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We propose twoways to improve the forecasting accuracy of a focused time-delay neural network (FTDNN) that
forecasts the term structure of crude oil futures. Our results show that a convergence based FTDNNmakes con-
sistently more accurate predictions than the fixed-epoch FTDNN in Barunik and Malinska (2016). Further, we
suggest using basis splines (B-splines), instead of Nelson-Siegel functions, to fit the term structure curves. The
empirical results show that the B-spline expansions lead to consistently better 1 and 3months ahead predictions
compared to the convergence based FTDNN. We also explore conditions under which the B-spline based ap-
proach may be better for longer-term predictions.
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1. Introduction

Crude oil is widely considered to be one of the most important com-
modities for the world's economy. As a result, academia and industry
have paid particular attention to the accurate prediction of crude oil
prices. However, forecasting the price of crude oil is challenging. Given
there is no broadly accepted forecasting methodology, new approaches
are being explored.

Forecasting the term structure of crude oil futures is an important
branch of the crude oil price forecasting literature. Term structure of
crude oil futures show predict the crude oil futures prices with different
expiration, it also models the directions and relations between different
future contracts. Accurately forecasting the term structure can help
speculators to construct profitable crude oil future portfolios, hedges
to determine maturities of hedging contracts, oil producers to optimize
productivity, oil refineries and governments to decide levels of invento-
ries. This paper considers several ways to improve a neural network ap-
proach that previous studies have have shown to outperform many
other popularmodels in forecasting term structures of crude oil futures.

Due to the crude oilmarket's complexity,many attempts atmodeling
crude oil futures pricemovements have failed to consistently outperform
basic time-series approaches, such as the random walk and AR
(1) models. In general, crude oil price forecasting models fall into four
broad categories: statistical, fundamental and/or economic factors,
speculation based approaches, and, more recently, machine learning
approaches.

A common econometric approach in empirical and theoretical work
on the oil price is rooted in the seminal co-integrating framework of
Engle and Granger (1987). Since then, there has been considerable aca-
demic effort literature has devoted to investigating anddeveloping fore-
casting oil price levels (i.e., Pindyck, 1999; Radchenko, 2005). However,
disappointingly, as documented by several studies (e.g., Hamilton,
2009; Alquist and Kilian, 2010; Alquist et al., 2013), none of these fore-
casting methods has been particularly successful when compared with
the naive no-change forecast. These studies suggest that changes in
the oil price are inherently difficult to predict and indicate that the cur-
rent oil price might be the best forecast of the future price. Mathemati-
cally, this is consistent with a random walk model.

More recently, some studies show that combinations of statistical
models perform better than simple approaches. Nademi and Nademi
(2018) uses a semiparametric Markov switching AR-ARCH model to
forecast the prices of OPEC, WTI, and Brent crude oils. The empirical re-
sults show the proposed model forecasts crude oil prices more accu-
rately than ARIMA and GARCH models. Chen et al. (2018) proposes a
hybrid grey wave forecasting model, which combines Random Walk
(RW)/ARMA to forecast multi-step-ahead crude oil prices. The empiri-
cal results demonstrate that the model dominates ARMA and RW in
terms of correct direction prediction. Chai et al. (2018) proposes a
novel forecast combination approach that captures a variety of
fluctuation features in crude oil data series, including change points,
regime-switching, time-varying determinants, trend decomposition of
high-frequency sequences, and the possible nonlinearity of model
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setting. de Albuquerquemello et al. (2018) shows that a Self-Exciting
Threshold Auto-regressive model performs better than most of the oil
price prediction methods.

Another stream of literature is predicated on the assumption that
crude oil prices are driven by dynamic changes of a large set of factors.
The influence of different factors tends to vary from relatively
short-lived to long term effects extending over many years. A great
deal of research has studied the predictive power of oil futures prices,
oil inventories, oil production, macroeconomic fundamentals, product
spreads, exchange rates, stock market dynamics, and economic policy
uncertainty, among others (c.f., Andreasson et al., 2016; Baumeister
and Kilian, 2012, 2015; Chatrath et al., 2016; Kilian, 2009; Basak and
Pavlova, 2016; Singleton, 2014). Miao et al. (2017) considers six cate-
gories of factors and utilizes the Least Absolute Shrinkage and Selection
Operator (LASSO) regression technique to improve the forecasting
accuracy of crude oil prices. Zhang et al. (2018) uses an iterated com-
bination approach to examine oil price prediction with 18 macroeco-
nomic variables and 18 technical indicators. The model outperforms
standard combination approaches for both in- and out-of-sample. In
general, models incorporating factors outperform a random walk
model in many situations.

More recent studies show some improvements have been made in
the oil price models by expanding the range of explanatory factors
and better integrating them (i.e., Dees et al., 2007; Ewing and
Thompson, 2007; Kaufmann and Ullman, 2009). In addition, the role
of speculation and forward-looking behavior in crude oil prices has
been carefully examined (c.f. Kaufmann and Ullman, 2009, Sornette
et al., 2009, Alquist and Kilian, 2010, Kaufmann, 2011, Kilian and
Murphy, 2014, and Miao et al., 2018, among others). In general, fore-
casting models based on economic fundamentals work better at short
horizons up to 3 months. In contrast, models based on the spread of re-
fined product prices relative to the price of crude oil work better at lon-
ger horizons between 12 and 24months (Baumeister and Kilian, 2015).
Baumeister and Kilian (2015) presents a combination approachwith six
different models. The combination approach improves the forecasting
performance in comparison to the no-change forecast.

Neural networks began to be seen as a legitimate approach to
modeling crude oil futures in 2009 when Kulkarni and Haidar
(2009) explored the general use of artificial neural networks
(ANNs) for modeling crude oil futures. They present a model based
on a multilayer feed-forward neural network to forecast crude oil
spot price direction in the short-term, up to three days ahead. They
suggest that a dynamic model of 13 lags is optimal to forecast spot
price direction for the short-term. Since then, many competing neu-
ral network approaches have been developed and compared. Most
notably, Hu et al. (2012) compare an Elman recurrent neural net-
work (ERNN), a multilayer perceptron (MLP), and a recurrent fuzzy
neural network (RFNN). They find that the RFNNmodel outperforms
the other two neural networks in forecasting crude oil futures prices.
Modifications to neural networks have also been explored; for ex-
ample, the basic ANN was shown by Mahdiani and Khamehchi
(2016) to benefit from the inclusion of a genetic matching algorithm
in predicting the future prices of crude oil.

In the past several years, a significant number of combined
models have been proposed in the neural network literature.
Huang andWang (2018) proposes a model that combines a wavelet
neural network (WNN) with a random time effective function. The
empirical results demonstrate that the proposed model has higher
accuracy in predicting crude oil price fluctuations. Wang et al.
(2020) demonstrates that a multi-granularity heterogeneous com-
bination approach based on an artificial bee colony outperforms
not only individual competitive benchmarks but also single-
granularity heterogeneous and multi-granularity homogeneous ap-
proaches in forecasting crude oil prices. Ramyar and Kianfar (2019)
develop a multilayer perceptron (MLP) neural network incorporat-
ing the impacts of monetary policy and other major drivers of crude
2

oil prices. They conclude that the proposed MLP neural network can
more accurately predict crude oil prices than a VAR model. Tang et al.
(2018b) show randomized-algorithm-based decomposition-ensemble
learning models are efficient and fast, relative to popular single models.
Ding (2018) proposes a novel decompose-ensemble prediction process
that combines ensemble empirical mode decomposition (EEMD) and
an artificial neural network (ANN) and shows the EEMD-based model
outperforms the empirical mode decomposition (EMD) model. Tang
et al. (2018a) develop a non-iterative learningparadigmwithout an iter-
ative training process to address the time-consumingnature and param-
eter sensitivity of the emerging decomposition ensemble models.
Abdollahi (2020) finds that a hybrid model consisting of complete
ensemble empirical mode decomposition, a support vector machine,
particle swarm optimization, and Markov-switching generalized auto-
regressive conditional heteroskedasticity outperforms other models in
forecasting crude oil prices.

A new approach may be superior for a specific time interval but later
shown to be inferior for other time intervals. It is therefore important to
consider many time intervals that incorporate various economic condi-
tions and different volatility and trend levels in commodities and capital
markets in evaluating various approaches. Barunik andMalinska (2016)
shows that the Nelson-Siegel model, coupled with a focused time-delay
neural network (FTDNN), outperforms several commonly used time-
series approaches in modeling and predicting the term structure of
crude oil futures. Their model predicts maturities curves that are first fit
using a cubic spline interpolation followed by fitting Nelson-Siegel
(Nelson andSiegel, 1987) curves to reduce the dimension ofmultivariate
time series to be forecast. This study is the first study to employ neural
networks in the forecasting of the termstructure, forecasting crudeoil fu-
tures priceswith24differentmaturities and1, 3, 6, and12months ahead.
Thus, the forecasting approach is more thoroughly tested for different
time intervals than most previous models, which only focus on forecast-
ing one series.

In this paper, we improve the general approach of Barunik and
Malinska (2016) in two ways. We propose replacing the three Nelson-
Siegel curves, designed for forecasting bond yields, with a more flexible
set of basis functions, which consists of B-splines. We propose a neural
network convergence criterion for the resulting scalar time series of co-
efficients, which applies to each series individually. We demonstrate
that the convergence based FTDNN forecasts the term structure more
accurately than the fixed epoch FTDNN (Barunik and Malinska, 2016)
in all periods for 1, 3, 6, and 12 months ahead. Furthermore, replacing
the Nelson-Singel curves with B-spline leads to 1 and 3 months ahead
of predictions compared to convergence based forecasts, which are
themselves superior to the original approach of Barunik and Malinska
(2016). We base our conclusions on applying both methods to many
time intervals reflecting various economic and market conditions. We
explore situations under which our modifications lead to superior fore-
casts over longer time horizons.

This paper thus contributes to the methodology for crude oil fu-
tures prediction based on neural networks. Studies in this field typ-
ically fall into two categories. They either compare the utilities of
several different neural networks with unexplored general utility
or compare a single neural network to basic time series models to
demonstrate utility. This paper studies a neural network with
established superiority over many other models and proposes effec-
tive improvements. In this way, it sheds light on one potential direc-
tion for moving the field forward by advancing the best approach
among successful neural networks rather than adding to the already
established viable models.

The remainder of the paper is organized as follows. In Section 2, we
describe the data we use and previous predictionmethods to which our
approach is compared. After explaining the methods of comparing the
various methods in Section 3.1, we present the details of our approach
in Sections 3.2 and 3.3. Our findings are described and analyzed in
Section 4, and summarized in Section 5.



Fig. 1. A 3D plot of fitted daily oil futures curves from January 2 to December 31, 2015.

Table 1
Benchmark times-series prediction methods used for comparison with neural networks.

Method Description

Random Walk For each m = 1,2,3, the predicted value of βm(n+1) is equal to
βmn.

Random Walk
with Drift

For each m = 1,2,3 the predicted value of βm(n+1) is equal to

βmn þ bδm , where δm is the drift parameter δm in the regression
βmk = βm(k−1) + δm + εmk, k = 1, 2, …, n.

AR(1) For each m = 1,2,3, the predicted value of βm(n+1) is equal tobφm βmn−bμm

� �þ bμm , where bφm and bμm are MLEs in the
autoregressions, βmk − μm = φm(βm(k−1) − μm) + εmk,
k = 1, 2, …, n.

AR(3) This method is analogous to the AR(1) method, but uses
autoregressive models of order 3: βmk − μm = ∑l=1

3 φml(βm(k−l)

− μm) + εmk, k = 1, 2,…, n.
VAR(1) This method predicts all components of the vector βn =
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2. Data and previous methodology

Before discussing the specifics of our neural network approach, it is
important to describe the structure of the data we use, and the general
framework of a functional data analysis (FDA) applied to model crude
oil futures curves.

The original data set consists of continuous contracts of West Texas
Intermediate (WTI) crude oil futures,1 traded at the New York Mercan-
tile Exchange (NYMEX), part of the ChicagoMercantile Exchange (CME)
Group. The Quandl CHRIS continuous contracts data are at a daily fre-
quency. For our purpose, we extract the last observations of each
month in the data set. At any point, we only take the nearest 36 con-
tracts (roughly up to 36 months to expiration). The data are from Janu-
ary 1990 to September 2019. The data start in 1990 because that is
when the contract expiration expanded to 6 years, and thus, one can ob-
serve consecutive 24 months contracts. A sample of price curves over
one year is shown in Fig. 1.

To be consistent with Barunik and Malinska (2016), we forecast
crude oil prices 30, 60, 90, …, 720 days at monthly frequency. Thus at
each month n, we have a curve Xn observed at maturities τj, measured
in days. Consequently, the data have the form

Xn τ j
� �

; 1≤n≤357; τ j ¼ 30;60;90;…;720; ð2:1Þ

where n is the end ofmonth date and τj is the time tomaturity. Data sets
with such structure have been studied in Functional Data Analysis
(FDA). Kearney and Shang (2020) proposes a functional time series
based method to model and forecast oil futures. The out-of-sample ex-
ercise provides strong support for the adoption of this approach, be-
cause of the superior set of models in all considered instances. Rather
than points or vectors, statistical analysis objects are curves, or func-
tions, as shown in Fig. 1. Curves evolve in time as whole observation
units. Their levels and shapes evolve in a complexway. To reduce the di-
mension of the curves, a common approach is to approximate them as
Xn(τ) ≈ ∑M

m=1βmnvm(τ), with a relatively small M and suitable func-
tions vm. In a statistical analysis that follows, one works with a low di-
mensional vectors βn = [β1n,…,βMn]Τ.2

The work of Barunik andMalinska (2016) falls into this general par-
adigm. For each month n, the curve Xn is fitted using the Nelson-Siegel
model developed by Nelson and Siegel (1987). The Nelson-Siegel has
been empirically shown to be effective for the modeling term structure
of interest rates. In our context, the Nelson-Siegel model has the follow-
ing form:

Xn τð Þ ¼ β0n þ β1n
1−e−λτ

λτ

� �
þ β2n

1−e−λτ

λτ
−e−λτ

� �
þ εn τð Þ,

τ∈ 30, 60, 90, . . . , 720f g:
ð2:2Þ

It thus corresponds to the expansion introduced above withM = 3
and the basis curves vm = vm, λ equal to the three Nelson-Siegel factors
(v1(τ) = 1). The value of λ and the coefficients β0m, β1m, β2m are esti-
mated by a three-stage procedure described in Diebold and Li (2006).

The three-stage process obtains three scalar time series, {β0n}, {β1n},

and {β2n} or, equivalently, a multivariate time series β0n,β1n,β2n½ �Τ
n o

,

all with the time index n. Various prediction methods can be applied
to these series. The methods we study are summarized in Table 1. It de-
scribes how the one-step ahead predictions are obtained, that is, how to
compute predictions of coefficients atmonth n+1 from those atmonth
n and earlier months. Analogous, well-known, formulas exist for h-step
ahead prediction. They can be found in many time series textbooks, for
example Brockwell and Davis (2003).
1 Available at https://www.quandl.com/data/CHRIS/CME_CL1-Crude-Oil-Futures-
Continuous-Contract-1-CL1-Front-Month

2 For a concise and accessible introduction to thefield of FDA see Ramsay and Silverman
(2005), and Kokoszka and Reimherr (2017).
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Barunik and Malinska (2016) propose using to use the Focused
Time-Delay Neural Network (FTDNN) for forecasting of the coefficients
of future term structure curves. FTDNN is a form of artificial neural net-
works (ANN). SeeBarunik and Malinska (2016) for a simple description
of FTDNN. Following Barunik and Malinska (2016), we use one layer to
more closely match the structure of the other models used for
comparison.
3. Proposed methodology

3.1. Method of comparison

To compare forecasting approaches, we proceed as follows. For a
sample period of Ytotal years, we select an initial period of Yinitial years,
(12Yinitial months). We first predict the term curve in month
12Yinitial + 1. Then we use the curves at months up to the month
12Yinitial+ 1 to predict the curve atmonth 12Yinitial+ 2.We can proceed
in this manner until we predict the term curve at month 12Ytotal. For
each maturity τj, we obtain 12(Ytotal − Yinitial) prediction errors. This
allows us to compute the MAE (Mean Absolute Error) for one-month-
ahead of predictions. We proceed analogously for 3, 6, and 12-month-
ahead predictions. In our numerical evaluations, we set Yinitial = 4,
i.e., the first training data to be 48 observations.
[β0n,β1n,β2n]Τ based on vector autoregressionβk−μ ¼ Φ βk−1−μð Þ þ εk , k = 1, 2, …, n. The 3 × 3 matrix Φ
is estimated by maximum likelihood, and all components ofβn+1 are predicted simultaneously by bΦ βn−bμ� �þ bμ.

https://www.quandl.com/data/CHRIS/CME_CL1-Crude-Oil-Futures-Continuous-Contract-1-CL1-Front-Month
https://www.quandl.com/data/CHRIS/CME_CL1-Crude-Oil-Futures-Continuous-Contract-1-CL1-Front-Month


Fig. 2. Basis consisting of four B-splines of order four on the interval [0,24]. The first
function is a parabola on (0,12) and is equal to zero on (12,24). For the last function,
this is reversed.
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Due to the inherent variability of crude oil prices, models that effec-
tively identify relevant trends and patterns in the data may still be sub-
ject to some random variation. Therefore, two models with similar
abilities to identify trends perform relative to each other randomly. Fur-
thermore, a model that more effectively identifies trends in the data
may be outperformed on a fewmeasurements by anothermodel purely
due to random variation. Therefore, we further evaluate our model's
performance using the model confidence set (MCS) algorithm devel-
oped by Hansen et al. (2011). The MCS selects the best model set from
all themodel candidates considered. It repeats the procedure of: 1) test-
ing the null hypothesis that all the models have the same forecast er-
rors; 2) eliminating the model with the highest MAE until the null
hypothesis can not be rejected.

3.2. Improving the FTDNN by epoch selection

In this section, we propose two improvements to the FTDNN ap-
proach based on the Nelson-Siegel model (2.2). We do not change the
functional model, nor its estimation, but change how the neural
network runs.

Barunik and Malinska (2016) uses an FTDNNwith fixed-epochs de-
sign with about 500 epochs and a batch size of 20. In their estimation,
each coefficient is predicted with the same number of model-fitting it-
erations. This is disadvantageous from a computational perspective be-
cause coefficients converge at different rates depending on the
coefficient and the nature of the data.

In general, to fit models, iteratively requires an inherent balancing
act.While an underfittedmodel does not adequately interpret the train-
ingdata, an overfittedmodel can begin to take on characteristics specific
to the training data that do not appear in other data examples, such as
particular manifestations of mostly random error. Models fitted with a
fixed number of iterations can be either overfitted or underfitted de-
pending on the size or volatility of the training data. Convergence-
based models can also be overfitted or underfitted depending on the
choice of convergence criteria. Assuming reasonable similarities in the
data, however, the degree of fitness for convergence-based models is
largely consistent. In otherwords, convergence criteria that are assessed
to be reasonable for one training data set will likely be reasonable
among all comparable training data sets. This standardization also mit-
igates errors introducedby judgment variation among researchers. It re-
duces total computation requirements, as models using fixed iterations
must be tested and adjusted each new time the model is used.

We modify the Barunik and Malinska (2016) approach by calculat-
ing the loss at each iteration from the training data set. After sufficient
experimentation, we determined that it is nearly optimal to stop the
neural network iteration when the loss function drops below a thresh-
old δ = 0.00001. The batch size is set to be the number of months in a
given data.

Consider a sequence of coefficientsβmn, where themonth indexn re-
fers months, and m = 0,1,2. These are the series of coefficients esti-
mated by the three-stage procedure described in Section 2. Suppose
the initial time period consists of 36 months and we are interested in
predictions h months ahead. To train the neural network, we use the
values {βmn,1 ≤ n ≤ 36− h} as inputs, and the values {βmn,h+1 ≤ n ≤ 36}
as outputs. At each epoch e, the neural network constructs outputs
{βmn

⋆ (e), h + 1 ≤ n ≤ 36}. The quadratic loss function is computed as:

L eð Þ ¼ 1
36−h

∑
36

n¼hþ1
β⋆
mn eð Þ−βmn

� �2
:

Iteration stops if L(e) − L(e + 1) < δ.

3.3. The B-spline method

Barunik and Malinska (2016) first approximate the data for each
month with cubic splines (an ‘interpolation’ step) and then fit the
4

Nelson-Siegel model, as explained in Section 2. We propose to fit the
data with a small number of B-spline functions in one step without
using the Nelson-Siegel model. Prautzsch et al. (2002) shows that B-
splines can serve as basis functions for all other spline functions. Thus
any fitted spline can be constructed from B-splines, and therefore
using B-splines is as versatile an approach as possible in terms of fitted
splines. The potential benefits of our approach are twofold: 1) by using
one rather than two smoothing steps, our approach retains more the
original structure of the data; 2) the B-spline basis is fairly universal,
while the Nelson-Siegel model was explicitly developed for yield
curves.

A B-spline basis is constructed by dividing the data interval into sub-
intervals. In our case, this is the interval ofmaturities, that is [30,720], or
1 to 24months. The points separating the subintervals are called breaks.
Over each subinterval, the spline is a polynomial. The highest power
occurring in this polynomial is called its degree. All polynomials on a
B-spline basis have the same degree. The order of a B-spline basis is its
degree plus one. At each breakpoint, neighboring polynomials are
constrained to have a certain number ofmatching derivatives. Thenum-
ber of basis functions in a B-spline basis must satisfy the condition: the
number of basis functions = order + number of interior breaks. Fig. 2
shows a B-spline basis consisting of four functions. There is one interior
breakpoint, and each function coincides with a polynomial of degree 2
(a parabola) on the two disjoint intervals (0,12) and (12,24). At the
breakpoint, the first derivatives coincide. Functions like those shown
in Fig. 2 replace the three Nelson-Siegel factors in our approach.

Utilizing the “elbow method” from nonparametric statistics, we se-
lectfive spline basis functions for all the periods except for the relatively
stable period 2012–2018, four functions are used. This process is illus-
trated in Fig. 3. We compute the sum of squared errors (SSE) for each
month for a fit resulting from using a specific number of basis functions,
starting with two functions. The SSE decreases rapidly for the crude oil
futures curves, in a very similar manner for all months. The “elbow
method” suggests using the number of bases such that beyond which
the SSEs form an almost flat pattern. An example of resulting fits is
shown in Fig. 4.

Themodel then proceeds exactly as in Section 2, except that Eq. (2.2)
is replaced by

Xn τð Þ ¼
XK
k¼1

βmnBm τð Þ þ εn τð Þ; τ∈ 30;60;90;…;720f g:

where the B1, B2, …, BK are the functions shown in Fig. 2 for K = 4. In
contrast to the Nelson-Siegel model, there is no need to find the param-
eter λ, since the B-spline functions do not depend on any parameters.



Fig. 3. The SSEs for after fitting B-spline bases with different numbers of functions for
crude oil futures prices on January 2, 2015. In this case, four bases are used tofit themodel.

Fig. 4. B-spline curves with four coefficients fitted to crude oil futures prices between
January 2 and January 8, 2015.
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Once the coefficients βmn are estimated, any of the prediction methods
discussed in Section 2, can be used, not just the neural network
approach.

Chantziara and Skiadopoulos (2008) employs Principal Components
Analysis (PCA) to forecast the daily term structure of petroleum futures.
The results show that the retained principal components have
Table 2
MAE (Mean Absolute Error) andModel Confidence Set (MCS) for the interval between Septem
neural network relative to (FTDNN) to theAR(1)model for the sub-period between September 2
for each prediction length and maturity are bold. The model with the best performance for eac

MAE Time to maturity

30 60 90 120 150 180 210 240 270 300 330 36

FTDNN (fix)
1 M 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0
3 M 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9
6 M 0.73 0.73 0.74 0.74 0.75 0.76 0.76 0.76 0.77 0.77 0.77 0.7
12 M 0.42 0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.4

AR (1)
1 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
3 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
6 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
12 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

FTDNN (conv)
1 M 1.02 1.01 1.00 0.99 0.98 0.97 0.96 0.96 0.96 0.96 0.96 0.9
3 M 0.89 0.89 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.9
6 M 0.57 0.58 0.58 0.59 0.60 0.60 0.60 0.61 0.61 0.61 0.61 0.6
12 M 0.40 0.40 0.40 0.40 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.3
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approximately similar forecasting powers to VARmodels. The proposed
B-spline basis functions use pre-determined basis functions to fit any
function; as long as the number of B-spline basis functions is large
enough, it can fit any function reasonably well. In contrast, PCA basis
functions are purely data-driven. They aim to find a direction that max-
imizes the variance of the original data. PCA is designed to capture the
main mode of variation in the data, and PCA basis functions are not de-
signed to predict future functions (i.e., Kargin and Onatski, 2008). PCA
basis functions are not designed to minimize the finite-sample predic-
tion error, such as mean absolute error. Therefore, the proposed B-
spline basis approach has advantages over PCA for our purpose.

4. Analysis of results

In this section,we compare the results obtained fromvarious predic-
tion methods on several different time intervals.

4.1. Convergence based FTDNN is superior to fixed FTDNN

We first compare the Barunik andMalinska (2016) fixed epoch neu-
ral network with the convergence criteria based FTDNN model. Al-
though the returns on accuracy diminish significantly past 800 epochs,
we use 1000 epochs on the fixed-epoch model. We do this to ensure
that the fixed-epochs network typically runs longer than the conver-
gence based network, so the convergence based implementation's su-
periority cannot be attributed to longer computation time.

To systematically investigate the methods, we analyze all seven-
year-long intervals starting in September of each year from 1993 to
2012. We illustrate our findings by reporting the results for two inter-
vals starting in September 2005 and 2012. Tables 2 and 3 show the rel-
evant results for the periods starting in September 2005 and September
2012. All the results in Table 2 and 3 show MAE relative to the bench-
mark model AR(1). Table 2 shows that the convergence based FTDNN
model outperforms the fixed epoch model on all 96 forecasts. For
these seven years, FTDNN (conv) is the best model for 90 out of 96
cases, whereas AR(1) shows a more accelerated performance in six
cases. The FTDNN (conv) model is always in the model confidence set.
The results in Table 3 are even clearer. For the 2012 to 2019 period,
the FTDNN (conv) model presents the most accurate prediction
among the three candidatemodels in all 96 cases. Despite generally run-
ning for a shorter amount of time, the convergence implementation is
consistently more accurate. Typically, the first coefficient runs for
around 400 epochs; the second for 600, and the third for up to 1200.
This pattern suggests that the fixed epoch model's inferiority could be
ber 2005 and August 2012. This table reports theMAE andMCS for the focused time-delay
005 andAugust 2012.Models selected as a ‘best’model by themodel confidence set (MCS)
h length of prediction and maturity is highlighted.

0 390 420 450 480 510 540 570 600 630 660 690 720

1 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
6 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94
7 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
3 0.43 0.43 0.42 0.42 0.42 0.41 0.41 0.41 0.40 0.40 0.40 0.39

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7 0.97 0.98 0.98 0.98 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00
0 0.90 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.89 0.88 0.88 0.88
2 0.62 0.62 0.62 0.62 0.62 0.62 0.61 0.61 0.61 0.61 0.61 0.61
9 0.39 0.38 0.38 0.38 0.37 0.37 0.37 0.37 0.36 0.36 0.36 0.35



Table 3
MAE (Mean Absolute Error) andModel Confidence Set (MCS) for the interval between September 2012 and August 2019. This table reports theMAE andMCS for the focused time-delay
neural network relative to (FTDNN) to theAR(1)model for the sub-period between September 2012 andAugust 2019.Models selected as a ‘best’model by themodel confidence set (MCS)
for each prediction length and maturity are bold. The model with the best performance for each length of prediction and maturity is highlighted.

MAE Time to maturity

30 60 90 120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570 600 630 660 690 720

FTDNN (fix)
1 M 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01
3 M 0.95 0.97 0.98 0.99 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94
6 M 0.73 0.73 0.73 0.73 0.73 0.73 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.73 0.73 0.73 0.73
12 M 0.52 0.52 0.53 0.54 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.54 0.54 0.54 0.54 0.53 0.53 0.53 0.53 0.52 0.52 0.52 0.51

AR(1)
1 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
6 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
12 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

FTDNN (conv)
1 M 0.95 0.96 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.93 0.92 0.92 0.92 0.92
3 M 0.93 0.94 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95 0.95 0.95 0.94 0.94 0.93 0.93 0.92 0.92 0.92 0.91 0.91 0.91
6 M 0.70 0.69 0.69 0.69 0.69 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.67 0.67 0.67 0.67 0.66 0.66 0.66 0.66
12 M 0.44 0.45 0.46 0.47 0.48 0.49 0.49 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.49

S. Butler, P. Kokoszka, H. Miao et al. Energy Economics 94 (2021) 105080
due to insufficient convergence of the third coefficient and/or
overfitting of the first two coefficients.

4.2. FTDNN with spline outperformance FTDNN with Nelson-Siegel

As expected, the proposed spline-based algorithm outperforms the
Nelson-Siegel model. Representative results are reported in Tables 4 to
6. We used the following approach to generate the results in Tables 4
to 6. After running all candidate models, we select the best non-
FTDNN method as a benchmark for comparing the convergence based
FTDNN (n-s) method of Barunik and Malinska (2016) with to our
FTDNN (spline) approach. The best traditional method is determined
as the onewith themost predictions contained in theModel Confidence
Set. It is either AR(1) (n-s) or VAR(1) (n-s), meaning that either the
components-wise AR(1) modeling or vector autoregression is applied
to the Nelson-Siegel coefficients. Interestingly, in all cases, the AR
(1) model outperforms the VAR(1) specification and is thus used as
the benchmark model.
Table 4
MAE (Mean Absolute Error) and Model Confidence Set (MCS) for the interval between Septem
neural network compared to the AR(1) model for dates between September 2005 and August 2
tion length and maturity are bold. The model with the best performance for each length of pre

MAE Time to maturity

30 60 90 120 150 180 210 240 270 300 330 36

FTDNN (conv, n-s)
1 M 1.00 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.0
3 M 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9
6 M 0.73 0.73 0.74 0.74 0.75 0.76 0.76 0.76 0.77 0.77 0.77 0.7
12 M 0.42 0.42 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.4

AR(1) (n-s)
1 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
3 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
6 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
12 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0

FTDNN (conv, spline)
1 M 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.9
3 M 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.91 0.91 0.9
6 M 0.62 0.63 0.63 0.64 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.6
12 M 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.48 0.47 0.46 0.4

AR(1) (spline)
1 M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0
3 M 0.95 0.95 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.96 0.96 0.9
6 M 1.17 1.18 1.18 1.19 1.19 1.19 1.19 1.18 1.17 1.16 1.15 1.1
12 M 1.22 1.21 1.21 1.22 1.24 1.24 1.25 1.25 1.24 1.23 1.22 1.2

6

To enhance the information in our tables, we also included the spline
versions of these methods, that is., AR(1) (spline). These are generally
not competitive. It appears that using more coefficients, generally four
vs. three, leads to less predictive accuracy when applying traditional
time series predictors. Thus, our discussion focuses on comparing the
FTDNN (n-s) method, improved by applying convergence criteria, to
the FTDNN (spline) method with the epoch convergence criteria. In
this way, we isolate the impacts of convergence criteria and the B-
spline approach.

The results in Tables 4 to 6 show that the spline-based AR(1) model
performs the best for 1-month-ahead forecast for 13 to 21 months for
the sub-sample 2012 to 2019 in Table 5. For all other forecasting
cases, the FTDNN basedmodel outperforms the best traditional models.

In general, the results in the tables indicate that the FTDNN (spline)
consistently outperforms FTDNN (n-s) for 1- and 3-month-ahead pre-
dictions. Furthermore, the B-spline FTDNN's error is lower by a similar
margin across many different subsets of data, implying that the
B-splineFTDNNis fundamentally andsystematicallybetter atprediction.
ber 2005 and August 2012. This table reports the relative MAE for the focused time-delay
012. Models selected as a ‘best’model by the model confidence set (MCS) for each predic-
diction and maturity is highlighted.

0 390 420 450 480 510 540 570 600 630 660 690 720

1 1.01 1.01 1.01 1.01 1.02 1.02 1.02 1.02 1.02 1.02 1.02 1.02
6 0.96 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.94
7 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78 0.78
3 0.43 0.43 0.42 0.42 0.42 0.41 0.41 0.41 0.40 0.40 0.40 0.39

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

8 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99
1 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
5 0.65 0.65 0.64 0.63 0.63 0.62 0.62 0.61 0.60 0.58 0.57 0.55
6 0.45 0.44 0.43 0.43 0.42 0.42 0.42 0.42 0.41 0.40 0.40 0.39

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99
6 0.96 0.96 0.97 0.97 0.97 0.96 0.96 0.95 0.94 0.94 0.93 0.92
4 1.14 1.13 1.12 1.12 1.11 1.07 0.99 0.89 0.78 0.65 0.56 0.55
1 1.21 1.20 1.20 1.19 1.18 1.14 1.06 0.94 0.79 0.62 0.46 0.39
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For 6-month-ahead predictions, the FTDNN (spline) model shows
better performance for all three sub-sample periods except for the 1-
month maturity for the period 2017 to 2014 and 1-month to 14-
month maturity cases for the period 2012 to 2019. That is of the 72
cases, the FTDNN (spline) model outperforms in 57 cases. For the
12-month forward prediction, the FTDNN (spline) and FTDNN (n-s)
models have roughly the same accuracy. The FTDNN (n-s) model out-
performs in all 24 cases (1-month to 2-year maturities) from 2005 to
2011. For the interval 2007 to 2014, the FTDNN (n-s) is better for 1- to
15-month maturities, and the FTDNN (spline) performs better for 16
to 24-month maturities. For the most recent 7-year interval, 2012 to
2019, the FTDNN (spline) model consistently outperforms the FTDNN
(n-s) model for all maturities.

In summary, the FTDNN (spline) model shows more accuracy in
forecasting crude oil time structure curves over the FTDNN (n-s)model.

There is some inconsistency regarding the relative performance of
these models across different time frames. However, an extensive re-
view of the data and its relationship to the models' performances yield
some insight. To understand the discussion better, it is important to re-
flect on the structure of the observation Xn(τj), where n denotes month,
and τj is maturity. The data can be volatile in many ways. If we fix τj,
then there is volatility across n, which is considered temporal volatility.
Furthermore, for different months n, the term curves could exhibit dif-
ferent volatility levels as functions of the maturities τj. In some months,
the futures prices might change more with maturity than in other
months. It is useful to keep these considerations in mind as we proceed
with our discussion.

Figs. 5 and 6 show the plots of crude oil prices curves with dates be-
tween August 2007 and September 2014 purchased for 12 months out.
In Fig. 5, the lines connect each price with the price 6 months later; in
Fig. 6, the lines connect each price with the price 12 months later. Sev-
eral details in Figs. 5 and 6 are noteworthy. First, the 12month apart di-
visions seem to skip over several of the more dramatic shocks to the
crude oil prices, particularly between 2007 and 2009. Even outside of
these, there appears to be a less volatile relationship between prices
12 months apart than between prices 6 months apart. This is possibly
due to some seasonality in the data or other general underlying struc-
ture that manifests once the prices have stabilized. We can measure
the volatility of the changes in price by taking the slope of each of
these connecting lines and taking the standard deviation of these slopes,
effectively measuring the variability of the changes over a certain num-
ber of months. The volatility is higher for the 6-month-ahead predic-
tions both on the whole subset and on subsets of the data divided into
2-year intervals. An opposite phenomenon is observed in prices be-
tween September 2012 and August 2019 shown in Figs. 7 and 8. Partic-
ularly due to the sharp drop between 2014 and 2015, we see a more
dramatic average change between prices 12 months apart than
Fig. 5. Crude oil prices between September 2007 and A
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between prices 6 months apart. Even outside of this drastic change,
we see a greater average change between points 12 months apart.
This may be due to the apparent positive drift of the data between
2016 and 2019. Across this subset, the slopes of the segments in Fig. 8
show a substantially higher volatility than the slopes of the segments
in Fig. 7.

4.3. Further discussions

When we look back to the relative performance of the FTDNN
(spline) and the FTDNN (n-s) models, it seems that the temporal vola-
tility of the change in prices over intervals of 6 months and 12 months
can reveal some reason for the difference in performance. The FTDNN
(spline) model performs better when the prediction lead interval has
higher volatility, whereas the FTDNN (n-s) model has superior
performance if the prediction lead interval has lower volatility. Exten-
sive testing of other chaotic elements of time series, such as the degree
of non-stationarity or the frequency and magnitude of shocks, yields
some information with respect to the relative performances of each
model, but only this rule is consistent among all subsets of data we con-
sidered. This is intuitive and consistent with the features of the models.
The Nelson-Siegel model was specifically designed to model interest
rate structures. The interest rate structures are much less volatile than
the term structure of crude oil futures.When the term structure is stable
and less volatile, the FTDNN (n-s) model should perform better.

The consistently superior performance of the B-spline FTDNN for 1-
and 3-month-ahead predictions is seemingly inconsistent with this ob-
servation, as one would expect 1- and 3-month predictions to offer
smaller absolute changes than 6- and 12-month predictions. However,
further investigation reveals some intuitive consistency behind this.
Several explanations for the apparent relationship between themodels'
performances and the data's volatility present themselves. While these
explanations can most accurately be described as informed speculation
due to the ‘black box’ nature of neural networks, they are nonetheless
compelling and may motivate further exploration. The most plausible
explanation is that the degree of smoothing resulting from the
Nelson-Siegel FTDNN, which results in high errors on the maturities
curves, limits its ability to model volatile situations. Degrees of smooth-
ing can be intuitively linked to the generality with which an underlying
relationship is explored. In more stable situations where the crude oil
prices may have some underlying structure, this could be an asset to
the Nelson-Siegel FTDNN. In more volatile situations where there is
less underlying structure and more chaos, a model that is more respon-
sive to short-term trends and sharp changes, such as our B-spline
model, could be preferable. This explanation is compelling because it
also explains the superior performance of the B-spline FTDNN for 1-
and 3-month-ahead predictions, as changes in price over short periods
ugust 2014 connected to the price 6 months later.



Fig. 6. Crude oil prices between September 2007 and August 2014 connected to the price 12 months later.
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of time are less likely to be due to a long-term underlying evolution and
more likely to result from short term patterns. By this logic, it is sensible
that the B-spline FTDNN's lesser degree of smoothing and a greater
number of coefficients would give it an advantage in predicting short
term changes in the price.

Another possible explanation is that the convergence criteria, which
were optimized over all lengths of predictions, should have been tai-
lored for predictions each number of months ahead. Since the B-spline
FTDNN consistently converges more quickly than the Nelson-Siegel
FTDNN, the computation time required for the Nelson-Siegel FTDNN
to properlyfitmore volatile datamay be higher than suggested by initial
tests. Also, more coefficients, each of which are concentrated only on a
range ofmaturities,mean that the FTDNN (spline) approachmore effec-
tively customizes the convergence criteria for specific maturities. For
example, the first B-spline function in Fig. 2 is not zero only for matu-
rities between 1 and 12months and is the largest for 1- to 5-monthma-
turities. The second function emphasizes maturities between 5 and
12 months. By contrast, each Nelson-Siegel curve spans the whole
range of maturities. We note that in modeling yields on corporate
bonds, alternatives to the classical Nelson-Siegel model exist, for exam-
ple Christensen et al. (2011) or Yallup (2012), but they all involve func-
tions for which the domain is the whole range of maturities rather than
localized ranges.

In summary, it is justified to state that the B-spline FTDNN is the su-
perior approach for forecasting crude oil futures prices 1–3 months
ahead. A heuristic assessment should be made for predictions further
ahead to determine how volatile the prediction lead interval is expected
to be. If oil prices are generally expected to be stable or continue to
Fig. 7. Crude oil prices between September 2012 and A
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follow some observed consistent trend, then the convergence based
Nelson-Siegel FTDNNshould beused. If shocks or destabilizing elements
are possible, or if prices are already in a volatile state, then the B-spline
FTDNN should be used.

5. Conclusions

This paper proposes two directions for improving the forecasting ac-
curacy of themodel developed by Barunik andMalinska (2016) to fore-
cast the term structure of crude oil futures. First, the paper suggests
evaluating the convergence of each estimated coefficient individually
to determine the amount of time (number of time periods) instead of
the fixed term approach used in Barunik andMalinska (2016).Wedem-
onstrate that the convergence-based modification makes consistently
more accurate predictions with similar or shorter computation time.

Second, we propose using basis splines (B-splines) instead of the
three Nelson-Siegel functions to fit the term structure curves. The em-
pirical results show that the B-spline curves are consistently better for
1- and 3-month-ahead predictions. We also explore circumstances
under which the B-spline may be better for longer-term predictions.

In general, both FTDNN approaches are superior to common time se-
riesmethods. For an FTDNNusing the Nelson-Siegelmodel, running the
model until our convergence criteria have beenmet is superior to fixing
the number of terms in relation to both computation time and accuracy.
Using a B-spline instead of the Nelson-Siegel model to fit maturities
curves produces more accurate estimates for 1- and 3-month-ahead
predictions. For 6- and 12-month-ahead predictions, the B-spline
FTDNN handles volatility better. In contrast, the Nelson-Siegel FTDNN
ugust 2019 connected to the price 6 months later.



Fig. 8. Crude oil prices between September 2012 and August 2019 connected to the price 12 months later.
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handles stability better, meaning that the choice of which model to use
should be based on informed speculation regarding future crude price
volatility.
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