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ABSTRACT

The breach of users’ location privacy can be catastrophic. To provide
users with privacy protections, numerous location privacy methods
have been developed in the last two decades. While several studies
surveyed existing location privacy methods, the lack of compara-
tive, empirical evaluations imposes challenges for adopting location
privacy by applications and researchers who may not be privacy
experts. This study fills the gap by conducting a comparative eval-
uation among a range of location privacy methods with real-world
datasets. To evaluate utility, we consider different types of measures,
e.g., distortion and mobility metrics; to evaluate privacy protection,
we design two empirical privacy risk measures via inference and
re-identification attacks. Furthermore, we study the computational
overheads inflicted by location privacy in CPU time and memory
requirement. The results are thoroughly examined in our work
and show that it is possible to strike a balance between utility and
privacy when sharing location data with untrusted servers.
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1 INTRODUCTION

Location data is increasingly used for services and social good.
For instance, individuals’ location data is shared with servers to
obtain recommendations [13] and to participate in social distancing
monitoring [20]; location data has also been adopted in research
studies, e.g., in public policy [15] and mental health research [5, 19,
21]. However, location data is highly sensitive, the disclosure of
which may lead to grave consequences. As a result, users who have
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concerns about sharing real location data with untrusted servers
may opt out of the applications or research studies [23].

A plethora of location privacy methods have been developed
to hide a user’s real location from untrusted servers. A number of
excellent surveys, such as [12] and [17], provide a comprehensive
overview of those methods. Recently, the authors of [17] analyzed
existing location privacy methods in architecture (i.e., trusted third
party, non-trusted third party, peer-to-peer, and local) and use case
(i.e., online and offline). This study focuses on methods that can be
deployed with the local architecture for online use. Our rationale is
two-fold. On one hand, the local architecture ensures that location
privacy is enforced on the client device, i.e., not requiring commu-
nications with any other party (see Figure 1). It also provides users
with a great sense of control over private information (e.g., anal-
ogous to the local differential privacy paradigm recently adopted
by Google and Apple). On the other hand, the online use case for
location privacy allows applications to provide immediate services
and data analysis, such as recommendations and monitoring social
distancing. It also benefits applications by ensuring data availability
at the server side (e.g., in case of disruption).

There has been promising development in the adoption of local,
online location privacy. E.g., Android users can choose to share
approximate or precise locations with apps; our recent work [8]
open-sourced a range of local, online location privacy methods
in Java. However, it remains a challenge to understand the impact
of location privacy on data usefulness. Count-based metrics (e.g.,
distribution estimation and range queries) that rely on aggregating
data from a set of users are examples of well-studied utility metrics
for location privacy. It is yet unknown how location privacy may
affect applications that rely on features extracted from individuals’
longitudinal data, e.g., mental health studies that build on a partic-
ipant’s mobility patterns [5, 19, 21]. Evaluating different types of
utility metrics with real-world datasets is thus imperative to help
app developers and researchers assess location privacy methods
and adopt those that best suit their needs.

Furthermore, it has not been studied whether location privacy
methods effectively mitigate practical privacy risks. In fact, existing
methods operate under various privacy models that are not directly
comparable. E.g., geo-indistinguishability [3] is based on differen-
tial privacy [7], while Spatial Cloaking [11] aims to hide a user’s
home location. It is thus beneficial to identify common empirical
privacy risks (e.g., re-identification) and to evaluate location pri-
vacy methods against those risks. The results will help both users
and apps/researchers understand the practical protection offered by
location privacy methods, make informed decisions about adopting
location privacy, and pave the way to building trust between them.

In this paper, we empirically evaluate location privacy meth-
ods regarding utility and privacy, with two real-world trajectory
datasets. Our study covers a range of local online methods under
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Figure 1: The Local Architecture for Location Privacy.

multiple categories, i.e., generalization-based, perturbation-based,
and dummy-based. We investigate how parameters of those meth-
ods interact with utility and practical privacy protection. To mea-
sure utility, We consider a set of metrics, including distortion met-
rics and mobility metrics; to evaluate privacy protection, we design
two empirical privacy risk measures, i.e., via inference attack and
re-identification attack. Moreover, we measure the computational
overheads inflicted by location privacy methods in CPU time and
memory requirement, to examine their performance from a sys-
tematic perspective. Our evaluation is the first of its kind and the
results show that it is possible to achieve a balance between utility
and privacy, e.g., providing accurate or even truthful data at low
empirical privacy risk levels.

The rest of the paper is organized as follows: Section 2 defines the
utility metrics and privacy risk measures; Section 3 briefly reviews
the location privacy methods to evaluate; Section 4 describes the
evaluation methodology and discusses the results; Section 5 inter-
prets the outcome, distinguishes application needs, and discusses
practical considerations for adopting location privacy; Section 6
concludes the paper and states future research directions.

2 PRELIMINARIES

We focus on the local architecture of location privacy in the online
setting. Specifically: the method must operate locally on the client,
i.e,, not relying on other users or third-parties (see Figure 1); the
method must operate on-the-fly, i.e., reporting a sanitized location
upon receiving the real location, without knowing future locations.

2.1 Basic Definitions

We consider that the two-dimensional geospace D is discretized into
a set of disjoint grid cells, i.e., D = {¢;|i = 1,-- - , N}. We denote the
coordinates of ¢; as (latj, long;), which represents the center point
of the cell. A user’s location at time ¢ is approximated by the grid
cell he/she isin, i.e., [; € D. A trajectory of the user is a sequence of
locations observed on a particular day: Tr = {I1, I, - - - , Ipr}, where
M is the number of observations per day given a sampling rate,
e.g., every 15 minutes or every hour. Note that the amount of data
contributed by each user greatly varies in real datasets.

Given a consecutive subsequence of a trajectory Tr(t1,t2) =
{ly, ...It,} where 1 < t1,tp < M, we can identify N(t1,12) stop
places [5] where the user spends a duration of time. Formally, a
stop place is defined as a tuple Pl = (I, T), where, [ is the location, T
is the duration spent at [. The set of stop places during the interval
[t1, t2] can be denoted as (Pll, Ply, .. ,PlN(thm). For example, let
Tr(t, t1+4) = {(t1,¢1), (f1+1,¢1), (5142, ¢2), (1143, ¢3), (11 +4,c3) }.
3 stop places can be identified in [t1,#; + 4]: Pl; = (c1,2), Pl =
(c2,1), and Pl3 = {c3, 2).

A local, online location privacy method can be viewed as a func-
tion that only has access to the user’s current location and op-
tionally historical information, and outputs a sanitized location:
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LP(l;[, hist]) = I/, where I;,1] € D. This conceptual model boasts
simplicity and applies to most location privacy methods consid-
ered in our study. Adjustments will be made and discussed in the
next section, for dummy-based methods. We denote the sanitized
trajectory as Tr’ which is comprised of a sequence of sanitized
locations.

2.2 Utility Metrics

We introduce two classes of utility metrics: distortion metrics and
mobility metrics.

2.2.1 Distortion Metrics. Common distortion metrics for location
data include the Hamming distance and the Haversine distance.
The Hamming distance between two locations is defined as:
: — 77
Hamming(L,l") = {0 ifr=1 (1)
1 else

It is used to measure whether the sanitized location differs from the
input. As a user often contributes multiple locations, e.g., in one or
more trajectories, we can compute the average Hamming distance
among all input locations of the user. The Haversine distance
measures how far the sanitized location is to the input:

Haversine(l,1’) ®)

= 2r arcsin (\/sinz( ' - q0) + cos(¢)cos(¢p’)sin?( )

2
where r indicates earth radius in meters, and ¢ (¢’) and A (1’) are
the latitude and longitude of I (I) in radians. Similarly, we can
compute the average Haversine distance when a user contributes
more than one locations.

As mentioned in introduction, location data reported by a set of
users is often used for estimating distributions and answering range
queries. Specifically, at a given timestamp, the server may aggregate
data from all users and count users at each location ¢; or within
a 2-D query window rr. We denote the real number of users at
location ¢; as cnt;, and the number based on reported locations as
cntc, (and for query ry, cnty, and cht,, , respectively). MAE (mean
absolute error) measures the absolute difference between cnt and
cnt, averaged among all locations/range queries:

1 «
MAEf,eq = ﬁ Z |entc, — cnte, | (3)
cieD
1 N
MAErange = T Z |enty, — cnty, | (4)
|Q| rangey €Q

where Q represents the set of range queries to be answered.

2.2.2  Mobility Metrics. Our work is the first to consider the use-
fulness of location privacy in the context of behavioral studies. For
example, several studies extracted mobility features from partici-
pants’ GPS traces to understand their mental health states [5, 19].
We adopt the mobility metrics proposed in [5], which are defined
for a single user in a time period, e.g., [t1, t2]. The metrics are
computed based on the user’s stop places, which can be extracted
for the real trajectory and the sanitized trajectory. Note that stop
places identified using the sanitized Tr’ may differ the real stop
places. Seven mobility metrics are evaluated in our study: Tot Dist,
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Max Dist, Std Dev Displacement, Max Dis Home, Rad Gyration. #
Diff Places, and # Significant Places. The detailed definitions are
reported in Appendix A.1.

For a specific user and time interval [#1, 2], we measure the
absolute relative error between the metrics computed using the real
trajectory Tr and those computed using the sanitized trajectory Tr’.
It is also important to examine the impact of the window size, i.e.,
ty — t1 + 1, as a larger window may amplify the effect of distortion
introduced by location privacy.

2.3 Empirical Privacy Measures

Existing location privacy methods differ in the underlying privacy
models, which may not be directly comparable. For example, it is
difficult to compare the privacy protection provided by Laplace [3],
which is based on the differential privacy model, to that of Spa-
tial Cloaking [11], which aims to hide a user’s home location. To
conduct a comparative evaluation, we design two types of attacks
which quantify the empirical privacy risks in sharing location data.
For simplicity of notation, we consider that every user contributes
one trajectory (i.e., one day’s data) to the dataset, although the
following attacks can be extended to incorporate the user’s data
generated across multiple days.

Notation and assumptions. Let Tr; denote the trajectory of user
uj and Trj’. denote the sanitized trajectory by a location privacy
method. The sanitized dataset D’ contains the sanitized trajectories
from all users, i.e., D’ = J; Trj’.. Let S; = set(Tr;) be the set of
distinct locations in Tr; and S]’. = set(Trj’.) for Trj'., respectively. Let
urqr denote the target user of an attack. We assume an adversary
(e.g., the server or researcher) who has partial knowledge about the
target’s location history, e.g., some locations in S;4r. Practically,
the adversary may not know the exact time when the target visits
a location or the sequence of the visits. Its goal of the inference
attack is to predict the previously unknown location of the target
user, while the goal of the re-identification attack is to identify the
target’s trajectory in the sanitized dataset with only a small number
of known locations. In both attacks, the adversary has access to D’
and can perform set() on the sanitized trajectories.

2.3.1 Inference Attack. In this attack, the adversary knows all but
one locations in S;4r and tries to infer the unknown location by
querying the sanitized dataset D’. Specifically, the adversary cre-
ates a query q € {S|S C Star, |S| = |Star| — 1} and retrieves all
sanitized trajectories TrJ'.s such that the distinct location set is a su-
perset of the query, i.e., g C set(Trj’.). Then the adversary identifies
the most visited location(s) L by the retrieved trajectories that are
not in g. The attack with g is successful if L contains the unknown
location, i.e., Stqr \ ¢ € L. We consider a target user is successfully
attacked as long as one query q € {S|S C Star, |S| = |Star| — 1}
is successful. The inference attack captures whether the sanitized
dataset preserves correlations among locations visited in a trajec-
tory, i.e., between locations in ¢ and St \ ¢. Intuitively, users who
visit a small number of locations that are also visited by other users
are prone to this attack.
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2.3.2  Re-identification Attack. In this attack, the adversary knows
a small subset of locations in S;4 and tries to re-identify the trajec-
tory that belongs to 4, in the sanitized dataset D’ . Specifically,
the adversary creates a query qk € {S|S C Star,|S| = k} and re-
trieves all sanitized trajectories Trj’.s such that ¢* c set(TrJ'.). If
only one trajectory is retrieved and the trajectory belongs to uzqy,
we consider the attack with ¢¥ successful. If all g¥s are successful,
we can conclude that u;q, can be re-identified with knowing any
k locations. In our evaluation, we report the smallest k for each
user, which indicates the difficulty (i.e., the minimum knowledge
required) of re-identifying the user. The re-identification attack
captures the uniqueness of users in the sanitized dataset. Unlike the
inference attack, users who visit a small number of locations that
are also visited by other users are less likely to be re-identified.

Note that the distortion inflicted by location privacy on the
sanitized data has an effect on the success of both attacks, since they
require matching the sanitized trajectories to queries constructed
with real data. An exception is for non-randomized location privacy
methods, where the adversary can construct queries with sanitized
locations, i.e., by applying the non-randomized methods to the
query. We will explore the “improved” version of re-identification
in the experiment section. We also conduct both attacks on real
data, i.e., by querying the real dataset O = (J; Trj, to provide a
reference of risks without enhancing location privacy.

3 LOCATION PRIVACY METHODS

In this section, we briefly describe the location privacy methods
implemented and evaluated in this study. We group the methods
according to the categorization in [17].

3.1 Generalization-based Methods

Generalization entails reporting coarser information instead of
the exact location. Such methods often report location data with
reduced precision, resulting a trade-off between privacy and utility.

Rounding [11, 14]. Also known as truncation in [14], this method
snaps the real location coordinates, i.e., lat and long, to a fixed
square grid where the spacing s (in meters) is specified by the
user. Note that the grid used in the method may differ from the
discretized space D. Specifically, the rounded coordinates lat’ and
long’ can be computed using the following formulae [14]:

, lat , long
lat” = s144 . long’ =spopg | —
Slat Slong

©)

where s74; and sjopg are the spacing s translated into degrees of
latitude and longitude. They can be derived using standard approx-
imations, e.g., with WGS 84. The parameter s controls the level of
privacy: the larger s, the coarser the grid, and more input locations
will produce the same output, thus more private.

Spatial Cloaking [11]. Although “cloaking” often refers to hiding
one user among other users in the region, this method in [11] applies
to a single user’s data and protects a specific sensitive location,
e.g., home of the user. By deleting location data near the sensitive
location, this method hides the sensitive location inside a cloaked
INote that the re-identification risk is different from membership disclosure, as the

adversary (server or researcher) in our problem setting knows the target’s participation
in the data.
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region, which is centered at a randomly selected point. Illustrated
in Figure 2, three input variables are supplied to the method, i.e.,
the location to protect, the radius of the small circle r, and the
radius of the large circle R. The user’s location data, if fallen inside
the large circle, is deleted. Parameters r and R indicate the level of
privacy: the larger r and R, more uncertainty to locate the user’s
home and more data deleted. In our experiment, we fix the r value
while varying R, to study the effect of data deletion on utility and

privacy.
\ Random
/ point

%
C|rcle delete

Figure 2: Spatial cloaking [11]. A point is randomly selected within

Actual |

home\

r of the home location; a circle with radius R > r is formed, and
location data inside the circle will not be reported.

3.2 Perturbation-based Methods

Perturbation-based methods modify the location data, and most
methods add noise to the real location. There is also a trade-off
between privacy and utility; if the data is highly distorted, it would
protect privacy but offer little usefulness.

Noise [11]. Adapting from [11], a random 2-D Gaussian noise
can be drawn and added to the input’s latitude and longitude. The
direction of the noise vector is chosen uniformly at random from
[0,27) and the magnitude of the noise vector is drawn from a
Gaussian distribution N (0, var). A negative magnitude reverses the
direction of the vector. \/var is the standard deviation in meters
that can be specified by the user, e.g., 50 meters as in [11]. It can be
seen that higher var values would offer higher levels of privacy as
the output location is further away from the real location.

VHC [16]. The framework proposed in [16] constructs a context-
aware space partitioning structure and maps the partitions into
1-D space using the Hilbert space-filling curve, called Various-size-
grid Hilbert Curve (VHC).To sanitize a user’s location, the method
finds the partition that contains the location, adds a uniformly
distributed random noise drawn from [—o, o] to the partition’s
1-D value, and reports a randomly selected 2-D point in the 1-D
perturbed partition. The various-size grid is constructed recursively
as a quad-tree such that all partitions have homogeneous road
densities. In our evaluation, we construct the structure with road
network data retrieved from OpenStreetMap? and the recursive
partitioning stops at 500 nodes. The perturbation of 1-D partitions
introduces uncertainty. And the parameter ¢ indicates the level of
privacy: higher o, higher uncertainty and perturbation inflicted
in the output location. Note that space partitioning is done offline
and the structure can be shared with the client; the perturbation of
each location is performed online with computational complexity
O(log n) where n is the number of partitions.

Laplace [3]. The notion of geo-indistinguishability is closely re-
lated to differential privacy [7], which is the state-of-the-art privacy
paradigm for statistical databases. In [3] the authors proposed a

Zhttps://www.openstreetmap.org
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sampling based approach to report a perturbed location, where the
sampling distribution provides indistinguishability guarantees for
the real location. Specifically, given the real location x¢ and pri-
vacy parameter €, the following distribution for sampling an output
location x is shown to satisfy e-geo-indistinguishability [3]:

2
De(x0)(x) = ze—ne—fd(xo,x) ©

where d(-,-) denotes the Euclidean distance. The distribution in
Equation 6 is called planar Laplacian centered at xy. Our implemen-
tation [8] is based on the browser extension tool® developed by the
authors of [3]. The parameter e controls the privacy level: smaller
€ value, higher indistinguishability and stronger privacy.

3.3 Dummy-based Methods

Another group of methods generate fake locations, called dummies,
in order to hide the real location among them. The challenge is
to generate realistic fake data, ideally indistinguishable from real
data. There is a trade-off between privacy and efficiency, as multiple
locations are generated for each input.

SpotME [18]. This method allows a user to claim to be at multiple
locations simultaneously, thus providing privacy protection for the
user’s real location. Specifically, the user’s device creates a position
mayp for the 2-D grid D. When a new location is available, for each
cell the method claims to be in that cell with probability p or report
the truth (whether the real location is in that cell or not) with
probability (1 — p). Thus the reported position map may contain
multiple cells that the device claims to be in. In our evaluation, we
modify the output of SpotME to be comparable to other methods:
among all cells the device claims to be in, we randomly select one
cell as the output location. The value of p controls the level of
privacy for this method: higher p, more dummies generated; and
the output is more likely a dummy.

Moving in the neighborhood (MN) [10]. So far, we have intro-
duced several methods that do not consider historical information,
e.g., previously reported locations. The drawback is that when
looking at the output trajectory, an adversary may identify non-
realistic output locations, filtering out dummies as in [18]. The MN
method was proposed to generate dummies that cannot be distin-
guished from real data. The user specifies n, and at each timestamp
the method reports the real location along with n — 1 dummies.
At the first timestamp, n — 1 dummies are randomly generated
over the map. The location of each previously reported dummy is
memorized, and new dummies are generated around the memory.
Specifically, given a dummy’s coordinates (lat, long) at time t, a
new dummy is generated for time ¢ + 1 by sampling uniform at
random lat” € [lat — m, lat + m] and long’ € [long — m, long + m].
The parameter m controls the maximum distance between the new
dummy and the previously reported dummy. In our evaluation, we
vary m to study its impact on utility and privacy. To be comparable
to other methods, we randomly select one out of n trajectories as
the sanitized trajectory for each user.

Shttps://github.com/chatziko/location-guard


https://www.openstreetmap.org

A Closer Look: Evaluating Location Privacy Empirically

Table 1: Dataset Summary
Dataset #Users | Frequency | Resolution | Avg. # Traj’s | Avg. # Loc’s
GeolLife[25] 182 1 to 5 seconds 182x182 54 15640
RioBuses[6] | 14149 | every minute 170x170 9 2661

Table 2: Default Parameter Settings
Privacy Method | Parameter || Privacy Method | Parameter

Laplace €=0.02 MN n=5,m=10"
SpotME p=10" VHC 7 =50
Rounding s =200 Spatial Cloaking | r =500, R = 1000

Noise var = 5000

4 EXPERIMENTS
4.1 Experiment Methodology

Datasets. We adopt two real-world datasets in our evaluation: Ge-
oLife [25] and RioBuses [6]. The GeolLife dataset includes GPS data
of 182 users in Beijing with a total duration of more than 48000
hours. The trajectories were recorded with a variety of sampling
frequencies, and the majority of data was logged every 1 to 5 sec-
onds. The Rio Buses dataset contains trajectory of 14149 buses in
October 2010 from the city of Rio de Janeiro. The real-time GPS
data is updated every minute. For the purpose of the evaluation,
we consider data from 200 randomly selected buses (also referred
to as users). Note that users may contribute different numbers of
locations and trajectories to the datasets recorded on different dates.
We summarize the characteristics of two datasets in Table 1.

Pre-processing. For both datasets, we subsample each raw tra-
jectory every 5 minutes and impute missing values with the last
known location. We discretize the map range of each dataset into
roughly 300m x 300m grid cells and the spatial resolution for each
dataset is reported in Table 1. We infer the home location of a user
in GeoLife as the location in which the user was found most often
at 02:00, 06:00 and 20:30 during weekdays. In the RioBuses dataset,
we assign the home location of every user to the Central bus station
in Brazil. For every user in each dataset, we compute and store the
10 most visited locations as the user’s significant locations.

Settings All location privacy methods are implemented in Java
and are publicly available [8]. The default parameter values are
reported in Table 2. To evaluate the mobility metrics, we randomly
select a 30-minute window (i.e., 6 consecutive 5-minute intervals)
for each user. For each mobility metric, we report the relative error
between the value computed on the sanitized trajectory and that
of the real trajectory. The experiments were conducted on a Linux
workstation with a 3.50 GHz Intel processor and 16 GB Java heap
space. Results were averaged among users in each dataset.

4.2 Varying Privacy Parameters

We first study the utility and privacy trade-off for every location
privacy method. Specifically, we evaluate the impact on utility by
varying the privacy parameter for each location privacy method. As
the window for evaluating mobility metrics is randomly selected for
each user and several location privacy methods adopt randomized
mechanisms, we also report the average relative error across all mo-
bility metrics for the overall trend. In addition to mobility metrics,
we report the average Hamming distance and Haversine distance
(in meters) between locations in real and sanitized trajectories. In-
tuitively, 1 in Hamming distance indicates the location has been
altered by the privacy method, and unaltered otherwise. The Haver-
sine distance indicates how far away the output location is from
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Table 3: Laplace Utility Experiment - GeoLife

s €
Utility/Params 0.001 | 0.01 | 0.02 | 0.04 [ 0.05] 0.1
Hamming 0.74 0.41 0.20 0.03 0.01 | 0.00
Haversine (in m) 1494.96 | 121.57 | 46.52 | 7.34 2.83 | 0.02
Tot Dist (in %) 99.18 91.16 73.06 | 18.14 | 6.43 | 0.00
Max Dist (in %) 98.25 89.98 72.27 | 17.88 | 6.15 | 0.00
Std Dev Displacement (in %) | 98.74 85.26 | 58.36 | 12.85 | 4.47 | 0.00
Max Dist Home (in %) 69.94 26.41 16.68 | 2.97 0.00 | 0.00
Rad Gyration (in %) 98.02 89.84 72.40 | 17.92 | 6.18 | 0.00
# Diff Places (in %) 96.87 90.66 72.94 | 18.16 | 6.15 | 0.00
# Significant Places (in %) 14.97 22.75 | 12,57 | 3.59 | 1.20 | 0.00
Avg Mobility Error (in %) | 82.28 70.87 54.04 | 13.07 | 4.37 | 0.00

Table 4: SpotME Utility Experiment - GeoLife

Utility/Params T T X 10 [5xi0 10
Hamming 0.00 0.02 0.08 0.15 0.51 0.71
Haversine (in m) 28.79 | 280.14 | 1301.12 2482.79 | 8560.14 11870.35
Tot Dist (in %) 1.68 11.17 38.55 64.80 98.88 100.00
Max Dist (in %) 1.68 11.17 38.55 64.52 98.76 100.00
Std Dev Displacement (in %) | 1.12 | 9.50 27.93 51.40 94.10 99.44
Max Dist Home (in %) 0.00 | 10.67 | 28.95 60.08 94.65 93.96
Rad Gyration (in %) 1.68 11.17 38.55 64.45 98.77 100.00
# Diff Places (in %) 1.68 10.34 | 36.78 60.99 97.18 95.47
# Significant Places (in %) 0.00 | 0.00 0.00 0.00 2.10 9.68
Avg Mobility Error (in %) | 1.12 9.15 29.90 52.32 83.49 85.51

Table 5: Noise Utility Experiment - GeoLife

== var

Utility/Params 1000 | 3000 | 5000 | 10000 | 15000 | 40000
Hamming 0.00 | 0.10 | 025 | 049 |06z | 084
Haversine (in m) 033 | 21.93 | 54.27 | 112.40 | 148.46 | 253.04
Tot Dist (in %) 223 | 37.91 | 7550 | 98.35 | 94.89 | 95.82
Max Dist (in %) 223 | 3692 | 73.07 | 9613 | 92.66 | 94.18
Std Dev Displacement (in %) | 112 | 30.66 | 64.73 | 9525 | 9311 | 9633
Max Dist Home (in %) 0.00 | 3.48 | 12.61 | 29.87 | 25.65 | 32.86
Rad Gyration (in %) 223 | 36.61 | 72.28 | 9513 | 92.35 | 93.46
# Diff Places (in %) 223 | 38.01 | 7430 | 97.67 | 94.88 | 9559
# Significant Places (in %) 0.60 | 5.69 | 17.07 | 34.53 | 31.34 | 38.47
Avg Mobility Exror (in %) | 542 | 27.04 | 55.65 | 78.13 | 74.98 | 78.10

Table 6: Rounding Utility Experiment - GeoLife

- s
Utility/Params 200 | 300 | 400 | 500 | 1000
Hamming 0.50 0.79 0.89 0.97 0.98
Haversine (in m) 115.99 | 191.67 | 254.00 | 365.82 | 728.39
Tot Dist (in %) 124 | 098 |254 |240 |3.88
Max Dist (in %) 1.27 0.94 2.53 2.18 3.73
Std Dev Displacement (in %) | 1.78 0.91 1.70 2.25 2.73
Max Dist Home (in %) 5.50 19.00 | 22.93 | 26.15 | 35.87
Rad Gyration (in %) 1.19 1.10 2.56 2.50 3.85
# Diff Places (in %) 0.47 0.14 1.16 1.09 1.74
# Significant Places (in %) 17.07 | 33.83 | 38.22 | 36.53 | 39.52
Avg Mobility Error (in %) | 4.07 8.13 10.24 | 10.44 | 13.05

the input. The results for GeoLife are reported in Tables 3,4,5,6,7,8,9.
Results for RioBuse can be found in Appendix A.2. As our observa-
tions are consistent in both datasets, our discussions focus on the
results of GeoLife.

For every location privacy method, as the privacy level increases,
we observe a decrease in utility as expected. Taking Laplace as
an example (Table 3), when ¢ takes smaller values (i.e., stronger
privacy), higher Hamming and Haversine distances as well as larger
errors for mobility metrics are reported. On the other hand, with
€ = 0.1, we observe no distortion in the output locations and perfect
mobility metrics. Similar trends are observed in SpotME and Noise
(see Tables 4 and 5).

Large Haversine distances are reported based on the output
of SpotME, Spatial Cloaking, and MN (see Tables 4,7,and 8). The
reason is SpotME and MN may output locations randomly selected
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Table 7: Spatial Cloaking Utility Experiment - GeoLife

Utility/ Params R

1000 1500 2500 5000 7500 10000
Hamming 0.42 0.46 0.56 0.71 0.78 0.83
Haversine (in m) 9559.75 | 12534.77 | 17843.88 | 29974.84 | 34314.19 | 39228.85
Tot Dist (in %) 4.95 4.00 4.00 18.08 17.33 24.89
Max Dist (in %) 4.74 4.00 4.00 18.02 17.33 24.89
Std Dev Displacement (in %) | 4.13 2.67 4.00 17.33 16.00 22.94
Max Dist Home (in %) 23.29 36.25 43.62 48.18 59.30 63.97
Rad Gyration (in %) 4.80 4.00 4.00 17.95 17.33 24.72
# Diff Places (in %) 4.00 2.67 4.00 14.11 15.51 23.18
# Significant Places (in %) 17.12 21.92 24.66 32.88 35.62 36.99
Avg Mobility Error (in %) | 9.00 10.79 12.61 23.79 25.49 31.65

Table 8: MN Utility Experiment - GeoLife

as m
Utility/Params 10°° 109 107 0.001 ] 0.01
Hamming 0.79 0.78 0.79 0.79 0.82
Haversine (in m) 12508.64 | 14770.50 | 12131.68 | 13105.17 | 13466.07
Tot Dist (in %) 7.26 13.39 19.21 66.17 77.88
Max Dist (in %) 7.26 13.27 19.36 66.26 77.65
Std Dev Displacement (in %) | 3.91 11.00 11.73 49.67 79.98
Max Dist Home (in %) 66.23 54.86 71.20 72.62 73.71
Rad Gyration (in %) 7.26 13.27 19.35 66.19 77.71
# Diff Places (in %) 4.54 9.58 17.89 64.32 78.55
# Significant Places (in %) 40.72 37.85 35.33 33.53 35.33
Avg Mobility Error (in %) | 19.60 21.89 27.72 59.82 71.54

Table 9: VHC Utility Experiment - GeoLife

s o
Utility/Params 10 50 100 [ 300 |500 | 1000
Hamming 0.79 0.79 0.80 0.86 0.91 0.96
Haversine (in m) 225.07 | 23535 | 257.87 | 345.15 | 438.29 | 635.58
Tot Dist (in %) 9.42 18.72 34.36 68.90 89.08 97.74
Max Dist (in %) 8.92 18.30 34.15 67.45 87.09 96.25
Std Dev Displacement (in %) | 7.08 17.89 | 25.72 | 56.82 | 79.12 | 96.20
Max Dist Home (in %) 19.24 20.81 18.45 26.63 33.15 39.07
Rad Gyration (in %) 9.10 18.07 33.80 67.58 86.65 96.37
# Diff Places (in %) 8.27 15.51 29.61 66.96 83.54 95.11
# Significant Places (in %) 38.12 | 36.53 | 38.02 | 36.83 | 38.02 | 35.93
Avg Mobility Error (in %) | 1431 | 20.83 | 30.59 | 55.88 | 70.95 | 79.52

over the entire map. As for Spatial Cloaking, locations near the
user’s home are deleted according to the parameter R. We impute
the deleted locations in a trajectory using the closest remaining
location. For some users and some R values, the entire trajectory or
multiple trajectories may be deleted. When a trajectory is deleted,
we consider that Hamming distance 1 and maximum Haversine
distance per dataset are incurred for every timestamp, hence the
high Haversine distances®.

The mobility metric errors indicate how well the output trajecto-
ries reflect the real users’ mobility patterns. Lower distortions (i.e.,
Hamming and Haversine distances) often lead to lower mobility
errors, as seen in Tables 3, 4, 5, and 7. Interesting observations
are made for Rounding, MN, and VHC (see Tables 6,8,and 9). In
Rounding, we see the Hamming distance steadily increases to 0.98
as s grows to 1000 but the Haversine distance grows moderately
and the average mobility error reaches only 13.05% with s = 1000.
The reason is that Rounding may change an input location to a
nearby cell without significantly disturbing the mobility patterns,
hence low Haversine distances and low mobility errors. For the
MN method, as the offset increases, dummies in a trajectory may
be further away from each other, which differ from the real users’
mobile behaviors and result in higher mobility errors (71.54% when
offset= 0.01). However, the Hamming distance and the Haversine
distance stay at high values (e.g., 0.78-0.82 for Hamming) as the
offset varies. This shows that the dummy trajectories reported by
the method with random starting locations largely differ from the

“4For RioBuses dataset, Spatial Cloaking does not delete as many locations as for GeoLife
as buses travel to more locations outside the “home" area (i.e., central bus station).
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Table 10: Avg Mobility Error (in %) as Varying Window - GeoLife

Window size

Privacy Method

6 12 24 48 96
Laplace 50.33 | 67.29 | 72.75 | 69.91 | 65.24
SpotME 52.54 | 72.40 | 81.65 | 83.83 | 83.85
Noise 60.88 | 69.45 | 71.79 | 69.48 | 65.17
Rounding 449 | 412 | 453 | 551 6.66
MN 22.83 | 23.21 | 27.82 | 32.78 | 45.17
VHC 18.92 | 22.03 | 21.63 | 25.61 | 25.20

Spatial Cloaking | 11.70 | 12.46 | 11.52 | 15.74 | 16.14

Table 11: Avg Mobility Error (in %) as Varying Window - RioBuses
Window size

Privacy Method 3 B >4 8 96
Laplace 58.16 | 60.54 | 61.17 | 58.69 | 55.83
SpotME 45.98 | 62.68 | 77.01 | 80.42 | 80.35
Noise 59.79 | 64.00 | 60.50 | 59.31 | 53.80
Rounding 5.79 | 6.19 8.79 | 8.34 9.26
MN 23.00 | 27.12 | 32.84 | 40.03 | 44.76
VHC 11.23 | 13.60 | 14.75 | 15.89 | 17.20

Spatial Cloaking 1.85 1.85 2.26 2.46 2.71

real trajectories. As for VHC, we also see the Hamming distance
increases with o to higher values (e.g., 0.96 when ¢ = 1000) while
the Haversine distance grows moderately, similar to Rounding. As
VHC partitions the geospace according to road networks, multiple
grid cells in D may be mapped to the same VHC partition and the
output location is likely to be different from the input, even when
perturbations are low (i.e., smaller o values).

4.3 Varying Window Size

The mobility metrics can be measured for time windows of various
lengths. A shorter time window reflects a user’s short-term behavior
and vice versa. For instance, the authors of [5] considered 1 and
14 days. As datasets adopted in our work present a large variation
of available data per user, we will vary the number of 5-minute
intervals in the following experiment. In Tables 10 and 11, window
size of 6 equates to a 30-minute time window and window size of
96 equates to an 8-hr time window.

As the window size increases, we expect increasing average
mobility errors as the effect of location privacy accumulates. Excep-
tions are observed in Laplace and Noise, where the mobility errors
first increase and decrease as the window size continues to grow.
We hypothesize that this phenomenon is a result of zero-mean
noise distributions adopted by both methods. As the window be-
comes larger, the noise aggregated over a larger set of locations may
cancel out. Between two datasets, the location privacy methods be-
have similarly when increasing the window size. Since the datasets
differ in spatial distributions and buses and human users exhibit
different mobility behaviors, the same location privacy method may
yield different levels of mobility errors between datasets. For ex-
ample, Spatial Cloaking inflicts smaller mobility errors in RioBuses
(Table 11) due to less data deleted.

4.4 Frequency Estimation and Range Queries

Frequency estimation and range queries can enable a range of
real-time applications, e.g., traffic monitoring and social distancing
monitoring. As they are more useful when a large set of users are
present, we generate synthetic users for this experiment with 182 x
182 grid and two types of distributions: uniform and simulated. For
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(a) U>niform

uniform, each synthetic user’s location (home as well®) is sampled
from the grid uniformly at random; for simulated, each synthetic
user’s location is sampled according to the location popularity
among GeoLife users and the synthetic user’s home is drawn from
the home locations of GeoLife users. We generate 50000 synthetic
users for this experiment.

Figure 3 shows the accuracy results for frequency estimation for
uniform and simulated distributions. In both cases, we observe the
MAE of location privacy methods correlates with the Hamming
distance measure reported previously. Methods and parameter val-
ues that yield high Hamming distances also yield high MAE for
frequency estimation. VHC performs relatively better in the sim-
ulated case, as the location popularity is related to road network
connectivity, which serves as the basis for VHC’s space partitioning.
Spatial Cloaking inflicts higher MAE error in the simulated case, as
those synthetic users exhibit real-world behaviors, i.e., more likely
to visit locations near home thus more data deleted by the method.

Figure 4 shows the accuracy results for range queries. We ran-
domly generate 1km X 1km query windows in the range of the
synthetic dataset and report the average MAE among 100 queries.
As each query covers a larger geographic area than a grid cell,
the MAE of range queries is higher than that of frequency esti-
mation. When comparing location privacy methods, we observe
that Rounding and VHC perform better than MN for answering
range queries. Recall that MN produces dummy trajectories around
randomly selected starting locations in the map, whereas Rounding
and VHC may report sanitized locations near the real locations. In
the simulated case, VHC shows much reduced MAE errors, and Spa-
tial Cloaking inflicts higher MAE errors, which are consistent with
our observations in frequency estimation. In summary, Laplace,
SpotME, Noise, and Spatial Cloaking, in weaker privacy settings,
are most accurate for frequency estimation and range queries.

>Note that a home location is needed for each synthetic user which is protected by
Spatial Cloaking.
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4.5 CPU and Memory Evaluation

The computational overhead is an important consideration for the
adoption of location privacy, as the location privacy method runs on
the client. It is essential to evaluate the overheads with real-world
datasets which reflects realistic mobility behaviors. To this end, we
measure the average CPU time (in ms) to sanitize one location and
the peak memory consumption (in GB) by each privacy method with
ThreadMXBean in Java. We run each location privacy method with
several parameter settings to observe the impact of the parameters.
Our results are reported in Figures 5, 6 for two datasets respectively.

In CPU time measurements, all methods are very efficient, i.e.,
taking less than 2 ms on average to sanitize one location. We see
that SpotME, MN, and VHC are higher than other methods, due
to additional computations: SpotME iterates over every grid cell
to generate dummies; MN produces dummy locations for every
dummy trajectory; and VHC accesses the indexing structure for
space partitioning. The change in the parameter values does not
seem to significantly affect the CPU time for location privacy.

The memory requirements of location privacy methods are also
reasonable, i.e., peak memory usage under 1.5 GB for both datasets.
SpotME requires more memory than other methods, as a location
map is generated for each time interval. We also observe higher
CPU and Memory requirements for the VHC method in RioBuses,
because a larger number of partitions are present in this dataset,
e.g., 8236 partitions in RioBuses vs. 3157 for GeoLife.

4.6 Inference Attack Evaluation

The inference attack exploits the quality of the sanitized dataset. It
assumes that the adversary knows all but one locations a user has
visited. Note that duplicate visits are not considered in the attack
model, i.e., the adversary’s knowledge is formulated as a set. Our
results show that with real data, 94.41% users in GeoLife and 90%
users in RioBuses are attacked (see “Original” bars in Figure 7). We
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run the attacks on the sanitized trajectories of each method and
report the results in Figure 7.

We see that the success of the inference attack correlates with
the Hamming distance measure. Location privacy methods and
parameters that yield lower Hamming distances are more prone
to inference attacks. Take Laplace for example: when € = 0.1, the
inference attacks can be carried out on the sanitized data almost as
successfully as they can be on real data. As € is reduced (i.e., stronger
privacy), the attack success decreases with it. Due to the differences
in spatial distribution between two datasets, SpotME and Noise
have different effects on the inference attacks, which are consistent
with their Hamming distance results. As users exhibit different
mobility behaviors in two datasets, Spatial Cloaking is less effective
against inference attacks for RioBuses, as multiple buses run the
same route. For the MN method, the inference success is around
20% for both datasets as the method maintains n = 5 trajectories
for each input trajectory, i.e., creating 4 dummy trajectories. The
chance of picking the real trajectory is 20%. Methods that inflict
high Hamming distances, including Rounding and VHC, are not
vulnerable to inference attacks, e.g., 0% success for VHC in GeoLife.

4.7 Re-identification Attack Evaluation

Re-identification attacks aim to uniquely identify users in the sani-
tized datasets. In our evaluation, we measure the minimum number
(denoted by k) of any real locations visited by a user the adversary
needs to know, in order to uniquely identify the user. The larger k
is, the more difficult the re-identification attack is, as the adversary
must obtain more prior knowledge in order to successfully launch
an attack. If a user cannot be uniquely identified, e.g., due to visiting
only locations also visited by others, we report such users as “NRI”
in our experiments. Figures 8 and 9 depict the re-identification
results for all location privacy methods in GeoLife and RioBuses,
respectively. For each k value, the y-axis indicates the percentage
of users that can be re-identified if the adversary knows any k real
locations visited by the user.

In Figures 8 and 9, the blue bars indicate re-identification attack
results launched on the real trajectories. In GeoLife, 68.42% users
can be re-identified with < 4 locations; in RioBuses, 67% users can
be re-identified with < 5 locations. 18.13% users in GeoLife cannot
be uniquely re-identified, and 25% users in RioBuses cannot be
uniquely re-identified. Note that for Spatial Cloaking, the attack
success rate is calculated for those GeolLife users if their home
locations can be inferred; 63.9% users can be re-identified with < 4
locations, and 20.83% users cannot be uniquely re-identified.

Similar to inference attacks, the success of re-identification corre-
lates to the quality of the dataset. For methods and parameter values
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that lead to high Hamming distances, the re-identification attacks
are less successful. Almost all users become non re-identifiable after
sanitization in Figures 8f and 9d. When increasing privacy levels of
the location privacy methods, we observe the attacks become more
difficult. For example, in Figure 8a, for a given k, the percentage
of re-identified users decreases as € decreases; more users are non
re-identifiable as € decreases. For MN, we observe the percentage
of non re-identifiable users is around 80% as we vary the offset
for both datasets. This is consistent with other empirical results
with the same parameter setting (n = 5). For Spatial Cloaking, the
re-identification attack is more successful on RioBuses dataset than
on GeoLife (see Figure 8g vs Figure 9g). This is also consistent with
our previous observations: users in RioBuses visit more locations
outside home, and more real data is preserved after sanitization.

4.7.1 Improved Re-identification Attack for Rounding. From results
in Figures 8d and 9d, it may seem that Rounding offers high em-
pirical privacy protection; as the method largely alters the input
locations, the adversary’s prior knowledge about the target indi-
vidual cannot be matched with the sanitized data. However, it may
be overlooked by some that Rounding is a deterministic approach
(and the only one among all methods considered). Therefore, the
adversary can apply the same Rounding method to known loca-
tions of the target and obtain the exact sanitized locations, which
can be used for launching the re-identification attack. Based on
this observation, we conduct the improved re-identification attack
experiment for Rounding and report the results in Figure 10.

In short, Rounding is less effective against the improved attack.
The percentage of non re-identifiable users after Rounding is much
lower, and a significant amount of users can be re-identified at small
k values, compared to in the basic attack (see Figures 8d and 9d).
Nonetheless, as Rounding generalizes users’ locations, the attack
becomes harder as s increases. Compared to “Original’, increasing
s lowers the percentages of users who can be re-identified with a
small number of locations (see k = 1,2 in Figure 10a and k = 1,2,3
in Figure 10b); higher percentages of users can be re-identified if the
adversary knows more (see k = 5, 6 in Figure 10a and k = 6,7, 8,9
in Figure 10b).

5 DISCUSSIONS

Below we provide our interpretation of the evaluation, discuss
location privacy in the context of application needs, and point out
considerations for practical adoption.

Interpreting the results. From the computational perspective, all
methods considered in the study are efficient in CPU time and
memory requirements. From the utility perspective, we see that
lower distortions (e.g., Hamming and Haversine distances) lead to
more accurate frequency estimation, range queries, and mobility
metrics. But the condition is not necessary: accurate frequency
estimation, range queries, and/or mobility metrics can be achieved
despite higher distortions. Take Spatial Cloaking (R = 1000) for
example, it inflicts a 42% Hamming distance, similar to that of
Laplace (¢ = 0.01), but provides much more accurate mobility
metrics (see Tables 3 and 7); it is also the most accurate in frequency
estimation and range queries (see Figures 3 and 4). From the privacy
perspective, we see that higher distortions lead to lower attack
success rates, despite the difference in underlying privacy models
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(e.g., Laplace vs. Spatial Cloaking). A special case has been identified
for deterministic methods, e.g., Rounding, where an adversary can
utilize knowledge about the method to launch an improved attack.

How to choose. We recognize that the priorities of location-based
applications may vary greatly. Below we discuss a few use cases
for location privacy. For applications that require provable pri-
vacy guarantees, Laplace can be considered as it is based on dif-
ferential privacy [7]; it is also light-weight in computation, and

tunable to balance utility and empirical privacy risks. When ob-
taining truthful data is essential (e.g., social distancing monitoring),
applications may consider Spatial Cloaking, which deletes data
deemed sensitive by the user and can achieve high utility in mobil-
ity metrics, frequency estimation, and range queries; furthermore,
it offers comparable empirical privacy risks (i.e., in inference and
re-identification attacks) to those of Laplace. For lowering inference
and re-identification risks, VHC is the best among all methods; it
also answers range queries with accuracy for realistic data distribu-
tions. For applications that can tolerate some communication and
computation overheads, MN can be considered; the server receives
real data along with the dummies, but the dummy trajectories are
difficult to filter and the results show that randomly picking one
sanitized trajectory incurs low inference and re-identification risks.

Practical considerations. There is a lot to consider when deploy-
ing location privacy methods in the field. Here we discuss two
points. The first is the possibility of advanced adversaries, who have
access to more data and/or computational resources. For example,
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SpotME [18] discussed the possibility of localization, where an
adversary can observe the reported location maps over time and
filter out dummy locations. As another example, with access to a
randomized location privacy method, an adversary may repeatedly
run the method, learn the output probabilities Pr(I’|l) empirically,
and launch inference and re-identification attacks with the most
likely outputs of the known locations. Moreover, given the learned
probabilities, the adversary may be able to estimate the most likely
real location by observing a sanitized location. The privacy risks
in the presence of such advanced adversaries may differ from the
results of this study. The second is that additional computation may
be needed when location privacy methods are used in practice.
For instance, the privacy budget € for Laplace can be optimized
for utility; this optimization process is usually separate from the
location sanitization process. Another example is that the grids
(and the space partitioning structure for VHC) need to be updated
when users move out of the current map; a server-side procedure is
needed to detect those events confidently using sanitized locations.

6 CONCLUSION

We have presented a comparative evaluation for a range of local,
online location privacy methods with real-world location datasets.
The usefulness of location privacy is demonstrated with distor-
tion measures, frequency estimation and range queries, as well
as computing mobility metrics. To evaluate the practical privacy
protection, we design and conduct two types of attacks. We discuss
results obtained, highlight different application needs, and point
out considerations for adopting location privacy.

Our study opens up several directions for future work. Firstly, it
would be beneficial to showcase the usefulness of location privacy
in research studies, e.g., predicting mental health states using sani-
tized location data. Due to the fine granularity and high sensitivity,
data that contains both trajectories and mental health labels is not
widely available. It is desirable for future research to collect location
data and survey data from human subjects while protecting their
privacy [9]. Secondly, it is beneficial to extend the evaluation to
recent methods that require more computation initially (e.g., [4])
or during sanitization (e.g., [1, 22, 24]). As the datasets exhibit large
domains, e.g., 182 X 182 grid cells, methods that demonstrate effi-
ciency improvements, e.g.,[2], will be considered. Last but not least,
new privacy challenges may arise for applications with large user
sets. For instance, when trajectories from different users overlap,
inference risks may be higher due to stronger correlation between
locations. We consider improving the current location privacy meth-
ods in the context of new privacy challenges.
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A Closer Look: Evaluating Location Privacy Empirically

A APPENDIX: ADDITIONAL MATERIAL
A.1 Mobility Metrics

Below we introduce a set of mobility metrics defined for a single
user in the time period [#1, f2] as in [5]. The metrics are computed
based on the user’s stop places: (Pll, Ply, ... PlN(tl,tg)) and for ev-
ery i, Pl = (I;, T;).

The total distance covered during the time interval [¢1, £2] is

defined as:
N(t,t2)-1

D, dilim), )

i=1

Tot Dist =

where d is a distance measure between any 2 location pairs and we
adopt the Haversine distance in this work.

The maximum distance assesses the maximum span of area
covered by a user during the time interval [#1, #2]. Formally it is
defined as:

Max Dist = max
i,je{l,...N(ti,t2)}

d (li,lj) (8)

The standard deviation of the displacements quantifies how
the user moves from one place to the next. Displacement refers to

M G 0,0
==L P N (g -1 be the

average displacement. This metric is formally defined as:

the distance between places. Let Dy; =

Std Dev Displacement
1 N(t,t)-1
=7l d (I, li+1) = Dgis )? 9
N (ti,t2) — 1 Z (d (i, li+1) dis ) )

i=1

The maximum distance from home reports the furthest a
user has been away from home during [#1, t2]. Let I be the home
location of the user. Then,

Max Dis Home = max

d(l;1 10
ie{l,.‘.,N(tl,tz)}{ (L, Ir)} (10)

The radius of gyration quantifies the deviation from the cen-
troid of places visited by a user during a given time interval. Let

T; be the time spent at i-th place, T = Zgitl’m T; be the total time

spent and Ccen be the centroid of all places visited in [t1, 2].

N (t1,t5)

1
Z T - d (Ciyccen )2 (11)
i=1

Rad Gyration = 4| =
T

The number of different places visited by a user during [ 1, t2] ©
is defined as:

N (t1,t2)
# Diff Places = Z max{1-— Z 1,0 (12)
i=1 J>i

where 1; j is an indicator function which is equal to 1if [; = Ij, and
0 otherwise.

The number of different significant places quantifies how
many significant places are visited during the time interval [¢1, £2].
Assume the user’s profile contains 10 significant places, and the

Sslightly modified from [5], by specifying j > i in Equation 12
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associated locations are I, - - - , I, . This metric is formally defined

as:
10 N(t,t2)
# Significant Places = Z min Z Lis;, 1 (13)
= i=1

A.2 Utility Experiments with RioBuses
Tables 12,13,14,15,16,17,18 present the Hamming distance, Haver-
sine distance (in meters), and relative errors for mobility metrics

obtained with the RioBuses dataset.
Table 12: Laplace Utility Experiment - RioBuses

- €
Utility/Params 0.001 | 0.01 [0.02 | 0.04 | 0.05 | 0.1
Hamming 0.73 0.60 0.32 0.10 0.05 0.00
Haversine (in m) 1435.56 | 147.28 | 56.62 | 13.86 | 6.26 0.35
Tot Dist (in %) 96.40 86.94 78.64 | 44.86 | 23.12 | 1.00
Max Dist (in %) 87.83 85.27 77.45 | 44.12 | 23.04 | 1.00
Std Dev Displacement (in %) | 94.56 88.20 | 71.41 | 34.48 | 18.05 | 0.52
Max Dist Home (in %) 20.46 5.26 2.33 0.79 0.15 0.02
Rad Gyration (in %) 87.84 85.66 77.54 | 44.66 | 23.22 | 1.00
# Diff Places (in %) 88.80 91.03 82.64 | 46.73 | 23.64 | 1.00
# Significant Places (in %) 13.15 21.52 | 21.19 | 7.28 | 5.30 | 0.00
Avg Mobility Error (in %) | 69.86 66.27 58.74 | 31.85 | 16.64 | 0.65

Table 13: SpotME Utility Experiment - RioBuses

. P
Utility/Params 107 [10° [5x10°]10° [5x10° [10°
Hamming 0.15 0.16 0.20 0.26 0.55 0.72
Haversine (in m) 68.86 | 324.02 | 1405.59 2692.85 | 9506.33 13545.86
Tot Dist (in %) 1.82 10.74 34.19 58.82 97.51 100.00
Max Dist (in %) 1.80 10.75 33.68 58.94 97.52 100.00
Std Dev Displacement (in %) | 2.06 | 7.50 25.94 48.29 94.56 99.36
Max Dist Home (in %) 2.27 8.23 28.11 49.47 93.43 98.21
Rad Gyration (in %) 1.81 10.74 33.74 58.89 97.52 100.00
# Diff Places (in %) 1.50 9.39 27.71 54.17 91.15 95.02
# Significant Places (in %) 9.27 | 9.60 11.92 7.95 17.44 21.30
Avg Mobility Error (in %) | 2.93 9.57 27.90 48.07 84.16 87.70

Table 14: Noise Utility Experiment - RioBuses

- var
Utility/Params 1000 | 3000 | 5000 | 10000 | 15000 | 40000
Hamming 0.05 0.27 0.42 0.62 0.72 0.88
Haversine (in m) 6.36 | 35.06 | 60.72 | 111.48 | 147.40 | 252.09
Tot Dist (in %) 19.71 | 69.11 | 81.10 | 87.18 91.17 90.59
Max Dist (in %) 19.56 | 68.71 | 78.95 | 84.68 87.96 88.05
Std Dev Displacement (in %) | 16.74 | 62.19 | 77.52 | 90.42 | 94.34 | 92.94
Max Dist Home (in %) 044 | 144 | 257 | 3.19 5.55 8.09
Rad Gyration (in %) 19.68 | 68.84 | 79.02 | 84.82 | 87.84 | 87.62
# Diff Places (in %) 21.02 | 72.42 | 83.85 | 91.90 94.46 93.62
# Significant Places (in %) 6.29 | 20.09 | 26.16 | 23.18 | 3543 | 35.21
Avg Mobility Error (in %) 14.78 | 51.83 | 61.31 | 66.48 70.96 70.88

Table 15: Rounding Utility Experiment - RioBuses

- s
Utility/Params 200 | 300 | 400 | 500 | 1000
Hamming 0.85 0.86 0.97 0.99 0.99
Haversine (in m) 132.86 | 159.42 | 281.63 | 377.93 | 700.31
Tot Dist (in %) 0.28 0.81 1.10 2.90 1.71
Max Dist (in %) 0.25 0.77 0.88 2.61 1.63
Std Dev Displacement (in %) | 0.64 1.81 5.27 1.72 5.21
Max Dist Home (in %) 2.20 1.90 5.98 8.83 10.63
Rad Gyration (in %) 0.26 0.97 1.12 2.60 143
# Diff Places (in %) 0.00 0.60 0.70 0.72 1.11
# Significant Places (in %) 32.89 | 43.49 | 47.68 | 47.02 | 54.97
Avg Mobility Error (in %) | 5.22 7.19 8.96 9.49 10.96
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Table 16: Spatial Cloaking Utility Experiment - RioBuses Table 18: VHC Utility Experiment - RioBuses
. R e o

Utility/ Params 1000 | 1500 | 2500 | 5000 | 7500 | 10000 Utility/Params 10 50 100 [ 300 |500 | 1000

Hamming 004 | 006 |008 |012 |022 | 034 Hamming 071 072] 074] 083 | 089 004

Haversine (in m) 103.00 | 409.03 | 639.91 | 1305.57 | 3897.03 | 9573.24 Haversine (in m) 190.93 | 201.06 | 220.54 | 334.14 | 443.09 | 602.06

Tot Dist (in %) 130 |18 |305 |571 8.43 15.78 Tot Dist (in %) 210 | 1150 | 28.05 | 7581 | 8431 | 89.74

Max Dist (in %) i 128 184 |313 551 (817 |1574 Max Dist (in %) 213 | 1120 | 2678 | 7453 | 82.68 | 87.04

i;j féivs?gfii‘:e(:‘:;; (in %) 2‘23 ;g 52; 515‘17(3’6 Tfss ;::z Std Dev Displacement (in %) | 0.89 | 1143 | 2601 | 6132 | 7438 | 92.87
—om® - - : : - - Max Dist Home (in %) 250 | 338 | 407 | 830 7.92| 1003

Rad Gyration (in %) 127 | 163|292 |52 |819 1567 Rad Gyration (in %) 208 | 1144 | 2696 | 7427 | 82.62 | 86.67

# Diff Places (in %) 071 | 126 | 172 | 363 | 678 | 1363 a ! : : : - : -

# Significant Places (in %) | 167 | 056 | 6.81 | 4.44 5.93 19.17 # Diff Places (in %) 085 | 1037 | 2849 | 7447 | 85.21| 91.59

Avg Mobility Error (in %) | 139 193 202 505 373 721 # Significant Places (in %) 39.40 | 37.75 | 36.75 | 39.51 | 40.62 | 45.53

Avg Mobility Error (in %) | 7.4 | 1387 | 2530 | 5832 | 6539 | 71.92

Table 17: MN Utility Experiment - RioBuses

- m

Utility/Params 10° 107 10" 0.001 | 0.01
Hamming 0.81 0.80 0.80 0.81 0.80
Haversine (in m) 16289.69 | 15257.02 | 16320.35 | 16958.12 | 16305.32
Tot Dist (in %) 12.00 16.99 26.65 79.63 72.74
Max Dist (in %) 12.00 16.99 26.25 80.35 74.49
Std Dev Displacement (in %) | 11.00 12.50 20.65 68.72 73.61
Max Dist Home (in %) 70.71 57.35 72.81 72.19 68.15
Rad Gyration (in %) 12.00 16.99 26.17 80.35 74.34
# Diff Places (in %) 8.55 12.22 20.94 71.55 73.47
# Significant Places (in %) 41.06 44.07 40.40 39.07 40.40
Avg Mobility Error (in %) | 23.90 25.30 33.41 70.27 68.17
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