
DPNeT: Differentially Private Network Traffic
Synthesis with Generative Adversarial Networks

Liyue Fan and Akarsh Pokkunuru

University of North Carolina at Charlotte, Charlotte NC 28223, USA
{liyue.fan, apokkunu}@uncc.edu

Abstract. High quality network traffic data can be shared to enable
knowledge discovery and advance cyber defense research. However, due
to its sensitive nature, ensuring safe sharing of such data has always
been a challenging problem. Current approaches for sharing network-
ing data present several limitations to balance privacy (e.g., informa-
tion leakage) and utility (e.g., availability and usefulness). To overcome
those limitations, we develop DPNeT, a network traffic synthesis solution
that generates high-quality network flows and satisfies (ε,δ)-differential
privacy. We adopt generative adversarial networks (GANs) to capture
the characteristics of real network flows and a similarity-preserving em-
bedding model for mixed-type attributes. Furthermore, we propose new
techniques to improve the outcome of differentially private learning and
provide the privacy analysis of the overall solution. Through a compre-
hensive evaluation with large-scale network flow data, we demonstrate
that our solution is capable of producing realistic network flows.

Keywords: Differential Privacy · Generative Adversarial Networks ·
Network Flow Generation

1 Introduction

Sharing fine-grained network traffic data has enabled numerous research studies
for knowledge discovery and cyber security applications, such as in anomaly de-
tection [16] and cyber attack classification [29, 4]. However, network traffic data
is highly sensitive, e.g., with Internet protocol (IP) addresses and port numbers,
etc., which may be used by adversaries to infer private information, e.g., a specific
website visited by the user. In the worst case, home and commercial networks
may be attacked [5, 27]. Therefore, it is imperative to protect the privacy of in-
dividuals and organizations in the published network data. In order to enhance
the privacy for sharing network traffic data, many anonymization techniques
have been proposed, [30, 3, 20] to name a few. However, it has been shown that
inference attacks may still be launched against anonymized network traces [6,
13]. Moreover, it is challenging to quantify the quality of the anonymized data.

Recently, generative adversarial networks (GANs) [10] have been adopted
to generate realistic network traffic data, e.g., for sequence of packet sizes [25],
network flows [23], and traffic morphing [14]. However, it has been shown that

2 Fan and Pokkunuru

Private
Traces

Differential
Privacy

Public AccessModel

+
Synthetic

Traces

Public
Traces

+

Fig. 1: DPNeT Overview.

deep learning models are subject to various attacks, e.g., inferring membership in
the training set [26] and reconstructing training data [9]. Similarly, GAN models
do not provide guarantees on what the generated data may reveal about real,
sensitive training data. In fact, [12] successfully devised membership inference
attacks against target GANs in both white-box and black-box access settings.

To provide rigorous privacy in network traffic synthesis, we propose to adopt
differential privacy [7] when training GAN models with sensitive data. Our so-
lution, dubbed DPNeT, builds on recent advances in training generative models
(i.e., Wasserstein GAN [11]), and is able to produce realistic synthetic data that
exhibits high similarity to the training data. As shown in Figure 1, the trained
models as well as the synthetic traces can be widely shared for research and
educational purposes. The specific contributions of our work are as follows:

1. We are the first to develop a differentially private solution based on GANs
for synthesizing flow-level network data. The privacy of the training examples is
protected via differentially private optimization [1]. To ensure the quality of the
synthetic data, we adopt the state-of-the-art methodology for training generative
models, as well as an advanced embedding model to preserve similarities between
mixed-type feature values.

2. To address the challenges in private learning, such as noisy or non-convergence,
we propose two improvement techniques: decaying the clipping bound over epochs
and privately selecting the best models across all training epochs. Our empiri-
cal analysis shows that decaying the clipping bound outperforms the standard
option, i.e., no decay. Furthermore, we show that private model selection sig-
nificantly improves the quality of the synthetic network flows, compared to the
model obtained at the last epoch.

3. We provide privacy analysis results for both GAN training and model selec-
tion. In short, we implement Moments Accountant to account for the privacy
loss during GAN model training; we further analyze the sensitivity and the pri-
vacy guarantees for selecting up to K models. Overall, we show that the DPNeT
solution achieves (ε,δ)-differential privacy.

4. We conduct an extensive evaluation with large-scale network flows. We quan-
tify the similarity and realism of the synthetic network flows using distributional
measures and domain knowledge tests, respectively. Our results examine the im-
pact of privacy and demonstrate the effectiveness of our proposed improvements.

The rest of the paper is organized as follows: we discuss related work in
Section 2 and describe fundamental concepts such as differential privacy and

DPNeT: Private Network Traffic Synthesis 3

GANs in Section 3. In Section 4, we provide a full description of DPNeT as well as
privacy analysis results. In Section 5, we present and discuss empirical evaluation
results. Finally, in Section 6 we conclude the paper with brief discussions on
future work.

2 Related Work

Network Trace Anonymization. Anonymization techniques for network traf-
fic data have been extensively studied in the last decades. For instance, IP
addresses can be obfuscated with prefix-preserving pseudonyms [30] or buck-
etization [21]. Other features, such as timestamps and ports, can be shifted
or suppressed [15, 20]. However, it has been shown that classic anonymization
methods are prone to inference attacks [3, 6, 13]. A recent study [19] proposed
to create multiple views of the dataset based on the assumed adversarial knowl-
edge, which is not suitable for our setting, i.e., sharing data widely. [17] proposed
a differential privacy based solution for analyzing network traces; however, the
sharing of private flows has not been discussed.

Network Traffic Synthesis with GANs. With rapid advancements in deep
learning and generative models, a few research studies have proposed to incorpo-
rate generative adversarial networks (GANs) [10] for generating network traffic
data. For instance, Shahid et. al [25] proposes to generate synthetic packet sizes
for IoT applications. Unfortunately, the synthesis of other network traffic fea-
tures was not addressed. Two recent works aim to synthesize network traffic
flows for data sharing (Ring et. al [23]) and bypass internet censorship (Li et.
al [14]). They are most relevant to this paper, especially Ring et. al [23]. How-
ever, GAN models do not provide privacy guarantees on what the generated data
may reveal about real, sensitive training data. For instance, [12] successfully de-
vised membership inference attacks against target GANs in both white-box and
black-box access settings.

Differential Privacy and Machine Learning. The vulnerabilities of deep
learning, e.g., membership inference [26, 12], demonstrate great needs for strong
privacy protection for the underlying training data. To this end, differential pri-
vacy has been applied to learning deep models [1] to combat such inference
attacks. Recent studies adopt the framework in [1] to train GAN models [2, 28]
and we have conducted a survey study on those approach in [8]. Based on our
survey results, most of the existing studies focus on generating image data, e.g.,
MNIST, where GAN models can learn input data distributions accurately; and
very few studies attempt to publish mixed-type data, with features as challeng-
ing as IP addresses. Furthermore, all studies report difficulties and utility loss
encountered with differentially private learning, e.g., the generator and discrimi-
nator may converge to a noisy equilibrium or do not converge. Our solution aims
to address the shortcomings of existing approaches, and the proposed improve-
ments can be applied to general differentially private learning tasks.

4 Fan and Pokkunuru

3 Preliminaries

3.1 Differential Privacy

The privacy model adopted in our work is differential privacy [7]. By definition,
a randomized algorithm A is (ε, δ)-differentially private if for any two databases
D,D′ differ in at most a single record and any subset S ∈ Range(A):

Pr[A(D) ∈ S] ≤ exp(ε) Pr[A(D
′
) ∈ S] + δ (1)

Here ε > 0 is known as the privacy budget, which bounds the difference between
output probabilities of two neighboring databases D,D

′
. In addition, δ ∈ [0, 1]

accounts for the probability of bad events that might lead to a privacy breach.
An advantage of DP is its resistance to post-processing [7], i.e., any computation
performed on the output of a DP mechanism would not incur additional privacy
cost. Other benefits of DP include the lightweight computation compared to
crypto-based mechanisms and ease of control over the information leakage with
the help of ε, δ parameters. Typically, smaller ε and δ values indicate stronger
privacy protection, and vice versa. There exists a trade-off between preserving
privacy and maintaining data utility.

In particular, we are interested in applying DP to deep learning, in order to
protect the privacy of training examples. As shown in [1], it can be achieved by
sanitizing the gradients during neural network optimization, which ultimately
limits the overall influence of any training example on the model. A privacy
accountant, i.e., Moments Accountant [1], has been proposed to account for
differential privacy across training epochs, which provides stronger estimates of
privacy loss compared to other composition theorems [7].

A key question to address in applying (ε,δ)-DP is the choice of privacy pa-
rameters. It is often seen that ε > 1 in private deep learning, e.g., ε = 8 as in [1]
and up to ε = 96 in some studies surveyed in [8]. In this study, we would like to
provide privacy protection in deep learning applications without incurring signif-
icant utility loss. As a result, we consider ε < 20. As for δ, to provide individual
privacy in case of bad events, we set δ = 1

|D| as recommended in [7].

3.2 Generative Adversarial Networks

Generative adversarial networks (GANs) [10] have become the state-of-the-art
method to learn generative models, and has demonstrated superior performance
in producing synthetic data that have similar characteristics as real data. A sur-
vey analysis for differentially private GANs can be found here [8]. GANs consist
of two components, i.e., a generator G and a discriminator D. The problem is
formulated as a minimax two-player game with the following objective [10]:

min
G

max
D

Ex∼pdata
[logD(x)] + Ez∼pz [log(1−D(G(z)))]. (2)

The generator G learns to capture the original data distribution pdata by
mapping a latent distribution pz. Specifically, G takes as input a random noise

DPNeT: Private Network Traffic Synthesis 5

z and generates synthetic data. On the other hand, the discriminator D learns
to discriminate between samples drawn from pdata, i.e., x, and those generated
by G, i.e., G(z). D takes a sample as input and returns a score representing
whether it is real or synthetic. By generating samples that appear to come from
the original data distribution, the goal of the generator is to fool the discrimi-
nator. The generator and discriminator are trained simultaneously through an
adversarial process: the more the generator improves the quality of synthetic
data, the harder it is for the discriminator to distinguish between original and
synthetic samples. Wasserstein GAN [11] minimizes the earth-mover distance
(i.e., Wasserstein-1 distance) between pz and pdata, and allows more stable and
faster training by penalizing the norm of gradient of the discriminator. For those
considerations, we will adopt Wasserstein GAN in DPNeT to generate synthetic
network flows.

4 DPNeT Solution

Overview. DPNeT for network flow synthesis entails three main steps:

1 Embedding the input network flow records to numerical vectors;
2 Training GAN models using the input vectors and generating synthetic vec-

tors;
3 Decoding the synthetic data to produce network flow records.

To generate private synthetic network flows, we utilize two separate deep learning
architectures: an advanced embedding model, and the generator and discrimina-
tor of GANs. Step 1 and 3 rely on the embedding network which transforms
network flow records to numerical vectors while preserving data semantics. Step
2 learns to mimic the input data distribution with GAN models, in a differen-
tially private setting.

4.1 DPNeT: Embedding

Network flows are mixed-type data, consisting of both numerical features and
categorical features (e.g., IP address, port number, packet size, and flag). To
learn from the input data, categorical feature values are often converted into
numerical values, e.g., via one-hot encoding. Ring et. al [22] have shown that the
standard encoding methods do not capture the relationships between mixed-type
features. They modified the Word2Vec model [18] to learn “word” embeddings
for network flow features. We adopt a similar architecture for the embedding
model in DPNeT.

Specifically, we consider 8 features of each flow, namely Source IP and Port,
Destination IP and Port, Protocol, Packets, Bytes, and Duration. As a result,
we are able to compute the similarities between Source IP and Source Port, or
between Packets and Duration. For each flow, 13 bi-grams are constructed as the
training data for the embedding model. Each bi-gram contains an input word,
i.e., one of the 8 features, and a context word (expected output), i.e., among

6 Fan and Pokkunuru

a set of features identified by domain experts for each input feature [23]. The
embedding network is a simple neural network with a single hidden layer, which
contains 20 neurons in our solution. After the embedding network is trained,
it is utilized to produce numerical feature vectors for GANs training set (Step
1 in Overview), with the weights at the hidden layer as feature vectors of the
words (i.e., network flow attributes). Given a synthetic feature vector generated
by GANs, we retrieve the most similar word in the vocabulary based on cosine
similarity in the embedding space (Step 3 in Overview), and output the synthetic
network flow records.

In DPNeT, we train the embedding model using a public dataset that is
disjoint from the sensitive training set for the GAN models. Our consideration
is three-fold: (1) utilizing a public dataset enables accurate learning of feature
similarities. For instance, we can fine-tune the parameters iteratively without
incurring any privacy loss. (2) Thanks to the accuracy, the training set of the
embedding model needs not be very large. Additionally, it is easier to sanitize the
vocabulary on a smaller dataset, e.g., ensuring certain IP addresses or protocols
are not present. (3) The embedding network should learn to encode general
network flows independent of GAN training data, e.g., specific network traffic
patterns that only occur in the sensitive training data. This also produces an
embedding model that can be deployed for other applications.

By design, the vocabulary of the embedding model may not include all words
in the GAN training set. We propose to impute the sensitive training data,
i.e., replacing the feature values that do not appear in the embedding model’s
vocabulary with the mode of the feature. Our empirical evaluation confirms the
feasibility of using disjoint training sets for the embedding model and GAN
models.

4.2 DPNeT: GAN Training

The center of DPNeT is to learn GAN models with differential privacy. The em-
beddings obtained in Step 1 are concatenated with the remaining features in the
network flows, e.g., class, and are provided to the GAN models as training data.
To achieve differential privacy, we adopt the deep learning framework proposed
in [1] and present the pseudocode in Algorithm 1.

We train our GAN models on N examples for E epochs, on a randomly
selected mini-batch of size B with a sampling probability q = B/N . For each
training example in a batch, the discriminator computes the gradients gj(xk)
w.r.t the model parameters and the DP mechanism sanitizes the gradients with
clipping and perturbation. The clipping of gradient norm is upper bounded by
a hyper-parameter γ. Additionally, the variance of the additive Gaussian noise
is controlled through σ. The choice of σ and γ values is essential to achieve a
balance between data quality and privacy protection. Finally, the discriminator
parameters are updated after the completion of each batch. The generator learns
to produce network flows through iterative updates using a traditional gradient
based optimization approach. The discriminator is trained for ED epochs per
generator epoch, which helps alleviate mode collapse issues.

DPNeT: Private Network Traffic Synthesis 7

At the end of each epoch, we save the intermediate generator model Gi, which
will be utilized for model selection purposes. Optionally, the clipping bound γ
may decay according to a few proposed decay functions; we refer readers to
Section 4.3. The privacy loss will be estimated by the Moments Accountant.
After E epochs, the algorithm outputs the final generator model G and total
privacy spent ε1.

Algorithm 1 DPNeT Training Procedure

Input: training examples x1 · · ·xN , batch size B, noise σ, δ = 1
N

, learning rate α,
number of epochs E, number of discriminator epochs ED, clipping bound γ
for i = 1 · · ·E do

if i > 1 then
For each generator parameter θ compute:

gi ← Adam
(
5 1
θ

∑θ
i=1−D(G(Zi))

)
Update generator: θG(i+1)

← θG(i)
+ α gi

end if
for j = 1 · · ·ED do

Sample L with sampling probability q = B
N

for each xk ∈ L do
Compute gradients: gj(xk)←5θW (θj , xk)
Clipping: gj(xk)← gj(xk)/max(1, ‖gj(xk)‖ /γ)

end for
Perturbation: gj ← 1

|L|

(∑
k=1 gj(xk) +N (0, (σ γ)2I)

)
θD(j+1)

← θD(j) + α gj
end for
Save the generator as Gi
Optionally, decay the clipping bound γ (see Sec. 4.3)
Estimate privacy ε1 using Moments Accountant

end for
Output: Generator G and total privacy spent ε1

Implementation. In DPNeT, we adopt the MLP architecture for both the
generator (5 hidden layers) and discriminator (4 hidden layers) as suggested
in [23]. Every hidden layer has 1024 units. The choice of hidden layer activation
is ReLU and leaky ReLU with a negative slope of 0.2 for the generator and
discriminator, respectively. We use a linear activation for the output layers in
both networks.

Privacy Analysis. As the generator update is solely based on the discriminator
(i.e., post-processing of DP outputs), it is sufficient to apply clipping and pertur-
bation on training the discriminator [8]. Using Moments Accountant [1], we can
bound the moments of a mechanism’s privacy loss and prove the (ε, δ)-differential

8 Fan and Pokkunuru

privacy guarantee. In practice, we implement the Moments Accountant to es-
timate Algorithm 1’s privacy loss ε1 with the following: δ, the batch size, the
total number of examples, the noise multiplier, and the number of training steps
performed. Hence, Algorithm 1 achieves (ε1, δ)-differential privacy. The interme-
diate models, i.e., Gi where i < E, incur less privacy loss due to small numbers of
training steps required. We plot in Figure 2a an empirical analysis of the privacy
estimates over the training epochs.

4.3 Improvements in DPNeT

While Algorithm 1 incorporates the state-of-the-art techniques (i.e., GANs) for
generating synthetic data, the application of differential privacy may introduce
new challenges, due to clipping the gradient norm and adding perturbation noise.
As a result, the quality of the generated data may be affected by privacy. Below,
we describe the proposed improvements in the DPNeT solution, with the goal
of overcoming the limitations of differentially private deep learning.

Clipping Bound Decay. The clipping bound γ is an important factor in
Algorithm 1. Although not influential on the privacy accountant, the act of
clipping changes the gradient estimation. Specifically, when γ is too small, the
average gradient may point to a different direction than the true gradient; on
the other hand, increasing γ would require higher noise to be added, as the noise
distribution is based on σγ. Our idea is to decay the value of γ over the course of
training, such that the model is able to learn quickly initially (i.e., with higher
γ values) and accurately in the final stages (i.e., with lower γ values).

To that end, we propose three types of decay functions to control the speed
of decay and investigate the impact on private learning. Our approach is based
on commonly used decay functions, namely linear, exponential, and logarithmic:

Linear decay : γ(i) = C − i

(
C − C ′

E − 1

)
(3)

Exponential decay : γ(i) = C d(i−1) (4)

Logarithmic decay : γ(i) =
C

1 + log (i)
(5)

No decay : γ(i) = C (6)

In the above functions, i indicates the current epoch where i ∈ [1, E]; d is the
exponential decay rate; C is the initial value for the clipping bound and C ′ is
the final value. The design ensures that all decay functions start with γ(1) = C,
including the option of no decay. We choose the other parameters such that at
the final epoch, the three decay functions arrive at similar γ values, i.e., around
C ′. In our empirical evaluation, we show for each decay option how γ values
change throughout the training process (see Figure 4).

DPNeT: Private Network Traffic Synthesis 9

Private Model Selection. We also develop an effective strategy to privately
select the best generative models among all models obtained throughout the
training process. The rationale is that as DP introduces noise in training, the
discriminator and the generator may converge towards a noisy equilibrium or
do not converge. As a result, the generator obtained at the last epoch may not
be optimal in quality. Therefore, in our approach, we consider models saved
throughout the training epochs with the goal of choose the best among them.
Furthermore, we need to ensure differential privacy in the model selection process
as the private training data is utilized to evaluate the goodness of each model.
Our approach is inspired by [2], where a classification accuracy score was utilized
to select the best model. However the goal of DPNeT is to produce network flows
that can be broadly used, including but not limited to classification applications.
Thus, a generic quality measure for the generated data would be much more
beneficial. We achieve this with the L1-distance between histograms of real data
and synthetic data. We choose histograms in our algorithm for the low sensitivity.

Algorithm 2 Private Model Selection

Input: ground truth flows Xreal, synthetic flows Xgen, number of features n, number
of epochs E, number of models to select K, privacy budget εm for each selection
`dist = {}
for i = 1 · · ·E do
Xi
gen ← N synthetic flows by model obtained at epoch i

Compute the following score based on L1 distance between histograms:
`i = 1

n

∑n
j=1 ||HIST(Xreal[j])−HIST(Xi

gen[j])||1
`dist.insert(`i)

end for
for t = 1 · · ·K do

Add noise every score: `noisy = `dist + Laplace(0, 1
εm

)
Sort `noisy and pick the epoch it with the smallest noisy score
`dist.remove(`it)

end for
Output: K epochs {it|t = 1 · · ·K} with the best models

As shown in Algorithm 2, we aim to choose K best models among all models
obtained over E epochs, where the trained generator model can be saved at the
end of each epoch. For each epoch i, we compute L1-based score to measure the
similarity between the training data distribution and the synthetic data distri-
bution, averaged across all features. Note that HIST in Algorithm 2 generates
histograms for a given dataset (e.g., Xreal or Xi

gen) and a certain feature (i.e.,
indexed by j). All scores are perturbed with noise drawn from a Laplace dis-
tribution with 0 mean and 1

εm
scale. The model that corresponds to the lowest

noisy score is picked in each iteration until all K models have been selected.
The selected models (which may not include the final epoch model) will be used
to generate synthetic data. We further propose a mixture strategy to combine

10 Fan and Pokkunuru

synthetic flows from K models, which is demonstrated to be superior in our
evaluation.

Privacy Analysis. Recall that intermediate generator models, i.e., Gi where
i ≤ E, are saved as part of Algorithm 1. Using Gi to generate synthetic data
Xi
gen for Algorithm 2 does not incur additional privacy loss, thanks to the post-

processing property of DP. The privacy result for Algorithm 2 is as follows:

1 the global sensitivity of `i is 1, for any i,
2 each iteration of model selection is εm-differentially private,
3 Algorithm 2 is Kεm-differentially private.

Suppose two neighboring datasets Xreal andX ′real, whereXreal = X ′real
⋃
{x∗}

and x∗ is one flow record. The global sensitivity of `i can be analyzed with
the Minkowski’s inequality and the fact that by removing x∗ the histograms of
Xreal[j] for any attribute j can change by at most 1:

||`i − `′i||1 ≤
1

n

n∑
j=1

||HIST(Xreal[j])−HIST(X′real[j])||1 ≤ 1. (7)

Given ∆`i = 1 (∀i), we can prove that each model selection with Laplace per-
turbation is εm-differentially private1. It follows that selecting K models with
Algorithm 2 satisfies Kεm-differential privacy. Finally, we state the overall pri-
vacy guarantee of DPNeT.

Theorem 1. DPNeT satisfies (ε,δ)-differential privacy, where ε = ε1+Kεm and
δ = 1/N .

Proof. Algorithm 1 satisfies (ε1, δ)-DP where ε1 can be estimated by Moments
Accountant and δ = 1/N . Algorithm 2 satisfies (Kεm, 0)-DP. By composition,
the overall DPNeT solution satisfies (ε1 +Kεm, δ)-DP.

5 Evaluation Results

In this section, we present our methodology for empirical evaluation and discuss
results obtained.

Dataset. We utilize a large-scale network flow dataset CIDDS-001 [24] in our
evaluation. CIDDS-001 was captured within an emulated small business envi-
ronment, which contains four weeks of flow-based network traffic. This dataset
is publicly available2, with around 32 million labelled network flows consisting
of both anomalous and normal behaviors. For each flow, we adopt 11 relevant
features, namely: Date first seen, Duration, Protocol, Source IP, Source Port,
Destination IP, Destination Port, Packets, Bytes, Flags, Class, and preprocess

1 Proof omitted for brevity; it is similar to the proof of Report Noisy Max [7].
2 http://www.hs-coburg.de/cidds

DPNeT: Private Network Traffic Synthesis 11

them as suggested [23]. We then randomly subsample 2% of the entire dataset,
which is then partitioned into two disjoint portions consisting of N = 287435
examples each. One partition is treated as public and utilized for training the
embedding model, while the other partition remains private and used for train-
ing GAN models. Note that, since the two partitions are disjoint, some feature
values in the GAN training data may not be present in the embedding model,
e.g., unseen values. In those cases, we impute those feature values with the mode
of their respective columns.

Metrics. For all our experiments, we utilize the following metrics to evaluate the
quality of the synthetic data, in similarity and realism. To evaluate similarity, we
measure the distance (e.g., Euclidean) between the probability distributions of
the training data and the generated data for each attribute. To evaluate realism,
we adopt 7 domain knowledge tests to check the consistency between attributes
within each flow. For instance, one of them (Test 3) checks: “if the flow describes
normal user behavior and the source port or destination port is 80 (HTTP) or
443 (HTTPS), the transport protocol must be TCP”. The rationale as well as
the detailed design of those domain knowledge tests can be found in [23]. For
each test, we report the percentages of flows in the data that pass the test.

Hyper-parameters. The embedding model is trained for 500 epochs to accu-
rately encode feature values. To achieve a trade-off between privacy and quality,
the differentially private GAN models are trained for 50 epochs and we report the
average results obtained in 3 separate runs. Other hyper-parameters for training
the differentially private GAN models are: the training data size N = 287435,
privacy parameter δ = 1

N , batch size B = 2048, initial clip norm γ = 0.03,
and learning rate α = 0.0005. For every generator iteration, discriminator is
trained for ED = 5 iterations. The privacy budget for training differentially pri-
vate GANs is accounted by the Moment Accountant technique [1] as we vary the
noise multiplier σ. For private model selection, we allocate ε2 = 0.25 for selecting
top-5 models, i.e., spending 0.05 privacy budget for each round of Report Noisy
Min. We compare our results with the non-private baseline.

5.1 Impact of Privacy

We study the effect of privacy on the quality of generated data. As we vary the
noise multiplier σ in Algorithm 1, we apply the Moment Accountant to track
the privacy budget ε1 spent over the training epochs. We report the interme-
diate results in Figure 2a and ε1 after 50 epochs in Table 1. Note that small
ε values indicate stronger privacy protection. When setting σ = 3, we achieve
ε1 = 3.06 for training the GAN model for 50 epochs; reducing the noise param-
eter degrades the privacy protection, e.g., ε1 = 20.79 when σ = 0.8. We also
examine the impact of privacy on training quality. Figure 2b plots the loss in
Wasserstein distance at the end of each epoch. Table 1 reports the final loss after
50 epochs, i.e., Wdist. We observe that in comparison to the non-private model,
different privacy inflicts instability in the training process; stronger privacy leads
to a higher level of instability, e.g., when σ = 0.8. Due to the added noise, a

12 Fan and Pokkunuru

differentially private model may converge to a noisy equilibrium. As privacy is
relaxed, the performance of differentially private models gradually approaches
that of the non-private model.

0 10 20 30 40 50
Training…Epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

P
riv
ac
y…

B
ud
ge
t

…=…0.8
…=…1
…=…2
…=…3

(a) Privacy budget spent on training
GAN models.

0 10 20 30 40 50
Training…Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
as
se
rs
te
in
…
D
is
ta
nc
e

Non-private
…=…0.8
…=…1
…=…2
…=…3

(b) Wasserstein distance obtained
during training.

Fig. 2: Impact of Noise (σ) on GAN Model Training (best viewed in color).

Table 1: Impact of Privacy and Domain Knowledge Test Accuracy (in %) on
Real and Synthetic Data: ε1 - privacy budget spent on training GAN models; ε -
total privacy budget including training GAN models and model selection; Wdist

- Wasserstein distance obtained at the last training epoch.

Privacy ε1/ε Wdist
Domain Knowledge Test - Accuracy in %

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Avg.

Real data ∞/∞ 0 100 100 100 100 100 100 100 100

Non-private ∞/∞ 0.048 99.56 99.94 99.95 99.65 99.82 99.59 99.98 99.64

σ = 0.8 20.79/21.04 0.061 96.79 99.19 99.63 94.53 99.91 77.33 91.85 94.18

σ = 1 13.1/13.35 0.064 96.92 98.79 99.47 94.17 99.97 65.37 90.42 92.16

σ = 2 4.88/5.13 0.084 91.85 98.06 99.47 90.12 100.0 65.92 84.72 90.02

σ = 3 3.06/3.31 0.124 94.7 98.37 99.51 91.15 100.0 3.37 89.51 82.37

We conduct the domain knowledge tests on real/synthetic data and Table
1 reports the accuracy results, i.e., the percentage of flows that pass each test.
We observe that both private and non-private GAN models are able to produce
realistic network flows, e.g., highly accurate for Test 3 and Test 5. Test 6 appears
to be the most challenging to capture by the private models. The content of Test
6 is: “if the flow represents a netbios message (destination port is 137 or 138), the
source IP addresses must be internal (192.168.XXX.XXX) and the destination
IP address must be an internal broadcast (192.168.XXX.255).” As it examines
a specific type of flows and involves multiple features, even introducing a small

DPNeT: Private Network Traffic Synthesis 13

Table 2: Impact of Privacy and Data Quality: Euclidean distance between syn-
thetic data distribution and training data distribution is reported.

Feature Non-private σ = 0.8 σ = 1 σ = 2 σ = 3

Day 0.009 0.032 0.043 0.047 0.082

Time 0.008 0.007 0.006 0.006 0.008

Duration 0.74 0.73 0.725 0.715 0.713

Protocol 0.004 0.003 0.002 0.007 0.012

Src IP 0.067 0.131 0.113 0.099 0.104

Src Pt 0.01 0.019 0.016 0.037 0.039

Dst IP 0.063 0.118 0.118 0.098 0.09

Dst Pt 0.01 0.017 0.016 0.024 0.036

Packets 0.016 0.044 0.055 0.068 0.074

Bytes 0.018 0.047 0.055 0.072 0.083

Flags 0.006 0.074 0.098 0.103 0.139

Class 0.003 0.004 0.006 0.005 0.011

Avg. 0.079 0.103 0.104 0.107 0.116

amount of noise (σ = 0.8) inflicts a drop in performance. We also report the
average accuracy among all 7 tests. It can be seen that the accuracy degrades
gradually from real data, to synthetic data generated by the non-private model,
to synthetic data generated by differentially private models.

We report in Table 2 the similarity between real and synthetic data via the
Euclidean distance computed for the probability distributions of each feature.
The average similarity among all features is reported in the last row of the table.
As can be seen, synthetic data generated by the non-private model is most similar
to the real data; stronger privacy (i.e., higher σ values) would inflict a higher
distance from the real distributions.
Qualitative Evaluation. To better understand the quality of the synthetic
data, we plot the distributions of real and synthetic network flows in Figure 3.
Figure 3a shows the percentage of flows per hour in each dataset. We can observe
that the non-private model can accurately capture variations in the real data
distribution, and the private models are able to capture high-level trends while
missing local variations. Similarly we observe in Figure 3b that the distribution of
Packet feature is well preserved by the non-private model. As the noise increases,
higher distortions in the probability distribution can be observed.

5.2 Impact of Clipping Bound Decay

Here we study the effect of decaying the gradient norm bound on the quality
of the generated data. We set σ = 1 in the following experiments and train
GAN models with different decay functions proposed in Section 4.3. The result-
ing clipping bounds are depicted in Figure 4. It can be seen that the clipping
bounds reduce much more quickly when exponential decay and logarithmic de-
cay are adopted, although all three decay functions reach similar values at the

14 Fan and Pokkunuru

0 24 48 72 96 120 144 167
Hours

0.00

0.01

0.02

0.03

0.04

0.05

Fl
ow

s…
pe
r…

H
ou
r Real

Non-private
…=…0.8
…=…1
…=…2
…=…3

(a) Distribution of flows over time.

Real Non-private …=…0.8 …=…1 …=…2 …=…3
Packets

0

50

100

150

200

D
en
si
ty

(b) Distribution of “Packet” feature.

Fig. 3: Distributions of Real and Synthetic Flows (best viewed in color).

0 10 20 30 40 50
Epochs

0.000

0.005

0.010

0.015

0.020

0.025

0.030

L2
…
N
or
m
…
B
ou
nd
…
V
al
ue

Linear
Exponential
Logarithmic
Constant

Fig. 4: Clipping Bound Decay: we set C = 0.03, C ′ = 0.001, and d = 0.94 such
that all clipping bounds initialize at C and decay accordingly over 50 epochs,
with the exception of Constant.

50th epoch. In contrast, the no decay option adopts a constant clipping bound
throughout all training epochs.

Table 3 and Table 4 report the distributional similarity and the accuracy
of domain knowledge tests, respectively, using synthetically generated data. As
expected, having a constant clipping bound (i.e., no decay), would force more
noise to be added and thus reduce the quality of the learned model, i.e., higher
Euclidean distance and lower domain knowledge test accuracy. It can be seen
that linear decay is competitive in distributional similarity, and performs the
best in domain knowledge tests. We believe that it is beneficial to gradually
reduce the clipping bound over training epochs to achieve a trade-off between
learning and privacy. Thus, we propose to adopt linear decay in the DPNeT
solution.

DPNeT: Private Network Traffic Synthesis 15

Table 3: Impact of Decay Functions and Data Quality: Euclidean distance be-
tween synthetic data distribution and training data distribution is reported.

Feature No Decay Exponential Logarithmic Linear

Duration 0.742 0.717 0.731 0.725

Protocol 0.003 0.004 0.01 0.002

Src IP 0.116 0.103 0.118 0.113

Src Pt 0.016 0.019 0.022 0.016

Dst IP 0.121 0.120 0.127 0.118

Dst Pt 0.02 0.016 0.016 0.016

Packets 0.056 0.052 0.056 0.055

Bytes 0.06 0.057 0.056 0.055

Flags 0.113 0.095 0.097 0.098

Class 0.007 0.007 0.005 0.006

Avg. 0.125 0.119 0.124 0.120

Table 4: Impact of Decay Functions and Domain Knowledge Test Accuracy (in %).

Domain Test No Decay Exponential Logarithmic Linear

Test 1 96.73 96.39 97.09 96.92

Test 2 98.72 99.07 98.97 98.79

Test 3 99.53 99.59 99.36 99.47

Test 4 92.55 93.01 94.17 94.17

Test 5 99.98 99.71 99.95 99.97

Test 6 45.05 50.03 53.56 65.37

Test 7 89.4 91.29 91.36 90.42

Avg. 88.85 89.87 90.64 92.16

5.3 Private Model Selection

Here we examine the effect of model selection using Algorithm 2. For each run of
differentially private GAN training, we choose the best K = 5 epoch models and
allocate εm = 0.05 privacy budget for each selected model. We name the selected
models Nosiy Best, Noisy 2nd, etc. N = 287435 synthetic flows are generated
from each model; in addition, we create a mixture of size N by randomly sub-
sampling from each model. The model obtained at the 50th epoch is also included
as a baseline, since it may not be selected by the algorithm.

Table 5 and Table 6 report the distributional similarity and the accuracy of
domain knowledge tests, respectively. Since the algorithm utilizes an L1-based
score, we report the L1 distance between the probability distributions of real
data and synthetic data in Table 5. We observe that our private model selection
approach is highly beneficial: the average L1 distance monotonically increases
from Noisy Best to Noisy 5th. The last epoch shows a much higher average
L1 distance to the real data distributions, confirming that the final model may
not be optimal. We also observe that the private model selection is affected
by perturbation, i.e., Noisy 5th shows the best quality in Flags and Class. A

16 Fan and Pokkunuru

very important observation is that the mixture strategy is superior to all other
models, exhibiting the highest similarity to real data in many features.

Table 5: Impact of Model Selection on Data Quality: L1 distance between syn-
thetic data distribution and training data distribution is reported.

Feature Noisy Best Noisy 2nd Noisy 3rd Noisy 4th Noisy 5th Last Epoch Mixture

Duration 1.484 1.532 1.511 1.519 1.513 1.608 1.408

Protocol 0.008 0.008 0.016 0.012 0.016 0.015 0.003

Src IP 0.867 0.847 0.854 0.849 0.882 1.031 0.708

Src Pt 0.830 0.857 0.920 0.923 0.895 1.014 0.723

Dst IP 0.872 0.853 0.905 0.874 0.895 1.068 0.708

Dst Pt 0.849 0.862 0.912 0.880 0.924 1.008 0.717

Packets 0.212 0.276 0.251 0.257 0.232 0.277 0.202

Bytes 0.713 0.759 0.731 0.768 0.786 0.922 0.636

Flags 0.267 0.251 0.219 0.225 0.215 0.219 0.219

Class 0.025 0.011 0.009 0.025 0.007 0.024 0.009

Avg. 0.613 0.626 0.633 0.633 0.637 0.718 0.533

Table 6: Domain Knowledge Test Accuracy (in %) for Models Selected with
Algorithm 2.

Domain Test Noisy Best Noisy 2nd Noisy 3rd Noisy 4th Noisy 5th Last Epoch Mixture

Test 1 97.68 94.20 98.34 96.57 97.46 97.46 96.92

Test 2 98.86 98.87 99.23 98.25 98.76 98.28 98.79

Test 3 99.37 99.41 99.77 99.28 99.52 99.39 99.47

Test 4 95.08 94.10 93.31 91.86 96.06 94.02 94.17

Test 5 100.00 100.00 100.00 100.00 99.55 100.00 99.97

Test 6 45.26 66.79 61.78 60.52 18.32 35.03 65.37

Test 7 90.02 90.56 90.67 90.66 90.18 90.55 90.42

Avg. 89.47 91.99 91.87 91.02 85.69 87.82 92.16

Similarly in Table 6, Noisy 5th and Last Epoch show lower average test
accuracy, compared to other models. The mixture shows the highest average test
accuracy among all models. Both tables demonstrate the advantage of our model
selection approach and creating a diverse set of synthetic data using mixture.

6 Conclusion and Future Work

In this paper, we have described DPNeT, a differentially private solution for gen-
erating high quality synthetic network flow data. Privacy of the sensitive training
data is protected by training GAN models with differential privacy. We have also
proposed novel approaches for clipping bound decay and private model selection.

DPNeT: Private Network Traffic Synthesis 17

We have demonstrated their effectiveness in improving the quality of synthetic
data through comprehensive empirical evaluations. Our approaches may be ap-
plied to other differentially private deep learning tasks, e.g. classification.

We identify several directions for future work. Firstly, we observe that fine
tuning of hyper parameters, such as learning rate and number of discrimina-
tor epochs, is essential to circumvent issues such as mode collapse and non-
convergence. In the future, effective parameter tuning methods can be explored
for differentially private solutions. Secondly, it is desirable to investigate the use-
fulness of the synthetic network flow data in domain specific applications, e.g.,
anomaly detection. Future work can study the performance of anomaly detec-
tion models trained with synthetic data. Thirdly, as our solution builds on an
embedding model trained with public data, it is important to study the efficacy
of the solution when public data may come from a different distribution.

Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions
and comments. This work has been supported in part by NSF CNS-1949217,
NSF CNS-1951430, and UNC Charlotte. The opinions, findings, and conclusions
or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the sponsors.

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K.,
Zhang, L.: Deep learning with differential privacy. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. pp. 308–
318 (2016)

2. Beaulieu-Jones, B.K., Wu, Z.S., Williams, C., Lee, R., Bhavnani, S.P., Byrd, J.B.,
Greene, C.S.: Privacy-preserving generative deep neural networks support clinical
data sharing. Circulation: Cardiovascular Quality and Outcomes 12(7), e005122
(2019)

3. Brekne, T., Årnes, A., Øslebø, A.: Anonymization of ip traffic monitoring data:
Attacks on two prefix-preserving anonymization schemes and some proposed reme-
dies. In: International Workshop on Privacy Enhancing Technologies. pp. 179–196.
Springer (2005)

4. Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: Smoteboost: Improving
prediction of the minority class in boosting. In: European conference on principles
of data mining and knowledge discovery. pp. 107–119. Springer (2003)

5. Chen, Y., Trappe, W., Martin, R.P.: Detecting and localizing wireless spoofing
attacks. In: 2007 4th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks. pp. 193–202. IEEE (2007)

6. Coull, S.E., Wright, C.V., Monrose, F., Collins, M.P., Reiter, M.K., et al.: Playing
devil’s advocate: Inferring sensitive information from anonymized network traces.
In: Ndss. vol. 7, pp. 35–47 (2007)

7. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science 9(3-4), 211–407 (2014)

18 Fan and Pokkunuru

8. Fan, L.: A survey of differentially private generative adversarial networks. In: The
AAAI Workshop on Privacy-Preserving Artificial Intelligence (2020)

9. Fredrikson, M., Jha, S., Ristenpart, T.: Model inversion attacks that exploit con-
fidence information and basic countermeasures. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. pp. 1322–1333.
ACM (2015)

10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in neural
information processing systems. pp. 2672–2680 (2014)

11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Advances in neural information processing systems.
pp. 5767–5777 (2017)

12. Hayes, J., Melis, L., Danezis, G., De Cristofaro, E.: Logan: Membership inference
attacks against generative models. Proceedings on Privacy Enhancing Technologies
2019(1), 133–152 (2019)

13. King, J., Lakkaraju, K., Slagell, A.: A taxonomy and adversarial model for attacks
against network log anonymization. In: Proceedings of the 2009 ACM symposium
on Applied Computing. pp. 1286–1293 (2009)

14. Li, J., Zhou, L., Li, H., Yan, L., Zhu, H.: Dynamic traffic feature camouflaging via
generative adversarial networks. In: 2019 IEEE Conference on Communications
and Network Security (CNS). pp. 268–276. IEEE (2019)

15. Li, Y., Slagell, A., Luo, K., Yurcik, W.: Canine: A combined conversion and
anonymization tool for processing netflows for security. In: International confer-
ence on telecommunication systems modeling and analysis. vol. 21 (2005)

16. Lippmann, R.P., Fried, D.J., Graf, I., Haines, J.W., Kendall, K.R., McClung, D.,
Weber, D., Webster, S.E., Wyschogrod, D., Cunningham, R.K., et al.: Evaluating
intrusion detection systems: The 1998 darpa off-line intrusion detection evalua-
tion. In: Proceedings DARPA Information Survivability Conference and Exposi-
tion. DISCEX’00. vol. 2, pp. 12–26. IEEE (2000)

17. McSherry, F., Mahajan, R.: Differentially-private network trace analysis. ACM
SIGCOMM Computer Communication Review 40(4), 123–134 (2010)

18. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in neural
information processing systems. pp. 3111–3119 (2013)

19. Mohammady, M., Wang, L., Hong, Y., Louafi, H., Pourzandi, M., Debbabi, M.:
Preserving both privacy and utility in network trace anonymization. In: Proceed-
ings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. pp. 459–474 (2018)

20. Pang, R., Allman, M., Paxson, V., Lee, J.: The devil and packet trace anonymiza-
tion. ACM SIGCOMM Computer Communication Review 36(1), 29–38 (2006)

21. Riboni, D., Villani, A., Vitali, D., Bettini, C., Mancini, L.V.: Obfuscation of sensi-
tive data in network flows. In: 2012 Proceedings IEEE INFOCOM. pp. 2372–2380.
IEEE (2012)

22. Ring, M., Dallmann, A., Landes, D., Hotho, A.: Ip2vec: Learning similarities be-
tween ip addresses. In: 2017 IEEE International Conference on Data Mining Work-
shops (ICDMW). pp. 657–666. IEEE (2017)

23. Ring, M., Schlör, D., Landes, D., Hotho, A.: Flow-based network traffic generation
using generative adversarial networks. Computers & Security 82, 156–172 (2019)

24. Ring, M., Wunderlich, S., Grüdl, D., Landes, D., Hotho, A.: Flow-based benchmark
data sets for intrusion detection. In: Proceedings of the 16th European conference
on cyber warfare and security. pp. 361–369 (2017)

DPNeT: Private Network Traffic Synthesis 19

25. Shahid, M.R., Blanc, G., Jmila, H., Zhang, Z., Debar, H.: Generative deep learning
for internet of things network traffic generation. In: 2020 IEEE 25th Pacific Rim
International Symposium on Dependable Computing (PRDC). pp. 70–79 (2020).
https://doi.org/10.1109/PRDC50213.2020.00018

26. Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks
against machine learning models. In: 2017 IEEE Symposium on Security and Pri-
vacy (SP). pp. 3–18. IEEE (2017)

27. Son, S., Shmatikov, V.: The hitchhiker’s guide to dns cache poisoning. In: In-
ternational Conference on Security and Privacy in Communication Systems. pp.
466–483. Springer (2010)

28. Torkzadehmahani, R., Kairouz, P., Paten, B.: Dp-cgan: Differentially private syn-
thetic data and label generation. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops (June 2019)

29. Wright, C., Monrose, F., Masson, G.M.: Hmm profiles for network traffic classifica-
tion. In: Proceedings of the 2004 ACM workshop on Visualization and data mining
for computer security. pp. 9–15 (2004)

30. Xu, J., Fan, J., Ammar, M., Moon, S.B.: On the design and performance of prefix-
preserving ip traffic trace anonymization. In: Proceedings of the 1st ACM SIG-
COMM Workshop on Internet Measurement. pp. 263–266 (2001)

