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Abstract

Molecular charge asymmetrically distributed in a diffusing tagged particle causes a nonzero

electrostatic force balanced by an opposing van der Waals (vdW) force. Fluctuations of elec-

trostatic and vdW forces are highly correlated, and they destructively interfere in the force

variance. This phenomenology is caused by the formation of a structurally frozen hydration

layer for a particle diffusing in water and is responsible for a substantial speedup of transla-

tional diffusion compared to traditional theories of dielectric friction. Diffusion of proteins is

insensitive to charge mutations, while smaller particles with asymmetric charge distribution

can show a strong dependence of translational and rotational diffusion on molecular charge.

Dielectric calculations of the electrostatic force require low vales ≃ 5 for the effective dielec-

tric constant of interfacial water to be consistent with simulations.
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In his followup paper on Brownian motion published in 1908,1 Einstein noted that the phys-

ical driving force of macroscopic diffusion is the microscopic osmotic pressure. It arises from a

lower chemical potential of the solvent on the side of a diffusing particle facing higher concen-

tration of solutes. Molecules of the solvents rushing toward lower chemical potential produce a

gradient of the solvent density, which in turn leads to osmotic pressure pushing the particle down

the concentration gradient. This argument equally applies to a single Brownian particle for which

compression and decompression density fluctuations caused by thermal agitation on different sides

of a tagged particle are responsible for random forces of Brownian motion.

The notion of osmotic pressure driving diffusivity and Brownian motion can be extended to

polarization of the interface by ionic charges. An asymmetric charge distribution, such as the off-

center charge shown in Figure 1, will both compress a polar liquid on one side of the particle and

polarize the interface thus shifting the chemical potential:2 µ(E) = µ(0)− (E2/8π)(∂ϵ/∂ρ)T . An

inhomogeneous electric (Maxwell) field E will alter the local dielectric constant ϵ because of its

dependence on the local density as expressed by the isothermal density derivative (∂ϵ/∂ρ)T . An

inhomogeneous chemical potential at the interface of a Brownian particle translates to differences

in local pressure3 and, correspondingly, to an osmotic force induced by polarizing the medium.

q z

R
θ

mm mc

∆ρ

z

F̃vdW

F̃vdW F̃E

Figure 1: Schematic representation of the solute with the off-center charge q. The lower portion
shows the van der Waals (vdW) interaction potential and the vdW force acting from the density
augmentation∆ρ caused by electrostatics. The vdW force F̃vdW is directed opposite to the electro-
static force F̃E . Forces with tildes refer to the body frame of reference. The solute is constructed
with three sites with off-center massesm and the center massmc. One of the off-center sites carries
the charge q. The effective radius of the solute R is calculated from eq 15.
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From the molecular perspective, a density enhancement ∆ρ on one side of a tagged particle

implies imbalance of the van der Waals (vdW) interaction between the particle and surrounding

liquid. The osmotic pressure of Einstein’s argument becomes the vdW force F̃vdW in Figure 1 acting

in the direction opposite to the side of the density increment (see the bottom part of the figure for

a qualitative argument). At equilibrium, one anticipates that the vdW force is compensated by the

electrostatic force F̃E between the charge q and the liquid polarized by it. This is the situation that

we report here for a number of protein mutants studied by molecular dynamics (MD) simulations

in an aqueous solution. Once the hydration shell has sufficient room for the density gradient to

establish, a full compensation between electrostatic and vdW forces is realized.4 However, for

small solutes, the osmotic push to increase the local density encounters frustration due to repulsive

molecular cores and other intermolecular interactions between the water molecules in the hydration

shell. A full compensation might not be realized. We find this scenario for a small solute with the

off-center charge shown in Figure 1. The vdW force turns out to exceed the electrostatic force

(Figure 2a) and we find for the z-projections of the forces in the body frame of the solute (denoted

with tildes)

⟨F̃z⟩ = ⟨F̃vdw⟩+ ⟨F̃E⟩ < 0 (1)

Of course, the net force on the solute is zero in the laboratory frame. The body-frame projection

⟨F̃z⟩ is averaged out by solute’s rotations and ⟨Fz⟩ = 0 in the laboratory frame (denoted without

tilde).

A strong electrostatic pull from the solute charges creates a new physical reality of a strongly

structured hydration shell, which tends to rotate together with the solute. (We stress that it is the ar-

rested structure that moves with the solute, the water molecules can still exchange with the bulk.5,6)

If this mechanism is fully realized, fluctuations of both vdW and electrostatic forces can be identi-

fied with the unit vector û along the axis of rotation in the solute body frame

δFvdW = ⟨F̃vdw⟩û, δFE = ⟨F̃E⟩û (2)

4
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The variance of the total force F = FvdW + FE in the laboratory frame includes a negative cross-

correlation ⟨δFvdW · δFE⟩. If ⟨F̃z⟩ = 0 in eq 1, ⟨δFvdW · δFE⟩ = −⟨(δFE)2⟩ and the force variance

comes as a result of subtraction between self vdW and electrostatic terms4,5,7

⟨(δF)2⟩ = ⟨(δFvdW)
2⟩ − ⟨(δFE)

2⟩ (3)

Equation 3 is highly nontrivial. It is accurate for solvated proteins4 and dipolar solutes,5,8 but is

not exactly followed for small ions9 and spherical solutes studied here and for charged nanoparticles

studied elsewhere.7 The reason is an incomplete compensation between the vdW and electrostatic

forces, leading to a negative total force in the body frame in eq 1.

Figure 2: (a) Components of the average force acting on the spherical solutes. The lines show
calculations with eqs 9 (dashed) and 10 (solid). Negative values of the vdW and total average forces
are shown in the plot. (b) Rotational correlation function Φr(t) at q = 0.1 (circles) and q = 1.0
(triangles). The dashed lines are fits to analytical equations discussed in the SI. (c) Increment of
the rotational time ∆τr = τr − τ 0r and the relaxation time of the electric field τE . The dashed line
shows the calculation according to eq 12. (d) Reaction-field susceptibility χR = (β/6)⟨(δEs)2⟩
fromMD (points) compared with eq 13 in which ⟨F̃E⟩ is either from eq 10 (solid line) or from eq 9
(dashed line). The dash-dotted horizontal line refers to the continuum linear response from eq 14;
all calculations are done with R = 4.1 Å (eq 15) and ϵ = ϵint = 5.

The variance of the force acting on the particle directly affects friction imposed by the solvent on

the diffusing particles. The memory equation specifying the velocity correlation function through

the memory kernel10 connects the friction coefficient ζ to the force variance and the integrated

5
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memory time τm

ζ = (β/3)⟨(δF)2⟩τm (4)

Therefore, reduction of the breadth of force fluctuations through electrostatic forces according to

eq 3 reduces the friction experienced by the diffusing particle. This scenario, if realized, should

enhance the translational diffusion coefficient Dt = (βζ)−1, β = (kBT )−1. The result is opposite

to the commonly anticipated slowing down of translational diffusion by electrostatic interactions

of an ion with the polar liquid known as dielectric friction. The vdW and electrostatic forces are

viewed as uncorrelated in traditional theories,11–15 leading to additivity of the vdW and electrostatic

friction components ζ = ζvdW + ζE , where the electrostatic component ζE becomes9

ζE =
βq2

3
τE⟨(δEs)

2⟩ (5)

In eq 5, the electrostatic force FE = qEs is given in terms of the electric field of the solvent

Es acting on charge q. Further, the memory time is replaced with the field relaxation time τE;

δEs = Es − ⟨Es⟩. Correspondingly, D−1
t is predicted9,14 to scale linearly with the squared ionic

charge q2 reflecting slower diffusion for solutes carrying higher charges. The new mechanism of

diffusivity enhancement discussed here predicts just an opposite effect of the solute-solvent electro-

static interaction: in contrast to diffusivity reduction in the standard formulation, a strong negative

cross-correlation between vdW and electrostatic forces (eq 3) enhances particle’s diffusivity.

The electrostatic force acting on the particle along the z-axis in the body frame is obtained by

surface integration of the Maxwell stress tensor Tzβ , contracted with the Cartesian components n̂β

of the outward unit vector normal to the surface2,3,16

⟨F̃E⟩ =
∮

Tzβn̂βdS (6)

where dS is the surface area differential and summation runs over the common Cartesian indexes

6
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β. The Maxwell stress tensor2

Tαβ = σαβ +
1

8π
δαβE

2ρ

(
∂ϵ

∂ρ

)

T

(7)

is defined in terms of Cartesian components of the electric field Eα and is a sum of

σαβ = (4π)−1ϵ
(
EαEβ − 1

2δαβE
2
)

(8)

and the compression component ∝ ρ(∂ϵ/∂ρ)T .

The force arising from σαβ integrates to zero over the surface of the spherical solute (see Sup-

porting Information (SI) for a derivation). On the contrary, the compression term yields

⟨F̃E⟩ =
q2

R2
ρ

(
∂ϵ

∂ρ

)

T

∞∑

ℓ=0

( s

R

)2ℓ+1

(ℓ+ 1)Aℓ+1

[
Aℓ + Aℓ+2

( s

R

)2
] (9)

where s is the distance to the charge from the center of a spherical solute with the radius R (Figure

1) and Aℓ = (ℓ + 1)/[ℓ(ϵ + 1) + ϵ]. The physical reason for this result is clear: the energy of the

dipoles is lower in the stronger field and the liquid dipoles are drawn to the region with a higher

field as long as liquid’s compressibility permits a density contraction.

Alignment of molecular dipoles to the external field and liquid’s compression in the nearest

vicinity of the solute do not have to follow the predictions of the dielectric theory. In addition, the

derivation of eq 9 assumes that both the normal and tangential components of the Maxwell stress

are allowed at the solute surface. The tangential stress might not be sustained by the interfacial

liquid, which will flow instead.3 Dropping the tangential component of the stress leads to

⟨F̃E⟩ =
q2

R2

[
ϵ+ ρ

(
∂ϵ

∂ρ

)

T

] ∞∑

ℓ=0

(ℓ+ 1)AℓAℓ+2

( s

R

)2ℓ+1

(10)

which makes ⟨F̃E⟩ about 50% higher (see SI). These alternative scenarios are tested against mi-

7
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croscopic numerical simulations presented below. We find that eq 10 provides a better description

of the simulation results. For the sake of an estimate, the Kirkwood-Onsager equation17 for the

dielectric constant of a polar liquid suggests that ρ(∂ϵ/∂ρ)T ≃ ϵ (neglecting the density depen-

dence of the Kirkwood factor). One indeed finds ρ(∂ϵ/∂ρ)T ≃ 81 for water at T ≃ 300 K when

ϵ ≃ 78.17 Correspondingly, one obtains18 ρ(∂ϵ/∂ρ)T ≃ 83 with ϵ ≃ 73 for SPC/E water used in

our MD simulations. From this estimate, eq 9 predicts ⟨F̃E⟩ ≃ 38 pN acting on the solute with the

radius R = 3 Å similar to the one used in our simulations.

MD simulations of solutes carrying six different charges q ranging from q = 0.01e to q = 2.0e

(e is the elementary charge) in SPC/E water have been conducted as detailed in the SI. In addition,

we have performed simulation of forces acting on six charge mutants of the protein azurin carrying

charges from q = 0 to q = −5e. The protein simulations follow the protocol described elsewhere.4

The buildup of a structurally frozen hydration shell with increasing solute charge is reflected by

changes in the character of rotational dynamics. The rotational correlation functionΦr(t) = ⟨û(t) ·

û(0)⟩ qualitatively changes its behavior from inertial dynamics (with oscillations) at low charge

values to a smoothly decaying function, which is well fitted by two decaying exponents, at higher

values of q (Figure 2b, see SI). The dynamics are thus inertial at small electrostatic interactions and

become overdamped with increasing electrostatic pull.

Rotational diffusion is affected by electrostatics through the delayed response of the liquid

dipoles to rotations of the solute dipole sq. This dielectric friction mechanism increases the rota-

tional relaxation time19 from the value τ 0r in the absence of electrostatic interactions to the value

τr = τ 0r +
(βsq)2

6
τE⟨(δEs)

2⟩ (11)

Dielectric theories for the field relaxation time τE and for the variance of electrostatic fluctuations

produce the following estimate5

τ cr = τ 0r +
3β(sq)2

R3

ϵ− 1

(2ϵ+ 1)2
τD (12)

8
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where τD is the Debye relaxation time of the solvent (τD ≃ 10.4 ps for SPC/E water9). The straight

line in Figure 2c compares MD simulations for∆τr = τr − τ 0r to eq 12. Overall, altering the solute

charge from q = 0 to q = 2 leads to a retardation factor of ∼ 102 for the rotational dynamics.

Similar extent of rotational retardation, by a factor of ≃ 183, was previously found5 for a dipolar

diatomic in SPC/E water when its dipole moment was raised to ≃ 15 D.

The variance of the electrostatic force ⟨(δFE)2⟩ = q2⟨(δEs)2⟩ is expected to scale linearly

with q2 in linear response theories such that the variance of the electrostatic field of the solvent

is independent of the solute charge (no perturbation of the solvent structure). In contrast, we find

a linear scaling of the field variance with q2 (Figure 2d). It arises from rotations of the average

molecular-frame field ⟨F̃E⟩/q producing an overall non-Gaussian distribution of the field in the

laboratory frame.5 Solute rotations add an additional term to the field variance equal to (⟨F̃E⟩/q)2.

According to eqs 9 and 10, the electrostatic force F̃E scales linearly with q2 and an additional term

in the force variance should scale as ∝ q4. This expectation can be viewed in terms of the reaction

field susceptibility9 χR = (β/6)⟨(δEs)2⟩ as follows

χR = χL
R + (β/6)(⟨F̃E⟩/q)2 (13)

where continuum approximation can be adopted for the linear-response reaction field susceptibil-

ity17,20 χL
R

χL
R =

1

R3

ϵ− 1

2ϵ+ 1
(14)

According to eq 13, χR should be a linear function of q2. Equations 13 and 14 reproduce the MD

result (Figure 2d) when the effective solute radius R ≃ 4.1 Å is calculated from the solute-solvent

radial distribution function g0s(r) according to the relation9

R−3 = 3

∫ ∞

0

(dr/r4)g0s(r) (15)

A number of recent simulation6,21,22 and experimental23 studies have shown that a significant

9
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reduction of the dielectric constant is required to characterize polarization of water in the interface.

We find that recovering the values of the average electrostatic force ⟨F̃E⟩ (eq 10) in Figure 2a and

of χR (eq 13) in Figure 2d requires an effective dielectric constant of the interface ϵint ≃ 5, which

is in agreement with simulations of water interfacing a spherical solute.22 Simulation of interfacial

water have also shown that the dielectric constant is highly anisotropic in the interface, with a

low dielectric constant in the direction perpendicular to the dividing surface and the tangential

projection being bulk-like or exceeding bulk water in polarity.24,25 Since the force in eqs 9 and 10

drops as ϵ−1, the tangential component of the force is of lesser significance even if water does not

slip on the solute surface. This observation lends additional support to eq 10, which suppresses the

tangential force component, over eq 9 allowing it.

Estimating the density derivative of the interface dielectric constant is currently not feasible and

the results shown in Figure 2 are obtained by assuming ρ (∂ϵint/∂ρ)T ≃ ϵint in analogy with similar

relations found for bulk laboratory and SPC/E water. We additionally find that the dynamics of the

electric field follow the rotational dynamics of the solute. The exponential relaxation time τE of the

time correlation functionCE(t) = ⟨δEs(t)·δEs(0)⟩mostly matches the rotational relaxation time τr

(Figure 2c). Similarly to the electrostatic forces, we find that the variance of the vdW force divided

with q2, ⟨(δFvdW)2⟩/q2, is a linear function of q2 (see SI). The reason for this phenomenology also

lies in rotations of the solute producing a term in the force variance equal to ⟨F̃vdW⟩2. Since this

average force scales as ∝ q2 (Figure 2a), the corresponding contribution to the variance scales as

∝ q4.

The distributions of component forces (a = E, vdW) projected on the axis of symmetry for the

spherical solute and azurin are shown in Figure 3a,b. For azurin mutants, the direction of the elec-

trostatic force in the body frame of the protein is chosen as the symmetry axis in analogy with the

spherical solute (Figure 1). In all cases studied here, the distribution of the vdW force is broader,

as required to produce the overall positive variance in eq 3. As mentioned above, the main distinc-

tion between the spherical solute and protein mutants is that the total force has a nonzero average

value for the former and averages to zero for the proteins. The nonzero average force produces an

10
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Figure 3: Distributions of electrostatic (E), vdW, and total force projected on the symmetry axis of
the spherical solute with q = 1.5e (a) and azurin protein carrying the charge q = −2e (oxidized
state, b). Electrostatic and vdW self components of the force variance and the negative of the cross
correlation, −⟨δFvdW · δFE⟩, are shown for the spherical solutes (c) and protein mutants (d).

additional component in the variance related to solute rotations and we find the following relation

between the laboratory-frame and body-frame variances to hold for either force components or for

the total force

⟨(δFa)
2⟩ = ⟨F̃a⟩2 + ⟨(δF̃a)

2⟩ (16)

Changes of the component variances and the total force variance with the solute charge are also

distinct for proteins and spherical solutes. The variances are essentially independent of the protein

charge and show an exact compensation between the self electrostatic and cross electrostatic-vdW

terms according to eq 3 (Figure 3d). In contrast, there is a substantial dependence of variance

components on q for the spherical solutes. Moreover, the cross term overshoots the electrostatic

variance in the latter case, thus further reducing the total force variance compared to the naive ad-

ditivity assumption. In all these cases, the variance of the force is substantially reduced compared

to the additivity assumption of the Born picture11 adopted in the traditional theories of dielectric

friction.11–14 According to the general result of eq 4, such a compensatory mechanism must reduce

the friction experienced by the solute and enhance its diffusivity. An indication of difficulties of

11
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traditional theories of dielectric friction comes from experimental studies of rotational dynamics

of optical chromophores when one anticipates26 ∆τr = τr − τ 0r (eq 11) to scale with the Stokes

shift ∆ESt as ∆τr ∝ ∆EStτE . The expected proportionality has indeed been observed experi-

mentally,27,28 but the slope of this correlation was found to be grossly inconsistent with theoretical

expectations.

Figure 4: (a) Ratio ⟨(δF̃⊥)2⟩/⟨(δF̃∥)2⟩ for the protein mutants and spherical solutes (filled points)
and τ⊥F /τ

∥
F for spherical solutes (open points). (b) Translational diffusion coefficientDt(0)/Dt(q)

for spherical solutes and protein mutants. The dashed lines are linear regressions. (c) Diffusion
coefficients of protein mutants from MD compared with eq 18. The error bars in MD values are
estimated frommultiple short trajectories.4 (d) Diffusion coefficients of spherical solutes fromMD
compared to eq 17.

Given that rotations of the average force ⟨F̃z⟩ do not contribute to translational diffusion, only

force fluctuations in the body frame need to be considered. The translational diffusion coefficient

becomes

D−1
t = (β2/3)

∑

α=∥,⊥

⟨(δF̃α)
2⟩ταm (17)

where ταm are integral memory times for the parallel (∥) and perpendicular (⊥) force projections.

The asymmetry of the force fluctuations enhances with increasing q for spherical solutes such a

that the ratio ⟨(δF̃⊥)2⟩/⟨(δF̃∥)2⟩ deviates down from the value of 2 of the isotropic limit (Figure

4a). This does not happen for the protein mutants which maintain isotropic force fluctuations in

12
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the body frame. Assuming the memory times to be close in magnitude to the force relaxation time

τF , a simplified equation can be written

D−1
t ≃ (β2/3)⟨(δF̃ )2⟩τF (18)

It predicts little effect of charge on the diffusion constant for proteins since both the force relax-

ation time and the force variance are insensitive to q. This expectation is in accord with empirical

evidence.29 The diffusion coefficients shown in Figure 4b,c were calculated from simulations4 as

described in the SI including corrections30 for the finite size of the simulation box. Equation 18 is

found to overestimate the MD values by ∼ 8 % (Figure 4c).

Altering force variances, their asymmetry, and shortening force relaxation times all contribute

to a strong dependence of the translational diffusion coefficient of the spherical solutes on q. The

ratio Dt(0)/Dt(q) scales roughy linearly with q2 (Figure 4b). When ταm ≃ ταF is used in eq 17,

this approximation does not reproduce MD results at small values of q, but the agreement is much

improved when q is increased (Figure 4d). The memory time τm (eq 4) significantly exceeds τF for

a loose hydration shell of a weakly charged solute, but it shortens with shell tightening to converge

to the memory-free limit of the standard Langevin equation. Linear scaling ofD−1
t with q2 is qual-

itatively in line with the predictions of dielectric friction theories (eq 5), although a quantitative

agreement cannot be reached because of significant cross-correlations between vdW and electro-

static forces observed here (Figure 3c). The strong effect of charge on the diffusion constant for the

spherical solutes is consistent with previous simulations for charges placed at the solute center,9

where an increase of D−1
t by a factor of ≃ 3.7 was found per single charge added to the solute.

In conclusion, strong electrostatic pull of charges close to the water interface leads to an emer-

gence of a structurally frozen hydration shell. This new physical reality requires a new descrip-

tion of mobility, which, due to its specific physical nature, also allows some simplifications and

general predictions. The main novel result of this physics is a strong compensation between cross-

correlations of electrostatic and vdW forces and their self variances. This destructive interference
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leads to a decrease of the effective breadth of the force fluctuations responsible for random kicks

on a tagged particle. The insuring reduction of friction leads to a higher diffusivity.

One has to stress that the effects discussed here and the corresponding corrections to the tra-

ditional theories of dielectric friction are very substantial. When the relaxation times τE and field

variances ⟨(δEs)2⟩ specific for proteins are used in eq 11, one obtains ζE/ζvdW ≃ 106 for pro-

teins carrying a nonzero charge, where ζvdW is the Stokes-Einstein friction. The standard theories

thus prohibit protein diffusion in water. This dramatic failure is remedied by strong correlations

between electrostatic and vdW forces allowed by the structured hydration layer of a protein in

solution. Tweaking the destructive interference in eq 3 by an enzymatic reaction can potentially

enhance protein diffusion.31 Specifically, a chemical reaction instantaneously altering the protein

charge distribution is expected to destroy the balance between electrostatic and vdW forces leading

to a transient nonzero force ⟨F̃E⟩t similar to the one observed here for the off-center solutes (Figure

2a). If the equilibration time for ⟨F̃E⟩t → 0 is sufficiently long, one can potentially observe jerks

in protein displacements.

Common to all diffusion phenomena is the gradient of the osmotic pressure1 establishing equi-

librium between surface vdW forces caused by density augmentation and electrostatic forces caused

by asymmetric charge distribution (Figure 1). The electrostatic force, ⟨F̃E⟩ ∝ q2s/(ϵR3), decays

with increasing solute size and the effect of electrostatics should diminish for larger colloidal par-

ticles. This drop in significance of electrostatics is partially offset by a low effective dielectric

constant ϵint of water in the hydration layer6,21–23,32 quantified by replacing ϵ → ϵint in eqs 9 and 10.

For colloidal particles with distributed surface charge, such as proteins, equations for the electric

force presented here (eqs 9 and 10) need to be extended to account for multiple charges qi with

positions si positioned close to the interface.

Supporting Information Available

Simulation protocol, derivation of equations for the electrostatic force, and the analysis of MD
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simulations.

Notes
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