Quantifying dielectric permittivities in the nonlinear regime
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In contrast to the static dielectric permittivity, &, associated with linear response, its high-
field counterpart, &g, is not a material specific quantity, but rather depends on the
experimental method used to determine the nonlinear dielectric effect (NDE). Here, we
define & in a manner consistent with how high field permittivities are typically derived from
a capacitance measurement using high voltages. Based upon characterizing the materials
nonlinear behavior via its third order susceptibility, y3, the relations between a given y3 and
the observable ¢k is calculated for six different experimental or theoretical approaches to
NDEs in the static limit. It is argued that the quantity y3 is superior over & or the Piekara
factor, (& — €)/E°, because it facilitates an unambiguous comparison among different
experimental techniques and it provides a more robust connection between experiment and

theory.
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I. INTRODUCTION

The experimental observation as well as the theoretical understanding of nonlinear dielectric effects
(NDESs) has received increasing attention in recent years, particularly in the context of glass-forming
materials [1,2,3,4,5,6,7,8,9,10]. The work of Debye has laid the foundation for this field by showing that
the dielectric constant, &, depends on the magnitude of the externally applied electric field, £ [11]. A
prediction for the NDE in condensed polar materials is not available [12]. Measurements of the
permittivity, £(w), at high electric fields have revealed field-induced increases as well as reductions of
the static permittivity, &, [13,14] and shifts of the dielectric time constants in either direction have also
been observed [6,7,15,16,17]. Which of these effects appears is a matter of the material and of the type
of high field applied, alternating (ac) versus static (dc). The standard experimental approach to NDEs is
to measure at a relatively high electric field, but then analyze the data in the same fashion as done in the
case of linear responses associated with sufficiently low fields. A survey of the relevant literature shows
that NDEs are being quantified in very different ways: as the high field permittivity, g, relative to its
linear response counterpart &, as the Piekara factor a = (g — €)/E?, as a relative change of permittivity,
(eg — €)/€ = In(gg/¢€), or in terms of higher order susceptibilities observed via the higher harmonics of

the polarization response.

This work aims at providing a definition of the static limit of high field permittivity, &g, that 1) is
consistent with experimental approaches and ii) can be related unambiguously to the lowest order term,

3, of nonlinear polarization (in SI units),
& 'P = XE + x3E?, (1)

where & is the permittivity of vacuum. We restrict our considerations to the static case, where y = y'=
s and y" = 0. For a real system with ?(w) = y'(w) + iy"'(w), this implies that experiments that
determine &k require the condition that dielectric relaxation is sufficiently fast to ensure that polarization
P maintains equilibrium with the external field £. In other words, we address only situations for which
the dielectric relaxation time 7 is very short compared with the time scale of the experiment, usually
defined by the radian frequency @, i.e. wt < 1 is required. In this case, the real valued constant y3
characterizes the nonlinear dielectric behavior of the sample. We find that the high field permittivity, g,
as derived from impedance type experiments, does not have a unique connection to y3, but rather depends
on how the nonlinear dielectric effect is measured. For six distinct field protocols, the relations between
3 and gk are determined, and it is argued that y3 is the best choice for quantifying NDEs in the static
limit.
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The sections below are organized as follows. First, we generalize permittivity to beyond the linear
regime in a manner that is consistent with the typical experimental approach. The next step is to provide
connections between y3 and &k, which is done separately for static and for oscillating fields. For the
important case of high field impedance without a bias field, it is then shown that the y3 - &t relation can
also be derived from nonlinear theory based on Kubo's formalism. These sections are followed by a

discussion and conclusions.

I1. HIGH FIELD PERMITTIVITY

Generally, measurements of permittivity at high fields are based upon the determination of a
capacitance. This obviously holds for impedance type experiments, where permittivity is derived from a
capacitance, which in turn is obtained from voltage and current data [18,19]. Capacitance is also the basis
for permittivities determined via the resonance frequency of an LC circuit [2,10]. Moreover, the
permittivity associated with a high field experiment is generally calculated using the relations that are
strictly valid only in the low field limit, i.e., within the regime of linear response. Therefore, a practical

definition of high field permittivity is given by

Cg (w)
Cgeo

) (2)

&g

analogous to the linear response (low field limit) counterpart ¢ = 1 + y = C(w)/Cye,, but accounting
for the feature that the capacitance changes with field in case of a nonlinear dielectric. Here, the
geometrical capacitance is given by Cye, = £9A4/d, Where 4 is the surface area and d the uniform distance
of the pair of planar electrodes forming the capacitor. The notation Cg(w) instead of Ck is meant to
indicate that in practice the capacitance is determined at a given frequency @, and not that C depends on
o as long as the condition wt < 1 is preserved. The usual relations among impedance Z, admittance 7,
current [ = jA, voltage V = Ed, charge dQ = CAV, and capacitance C = dQ/dV remain fiecld amplitude

invariant:

1 _ Ip(w)
Zg(w) B Vg (w)

with Cz(w) = |Q(@)|/IV(w)] = [I(w)|/(wV)).

Ye(w) = = iwCg(w), 3)



ITII. RELATION TO NONLINEAR POLARIZATION

A. Field step approaches

In the regime of linear response, polarization follows g5 1P = yE with a field invariant susceptibility
7. Beyond the linear regime, Eq. (1) relates P and E, provided that higher order terms such as ys are
negligible. This leaves the field independent quantity y3 for characterizing the extent of nonlinearity, and
the goal is to establish a well defined connection between y3 and the ¢ defined in Eq. (2). To this end,
we assume constant temperature (07 = 0), constant volume (0v = 0), and the reversibility of the processes

involved (7S = g). In this case, we have for the change OF in free energy (F = U — TS):
0F =0U — SOT —TdS = q — pov + 0w, — SOT — TOS = dwy, 4)

where U the internal energy, S the entropy, 7T the temperature, ¢ the heat, p the pressure, and wel the

electrostatic work. Thus, the change in free energy is entirely determined by the electrostatic work wel.

The field induced free energy change is dFy = vEJdDg, with v being the volume and Dk the electric
displacement defined as D = €goE = gyE + P, which leads to

&;1D; = E + yE + x3E®. (5)

Now, the free energy change can be expressed in terms of susceptibilities, which yields

0F; = vVEODg = vey(E + yE + 3x3E3)0E, (6)
where dF is equal to
1 d?
ow,; = VEOD, = VaQ, = CcVaV = EcEaV2 = 7CEaEZ . (7)

The capacitance measured via a large field step from £ =0 to E = Es, or E(t) = Eg6(t), can now be

V&g

obtained via AFy = fOEB dFg = —* (£E§ + %)(3E§) and Cp = f (AF;/E%), which together with Eq. (2)
0

results in .

3
€E=€+§)(3E§. (®)

An alternative approach is to obtain gt from a small field step at EB, i.e., using a step from £ = EB to

E = EB + OF, The above Eq. (2) together with Eq. (6) and Eq. (7) provides the result for this case:

G 2 dwy 2 0F
8 = Cyeo e, OE? E=Ep " vey OE2 E=Ep

=&+ 3x3Ef . )
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Clearly, the relation between ¢t and y3 depends on the manner in which the measurement is performed.

B. Oscillating field approaches

The goal of this section is to determine & for a given y3 for the more common impedance
experiments, which apply an oscillating field, E(t) = Eg + E,, cos(wt), possibly in combination with a
large bias field EB. The measured quantity is the current, I(t) = I,,,, cos(nwt + @), either at the
fundamental frequency (n = 1) or at the higher harmonics (n > 1). The connection between current and
displacement is given by Dg(t) = [ I(t)dt/A, or for sinusoidal signals by Dg(w) = I(w)/(wA). We
calculate the electric displacement Dg(¢) by inserting E() into

3

De(t) = E(t) + x&oE(t) + x360E(t)* = Dp + Dy (w) (10)

n=1

and express the outcome as a static term Dp and the harmonics Dn(®@) which are associated with

frequencies nw:

3
D;(w) = & E, (s + 3x3E; + Z)(gE(%) cos(wt), (11a)
3
D,(w) = g4Ep (E)(3Ef,) cos(2wt), (11b)
1
Di;(w) = &E,, (Z)@,Ef)) cos(3wt) . (11¢)

For the fundamental frequency, n = 1, an impedance measurement based on & = |Y(w)|/ |Ygeo| =

|[I(w)|d/(weyAVy) results in

Cer  |D1(w)] 3
= B = £+ x3E2 + 3y3ER.
€1 Coco eoE, 5+4X3 w T 3Xx3Lks (12)

Here and in the following, we use the notation g for the 'permittivity' derived from the n™ harmonic
signal. For typical experiments, there are two limiting cases of interest: a small sinusoidal field with large

amplitude bias, and a large oscillating field with zero bias as illustrated in Fig. 1. The former case yields
: _ 2
Jm g1 = €+ 3x3Ep, (13)

consistent with the previous results of a small field step superposed onto a high static field Es, Eq. (9).

The latter case assumes £ = 0 and gives a different result:



_ 3
51;130 85’1 =&+ ZX3EZ) ) (14)

where the effect of y3 on &g, is reduced relative to the high bias field case of Eq. (13) because much of

the polarization response occurs near the linear regime.

(b) <
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FIG. 1. Schematic representation of polarization P versus E curves for a nonlinear system,

characterized by the nonlinear solid (red) line wit slope y&. Panel (a) is for a case of a high bias field
Eg with a relatively small E,,. Panel (b) reflects a situation with zero bias (Eg = 0) and high amplitude,

E, of the oscillating field.

For the higher harmonics, n > 1, admittances at frequencies nw can no longer be defined as Y (nw) =
I(nw)/V (nw), since V(nw) = 0 for n > 1. However, if we follow common practice and use ¥ (nw) =

[(nw)/V (w), higher harmonic permittivities can be defined analogously as

Cez _ 1D(w)| 3

- = |x3|EzE,
|2 Coeo . 2oEs 2|X3| BEw (15a)
Cgz _IDs(w)| 1
= = = = — E'2 .
leeal = = == 5. =g lalE (15b)

Note that g2 vanishes for Es = 0, while ¢ 3 is independent of EB.



IV.NONLINEAR RESPONSE THEORY

This section addresses the case of a sinusoidal field of large amplitude with zero bias, Es = 0. The
expansion of the medium polarization in Eq. (1) is performed in powers of the electric field E. It
represents the combined field of the free charges at the plates of the capacitor and the electric field of the
polarized dielectric (Maxwell field). In contrast, perturbation theories of dynamical observables operate
in terms of the perturbation induced by the field of charges external to the material, which is the field Eo
of the free carriers at the plates of the capacitor in the case of the dielectric experiment. The reason is

that the time-dependent perturbation of the dielectric is given by the perturbation Hamiltonian
H'(£) = —ME,(t), (16)

where M is the instantaneous total dipole moment of the sample projected on the direction of the field.
The linear polarization of the sample follows from the standard Kubo's formalism [20], in terms of the

time-dependent response function (¢ — 7)

t
P(t) =g, f x°(t —1)Ey(r)dr. (17)
This equation assumes that the perturbation was turned on at the time 7o — —co.

The standard manipulations relate the Fourier-Laplace transform of 4°(f) to the dielectric function
& o)
e(w) =[1-7°(w)] ™, (18)

where

(0]

(@) = f 2Deitde. (19)
0

Further, the response function is expressed in terms of the correlation function between the dipole
moment M(?) at time ¢ and its time derivative M(0) at =0

B

T (MM (0)), (20)

x°(t) =

where = 1/(ksT).



The experimental conditions applied here assume an oscillatory external field E,(t) = E9cos(wt)
and the static limit for the dielectric susceptibility y° = 7(0). Taking this limit, the amplitude of the

polarization density oscillating with the principal frequency @ becomes
&g Py = x°EQ . 21)

The same set of approximations can be applied to the Kubo perturbation expansion truncated after the
third-order polarization term (see Appendix). The sum of the first and third order polarization responses

becomes
-1 00 3 0 043
€o Pa) =X Ea) +ZX3 (Ea)) . (22)

This equation is the analog of Eq. (1) expressed in terms of the vacuum field. To convert it to the
expansion in terms of the amplitude of the Maxwell field £, one notices the following connection,

D
ES = g—‘: =E,+¢&'P,. (23)

When Eq. (22) is substituted in the above equation, one obtains
3¢
ES = e, + 7 13 (ES)* (24)

This equation can be solved in terms of £, by iterations. Truncating after the third order-term leads to

4

3¢
ES = ¢E, + - XIE3 . (25)

This relation between the vacuum and Maxwell field can now be used in Eq. (22), from which one arrives

at the final result for the polarization density in terms of the Maxwell field
4

RY
&P, = yE, + T)(QES’) , (26)

where y = £x° was used. We therefore recover Eq. (14) for the dielectric constant in the limit of zero

bias field,

3e* 3
£E=£+T)(§E3)=£+Z)(3E§), (27)

with y5 = *x9.



V. DISCUSSION

For the calculations outlined above, we have assumed an ideal dielectric in the sense that dc-
conductivity is absent. This eliminates problems such as electrode polarization, i.e., the accumulation of
charges near blocking electrodes, which can interfere with high field experiments performed on real
systems. Also, an ideal dielectric does not absorb energy from a time dependent electric field with wt «
1. By contrast, the loss, ¢"> 0, of a real sample leads to heating and thus violates the present assumption
of a constant temperature. Moreover, Cgeo has been used as a field invariant quantity, implying that
electrostriction is negligible. As a result, it is well established that there are several obstacles to measuring

& precisely [21,22,23,24].

A common metric for quantifying the degree of dielectric nonlinearity in the static limit is the Piekara

factor a [25], defined as:

&g — €
EZ '’

a= (28)

where E refers to the magnitude of the field, either £s or E,. Implicit in this quantity a is the expectation
that e varies linearly with £2, i.e., that susceptibilities ys and orders beyond may be disregarded. Having
demonstrated above that different experimental approaches to measuring & lead to distinct relations
between & and y3, it appears advantageous to compare results on the basis of the material specific
quantity y3, rather than using the high-field permittivity &e or the Piekara factor a. Similar to defining a
high-field permittivity, e, we can also define a high-field susceptibility, e, for instance via

_op
 g,0E

XE =y + 3x3E?, (29)

provided that higher order terms are negligible.

The case of a large field step, E(t) = Eg6(t), resulted in y3 = 2a/3, while a small step superposed
onto a high field, E(t) = Eg + SEO(t), gave y3 = a/3. From an experimental point of view, a field step
is unrealistic because it leads to extreme current surges, and establishing a high field more slowly will
lead to electrode polarization interfering with the result. Consequently, the various approaches involving
oscillating fields with E(t) = Eg + E,, cos(wt) are the experimental methods commonly found in the
literature [2,6,7,10,13,15,21,23]. As illustrated in Fig. 1, extending the field into the nonlinear regime

can be a matter of either £B or E,.



With the above notation of &k designating high-field permittivity derived from the »™ harmonic, how

to calculate y3 from experimental results is compiled as follows:

. (SEl - 8) a
—\BE1 ") _ 30
Am ez = X 3E2 3’ (302)

4(55,1 — e) _ ﬂ

P Rl = X3= T3 3 (30b)
2|
&2 = Ix3I=3J5E;|. (30¢)
B~ w
4|e
s = tsl = |E’§'3|. (30d)
w

Note that the higher harmonics (n > 1) provide more direct measures of y3 in the sense that the extent of
nonlinearity can be determined without knowledge of ¢. Clearly, for a given value of y3, each technique
referred to in Eq. (30) leads to a different high-field permittivity as derived in the usual manner from an
impedance measurement. In other words, there is no simple relation connecting &k to yE, especially ez #
1 + xg, unless &k is determined from a small field step or oscillation superposed on a high amplitude
static field. Note that the notation |y3| is commonly used in the context of reporting frequency dependent
NDEs derived from third harmonic responses [26,27,28,29], but even in the static limit those quantities

are not necessarily identical to the present y3 as defined in Eq. (1).

Another argument in favor of y3 being the key quantity for characterizing deviations from simple
dynamics is its relation to dipole moment fluctuations and their departure from the Gaussian limit. Eq.
(26) was derived by taking the zero frequency limit in the response functions to an oscillatory
perturbation. One can alternatively calculate the static polarization of the dielectric in response to a static
field Eo by applying the cumulant expansion in the statistical averages [30]. This approach allows one to
represent the cubic polarization susceptibility in terms of a fundamental physical parameter Bv (the
subscript ¥ stands for constant-volume conditions) which enumerates the deviation of the statistics of

dipole moment fluctuations from the Gaussian limit

€2))

BV:NUN:Nll (M l

o 3(M?2)2

The relation of y3 to Bv is given by the following equation [12]
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Beoe?(e — 1)?
2p

By, (31)

X3 =
where p= N/V is the number density.

The Binder parameter, U, [31] in the brackets of Eq. (31) tends to zero as 1/N in the leading order
when the thermodynamic limit N — oo is taken and the statistics of the macroscopic dipole moment
becomes Gaussian. The nonlinear susceptibility y3 thus quantifies the first-order correction to the
Gaussian statistics of the dipole moment fluctuations. It tends to a finite value even in the thermodynamic
limit because By is taken as a product of N and Un. Given this fundamental connection, it is the cubic
susceptibility y3 that should be the primary parameter connecting experiment to statistical theories of

medium polarization.
VI. CONCLUSIONS

We have established a definition of high-field permittivity &t that is consistent with thermodynamics
and with experimental approaches to permittivity outside the linear regime. This definition of & accounts
for a common feature of permittivities reported for high-field impedance measurements, namely that data
is derived from capacitances and analyzed in the same manner as low field data. Unlike ¢ derived from
linear responses, it turns out that its high-field counterpart, &g, is not material specific. Instead, its relation
to y3 is a matter of how the experiment is conducted, where y3 characterizes the nonlinear dielectric
behavior of the material via its field induced polarization at high field magnitudes. The relation between
& and p3 is calculated for a variety of experimental or theoretical approaches to nonlinear dielectric
behavior in the static limit, and each case results in a different coefficient. Note that one could have used
an alternative approach to & by defining it as 1 + yg, i.e., as g = & + 3y3E2. However, such a definition
of high field permittivity would not always match the experimental values typically reported in the

literature.

The present results facilitate not only the quantitative connection among different types of
experimental approaches to NDEs in the static limit, but also relate measured permittivities to the more
fundamental material variables such as the cubic polarization susceptibility, y3, and the Binder parameter,
Un, associated with theoretical approaches to nonlinear responses. The conditions that were assumed in

the present calculations are the lack of electrostriction (0Cgeo/OE = 0), constant temperature (07 = 0), and
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constant volume (0v = 0). Meeting these conditions in a real experiment is not trivial. Reducing effects
of electrostriction requires a capacitor whose electrode separation is not changed by the electrostatic
forces, which can be considerable [32]. Maintaining a constant temperature calls for rapid heat transport
to heat sinks, to avoid temperature changes from energy absorbed from time dependent fields (sinusoidal
or step-like) [16,33] and from electrocaloric effects [34]. The constant volume assumption inherent in
the present calculation contrasts the constant pressure situation of most experiments, but the difference
may be minor for most materials [30]. The dielectric loss and conductivity of real samples is considered
the main source of the notorious inconsistencies regarding values reported for NDEs in the static limit
[22]. The present results may help improving this situation, because obtaining the same value for y3 from

distinct field protocols will increase the reliability of the NDE result.

APPENDIX: DERIVATION OF NONLINEAR RESPONSE

The time-dependent Hamiltonian of the system is a sum of the unperturbed time-independent
Hamiltonian Ho and the external perturbation H'(¢): H(¢) = Ho + H'(¢), see Eq. (16). One writes the time-
dependent probability density in the phase space (distribution function) as a sum of perturbations of

increasing order,

fo= ) 12, (A1)

where ft(o) = feq 18 the equilibrium Gibbs distribution of the unperturbed dielectric, foq = Z~ e PHo
The Liouville equation allows to write the time evolution relations for each order in perturbation [35]
0uf = iLf” - By (M, £477), (A2)

where (...) are Poisson brackets and iL=(Ho, f) is the Liouville operator. This set of differential equations
can be recursively integrated to obtain the response of the dipole moment of n™ order. We are mainly

interested in the third-order response,
(M®), = f Mf® dr, (A3)

where dI” implies integration over the entire phase space of the system. One obtains from Eq. (A2) and

Eq. (A3)
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t t’ t”
N ) R
—w —w —o (A4)

Eo(t)Eo(¢")Eo(t")x3(t =t t" =", t" = "),
where the third-order susceptibility is
Xt -t —t" " —t") = B(M(t—t") <M, eiL(t'=t") (M, eiL(f"‘f”')M(O)))) . (AS)
We consider the oscillatory electric field E(t) = EJ cos(wt) and use it in Eq. (A4). The result is
(M®), = 1(ES) Re[ x§P (w)e¥* + xP (w)e™|, (AG)
where

P (W) = 75(-3w, —20, ),

(A7)
2P (@) = 13(-0, —20,-0) + F2(=0,0,-0) + 73(-,0,0),
and the Fourier-Laplace transform of the response function is
)?3((1)1, 0)2, (1)3) = f dt,f dt”f dt’”
0 0 0 (A8)

nr

1ot oy it viw,t" +iwst
xs(t',t", t" et 2 3

If the frequency of the experiment is much below the relaxation frequency of the response function, one

can apply the limits w1, a2, @3 — 0 in Eq. (A8) with the result for the third-order polarization density:
() = LYY, = L,0(E0)?
PEE) = (M) = 2 x5(Ew)” [cos(3wt) + 3cos(wt)]. (A9)

Consistent with Eq. (15), the second harmonic does not appear in the response. When the response at the

principal frequency @ is concerned, the polarization density becomes
3
P(O) = [x°B3 + 5 13(E2)| cos@t) (A10)

where the notation x5 = ¥5(0,0,0)/V is used.

Similar expressions were obtained by Brun et al. [27]. Their derivation, however, does not explicitly
incorporate causality of the third order susceptibility function, and the result is somewhat different from
ours. Our derivation is fully consistent with the third-order optical susceptibility from the quantum

Liouville equation, using
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-3

l
=) 0(t)0(e)0(t:)

x3(ts3, tp,t1) = (h

(A11)
X (P(ts + &+ 6) | P& + 6, [P, [P g .

see equation (5.16a) in [36], where peq is the equilibrium density matrix.
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