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Abstract—Strings are used to model genomic, natural lan-
guage, and web activity data, and are thus often shared broadly.
However, string data sharing has raised privacy concerns stem-
ming from the fact that knowledge of length-k substrings of a
string and their frequencies (multiplicities) may be sufficient to
uniquely reconstruct the string; and from that the inference of
such substrings may leak confidential information. We thus in-
troduce the problem of protecting length-% substrings of a single
string S by applying Differential Privacy (DP) while maximizing
data utility for frequency-based mining tasks. Our theoretical
and empirical evidence suggests that classic DP mechanisms are
not suitable to address the problem. In response, we employ
the order-k de Bruijn graph G of S and propose a sampling-
based mechanism for enforcing DP on GG. We consider the task
of enforcing DP on G using our mechanism while preserving the
normalized edge multiplicities in GG. We define an optimization
problem on integer edge weights that is central to this task and
develop an algorithm based on dynamic programming to solve
it exactly. We also consider two variants of this problem with
real edge weights. By relaxing the constraint of integer edge
weights, we are able to develop linear-time exact algorithms for
these variants, which we use as stepping stones towards effective
heuristics. An extensive experimental evaluation using real-world
large-scale strings (in the order of billions of letters) shows that
our heuristics are efficient and produce near-optimal solutions
which preserve data utility for frequency-based mining tasks.

Index Terms—differential privacy, data sanitization, string
algorithms, frequent pattern mining

I. INTRODUCTION

Strings (i.e., sequences of letters over some alphabet) are
typically used to model genetic material of organisms, natural
language, as well as web activity or movement of individuals.
Consequently, strings are featured in a gamut of applica-
tions. Examples of such applications are genomic pattern
discovery [27], text summarization [19], as well as news
recommendation [20] or route planning [11]. To fuel these ap-
plications, strings collected from individuals are often shared
broadly. For instance, individuals’ genomic [14], web [22], or
movement [13] data are often disseminated in the context of
outsourcing mining tasks. However, disseminating string data
may lead to privacy concerns [12], [9], [37], [38], [8].

Our Privacy and Utility Setting. This work formalizes the
problem of protecting length-%k substrings of a single string S
over an alphabet ¥, by applying Differential Privacy (DP) [15],
while maximizing data utility for frequency-based mining
tasks on S. We assume that the set of length-(k—1) substrings
of S is public and aim to protect the presence or the absence
of length-k substrings in S. That is, we want to prevent the
inference of the exact frequency (multiplicity) of any length-%
substring in .S. This prevents the unique reconstruction of S.
In particular, knowledge of the set of length-k substrings and
their multiplicities in S for a sufficiently large & is a sufficient
condition for uniquely reconstructing S [18]. Intuitively, this
is because there exists a value of k£ for which there is a
single way to combine these length-% substrings to reconstruct
S. In fact, this value of k is expected to be small: it is in
O(logs; |S]), where [S] is the length of S and [X| is the
alphabet size. Furthermore, this unique reconstruction of .S
can be performed in linear time in |S| [18]. We also draw
our motivation from application domains, in which length-
k substrings represent confidential information. In natural
language datasets, the dictionary of all 1-grams (words) in
the language is often known and, hence, words that may
exist in a private document may also be known. However,
it is more difficult to know which 2-grams (2-word phrases)
occur in a private document, and inferring such phrases may
leak confidential information: e.g., short phrases may leak a
patient’s sensitive information in a medical text [30]. Similarly,
in genome datasets, it is known that the DNA sequence of
every Homo sapiens individual contains every possible length-
10 string over the DNA alphabet as a substring but not every
possible length-11 string [7], while specific length-k substrings
are markers for diseases [35]. In addition to enforcing DP
on the multiset of length-k substrings of S, we seek to
preserve the normalized multiplicities of length-%£ substrings
(i.e., the relative frequencies of these substrings in S). This
is to preserve data utility for frequency-based mining tasks. It
should be clear that preserving the relative frequencies helps
the accuracy of frequent pattern mining [27], since it avoids
changes to the set of frequent length-k substrings (i.e., the set



of length-k substrings with relative frequency at least equal
to a given threshold). Preserving the relative frequencies also
helps the accuracy of frequency-based clustering [25], since
the distances between strings in the collection of strings to
be clustered are based on the relative frequency of length-k
substrings of the strings [25].

We remark that our setting is fundamentally different from
settings seeking to protect the presence of an individual string
in a string collection by enforcing DP (e.g., [12], [9]); or to
prevent the mining of confidential patterns from a string by
enforcing privacy principles other than DP (e.g., [16], [17]).

Representing a Multiset of Length-% Substrings. An order-%
de Bruijn graph (dBG) over string S, denoted by G = (V, E),
has a node v € V for every distinct length-(k — 1) substring
of S and an edge (u,v) € E connecting nodes u and v if
their corresponding substrings start at successive positions in
S. An example of the order-3 dBG over S = abaabbabba
is in Fig. 1. The set of length-2 substrings (nodes) is V' =
{aa, ab,ba,bb}. The multiset of length-3 substrings (edges)
is E = {aab, aba, abb,abb,baa,bab,bba,bba}. Sub-
strings ab and bb occur successively in S, so there is an
edge e; that spells abb. Edge multiplicities are in red; e.g.,
abb (ey) occurs twice in S. It should be clear that the size of
G is |E| = |S|—k+1, where | E| is counted with multiplicities
and |S| is the length of S. A dBG thus represents a multiset
of length-k strings specified by edge multiplicities.

The seminal work of Pevzner et
al. [32] proposed to use the dBG
over a collection of short DNA se-
quences, read by sequencing tech-
nologies, to assemble these se-
quences into a string S corre-
sponding to the entire genome.
Namely, .S corresponds to an Eu-
lerian path in this dBG (i.e., a trail
that visits every edge once). In
Fig. 1, the Eulerian path egesejeseqesejes from node s to
node t is the trail spelling S. Here we borrow the idea of the
dBG representation fo perform the reverse: we disassemble S
into its length-k substrings, use an order-k dBG G(V, E) to
represent the residual multiset £, and enforce DP on FE.

We release an (e, §)-differentially private [15] version E of
E. Since the set of length-(k—1) substrings of S is public (i.e.,
set V of G is public), we can alternatively release G(V E)
We assume X is an ordered set and simply represent E as
a sequence M = (mq,...,my) of n multiplicities, where
n < |E| = |S| — k + 1 is the size of the set of length-k
substrings of S and m; is the frequency of the element in
whose lexicographic rank in E is 4. In Fig. 1, we have M =
(1,1,2,1,1,2): my = 1 tells us that aab, whose lexicographic
rank in S is 1, occurs 1 time in S; ms = 2 tells us that abb,
whose lexicographic rank in S is 3, occurs 2 times in S.

Fig. 1: Order-3 de Bruijn
graph G(V,E) for S =
abaabbabba.

Our Contributions.

1. We investigate the suitability of applying classic DP mech-
anisms in our setting. In particular, we provide theoretical

and empirical evidence demonstrating that the Laplace [15],
Gaussian [15], and randomized response [26] mechanisms are
not suitable for our setting. This is because these mechanisms
must consider all edges that do or could exist in G (referred to
as feasible edges), which is often prohibitively expensive, and
because they must add noise to a very large number of edges
that could but do not exist in G (referred to as fake feasible
edges), which incurs excessive utility loss. See Section IV.

2. In response, we propose a mechanism, called the Multi-
Edge Sampling (MES) mechanism, which enforces (¢, §)-DP
and is suitable for our setting. MES operates directly on edges
that exist in G. These edges are often significantly fewer than
all feasible edges. Thus, MES avoids the limitations of the
classic DP mechanisms. We formalize our main computational
task as the following optimization problem, which is referred
to as the Private and Similar Multiplicities (PSM) problem:

Given a sequence M of n integers and parameters € and d,
construct a sequence X of n integers such that the normalized
multiplicities in X are as similar as possible to those of
M, with respect to the L, distance > i, [m;/ > 7 m; —
xS0 , subject to the ser of constraints specified by
the MES mechamsm When the L; distance is minimized,
the normalized multiplicities in M, and hence the relative
frequencies of length-k substrings in S, are preserved. When
the constraints are satisfied, X is used to obtain an (€,0)-
DP E. The indistinguishability is guaranteed for any two
sequences M and M’ such that |M — M’| = 1. See Section V.

3. We develop EXACT-DP, an exact algorithm for PSM.
The algorithm invokes iteratively a dynamic programming
procedure that solves PSM for a fixed output graph size and
returns the best solution found over all iterations. EXACT-DP
solves PSM in O(|S|*) time using O(|S|?) space (see Sec-
tion VI). Thus, it is impractical for long strings. In response,
we consider two relaxed variants of PSM, both for graphs
with real edge weights: a variant with a fixed output graph
size; and another one with arbitrary output graph size. By
relaxing the constraint of integer edge weights in PSM, we
develop efficient, exact algorithms for these variants, which
are also used as stepping stones towards effective heuristics.
Notably, we show that both algorithms for these PSM variants
take O(]S|) time using O(]S|) space. See Section VIL

4. We develop three O(|S|)-time heuristics for PSM based on
theoretical insight: (I) The MSH heuristic constructs a feasible
solution to PSM to obtain a graph of maximum size. It works
remarkably well for input graphs with large multiplicities and
is the most efficient. (II) The FSH heuristic solves the PSM
variant with real edge weights, obtaining a graph of fixed
size, and then performs a linear-time rounding to construct a
feasible integer solution to PSM. FSH is slightly less efficient
in practice but much better in terms of utility. (III) The ASH
heuristic solves the PSM variant with real edge weights to
obtain a graph of arbitrary size based on a linear programming
(LP) formulation, and then performs a linear-time rounding to
construct a feasible integer solution to PSM. ASH is slightly



worse than FSH in terms of utility, but it is more efficient and
it does not require the size of the graph obtained by the PSM
variant as an input parameter. See Section VIIIL.

5. We conducted experiments with publicly available, real-
world, large-scale datasets showing that our heuristics: (I)
produced near-optimal solutions; (II) outperformed the classic
mechanisms in terms of utility (e.g., they incurred up to
9.9 times lower JS divergence [28]); (III) were substantially
more efficient than these mechanisms (e.g., they required a
few seconds to protect billion-letter strings, when existing
mechanisms did not terminate within 24 hours); and (IV)
incurred insignificant or no utility loss in frequency-based
mining tasks, unlike these mechanisms. See Section IX.

II. TEASER: FREQUENCY-BASED MINING TASKS

We show the applicability of our methods in frequent pattern
mining and in frequency-based clustering. Our methods offer
rigorous privacy, near-optimal utility and are highly scalable.

Example 1. We constructed the order-3 dBG of the full
human genome, whose length is about 3 billion letters [1].
We applied FSH on the sequence M that represents the dBG,
with € = 0 = 0.0001, and then produced an (¢, §)-DP multiset
E. The set of frequent length-k substrings mined from F
and E with the smallest possible relative frequency threshold
7 = 0.0022 is identical, implying no utility loss for frequent
pattern mining. Furthermore, the normalized multiplicities of
edges in ¥ and E are almost identical (see Fig. 2), implying
insignificant utility loss for other frequency-based mining
tasks. Since the nodes of G are knkon, we can also publish an
(e, §)-differentially private graph G(V, E) whose normalized
edge multiplicities are almost identical to those of G(V, E).
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Fig. 2: Normalized multiplicities (in descending order) in an order-
3 dBG of the full human genome [1] and in a (0.0001,0.0001)-
differentially private order-3 dBG, constructed using FSH and MES.

Example 2. We constructed the order-k dBG for every
sequence S; in a benchmark collection of DNA sequences.
We solved PSM on every sequence M; of multiplicities
representing the dBG of sequence S;, and produced an (€,0)-
differentially private ;. We then constructed two phylogenetic
trees: one based on the original multiplicities; and another one
based on the differentially private ones. The trees represent
clusterings of the collection and were constructed using the
methodology in [25]. We then measured how similar the trees
are with the well-established normalized Robinson-Foulds
(nRF) distance. As can be seen in Fig. 3, for varying € = §, our
methods resulted in very similar trees to those constructed over
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Fig. 3: nRF distance vs. e = ¢ (a) k = 3 and (b) k = 4.

the original sequences (nRF was very low), unlike the Laplace
(LAP) and Gaussian (GAU) mechanisms. The mechanism
based on randomized response performed worse than GAU
and thus was omitted. We include more details in [2].

III. BACKGROUND AND RELATED WORK

Strings. An alphabet ¥ is a finite non-empty set whose
elements are called letters. A string is a sequence of letters
from . We fix a string S = S[0]S[1] - - - S[|S| — 1] of length
|S| over an ordered alphabet .. By S[i..j] = S[i]---S[j]
we denote the substring of S starting at position ¢ and ending
at position j of S. A substring S[i..j] is called a prefix if
i =0; it is called a suffix if j = |S| — 1.

de Bruijn Graphs. We fix an integer £ > 1. Given S and k,
the de Bruijn graph (dBG) of order k, over a given string .S
of length |S|, is a directed multigraph G = (V, E), where V
is a set of nodes and F is a multiset of edges (i.e., of ordered
pairs of nodes). V' is the set of length-(k — 1) substrings of
S. The multiplicity of an edge (u,v) € E is the number of
occurrences of the pair (u, v) in the multiset E. The cardinality
|E| of E (ie., the sum of edge multiplicities) is referred to
as the size of G. G contains an edge (u,v) with multiplicity
My, if and only if the string u[0] - v is equal to the string
u - v[k — 2] and these strings occur exactly m, , times in S.
Thus, |E| = |S| — k + 1. Let s and ¢ be the nodes of G
corresponding, respectively, to the prefix and to the suffix of
length k—1 of .S. The string .S corresponds to an Eulerian path
in G that starts at s and ends at ¢ # s (if s = ¢, it corresponds
to an Eulerian cycle starting from s); see Fig. 1. The graph G
may contain other Eulerian paths (resp., cycles).

Differential Privacy (DP). DP [15] is a rigorous, well-
established privacy principle which ensures that the output of
a mechanism (algorithm) is not strongly dependent on any
element of an input dataset. A relaxation of DP often leading
to enhanced utility is (e, d)-DP [15], defined as follows. A
randomized mechanism f : D — R gives (¢, §)-DP, if for all
neighboring datasets D and D’ in domain D and all R C R,
Pr[f(D) € R] < e°-Pr[f(D’) € R] + 0, where € € (0,0)
and ¢ € [0, 1] are real numbers and e is the base of the natural
logarithm. (e, §)-DP is equivalent to pure e-DP when 6 = 0.
With 6 > 0, there is a small probability that e-DP fails.

We consider two dBGs G = (V, E) and G’ = (V’, E’) to be
neighboring if V.= V"' and there exist two nodes u*,v* € V
such that £ = E' J{(u*,v*)} or E' = EJ{(u*,v*)}. The



multiplicities of those neighboring graphs thus follow: m,, , =
my, , for (u,v) # (u*,v*) and My« oo — My | = 1.

DP in String Data. There are several works for enforcing
DP on a collection of strings [13], [12], [9], [37], [38]. These
works output a synthetic collection of strings [13], [12], or
analysis results obtained from the input collection [9], [37],
[38]. Since these works adopt DP to protect the presence of
any individual string in the input collection of strings, they are
inapplicable to our setting which calls for protecting length-%
substrings of a single string.

DP in Graph Data. A number of studies apply DP to protect
edges (i.e., nodes are considered public), while releasing
aggregate graph statistics [31], [21] or generating synthetic
graphs [33], [24], [34]. We aim at publishing a dBG, so we
describe the latter in detail. [33] is set in a decentralized
environment where each data owner only sees part of the
graph. It is thus inapplicable to our problem setting where
the data owner has access to the entire graph. [24] addresses
privacy in releasing attributed social graphs where attributes
such as age and gender are attached to nodes. [34] proposed
to first analyze degree correlation statistics, i.e., dK-graphs,
with DP, and then generate synthetic graphs according to the
statistics. While [34] may preserve the structural information
in the input graph, it is likely to introduce fake edges. Also,
unlike most existing studies that work with undirected social
network graphs, we release a truthful, directed graph.

IV. CLASSIC DP MECHANISMS & THEIR LIMITATIONS

A Classic DP Problem. A pair of nodes v and v in V of G
is called feasible if u[0] - v = u - v[k — 2]. For instance, in
Fig. 1, edges (ab, ba) and (aa, ab) are feasible. A feasible
edge (u,v) is called true if its multiplicity m,, , in G is larger
than zero and fake otherwise. Let F' = (f1,..., fir|) be the
sequence in which f; is the multiplicity of the feasible edge @
in G and 7 represents the lexicographic rank in the set of feasi-
ble edges. It can be seen that I represents a classic histogram
query [15], where each f; counts the number of occurrences
for the ¢-th feasible edge. Therefore, for neighboring graphs
Gand G, |[F—F'| =1and ||F — F'|l]2 = 1 as F/ and
F' differ only in one element by one. Thus, we can enforce
DP on F' by classic mechanisms for publishing histograms,
such as Laplace or Gaussian [15]. In [2], we discuss these
mechanisms in detail and also discuss our MERR mechanism,
which is based on randomized response [26].

Limitations. The aforementioned classic mechanisms and the
advanced approaches for histogram publication that are built
on top of those mechanisms (e.g., [21], [36]) have a common
significant drawback in our context: they need to consider and
perturb all feasible edges (i.e., both true and fake feasible
edges) in G. The drawback stems from the fact that the number
of true feasible edges is often much smaller compared to that
of feasible edges, i.e., |M| < | F|, where M is the sequence of
edge multiplicities. To highlight this drawback in our context,
we draw a novel connection between fake feasible edges in
dBGs and minimal forbidden words [6].

A minimal forbidden word of S is a string w that: (I) does
not occur in S; and (II) all its proper substrings occur in S.
For instance, string w = abc is a minimal forbidden word of
S = cbccbceab over ¥ = {a,b, c} because: (I) abc does
not occur in S; and (II) a,ab,b,bc,c do occur in S. For
a fixed k, a string w with |w| = k is a minimal forbidden
word of S if and only if u = w[0..%k — 2] is a node of G,
v=w[l..k—1]is a node of G, but (u,v) is not in E. In our
instance, ab and bc are in V but the edge (ab,bc) is not in
E, thus it is a fake feasible edge.

The consideration of feasible edges imposes a computa-
tional efficiency challenge. The number of true feasible edges
is upper bounded by |S| — k + 1 = O(]S|). However, the
number of minimal forbidden words of length k of S, and thus
the number of fake feasible edges, is in O(|X]||S|), and this
bound is tight for sufficiently large || [6]. When |X| = ©(|5])
the bound becomes quadratic, and thus it takes quadratic time
to enumerate feasible edges. Thus, the time complexity of
Laplace/Gaussian becomes quadratic in |.S| and that of MERR
even larger by a multiplicative factor of |S|—k+1, as | S|—k+1
randomized trials are performed for each feasible edge [2].

A large number of fake feasible edges (i.e., many elements
with multiplicity zero in F') imposes also a utility challenge:
Laplace, Gaussian, and MERR mechanisms report positive
multiplicities for fake feasible edges, and when the number of
fake feasible edges is large the utility loss of these mechanisms
is excessive; inspect Example 3 in this regard.

Example 3. Let S be a natural language text. Let £ = 3
and the following three 3-grams occurring in S: London 1is
crowded, Food is spicy, and She is nice. Then,
we have 2-gram nodes: London is, is crowded, Food
is, 1s spicy, She 1is, and is nice. We thus have the
following feasible edges in the graph below (fake feasible
edges are in red). Clearly, we observe a larger number of
fake feasible than true feasible edges. While applying domain
knowledge in post-processing could eliminate some fake fea-
sible edges, e.g., Food is crowded, it may not eliminate
all of them, e.g., London is nice.

London is Food is She is In real natural language
i datasets, the large number

of distinct words implies a
huge number of fake fea-
sible edges, which are not
only prohibitively expensive to enumerate but would also
yield significant noise in the outcome of the aforementioned
mechanisms. For instance, both the number || of distinct
1-grams and the length |S| for the natural language datasets
from Wikipedia [3] and Yahoo [4] we used in our experiments
are in the order of millions, implying that the number of fake
feasible edges may be up to billions, which greatly surpasses
the number of true feasible edges.

Even in datasets over a small alphabet, the problems result-
ing from fake feasible edges remain. In Table I, we present
the number of edges that are true feasible, fake feasible, and
feasible in the order-k£ dBG of the full human genome [1] that

is crowded is spicy is nice



k # true feasible # fake feasible # feasible # fake feasible /
’ H edges edges edges ‘ # feasible edges (%)

10 1,048,576 0 1,048,576 0

11 4,193,336 968 4,194,304 0.0231

12 16,611,188 158,569 16,769,757 0.946

13 62,327,333 3,619,419 65,946,752 5.488

14 202,881,636 36,453,528 239,335,164 15.231

15 547,221,045 167,419,132 714,640,177 23.427

TABLE I: Number of true feasible, fake feasible, and feasible edges
in the order-k dBG of the DNA dataset [1], for k € [10, 15], as well
as the percentage of fake feasible to feasible edges in the same dBG.

has alphabet size 4, for all k& € [10, 15]. We used the optimal
O(]X||S])-time algorithm of [7] to make this computation. The
percentage of fake feasible edges when k increases is more
than 23% of the total feasible edges, even though |X| = 4.

V. MES MECHANISM AND PSM PROBLEM

MES Mechanism. MES overcomes the limitations of the
classic DP mechanisms, as it considers only true feasible
edges. Thus, it is significantly faster and improves utility. MES
is inspired by the DP mechanism of [22], which cannot be
readily applied in our setting, as it protects a user’s record

(set of query-url-count tuples) in a collection of records.

Given the input graph G = (V, E), MES operates on the
sequence of edge multiplicities M = (mq,...,m,) extracted
from F, which is often significantly shorter than the sequence
of feasible edge multiplicities F'. MES requires the sequence
of edge multiplicities X = (z1,...,2,) in the output graph
G(V, E) to satisfy the following constraints:

( i ) <e, for i € [1,n] (1)

mqi; — 1

1— <L_1> <6, foriel,n] )
mq

r; €7, for i € [1,n] 3)

where e is the base of the natural logarithm.

Given X that satisfies the above constraints, MES uniformly
at random samples edges from the input graph, i.e., from
E, to produce an (¢,0)-DP E (see proof of privacy below).
Specifically, let (u,v) be an edge with multiplicity m;. MES
views (u,v) as a set of m; edges each having multiplicity
1 and samples x; of these edges uniformly at random. As
a simple example, consider edge (u,v) with multiplicity
m = 3, which accounts for three different occurrences of ab
in input string S = abaabaab. Suppose x = 1 satisfies the
constraints abgve, onr some € and § values. The output F,
or the graph G(V, E), would contain one randomly sampled
occurrence of ab, i.e., the multiplicity of (u,v) in E is 1. Note
that we only consider edges in the input graph with multiplicity
m; > 2. For edges with m; < 2, the solution of z; is trivial,
i.e., only x; = 0 would satisfy the constraints.

Theorem 1. By imposing the constraints in Egs. 1 to 3, MES
satisfies (€,8)-DP.

Proof. Assume two neighboring graphs G(V, E), G'(V', E’),
with V = V' and E = E’|J{e}}, and that e} is a single
edge with multiplicity 1. Let X be a feasible sequence of

output multiplicities for £2. We partition the space of all output
graphs R into R; and Ro, where R, represents all outputs
containing the edge e; and R, represents those which do not.
Since E’ does not contain e}, Pr[MES(E’) € R4] = 0. On the
other hand, outputting e for E is equivalent to sampling e}
at least once among z; independent trials, and it occurs with
probability Pr[MES(E) € R4] = 1 — Pr[&], where € is the
event “e; is not sampled in any trial”. In the following, we
compute Pr[€]. The probability of the event “e} is sampled in
a trial” is % since we sample uniformly at random. Thus,
the probabilify of the event “e} is not sampled in a trial” is

1—-L = m=l Since the ; trials are independent, Pr[€] =
(mi=L)ei Thus,
m; — 1 .
PHMES(E) € Ry] =1 — (M Lym <5 (4
m;

The inequality holds due to Eq. 2. Let us now consider any
output r € Ry. We have that:

Pr[MES(E') = 7] _Pr[MES(E’) € Ro]
Pr[MES(E) =7] Pr[€]
1 —Pr[MES(E') € R4}
N Pr[€]
1-0 m; x; €
" o) s O
The last inequality holds due to Eq. 1. Similarly, the same
bound can be proved for E' = E | J{e}}.

Last, we show that for £ and E’ and any subset S of R,
(¢,0)-DP holds. Let S = S U Sa, where S; = SN R4, and
Sy = S NRy. We have that

Pr[MES(E’) € S] = Pr[MES(E’) € S1] + Pr[MES(E’) € S-]

< 0+ e“Pr[MES(E) € Sb]
< e‘Pr[MES(E) € S] + 6,

so (€,0)-DP holds. The first inequality holds from
Pr[MES(E’) € R4] = 0 and Eq. 5. The second inequality
holds from Pr[MES(E’) € S,] < Pr[MES(E’) € S], since
Sy C S, and from 6 > 0. ]

For simplicity, we introduce v = min(e, In(725)). The
sequence X of MES consists of integers z; satisfying Eqgs. 1
and 2: z; € [0, |7 - (In(=2:))~!]]. This is because solving

m;—1
Egs. 1 and 2 for z;, gives z; < e - (ln(mle))_l and
z; < In(1L5) - (ln(m’?il))’l, respectively, and combining
them gives z; < min(e, In(125)) - (In(;25)"" = 7 -
(1n(%))_1. Due to Eq. 3, the following also holds:
.
i< ly-( “)THL 6
5 < by (=) ©

Note that each single edge of GG corresponds to an occurrence
of a length-k substring of S. Thus, it is natural to consider
x; < my, for all ¢, i.e., to sample a subset of occurrences. Fur-
thermore, a small z; would likely satisfy Eq. 1, as (;;"7) > 1.
To ensure that x; < m;, for all 4, we require v < 1.

Lemma 1. When v < 1, z; < m; holds for each x;, i € [1,n).

We include all omitted proofs in [2].



PSM Problem. PSM aims to find a useful sequence X for
frequency-based mining tasks that can be used by MES.
Problem 1 (PSM). Given a sequence M = (my,...,m,) of
n integers, such that each m; > 2, i € [1,n], along with a
real number v < 1, find a sequence X = (x1,...,2,) SO as
to minimize

Li(M,X)=

T
| |
Z Z]e [1,n] T Zje[l,n] Tj

i€[1,n]

subject to:

M zi <v-(In(z25)) 7", for all i € [1,n],

() z; € Z>o, for all i € [1 n| (Integer _edge multiplicities), and
[ .. (1,n) i = 1 (Nonempty graph G).

We require the sequence X to have a minimal normalized
L, distance from the sequence M = (my,...,m,) of multi-
plicities that represents the edge multiset £ of the input graph
G. We also require X to be the non-zero sequence and thus G
to be nonempty (Constraint III), so that the objective function
L1(M, X) is defined. Note that requiring v < 1 is equivalent
to requiring e < loré < 1—% (this follows from the definition
of ~y), which is aligned with our goal of providing strong (¢, 0)-
DP. Last, note that we only need to solve PSM for edges with
multiplicity m; > 2. As discussed before, MES sets z; = 0
for every other edge (if any) and then produces an (¢, §)-DP
E, or, equivalently, an (e,8)-DP graph G(V E)

VI. EXACT ALGORITHM FOR PSM

Our EXACT-DP algorithm is founded upon two crucial
observations: (I) PSM for a graph G of fixed integer size
¢ =2 jepn,n i and x; € Zxo, for each j € [1,n], can be
solved exactly using dynamic programming. (II) The size of G
is no larger than that of G (due to Lemma 1), which is no larger
than the length of string S. Thus, PSM can be solved optimally
in polynomial time in |S|, by applying dynamic programming
for all possible integer (’s and selecting the solution X with
the minimum normalized L distance to M.

We first outline the dynamic programming procedure for
fixed ¢ and then our EXACT-DP algorithm.

Algorithm for Fixed (. The main idea is to fillup a ((+1)xn
dynamic programming matrix A in which cell A[é][j] stores
the optimal cost of a partial solution (x1,...,x;) of size
1 + ...+ x; = 4. This cost is computed by considering
all ways of constructing the partial solution from a partial
solution (x1,...,2;-1) and size ¢ — r and an element z;
(partial solution of length 1) of size r, for each r € [0,].
Specifically, we implement this in the following steps:

1. Let f; = ni Fill a (¢ + 1) x n matrix A as follows:

o 0-th row 1n1t1ahzat10n. For j € [0,n — 1], entry A[0][/]
contains the cost of assigning (x1,...,x;) (i.e., the first
j elements of X) to zero, which is computed by:

A)] = {Zrem frons Gelm—2

o0, otherwise

The cost is oo for assigning all n elements of X to zero,
since this violates Constraint III of Problem PSM.

e 0-th column initialization: For ¢ € [1,(], entry A[¢][0]
contains the cost of assigning x1 = ¢, which is computed

by:
— 4, de1,¢] i<y (In(Z))-t
Ali[0] = i — ¢l i [1,¢] isy (n(m;;l))i1 .
00, i€ [1,(] :z>’y'(ln(m1_1))
The cost is oo when x; = ¢ violates Constraint I of

Problem PSM.
« Filling up all other entries: For i € [1,(], j € [1,n —
1], entry A[é][j], contains the optimal cost of assigning
(x1,...,2;), so that lel x; = i, which is computed
by:

Alilly] =

r
Jmin (Al = rllj =1+ e = 2l
if there is r € [0,4] such that r < = - (ln(%))_1
and by A[i][j] = oo, otherwise. The cost is computed
as the minimum of all possible costs for assigning
(#1,...,2;-1) and z; so that Y J_,a; = 4, when
Constraint I of PSM is satisfied. When this constraint
is violated the cost is oo.

2. Fill an auxiliary (¢ 4+ 1) x n matrix B as follows:

. Bl0][j] = {fff - itEeE(v)Ji:e_ 2] , for j € [1,n].
den =1, ie[1,¢ i < (In(2)) T
o B[i][0] = 00, ie[l,(] :i>'y~(ln(mqli1))—1 )
for i € [1,¢].
<T*7i_ T*>7 e arg mian[O,i]{A[i - T] [J - 1}
o +|fi+1 — 1}, if there is r € [0, 1]
o Bli[j] =

such that r < - (ln(w:"ﬂ1 )
00, otherwise
forie[1,¢],j€[l,n—1].

Each entry B[i][j] corresponds to Afi][j] and contains the
value of the j-th element of X that has optimal cost, and a
pointer to the next entry of B that will be followed during
backtracking in Step 3 below.

3. Construct X by following a standard backtracking proce-
dure starting from B[(][n — 1]: If B[¢(][n — 1] = oo, report
FAIL, since PSM has no solution for the given (. Otherwise,
set 2, = B[¢][n—1].1 and backtrack to B[B[(][n—1].2][n—2],
where .1 and .2 denote the first and second element of the tuple
in B[¢][n — 1], respectively. The process continues similarly,
until reaching an entry B[i][0], ¢ € [0, (]. At this point, we set
x1 = BJi][0].1 and return X.

Lemma 2. The dynamic programming procedure for fixed (
solves exactly PSM with fixed ¢ in O((?n) time using O(Cn)
space.

EXACT-DP Algorithm. The minimal value of ZZ€ 1,n] Ti
is 1 (due to Constraint III of PSM) and its max1ma1 value
is el (ln(mrzil))’lj (this follows from Constraint
I of PSM). We thus solve PSM by executing the dynamic
programming procedure for every integer ¢ € [1, Zie[l’n] |y

(1n(%))_1j] and returning the solution with the minimum




cost. This is precisely EXACT-DP. Note that, using the maxi-
mal ¢ value does not necessarily minimize L; (M, X), as this
function is not monotonic with respect to ¢ '.

Time and space complexity of EXACT-DP. While in general
Sienmly - (In(325)) 7" is unbounded, in PSM it is
polynomial in |E| Zze[l’n] m;, the size of G, as shown
below. Specifically, Lemma 1 leads to the following corollary.

Corollary 2. For v <1, > | |v- (In(z25)) '] < |E|.
Corollary 2, in turn, leads to the following result.

Theorem 3. PSM can be solved in O(|E[*) time using
O(|E|?) space.

Since for any string S we have n < |[E| = |S| -k +1 =
O(]S|), EXACT-DP takes O(|S|*) time and O(|S|?) space.

VII. EXACT ALGORITHMS FOR PSM WITH REAL EDGE
WEIGHTS

As EXACT-DP is impractical for large-scale input datasets,
we relax the requirement that solution X is comprised of
only integer values. We develop exact algorithms for when
X may be comprised of real values. Our results here are of
independent interest: one could consider a graph G consisting
of a set of edges with real weights instead of a multigraph.

Algorithm for Fixed (. Consider a PSM variant with a fixed
output graph size ¢ = Y., x; and z; € R>, for each i €
[1,n]. We refer to this variant as PSM,. Clearly, the objective
function of PSM¢ is Y i, |Z;~Zim - i | fi— 2
if we define f; = ﬁ
An exact, linear-time algorithm for the PSM¢ variant is
provided in Algorithm 1. The intuition is as follows. Let a; =
(ln(%))_l. We classify the n items into two types,
dependlng on the minimum between «; and ¢ - f;. For all
items of the first type, we set x; = «;. For all other items,
we set ©; = (- f;, as this leads to |f; — %| = 0. Notice
that this solution is infeasible, since Y ., ; < (. Thus, we
distribute any remaining budget b = ¢ — Y. | z; over items
of the second type, i.e., until  is reached, but not exceeded,
and without violating the constraints z; < a;.

)

Theorem 4. FIXED-SIZE-LINEAR solves PSM¢ in O(n) time
using O(n) space.

EXACT-LP Algorithm. Specifying ¢ is generally useful (e.g.,
to control the size of graph G). Yet, it is not necessary in
applications, such as in frequent pattern mining or frequency-
based clustering, where high accuracy is achieved by simply
preserving the normalized multiplicities of edges. We thus
propose an algorithm, referred to as PSM;.,, which solves
the variant of the PSM problem with real edge weights.

Our algorithm is based on a linear programming (LP)
formulation of the problem. We obtain the LP in two steps.
First, we use the Charnes-Cooper transformation [10] on

To see this, note that for M = (2,2) and X1 = (1,0), X
X3 = (1,2) with sizes |X1| < |X2| < |X3|, L1(M, X,
Ll(M X2) =0< Ll(M Xg)

Algorithm 1 FIXED-SIZE-LINEAR

1: for each i € [1,n] do

2 ; <—'y~(ln(m711))’1

3 x; 4 min{¢ - fi,a;}

4 A—{i | ai <C- fi} > Items of first type
5: b (— (ZiEA @i+ C D eqn A fl) > Budget b
6
7
8

: foreachi e {1,...,n}\ A do > Items of second type
ifOéi—C-fi < b then
: T < Q4
9: b+b—(as —C- fi)
10: else
11: T+ x; +0b
12: break
13: return X < (z1,...,2n)

the objective function > . | |f; — ‘T7| of PSM, where

fi = STy sw—. Specifically, we 1ntr0duce a new variable
Yo = Z; Due to Constraint III in PSM, yq is always

defined. This leads to the following formulation:
min - 375 |fi = i - ol (7)
st Yo gy =1 (7b)

m; - .

xi~y0§7-(ln(mi71)) Yoye,ie[l,n]  (Tc)
Yo € R>o (7d)
xT; € RZO’ S [1, TL] (7e)

Eq. 7b is due to the introduction of yo and Eq. 7c is by
MES. Next, we prevent the quadratic term x; - yo in Eq. 7a,
by substituting z; - yo with y;. Since yo > 0, we obtain:

min - Y70 [fi — yil (8a)
st Yy =1 (8b)
ms
< . ) -1, .
yi < (ln(mi — 1)) Yo, 1€ [1,n] (8¢)
Yo € R>o (8d)
Yyi € Rxo, i€l,n]. (e

At this point, we observe that the resulting LP has a trivial
solution. Indeed, we set y; = f;, for each i € [1 n], and
choose an arbitrarily large yo > max;ep o {y;- In(-25 )y}
so that Eq. 8c holds. The solution of this LP is comprlsed
of yo,...,Yn. We obtain X = (z1,...,2,) by setting z; =
yi/yo. For example, using yo = max;c (1 nj{yi-In(525)v"'}
leads to the largest output graph with the optimal L, distance
of zero. The resulting algorithm is referred to as EXACT-LP.

Theorem 5. EXACT-LP solves PSM,,,; in O(n) time using
O(n) space.

VIII. HEURISTICS FOR PSM

We present three heuristics for PSM, which are motivated
by the inability of EXACT-DP to scale to large datasets.
Maximum Output Graph Size Heuristic (MSH). MSH

returns X = (|y- (In(;;™5)) "', [y (In(22)) ), a




, is as large

feasible solution to PSM where each z;, i € [1,n]
) time to read

as possible. Our heuristic takes O(n) time: O(n
the input of PSM and O(n) time to output X.
MSH works well for graphs with large multiplicities be-
cause, for two sufficiently large multiplicities, say m; and mo
such that my & ma, we have In(;"7) ~ In(;;227). This is
because the derivative - ln(w 1) = —ﬁ goes to 0 for
sufficiently large . Thus - ln(ml SRy In(2 =)L
For instance, let v = 0.5, my 999, and my, = 1001.
We have In(;;7) = 0 0010015 and In( ”““1) = 0.000999,
and thus z; = 499 and zo = 500. Since T1 ~ w2, their
corresponding frequency in X will also be approximately
the same: x/370 [y - (In(75) 7' ~ 22/ 30 |y
a“fﬁwéham|zp%j_zgmmﬁ$mﬂﬂN
|E e T ST (ln( Ty 1J\.When many m;’s are large

and similar, the latter will hold for many x;’s, L1 (M, X) will
be small, and MSH will perform well. This is enhanced by the
fact that L1 (X, M) is mostly affected by large multiplicities.
Fixed Output Graph Size Heuristic (FSH). We apply the
linear-time FIXED-SIZE-LINEAR algorithm and transform its
solution X to a solution X’ of PSM, in linear time, by
applying the following rounding scheme to each z;, i € [1,n]:

mg
mi—l

= 2], if [o] —2: < © a

<3 G

10)

nd [z;] <~ - (In(

x; = |x;], otherwise.

Note that each x} satisfies Constraint I in PSM, either because

of Eq. 9 or because x; already satisfies Constraint I and setting
x} as in Eq. 10 implies =} < x;. In our experiments, we show
that ¢ can be configured to produce a large graph with good
L, distance and also investigate the impact of ¢ on utility.

Arbitrary Output Graph Size Heuristic (ASH). In ASH, we
apply the linear-time EXACT-LP algorithm by setting y; = f;
and then yo = = maig( ) 1{yi - In(-25) - 41}, Since the
values of z; = y;/yo in the output of the algorithm are
generally not integers, we employ the (linear-time) rounding
of Egs. 9 and 10 to obtain a feasible solution X’ to PSM.

IX. EXPERIMENTAL EVALUATION

We evaluated the effectiveness and efficiency of our heuris-
tics by comparing them to our exact algorithm (EDP) and to
the classic mechanisms of Section IV.

Data. We used three large datasets: (I) The full human genome
v. hg38 (HUM) [1]. (II) Wikipedia N-grams (WIK) [3],
which was extracted from the corpus of the entire English
Wikipedia. (III) Yahoo! N-grams, v. 2.0 (YAH) [4], which
was extracted from a corpus of 14.6 million documents. Each
element in WIK (respectively, YAH) is a k-gram (i.e., a
true feasible edge) with k € [4,7] (respectively, k € [3,5]).
We also used a smaller dataset on which EDP could run
in a reasonable amount of time: the complete genome of
Coronavirus (COR) [5], extracted from a patient in Australia.
Table IIa summarizes characteristics of the datasets we used
and Table IIb shows parameter values we used. Note that
strong DP would require § < ﬁ However, we used larger ¢

values which are comparable to or stricter than those in other
DP works (e.g., [22], [23], [29]) to trade-off privacy for utility.

Dataset [[ Alphabet size [ dBG order k |

Edge multiset size |E| |

HUM 1 [3,15] (11) 2,937,639,113-k+1 (2,937,639,103)

WIK 4,908, 001 4,7] (5) [2.05 - 10%, 5.26 - 10°] (3.3 - 10°)

YAH 3,475, 482 3,5] (5) [2.9-10%, 1.74 - 10°] (2.9 - 10%)

COR 1 3,5] (4) {29890, 29891, 29892} (29891)
(a)

Dataset [[ ¢ = § = v = min(e,In(315)) [ Relative frequency threshold 7 |
HUM [107°,0.3] (0.01) [5-107°%,5-1077 (5-10~%)
WIK [0.001,0.5] (0.01) [5-107%,5-10"° (5-10°5)
YAH [0.001, 0.5] (0.01) [10°°,107%] (6-10"5)
COR [0.01, 0.1] (0.05) Not used

(b)
TABLE II: (a) Dataset characteristics. (b) Values of parameters for
each dataset (default values are in bold).

Experimental Setup. We evaluated data utility based on:
(I) The similarity between the normalized multiplicities of
edges in G and G, which is captured by L, distance, or
by JS divergence (JSD) [28]. L1 = 0 or JSD = 0 implies
no accuracy loss in frequency-based mining tasks. (II) The
accuracy of frequent length-k pattern mining captured by the
F1 score (a.k.a F measure). Given a threshold 7 € [0,1],
let Fg (resp., F and FG,é) be the number of edges with

normalized multiplicity at least 7 in G (resp., in G and in

~ __ 2:-Prec-Rec _ [eRe]
both G I;and G). F1 = ProctRec> where Prec = = and
Rec = ; ¢ F1 =1 implies no accuracy loss. To stress test

our methods we used rather small values of 7 (see Table IIb).

We compared our methods (all using MES) against the
Laplace (LAP), Gaussian (GAU), or MERR mechanisms. As
discussed in Section IV, these mechanisms have to operate on
all feasible edges, which negatively impacts both their utility
and efficiency. In our implementation, we rounded the output
of LAP and GAU to the closest integer and replaced negative
values with 0 and values larger than |F| with |E|. We report
the average result over 1,000 runs of each mechanism.

We do not report results for LAP and GAU on WIK and
YAH because these mechanisms did not terminate within 24
hours. The reason is the enumeration of fake feasible edges
that was too costly, due to the large alphabet of these datasets
(see Section 1V). Even for HUM the enumeration took one
hour using [7], making LAP and GAU orders of magnitude
less efficient than our heuristics. We omit all results for MERR,
as it was the slowest and worst in terms of utility mechanism.

The default { in FSH was the one that led to the lowest L
distance after rounding, among all (’s satisfying ¢ = = - (nax,
where x is a real number in [0, 1] with two fractional digits and
Cmax = Doieqn g 17 - (In(575)) "] is the maximum possible
¢. We investigate the impact of ¢ on utility later.

All experiments ran on an Intel Xeon E5-2640@2.66GHz
CPU with 160GB RAM running GNU/Linux. Our code is
available at: https://bitbucket.org/string-dp/icdm-2021/.

Comparison with our Exact Algorithm. Our heuristics
produced near-optimal solutions substantially outperforming
the classic mechanisms (see Figs. 4a and 4b; results for JSD
were analogous (omitted)). LAP outperformed GAU, but it was


https://bitbucket.org/string-dp/icdm-2021/

always much worse than our heuristics. In these experiments,
there were no fake feasible edges; if there were, they would
lower the utility of the classic mechanisms only. As expected,
our heuristics were faster than EDP by orders of magnitude.
We also show in Fig. 4c that, for the HUM dataset and k = 3,
our heuristics substantially outperformed both LAP and GAU.
In this experiment, EDP did not finish within 24 hours.
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Fig. 4: L, distance vs. (a) y = ¢ =0, (b) k, and (¢c) vy = ¢ = 6.

Impact of ¢ on Utility. Fig. 5 shows how L; distance is
affected by the parameter ( used in FSH. We varied ( in
[0.1 - {imax, Cmax), Where the maximum possible ¢ is (nax =
Picim Ly (I ))~1|. Increasing ¢ improves L; distance
but up to one point, since L; distance is not monotonic with
respect to ¢ (see Section VI). Interestingly, there are relatively
large (’s (in [0.9, 1]) for which FSH achieves the best result
with these datasets. This implies that useful graphs of large
size can be produced. The results with respect to other utility

measures and datasets were analogous (omitted).
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Impact of v on Utility. Figs. 6 and 7 show the L; and JSD

values as a function of v (we set v = ¢ = §). We omit smaller

~ values from these experiments, as our heuristics performed
similarly for them, and show some large ~ values solely to
stress that our heuristics scale well with respect to utility.
Larger y led to better utility, due to the privacy/utility trade-
off. However, all our heuristics outperformed both LAP and
GAU in all cases; the difference increases with ~, as larger
v provides more room for optimizing utility. Our heuristics
performed similarly for v < 0.01, while FSH and ASH
outperformed MSH for larger . The reason is that, in the
former case, FSH and ASH set z; to 7~(ln(%))’1 for most
¢ values, which is similar to what MSH does as well (recall
that MSH sets each z; to |- (ln(%))_lj), whereas in the
latter case there were smaller multiplicities that are specifically
optimized by FSH and ASH (e.g., FSH sets x; = ( - f;

L1 Distance (logscale)

JSD (logscale)
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Fig-7:(a,b,c) JISD vs. y = ¢ = 6.

for each such multiplicity m;). As expected, FSH generally
outperformed ASH, since it specifically optimized L; distance
after rounding due to the selection of ¢, while ASH optimized
L, distance for the problem with real weights (i.e., without
considering the impact of rounding on L; distance). Also,
our heuristics incurred no accuracy loss in frequent length-
k pattern mining even for small ~, since the F'1 score was
always 1, unlike LAP and GAU (see Fig. 8a; the results for
the other datasets were analogous and have been omitted).
Impact of 7 on Utility. Figs. 8b and 8c show the F'1
scores for varying 7. The results suggest that our heuristics
permit accurate length-k frequent pattern mining and that
FSH generally outperformed ASH and MSH. Even MSH
performed very well; its scores were on average 0.9 and 0.8
for HUM and WIK, respectively. We report analogous results
for YAH in [2].

. MSH I LAP . MSH N LAP N MSH 1 ASH
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[ ASH
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Fig. 8: F'l vs. (a) v = € = & (F'1 for GAU was undefined for
v =0.001, as Fz = 0 (no edge was frequent in (7)), and (b, ¢) 7.

Impact of & on Utility. Fig. 9 shows the impact of & on utility.
A larger k leads to many edges with small multiplicities that
incur utility loss with respect to L; and JSD, as these measures
consider the multiplicities of all feasible edges. Our heuristics
substantially outperformed LAP and GAU. F'1 was mostly
affected by edges with large multiplicities, so all methods
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was undefined for k¥ = 12, as no edge was frequent in G).

performed similarly. Analogous results for WIK and YAH
are shown in [2].

Efficiency. Fig. 10 shows the impact of the size n of sequence
M on runtime. We used k = 15 (resp., k£ = 4) for HUM (resp.,
for WIK and YAH) and random subsets of the edge multiset £/
of each dataset (smaller subsets were contained in all larger
ones). All our heuristics scale linearly with n, as expected
by their O(n)-time complexity, and they are very efficient,
requiring less than 25 seconds to protect HUM whose length
|S| is about 3 billion letters (see Fig. 10a). MSH was the
fastest (since it fixes each x; to |- (1n(%))_1j), ASH was
slightly slower (due to rounding), and FSH was the slowest
(due to budget redistribution and rounding).
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