) N QR/2(y, Z)

Then by Theorem 26, W, W’ are (distinct) vertices in any C(S)-geodesic between
any two vertices in {x,y,z}. Choose geodesics [z, 0W]g, [y, 0W]g, and [z,0W],
and note that concatenating any two of these (with appropriate orientations) pro-
duces a geodesic between a pair of vertices in {x,y, z}. Since OW’ # OW must also
lie on all C(S)-geodesics between these three vertices, it must lie on at least one of
the geodesic segments to OW; without loss of generality, suppose OW’ € [z, 0W]g.
If OW' is not a vertex of either [y,0W]¢ or [2,0W]g, then our geodesic from y
to z does not contain OW’', a contradiction. Without loss of generality, we may
assume OW' € [y,0W]¢. But then the geodesic subsegment between z and W' in
[, 0W] ¢ together with the geodesic subsegment between OW’ and y in [y, OW] is
also a geodesics (as above) and does not pass through 0W, a contradiction. ]

Proof of Theorem 1l Let x,y,z € C*(S). By the triangle inequality, if W €
Qonr(z,y), then at least one of dw(z,z) or dw(y,z) is greater than M. By
Lemma[£7] there is at most one W such that both are greater than M. If such W
exists, denote it Wy and write Dy = {Wy}; otherwise, write Dy = (. Define

Dx = {W € QQM(JH%Z)\DO | dw(I,y) > MvdW(IVZ) > M}

(and define D, D, similarly). We can then express Qo (2, y, 2) as a (finite) disjoint
union

QQM(LL',y,Z) =D, U Dy U D, U Dy.

By Theorem 2.6 the C(S)-geodesics [z,y]¢ and [z,z]g contain OW for all
W e D,, and we write
Dy ={W}, WZ2,... , W=}
so that 1 = OW}, xo = OW2, ..., x,,, = OW/= appear in this order along [z,y]¢
and [z, z]¢. Similarly write

Dy ={W,,...,W,} and D, = {W]},... W["}.

The C (S)fgeodesic triangle between z, y, and z must appear as in the examples
illustrated in Figure [Il

We now subdivide each of the survival paths o(z,y), o(z,2), and o(y, z) into
subsegments as follows. In this subdivision, o(z,y) is a concatenation of witness
geodesics for each witness W in D, U Dy U Dy and complementary subsegments
connecting consecutive such witness geodesics. The complementary segments are
themselves survival paths obtained as concatenations of C(S)-geodesic segments
and witness geodesic segments for witnesses for which dy (x,y) < 2M. The paths

o(x,z) and o(y, z) are similarly described concatenations. Applying Lemma [B.4]
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L1 T
T2 T2
T3 Y2 Y1 y o W1 y
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z
z

FIGURE 1. Geodesic triangles in C(S): Here z; = OW, y; = oWy,
and z; = OWY, and {x1,22,23} C [z,y]lg N [z, 2]g, {y1,y2} C
[z,yle N[y, 2]g, and {21} C [z, 2]¢g N[y, z]g. The left triangle has
Dy = 0, while the triangle on the right has Dy = {Wy}, hence
oWy € [x,ylg N[z, 2]g N[y, 2]¢. Note: there may be more vertices
in common to pairs of geodesics than the vertices x;,y;, z;. Fur-
thermore, there may be various degenerations, e.g. D, = Dy = 0),
in which case the three bigons in the upper left-hand portion of
the left figure disappears and z3 becomes x.

all of the witness segments that appear in the complementary segments (and are
thus not from witnesses in Qapr(z,y, 2)) have length at most 4M.
Let w € o(z,y) be any point. We must show that there is some

w' € o(x,z)Uo(y,z)

so that d*(w,w’) is uniformly bounded. There are two cases (which actually divide
up further into several sub-cases), depending on whether or not w lies on a witness
geodesics for a witness W € Qaps(z, vy, 2).

Suppose first that w lies on a witness geodesic [2/, y'|lw C o(z,y) for W € D,.. By
definition of Dy, W € Qpr(z,y) N Qps(x, 2), and so there is also a witness geodesic
[z, 2"lw C o(, 2). Since there are S-geodesics [z, 2], [z, 2" ] [, Y], [2”, 2] ¢ 50
that every vertex has a nonempty projection to C(W), and since dw (y,z) < M
(again, by definition of D, ), Theorem and the triangle inequality imply

dw (z',2") < dw (2, z) + dw (z,2") < 2M and
dw (y',2") < dw (¥, y) + dw(y, 2) + dw (2, 2") < 3M.

So [z/,y'|lw and [z”, 2"|w are C(W)—geodesics whose starting and ending points are
within distance 3M of each other. Since C(W) is d—hyperbolic for some § > 0, it
follows that there is some w' € [, 2"|w C o(x, 2) so that dw (w,w’) < 2§ + 3M.
Since C(W) is a subgraph of C*(S), d*(w,w’) < 26 +3M. We can similarly find the
required w’ if w is in a witness geodesic segment for a witness W € D,,.

Next suppose w lies in the witness geodesic [¢/,y']w, C o(x,y), for Wy € Dy
(if Dy # ). The argument in this sub-case is similar to the previous one, as we
now describe. Let [z, 2"|w, C o(x,2) and [y”, 2'lw, C o(y, z) be the Wy—geodesic
segments. Arguing as in the proof of (2]), we see that the endpoints of these three

(2)
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geodesic segments in C(W) satisfy
dw, (2, 2"), dw, (v, y"), dw, (2, 2") < 2M.
Since C(W)) is d—hyperbolic, we can again easily deduce that for some
w' € [2", 2" Tw, Uy, 21w, C o(z,2)Ua(y, 2),

we have d*(w,w’) < dw, (w,w’) <36+ 2M.
Finally, we assume w € o(z,y) lies in a complementary subsegment

o(@,y') Co(z,y)

of all Qops (2, y, z)—witness subsegments of o(x, y) as described above. Consequently,
we have that 2,y € [z,y]g No(x,y) both lie on one side of one of the “bigons” in
Figure[Tl (cases (1) and (2) below) or on one side of the single central “triangle” (case
(3) below, which happens when Dy = (). Thus, depending on which complementary
subsegment we are looking at, we claim that one of the following must hold:

(1) there exists o(z”, 2") C o(z, z) so that d*(«',2"),d*(y', 2") < 3M,

(2) there exists o(y”,2") C o(y, 2) so that d*(y',y"),d*(z',2") < 3M, or

(3) there exists o(z”,2") C o(x,2) and o(y”,2") C o(y,z) so that d*(z’,z"),

ds(y’, y//)’ ds(Z/, Z//) < 3M.

The proofs of these statements are very similar to the proof in the case that w € D,
or Dy. If o(2,y’) is a complementary segment which is part of a bigon and 2’ is
in C(W) for some W € D, (or = 2”), then we are in case (1) and we take
the corresponding complementary segment o(z”,2"”) C o(x,z) of the bigon with
z” € C(W) (or 2" = z). It follows that all vertices of [2/,y]¢, [y, z]¢, and [z,2"]¢
have nonempty projections to W, so by Theorem [Z.6] and the triangle inequality we
have

ds($/7 xll) S dW(xl7 xll) S dW(xla y) + dW(yu Z) + dW(Z7 {EN) S 3M.
On the other hand, ¢/, 2" € C(W’) for some W’ € D, U Dy and similarly
d’ (y/a Z/,) S dW’ (ylv Z”) S dW’ (y/a I) + dW’ (.I, Z//) S 2M < 3Ma

and so the conclusion of (1) holds. If y’ € C(W) for some W € D,, then a symmetric
argument proves (2) holds. The only other possibility is that Dy = 0, 2’ € C(W),
and y' € C(W'), where W € D, and W’ € D,, so that o(z’,y’) is a segment of the
“triangle”. A completely analogous argument proves that condition (3) holds.

In any case, note that the two subsegments of the bigon (respectively, three seg-
ments of the central triangle), together with segments in curve complexes of proper
witnesses give a quadrilateral (respectively, hexagon) of survival paths. Further-
more, by the triangle inequality and applications of Proposition and Theo-
rem [2.6] one can show that there is a uniform bound R > 0 to the projections to all
proper witnesses of the vertices of this quadrilateral (respectively, hexagon). We
briefly sketch the proof of the existence of such an R in case (1), with the other cases
being similar. First, suppose W € D, is the witness with 2’2" € C(W) (that is, at
one “end” of the bigon). Then dw («',z") < 3M while dw (2',y'), dw (2", ") < M
by Theorem[Z6land dw (y”, z”’) < 4 by Proposition[Z3lsince there is a path of length
at most two connecting y” to 2z’ such that all vertices have nonempty projection to
W. A same argument (and bound) applies to W’ € D, U Dy with ¢/, 2" € C(W')
(that is, at the other end of the bigon). For any other witness W” £ W, W’ the
vertices of the paths of length at most two from z’ to 2’/ and y’ to 2” have nonempty
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projection W and hence dy (2',2"), dw(y',2") < 4 by Proposition If the
vertices of the subsegments [2/,4']¢ C [z,y] have nonempty projections to W”,
then dw(z',y') < M by Theorem If on the other hand, some vertex of
[2',9'] ¢ has empty projection to W”, then from the order on Dyps(x,y), we must
have W & Doy (2,y) and so by the triangle inequality and Theorem we have
dw(2',y) < dwn(2',z) + dwo(z,y) + dwr (y,y') < 4M. In any case, we see
that dy . (2',y") < 4M, and another application of the triangle inequality gives
dwr(a”,2") < 4M + 8. Thus, R = 4M + 8 suffices. Let € > 0 be the constant
from Lemma [£4] for this R. By Corollary 5 there is some w’ on one of the other
sides of this quadrilateral/hexagon so that d*(w,w’) < 3e. It may be that w’ is
in o(x,z) or o(y,z), or that it lies in one of the witness segments. As described
above, these segments have length at most 3M, and so in this latter case, we can
find w” € o(z, z) Uo(y, z) with d*(w,w”) < 3¢+ 3M.

Combining all the above, we see that there is always some w’ € o(z,z) Uo(y, 2)
with d*(w,w") bounded above by

max{3e + 3M, 20 + 3M,45 + 2M }.

This provides the required uniform bound on thinness of survival paths, and com-
pletes the proof of the theorem. O

5. DISTANCE FORMULA
In this section we prove Theorem .1

Theorem 5.1. For any k > max{M, 24}, there exists K > 1, C' > 0 so that

Ey) LY fdw @)
we(S)

for all z,y € C*(S5).

K,C
Recall that here x =< v is shorthand for the condition %(w - O)<y< Kz+C
and that {z}}; = « if £ > k and 0, otherwise. Note that we have already proved
an upper bound on d*(z,y) of the required form in Corollary and thus we need

only prove the lower bound.

Remark 5.2. As with Theorem [l another approach to this theorem would be
to follow Masur-Schleimer [MSI3] or Vokes [Vok|. As with Theorem [ we give a
proof using survival paths, which is straightforward and elementary.

One of the main ingredients in our proof is the following due to Behrstock [Beh04]
(see [Manl0] for the version here).

Lemma 5.3 (Behrstock inequality). Assume that W and W' are witnesses for

C*(S) and u € C(S) with nonempty projection to both W and W'. Then
dw(’u, 8W’) > 10 = dy- (u, 8W) <A4.

We will also need the following application which we use to provide an ordering
on the witnesses for a pair x,y € C* (S) having large enough projection distances.
A more general version was proved in [BKMMI2] (see also [CLM12]) and is related
to the partial order on domains of hierarchies from [MMO00]. The version we will

use is the following.
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Proposition 5.4. Suppose k > 14 and W, W' are witnesses in the set Qi (z,y) for
vertices x,y € C5(S). Then the following are equivalent:

(1) dw(y,0W) =10 (2) dw (y,OW’)

Proof. By Lemma 5.3 we have (1) = (2) and (3) = (4). To prove (2) = (3) we use
triangle inequality:

dw (z,0W") > dw (z,y) — dw (y, 0OW') > k — 4 > 10
since k > 14. The proof of (4) = (1) is identical to the proof that (2) = (3). O

4

<
<4.

Definition 5.5. For any k& > 14, we define a relation < on Qg(z,y), declaring
W < W' for W, W' € Qp(z,y), if any of the equivalent statements of the Proposition
B4l is satisfied.

Lemma 5.6. For any k > 20, the relation < is a total order on Qi (z,y).

Proof. We first prove that any two element W, W’ € Qi (x,y) are ordered. If not,
then that means Proposition 54 (3) fails to hold as stated, or with y replacing =,
and thus we have dy (y, OW') < 10 and dy (z, 0W’) < 10. Hence,

dw (z,y) < dw (z,0W') + dw (y, OW') <20 < k

which contradicts the assumption that W € Qg (z,y).

The relation is clearly anti-symmetric, so it remains to prove that it is transitive.
To that end, let W < W/ < W” in Qi (x,y), and assume W < W, hence W"” < W.
Since W < W’ and W < W, we have dw (y,0W’) < 4 and dw (z,0W") < 4. So
by the triangle inequality

dw(aW/, 6W”) > dw(l‘,y) — dw(y, 8W’) — dw(l‘, 6W”) >k —8>10.
Then by Lemma [5.3] we have
dw (OW,0W") < 4.
So, appealing to the fact that W < W' and W’ < W” and Proposition 5.4 the
triangle inequality implies
20 < k < dw- (J?, y) <dw (.T, 8W) + dw (8VV, 8W”) + dw (8W”, y) <12,

a contradiction. O

Lemma [5.7] is also useful in the proof of Theorem .11

Lemma 5.7. Let x,y,u € C5(S) be vertices, W,W' € Qi(x,y) with k > 20, and
W < W'. Then,
dw (u,y) > 14 = dw(u,x) < 8.

Proof. From our assumptions, the definition of the order on Q(z,y), and the tri-
angle inequality we have
dw (u, OW") > dw (u,y) — dw (y, OW') > 14 — 4 = 10.

By Lemma [5.3] we have dy(u,0W) < 4. Thus, by the definition of the order on
Qi (x,y) and the triangle inequality, we have
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We are now ready to prove the lower bound in Theorem [5.I] which we record in
Proposition (.8

Proposition 5.8. Fiz k > max{M,24}. Given vertices x,y € C*(S) we have

P> oo S Hdwlry)he

we(s)
Proof. Let [x,y] be a geodesic between x,y in C*(S), and denote its vertices
T = J)O,J)l,...,xn_l,xn = y
So, n = d*(z,y) is the length of [x,y]. Let m = |Qx(x,y)| (which is finite since
k > M), suppose m > 0, and write
Qp(z,y) ={W1 <Wa <o < Wy}

For each 1<j<m let 0<i; <n be such that dw, (x;;,y) > 14 and dy, (z¢,y) < 13
for all £ > i;. That is, x;; is the last vertex z € [x,y] for which dw,(z,y) > 14.
Then, if j* > j, so W; < W}/, Lemma [5.7] implies dw,, (z4;,2) < 8 and so

dw,, (wi;,y) > dw,, (z,y) — de,(mij,x) >k—8>24—8=16.
Since the projection my, is 2-Lipschitz (see Proposition 2.5]) and x;; and x;, 41 are
distance 1 in C*(S), we have

de/ (xij+1a y) Z de/ (mljvy) - de/ (mijvxij+1) 2 16 — 2 Z 14.
Therefore, i1 < iy < -+ < 4p_1. Set ig = 0 and 7,,, = n.

Given 1 < j < m, dw,(xs,+1,y) < 13 and again appealing to Proposition 23]
we have

dw, (xi;,y) < dw, (@i, 2i,41) + dw, (2i;41,y) <2+ 13 <15,
Observe this inequality is trivially true for j = m since y = z,, = ;,, and so the

left-hand side is at most 2 in this case. Another application of Lemma [5.7] implies
dw,(x,2;,_,) <8 forall 1 < j <m (the case j = 1 is similarly trivial). Therefore

(3) de (xij—l ) xij) > de (.’ﬂ, y) - de (ZL’, xij—l) - de (xij ) y) > de (QC, y) — 23,
forall 1 <j<m.

Appealing one more time to Proposition 25 together with Inequality (@), we
have

1
d*( xy—n—ZzJ—zj12§ dw, (wi;_,, ;)

1m
52 (dw, (%, y) — 23).

W EMS

Next, observe that since dw, (z,y) > k > 24 we have

1
dw; (z,y) =23 = ——dw, (z,y).
24
Since C*(S) C C(S) is a subcomplex, we have d*(z,y) > dg(z,y) and so

2 (ry) 2 ds(e) + 5 Y dwlen)Z g O Hdwley)he

WeQy (z,y) WeQ(S)
[l

Proof of Theorem Bl Given k > max{M, 24}, let K = max{2k,96} and C' = 2k2.
The theorem then follows from Corollary and Proposition O
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As a consequence of the Theorem [£.1] we have the following two facts.

Corollary 5.9. Given a proper witness W C S, the inclusion map C(W) — cs(9)
s a quasi-isometric embedding.

Corollary 5.10. Survival paths are uniform quasi-geodesics in CS(S’).
Moreover, we have

Lemma 5.11. Survival paths can be reparametrized to be uniform quasi-geodesics
Proof. Let o(x,y) be a survival path with main geodesic [z,y]s. For every
proper witness W C S, if there is a W-witness geodesic segment in o(z,y), we
reparametrize along this segment so that it is traversed along an interval of length
2. Since such W-witness geodesic segments replaced geodesic subsegments of [z, y]¢
of length 2, and since they lie in the 1-neighborhood of OW, this clearly defines the
required reparametrization. (|

Corollary 5.12. Any infinite survival path is a uniform quasi-geodesic in C*(5).

Proof. This is immediate from Corollary .10l and Proposition 3.9l (]

6. BOUNDARY OF THE SURVIVING CURVE COMPLEX C*(S)

Recall that we denote the disjoint union of ending lamination spaces of all wit-
nesses by

L8y = || ecom).
we(S)

We call this the space of surviving ending laminations of S, and give it the coarse
Hausdorff topology.

In this section we will prove Theorem from the introduction. In fact, we will
prove the following more precise version, that will be useful for our purposes.

Theorem 6.1. There exists a homeomorphism F: 0C*(S) — EL’(S) such that for

any sequence {ay} C C5(S), ay — x in C5(S) if and only if o, LR F(x).

We denote the Gromov product of a, 3 € C*(S) based at o € C*(S) by (a, 8)%,
and recall that the Gromov boundary dC*(S) of C*(S) is defined to be the set of
equivalence classes of sequences {a;,} which converge at infinity with respect to
(', )5. Throughout the rest of this section we will use (without explicit mention)
the fact that the Gromov product between a pair of points (in any hyperbolic space)
is uniformly estimated by the minimal distance from the basepoint to a point on a

uniform quasi-geodesic between the points.
Lemma 6.2. For all witnesses W C S, dC(W) is a subspace of dC*(S).
Proof. For each proper witness W C S, Corollary implies that 9C(W') embeds

into C5(S). For W = S, we proceed as follows. Given a point in dC(S), we
construct a survival ray ending at that point. By Corollary [5.12] this ray is a quasi-
geodesic, and so reading off its endpoint at infinity defines a map 9C(S) — 9C*(S).

For z,y € 9C(S), the biinfinite survival path between x and y is a quasi-geodesic,
again by Corollary B.12] which implies that this map is injective. O
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Proposition says that the subspaces from the lemma are all disjoint.
Proposition 6.3. For any two witnesses W # W' for S, 9C(W) N aC(W') = 0.

Proof. Let x € 9C(W) and 2’ € C(W'). Then by Lemma 3.8 there is a biinfinite
survival path o(z,2") and by Corollary this survival path is a quasi-geodesic.
Hence x # x’. O

We now have a natural inclusion of the disjoint union of Gromov boundaries

|| acow) cacs(s).
wWe(s)

In fact, this disjoint union accounts for the entire Gromov boundary.

Lemma 6.4. We have
|| ocowv)=ace(s).

weQ(s)

Proof. Let z € AC%(S) and a,, — = € AC*(S), and we assume without loss of
generality that {a,} is a quasi-geodesic in C*(S) and that the first vertex is the
basepoint oy = 0. If dg(an,0) = 00 as n — oo, then given R > 0, let N > 0 be
such that ds(am 0) > R for all n > N. For any m > n > N, the subsegment of the
quasi-geodesics, {a,, Qpi1, .., Qm}, is some bounded distance D to o, ayy,) in

C*(S), by hyperbolicity and Corollary Therefore, since d® > dg, the distance
in C(S) from any point of o(a,, @) to o is at least R — D. So the distance from
any point of [, g to o is at least R — D — 1. Letting R — oo, it follows that
(O, m)o — 00 in C(S). Consequently, {,} converges to a point in dC(S), so
x € 9C(S). For the rest of the proof, we may assume that dg(c,,0) is bounded by

some constant 0 < R < oo for all n.
By the distance formula 511
d* (o, an) Re

S fdw (oo, )i,

WeQ(s)

and since d* (g, @, ) — 00, there is some W, so that dyw, (ap, o) — 0o. Therefore,
by Corollary B2, W, is a witness for o(ag, a,) for each n € N.

We would like to show that there is a unique witness W such that
dw (cg, o) — 00. To do that, let h > 0 be the maximal Hausdorfl' distance in
C*(S) between o(ag, a,,) and {ay}7_,, for all n > 0 (which is finite by hyperbolic-
ity of C*(S) and Corollary 5.10).

Claim 6.5. Given n € N, if dw (o, ) > M + 2h + 2 for some witness W C S,
then W is a witness for o(g, ), for all m > n.

Proof. Suppose W is a witness as in the claim and let m > n. Let o, € o(ag, )
be such that d* (o, of,) < h. If W is not a witness for o(ag, ay,), then every vertex
of the main geodesic [avg, am]g of o(ag, o) has nonempty projection to W. By
Proposition and the triangle inequality we have,

dw (o, o) < dw (oo, ap,) + dw (o, o)
< dw (ag,al) + 2d°(an, o) < dw (ag, ) + 2h.
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If o), € [, )¢, then since every vertex of this geodesic has nonempty projection
to W, it follows that dw (o, q;,) < M. If o, & [0, aum]g, then there is a witness
W' for [ag, am]g such that dg(a;,,0W’) = 1, so appealing to Proposition we
have dw (g, a},) < M + 2. In any case,

dw(ao,an) < dw(ao,()éfn) +2h < M + 2h + 2,

which is a contradiction. This proves the claim. (Il

Since dw,, (ap, o) — 00, there exists ng > 0 such that
dW"o (ao, Oéno) > M+2h+2,

and hence for all m > ng, W, is a witness for o(ao, o). Let Q(ao, ] g) be the
set of proper witnesses for [ag, o] g, and set

oo
Q= () a0, amlg)-
Note that @, C Q2,41 for all n and that Q, is nonempty for all n > ny. Each
2, contains no more than R/2 elements by Lemma B3] since d¢ (o, 0) < R. Thus
the (nested) union Q is given by Q. = Qx for some N > ng. The boundaries
of the witnesses in 2o lie on the geodesic [ag, ap]g for all m > N, and we let
Weo € Qs be the one furthest from ay. Without loss of generality, we may assume
that [ag, am]g and [ag, ane] g all agree on [ag, OWs], for all m,m’ > N.

For any m > N and any witness W of [ag, an]g with OW further from o than
OWo, note that dyw (g, @) < M + 2h + 2: otherwise, by Claim W would be
a witness for [ag, am/|g for all m’ > m and so W € Qq, with OW further from aq
than 0W, a contradiction to our choice of W..

For any n > N, let f3,, be the last vertex of o (g, ) in C(W). By the previous
paragraph, together with Theorem 2.6] Lemma [3.4] and the bound

ds’(ﬁn7 an) S dS(aO7 an) S R7

we see that the subpath of o(ag, a;,) from S, to o, has length bounded above by
some constant C' > 0, independent of n. In particular, d*(ay,S,) < C. There-

fore, a,, and B, converge to the same point x on the Gromov boundary of C*(S).

Since B, € C(Wx), which is quasi-isometrically embedded in C*(S), it follows that
x € OC(Wx), as required. O

Lemma provides a convenient tool for deciding when a sequence in C* (S)
converges to a point in JC(W), for some proper witness W.

Lemma 6.6. Given {a,} C C*(S) and x € dC(W) C dC*(S) for some witness W,
then a,—x if and only if mw (o) — x.

Proof. Throughout, we assume o = «g, the basepoint, which without loss of gener-

ality we assume lies in W, and let {8,} C C(W) be any sequence converging to z,

so that for the Gromov product in C(W) we have (B, Bm )Y — 0o as n,m — .
Since o(ap, Bm) is a uniform quasi-geodesic by Corollary it follows that

d*(0,0(an, Bm)) < (an, Bm) s,

with uniform constants (where the distance on the left is the minimal distance from
o0 to the survival path).
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Let 6y, m be the first point of intersection of (o, Bm) with C(W) (starting from
ay,). By Lemma B4 dw (0,m, ) < M. Consequently, because 6y, n, € C(W) and
mw (an) C C(W), this means

ds((sn,mﬂTW(an)) < dW(5n,7n77TW(an)) = dw (én,ma an) < M.

Therefore, the curve my (a,) € C(W) C C*(S) is within distance M of the uniform
quasi-geodesic o(y,, Bm), and so by hyperbolicity, the C*(S)—geodesic from (any
curve in) my () to By, lies in a uniformly bounded neighborhood of o(a,, Bim)-

Thus

<7TW(an)a ﬁm>z = d*(o, [WW(O‘H)’ 61%]) = ds(ov O'(Ozn, 6m)) = <an76m>z'

If o, — z, then the right-hand side of the above coarse inequality tends to infinity,
and hence so does the left-hand side. This implies my (a,) — «.
Next suppose that my () — x € OC(W). As noted above, we have

<04n77TW(04n)>§ = ds(oa [O‘mﬂ—W(an)Dv

and so it suffices to show that the right-hand side tends to infinity as n — oco. Since
mw(an) = x € IC(W), we have dw (0, a,) — 00, and setting d,, to be the first point
of o(ap,0) in C(W), Lemma B4 implies that d*(6,, 7w (an)) < dw (9p, o) < M.
Therefore, o(ay,,0) passes within d*~distance M of my («,,) on its way to o. Since
o(ap, 0) is a uniform quasi-geodesic by Corollary B0, it follows that [, Tw ()]
is uniformly Hausdorff close to the initial segment J,, C o(ay,0) from a,, to 6.
Since the closest point of J, to o is, coarsely, the point §,,, which is uniformly close
to mw (), we have

<O‘m WW(an»z = ds(ov [O‘m 7TW(an)])
=< d*(o,Jn) < d°(0,0,) =< d°(0,mw(am)) < dw(o,an) — oo.

Therefore, «,, and my (ay,) converge together to x € OC(W). This completes the
proof. O

Proof of Theorem [61l By Lemma [6.4] for any = € 9C*(.5), there exists a witness
W C Ssoxe dC(W). Let F(z) = Fw(z), where Fyy: C(W) — EL(W) is the
homeomorphism given by Theorem This defines a bijection

F:0C(S) — EL5(9).

We let z € AC*(S) with ay, — z in C*(S), and prove that o, coarse Hausdorff
converges to F(z). Let W C S be the witness with x € 9C(W). According to
Lemma B8, m () — 2 in C(W). By Theorem ZI2, my () & Fi (z) = F(x),
and by Lemma 2.13] o, A F(x), as required.

To prove the other implication, we suppose that o, o L, for some L € SES(S),
and prove that a,, — z in C%(S) where F(z) = £. Let W C S be the witness
with £ € £L(W). By Lemma ZI3, my (an) & £. By Theorem I myw (an) — @
in C(W) where Fy(z) = L. By Lemma 6.6l o, — = in C*(S) and therefore
F(x) = Fw(x) = L, by definition.

All that remains is to show that F is a homeomorphism. Throughout the re-
mainder of this proof, we will frequently pass to subsequences, and will reindex
without mention. We start by proving that F is continuous. Let {z"} C 9C*(S)
with ™ — z as n — oco. Pass to any Hausdorff convergent subsequence so that
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F(a™) I, £ for some lamination £. If we can show that F(x)
show that the original sequence coarse Hausdorff converges to
will be continuous.

For each n, let {a}5°, C C*(S) be a sequence with aff — 2™ as k — oo. Since
2™ — x, we may pass to subsequences so that for any sequence {k,}, we have

C L, then this will
F(

x), and thus F

ayp — xasn — oo. From the first part of the argument, a3 CH, F(x™) as k — oo,

for all n. For each n, pass to a subsequence so that aj LN L, thus F(z™) C L,.
By passing to yet a further subsequence for each n, we may assume dg (o, Ly) < %
for all k; in particular, this holds for £k = 1. Now pass to a subsequence of {£,} so

that £, = L, for some lamination £,, it follows that af Y L,, as n — oo. Since
af — x (from the above, setting k, = 1 for all n), this implies that F(z) C L,.

Since F(z") C L, we have £ C L,. If F(z) € EL(S) then it is the unique mini-
mal sublamination of £,, and since £ C L,, we have F(z) C L. If F(x) € EL(W)
for some proper witness, then either F(x) is the unique minimal sublamination of
Lo, or L, contains F(z) U IW. Since OW does not intersect the interior of W,
whereas £ C L, is a sublamination that does nontrivially intersects the interior of
W, it follows that F(z) C L. Therefore we have F(z) C L in both cases, and so F
is continuous.

To prove continuity of G = F~1, suppose that £, LN L, and we must show
G(L,) — G(L). We first pick a sequence of curves o such that af — G(£,) in

C5(S). Then, ap CH, L, as k — 0o, by the first part of the proof, and after passing

. H n
to subsequences as necessary, we may assume: (i) ajf — L], as k — oo, and hence
L, C L], for all n; (i) dy(a}, £,,) < * for all k; and (iii) (o}, af), > min{k, £} +n,
for all k, ¢, n.
Now pass to any Hausdorff convergent subsequence L, £, 1t suffices to show
that for this subsequence G(L£,) — G(L). Observe that we also have £ C L’ and
by (ii) above we also have aj — L' as n — oo, for any sequence {k,}. Thus, for

example, we can conclude that of A L, and so by the first part of the proof we
have af — G(L).

As equivalence classes of sequences, we thus have that G(L£,) = [{a}}] and
G(L) = [{af*}]. We further observe that by hyperbolicity and the conditions above,
for all k,n, m we have

(", aj)o = min{(ai", af),, (a7, ap)o} > min{{af", ay)o, 1 + n}.

Therefore,

sup liminf(a*, a}), = sup liminf (o', o), = 0o,
m k,n—o0 n—00

from which it follows that G(L£,) — G(L), as required. This completes the proof.
O

Proof of Theorem [LH. Let F: dC*(S) — EL5(S) be the homeomorphism from
Theorem Bl Tt suffices to show that F is PMod(S)-equivariant. For this, let
f € PMod(S) be any mapping class and z € dC*(S) any boundary point. If
{a,} € C*(8) is any sequence with a,, — z in C5(S), then f - a, — f - since f

acts by isometries on C*(S). Applying Theorem B to the sequence {f - a,} we see

that f-a, <5 F(f-x). On the other hand we also have f - a, Ay F(z), since
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f acts by homeomorphisms on the space of laminations with the coarse Hausdorff
topology. Therefore, f - F(x) = F(f - x), as required. O

7. EXTENDED SURVIVAL MAP

We start by introducing some notation before we define the extended survival
map. First observe that there is an injection C(S) — PML(S) given by sending
a point in the interior of the simplex {wg, ..., vx} with barycentric coordinates
(soy, ..., Sk) to the projective class, [soug + -+ + Srvx]; here we are viewing
SoUg + - - - SpUE as a measured geodesic lamination with support vy U ... U v and
with the transverse counting measure scaled by s; on the i** component, for each i.
We denote the image by PML¢(S), which by construction admits a bijective map
PML(S) — C(S) (inverse to the inclusion above).

By Theorem 2121 9C(S) = £L(S), and so it is natural to define

PML:(S) =PMLAS)UPFL(S),
and we extend the bijection PMLc(S) — C(S) to a surjective map
PML(S) — C(S).

By Proposition[ZITland Theorem 2.12] this is continuous at every point of PFL(S).
Similar to the survival map ® defined in Section 2.4] we can define a map

U: PML(S) x Diffo(S) — PML(S).

This is defined by exactly the same procedure as in Section 2.4 of [LMS11], which
goes roughly as follows: If yi is a measured lamination with no closed leaves in its
support |u|, and if f(z) & ||, then U(u, f) = f~1(n). When |u| contains closed
leaves we replace those with the foliated annular neighborhoods of such curves
defined in Section 24]). When the f(z) lies on a leaf of |u| (or the modified |u|
when there are closed leaves) we “split |u| apart at f(z)”, then take the f~!-
image. The same proof as that given in [LMSII] Proposition 2.9] shows that ¥ is
continuous.

Asin Section[Z4] (and in [LMST1]) via the lifted evaluation map év: Diff(S) — H,
given by 6v(f) = f(Z) (for f the canonical lift), the map ¥ descends to a continuous,
m S—equivariant map ¥ making the following diagram commute:

PML(S) x Diffy(S)

. . v
ldPML(S) xXev

PML(S) x H —2— ppme(S).

By construction, the restriction We = W|prqz. (s)xm and @ agree after composing
with the bijection between PML:(S) and C(S) in the first factor. Since & maps

C(S) x H onto C*(.9), if we define PMLc:(S) to be the image of C*(.5) via the map
C*(S) = PML(S) defined similarly to the one above, then the following diagram
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of m S—equivariant maps commutes, with the vertical arrows being bijections

Ve

(4) PMLe(S) x H PMLes(S)

C(S) x H 2 cs(9).
Similar to PMLE(S) = PML(S) UPFL(S) above, we define
PMLs(S) = PMLe:(S)UPFLE(S),

where, recall, PFL*(S) is the space of measured laminations on S whose support

is contained in ££°(5). Then ¥¢ extends to a map
Uo: PML:(S) x H— PMLe(S).

The fact that U([u],w) is in PFL(S) for any w € H and [u] € PFL(S) is straight-
forward from the definition (c.f. [LMSTI] Proposition 2.12]): for generic w, ¥([u], w)
is obtained from [p] by adding the z—puncture in one of the complementary com-
ponents of |u| and adjusting by a homeomorphism. With this, it follows that the
map ¢ extends to a map P making the following diagram, extending ([{]), commute.

PML(S) x H ——C — PMLs. (S)

C(S) x H L C*(5)

We will call the map & : C(S) x H — E(S) the extended survival map. Vertical
maps in the diagram are natural maps which take projective measured laminations

to their supports and they send PFL(S) x H onto EL(S) x H and PFL*(S) onto

EL(S).
Lemma 7.1. The extended survivial map P is w1 S —equivariant and is continuous

at every point of OC(S).

Proof. To prove the continuity statement, we use the homeomorphism F from The-
orem [B.1] to identity dC*(S) with ££%(S). Now suppose {L£,} € C(S), £ € dC(S),
Ly, — L and {x,} be a sequence in H such that z,, — x. Passing to a subsequence,
there is a measure u, on £, and a measure p on L such that p,, — p in ML(S).
Since W is continuous on PFL(S) x H

U([pn); 2n) = U([u], ).
By Proposition 2.I7] this implies,
CH
‘\Ij(ﬂruxn” — ‘\IJ(/J,,LL'N
On the other hand, U(FL(S) x H) c FL*(S), and by Theorem B.1] this means
(L, zn) = (L, 2)

in C*(9), since |¥(un, zn)| = ®(Ly, z,) and [¥(p, z)| = S(L, z).
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The mS-equivariance follows from that of ® on C*(S) and continuity at the
remaining points. (Il

The following useful fact and its proof are identical to the statement and proof
of [LMS11] Lemma 2.14].

Lemma 7.2. Fiz (L1,21), (L2, 22) € EL(S) x H. Then ®(Ly, 1) = ®(Lo, x2) if
and only if L1 = Lo and x1,x2 are on the same leaf of, or in the same complemen-
tary region of, p~*(L1) C H.

Suppose that £ € EL(S), x € P C JH is a parabolic fixed point, H, C H
is the horoball based at x as in Section 25 and U C H is the complementary
region of p~!(L) containing H,. Given y € U, choose any f € Diff(S) so that
f(%) =y, so that @(ﬁ, y) = f~1(L). Observe that p(U) is a complementary region
of £ containing a puncture (corresponding to z), and hence <i>(£, y) is a lamination
with two punctures in the complementary component f~1(p(U)) (one of which is
the z-puncture). Therefore, ®(L,y) is an ending lamination in a proper witness.
More precisely, by Lemma [[2] we may assume y € H, without changing the image
®(L,y), and then as in the proof of Lemma 27 f~1(dp(H,)) is the boundary of
the witness W(z) which is disjoint from ®(£,z). Thus, ®(L,y) € ELW(z)).

In fact, every ending lamination on a proper witness arises as such an image as
Lemma [73] shows.

Lemma 7.3. Suppose Lo € EL(W) is an ending lamination in a proper witness
W C S. Then there exists L € EL(S), x € P, a complementary region U of p~(£L)
containing H,, and y € H, so that W(x) =W and ®(L,y) = Lo.

Proof. Note that the inclusion of W C S is homotopic through embeddings to a
diffeomorphism, after filling in z (since after filling in z, W is peripheral). Con-
sequently, after filling in z, L is isotopic to a geodesic ending lamination £ on S.
Let f: S — S be a diffeomorphism isotopic to the identity with f(Ly) = £. Then
Lo = f~Y(L) = U([1], f) where [y] is the projective class of any transverse measure
on L.

Next, observe that f(z) lies in a complementary region V of £ which is a punc-
tured polygon (since OW is a simple closed curve disjoint from £y bounding a twice
punctured disk including the z-puncture). Let U C H be the complementary region
of p~(L) that projects to V. Then U is an infinite sided polygon invariant by a
parabolic subgroup fixing some = € P. Now let f : H — H be the canonical lift as in
Section 24 and let 4/ = f(Z), so that by definition ¥([], ) = ¥([u],y') = ®(L,y).
By Lemma [I.2 for any y € H, C U, it follows that ®(L,y) = ®(L,y') = Lo.
From the remarks preceeding this lemma, it follows that £, € EL(W(x)). Since
ELW)NELW') =0, unless W = W', it follows that W(x) = W, completing the
proof. O

8. UNIVERSAL CANNON-THURSTON MAPS

In this section we will prove the following.

Theorem .3l For any vertex v € C, the map @, : H — C*(S) has a continuous
m1(S) —equivariant extension

T, HUSY = C°(9)
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and the induced map
O = By lg1, : S — AC*(5)
is surjective and does not depend on v. Moreover, 0P is equivariant with respect to

the action of the pure mapping class group PMod(5).
Before proceeding, we describe the subset S}y € 9H? in Theorem

Definition 8.1. Let Y C S be a subsurface. A point x € H fills Y if,

e the image of every geodesic ray ending at = projected to S intersects ev-
ery curve which intersects Y nontrivially (i.e. any curve that cannot be
homotoped to be disjoint from Y), and,

e there is a geodesic ray r C H ending at x with p(r) C Y.

Now let S C OH be the set of points that fill S.

We note that when = ¢ S, there is a ray r ending at = so that p(r) is contained
in a proper subsurface Y C S. The boundary of this subsurface is an essential curve
vin S and ®,(r) C T, is a bounded diameter set. Thus, restricting to the set S%
is necessary (c.f. [LMS11l Lemma 3.4]).

Given the modifications to the setup, the existence of the extension of Theo-
rem [[3] follows just as in the case that S is closed in [LMST1]; this is outlined in
Section Rl The surjectivity requires more substantial modification, however, and
this is carried out in Section The proof of the universal property of d®, as
well as the discussion of d®: C(S) — IC(S), Theorem [T} and the relationship
to Theorem is carried out in Section [R3]

8.1. Quasiconvex nesting and existence of Cannon-Thurston maps. In this
section we will prove the existence part of Theorem [[.3]

Theorem 8.2. For any vertex v € C(S), the induced survival map ®,: H — C*(5)
has a continuous, 71 (S)—equivariant extension to

B, HUSY = C°(9)).
Moreover, the restriction 0®,, = 6v|§}4 : Sl — aC*(S) does not depend on the choice

of v.

In particular, we may denote the restriction as 9®: S, — 865(3), without
reference to the choice of v. To prove this theorem, we will use the following from
[LMS11), Lemma 1.9], which is a mild generalization of a lemma of Mitra in [Mit98a].

Lemma 8.3. Let X and Y be two hyperbolic metric spaces, and F' : X — 'Y a
continuous map. Fir a basepoint y € Y and a subset A C 0X. Then there is a
continuous map

F:XUA—-Y U,

with F(A) C 9Y if and only if for all s € A there is a neighborhood basis B; C X UA
of s and a collection of uniformly quasiconvex sets Q; C'Y such that:

e FF(B;NX)CQ;, and
e dy(y,Q;) = 00 as i — oo.
Moreover,

Qi =190 = {F(s)}

determines F(s) uniquely, where 0Q; = Q; N Y .
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Given the adjustments already made to our setup, the proof of Theorem is
now nearly identical to [LMSTI], Theorem 3.6], so we just recall the main ingredients,
and explain the modifications necessary in our setting.

For the rest of the section we fix a biinfinite geodesic v in H so that p(y) is a
closed geodesic that fills S (i.e. nontrivially intersects every essential simple closed
curve or arc on S). As in [LMSII], we construct quasi-convex sets from such v as
follows. Define

X(y) = 2(C(5) x ),

where ® is the survival map. Let ¥ () denote the two half spaces bounded by
and define the sets

A (7) = @(C(S) x H(7)).

The proofs of the following two facts about these sets are identical to the quoted
results in [LMS11].

e [LMSII, Proposition 3.1]: X(v), #*(y) are simplicial subcomplexes of
C5(S) spanned by their vertex sets and are weakly convex (meaning every
two points in the set are joined by some geodesic contained in the set). This
follows by explicitly constructing a simplicial retraction to each of these sets
from C*(S).

e [LMSTI] Proposition 3.2]: We have,

HT() U A (7) = C(5)
and
AT () NAT(7) = X(7).

Now we consider a set {7, } of pairwise disjoint translates of v by the action of
71(S, z) on H so that the corresponding (closed) half spaces nest:

HE (1) DH (12) D -+

Since the action is properly discontinuous on H, there is a € JH such that

(5) () 1 () = {=}.

n=1

Here, H*(v,) is the closure in H. For such a sequence, we say {7,} nests down
on x.

On the other hand, if » C H is a geodesic ray ending in some point z € 0H which
is not a parabolic fixed point, p(r) intersects p() infinitely many times, and thus r
intersects infinitely many translates of v in H. Hence, we can find a sequence {~,}
which nests down on z. In particular, for any element x € S}L‘ has a sequence {7x}
that nests down on z.

The main ingredient in the proof of existence of the extension is Proposition [R.41

Proposition 8.4. If {y,} nests down to x € Sy, then for a basepoint b € CS(S')
we have

d*(b, % (yn)) — 00 as n — oc.

The proof is nearly identical to that of [LMS11l Proposition 3.5], but since it’s
the key to the proof of existence, we sketch it for completeness.
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Sketch of proof. Because of the nesting in H, we have nesting in C*(S),
AT () DA (y2) D+

Without loss of generality, we choose the basepoint b € 5~ (1) (hence in S~ (v,)
for all n). We must show that for any R > 0, there exists N > 0 so that
d*(b, # T (vn)) > R, for all n > N. The first observation is that because
I1: C*(S) — C(S) is simplicial (hence 1-Lipschitz), it suffices to find N > 0 so
that d*(b, 7 (v,) NI (Bgr(II(b))) > R for all n > N. Here Br(II(b)) is the
subcomplex spanned by the set of vertices distance at most R from II(b) (recall
that distances are computed in the 1-skeleton; see Section [2.]).

To prove this, one can use an inductive argument to construct an increasing
sequence N1 < Ny < ... < Np41 so that

X(’YN_]) N X(PYN_7‘+1) N Hil(BR(H(b))) = 0.
Before explaining the idea, we note that this implies that
{2 (yn,) NI (BR(IL(D))) } !

are properly nested: a path from b to ' (yn,,,) inside II" !} (Bg(I1(b))) must pass
through a vertex of ¢ *(’yNj), for each j, before entering the next set. Therefore,
the path must contain at least R + 1 vertices, and so have length at least R. This
completes the proof by taking N = Ngy1, since then a geodesic from b to a point
of A" (YNu,,) will have length at least R (if it leaves II"*(Bg(II(b))), then it’s
length is greater than R).

The main idea to find the sequence N3 < Ny < ... < Npg41 is involved in the
inductive step. If we have already found N7 < Ny < ... < Ni_1, and we want
to find Ng, we suppose there is no such Ni, and derive a contradiction. For this,
assume

X(yn,) N X () NI (Br(TI())) # 0,

for all n > Ni_1, and let u,, be a vertex in this intersection (since it is a nonempty
subcomplez, there is such a vertex). Set v, = II(uy), and recall that

d (u,) =U, CH

Un

is a component of the complement the €(v,,)-neighborhood of the preimage in H of
the geodesic representative of v, in S; that is, {v,} x U, = ® (u,,) (see Section
[24). Therefore, u, € X(yn,_,) N X (7,) implies yn, , NU, # 0 and v, N U, # 0
(since X () = ®(C(S) x7k)). After passing to subsequences and extracting a limit,
we find a geodesic from a point on vy, _, (or one of its endpoints in OH) to x, which
projects to have empty transverse intersection with v, in S. Since v,, is contained
in the bounded set Bg(II(b)), any subsequential Hausdorff limit does not contain
an ending lamination on S, by Theorem 2.12] and so any ray with no transverse
intersections is eventually trapped in a subsurface (a component of the minimal
subsurface of the maximal measurable sublamination of the Hausdorff limit). This
contradicts the fact that x € S}ap and completes the sketch of the proof. O

We are now ready for the proof of the existence part of Theorem

Proof of Theorem B2 The existence and continuity of ®, follows by verifying the
hypotheses in Lemma
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Fix a basepoint b € C*($) and let {7, } be a sequence nesting to a point z € Sk.
The collection of sets
{H+ () N (HUSQ L,
is a neighborhood basis of z in HU SY. By definition of 7" (v,)
D, (HF (1)) = @({v} x HF (7)) C AT (1),

for all n. By Proposition B4, d*(b, # " (y,)) — oo asn — oo. Since the sets
{A#F(vn)} are weakly convex, hence uniformly quasi-convex, Lemma B3l implies
that we have a continuous map ®, defined on = € SY given by

{®,(2)} = ﬂ ().
n=1

Since the sets on the right-hand side do not depend on the choice of v, and since
z € SY, we also write 0®(z) = ®,(z), and note that 0®: St — 9C*(S) does not

depend on v. O
Observe that for all z € SY, we have
(6) 0(x) = () 07 (1),
n=1

where {7,} is any sequence nesting down on z, because the intersection of the
closure is in fact the intersection of the boundaries.

8.2. Surjectivity of the Cannon-Thurston map. We start with Lemma

Lemma 8.5. For any v € C°(S) we have

aC*(S) C @, (H).

The analogous statement for S closed is [LMS11l, Lemma 3.12], but the proof
there does not work in our setting. Specifically, the proof in [LMSTI] appeals to
Klarreich’s theorem about the map from Teichmiiller space to the curve complex,
and extension to the boundary of that; see [KIa99b|. In our situation, the analogue
would be a map from Teichmiiller space to C*(S), to which Klarreich’s result does
not apply.

Proof. We first claim that if X c 9C*(S) is closed and PMod(S)-invariant then

either X = () or X = 9C*#(S). This is true since the set PA of fixed points of pseudo-

Anosov elements of PMod(SS) is dense in ££(S) and £L£(S) is dense in £L£°(S). As
a result, PA is dense in 8CS(S). Since any nonempty, closed, pure mapping class
group invariant subset of AC*(S) has to include PA, the claim is true.

Now we will show that dC*(S) N @, (H) contains a PMod(S)-invariant set. For
this, first let PAg C PA be the set of pseudo-Anosov fixed points for elements
in mS < PMod(S). Since the 7;(S) action leaves ®,(H) invariant, and since
pseudo-Anosov elements act with north-south dynamics on ES(S ), it follows that
PAy C ®,(H). Next, we need to show that f(PAg) = PA, for f € PMod(S). For
any point © € PAy, let v € m1(S) be a pseudo-Anosov element with y(z) = 2. Then
fryf! fixes f(x), but fyf~! is also a pseudo-Anosov element of 71(.9), since 71 (5)
is a normal subgroup of PMod(S). So, f(PAg) C PAy, since = € PAg was arbitrary.
Applying the same argument to f~1, we find f(PAg) = PAg. Since f € PMod(S)

was arbitrary, PAg is PMod(S)—invariant.
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Therefore, PAy is a nonempty closed PMod(S)finvariant subset of BCS(S) n

®,(H), and so both of these sets equal AC*(.5). O

To prove the surjectivity, we will need Proposition The exact analogue for
S closed is much simpler, but is false in our case (as the second condition suggests);
see [LMST1l Proposition 3.13]. To state the proposition, recall that P C H denotes
the set of parabolic fixed points; see Section

Proposition 8.6. If {z,} is a sequence of points in H with limit x € OH\SY, then
one of the following holds:

(1) ®y(xy,) does not converge to a point of OC*(S); or
(2) z € P and ®,(zy,) accumulates only on points in OC(W(x)).

To prove this, we will need Lemma Iﬂ For the remainder of this paper, we
identify the points of dC*(S) with £L£(S) via Theorem

Lemma 8.7. Suppose © € P and {x,} C H with x,, — . If ®,(z,) — L in
aC*(S), then L € OC(W(x)).

Proof. We suppose ®,(z,) — £ in dC*(S). Let H = H, C H be the horoball
based at x disjoint from all chosen neighborhoods of geodesics used to define ® as
in Sections 2.4] and Applying an isometry if necessary, we can assume that
x = oo in the upper-half plane model and H = {z € C | Im(z) > 1} is stabilized
by the cyclic, parabolic group (g) < m1(S, z). By Lemma 27 the ®,~image of H
is a single point ®,(H) = {u}. Note that the projection of the horoball at any
height ¢ > 0 to II"'(v) = T, has bounded diameter. Thus, if Im(x,) > € > 0
for some € > 0, then ®,(x,) remains a bounded distance from u, and hence does
not converge to any £ € AC*(S). Therefore, it must be that Im(z,) — 0 and
consequently Re(z,) — +oc.

We may pass to a subsequence so that the hyperbolic geodesics [z, Zy41]
nontrivially intersect H. From this we find a sequence of points y, € H and
curves v, € C(S) so that u, = ®(vy,y,) — L as n — oo; indeed, as in [LMSII]
Lemma 3.11] one can find a C*(S)-geodesic in ®(C(S) x v,) = X(7,), where v,
is a geodesic in H containing [2,,Zn+1] in a small neighborhood. According to
Lemma 7 ®(C(S) x H) = C(W(x)), and so @ (v, yn) € C(W(z)). Consequently,
L € dC(W(x)), as required. O

Proof of Proposition BB We suppose ®,(z,) — £ € 9C*(S) and argue as in
[LMSTI]. Specifically, the assumption that z € OH\SY means that aray r ending at
x, after projecting to .5, is eventually trapped in some proper, m;—injective subsur-
faceY C S, and fills Y if Y is not an annulus. If Y is not an annular neighborhood
of a puncture, then we arrive at the same contradiction from [LMSIIl Proposi-
tion 3.13]. On the other hand, if Y is an annular neighborhood of a puncture, then
by Lemma 87 £ € 0C(W(x)), as required. O

Combined with Theorem [B:2] the following completes the proof of Theorem [I.3l

Theorem 8.8. The Cannon-Thurston map

0d : Sl — ack(9)

is surjective and PMod(S)—equivariant.
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Proof. Let £ € 8C%(S). Then, by Lemma L = lim ®,(z,,) for some sequence
{z,} € H. Passing to a subsequence, assume that z,, — x in OH. If z € S!; we are
done since by continuity at every point of S} we have,

L =lm®,(z,) = ®,(z) = 00(x).
If z ¢ Sl, then by Proposition Bl z € P and £ € dC(W), where W = W(z).

By Lemma 68, mw (®,(x,)) — £ € C(W). Let g € m(S) be the generator of
Stab,, s(x). As in the proof of Lemma B x, is not entirely contained in any
horoball based at z, and hence it must be that there exists a sequence {k,} such
that g*»(x,) — & where ¢ € OH is some point such that ¢ # x. Since g is a Dehn
twist in W, it does not affect mw (®,(z,,)). Thus m (P, (g% (2,,))) — L and hence
®,(g* (v,)) — L € OC(W(x)) by another application of Lemma Therefore,
the sequence {®,(g*"(r,))} and point &£(# z) do not satisfy the conclusions of
Lemma B8] and hence {g* (z,,)} and ¢ don’t satisfy the hypotheses, which means
¢ € S4. This then implies
L= lim ®,(g" (xn)) = D, (),

n—roo

again appealing to continuity of .

The proof of PMod(S)-equivariance is identical to the proof of [LMSTI, Theo-
rem 1.2]. The idea is to use 1 S—equivariance, and prove 9®(¢ - z) = ¢ - 0@(x) for
¢ € PMod(S) and z in the dense subset of S} consisting of attracting fixed points
of elements § € m1.5 whose axes project to filling closed geodesics on S. The point
is that such points x are attracting fixed points in JH of §, but their images are
also attracting fixed points in dC*(S) since § is pseudo-Anosov by Kra’s Theorem
[Kra81], when viewed as an element of PMod($). The fact that ¢(z) and ¢(dP(z))
are the attracting fixed points of ¢6¢~! in OH and 8C5(S’), respectively, finishes

the proof. 0

8.3. Universality and the curve complex. Theorem [[L5] on the universality is
an analog of [LMSI1I, Corollary 3.10]. While the statement is similar, it should
be noted that in [LMSII], the map is finite-to-one, though this is not the case
here since some of the complementary regions of the preimage in H of laminations
in S are infinite sided ideal polygons, and whose sides accumulate to a parabolic
fixed point. We follow [LMS11] where possible, and describe the differences when
necessary.

Theorem Given two distinct points x,y € S4, 0®(z) = 0®(y) if and only
if * and y are the ideal endpoints of a leaf or complementary region of p~*(L) for

some L € EL(S).

The “universality” may not be clear from the given statement, but comes from
the fact that if 9i: S* — S? is the Cannon-Thurston map (i.e. continuous, equivari-
ant map) induced from a proper, type-preserving, isometric action of 7.5 on H?,
then a pair of points in S! are identified by 9i if and only if they are ideal endpoints
of a leaf or complementary region of p~1(L), where L is (one of) the ending lami-
nation(s) of the action; see [CT07Min94.Bow07,M;j14b]. These laminations are in
EL(S), and hence if points in SY are identified by 9i, then they are also identified
by 8®. Therefore, there is a map q: 3i(S4) — AC*(S) (that identifies di-images of
points that are identified by 0®) so that g o dilg; = 0.
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The proof will require a few additional facts. The first is the analogue of [LMST11]
Proposition 3.8] which states that the intersections at infinity of the images of the
half-spaces satisfy

(7) OAT(y) N oA () = 0X(7),

where as above, v is a geodesics that projects to a closed, filling geodesic in S.
The next is the analogue in our setting of [LMSTI] Lemma 3.9]. To describe this,
recall that the element § € 7.5 stabilizing v is a pseudo-Anosov mapping class

when viewed in PMod(S) by a theorem of Kra [Kra81]. Let ££ € EL(S) C IC*(S)
be the attracting and repelling fixed points (i.e. the stable/unstable laminations).
Then we have

(8) X () = ®(AC(S) x v) U {+L}.
The proofs of these facts are identical to those in [LMS11], and we do not repeat
them.

Proof of Theorem [L5l. Given z,y € SY, first suppose that there is an ending lam-
ination £ € £L(S) and E C H which is either a leaf or complementary region of
p (L), so that z and y are ideal vertices of E. Let {72}, {7¥} be mS-translates
of the geodesic v (as above, which projects to a filling geodesic) that nest down on
x and y, respectively. Then by (@), we have

0(z) = ()04 (7E) and  0D(y) = () 04T ().
n=1 n=1
By Lemma [72) ®({L} x E) is a single point, which we denote
d({L} x E) = Ly € EL5(9).
Now observe that because ¥ intersects E for all sufficiently large n, (8) implies
Loe () 2({L} xvp) € (N ox(vh) € () 047 (7)) = 09(x).
n=1 n=1 n=1
Therefore, 0®(x) = Ly. The exact same argument shows 0®(y) = Ly, and hence
00(z) = Lo = 02(y),

as required. _
Now suppose 0P(z) = 0P(y) = Lo € EL5(S). Again by (@) there are sequences
{7¥} and {7¥} (m1S-translates of ) nesting down to = and y respectively so that

(oAt (i) =Lo= () 0T (1Y)
n=1 n=1

Because the intersections are nested, this implies that for all n we have

Lo € 07 () NOA T (3Y).



A CANNON-THURSTON MAP FOR SURVIVING COMPLEXES 139

Passing to a subsequence if necessary, we may assume that for all n,
T (yE) C A (VY) and AT (7Y) C A~ (7E). Therefore, for all n we have

Lo € 0T () NOAT(vY)
= (07 () NOA ™ (7)) N (04F () N OA ™ (77))
= (07 (7)) NOA (7)) N (0 (7)) N A (7))
= 0X () NOX (7).

The last equality here is an application of (). Combining this with the description
of Ly above and (), we have

08 (2)=0®(y)=Lo= | (OX(4;)NOX (74)) = [ (2(IC(S) x ) NS(IC(S) x 7))

For the last equation where we have applied (&), we have used the fact that the
stable/unstable laminations of the pseudo-Anosov mapping classes corresponding
to 07 and 0¥ in m .S stabilizing v and ¥, respectively, are all distinct, hence Lg is
not one of the stable/unstable laminations.

From the equation above, we have LI, LY € £L(S) and z, € V%, yn € 7Y so
that ®(LZ, 2,) = ®(LY, yn) = Lo, for all n. According to Lemma [7.2, there exists
L e EL(S) so that LT = L¥ = L for all n, and there exists a leaf or complementary
region E of p~!(L) so that z,,y, € E. Since 7% and 7¢ nest down on z and
y, respectively, it follows that =, — x and y, — y as n — oo. Therefore, z,y
are endpoints of a leaf of p~!(L£) or ideal endpoints of a complementary region of
p~ (L), as required. O

We can now easily deduce the following, which also proves Proposition [[.4]

Proposition 8.9. Given that Lo € EL5(S), d®~1(Ly) is infinite if and only if
Lo € EL(W) for some proper witness W.

Proof. Theorem implies that for £y € ££5(S), &~ 1(Ly) contains more than
two points if and only if there is a lamination £ € ££(S) and a complementary
region U of p~1(L£) so that 9®~1(Ly) is precisely the set of ideal points of U.
Moreover, in this case the proof above shows that £y = ®({L} x U).

On the other hand, Lemma and the paragraph preceding it tell us that
Lo € EL5(S) is contained in EL(W) for a proper witness W C S if and only if it is
given by Lo = ®({L£} x U) where £ € ££(S) and U is the complementary region
of p~(L) containing H,, where x € P with W = W(z).

Finally, we note that a complementary region of a lamination £ € ££(S) has
infinitely many ideal vertices if and only if it projects to a complementary region
of £ containing a puncture, and this happens if and only if it contains a horoball
H, for some z € P.

Combining all three of the facts above proves the proposition. |

Now we define S}Ao C S4 to be those points that map by 9@ to E,C(S) and
then define 9®¢: SY, — dC(S) = EL(S) to be the “restriction” of d® to Sk,
Theorem [[2is a consequence of the Theorem since 0P is the restriction of 0P
to S}%. Then Proposition [[L4lis immediate from Proposition 89 and the definitions.
Theorem [[] then follows from Theorem and Theorem [[3] (see the discussion
after the restatement of Theorem at the start of this subsection).
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We end with an alternate description of S}%. For £ € EL(S), consider the
subset Sy C OH consisting of all ideal endpoints of complementary components of
p~1(L) which have infinitely many such ideal endpoints. That is, Sy is the set of
ideal endpoints of complementary regions that project to complementary regions
of £ that contain a puncture. The following is thus an immediate consequence of
Theorem and Proposition 8.9

Corollary 8.10. The set of points Sk, C Sy C 9H that map to EL(S) c £L£%(S)
18
Sh=Sh~ U Sc
LEEL(S)

ACKNOWLEDGMENTS

The authors would like to thank Saul Schleimer for helpful conversations in the
early stages of this work. The second author would also like to thank Autumn Kent,
Mahan Mj, and Saul Schleimer for their earlier collaborations that served as partial
impetus for this work. Finally, the authors would like to thank the anonymous
referee for carefully reading the paper and providing numerous suggestions that
have improved the exposition.

REFERENCES

[ADP99] R. C. Alperin, Warren Dicks, and J. Porti, The boundary of the Gieseking tree in
hyperbolic three-space, Topology Appl. 93 (1999), no. 3, 219-259, DOI 10.1016,/S0166-
8641(97)00270-8. MR1688476

[Aoul3] Tarik Aougab, Uniform hyperbolicity of the graphs of curves, Geom. Topol. 17 (2013),
no. 5, 2855-2875, DOI 10.2140/gt.2013.17.2855. MR3190300

[BCG118] Benjamin Beeker, Matthew Cordes, Giles Gardam, Radhika Gupta, and Emily Stark,
Cannon—Thurston maps for CAT(0) groups with isolated flats,larXiv:1810.13285 to
appear in Math. Ann., 2018.

[BCM12]  Jeffrey F. Brock, Richard D. Canary, and Yair N. Minsky, The classification of
Kleinian surface groups, II: The ending lamination conjecture, Ann. of Math. (2)
176 (2012), no. 1, 1-149, DOI 10.4007/annals.2012.176.1.1. MR2925381

[Beh04] Jason Alan Behrstock, Asymptotic geometry of the mapping class group and Teich-
muller space, ProQuest LLC, Ann Arbor, MI, 2004. Thesis (Ph.D.)-State University
of New York at Stony Brook. MR2705954

[BF92] M. Bestvina and M. Feighn, A combination theorem for negatively curved groups, J.
Differential Geom. 35 (1992), no. 1, 85-101. MR1152226
[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature,

Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Math-
ematical Sciences], vol. 319, Springer-Verlag, Berlin, 1999, DOI 10.1007/978-3-662-
12494-9. MRI1744486

[BKMM12] Jason Behrstock, Bruce Kleiner, Yair Minsky, and Lee Mosher, Geometry and
rigidity of mapping class groups, Geom. Topol. 16 (2012), no. 2, 781-888, DOI
10.2140/gt.2012.16.781. MR2928983

[Bon86] Francis Bonahon, Bouts des variétés hyperboliques de dimension 3 (French), Ann. of
Math. (2) 124 (1986), no. 1, 71-158, DOI 10.2307/1971388. MR847953

[Bow06] Brian H. Bowditch, Intersection numbers and the hyperbolicity of the curve com-
plez, J. Reine Angew. Math. 598 (2006), 105-129, DOI 10.1515/CRELLE.2006.070.
MR2270568

[Bow07] Brian H. Bowditch, The Cannon-Thurston map for punctured-surface groups, Math.
Z. 255 (2007), no. 1, 35-76, DOI 10.1007/s00209-006-0012-4. MR2262721


https://www.ams.org/mathscinet-getitem?mr=1688476
https://www.ams.org/mathscinet-getitem?mr=3190300
https://arxiv.org/abs/1810.13285
https://www.ams.org/mathscinet-getitem?mr=2925381
https://www.ams.org/mathscinet-getitem?mr=2705954
https://www.ams.org/mathscinet-getitem?mr=1152226
https://www.ams.org/mathscinet-getitem?mr=1744486
https://www.ams.org/mathscinet-getitem?mr=2928983
https://www.ams.org/mathscinet-getitem?mr=847953
https://www.ams.org/mathscinet-getitem?mr=2270568
https://www.ams.org/mathscinet-getitem?mr=2262721

[Bow13]

[Bow14]
[BR13]

[BR20)

[CBsS)]

[CEGO06)

[CLM12]

[CRS14]

[CTO7)

[DHS17]

[DKT16]

[DM16]

[Fen92)

[Fenl6]

[Fie20]
[F1o80]

[FLP12]

[Frals]
[Guél6]

[HamO06]

[HamO7]

A CANNON-THURSTON MAP FOR SURVIVING COMPLEXES 141

B. H. Bowditch, Stacks of hyperbolic spaces and ends of 3-manifolds, Geometry and
topology down under, Contemp. Math., vol. 597, Amer. Math. Soc., Providence, RI,
2013, pp. 65-138, DOI 10.1090/conm/597/11769. MR3186670

Brian H. Bowditch, Uniform hyperbolicity of the curve graphs, Pacific J. Math. 269
(2014), no. 2, 269-280, DOI 10.2140/pjm.2014.269.269. MR3238474

O. Baker and T. R. Riley, Cannon-Thurston maps do not always exist, Forum Math.
Sigma 1 (2013), Paper No. €3, 11, DOI 10.1017/fms.2013.4. MR3143716

Owen Baker and Timothy Riley, Cannon-Thurston maps, subgroup distortion,
and hyperbolic hydra, Groups Geom. Dyn. 14 (2020), no. 1, 255-282, DOI
10.4171/ggd/543. MR4077662

Andrew J. Casson and Steven A. Bleiler, Automorphisms of surfaces after Nielsen and
Thurston, London Mathematical Society Student Texts, vol. 9, Cambridge University
Press, Cambridge, 1988, DOI 10.1017/CB09780511623912. MR964685

R. D. Canary, D. B. A. Epstein, and P. L. Green, Notes on notes of Thurston
[MR0903850], Fundamentals of hyperbolic geometry: selected expositions, London
Math. Soc. Lecture Note Ser., vol. 328, Cambridge Univ. Press, Cambridge, 2006,
pp. 1-115. With a new foreword by Canary. MR2235710

Matt T. Clay, Christopher J. Leininger, and Johanna Mangahas, The geometry of
right-angled Artin subgroups of mapping class groups, Groups Geom. Dyn. 6 (2012),
no. 2, 249-278, DOI 10.4171/GGD/157. MR2914860

Matt Clay, Kasra Rafi, and Saul Schleimer, Uniform hyperbolicity of the curve
graph via surgery sequences, Algebr. Geom. Topol. 14 (2014), no. 6, 3325-3344, DOI
10.2140/agt.2014.14.3325. MR3302964

James W. Cannon and William P. Thurston, Group invariant Peano curves, Geom.
Topol. 11 (2007), 1315-1355, DOI 10.2140/gt.2007.11.1315. MR2326947

Matthew Gentry Durham, Mark F. Hagen, and Alessandro Sisto, Boundaries and
automorphisms of hierarchically hyperbolic spaces, Geom. Topol. 21 (2017), no. 6,
3659-3758, DOI 10.2140/gt.2017.21.3659. MR3693574

Spencer Dowdall, Ilya Kapovich, and Samuel J. Taylor, Cannon-Thurston maps for
hyperbolic free group extensions, Israel J. Math. 216 (2016), no. 2, 753-797, DOI
10.1007/s11856-016-1426-2. MR3557464

Shubhabrata Das and Mahan Mj, Semiconjugacies between relatively hyperbolic
boundaries, Groups Geom. Dyn. 10 (2016), no. 2, 733-752, DOI 10.4171/GGD/363.
MR3513115

Sérgio R. Fenley, Asymptotic properties of depth one foliations in hyperbolic 3-
manifolds, J. Differential Geom. 36 (1992), no. 2, 269-313. MR1180384

Sérgio R. Fenley, Quasigeodesic pseudo-Anosov flows in hyperbolic 3-manifolds
and connections with large scale geometry, Adv. Math. 303 (2016), 192-278, DOI
10.1016/j.aim.2016.05.015. MR3552525

Elizabeth Field, Trees, dendrites and the Cannon-Thurston map, Algebr. Geom.
Topol. 20 (2020), no. 6, 3083-3126, DOI 10.2140/agt.2020.20.3083. MR4185936
William J. Floyd, Group completions and limit sets of Kleinian groups, Invent. Math.
57 (1980), no. 3, 205-218, DOI 10.1007/BF01418926. MR568933

Albert Fathi, Francois Laudenbach, and Valentin Poénaru, Thurston’s work on sur-
faces, Mathematical Notes, vol. 48, Princeton University Press, Princeton, NJ, 2012.
Translated from the 1979 French original by Djun M. Kim and Dan Margalit.
MR3053012

Steven Frankel, Quasigeodesic flows and sphere-filling curves, Geom. Topol. 19
(2015), no. 3, 1249-1262, DOI 10.2140/gt.2015.19.1249. MR3352235

Frangois Guéritaud. Veering triangulations and Cannon-Thurston maps. J. Topol.,
9(3):957-983, 2016.

Ursula Hamenstadt, Train tracks and the Gromov boundary of the complex of curves,
Spaces of Kleinian groups, London Math. Soc. Lecture Note Ser., vol. 329, Cambridge
Univ. Press, Cambridge, 2006, pp. 187-207. MR2258749

Ursula Hamenstadt, Geometry of the complex of curves and of Teichmiiller space,
Handbook of Teichmiiller theory. Vol. I, IRMA Lect. Math. Theor. Phys., vol. 11,
Eur. Math. Soc., Ziirich, 2007, pp. 447-467, DOI 10.4171/029-1/11. MR2349677


https://www.ams.org/mathscinet-getitem?mr=3186670
https://www.ams.org/mathscinet-getitem?mr=3238474
https://www.ams.org/mathscinet-getitem?mr=3143716
https://www.ams.org/mathscinet-getitem?mr=4077662
https://www.ams.org/mathscinet-getitem?mr=964685
https://www.ams.org/mathscinet-getitem?mr=2235710
https://www.ams.org/mathscinet-getitem?mr=2914860
https://www.ams.org/mathscinet-getitem?mr=3302964
https://www.ams.org/mathscinet-getitem?mr=2326947
https://www.ams.org/mathscinet-getitem?mr=3693574
https://www.ams.org/mathscinet-getitem?mr=3557464
https://www.ams.org/mathscinet-getitem?mr=3513115
https://www.ams.org/mathscinet-getitem?mr=1180384
https://www.ams.org/mathscinet-getitem?mr=3552525
https://www.ams.org/mathscinet-getitem?mr=4185936
https://www.ams.org/mathscinet-getitem?mr=568933
https://www.ams.org/mathscinet-getitem?mr=3053012
https://www.ams.org/mathscinet-getitem?mr=3352235
https://www.ams.org/mathscinet-getitem?mr=2258749
https://www.ams.org/mathscinet-getitem?mr=2349677

142

[Har86]

[HPW15]

[HV17)

[JKLO16]

[KB02]

[KL15]

[Kla99a]
[K1a99b)]

[KLS09]

[Kra81]

[Lei09)]

[LMS11]

[Man10]

[McMO1]

[Min94]

[Min10]

[Mit97]
[Mit98a]
[Mit98b]
[Mj14a]

[Mj14b]

FUNDA GULTEPE ET AL.

John L. Harer, The wirtual cohomological dimension of the mapping class
group of an orientable surface, Invent. Math. 84 (1986), no. 1, 157-176, DOI
10.1007/BF01388737. MR830043

Sebastian Hensel, Piotr Przytycki, and Richard C. H. Webb, 1-slim triangles and
uniform hyperbolicity for arc graphs and curve graphs, J. Eur. Math. Soc. (JEMS)
17 (2015), no. 4, 755-762, DOI 10.4171/JEMS/517. MR3336835

Allen Hatcher and Karen Vogtmann, Tethers and homology stability for surfaces,
Algebr. Geom. Topol. 17 (2017), no. 3, 1871-1916, DOI 10.2140/agt.2017.17.1871.
MR3677942

Woojin Jeon, Ilya Kapovich, Christopher Leininger, and Ken’ichi Ohshika, Conical
limit points and the Cannon-Thurston map, Conform. Geom. Dyn. 20 (2016), 58-80,
DOI 10.1090/ecgd/294. MR3488025

Ilya Kapovich and Nadia Benakli, Boundaries of hyperbolic groups, Combina-
torial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), Con-
temp. Math., vol. 296, Amer. Math. Soc., Providence, RI, 2002, pp. 39-93, DOI
10.1090/conm /296 /05068. MR1921706

Ilya Kapovich and Martin Lustig, Cannon-Thurston fibers for iwip automorphisms
of Fn, J. Lond. Math. Soc. (2) 91 (2015), no. 1, 203—224, DOI 10.1112/jlms/jdu069.
MR3335244

Erica Klarreich, Semiconjugacies between Kleinian group actions on the Riemann
sphere, Amer. J. Math. 121 (1999), no. 5, 1031-1078. MR1713300

Erica Klarreich, The boundary at infinity of the curve complex and the relative teich-
mueller space, http://nasw.org/users/klarreich/research.htm, Preprint, 1999.
Richard P. Kent IV, Christopher J. Leininger, and Saul Schleimer, Trees
and mapping class groups, J. Reine Angew. Math. 637 (2009), 1-21, DOI
10.1515/CRELLE.2009.087. MR2599078

Irwin Kra, On the Nielsen-Thurston-Bers type of some self-maps of Riemann
surfaces, Acta Math. 146 (1981), no. 3-4, 231-270, DOI 10.1007/BF02392465.
MR611385

Christopher J. Leininger, Accidental parabolics in the mapping class group, Proc.
Amer. Math. Soc. 137 (2009), no. 3, 1153-1160, DOI 10.1090/S0002-9939-08-09604-
4. MR2457458

Christopher J. Leininger, Mahan Mj, and Saul Schleimer, The universal Cannon-
Thurston map and the boundary of the curve complex, Comment. Math. Helv. 86
(2011), no. 4, 769-816, DOI 10.4171/CMH/240. MR2851869

Johanna Mangahas, Uniform uniform exponential growth of subgroups of the mapping
class group, Geom. Funct. Anal. 19 (2010), no. 5, 1468-1480, DOI 10.1007/s00039-
009-0038-y. MR2585580

Curtis T. McMullen, Local connectivity, Kleinian groups and geodesics on the blowup
of the torus, Invent. Math. 146 (2001), no. 1, 35-91, DOI 10.1007/PL00005809.
MR1859018

Yair N. Minsky, On rigidity, limit sets, and end invariants of hyperbolic 3-manifolds,
J. Amer. Math. Soc. 7 (1994), no. 3, 539-588, DOI 10.2307/2152785. MR1257060
Yair Minsky, The classification of Kleinian surface groups. I. Models and bounds,
Ann. of Math. (2) 171 (2010), no. 1, 1-107, DOI 10.4007/annals.2010.171.1.
MR2630036

M. Mitra, Ending laminations for hyperbolic group extensions, Geom. Funct. Anal. 7
(1997), no. 2, 379-402, DOI 10.1007/PL00001624. MR 1445392

Mahan Mitra, Cannon-Thurston maps for hyperbolic group extensions, Topology 37
(1998), no. 3, 527-538, DOI 10.1016/S0040-9383(97)00036-0. MR1604882

Mahan Mitra, Cannon-Thurston maps for trees of hyperbolic metric spaces, J. Dif-
ferential Geom. 48 (1998), no. 1, 135-164. MR1622603

Mahan Mj, Cannon-Thurston maps for surface groups, Ann. of Math. (2) 179 (2014),
no. 1, 1-80, DOI 10.4007/annals.2014.179.1.1. MR3126566

Mahan Mj, Ending laminations and Cannon-Thurston maps, Geom. Funct. Anal.
24 (2014), no. 1, 297-321, DOI 10.1007/s00039-014-0263-x. With an appendix by
Shubhabrata Das and Mj. MR3177384


https://www.ams.org/mathscinet-getitem?mr=830043
https://www.ams.org/mathscinet-getitem?mr=3336835
https://www.ams.org/mathscinet-getitem?mr=3677942
https://www.ams.org/mathscinet-getitem?mr=3488025
https://www.ams.org/mathscinet-getitem?mr=1921706
https://www.ams.org/mathscinet-getitem?mr=3335244
https://www.ams.org/mathscinet-getitem?mr=1713300
http://nasw.org/users/klarreich/research.htm
https://www.ams.org/mathscinet-getitem?mr=2599078
https://www.ams.org/mathscinet-getitem?mr=611385
https://www.ams.org/mathscinet-getitem?mr=2457458
https://www.ams.org/mathscinet-getitem?mr=2851869
https://www.ams.org/mathscinet-getitem?mr=2585580
https://www.ams.org/mathscinet-getitem?mr=1859018
https://www.ams.org/mathscinet-getitem?mr=1257060
https://www.ams.org/mathscinet-getitem?mr=2630036
https://www.ams.org/mathscinet-getitem?mr=1445392
https://www.ams.org/mathscinet-getitem?mr=1604882
https://www.ams.org/mathscinet-getitem?mr=1622603
https://www.ams.org/mathscinet-getitem?mr=3126566
https://www.ams.org/mathscinet-getitem?mr=3177384

[M;j17]

[Mj18]

[MM99]

[MMO0]

[MO14]

[Moul8]

[MP11]

[MR18]

[MS13]

[Pall0]

[PO17]
[Thu78]

[Thugg)

[Vok]

[Web15]

A CANNON-THURSTON MAP FOR SURVIVING COMPLEXES 143

Mahan Mj, Cannon-Thurston maps for Kleinian groups, Forum Math. Pi 5 (2017),
el, 49, DOI 10.1017/fmp.2017.2. MR3652816

Mahan Mj, Cannon-Thurston maps, Proceedings of the International Congress of
Mathematicians—Rio de Janeiro 2018. Vol. II. Invited lectures, World Sci. Publ.,
Hackensack, NJ, 2018, pp. 885-917. MR3966793

Howard A. Masur and Yair N. Minsky, Geometry of the complex of curves. I. Hy-
perbolicity, Invent. Math. 138 (1999), no. 1, 103-149, DOI 10.1007/s002220050343.
MR1714338

H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical
structure, Geom. Funct. Anal. 10 (2000), no. 4, 902-974, DOI 10.1007/PL00001643.
MR1791145

Yoshifumi Matsuda and Shin-ichi Oguni, On Cannon-Thurston maps for relatively
hyperbolic groups, J. Group Theory 17 (2014), no. 1, 41-47, DOI 10.1515/jgt-2013-
0024. MR3176651

Sarah C. Mousley, Nonezistence of boundary maps for some hierarchically hyperbolic
spaces, Algebr. Geom. Topol. 18 (2018), no. 1, 409-439, DOI 10.2140/agt.2018.18.409.
MR3748248

Mahan Mj and Abhijit Pal, Relative hyperbolicity, trees of spaces and Cannon-
Thurston maps, Geom. Dedicata 151 (2011), 59-78, DOI 10.1007/s10711-010-9519-2.
MR2780738

Mahan Mj and Kasra Rafi, Algebraic ending laminations and quasiconvezity, Al-
gebr. Geom. Topol. 18 (2018), no. 4, 1883-1916, DOI 10.2140/agt.2018.18.1883.
MR3797060

Howard Masur and Saul Schleimer, The geometry of the disk complex, J. Amer. Math.
Soc. 26 (2013), no. 1, 1-62, DOI 10.1090/S0894-0347-2012-00742-5. MR2983005
Abhijit Pal, Relatively hyperbolic extensions of groups and Cannon-Thurston maps,
Proc. Indian Acad. Sci. Math. Sci. 120 (2010), no. 1, 57-68, DOI 10.1007/s12044-
010-0009-0. MR2654898

Witsarut Pho-On, Infinite unicorn paths and Gromov boundaries, Groups Geom.
Dyn. 11 (2017), no. 1, 353-370, DOI 10.4171/GGD/399. MR3641844

William P. Thurston, Geometry and topology of 3-manifolds, lecture notes, Princeton
University, 1978.

William P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces,
Bull. Amer. Math. Soc. (N.S.) 19 (1988), no. 2, 417-431, DOI 10.1090/S0273-0979-
1988-15685-6. MR956596

Kate M. Vokes, Hierarchical hyperbolicity of graphs of multicurves, Preprint,
arXiv:1711.03080.

Richard C. H. Webb, Uniform bounds for bounded geodesic image theorems, J. Reine
Angew. Math. 709 (2015), 219-228, DOI 10.1515/crelle-2013-0109. MR3430880

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF TOLEDO, TOLEDO, OHIO

43606

Email address: funda.gultepe@utoledo.edu
URL: http://www.math.utoledo.edu/ " fgultepe/

DEPARTMENT OF MATHEMATICS, RICE UNIVERSITY, HOUSTON, TEXAS 77005
Email address: cjl12@rice.edu
URL: https://sites.google.com/view/chris-leiningers-webpage/home

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SRINAKHARINWIROT UNIVERSITY,
BANGKOK 10110, THAILAND

Email address: witsarut@g.swu.ac.th

URL: https://sites.google.com/g.swu.ac.th/witsarut/


https://www.ams.org/mathscinet-getitem?mr=3652816
https://www.ams.org/mathscinet-getitem?mr=3966793
https://www.ams.org/mathscinet-getitem?mr=1714338
https://www.ams.org/mathscinet-getitem?mr=1791145
https://www.ams.org/mathscinet-getitem?mr=3176651
https://www.ams.org/mathscinet-getitem?mr=3748248
https://www.ams.org/mathscinet-getitem?mr=2780738
https://www.ams.org/mathscinet-getitem?mr=3797060
https://www.ams.org/mathscinet-getitem?mr=2983005
https://www.ams.org/mathscinet-getitem?mr=2654898
https://www.ams.org/mathscinet-getitem?mr=3641844
https://www.ams.org/mathscinet-getitem?mr=956596
https://arxiv.org/abs/1711.03080
https://www.ams.org/mathscinet-getitem?mr=3430880

	1. Introduction
	1.1. Historical discussion
	1.2. Outline

	2. Preliminaries
	2.1. Notation and conventions
	2.2. Curve complexes
	2.3. Witnesses for 𝒞^{𝓈}(𝒮̇) and subsurface projection to witnesses
	2.4. Construction of the survival map
	2.5. Cusps and witnesses
	2.6. Spaces of laminations
	2.7. Gromov boundary of a hyperbolic space
	2.8. Laminations and subsurfaces

	3. Survival paths
	3.1. Infinite survival paths

	4. Hyperbolicity of the surviving curve complex
	5. Distance formula
	6. Boundary of the surviving curve complex 𝒞^{𝓈}(𝒮̇)
	7. Extended survival map
	8. Universal Cannon-Thurston maps
	8.1. Quasiconvex nesting and existence of Cannon-Thurston maps
	8.2. Surjectivity of the Cannon-Thurston map
	8.3. Universality and the curve complex

	Acknowledgments
	References

