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Abstract

The marine copepod, Tigriopus californicus, produces the red carotenoid pigment astax-

anthin from yellow dietary precursors. This ‘bioconversion’ of yellow carotenoids to red is

hypothesized to be linked to individual condition, possibly through shared metabolic path-

ways with mitochondrial oxidative phosphorylation. Experimental inter-population crosses

of lab-reared T. californicus typically produces low-fitness hybrids is due in large part to the

disruption of coadapted sets nuclear and mitochondrial genes within the parental popula-

tions. These hybrid incompatibilities can increase variability in life history traits and energy

production among hybrid lines. Here, we tested if production of astaxanthin was compro-

mised in hybrid copepods and if it was linked to mitochondrial metabolism and offspring

development. We observed no clear mitonuclear dysfunction in hybrids fed a limited, carot-

enoid-deficient diet of nutritional yeast. However, when yellow carotenoids were restored to

their diet, hybrid lines produced less astaxanthin than parental lines. We observed that lines

fed a yeast diet produced less ATP and had slower offspring development compared to

lines fed a more complete diet of algae, suggesting the yeast-only diet may have obscured

effects of mitonuclear dysfunction. Astaxanthin production was not significantly associated

with development among lines fed a yeast diet but was negatively related to development in

early generation hybrids fed an algal diet. In lines fed yeast, astaxanthin was negatively

related to ATP synthesis, but in lines fed algae, the relationship was reversed. Although the

effects of the yeast diet may have obscured evidence of hybrid dysfunction, these results

suggest that astaxanthin bioconversion may still be related to mitochondrial performance

and reproductive success.
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Introduction

Carotenoids pigments are widely distributed across diverse groups of organisms where they

serve critical roles in physiological processes. Despite their utility, carotenoids are produced

only by plants, fungi, algae, and bacteria. With a few notable exceptions [1], animals lack the

biochemical pathway necessary to synthesize carotenoids and therefore must obtain caroten-

oids from their diet to support key functions within their bodies and to produce colorful exter-

nal displays [2]. Once ingested and absorbed, carotenoids may then be metabolized into new

forms that perform distinct functions such as vitamin-A synthesis, pro-oxidant defense, and

others [3–8]. Some animal taxa have co-opted carotenoids for their capacity to reflect yellow to

red wavelengths of light and use them in colorful external displays [2]. The identity of caroten-

oids used by many animals for coloration have been identified using chromatography and

spectrophotometric techniques. This foundational research has identified carotenoid pigments

in the integuments of some animals that are not typically found in their diet, suggesting that

they are metabolizing or ‘bioconverting’ carotenoids from their diet. For example, yellow die-

tary carotenoids, such as zeaxanthin or β-carotene, can be hydroxylated or ketolated into the

red ketocarotenoid astaxanthin [9, 10], and astaxanthin, in turn, may perform dual roles as a

vibrant colorant and potent protector against oxidative stress, particularly in marine animals

[11–13].

The observation that animals bioconvert dietary carotenoids to new forms used for colora-

tion begs the question as to what genes are involved and what is the intracellular site of the

metabolic pathways? Recently, CYP2J19 was identified as the gene that encodes a putative β-

carotene ketolase responsible for the bioconversion of yellow carotenoids to astaxanthin is

birds and turtles [14, 15]. Other taxa including frogs [16], mites [17], and crustaceans [18]

have provided some candidate genes for the yellow to red carotenoid bioconversion, but more

work is required. The exact intracellular arena for carotenoid bioconversion within tissues,

however, has yet to be determined [19–23]. Recent hypotheses and molecular modeling place

the cellular site of carotenoid bioconversion within the mitochondria or in association with

mitochondrial associated membranes, implicating a shared metabolic pathway between keto-

carotenoid conversion and cellular respiration [22, 24–26].

The idea that carotenoid metabolism is linked to cellular respiration has been supported by

observations in diverse species of birds. Ketocarotenoids were found in high concentrations in

the liver mitochondria of house finches (Haemorhous mexicanus) [27]. Within the mitochon-

dria of this bird, ketocarotenoids were localized in the highest concentrations at the inner

mitochondrial membrane [26]. Preliminary models predict CYP2J19 should localize either in

or around the mitochondria [26, 28, 29]. Moreover, the concentration of ketocarotenoids

found in the feathers of house finches correlated strongly with the ability of their mitochondria

to respond to changes in respiration and to withstand greater cumulative levels of mitochon-

drial stress [26]. Correlations between hormonal signaling, longevity, and pigmentation have

also been observed in red-legged partridges (Alectoris rufa), with mitochondrial function

implicated as the underlying causative factor [30]. Along with positive associations between

mitochondrial function and production of red pigments, experiments with zebra finches [31]

and red crossbills [32] revealed an effect on ketocarotenoid bioconversion by redox-active

compounds targeted to the inner mitochondrial membrane. However, to better understand

the link between mitochondrial respiration and carotenoid ketolation, observations in taxa

outside of Aves are needed.

Bioconversion and accumulation of ketocarotenoids is a prominent feature of many crusta-

ceans. In this often-colorful group, red and blue pigmentation is frequently produced by the

accumulation of the ketocarotenoid astaxanthin, along with other ketocarotenoids [13].
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Notably, the precursors and products in ketocarotenoid pathways in many crustaceans are the

same as those in birds, and the oxidizing enzymes involved in these crustacean pathways are

predicted to be functionally similar to the enzymes employed by avian species [18, 33, 34].

One particular crustacean group, oceanic and lake-dwelling copepods, have frequently been

utilized in carotenoid pigmentation studies due to their critical link in ecological food webs

and their amenability to experimental manipulation [8, 35, 36]. Marine copepods from the

genus Tigriopus have been particularly useful to investigate the condition-dependency of

carotenoid pigmentation [12, 37] and the dynamics or pathways of carotenoid bioconversion

[9, 34]. Previous work has established that the major carotenoid accumulated in the tissues of

T. californicus is free astaxanthin, compared to much lower concentrations of esterified astax-

anthin and dietary carotenoid precursors [9, 34]. However, Tigriopus californicus copepods are

perhaps best known as a model for studies of mitonuclear coadaptation [38, 39].

Interpopulation crosses of T. californicus show highly variable and often reduced mitochon-

drial function and reproductive fitness [40–42]. These negative effects of hybridization have

been traced to incompatibilities between the encoded products of one population’s nuclear

genome, which consists of 12 chromosomes [38], and the products of the non-coadapted mito-

chondrial genome of the other population [39, 43]. Nuclear and mitochondrial genes within

populations co-evolve to maintain key interactions between proteins that make up Complexes

I, III, IV and V of the electron transport system (ETS) [44, 45]. In T. californicus, hybridization

between genetically divergent populations breaks up co-evolved combinations of nuclear and

mitochondrial genes thanks to maternal inheritance of mt-DNA and sexual recombination of

nuclear DNA. The end result in terms of mitochondrial performance and organismal fitness is

variable in the second generation of hybrids and beyond (once hybrid offspring no longer

retain at least one full copy of maternal genes) [41]. Some hybrid lines show decreased function

in all ETS protein complexes (with the exception of Complex II that is entirely nuclear

encoded), increased oxidative stress, and reduced fecundity [40, 42, 43, 46, 47].

In this study, we utilized interpopulation hybrids of Tigriopus californicus that have previ-

ously shown mitochondrial dysfunction from mitonuclear incompatibilities [39, 40, 42, 43,

48]. We tested the hypothesis that the efficiency of carotenoid ketolation is correlated with

mitochondrial function and predicted that mitonuclear mismatched hybrid lines would pro-

duce less astaxanthin than corresponding non-hybrid, parental lines. We also assessed the rela-

tionship between astaxanthin production and measures of mitochondrial performance and

fitness among all lines. Establishing links between carotenoid metabolism, mitochondrial

function, and fitness measures have outstanding potential to better understanding the evolu-

tion of this conspicuous coloration in animals.

Materials and methods

Copepod sampling and culturing

Tigriopus californicus copepods were collected along the west coast of California and Baja Cali-

fornia (Fig 1). Copepods were collected under collection permit #SCP-339 from California

Fish and Wildlife. We used copepods sampled from the following locales listed geographically

from most southern to most northern: La Bufadora (BUF), San Diego (SD), Bird Rock (BR),

Catalina Island (CAT), Abalone Cove (AB), Santa Cruz (SCN) and Pescadero (PES). We

reared copepods from each population separately in large beakers containing 35 psu seawater

maintained at 20 C on 12h light: dark cycles. We fed copepods used in carotenoid bioconver-

sion assays a diet of ground nutritional yeast (Bragg, Santa Barbara, CA) from birth to produce

individuals deficient of carotenoids and clear/white in color. This ground yeast is inactive

yeast powder, supplemented with B vitamins, and contains no fats.
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Experimental crosses and creation of Recombinant Inbred Lines (RILs)

The methods used to create hybrid copepod lines (see Fig 1 for summary) are described here

briefly. For a more detailed description of hybrid line generation, see S1 Table for a summary

of all crosses and the supplemental information for expanded methodological details.

Multigeneration RILs were formed by crossing the SD population with either BUF or BR

populations (Southern RILs), and by crossing the AB population with the CAT or PES popula-

tions (Northern RILs). Southern crosses involved pairing SD males with either BR or BUF

females (SD nuclear genes tested against BR or BUF mitochondrial genes), and the Northern

crosses involved the pairing of AB males with either CAT or PES females (AB nuclear genes

tested against CAT or PES mitochondrial genes) and also one pairing of AB females with CAT

males (CAT nuclear genes tested against AB mitochondrial genes). Hybrid matings were per-

formed in duplicate and offspring from one replicate were paired with offspring from another

to avoid inbreeding. This was repeated until the F3 generation, at which point iso-female,

Fig 1. Sampling locations along the Pacific Ocean stretching from La Bufadora (BUF) in Baja California (BC) to Pescadero (PES) in the north of

California (CA). Percent identity of mitochondrial CO1 gene sequences are shown in parentheses. Populations sampled in this study are shown on the left

organized into a phylogenetic tree in Mega X based on 611 bp CO1 sequences, using Tigriopus japonicus as a rooted outgroup. For the full methods used to

create the tree, see Supplemental Information section 1.6 (S1 File). Key: PES = Pescadaro, SCN = Santa Cruz, AB = Abalone Cove, CAT = Catalina, BR = Bird

Rock, SD = San Diego, BUF = La Bufadera.

https://doi.org/10.1371/journal.pone.0259371.g001
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inbred lines were established from a single F3 female’s clutch. Beginning in the F4, each gener-

ation was initiated with a single pair of full sibs. Discrete generations were maintained until

the seventh generation, at which point offspring were allowed to mate continuously and were

maintained with overlapping generations. Discrete generations were maintained through the

seventh generation in order to allow inbreeding among siblings and purge variation in alleles

so that each line more closely represented a unique mitonuclear genotype after the effects of

recombination in the first three non-inbred generations. This entire process was repeated

using males and females from the same population to make PILs (parental inbred lines) as

controls for comparison (S1 Table). Similarly, we generated short-term RILs and PILs from a

cross of the southern SD and northern AB populations using 20 males and females each in

triplicate; however, with this cross we assayed astaxanthin bioconversion at the 5th generation

only (S1 Table).

After analyzing mitochondrial data collected from our multigeneration RILs (see Results

below), we became concerned that the yeast diet fed to those copepods created a confounding

effect of dietary stress on mitochondrial and fitness measurements. Copepods from the BUF

and BUFSD19 lines fed only ground yeast produced less ATP than copepods fed a complete

algal diet (S1A–S1D Fig). Among all parental lines (controlling for non-independence of data

within lines), copepods fed yeast had offspring that developed significantly slower compared

to parental lines fed algae (S1E Fig; mean days to copepodid stage ± 95% CI; yeast-only:

7.21 ± 0.41, algae-fed: 6.29 ± 0.73, t = 2.16, p = 0.037). Thus, we performed a fresh reciprocal

cross between SD and SCN populations, this time feeding the copepods Tetraselmis algae for

one week prior to measuring mitochondrial function and during offspring development. The

reciprocal cross between SD and SCN populations was formed by pairing 40 males from SD

with 40 virgin females from SCN and vice versa in two petri dishes. F1 mating pairs were trans-

ferred to a new dish to produce F2 offspring. This process was repeated to produce F3 off-

spring which were then subjected to fitness and carotenoid measurements (described below).

Carotenoid bioconversion assays

Prior to the start of the experiment, RIL copepods were switched to a diet of ground nutritional

yeast until they became clear in color and deficient of both carotenoid precursors and the pri-

mary red carotenoid, astaxanthin [9, 49]. To test carotenoid bioconversion rate, carotenoid-

deficient copepods were provided Tetraselmis chuii algae ad libitum for 7 days to mimic the

copepod’s natural diet of photosynthetic algae rich with carotenoid precursors [50]. T. chuii
algae produces multiple dietary carotenoid precursors that can be converted into astaxanthin

[9, 34, 51]. On the seventh day, copepods were moved to clean artificial saltwater for a mini-

mum of 2 hours to clear any algae remaining in their gut. Copepods were then dried and

weighed (±0.001 mg) before being stored in a microcentrifuge tube at -80˚C until HPLC analy-

sis (see below).

Carotenoid extraction and HPLC analysis

Carotenoids were extracted from dried copepod tissues using acetone with sonication and cen-

trifugation to remove cellular debris. Final carotenoid extract was resuspended in 50 μL ace-

tone for HPLC analysis. We separated and quantified copepod carotenoids using HPLC

following Weaver et al (2018). Briefly, we injected 10 μL of suspended carotenoid extract on to

a Sonoma C18 column (10 μm, 250 x 4.6 mm, ES Technologies, New Jersey, USA) fitted with a

C18 guard cartridge. Carotenoids were separated using a Shimadzu Prominence HPLC system

with mobile phases A 80:20 methanol: 0.5M ammonium acetate, B 90:10 acetonitrile: water,

and C ethyl acetate in a tertiary gradient of 100%A to 100%B over 4 min, then to 80% C: 20% B
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over 14 min, back to 100% B over 3 min, and returning to 100% A over 5 min and held for 6

min [9, 52]. We visualized and detected carotenoid absorbance using a Prominence UV/Vis

detector set to 450 nm. We identified and quantified carotenoids by comparison to calibration

curves of authentic standards that included: astaxanthin, zeaxanthin, β-carotene, lutein, hydro-

xyechinenone, and canthaxanthin. We normalized carotenoid concentration by the dry weight

of each copepod sample (reported as μg carotenoid per mg copepod tissue).

Due to restrictions related to the SARS-CoV-2 pandemic, we used a different method to

measure astaxanthin content of copepods from the reciprocal cross between SD and SCN pop-

ulations (analyzed mid-year 2020; see Supplemental Information 1.3 in S1 File). Briefly, astax-

anthin content of copepods from these crosses (~10 ind. per replicate) was quantified using an

Agilent HPLC 1260 Infinity II LC system with the following mobile phases: A) 50:25:25 Metha-

nol: Acetonitrile: 0.25M Aqueous Pyridine and B) 20:60:20 Methanol: Acetonitrile. For full

descriptions of this mobile phase linear gradient, as well as the carotenoid extraction methods

for this analysis, see Section 1.3 in S1 File.

Offspring development rate assay

Gravid females (sample sizes in S1 Table) were removed from yeast-fed cultures and placed

into filtered seawater in a 6-well plate. These copepods were supplemented with powdered Spi-

rulina (Jade Spirulina, Salt Creek Inc., Salt Lake City, USA) instead of powdered yeast because

mortality of gravid females in 6-well plates was high when fed yeast. The Spirulina powder is

not the same Tetraselmis algae used to resupply copepods with a diet rich in carotenoids. The

main pigment in Spirulina are anthocyanins. The Spirulina diet provides enough nutrition to

consistently allow reproduction; T. californicus females will delay reproduction or cannibalize

offspring if they cannot acquire enough quality food [53]. Plates were monitored daily, and

whenever an egg sac hatched, the date was recorded, and the female and any unhatched eggs

were removed. The freshly hatched offspring were then monitored daily, and the number of

individuals that metamorphosed to the copepodid I form (sixth molt, halfway point of devel-

opment to full maturity) was recorded for each well on each day [54].

For the F2 and F3 generations of the reciprocal SD and SCN crosses, development rate was

assayed slightly differently due to time constraints. 50 gravid females were placed in a petri

dish with filtered seawater and Spirulina. The following day, all non-gravid females and

unhatched egg sacs were moved to a new dish, leaving behind any nauplii that hatched. This

was repeated for 5 days, and the hatch date of each dish was recorded. Dishes with freshly

hatched offspring were monitored daily, and any animals that metamorphosed to the first

copepodid stage were counted and removed so they were not confused with newly molted

copepodids the following day.

ATP synthesis and citrate synthase assays

We measured in vitro ATP production from isolated mitochondria following methods from

[42, 55]. For each sample, ten males and ten females were homogenized in 800 μL isolation

buffer (400 mM sucrose, 100 mM KCl, 6 mM EGTA, 3 mM EDTA, 70 mM HEPES, 1% w/v

BSA, pH 7.6), and their mitochondria were isolated by sequential centrifugation. The isolated

mitochondrial pellet was resuspended in ~55μL assay buffer (560 mM sucrose, 100mM KCL,

10mM KH2PO4, and 70mM HEPES). Suspended mitochondria (25μL) from each sample were

then added to 5μL of either Complex I (CI) substrate (1 mM ADP, 2 mM malate, 10 mM gluta-

mate, and assay buffer) or Complex II (CII) substrate [1 mM ADP, 10 mM succinate, 0.5 μM

rotenone (Complex I inhibitor)]. Samples were incubated for 10 minutes at 20˚C to allow for

ATP synthesis. After the incubation period, 25μL of each sample was added to a 96-well assay
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plate with 25μL of CellTitre-Glo (Promega)—which halts ATP synthesis. Luminescence of the

samples and ATP standards was measured on the same plate using a Fluoroskan Ascent FL

plate reader (Thermo Labysystems).

A citrate synthase (CS) activity assay was performed on the remaining mitochondrial sus-

pension to estimate mitochondrial volume and standardize ATP production per sample fol-

lowing the methods of [56]. Mitochondrial volume (or mitochondrial content) represents the

fraction area of cell volume taken up by the mitochondria [57, 58]. CS activity correlates

strongly with the fraction of mitochondrial surface area to total cell surface area in the cell

[57], thus we use it as a proxy for mitochondrial content or mitochondrial volume [58] when

standardizing ATP production [56]. CS activity was determined as follows: a 5μL aliquot of the

mitochondrial suspension was added to 50μL of 200mM Tris buffer with 0.2% Triton-X

(Sigma), 24μL DI water, 10μL 1mM DTNB (5, 5’-dithiobis (2-nitrobenzoic acid)), and 6μL ace-

tyl coenzyme A (0.3mM). After estimating background activity, 5μL of 10mM oxaloacetic acid

was added to each sample and absorbance read at 412nm. The change in absorbance measured

over 5 minutes was used to calculate CS activity.

Statistical analyses

Samples sizes for our measurements on each line are shown in S1 Table. We used mixed-

effects linear models and pairwise contrasts corrected for multiple comparisons (using

‘emmeans’) to compare astaxanthin concentration among hybrid and non-hybrid copepod

lines. These models included a random effect of line ID to account for non-independence of

data within each line. We repeated this same analysis on dietary carotenoid concentrations

and the ratio of astaxanthin to dietary carotenoid concentrations among lines. We also used

linear models and paired contrasts corrected for multiple comparisons to analyze differences

in ATP production, and offspring development rate among hybrid and non-hybrid copepods

lines.

Because we lacked data from female copepods in several crosses, we used male data to ana-

lyze the relationships between astaxanthin production and ATP production and offspring

development rate among all of the lines using mixed effects models. We included cross ID (i.e.,

“BR x SD”, “SD x SD”, etc.) as a random effect to account for non-independence of data from

the same hybrid cross or parental control line. Before fitting the models, ATP production and

development rate data were log transformed, scaled, and centered to achieve normality of

model residuals. We averaged replicates from each line to avoid pseudoreplicaiton and because

the same individuals could not be used for all measurements (i.e., the same copepods could

not be sacrificed for both astaxanthin extraction and mitochondrial measurements).

All statistical analyses were performed in R. For the full list of packages used, see supple-

mental info section 1.5 (S1 File).

Results

Recombinant inbred lines

Among the multigeneration inbred lines, we found no clear pattern between non-hybrids and

hybrids in ATP production (S2 Fig) or offspring development rate (S3 Fig). Two lines were sig-

nificantly higher than others in ATP production: the CAT parental line (Complex I, S2B Fig)

and the BRSD56 hybrid line (Complex II, S2C Fig). Thus, in the multigeneration RILs fed

yeast only, we detected no evidence of mitochondrial dysfunction, even in RILs from crosses

of highly diverged populations.

However, we did observe differences in astaxanthin production among male copepods

from hybrid and non-hybrid lines (Fig 2), but no difference in astaxanthin bioconversion
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among female copepods from different lines (S4 Fig). Additionally, males produced signifi-

cantly more astaxanthin than females on average, even while controlling for line ID (mean μg

mg-1 astaxanthin ± SE; male = 0.27 ± 0.03; female = 0.21 ± 0.03; n = 124; df = 7; p = 0.001).

Because of this sex effect and the lack of female data in the northern lines (S4B Fig), we ana-

lyzed male data only for the rest of the analyses involving the RILs and PILs below.

The difference in astaxanthin production among male copepods across all of the multigen-

erational RIL and PIL lines was not consistent, nor did it closely match with pairwise genetic

divergence (Figs 1 and 2). Hybrid males from crosses of southern populations produced less

astaxanthin than parental lines, on average (mean μg mg-1 astaxanthin ± SE; hybrid = 1.6e-3 ±
3.6e-4; parental = 3.2e-3 ± 4.9e-4; n = 44; df = 7; p = 0.035; Fig 2A). Moreover, this difference in

astaxanthin production was driven by RILs of BUF and SD hybrids (Fig 2B). RILs from the

hybrid crossing of female BUF copepods with male SD copepods (BUFSD19, BUFSD24,

BUFSD4) accumulated significantly less astaxanthin compared to both SD and BUF parental

lines (Fig 2 and S2 Table). RILs from the crossing of female BR copepods with male SD cope-

pods (BRSD45, BRSD50, BRSD56) accumulated significantly less astaxanthin than the SD

parental line but only slightly less than the BR parental line (Fig 2 and S2 Table). Individual

RIL lines from the Northern crosses (ABCAT11, CATAB27, and PESAB20) did not produce a

significantly different amount of astaxanthin that any of their corresponding parental lines

(Fig 2 and S2 Table). The pattern observed in males from crosses of southern populations was

similar to the pattern of astaxanthin production observed in lines from the cross between

southern SD and northern AB populations. In this cross, some RILs produced significantly

less astaxanthin compared to non-hybrid controls, while other RILs did not (S5 Fig and S3

Table); however, overall, hybrid lines from this cross converted less astaxanthin than parental

Fig 2. Differences among hybrid RILs and non-hybrid PILs from multigeneration crosses. Colored dots represent replicates within each line that are the

average astaxanthin concentration of approximately 10 copepods. Dark grey circles (parental lines) and dark grey squares (hybrid lines) are the line average.

Black lines and colored shading are 95% confidence intervals around the line average. Where 95% confidence intervals do not overlap, there is a statistically

significant difference between lines (S2 Table).

https://doi.org/10.1371/journal.pone.0259371.g002
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lines (mean log astaxanthin ± SE; hybrid = 0.88 ± 0.04 ug mg; parental = 0.71 ± 0.06; n = 35;

df = 15; p = 0.044; S5 Fig and S3 Table).

The patterns in astaxanthin concentrations across RILs described above was mirrored

when we repeated the analysis using the ratio of astaxanthin: dietary carotenoids (S6 Fig and

S4 Table). We consistently detected two dietary carotenoids in our yeast-fed inbred line sam-

ples: β-carotene and hydroxyechinenone (S7 Fig). Both are precursors to astaxanthin found in

T. californicus fed Tetraselmis algae [34]. Hydroxyechinenone is an intermediate between β-

carotene and astaxanthin [9]. Hydroxyechinenone was the most abundant dietary carotenoid

found in our yeast-fed inbred lines (p <0.001; S8 Fig). Dietary carotenoid concentrations did

not significantly vary among yeast-fed inbred line samples (S9 Fig and S5 Table).

Although the data from yeast-fed lines shows no clear breakdown of mitonuclear function

in RILs compared to PILs, we found significant relationships between astaxanthin bioconver-

sion and energy production across all lines. We found a statistically significant, negative rela-

tionship between astaxanthin production and Complex I ATP production (β1 = -0.08 μg

astaxanthin mg-1; p = 0.020; R2
adj = 0.44; n = 13) (Fig 3A), but no clear relationship between

astaxanthin production and Complex II ATP production (β1 = -0.03 μg astaxanthin mg-1;

p = 0.610; R2
adj = 0.52; n = 12) (Fig 3B). We did not find a statistically significant relationship

between astaxanthin production and offspring development rate (β1 = 0.05 μg astaxanthin mg-

1; p = 0.200; R2
adj = 0.72; n = 11) (Fig 3C). When we repeated these analyses using the ratio of

astaxanthin to dietary carotenoids, we found that the relationship between astaxanthin: dietary

carotenoids and Complex I ATP production was still negative but fell short of statistical signifi-

cance (S10 Fig). However, the relationship between astaxanthin: dietary carotenoids and off-

spring development rate was significantly positive (S10 Fig).

Among all lines, the relationship between ATP production and offspring development was

not statistically significant (Complex I: β1 = -0.40 log nmol ATP min-1; p = 0.118; R2
adj = 0.323;

n = 10, and Complex II: β1 = -0.24 log nmol ATP min-1; p = 0.445; R2
adj = 0.21; n = 9) (S11A

and S11B Fig). Unexpectedly, the relationship between ATP production and mitochondrial

volume was not significant either (Complex I: β1 = -0.01 log nmol ATP min-1; p = 0.963; R2
adj

= 0.30; n = 13, and Complex II: β1 = 6.2e-3 log nmol ATP min-1; p = 0.979; R2
adj = 0.46, n = 13)

(S11C and S11D Fig).

The reciprocal cross between SD and SCN populations

We repeated our experiment using a fresh cross between SD and SCN populations, this time

feeding copepods Tetraselmis algae one week prior to measuring ATP production and off-

spring development rate to mitigate potential confounding effects of the yeast-only diet.

We found no significant difference in astaxanthin production between parental SD and

SCN copepods and copepods from the F1 and F2 generations (mean μg mg-1 astaxanthin ± SE;

F1 generation: parental = 0.14 ± 0.01; F1 hybrid = 0.16 ± 0.01; n = 52, df = 61, p = 0.552; F2

generation: parental = 0.14 ± 0.01; F2 hybrid = 0.16 ± 0.02, n = 36, df = 60, p = 0.870) (Fig 4).

However, by the third generation, F3 hybrid copepods showed a statistically significant

decrease in astaxanthin production when compared to parental copepods (mean μg mg-1

astaxanthin ± SE; parental = 0.14 ± 0.01; F3 hybrid = 0.06 ± 0.03, n = 33, df = 60, p = 0.014)

(Fig 4). This decrease in astaxanthin by generation three was observed in both cross directions

(SD x SCN and SCN x SD) (S12 Fig). Dietary carotenoids were observed in only a small subset

of samples from this cross. We observed lutein, which is not a precursor to astaxanthin, and a

peak putatively identified as echinenone/hydroxyechinenone (see S3 File).

We found that some relationships between astaxanthin production and fitness-based traits

measured using individuals fed Tetraselmis algae did not match the relationships observed
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Fig 3. Relationships between astaxanthin concentration and either ATP production or offspring development

rate among all hybrid and non-hybrid lines. Colored dots represent line averages and the vertical and horizontal

black bars extending from the colored dots represent the standard error. The grey shading is the 95% confidence

interval around the model estimated slope. Adjusted R2 values are shown.

https://doi.org/10.1371/journal.pone.0259371.g003
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with the yeast-only inbred lines. The relationship between astaxanthin production and Com-

plex I ATP production was positive this time, trending towards statistical significance (β1 =

0.05 μg astaxanthin mg-1; p = 0.056; R2
adj = 0.84; n = 4; Fig 5A), but there was no significant

relationship between astaxanthin production and Complex II ATP production (β1 = -0.03 μg

astaxanthin mg-1; p = 0.388; R2
adj = 0.06; n = 4; Fig 5B). The relationship between astaxanthin

production and offspring development rate was negative and statistically significant (β1 =

-0.04 μg astaxanthin mg-1; p = 0.016; R2
adj = 0.59; n = 8; Fig 5C).

Unlike with the multigeneration inbred lines fed yeast during fitness measurements, cope-

pods from the SD x SCN crosses fed algae showed a positive, statistically significant relation-

ship between Complex I ATP production and mitochondrial volume (β1 = 0.98 log nmol CS

min-1; p = 0.023; R2
adj = 0.93; n = 4; S13A Fig), but there was no significant relationship

between Complex II ATP production and mitochondrial volume (β1 = 0.63 log nmol CS min-

1; p = 0.371; R2
adj = 0.09; n = 4; S13B Fig). The relationship between Complex I ATP and off-

spring development rate was negative, but not statistically significant (β1 = -0.73 log days;

p = 0.087; R2
adj = 0.75; n = 4; S13C Fig). There was no significant relationship between Com-

plex II ATP production and offspring development rate (β1 = 0.13 log days; p = 0.837; R2
adj =

-0.46; n = 4; S13D Fig).

Comparing F3 hybrid lines and parental lines, there were no statistically significant differ-

ences in Complex I ATP production or Complex II ATP production. However, F3 hybrids did

Fig 4. Astaxanthin produced by copepods in each generation of a reciprocal cross between SD and SCN populations. The parental group includes both SD

and SCN copepods and each hybrid generation includes copepods from both cross directions (i.e., SD x SCN and SCN x SD. For the crosses split, see S5 Fig.

Colored dots represent replicates within each line that are the average astaxanthin level of approximately 10 copepods. Dark grey circles show the generation

average. Black lines and colored shading are 95% confidence intervals around the group average. Where confidence intervals do not overlap, there is a

statistically significant difference between groups.

https://doi.org/10.1371/journal.pone.0259371.g004
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Fig 5. Relationships between astaxanthin production and either ATP production (panels A and B) and offspring

development rate (panel C) among hybrid and non-hybrid lines from the cross between SD and SCN. Colored dots

represent line averages and black bars extending from the colored dots represent the standard error of each trait on the

x- and y-axis. The grey shading is the 95% confidence interval around the model estimated slope. Adjusted R2 values

are shown.

https://doi.org/10.1371/journal.pone.0259371.g005
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consistently make less Complex I ATP on average with reduced variation compared to parental

lines (S14A and S14C Fig). This decrease was not observed in Complex II ATP production

(S14B Fig). Offspring development rate increased progressively from the parental generation to

the F3 hybrid generation. F3 hybrids had a statistically significant longer offspring development

rate than parental copepods (mean log days ± SE; parental = 6.3 ± 0.56; F3 hybrid = 8.4 ± 0.49,

n = 21, df = 43, p = 0.036) (S14C Fig) and F1 hybrid copepods (mean log days ± SE; F1

hybrid = 6.6 ± 0.0.42; F3 hybrid = 0.06 ± 0.03, n = 28, df = 43, p = 0.045) (S14C Fig).

Discussion

Previous research demonstrated that interpopulation hybrid lines of T. californicus showed

high variability but a consistent pattern of reduction in ATP production [43], ETS complex

activity [42], oxidative homeostasis [40], fecundity [40, 41], offspring survivorship [43], and

offspring development [43]. It was demonstrated that the observed decline of performance in

hybrid copepods was likely due to mitochondrial dysfunction caused by mitonuclear incom-

patibilities brought on through the shuffling of nuclear alleles through sexual recombination

[39, 59]. Thus, we predicted that if ketolation of yellow dietary carotenoids to red carotenoids

is tied to mitochondrial function, then we would observe reduced astaxanthin content in

hybrid copepods that also showed evidence of reduced mitochondrial performance and fitness.

However, we observed no clear reduction in mitochondrial performance or offspring develop-

ment in our hybrid RIL copepods compared to parental lines (S2 and S3 Figs). Yet, some RILs

bioconverted significantly less astaxanthin compared to corresponding PILs, while others did

not (Figs 2 and S5 and S6). This variation is to be expected since each RIL captures a unique

set of parental alleles; on average, the expectation is that mitonuclear coadaptation will be dis-

rupted. However, those lines with the most severe disruption will die (and not appear in our

data set) while some RILs will obtain favorable mitonuclear combinations and continue to

propagate. It is unclear if there is any way to rescue RILs with severely incompatible mitonuc-

lear combinations that are in danger of extinction. Experiments have shown that backcrossing

to the maternal population can reintroduce compatible nuclear alleles and may rescue viability

(reviewed in [39]). However, there have also been experiments that show that mitonuclear

incompatibilities differ among crosses [60–62]. Therefore, “fixes” for dying lines may not work

equally in all cases. Moreover, fixes that alter the environment (for example, via diet or temper-

ature changes) to relieve the stress of mitonuclear incompatibilities may only make it more dif-

ficult to compare fitness measures among lines.

We hypothesize that a key confounding factor in this study was dietary stress resulting

from the poor yeast diet we used to produce copepods deficient of carotenoid pigments. Mal-

nourishment has been observed to negatively impact oxidative state and mitochondrial func-

tion [63, 64]. We found that lines fed the carotenoid-devoid yeast diet produced less ATP (via

Complex I substrates) than the same lines fed a complete, lipid and antioxidant rich diet of

photosynthetic algae (S1 Fig). We also observed that offspring from yeast-fed parental lines

developed significantly slower than offspring from parental lines fed algae (S1 Fig). Moreover,

among lines fed yeast only, we found no significant relationship between ATP production and

mitochondrial volume (S11C and S11D Fig). This is an important result because typically, we

expect a positive relationship between ATP production and CS activity [65, 66]. Indeed, CS

activity is used to standardize measurements of ATP production to account for variation in

mitochondrial volume when sampling [56, 66]. Thus, it is possible that dietary restriction

obscured the relationship between ATP production and CS activity. Whether or not this

means a link between astaxanthin bioconversion and mitonuclear incompatibilities was artifi-

cially obscured is unclear, especially considering that we observed little to no variation in
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female copepods from the yeast-fed multigeneration lines (S4 Fig). However, the difference

that we observed between male and female copepods may agree with other evidence that

female T. californicus are more resistant to stressful conditions [67–70]. It is also possible that

males are less resistant to changes in oxidative stress [71]. Female T. californicus must seques-

ter enough astaxanthin not only for themselves, but also for their developing offspring. Carot-

enoids must be transferred to the developing eggs in order to provide freshly hatched offspring

with the UV-protection they need to survive their first two naupliar instars [9]. During this

early naupliar period, offspring (which are the same bright red as adults) cannot eat [53] and,

therefore, cannot acquire their own carotenoid precursors. Indeed, it is common for mothers

to deposit carotenoids into developing eggs in oviparous taxa [72–74].

Switching diets appeared to alleviate problems with the initial experiment and yielded

results that were more suggestive of hybrid breakdown (S13 and S14 Figs). When we fed

hybrid and parental copepod lines algae one week prior to making mitochondrial measure-

ments, the relationship between Complex I ATP production and mitochondrial volume was

significant and positive (S13A Fig) across lines as expected from the perspective of mitochon-

drial physiology [65, 66]. We also found a more consistent pattern between hybrid and paren-

tal lines: hybrid animals made slightly less Complex I ATP (S14A Fig), and had offspring with

significantly longer development rates by the third generation (S14C Fig). These results repre-

sent only one reciprocal cross, however, and it is unclear if these results would also be seen in

crosses between other populations.

Despite a lack of observable mitonuclear dysfunction in RILs fed yeast, we found an inter-

esting relationship between astaxanthin bioconversion and ATP production among these lines

(Fig 3). After statistically controlling for the non-independence of data within hybrid vs.

parental lines, we found a significant, negative relationship between Complex I ATP produc-

tion and astaxanthin bioconversion (Fig 3A). We found no clear relationship between astax-

anthin bioconversion and Complex II ATP production (Fig 3B). This negative relationship

was also seen when ATP production was modeled against the ratio of astaxanthin: dietary

carotenoids, although it fell short of statistical significance (S10 Fig). This difference is interest-

ing for two reasons. First, unlike Complex I, Complex II is encoded solely by the nuclear

genome [44, 75]. This suggests astaxanthin pigmentation may better predict Complex I func-

tion than Complex II function within a given line. In previous studies, Complex II was found

to be the only ETS Complex not impaired by hybridization [42]. Likewise, we found a slight

decrease in Complex I ATP production, but not in Complex II ATP production, in the SD x

SCN reciprocal cross fed algae (S9A and S9B Fig). Second, Complex II utilizes a different elec-

tron donor and acceptor system than Complex I [76]. Complex I uses NADH as its primary

electron donor, producing NAD+ as a result, while Complex II uses FADH as an electron

donor, producing FAD+. It is possible that carotenoid ketolase enzymes, probably members of

the Cytochrome P450 family or CrtS-like enzymes [18, 77], also operate using NADH/NAD

+ or NADPH/NADP+ systems [22, 26, 78, 79]. Perhaps the stronger relationship between

astaxanthin bioconversion and Complex I ATP production could be explained by a shared

pool of electron donors [79].

A shared pool of electron donors between Complex I and carotenoid ketolase enzymes may

also explain why we observed a negative relationship between Complex I ATP production and

astaxanthin bioconversion. It is possible that under stressful conditions, when demand for

energy is high relative to available substrates for oxidative phosphorylation, NADH or

NADPH used to catalyze reactions in Complex I will no longer be available to catalyze caroten-

oid ketolation, thus invoking trade-off between production of ATP or production of astax-

anthin. However, under benign conditions when the demand for ATP is lower, the

relationship could then be positive, as we observed with the SD x SCN reciprocal cross fed a
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complete algae diet during fitness measurements. In molting house finches, males that biocon-

verted the most red ketocarotenoids also showed signs of withstanding higher levels of cellular

stress in their mitochondria, as indicated by lower rates of mitochondrial replacement despite

higher levels of oxidative damage to their cellular membranes [26]. This may help explain why

we found no significant relationship between ATP production and mitochondrial volume in

multigeneration inbred lines fed yeast only.

Alternatively, some invertebrates, including T. californicus, can also make use of a nuclear-

encoded alternative oxidase (AOX) in their ETS to combat oxidative stress [80–82]. An

increase in AOX expression would continue to consume oxygen for respiration, but would

decrease ATP production due to reduced electron flow to Complex IV [81]. Similarly, the use

of uncoupling proteins to reduce reactive oxygen species and maximize survival in the face of

oxidative stress may also have resulted in a decrease in ATP [83–85]. If copepods in our study

were using AOX or uncoupling enzymes to effectively combat oxidative stress due to hybrid-

ization and the poor yeast diet, it may explain why our most colorful lines also tended to pro-

duce less ATP (Fig 3). Certainly, ATP production can be informative in many situations, but it

can also be an ambiguous metric when measured without the added context of metabolic rate

[86]. Indeed, a deficiency in ATP can be compensated for through many different changes in

mitochondrial dynamics [87–91]. Even though these ideas are largely speculative, a positive

relationship between the metabolic rate and astaxanthin bioconversion has been observed in

hybrid T. californicus [92]. In wild male house finches, individuals with greater energetic

capacity are better able to bioconvert carotenoids [26]. Thus, carotenoid bioconversion may

predict the capacity to meet changes in energy demand or withstand oxidative stress, rather

than signal raw energy production.

The unexpected relationship between astaxanthin bioconversion and offspring development

rate in multigeneration inbred lines (Figs 3 and S10) may also have been influenced by the lim-

ited yeast-only diet. Indeed, we observed that in the yeast-only lines, offspring development time

was longer in lines with more efficient astaxanthin bioconversion (S10C Fig). Thus, paradoxi-

cally, in copepods fed yeast-only, lines with more astaxanthin produced less ATP and had slower

developing offspring. However, this relationship was reversed in the reciprocal cross between SD

and SCN when the dietary stress was relieved (Fig 5). In the yeast-only inbred lines, we found

that offspring from all lines developed at similar rates (S3 Fig); however, in the reciprocal cross

between SD and SCN fed algae, we found that development rate was significantly longer in

hybrids by the third generation (S14C Fig). We have frequently observed longer development

rates in laboratory cultures fed yeast-only diets, and in the data in this study we also observed

that parental copepods fed yeast only produced offspring with longer development rates on aver-

age compared to parental copepods fed algae (S1E Fig). It could be that the malnourishing yeast

diet limited variation in offspring development, slowing all lines and changing the relationship

between offspring development and astaxanthin bioconversion. These results could support the

idea that astaxanthin pigmentation is fundamentally tied to individual condition [2, 24], even in

systems that do not experience sexual selection on carotenoid coloration [49].

Across diverse vertebrate [26, 93–95] and invertebrate species [37, 96, 97], coloration

derived from the deposition of carotenoids is recognized as an honest signal of individual con-

dition [2, 98–102]. For many years, it was assumed that carotenoid pigments were a limiting

resource for many animals [102, 103]. It has been asserted that carotenoids perform physiolog-

ical roles in body maintenance in many species, making them costly to devote toward pigmen-

tation alone [104–106]. Carotenoids may be important signaling molecules in immune

responses and may help combat oxidative stress through free radical scavenging or the stimu-

lation of antioxidant activity [104, 107]. Previous hypotheses suggest there is a carotenoid-

based resource trade-off between pigmentation and body maintenance [108, 109]. However,
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the hypothesis that carotenoid coloration entails a costly trade-off has been called into question

[24, 97, 110–112]. An alternative to the resource tradeoff hypothesis is the Shared-Pathway

Hypothesis, which proposes that the bioconversion and accumulation of red carotenoids for

coloration shares a biochemical pathway with mitochondrial metabolism in the cell [22, 24, 25,

113, 114]. The general prediction derived from this hypothesis is that ketocarotenoid biocon-

version is an index that signals mitochondrial efficiency, flexibility, and capacity. Our results

in T. californicus, may indicate that the Shared-Pathway Hypothesis is applicable in taxa

beyond avian species, if indeed carotenoid bioconversion is an indicator of mitochondrial

capacity to withstand stress. However, our results do not refute the idea that there is a tradeoff

between body maintenance and carotenoid bioconversion in T. californicus. To better evaluate

the hypotheses concerning a shared pathway between carotenoid bioconversion and mito-

chondrial function, specific measures of oxidative phosphorylation in the mitochondria, such

as oxygen consumption, electron donor/acceptor ratios, and redox potential, may be impor-

tant to consider in the future in order to contextualize energy production.

Supporting information

S1 Fig. ATP production and offspring development between algae-fed (Tetra.) and yeast-

fed copepods. Individual replicates from yeast-fed copepods are shown in red and data from

algae-fed copepods are in blue. A) Difference in Complex I ATP production between the La

Bufadora parental line on each diet, B) difference in Complex I ATP production between hybrid

copepods from the BUF x SD 19 line on each diet, C) difference in Complex II ATP production

from the La Bufadora parental line on each diet, D) difference in Complex II ATP production

between the hybrid copepods from the BUF x SD 19 line on each diet, and E) difference in off-

spring development time between all parental copepod lines fed either algae or yeast. Black dots

are group averages and black bars are 95% confidence intervals around the mean.

(TIF)

S2 Fig. Differences among hybrid RILs and non-hybrid PILs from multigeneration crosses

fed yeast only in A-B) Complex I ATP production and C-D) Complex II ATP production. Col-

ored dots represent replicates within each line that are the average ATP produced by isolated

mitochondria from 20 pooled copepods. Dark grey circles are the line average. Black lines and

colored shading are 95% confidence intervals around the line average. Where 95% confidence

intervals do not overlap, there is a statistically significant difference between lines.

(TIF)

S3 Fig. Differences among hybrid RILs and non-hybrid PILs from multigeneration crosses

fed yeast only in offspring development time (days post hatch to first copepodid stage).

Colored dots represent replicates within each line that are the average values produced by indi-

vidual females. Dark grey circles are the line average. Black lines and colored shading are 95%

confidence intervals around the line average. Where 95% confidence intervals do not overlap,

there is a statistically significant difference between lines.

(TIF)

S4 Fig. Astaxanthin production among female hybrid RILs and non-hybrid PILs from

multigeneration crosses. Colored dots represent replicates within each line that are the aver-

age astaxanthin level of approximately 10 copepods. Dark grey circles (parental lines) and dark

grey squares (hybrid lines) are the line average. Black lines and colored shading are 95% confi-

dence intervals around the line average. Where 95% confidence intervals do not overlap, there

is a statistically significant difference between lines.

(TIF)
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S5 Fig. Line averages (black dots) and individual replicates (red dots) in astaxanthin produc-

tion among AB x SD hybrid lines (A-H; ‘Hybrid’ represents average among all lines) and in

parental (AB) copepods. Black bars show standard error. After one generation of inbreeding, 9

AB parental lines and 8 AB x SD hybrid lines were viable, while SD parental lines and SD x AB

hybrid lines did not survive to carotenoid analysis. Previously, T. californicus has been shown

to be highly sensitive to inbreeding [115], which is likely the cause of the mortality that we

observed in SD parental and SD x AB hybrid lines.

(TIF)

S6 Fig. Differences in astaxanthin: Dietary carotenoid concentration ratio among hybrid

RILs and non-hybrid PILs from multigeneration crosses. Colored dots represent replicates

within each line that are the average carotenoid ratio of approximately 10 copepods. Dark grey

circles (parental lines) and dark grey squares (hybrid lines) are the line average. Black lines and

colored shading are 95% confidence intervals around the line average. Where 95% confidence

intervals do not overlap, there is a statistically significant difference between lines (S4 Table).

(TIF)

S7 Fig. A) HPLC chromatograms of a mix of carotenoid standards (blue), hydroxyechinenone

standard (red), a copepod sample with a low ratio of astaxanthin to dietary carotenoids

(black), and a copepod samples with a high ratio of astaxanthin to dietary carotenoids (yellow).

Numbered peaks are as follows: 1) astaxanthin, 2) lutein, 3) canthaxanthin, 4) hydroxyechine-

none, 5) β-carotene. B) HPLC chroma profile of the Tetraselmis algae we fed the copepods

during the experiment. Numbered peaks are as follows: 1) violaxanthin isomer, 2) trans-vio-

laxanthin, 3) lutein, 4) hydroxyechinenone, 5) α-carotene, 6) β-carotene. Of these carotenoids,

only trans-violaxanthin, hydroxyechinenone and β-carotene are precursors to astaxanthin [9,

32].

(TIF)

S8 Fig. Ridgeline plot showing the distribution of hydroxyechinenone and β-carotene con-

centrations across all copepod samples from the yeast-only RILs and PILs. The black lines

represent the median and upper/lower quartiles of each group. The p-value was derived from a

linear mixed effects model with inbred line ID encoded as a random effect.

(TIF)

S9 Fig. Differences in dietary carotenoid concentration among hybrid RILs and non-

hybrid PILs from multigeneration crosses. Colored dots represent replicates within each line

that are the average of approximately 10 copepods. Dark grey circles (parental lines) and dark

grey squares (hybrid lines) are the line average. Black lines and colored shading are 95% confi-

dence intervals around the line average. Where 95% confidence intervals do not overlap, there

is a statistically significant difference between lines (S5 Table).

(TIF)

S10 Fig. Relationships between astaxanthin: Dietary carotenoids and either ATP produc-

tion or offspring development rate among all hybrid and non-hybrid lines. Colored dots

represent line averages and the vertical and horizontal black bars extending from the colored

dots represent the standard error of each trait. The grey shading is the 95% confidence interval

around the model estimated slope. Adjusted R2 values are shown.

(TIF)

S11 Fig. Relationships between ATP production and either offspring development time (days

post hatch to first copepodid stage; A and B) or mitochondrial volume (C and D) among
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hybrid and non-hybrid lines. Colored dots represent line averages and the vertical and hori-

zontal black bars extending from the colored dots represent the standard error. The grey shad-

ing is the 95% confidence interval around the model estimated slope. Adjusted R2 values are

shown.

(TIF)

S12 Fig. Astaxanthin produced by copepods each generation of a reciprocal cross between

SD and SCN populations. Groups are split by the direction of the cross (SCN female x SD

male on the left, and SD female x SCN male on the right). Colored dots represent replicates

within each group that are the average astaxanthin level of approximately 10 copepods per rep-

licate. Dark grey circles are the group average. Black lines and colored shading are 95% confi-

dence intervals around the group average. Where confidence intervals do not overlap, there is

a statistically significant difference between groups.

(TIF)

S13 Fig. Relationships between ATP production and mitochondrial volume (A and B) or off-

spring development time (C and D) among hybrid and non-hybrid lines from the reciprocal

cross between SD and SCN populations. Colored dots represent line averages and the vertical

and horizontal black bars extending from the colored dots represent the standard error. The

grey shading is the 95% confidence interval around the model estimated slope. Adjusted R2

values are shown.

(TIF)

S14 Fig. Differences among hybrid RILs and non-hybrid PILs from the reciprocal cross in A)

Complex I ATP production, B) Complex II ATP production, and C) offspring development

rate. Colored dots represent replicates within each line that are either the average ATP pro-

duced by isolated mitochondria from 20 pooled copepods (A and B) or clutch averages from

individual females (C). Large, dark grey circles and squares are the line average. Black lines are

95% confidence intervals around the line average. Where 95% confidence intervals do not

overlap, there is a statistically significant difference between lines.

(TIF)

S1 Table. A list of the lines from the experimental crosses used in this study. The number

of the replicates per line for each measurement and the approximate number of individual

copepods per replicate. Shown as: # of line replicates (approx. # of individuals per replicate).

(DOCX)

S2 Table. Results from statistical models of paired contrasts of astaxanthin production

among male copepods from multigeneration RILs and PILs. The model beta estimate repre-

sents the difference in the means per group. The confidence limits in the right two columns

represent the confidence boundaries around the model estimate. Bold lines denote a signifi-

cant difference between the contrast and reference groups.

(DOCX)

S3 Table. Results from statistical models of paired contrasts of astaxanthin production

among copepods from preliminary RILs from the cross between SD and AB populations.

The model beta estimate represents the difference in the means per group. The confidence lim-

its in the right two columns represent the confidence boundaries around the model estimate.

(DOCX)

S4 Table. Results from statistical models of paired contrasts of astaxanthin: Dietary carot-

enoid concentration ratio among male copepods from multigeneration RILs and PILs. The
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model beta estimate represents the difference in the means per group. The confidence limits in

the right two columns represent the confidence boundaries around the model estimate. Bold

lines denote a significant difference between the contrast and reference groups.

(DOCX)

S5 Table. Results from statistical models of paired contrasts of dietary carotenoid accumu-

lation among male copepods from multigeneration RILs and PILs. The model beta estimate

represents the difference in the means per group. The confidence limits in the right two col-

umns represent the confidence boundaries around the model estimate. Bold lines denote a sig-

nificant difference between the contrast and reference groups.
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