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Abstract. The global-in-time existence of classical solutions to the relativistic

Vlasov-Maxwell (RVM) system in three space dimensions remains elusive after

nearly four decades of mathematical research. In this note, a simplified “toy
model” is presented and studied. This toy model retains one crucial aspect

of the RVM system: the phase-space evolution of the distribution function is
governed by a transport equation whose forcing term satisfies a wave equation

with finite speed of propagation.

The authors thank Claude Bardos and François Golse who proposed this prob-

lem over dinner during the workshop “The Cauchy Problem in Kinetic Theory:

Recent Progress in Collisionless Models” which was held at Imperial College
London in 2015. That workshop was held in honor of Bob Glassey, to whose

memory this paper is dedicated.

1. Introduction. Let f(t, x, v) ≥ 0 denote the one particle distribution in phase
space of a monocharged plasma, where x, v ∈ R3 denote particle position and mo-
mentum, respectively, and t ≥ 0 is the temporal variable. Taking relativistic effects
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into account, but neglecting collisions among the particles, f satisfies the relativistic
Vlasov-Maxwell system:

∂tf + v̂ · ∇xf + (E + v̂ ∧B) · ∇vf = 0

∂tE = ∇∧B − 4πj, ∇ · E = 4πρ,

∂tB = −∇ ∧ E, ∇ ·B = 0,

 (RVM)

where

ρ(t, x) =

∫
R3

f(t, x, v) dv, j(t, x) =

∫
R3

v̂f(t, x, v) dv

are the charge and current density of the plasma, respectively, while

v̂ =
v√

1 + |v|2

is the relativistic velocity. Additionally, E(t, x) and B(t, x) are the self-consistent
electric and magnetic fields generated by the charged particles, and we have chosen
units such that the mass and charge of each particle, as well as the speed of light,
are normalized to one.

The rigorous study of the relativistic Vlasov-Maxwell system largely dates back
to the 1980s. A local-in-time existence and uniqueness result due to Wollman [14]
was followed by the conditional result of Glassey and Strauss [6], which to this
day remains the most significant step toward a complete existence and uniqueness
theory. In [6] it is shown that solutions of (RVM) remain regular so long as one
knows a priori that particle momenta are uniformly bounded in time. In other
words, if sup{|v| | ∃x ∈ R3 s.t. f(t, x, v) ̸= 0} < +∞, then the solution can be
continued to time t+h for some small h > 0. This condition has been shown to hold
for small [7] and nearly neutral [3] data, and also in lower dimensions [4, 5]. Using
Fourier methods, Klainerman and Staffilani [8] provided an alternative method to
prove the conditional result in [6]. Bouchut, Golse and Pallard [1] gave yet another
proof which relied on the so-called “division lemma”, which we use as well. More
recently, Luk and Strain [9] were able to improve the conditional result by weakening
some of the assumptions.

The problem of global existence in three dimensions remains elusive. It is for this
reason that attempts have been made to solve various toy models, in the hope that
those may provide further insight into the full problem. Prior to our efforts, two
related mean-field systems modeling resonance between a coupled wave equation
and a transport equation have been investigated. In particular, Gérard and Pallard
[2] considered the one-dimensional relativistic problem

∂tf + v̂∂xf + E∂vf = 0,

□E = ∂xρ,

}
where ρ(t, x) =

∫
f(t, x, v) dv as in (RVM). Similarly, Nguyen and Pankavich [10]

considered a related non-relativistic problem (also in one space and one momentum
dimensions)

∂tf + v∂xf +B∂vf = 0,

(∂t + ∂x)B = ρ,

}
with each arriving at global existence results under limited assumptions.

The purpose of this note is to prove a global-in-time existence and uniqueness
result for the following toy model of (RVM) kindly proposed to us by C. Bardos
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and F. Golse:
∂tf + v̂ · ∇xf − ∂tA · ∇vf = 0,

□A = (∂tt −∆)A = j,

}
(Toy)

with initial data f(0, x, v) = f0(x, v) that is smooth and compactly supported and
consistent data for A satisfying A(0, x) = A0(x) and ∂tA(0, x) = A1(x). Here, the
current density j(t, x) is given by

j(t, x) =

∫
v̂f(t, x, v) dv.

We note that (Toy) also couples a relativistic transport equation to a mean-field
model of particle interaction given be a wave equation. For this system the position
and momentum x, v can be taken in Rd for any d ≥ 1, though d = 3 is the primary
case of interest. Our main result, similar to the two previous results, considers the
case d = 1.

1.1. Main results. We prove local existence for bounded initial data and global
existence for initial data that is once continuously differentiable and compactly
supported.

Theorem 1.1 (Local existence). Suppose that (f0, A0, A1) ∈ W 1,∞

(R2) × W 1,∞(R) × L∞(R) with compact support, then there exists T > 0 such
that the Cauchy problem (Toy) has a unique solution

(f,A) ∈ W 1,∞([0, T )× R2)×W 1,∞([0, T )× R).
If we denote the maximal lifespan of the solution by T ∗, then T ∗ < +∞ necessarily
implies

lim sup
t→T∗

(
∥∂xf(t, x, v)∥L∞

x,v(R2) + ∥∂vf(t, x, v)∥L∞
x,v(R2)

)
= +∞.

Theorem 1.2 (Global existence). If (f0, A0, A1) ∈ C1
c (R2) × C1

c (R) × Cc(R),
then the Cauchy problem (Toy) has a unique global solution such that

(f,A) ∈ C1
c ([0,∞)× R2)× C1

c ([0,∞)× R).

The proofs of these theorems are contained within Sections 2 and 3, respectively.
Next, we provide a justification for the structure of (Toy) and discuss the funda-
mental issues in obtaining analogous results in three dimensions.

1.2. Justification of the toy model. As determined by classical theory, the elec-
tromagnetic field (E,B) in (RVM) is derived from potentials φ and A that are given
by

E = −∇φ− ∂tA, B = ∇∧A.

In the Lorenz gauge, Maxwell’s equations further reduce to the system of wave
equations for the associated potentials, namely

□φ = ρ, □A = j.

It is therefore evident that the simplified model (Toy) is obtained from (RVM) by
neglecting the potential φ and assuming that A is irrotational, i.e. ∇ ∧ A = 0.
These are not physically justifiable assumptions, yet they reduce (RVM) to a sim-
plified system that still retains the main obstacle preventing us from proving global
existence: the interplay between the Vlasov equation (which is a transport equation
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describing the evolution of particles in the system) whose speed of propagation has
no a priori bound, and the wave equations governing the fields which propagate at
a constant and finite speed (normalized to c = 1 here).

An important feature of the system (Toy) is that it has a natural energy. While
this conserved quantity is not used in the present note, it is an aspect of this
toy model which makes it a natural ‘sibling’ of (RVM). Indeed, multiplying the

transport equation by v0 :=
√
1 + |v|2 and integrating in phase space, one easily

finds that the quantity

EToy :=

∫∫
v0f(t, x, v) dv dx+

1

2

∫ (
|∂tA|2 + |∇A|2

)
dx (Energy)

remains constant in time. In particular, we note that performing this same operation
within the previously studied toy problems does not appear to produce a conserved
energy.

It is also illuminating to compare (Toy) with the Vlasov-Poisson system, which
is the classical limit of the (RVM) system as the speed of light tends to infinity [12]:

∂tf + v · ∇xf −∇φ · ∇vf = 0,

−∆φ = ρ.

}
(VP)

The two systems – (VP) and (Toy) – are very similar, though the former features
classical transport, while the latter is relativistic. The most important distinction
arises in the equation for the potential, which is elliptic in (VP) and hyperbolic in
(Toy). Additionally, we note that the conserved energy is a crucial ingredient within
some of the known proofs [11, 13] of global-in-time existence for smooth solutions
of (VP). Hence, one may expect (Energy) to be similarly important to the study
of (Toy) in three dimensions.

2. Local existence and uniqueness. We first establish the local-in-time exis-
tence and uniqueness result using a fixed-point argument similar to [2].

Proof of Theorem 1.1. Since the initial data is assumed to have compact support,
we can fix R > 0 and M > 0 such that f0 ∈ Cc((−R,R)× (−M,M)).

Definition 2.1 (The Set BT ). For a given T > 0, we define BT to be the set of
functions g ∈ W 1,∞([0, T ]× R2) that satisfy

(H1) g(0, x, v) = f0(x, v) and ∥g∥L∞([0,T ]×R2) ≤ ∥f0∥W 1,∞(R2);
(H2) supp g ⊂ [0, T ]× (−R− 1, R+ 1)× (−M − 1,M + 1);
(H3) ∥g∥Lip ≤ 3∥f0∥W 1,∞(R2), where

∥g∥Lip := sup
t∈[0,T ]
x,v∈R

h=(h1,h2) ̸=0

|g(t, x+ h1, v + h2)− g(t, x, v)|
|h|

;

(H4) ∥∂tg∥L∞([0,T ]×R2) ≤ 3∥f0∥W 1,∞(R2)(2 + ∥A0∥L∞(R) + ∥A1∥L∞(R)).

When endowed with the metric d(g1, g2) := ∥g1 − g2∥L∞([0,T ]×R2), the metric
space (BT , d) is complete. Next, for any given g ∈ BT , we define Ag to be the
solution to the linear wave equation

□Ag = (∂2
t − ∂2

x)Ag =

∫
R
v̂g(t, x, v)dv := jg(t, x), (2.1)

with initial conditions Ag(0, x) = A0(x) and ∂tAg(0, x) = A1(x) for any x ∈ R.
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Definition 2.2 (The Solution Map Φ). For any g ∈ BT we define the solution
map f = Φ(g) where f ∈ W 1,∞((0, T ) × R2) to be the unique solution of the
transport equation

∂tf + v̂∂xf − ∂tAg(t, x)∂vf = 0, (t, x, v) ∈ (0, T )× R2, (2.2)

with initial condition f(0, x, v) = f0(x, v).

For the fixed-point argument it suffices to show the following two properties hold
for T sufficiently small:

(1) Φ maps BT into itself, i.e. for every g ∈ BT , f = Φ(g) ∈ BT ;
(2) Φ : BT → BT is a contraction, i.e. there is 0 < C < 1 such that

∥Φ(g1)− Φ(g2)∥L∞([0,T ]×R2) ≤ C∥g1 − g2∥L∞([0,T ]×R2)

for every g1, g2 ∈ BT .

Step 1: Preliminary estimates. Throughout we will use the fact that the
mapping v 7→ v̂ = v/

√
1 + v2 and its derivative are both bounded above by one.

The function Ag of (2.1) is given by the solution of the wave equation, namely

Ag(t, x)

= (∂tY (t, ·) ∗x A0)(t, x) + (Y (t, ·) ∗x A1)(t, x) + (Y (·, ·) ∗t,x (jg1t>0(t))(t, x)
(2.3)

where Y (t, x) = 1
21{|x|≤t} is the forward fundamental solution of the one-dimensional

wave operator. Note that the derivatives of Y satisfy

∂xY (t, x) =
1

2
δx=−t −

1

2
δx=t, ∂tY (t, x) =

1

2
δx=−t +

1

2
δx=t (2.4)

(these expressions will be used later). More explicitly, the d’Alembert formula gives

Ag(t, x) =
1

2
[A0(x+t)+A0(x−t)]+

1

2

∫ x+t

x−t

A1(s) ds+
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

jg(s, y) dy ds.

Thus, for t ∈ [0, T ] we find

∥Ag(t, ·)∥L∞(R) ≤ ∥A0∥L∞(R) + t∥A1∥L∞(R) +
1

2
t2∥jg∥L∞([0,T ]×R),

∥∂tAg(t, ·)∥L∞(R) ≤ ∥A′
0∥L∞(R) + ∥A1∥L∞(R) + t∥jg∥L∞([0,T ]×R), (2.5)

∥∂x∂tAg(t, ·)∥L∞(R) ≤ ∥A′′
0∥L∞(R) + ∥A′

1∥L∞(R) + t∥∂xjg∥L∞([0,T ]×R).

Taking g ∈ BT , we have by (H1), (H2) and (H3)

∥jg∥L∞([0,T ]×R) =

∥∥∥∥∫
R
v̂g(·, ·, v)dv

∥∥∥∥
L∞([0,T ]×R)

≤ 2(M + 1)∥f0∥W 1,∞(R2),

∥∂xjg∥L∞([0,T ]×R) =

∥∥∥∥∫
R
v̂∂xg(·, ·, v)dv

∥∥∥∥
L∞([0,T ]×R)

≤ 6(M + 1)∥f0∥W 1,∞(R2).

Hence, taking T sufficiently small we obtain the estimates

∥Ag∥L∞([0,T ]×R) ≤ ∥A0∥L∞(R) + ∥A1∥L∞(R) + 1,

∥∂tAg∥L∞([0,T ]×R) ≤ ∥A′
0∥L∞(R) + ∥A1∥L∞(R) + 1, (2.6)

∥∂x∂tAg∥L∞([0,T ]×R) ≤ ∥A′′
0∥L∞(R) + ∥A′

1∥L∞(R) + 1. (2.7)
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Step 2: Φ maps BT into itself. Denote by (X(s; t, x, v), V (s; t, x, v)) the charac-
teristic curves of (2.2). They satisfy the system of ODEs

dX

ds
(s; t, x, v) = V̂ (s; t, x, v) =

V (s; t, x, v)√
1 + V 2(s; t, x, v)

,

dV

ds
(s; t, x, v) = −(∂tAg)(s,X(s; t, x, v)),

 (2.8)

with the initial conditions X(t; t, x, v) = x and V (t; t, x, v) = v. It is well-known
that the solution of the transport equation (2.2) can be expressed as

f(t, x, v) = f0(X(0; t, x, v), V (0; t, x, v)).

From this, we immediately find that f = Φ(g) satisfies f(0, x, v) = f0(x, v) and

∥f∥L∞([0,T ])×R2) = ∥f0(X(0; ·, ·, ·), V (0; ·, ·, ·)))∥L∞([0,T ])×R2) = ∥f0∥L∞(R2)

so that (H1) is satisfied. Additionally, using (2.6) we have for T > 0 sufficiently
small

|x| = |X(t; t, x, v)| ≤ |X(0; t, x, v)|+
∫ t

0

|V̂ (s; t, x, v)|ds ≤ |X(0; t, x, v)|+ 1

and

|v| = |V (t; t, x, v)| ≤ |V (0; t, x, v)|+
∫ t

0

|(∂tAg)(s,X(s; t, x, v))|ds

≤ |V (0; t, x, v)|+ 1.

for t ∈ [0, T ]. Now, for (x, v) ∈ supp(f(t, ·, ·)) one has 0 ̸= f(t, x, v) = f0(X
(0; t, x, v), V (0; t, x, v)) and consequently |X(0; t, x, v)| ≤ R, |V (0; t, x, v)| ≤ M .
Therefore, |x| ≤ R+ 1 and |v| ≤ M + 1 and (H2) is satisfied.

Next, we verify (H3). By the definition of the Lipschitz norm, we have

∥f∥Lip = sup
t∈[0,T ]

(x,v) ̸=(y,p)∈R2

|f(t, x, v)− f(t, y, p)|
|(x− y, v − p)|

= sup
t∈[0,T ]

(x,v)̸=(y,p)∈R2

|f0(X(0; t, x, v), V (0; t, x, v))− f0(X(0; t, y, p), V (0; t, y, p))|
|(x− y, v − p)|

≤ ∥f0∥W 1,∞(R2)(∥X∥Lip + ∥V ∥Lip)

where the Lipschitz norms of the characteristics are defined by

∥X∥Lip := sup
s,t∈[0,T ]
x,v∈R

h=(h1,h2)̸=0

|X(s; t, x+ h1, v + h2)−X(s; t, x, v)|
|h|

and analogously for ∥V ∥Lip. Integrating the characteristics of (2.8) yields

X(τ ; t, x, v) = x+

∫ τ

t

V̂ (s; t, x, v)ds,

V (τ ; t, x, v) = v −
∫ τ

t

(∂tAg)(s,X(s; t, x, v))ds,
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which provides the following bounds on the Lipschitz norms:

∥X∥Lip ≤ 1 + T∥V ∥Lip,
∥V ∥Lip ≤ 1 + T∥∂x∂tAg∥L∞([0,T ]×R)∥X∥Lip.

Summing and using (2.7) then gives

∥X∥Lip + ∥V ∥Lip ≤ 2 +
1

3
(∥V ∥Lip + ∥X∥Lip) ,

for T sufficiently small, which implies ∥X∥Lip + ∥V ∥Lip ≤ 3. Inserting this into the
estimate on ∥f∥Lip, we conclude

∥f∥Lip ≤ 3∥f0∥W 1,∞(R2) (2.9)

and (H3) is satisfied.
Finally, we verify (H4). Computing the time derivative of f , we find

∥∂tf∥L∞([0,T ]×R2) = ∥∂t[f0(X(0; ·, ·, ·), V (0; ·, ·, ·))]∥L∞([0,T ]×R2)

≤ ∥f0∥W 1,∞(R2)

(
|∂tX(0; ·, ·, ·)|L∞([0,T ]×R2) + |∂tV (0; ·, ·, ·)|L∞([0,T ]×R2)

)
.

To bound the two terms on the right hand side, we first estimate

|∂tX(τ ; t, x, v)| =
∣∣∣∣∂t(x+

∫ τ

t

V̂ (s; t, x, v)ds

)∣∣∣∣
=

∣∣∣∣−v̂ −
∫ t

τ

∂v(V̂ (s; t, x, v))∂tV (s; t, x, v)ds

∣∣∣∣
≤ 1 +

∫ t

0

|∂tV (s; t, x, v)|ds

and

|∂tV (τ ; t, x, v)| =
∣∣∣∣∂t(v − ∫ τ

t

(∂tAg)(s,X(s; t, x, v))ds

)∣∣∣∣
=

∣∣∣∣∂tAg(t, x) +

∫ t

τ

(∂x∂tAg)(s,X(s; t, x, v))∂tX(s; t, x, v)ds

∣∣∣∣
≤ ∥∂tAg∥L∞([0,T ]×R) + ∥∂x∂tAg∥L∞([0,T ]×R)

∫ t

0

|∂tX(s; t, x, v)|ds.

Therefore, using (2.6) we obtain

sup
τ∈[0,t]

(|∂tX(τ, t, x, v)| + |∂tV (τ, t, x, v)|) ≤ 1 + ∥∂tAg∥L∞([0,T ]×R)

+ (1 + ∥∂x∂tAg∥L∞([0,T ]×R))

∫ t

0

(|∂tV (s; t, x, v)|+ |∂tX(s; t, x, v)|)ds

≤ 2 + ∥A′
0∥L∞(R) + ∥A1∥L∞(R)

+ (2 + ∥A′′
0∥L∞(R) + ∥A′

1∥L∞(R))

∫ t

0

sup
τ∈[0,s]

(|∂tX(τ ; t, x, v)|+ |∂tV (τ ; t, x, v)|) ds.

Invoking Grönwall’s inequality now yields

sup
τ∈[0,t]

(|∂tX(τ ; t, x, v)| + |∂tV (τ ; t, x, v)|)

≤
(
2 + ∥A′

0∥L∞(R) + ∥A1∥L∞(R)
)
et(2+∥A′′

0 ∥L∞(R)+∥A′
1∥L∞(R)).
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Using this estimate we ultimately find

|∂tX(0; t, x, v)|+ |∂tV (0; t, x, v)| ≤ 3
(
2 + ∥A′

0∥L∞(R) + ∥A1∥L∞(R)
)

for all t ∈ [0, T ], x, v ∈ R and T > 0 sufficiently small. Taking the supremum over
x, v ∈ R and combining this with the estimate of ∥∂tf∥L∞([0,T ]×R2) yields

∥∂tf∥L∞([0,T ]×R2) ≤ 3∥f0∥W 1,∞(R2)(2 + ∥A0∥L∞(R) + ∥A1∥L∞(R))

and (H4) is satisfied.

Step 3: Φ is a contraction. Let g, g̃ ∈ BT and f = Φ(g), f̃ = Φ(g̃). Then,
subtracting the respective Vlasov equations yields

∂t(f − f̃) + v̂∂x(f − f̃)− ∂tAg(t, x)∂v(f − f̃)−
(
∂tAg(t, x)− ∂tAg̃(t, x)

)
∂v f̃ = 0

with (f − f̃)(0, x, v) = 0. Consequently

(f − f̃)(t,X(t; 0, x, v), V (t; 0, x, v))

= −
∫ t

0

(
∂tAg − ∂tAg̃

)
(s,X(s; 0, x, v)) · ∂v f̃(s,X(s; 0, x, v), V (s; 0, x, v))ds.

(2.10)

Using (2.5) and (2.9), we have the following estimates for the right side of (2.10):

∥∂v f̃∥L∞([0,T ]×R2) ≤ 3∥f0∥W 1,∞(R2),

∥∂tAg − ∂tAg̃∥L∞([0,T ]×R) ≤ 2T∥jg − jg̃∥L∞([0,T ]×R).

Therefore, we find from (2.10) that

∥f − f̃∥L∞([0,T ]×R2) ≤ 3∥f0∥W 1,∞(R2)T
2∥jg − jg̃∥L∞([0,T ]×R),

which implies

∥f − f̃∥L∞([0,T ]×R2) ≤
1

2
∥g − g̃∥L∞([0,T ]×R2)

provided that T is sufficiently small. Thus, we obtain a unique local solution to
the Cauchy problem (Toy) on [0, T ] for T sufficiently small. Furthermore, we can
extend the lifespan of the solution as long as derivatives remain finite, namely for
any t ∈ [0, T ] such that

∥∂xf(t, ·, ·)∥L∞(R2) + ∥∂vf(t, ·, ·)∥L∞(R2) < +∞.

This completes the proof.

3. Global existence. With the existence of a local-in-time solution established,
we now extend the solution globally by uniformly bounding the momentum support
of the distribution function and the derivatives of the field.

Proof of Theorem 1.2. We assume that the maximal life span is [0, T ∗) for some
T ∗ > 0, and shall prove that T ∗ = +∞, hence the solution is global. We need to
show

(f, ∂tA) ∈ W 1,∞([0, T ∗)× R2)×W 1,∞([0, T ∗)× R). (3.1)

Step 1: Bounds on f and ∂tA. From the proof of local existence, we know that
f has compact support for any t ∈ [0, T ∗). In particular, the v support of f is
uniformly bounded for any fixed time t ∈ [0, T ∗) but may tend to +∞ as t → T ∗.
We therefore define the following crucial quantity

P (t) := sup{|v| : ∃x ∈ R such that f(t, x, v) ̸= 0}
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and prove the following result.

Proposition 3.1. Let T ∗ be the maximal lifespan of the solution and let T ∈
(0, T ∗). Then there exists C > 0 independent of T such that

∥∂tA∥L∞([0,T ]×R) ≤ C (3.2)

and
P (T ) ≤ C. (3.3)

Proof. Our strategy is classical: we generate a Grönwall-type inequality by first
using the wave equation □A = j to show that ∂tA is controlled by j, then showing
that j can be controlled by P (t), and finally bounding P (t) by a time-integral of
∂tA.

Define the functions

B±(t, x) = ∂tA(t, x)± ∂xA(t, x).

Using the relationship □A = j, we have

(∂t ∓ ∂x)B
±(t, x) = j(t, x),

so that, for any h > 0,

∂τ [B
±(τ, x± (t+ h− τ))] = [(∂t ∓ ∂x)B

±](τ, x± (t+ h− τ))

= j(τ, x± (t+ h− τ)).

Integrating with respect to τ ∈ [t, t+ h], we obtain

B±(t+ h, x) = B±(t, x± h) +

∫ t+h

t

j(τ, x± (t+ h− τ))dτ.

Taking t = 0 and replacing h by t, we can represent B± as:

B±(t, x) = B±(0, x± t) +

∫ t

0

j(τ, x± (t− τ))dτ.

This allows us to represent ∂tA as follows:

∂tA(t, x) =
1

2
(B+(t, x) +B−(t, x))

=
1

2
(A′

0(x+ t)−A′
0(x− t) +A1(x+ t) +A1(x− t)) (3.4)

+
1

2

∫ t

0

(j(τ, x− (t− τ)) + j(τ, x+ (t− τ))) dτ.

We are now ready to prove (3.2). Using (3.4) and the properties of the initial
data, for T ∈ [0, T ∗) we can estimate

∥∂tA∥L∞([0,T ]×R) ≤ C1

1 +
∑
±

sup
x∈R

t∈[0,T ]

∣∣∣∣∫ t

0

j(τ, x± (t− τ))dτ

∣∣∣∣


where C1 only depends on the initial data. We therefore turn to bounding
∥j∥L∞([0,T ]×R). Because the relativistic velocity is bounded above by |v̂| < 1 and
using the definition of P (t), we have

|j(t, x)| =
∣∣∣∣∫

R
v̂f(t, x, v)dv

∣∣∣∣ ≤ ∥f0∥L∞P (t)
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for all t ∈ [0, T ] and x ∈ R. Due to the characteristic equations (2.8), the change in
velocity is governed by ∂tA so that

P (t) ≤ P (0) +

∫ t

0

∥∂tA(τ, ·)∥L∞dτ.

Inserting the last three estimates into one another, we find

∥∂tA∥L∞([0,T ]×R) ≤ C2

(
1 +

∫ T

0

∥∂tA(τ, ·)∥L∞([0,T ]×R)dτ

)
(3.5)

where C2 also only depends on the initial data. A standard Grönwall argument
applied to (3.5) yields

∥∂tA∥L∞([0,T ]×R) ≤ C3e
T ≤ C3e

T∗
≤ C

where C3 again only depends on the initial data and C < +∞ depends only on the
initial data and T ∗, but not on T . Therefore

P (T ) ≤ P (0) + CT ∗.

This completes the proof of Proposition 3.1.

Step 2: Bounds on the derivatives of f and ∂tA. The transport equation for
f in (Toy) takes the following form for the derivatives of f :

(∂t + v̂∂x + ∂tA(t, x)∂v)

(
∂xf
∂vf

)
= −

(
0 ∂x∂tA(t, x)

(1 + |v|2)−3/2 0

)(
∂xf
∂vf

)
.

We therefore need to bound ∂x∂tA.

Proposition 3.2. Let T ∗ be the maximal lifespan of the solution and let T ∈
(0, T ∗). Then there exists C > 0 independent of T such that

∥∂x∂tA∥L∞([0,T ]×R) ≤ C.

Proof. Since A satisfies □A = j, inverting the wave operator means that A is
obtained from j and the initial data via the expression (2.3). Assuming, without
loss of generality, that the initial data for the field is trivial, i.e., A0 = A1 = 0, (2.3)
reduces to

Af (t, x) = (Y (·, ·) ∗t,x (jf1t>0)(t, x),

where we recall that Y = 1
21{|x|≤t} is the forward fundamental solution of the

one-dimensional wave operator. Therefore

∂x∂tAf (t, x) = ∂x∂t (Y (·, ·) ∗t,x (jf1t>0)) (t, x) = (∂tY (·, ·) ∗t,x (j∂xf1t>0)) (t, x),

and using the Vlasov equation ∂tf + v̂∂xf − ∂tAf∂vf = 0 in the term j∂xf =∫
v̂∂xf dv, we have

∂x∂tAf (t, x) = [∂tY (·, ·) ∗t,x (∂tρf1t>0)] (t, x).

Integrating by parts in the convolution (and henceforth dropping the subscript f
for brevity), we transfer the time derivative from ρ to Y so that

∂x∂tA(t, x) = [∂ttY (·, ·) ∗t,x ρ1t>0] (t, x) + [∂tY (t, ·) ∗x ρ(0, ·)] (x).
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As the fundamental solution Y satisfies □Y = δ(t,x)=(0,0), this further yields

∂x∂tA(t, x) =
[(
∂xxY + δ(t,x)=(0,0)

)
∗t,x ρ1t>0

]
(t, x) + [∂tY (t, ·) ∗x ρ(0, ·)] (x)

= [∂xxY ∗t,x ρ1t>0] (t, x)︸ ︷︷ ︸
I

+ [∂tY (t, ·) ∗x ρ(0, ·)] (x)︸ ︷︷ ︸
II

+ρ(t, x).

Let us consider the term I. Using the division lemma (Lemma A.1) with a(v)
= v̂ = v√

1+v2
we write ∂xxY as

∂xxY = (∂t + v̂∂x)

(
x

v̂x− t
∂xY

)
+ (1 + v2)δ(t,x)=(0,0).

Because this holds for every v, in the term I we replace ρ with
∫
f dv and get

I =

∫ [
(∂t + v̂∂x)

(
x

v̂x− t
∂xY

)
∗t,x f(·, ·, v)1t>0

]
(t, x) dv

+

∫ [
(1 + v2)δ(t,x)=(0,0) ∗t,x f(·, ·, v)1t>0

]
(t, x) dv

=

∫ [
x

v̂x− t
∂xY ∗t,x (∂t + v̂∂x)(f(·, ·, v)1t>0)

]
(t, x) dv +

∫
(1 + v2)f(t, x, v) dv

=

∫ [
x

v̂x− t
∂xY ∗t,x ∂tA∂vf(·, ·, v)1t>0

]
(t, x) dv︸ ︷︷ ︸

Ia

+

∫ [
x

v̂x− t
∂xY ∗t,x f(·, ·, v)δt=0

]
(t, x) dv︸ ︷︷ ︸

Ib

+

∫
(1 + v2)f(t, x, v) dv.

Using the properties of the derivatives of Y (see (2.4)), we can simplify the terms
Ia and Ib. Let us first consider the term Ia:

Ia =

∫ [
x

v̂x− t
∂xY ∗t,x ∂tA∂vf(·, ·, v)1t>0

]
(t, x) dv

=
1

2

∫ [
x

v̂x− t
(δx=−t − δx=t) ∗t,x ∂tA∂vf(·, ·, v)1t>0

]
(t, x) dv

=
1

2

∫ ∫ t

0

∫
y

v̂y − s
(δy=−s − δy=s)∂tA(t− s, x− y)∂vf(t− s, x− y, v) dy ds dv

=
1

2

∑
±

∫ ∫ t

0

1

1± v̂
∂tA(t− s, x± s)∂vf(t− s, x± s, v) ds dv.

To integrate by parts in v, we observe that

d

dv

(
1

1± v̂

)
=

v ∓
√
1 + v2

1 + v2 ± v
√
1 + v2

and we obtain

Ia =
1

2

∑
±

∓
∫ ∫ t

0

v ∓
√
1 + v2

1 + v2 ± v
√
1 + v2

∂tA(t− s, x± s)f(t− s, x± s, v) ds dv.
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Turning to the term Ib, and again using (2.4), we have

Ib =
1

2

∫ [
x

v̂x− t
(δx=−t − δx=t) ∗t,x f(·, ·, v)δt=0

]
(t, x) dv

=
1

2

∫ ∫ t

0

∫
y

v̂y − s
(δy=−s − δy=s)f(t− s, x− y, v)δt−s=0 dy ds dv

=
1

2

∑
±

±
∫

1

v̂ ± 1
f(0, x± t, v) dv.

Now we can consider the term II which easily simplifies to

II = [∂tY (t, ·) ∗x ρ(0, ·)] (x) = 1

2

∫
(δy=−t + δy=t)ρ(0, x− y) dx =

1

2

∑
±

ρ(0, x± t).

Collecting these terms, we have

∂x∂tA(t, x)

=
1

2

∑
±

∓
∫ ∫ t

0

v ∓
√
1 + v2

1 + v2 ± v
√
1 + v2

∂tA(t− s, x± s)f(t− s, x± s, v) ds dv

+
1

2

∑
±

±
∫

1

v̂ ± 1
f(0, x± t, v) dv +

1

2

∑
±

ρ(0, x± t)︸ ︷︷ ︸
data

+

∫
(2 + v2)f(t, x, v) dv.

To estimate ∂x∂tAf (t, x) we need to bound the first and last terms; the “data”
terms depend on the initial data and are therefore finite and independent of t. The
integrand within the first term can be controlled by 1 + P (T ). Indeed, letting

v0 =
√
1 + v2 yields∣∣∣∣∣ v ∓

√
1 + v2

1 + v2 ± v
√
1 + v2

∣∣∣∣∣ = v−1
0

∣∣∣∣v ∓ v0
v0 ± v

∣∣∣∣ = v−1
0 |v0 ∓ v|2 ≤ 2v0,

and thus

sup
|v|≤P (T )

∣∣∣∣∣ v ∓
√
1 + v2

1 + v2 ± v
√
1 + v2

∣∣∣∣∣ ≤ 2
√

1 + P (T )2 ≤ 2(1 + P (T )).

Hence, allowing C to be a constant independent of T that may change from line
to line, we have

∥∂x∂tA∥L∞([0,T ]×R) ≤ data

+ CTP (T )∥∂tA∥L∞([0,T ]×R)∥f0∥L∞(R) sup
|v|≤P (T )

∣∣∣∣∣ v ∓
√
1 + v2

1 + v2 ± v
√
1 + v2

∣∣∣∣∣
+ ∥f0∥L∞(R)(2 + P (T )2)P (T )

≤data + CP (T )∥f0∥L∞(R)
(
T ∗(1 + P (T ))∥∂tA∥L∞([0,T ]×R) + 2 + P (T )2

)
.

Inserting here the uniform bounds on ∥∂tA∥L∞([0,T ]×R) and P (T ) from (3.2) and
(3.3), respectively, we conclude a uniform bound independent of T on
∥∂x∂tA∥L∞([0,T ]×R), and the proof is complete.
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The bound for ∥∂x∂tA∥L∞([0,T ]×R) proved in Proposition 3.2 leads immediately
to a uniform bound for the derivatives of f , so that the condition (3.1) is verified,

(f, ∂tA) ∈ W 1,∞([0, T ∗)× R2)×W 1,∞([0, T ∗)× R),

and the solution is global. This completes the proof of Theorem 1.2.

Appendix A. Division lemma.

Lemma A.1 (Division lemma, originally in [1], appearing in this particu-
lar form in [2]). Let Y (t, x) = 1

21{|x|≤t} be the forward fundamental solution of
the 1d wave operator and a(v) ∈ (−1, 1). Then the equality

∂2
xY = (∂t + a(v)∂x)

(
x

a(v)x− t
∂xY

)
+

1

a(v)2 − 1
δ(t,x)=(0,0) (A.1)

holds in D′(R2).

Proof. Denoting m(t, x) = x
ax−t and T = ∂t + a∂x the identity (A.1) which we seek

to prove can be rewritten as

T (m∂xY ) = − 1

a(v)2 − 1
δ(t,x)=(0,0) + ∂2

xY. (A.2)

Recalling that ∂xY (t, x) = 1
2δx=−t− 1

2δx=t, one needs to be clear about the meaning
of the left side of (A.2). Having the terms δx=−t and δx=t, combined with the
restriction |a| ̸= 1, means thatm∂xY ∈ D′(R2\{(0, 0)}) is a well-defined distribution
which is homogeneous of order −1. It admits a unique extension as a homogeneous
distribution of order −1 in D′(R2) which we still denote m∂xY . Working with test
functions, we observe that for every φ ∈ D(R2)

⟨m∂xY, φ⟩ =
1

2

1

a+ 1

∫ ∞

0

φ(t,−t) dt− 1

2

1

a− 1

∫ ∞

0

φ(t, t) dt.

We can now compute ⟨T (m∂xY ) , φ⟩ by integrating by parts, and using the obser-
vation that

T = ∂t + a∂x = ∂t + ∂x + (a− 1)∂x = ∂t − ∂x + (a+ 1)∂x.

Specifically, we obtain

⟨T (m∂xY ) , φ⟩ = 1

2

1

a+ 1

∫ ∞

0

(−Tφ)(t,−t) dt− 1

2

1

a− 1

∫ ∞

0

(−Tφ)(t, t) dt

= − 1

a2 − 1
φ(0, 0) +

1

2

∫ ∞

0

(∂xφ(t, t)− ∂xφ(t,−t)) dt.

The proof is complete by observing that the last term is precisely
〈
∂2
xY, φ

〉
. Indeed,

〈
∂2
xY, φ

〉
=

1

2

∫ ∞

0

∫ t

−t

∂2
xφ(t, x) dx dt =

1

2

∫ ∞

0

(∂xφ(t, t)− ∂xφ(t,−t)) dt.
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