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In contrast to the static dielectric permittivity, , associated with linear response, its high-

field counterpart, E, is not a material specific quantity, but rather depends on the 

experimental method used to determine the nonlinear dielectric effect (NDE). Here, we 

define E in a manner consistent with how high field permittivities are typically derived from 

a capacitance measurement using high voltages. Based upon characterizing the materials 

nonlinear behavior via its third order susceptibility, 3, the relations between a given 3 and 

the observable E is calculated for six different experimental or theoretical approaches to 

NDEs in the static limit. It is argued that the quantity 3 is superior over E or the Piekara 

factor, (E  )/E2, because it facilitates an unambiguous comparison among different 

experimental techniques and it provides a more robust connection between experiment and 

theory.  
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I. INTRODUCTION 

The experimental observation as well as the theoretical understanding of nonlinear dielectric effects 

(NDEs) has received increasing attention in recent years, particularly in the context of glass-forming 

materials [1,2,3,4,5,6,7,8,9,10].The work of Debye has laid the foundation for this field by showing that 

the dielectric constant, s, depends on the magnitude of the externally applied electric field, E [11]. A 

prediction for the NDE in condensed polar materials is not available [12]. Measurements of the 

permittivity, 𝜀̂ሺ𝜔ሻ, at high electric fields have revealed field-induced increases as well as reductions of 

the static permittivity, s, [13,14] and shifts of the dielectric time constants in either direction have also 

been observed [6,7,15,16,17]. Which of these effects appears is a matter of the material and of the type 

of high field applied, alternating (ac) versus static (dc). The standard experimental approach to NDEs is 

to measure at a relatively high electric field, but then analyze the data in the same fashion as done in the 

case of linear responses associated with sufficiently low fields. A survey of the relevant literature shows 

that NDEs are being quantified in very different ways: as the high field permittivity, E, relative to its 

linear response counterpart , as the Piekara factor 𝑎 ൌ ሺ𝜀ா െ 𝜀ሻ 𝐸ଶ⁄ , as a relative change of permittivity, 

ሺ𝜀ா െ 𝜀ሻ 𝜀⁄ ൎ lnሺ𝜀ா 𝜀⁄ ሻ, or in terms of higher order susceptibilities observed via the higher harmonics of 

the polarization response. 

This work aims at providing a definition of the static limit of high field permittivity, E, that i) is 

consistent with experimental approaches and ii) can be related unambiguously to the lowest order term, 

3, of nonlinear polarization (in SI units), 

 𝜀଴
ିଵ𝑃 ൌ 𝜒𝐸 ൅ 𝜒ଷ𝐸ଷ , (1) 

where 0 is the permittivity of vacuum. We restrict our considerations to the static case, where  = ' = 

s and '' = 0. For a real system with 𝜒̂ሺ𝜔ሻ ൌ 𝜒ᇱሺ𝜔ሻ ൅ 𝑖𝜒′′ሺ𝜔ሻ, this implies that experiments that 

determine E require the condition that dielectric relaxation is sufficiently fast to ensure that polarization 

P maintains equilibrium with the external field E. In other words, we address only situations for which 

the dielectric relaxation time  is very short compared with the time scale of the experiment, usually 

defined by the radian frequency , i.e. 𝜔𝜏 ≪ 1 is required. In this case, the real valued constant 3 

characterizes the nonlinear dielectric behavior of the sample. We find that the high field permittivity, E, 

as derived from impedance type experiments, does not have a unique connection to 3, but rather depends 

on how the nonlinear dielectric effect is measured. For six distinct field protocols, the relations between 

3 and E are determined, and it is argued that 3 is the best choice for quantifying NDEs in the static 

limit. 
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The sections below are organized as follows. First, we generalize permittivity to beyond the linear 

regime in a manner that is consistent with the typical experimental approach. The next step is to provide 

connections between 3 and E, which is done separately for static and for oscillating fields. For the 

important case of high field impedance without a bias field, it is then shown that the 3 - E relation can 

also be derived from nonlinear theory based on Kubo's formalism. These sections are followed by a 

discussion and conclusions. 

II. HIGH FIELD PERMITTIVITY 

Generally, measurements of permittivity at high fields are based upon the determination of a 

capacitance. This obviously holds for impedance type experiments, where permittivity is derived from a 

capacitance, which in turn is obtained from voltage and current data [18,19]. Capacitance is also the basis 

for permittivities determined via the resonance frequency of an LC circuit [2,10]. Moreover, the 

permittivity associated with a high field experiment is generally calculated using the relations that are 

strictly valid only in the low field limit, i.e., within the regime of linear response. Therefore, a practical 

definition of high field permittivity is given by 

 𝜀ா ൌ
𝐶ாሺ𝜔ሻ
𝐶௚௘௢

 , (2) 

analogous to the linear response (low field limit) counterpart 𝜀 ൌ 1 ൅ 𝜒 ൌ 𝐶ሺ𝜔ሻ 𝐶௚௘௢⁄ , but accounting 

for the feature that the capacitance changes with field in case of a nonlinear dielectric. Here, the 

geometrical capacitance is given by 𝐶௚௘௢ ൌ 𝜀଴𝐴 𝑑⁄ , where A is the surface area and d the uniform distance 

of the pair of planar electrodes forming the capacitor. The notation CE() instead of CE is meant to 

indicate that in practice the capacitance is determined at a given frequency , and not that C depends on 

 as long as the condition 𝜔𝜏 ≪ 1 is preserved. The usual relations among impedance Z, admittance Y, 

current 𝐼 ൌ 𝑗𝐴, voltage 𝑉 ൌ 𝐸𝑑, charge 𝜕𝑄 ൌ 𝐶𝜕𝑉, and capacitance 𝐶 ൌ 𝜕𝑄 𝜕𝑉⁄  remain field amplitude 

invariant: 

 𝑌ாሺ𝜔ሻ ൌ
1

𝑍ாሺ𝜔ሻ
ൌ
𝐼ாሺ𝜔ሻ

𝑉ாሺ𝜔ሻ
ൌ 𝑖𝜔𝐶ாሺ𝜔ሻ , (3) 

with 𝐶ாሺ𝜔ሻ ൌ |𝑄ሺ𝜔ሻ| |𝑉ሺ𝜔ሻ|⁄ ൌ |𝐼ሺ𝜔ሻ| ሺ𝜔𝑉଴ሻ⁄ . 
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III. RELATION TO NONLINEAR POLARIZATION 

A. Field step approaches 

In the regime of linear response, polarization follows 𝜀଴
ିଵ𝑃 ൌ 𝜒𝐸 with a field invariant susceptibility 

. Beyond the linear regime, Eq. (1) relates P and E, provided that higher order terms such as 5 are 

negligible. This leaves the field independent quantity 3 for characterizing the extent of nonlinearity, and 

the goal is to establish a well defined connection between 3 and the E defined in Eq. (2). To this end, 

we assume constant temperature (T = 0), constant volume ( = 0), and the reversibility of the processes 

involved (TS = q). In this case, we have for the change F in free energy ሺ𝐹 ൌ 𝑈 െ 𝑇𝑆ሻ: 

 𝜕𝐹 ൌ 𝜕𝑈 െ 𝑆𝜕𝑇 െ 𝑇𝜕𝑆 ൌ 𝑞 െ 𝑝𝜕𝜐 ൅ 𝜕𝑤௘௟ െ 𝑆𝜕𝑇 െ 𝑇𝜕𝑆 ൌ 𝜕𝑤௘௟ , (4) 

where U the internal energy, S the entropy, T the temperature, q the heat, p the pressure, and wel the 

electrostatic work. Thus, the change in free energy is entirely determined by the electrostatic work wel. 

The field induced free energy change is 𝜕𝐹ா ൌ 𝜐𝐸𝜕𝐷ா, with  being the volume and DE the electric 

displacement defined as 𝐷ா ൌ 𝜀𝜀଴𝐸 ൌ 𝜀଴𝐸 ൅ 𝑃, which leads to 

 𝜀଴
ିଵ𝐷ா ൌ 𝐸 ൅ 𝜒𝐸 ൅ 𝜒ଷ𝐸ଷ . (5) 

Now, the free energy change can be expressed in terms of susceptibilities, which  yields 

 𝜕𝐹ா ൌ 𝜐𝐸𝜕𝐷ா ൌ 𝜐𝜀଴ሺ𝐸 ൅ 𝜒𝐸 ൅ 3𝜒ଷ𝐸ଷሻ𝜕𝐸 , (6) 

where 𝜕𝐹ா is equal to 

 𝜕𝑤௘௟ ൌ 𝜐𝐸𝜕𝐷ா ൌ 𝑉𝜕𝑄ா ൌ 𝐶ா𝑉𝜕𝑉 ൌ
1
2
𝐶ா𝜕𝑉ଶ ൌ

𝑑ଶ

2
𝐶ா𝜕𝐸ଶ . (7) 

The capacitance measured via a large field step from E = 0  to E = EB, or 𝐸ሺ𝑡ሻ ൌ 𝐸஻𝜃ሺ𝑡ሻ, can now be 

obtained via ∆𝐹ா ൌ ׬ 𝑑𝐹ா
ாಳ
଴ ൌ జఌబ

ଶ
ቀ𝜀𝐸஻

ଶ ൅ ଷ

ଶ
𝜒ଷ𝐸஻

ସቁ and 𝐶ா ൌ
ଶ

జఌబ
ሺ∆𝐹ா 𝐸஻

ଶ⁄ ሻ, which together with Eq. (2) 

results in . 

 𝜀ா ൌ 𝜀 ൅
3
2
𝜒ଷ𝐸஻

ଶ . (8) 

An alternative approach is to obtain E from a small field step at EB, i.e., using a step from E = EB to 

E = EB + E, The above Eq. (2) together with Eq. (6) and Eq. (7) provides the result for this case: 

 𝜀ா ൌ
𝐶ா
𝐶௚௘௢

ൌ
2
𝜐𝜀଴

𝜕𝑤௘௟
𝜕𝐸ଶ

ฬ
ாୀாಳ

ൌ
2
𝜐𝜀଴

𝜕𝐹ா
𝜕𝐸ଶ

ฬ
ாୀாಳ

ൌ 𝜀 ൅ 3𝜒ଷ𝐸஻
ଶ . (9) 
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Clearly, the relation between E and 3 depends on the manner in which the measurement is performed. 

B. Oscillating field approaches 

The goal of this section is to determine E for a given 3 for the more common impedance 

experiments, which apply an oscillating field, 𝐸ሺ𝑡ሻ ൌ 𝐸஻ ൅ 𝐸ఠ 𝑐𝑜𝑠ሺ𝜔𝑡ሻ, possibly in combination with a 

large bias field EB. The measured quantity is the current, 𝐼ሺ𝑡ሻ ൌ 𝐼௡ఠ 𝑐𝑜𝑠ሺ𝑛𝜔𝑡 ൅ 𝜑ሻ, either at the 

fundamental frequency (n = 1) or at the higher harmonics (n > 1). The connection between current and 

displacement is given by 𝐷ாሺ𝑡ሻ ൌ ׬ 𝐼ሺ𝑡ሻ𝑑𝑡 𝐴⁄ , or for sinusoidal signals by 𝐷ாሺ𝜔ሻ ൌ 𝐼ሺ𝜔ሻ ሺ𝜔𝐴ሻ⁄ . We 

calculate the electric displacement DE(t) by inserting E(t) into 

 𝐷ாሺ𝑡ሻ ൌ 𝜀଴𝐸ሺ𝑡ሻ ൅ 𝜒𝜀଴𝐸ሺ𝑡ሻ ൅ 𝜒ଷ𝜀଴𝐸ሺ𝑡ሻଷ ൌ 𝐷஻ ൅෍ 𝐷௡ሺ𝜔ሻ
ଷ

௡ୀଵ
 (10) 

and express the outcome as a static term DB and the harmonics Dn() which are associated with 

frequencies n: 

 𝐷ଵሺ𝜔ሻ ൌ 𝜀଴𝐸ఠ ൬𝜀 ൅ 3𝜒ଷ𝐸஻
ଶ ൅

3
4
𝜒ଷ𝐸ఠଶ൰ 𝑐𝑜𝑠ሺ𝜔𝑡ሻ , (11a) 

 𝐷ଶሺ𝜔ሻ ൌ 𝜀଴𝐸஻ ൬
3
2
𝜒ଷ𝐸ఠଶ൰ 𝑐𝑜𝑠ሺ2𝜔𝑡ሻ , (11b) 

 𝐷ଷሺ𝜔ሻ ൌ 𝜀଴𝐸ఠ ൬
1
4
𝜒ଷ𝐸ఠଶ൰ 𝑐𝑜𝑠ሺ3𝜔𝑡ሻ . (11c) 

For the fundamental frequency, n = 1, an impedance measurement based on 𝜀 ൌ |𝑌ሺ𝜔ሻ| ห𝑌௚௘௢ห⁄ ൌ

|𝐼ሺ𝜔ሻ|𝑑 ሺ𝜔𝜀଴𝐴𝑉଴ሻ⁄  results in 

 𝜀ா,ଵ ൌ
𝐶ா,ଵ

𝐶௚௘௢
ൌ

|𝐷ଵሺ𝜔ሻ|

𝜀଴𝐸ఠ
ൌ 𝜀 ൅

3
4
𝜒ଷ𝐸ఠଶ ൅ 3𝜒ଷ𝐸஻

ଶ . (12) 

Here and in the following, we use the notation E,n for the 'permittivity' derived from the nth harmonic 

signal. For typical experiments, there are two limiting cases of interest: a small sinusoidal field with large 

amplitude bias, and a large oscillating field with zero bias as illustrated in Fig. 1. The former case yields 

 lim
ாഘ→଴

𝜀ா,ଵ ൌ 𝜀 ൅ 3𝜒ଷ𝐸஻
ଶ , (13) 

consistent with the previous results of a small field step superposed onto a high static field EB, Eq. (9). 

The latter case assumes EB = 0 and gives a different result: 
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 lim
ாಳ→଴

𝜀ா,ଵ ൌ 𝜀 ൅
3
4
𝜒ଷ𝐸ఠଶ  , (14) 

where the effect of 3 on E,1 is reduced relative to the high bias field case of Eq. (13) because much of 

the polarization response occurs near the linear regime. 
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FIG. 1. Schematic representation of polarization P versus E curves for a nonlinear system, 
characterized by the nonlinear solid (red) line wit slope E. Panel (a) is for a case of a high bias field 
EB with a relatively small E. Panel (b) reflects a situation with zero bias (EB = 0) and high amplitude, 
E, of the oscillating field. 

For the higher harmonics, n > 1, admittances at frequencies n can no longer be defined as 𝑌ሺ𝑛𝜔ሻ ൌ

𝐼ሺ𝑛𝜔ሻ 𝑉ሺ𝑛𝜔ሻ⁄ , since V(n) = 0 for n > 1. However, if we follow common practice and use 𝑌෨ሺ𝑛𝜔ሻ ൌ

𝐼ሺ𝑛𝜔ሻ 𝑉ሺ𝜔ሻ⁄ , higher harmonic permittivities can be defined analogously as 

 ห𝜀ா,ଶห ൌ
𝐶ா,ଶ

𝐶௚௘௢
ൌ

|𝐷ଶሺ𝜔ሻ|
𝜀଴𝐸ఠ

ൌ
3
2

|𝜒ଷ|𝐸஻𝐸ఠ , (15a) 

 ห𝜀ா,ଷห ൌ
𝐶ா,ଷ

𝐶௚௘௢
ൌ

|𝐷ଷሺ𝜔ሻ|
𝜀଴𝐸ఠ

ൌ
1
4

|𝜒ଷ|𝐸ఠଶ  . (15b) 

Note that E,2 vanishes for EB = 0, while E,3 is independent of EB.  
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IV. NONLINEAR RESPONSE THEORY 

This section addresses the case of a sinusoidal field of large amplitude with zero bias, EB = 0. The 

expansion of the medium polarization in Eq. (1) is performed in powers of the electric field E. It 

represents the combined field of the free charges at the plates of the capacitor and the electric field of the 

polarized dielectric (Maxwell field). In contrast, perturbation theories of dynamical observables operate 

in terms of the perturbation induced by the field of charges external to the material, which is the field E0 

of the free carriers at the plates of the capacitor in the case of the dielectric experiment. The reason is 

that the time-dependent perturbation of the dielectric is given by the perturbation Hamiltonian 

 𝐻ᇱሺ𝑡ሻ ൌ െ𝑀𝐸଴ሺ𝑡ሻ , (16) 

where M is the instantaneous total dipole moment of the sample projected on the direction of the field. 

The linear polarization of the sample follows from the standard Kubo's formalism [20], in terms of the 

time-dependent response function 0(t  ) 

 𝑃ሺ𝑡ሻ ൌ 𝜀଴ න 𝜒଴ሺ𝑡 െ 𝜏ሻ𝐸଴ሺ𝜏ሻ𝑑𝜏
௧

ିஶ
 . (17) 

This equation assumes that the perturbation was turned on at the time t0  . 

The standard manipulations relate the Fourier-Laplace transform of 0(t) to the dielectric function 

() 

 𝜀ሺ𝜔ሻ ൌ ሾ1 െ 𝜒෤଴ሺ𝜔ሻሿିଵ , (18) 

where 

 𝜒෤଴ሺ𝜔ሻ ൌ න 𝜒଴ሺ𝑡ሻ𝑒௜ఠ௧𝑑𝑡
ஶ

଴
 . (19) 

Further, the response function is expressed in terms of the correlation function between the dipole 

moment M(t) at time t and its time derivative 𝑀ሶ ሺ0ሻ at t = 0 

 𝜒଴ሺ𝑡ሻ ൌ
𝛽
𝜀଴𝑉

〈𝑀ሺ𝑡ሻ𝑀ሶ ሺ0ሻ〉 , (20) 

where  = 1/(kBT). 
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The experimental conditions applied here assume an oscillatory external field 𝐸଴ሺ𝑡ሻ ൌ 𝐸ఠ଴𝑐𝑜𝑠ሺ𝜔𝑡ሻ 

and the static limit for the dielectric susceptibility 𝜒଴ ൌ 𝜒෤ሺ0ሻ. Taking this limit, the amplitude of the  

polarization density oscillating with the principal frequency  becomes 

 𝜀଴
ିଵ𝑃ఠ ൌ 𝜒଴𝐸ఠ଴  . (21) 

The same set of approximations can be applied to the Kubo perturbation expansion truncated after the 

third-order polarization term (see Appendix). The sum of the first and third order polarization responses 

becomes  

 𝜀଴
ିଵ𝑃ఠ ൌ 𝜒଴𝐸ఠ଴ ൅

3
4
𝜒ଷ
଴ሺ𝐸ఠ଴ሻଷ . (22) 

This equation is the analog of Eq. (1) expressed in terms of the vacuum field. To convert it to the 

expansion in terms of the amplitude of the Maxwell field E one notices the following connection, 

 𝐸ఠ଴ ൌ
𝐷ఠ
𝜀଴

ൌ 𝐸ఠ ൅ 𝜀଴
ିଵ𝑃ఠ . (23) 

When Eq. (22) is substituted in the above equation, one obtains 

 𝐸ఠ଴ ൌ 𝜀𝐸ఠ ൅
3𝜀
4
𝜒ଷ
଴ሺ𝐸ఠ଴ሻଷ . (24) 

This equation can be solved in terms of E by iterations. Truncating after the third order-term leads to 

 𝐸ఠ଴ ൌ 𝜀𝐸ఠ ൅
3𝜀ସ

4
𝜒ଷ
଴𝐸ఠଷ  . (25) 

This relation between the vacuum and Maxwell field can now be used in Eq. (22), from which one arrives 

at the final result for the polarization density in terms of the Maxwell field 

 𝜀଴
ିଵ𝑃ఠ ൌ 𝜒𝐸ఠ ൅

3𝜀ସ

4
𝜒ଷ
଴𝐸ఠଷ  , (26) 

where 𝜒 ൌ 𝜀𝜒଴ was used. We therefore recover Eq. (14) for the dielectric constant in the limit of zero 

bias field, 

 𝜀ா ൌ 𝜀 ൅
3𝜀ସ

4
𝜒ଷ
଴𝐸ఠଶ ൌ 𝜀 ൅

3
4
𝜒ଷ𝐸ఠଶ  , (27) 

with 𝜒ଷ ൌ 𝜀ସ𝜒ଷ
଴. 
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V. DISCUSSION 

For the calculations outlined above, we have assumed an ideal dielectric in the sense that dc-

conductivity is absent. This eliminates problems such as electrode polarization, i.e., the accumulation of 

charges near blocking electrodes, which can interfere with high field experiments performed on real 

systems. Also, an ideal dielectric does not absorb energy from a time dependent electric field with 𝜔𝜏 ≪

1. By contrast, the loss, '' > 0, of a real sample leads to heating and thus violates the present assumption 

of a constant temperature. Moreover, Cgeo has been used as a field invariant quantity, implying that 

electrostriction is negligible. As a result, it is well established that there are several obstacles to measuring 

E precisely [21,22,23,24]. 

A common metric for quantifying the degree of dielectric nonlinearity in the static limit is the Piekara 

factor a [25], defined as: 

 𝑎 ൌ
𝜀ா െ 𝜀
𝐸ଶ

 , (28) 

where E refers to the magnitude of the field, either EB or E. Implicit in this quantity a is the expectation 

that E varies linearly with E2, i.e., that susceptibilities 5 and orders beyond may be disregarded. Having 

demonstrated above that different experimental approaches to measuring E lead to distinct relations 

between E and 3, it appears advantageous to compare results on the basis of the material specific 

quantity 3, rather than using the high-field permittivity E or the Piekara factor a. Similar to defining a 

high-field permittivity, E, we can also define a high-field susceptibility, E, for instance via 

 𝜒ா ൌ
𝜕𝑃
𝜀଴𝜕𝐸

ൌ 𝜒 ൅ 3𝜒ଷ𝐸ଶ , (29) 

provided that higher order terms are negligible.  

The case of a large field step, 𝐸ሺ𝑡ሻ ൌ 𝐸஻𝜃ሺ𝑡ሻ, resulted in 𝜒ଷ ൌ 2𝑎 3⁄ , while a small step superposed 

onto a high field, 𝐸ሺ𝑡ሻ ൌ 𝐸஻ ൅ 𝛿𝐸𝜃ሺ𝑡ሻ, gave 𝜒ଷ ൌ 𝑎 3⁄ . From an experimental point of view, a field step 

is unrealistic because it leads to extreme current surges, and establishing a high field more slowly will 

lead to electrode polarization interfering with the result. Consequently, the various approaches involving 

oscillating fields with 𝐸ሺ𝑡ሻ ൌ 𝐸஻ ൅ 𝐸ఠ 𝑐𝑜𝑠ሺ𝜔𝑡ሻ are the experimental methods commonly found in the 

literature [2,6,7,10,13,15,21,23]. As illustrated in Fig. 1, extending the field into the nonlinear regime 

can be a matter of either EB or E. 
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With the above notation of E,n designating high-field permittivity derived from the nth harmonic, how 

to calculate 3 from experimental results is compiled as follows: 

 lim
ாഘ→଴

𝜀ா,ଵ    ⟹    𝜒ଷ ൌ
൫𝜀ா,ଵ െ 𝜀൯

3𝐸஻
ଶ ൌ

𝑎
3

 , (30a) 

 lim
ாಳ→଴

𝜀ா,ଵ    ⟹    𝜒ଷ ൌ
4൫𝜀ா,ଵ െ 𝜀൯

3𝐸ఠଶ
ൌ

4𝑎
3

 , (30b) 

 𝜀ா,ଶ    ⟹    |𝜒ଷ| ൌ
2ห𝜀ா,ଶห
3𝐸஻𝐸ఠ

 , (30c) 

 𝜀ா,ଷ    ⟹    |𝜒ଷ| ൌ
4ห𝜀ா,ଷห
𝐸ఠଶ

 . (30d) 

Note that the higher harmonics (n > 1) provide more direct measures of 3 in the sense that the extent of 

nonlinearity can be determined without knowledge of . Clearly, for a given value of 3, each technique 

referred to in Eq. (30) leads to a different high-field permittivity as derived in the usual manner from an 

impedance measurement. In other words, there is no simple relation connecting E to E, especially 𝜀ா ്

1 ൅ 𝜒ா, unless E is determined from a small field step or oscillation superposed on a high amplitude 

static field. Note that the notation |3| is commonly used in the context of reporting frequency dependent 

NDEs derived from third harmonic responses [26,27,28,29], but even in the static limit those quantities 

are not necessarily identical to the present 3 as defined in Eq. (1). 

Another argument in favor of 3 being the key quantity for characterizing deviations from simple 

dynamics is its relation to dipole moment fluctuations and their departure from the Gaussian limit. Eq. 

(26) was derived by taking the zero frequency limit in the response functions to an oscillatory 

perturbation. One can alternatively calculate the static polarization of the dielectric in response to a static 

field E0 by applying the cumulant expansion in the statistical averages [30]. This approach allows one to 

represent the cubic polarization susceptibility in terms of a fundamental physical parameter BV (the 

subscript V stands for constant-volume conditions) which enumerates the deviation of the statistics of 

dipole moment fluctuations from the Gaussian limit 

 𝐵௏ ൌ 𝑁𝑈ே ൌ 𝑁 ቈ1 െ
〈𝑀ସ〉

3〈𝑀ଶ〉ଶ
቉ . (31) 

The relation of 3 to BV is given by the following equation [12] 
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 𝜒ଷ ൌ െ
𝛽𝜀଴𝜀ଶሺ𝜀 െ 1ሻଶ

2𝜌
𝐵௏ , (31) 

where  = N/V is the number density. 

The Binder parameter, UN, [31] in the brackets of Eq. (31) tends to zero as 1/N in the leading order 

when the thermodynamic limit N   is taken and the statistics of the macroscopic dipole moment 

becomes Gaussian. The nonlinear susceptibility 3 thus quantifies the first-order correction to the 

Gaussian statistics of the dipole moment fluctuations. It tends to a finite value even in the thermodynamic 

limit because BV is taken as a product of N and UN. Given this fundamental connection, it is the cubic 

susceptibility 3 that should be the primary parameter connecting experiment to statistical theories of 

medium polarization. 

VI. CONCLUSIONS 

We have established a definition of high-field permittivity E that is consistent with thermodynamics 

and with experimental approaches to permittivity outside the linear regime. This definition of E accounts 

for a common feature of permittivities reported for high-field impedance measurements, namely that data 

is derived from capacitances and analyzed in the same manner as low field data. Unlike  derived from 

linear responses, it turns out that its high-field counterpart, E, is not material specific. Instead, its relation 

to 3 is a matter of how the experiment is conducted, where 3 characterizes the nonlinear dielectric 

behavior of the material via its field induced polarization at high field magnitudes. The relation between 

E and 3 is calculated for a variety of experimental or theoretical approaches to nonlinear dielectric 

behavior in the static limit, and each case results in a different coefficient. Note that one could have used 

an alternative approach to E by defining it as 1 + E, i.e., as 𝜀ா ൌ 𝜀 ൅ 3𝜒ଷ𝐸ଶ. However, such a definition 

of high field permittivity would not always match the experimental values typically reported in the 

literature. 

The present results facilitate not only the quantitative connection among different types of 

experimental approaches to NDEs in the static limit, but also relate measured permittivities to the more 

fundamental material variables such as the cubic polarization susceptibility, 3, and the Binder parameter, 

UN, associated with theoretical approaches to nonlinear responses. The conditions that were assumed in 

the present calculations are the lack of electrostriction (Cgeo/E = 0), constant temperature (T = 0), and 
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constant volume ( = 0). Meeting these conditions in a real experiment is not trivial. Reducing effects 

of electrostriction requires a capacitor whose electrode separation is not changed by the electrostatic 

forces, which can be considerable [32]. Maintaining a constant temperature calls for rapid heat transport 

to heat sinks, to avoid temperature changes from energy absorbed from time dependent fields (sinusoidal 

or step-like) [16,33] and from electrocaloric effects [34]. The constant volume assumption inherent in 

the present calculation contrasts the constant pressure situation of most experiments, but the difference 

may be minor for most materials [30]. The dielectric loss and conductivity of real samples is considered 

the main source of the notorious inconsistencies regarding values reported for NDEs in the static limit 

[22]. The present results may help improving this situation, because obtaining the same value for 3 from 

distinct field protocols will increase the reliability of the NDE result. 

 

APPENDIX: DERIVATION OF NONLINEAR RESPONSE 

The time-dependent Hamiltonian of the system is a sum of the unperturbed time-independent 

Hamiltonian H0 and the external perturbation H'(t): H(t) = H0 + H'(t), see Eq. (16). One writes the time-

dependent probability density in the phase space (distribution function) as a sum of perturbations of 

increasing order, 

 𝑓௧ ൌ෍𝑓௧
ሺ௜ሻ

ஶ

௜ୀ଴

 , (A1) 

where 𝑓௧
ሺ଴ሻ ൌ 𝑓௘௤ is the equilibrium Gibbs distribution of the unperturbed dielectric, 𝑓௘௤ ൌ 𝑍ିଵ𝑒ିఉுబ  . 

The Liouville equation allows to write the time evolution relations for each order in perturbation [35] 

 𝜕௧𝑓௧
ሺ௜ሻ ൌ 𝑖𝐿𝑓௧

ሺ௜ሻ െ 𝐸଴ሺ𝑡ሻቀ𝑀, 𝑓௧
ሺ௜ିଵሻቁ , (A2) 

where () are Poisson brackets and iL=(H0, f) is the Liouville operator. This set of differential equations 

can be recursively integrated to obtain the response of the dipole moment of nth order. We are mainly 

interested in the third-order response, 

 〈𝑀ሺଷሻ〉௧ ൌ න𝑀𝑓௧
ሺଷሻ 𝑑Γ , (A3) 

where d implies integration over the entire phase space of the system. One obtains from Eq. (A2) and 

Eq. (A3) 
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〈𝑀ሺଷሻ〉௧ ൌ න 𝑑𝑡ᇱ න 𝑑𝑡ᇱᇱ න  𝑑𝑡ᇱᇱᇱ

௧ᇲᇲ

ିஶ

௧ᇲ

ିஶ

௧

ିஶ
 

                    𝐸଴ሺ𝑡′ሻ𝐸଴ሺ𝑡′′ሻ𝐸଴ሺ𝑡′′′ሻ𝜒ଷ
଴ሺ𝑡 െ 𝑡ᇱ, 𝑡ᇱ െ 𝑡ᇱᇱ, 𝑡ᇱᇱ െ 𝑡′′′ሻ , 

(A4) 

where the third-order susceptibility is 

 𝜒ଷ
଴ሺ𝑡 െ 𝑡ᇱ, 𝑡ᇱ െ 𝑡ᇱᇱ, 𝑡ᇱᇱ െ 𝑡′′′ሻ ൌ 𝛽 〈𝑀ሺ𝑡 െ 𝑡′ሻ ൬𝑀, 𝑒௜௅൫௧

ᇲି௧ᇲᇲ൯ ቀ𝑀, 𝑒௜௅൫௧
ᇲᇲି௧ᇲᇲᇲ൯𝑀ሶ ሺ0ሻቁ൰〉 . (A5) 

We consider the oscillatory electric field 𝐸ሺ𝑡ሻ ൌ 𝐸ఠ଴ 𝑐𝑜𝑠ሺ𝜔𝑡ሻ and use it in Eq. (A4). The result is  

 〈𝑀ሺଷሻ〉௧ ൌ
ଵ
ସ
ሺ𝐸ఠ଴ሻଷ Reቂ𝜒ଷ

ሺଵሻሺ𝜔ሻ𝑒ଷ௜ఠ௧ ൅ 𝜒ଷ
ሺଶሻሺ𝜔ሻ𝑒௜ఠ௧ቃ , (A6) 

where 

 
𝜒ଷ
ሺଵሻሺ𝜔ሻ ൌ 𝜒෤ଷሺെ3𝜔,െ2𝜔,െ𝜔ሻ , 

𝜒ଷ
ሺଶሻሺ𝜔ሻ ൌ 𝜒෤ଷሺെ𝜔,െ2𝜔,െ𝜔ሻ ൅ 𝜒෤ଷሺെ𝜔, 0,െ𝜔ሻ ൅ 𝜒෤ଷሺെ𝜔, 0,𝜔ሻ , 

(A7) 

and the Fourier-Laplace transform of the response function is 

 
𝜒෤ଷሺ𝜔ଵ,𝜔ଶ,𝜔ଷሻ ൌ න 𝑑𝑡ᇱ න 𝑑𝑡ᇱᇱ න  𝑑𝑡ᇱᇱᇱ

ஶ

଴

ஶ

଴

ஶ

଴
 

                                   𝜒ଷሺ𝑡′, 𝑡′′, 𝑡′′′ሻ𝑒௜ఠభ௧ᇲା௜ఠమ௧ᇲᇲା௜ఠయ௧ᇲᇲᇲ  . 

(A8) 

If the frequency of the experiment is much below the relaxation frequency of the response function, one 

can apply the limits 1, 2, 3  0 in Eq. (A8) with the result for the third-order polarization density: 

 𝑃ሺଷሻሺ𝑡ሻ ൌ
1
𝑉
〈𝑀ሺଷሻ〉௧ ൌ

1
4
𝜒ଷ
଴ሺ𝐸ఠ଴ሻଷ ሾcosሺ3𝜔𝑡ሻ ൅ 3cosሺ𝜔𝑡ሻሿ . (A9) 

Consistent with Eq. (15), the second harmonic does not appear in the response. When the response at the 

principal frequency  is concerned, the polarization density becomes 

 𝑃ሺ𝑡ሻ ൌ ൤𝜒଴𝐸ఠ଴ ൅
3
4
𝜒ଷ
଴ሺ𝐸ఠ଴ሻଷ൨  cosሺ𝜔𝑡ሻ , (A10) 

where the notation 𝜒ଷ
଴ ൌ 𝜒෤ଷሺ0,0,0ሻ 𝑉⁄  is used. 

Similar expressions were obtained by Brun et al. [27]. Their derivation, however, does not explicitly 

incorporate causality of the third order susceptibility function, and the result is somewhat different from 

ours. Our derivation is fully consistent with the third-order optical susceptibility from the quantum 

Liouville equation, using 
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𝜒ଷሺ𝑡ଷ, 𝑡ଶ, 𝑡ଵሻ ൌ ൬

𝑖
ℏ
൰
ଷ

𝜃ሺ𝑡ଵሻ𝜃ሺ𝑡ଶሻ𝜃ሺ𝑡ଷሻ

ൈ 〈𝑃ሺ𝑡ଷ ൅ 𝑡ଶ ൅ 𝑡ଵሻ ൤𝑃ሺ𝑡ଶ ൅ 𝑡ଵሻ, ቂ𝑃ሺ𝑡ଵሻ, ൣ𝑃ሺ0ሻ,𝜌௘௤൧ቃ൨〉 , 

(A11) 

see equation (5.16a) in [36], where eq is the equilibrium density matrix. 
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