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1. Introduction

The classical Hopf lemma for subharmonic functions has been applied exten-
sively in complex analysis to study holomorphic maps between domains or
CR maps between real hypersurfaces. It is often used to obtain transversal-
ity of the map at a boundary point when the target domain or hypersurface
satisfies certain types of “convexity” conditions. See Proposition 2.1 for a
typical application of the Hopf lemma. Much effort has been made to gen-
eralize the classical Hopf lemma to more applicable settings to study the
transversality and the unique continuation problem for holomorphic maps.
Here we mention the papers [A2], [ABR], [BR1-2|, [HKMP], [HK], [L], [BH]
and references therein.

Partially supported by National Science Foundation grants DMS-1800549 and
DMS-2045104.
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In this paper we establish a Hopf lemma type result of different flavor
from the aforementioned literature — a high order Hopf lemma for holo-
morphic mappings into classical domains. The mapping problem between
bounded symmetric domains is an important subject in complex analysis
and geometry. Due to the special geometric structure of bounded symmetric
domains, many striking phenomena such as rigidity property have been dis-
covered for proper and isometric maps since the classical result of Poincaré
[Po]. For many results along this line, see [Al], [Fr], [Hu], [HJ], [DX1-2],
[TH], [Ts], [Ng3], [M1-5], [YZ], [KZ1-2], [Km] and references therein. See
also recent survey articles [NTY], [CXY] for more detailed account and ref-
erences on this subject. Our Hopf lemma may shed new light on the study
of the boundary behavior of mappings into bounded symmetric domains. As
a first exploration, we will restrict ourselves to the case of classical domains
in this article.

To explain our results, we first recall the notion of bounded symmetric
domains. A complex manifold X with a Hermitian metric h is said to be a
Hermitian symmetric space if, for every point p € X, there exists an invo-
lutive holomorphic isometry o, of X such that p is an isolated fixed point.
An irreducible Hermitian symmetric space of noncompact type can be, by
the Harish-Chandra embedding (See [Wo)), realized as a bounded domain in
some complex Euclidean space. Such domains are convex, circular and some-
times called bounded symmetric domains. Irreducible bounded symmetric
domains can be classified into Cartan’s four types of classical domains and
two exceptional domains (See [M1]). See more details on classical domains
in Section 3.

The rank r of a bounded symmetric domain D, can be defined as the di-
mension of the maximal polydisc that can be totally geodesically embedded
into D. Write Kp(Z, Z) for the Bergman kernel of an irreducible bounded
symmetric domain D. Then there is a Hermitian polynomial Qp(Z, Z) such
that Kp(Z,2) = QD(lZE)' Moreover, Qp(Z,Z) = App(Z,Z)", where Ap
is a positive constant, n is a positive integer both depending on D, and
p(Z,W) is an irreducible holomorphic polynomial satisfying p(Z,Z) > 0
in D and p(Z,Z) =0 on the boundary dD. Furthermore, let P be the
maximal polydisc A" x {0} in Q in Harish-Chandra coordinates, then for
Z = (21, ,2;0) € P, we have

. T

p(2,2) = [[— =)

i=1
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See [M1], [H], [FK], [Lo] for more details on Kp and p. The function p is
sometimes called the generic norm associated to the domain D. We include
the explicit formulas of p for classical domains in Section 3. Write K C
Autg(D) for the isotropy subgroup at 0 € D. An important property of p is
the invariance under K : p(Z,Z) = p(v(Z),v(Z)) for every v € K.

We next recall the boundary fine structure of an irreducible bounded
symmetric domain D (cf. [Wo]). By Borel embedding (See [M1], [Wo]), D
can be canonically embedded into its dual Hermitian symmetric manifolds
X of compact type. Under the embedding, every automorphism g € Aut(D)
extends to an automorphism of X and D becomes an open orbit under
the action of Aut(D) on X. Moreover, denoting the rank of D by r, the
topological boundary 9D of D decomposes into exactly r orbits under the
action of the identity component Autg(D) of Aut(D) : 0D = U]_, E;, where
E}; lies in the closure of Ej if k > | (The explicit formulas to define E}s can
be found in Section 3 for classical domains). Moreover, Ej, is the smooth part
of the semi-analytic variety U7_, E; (See the proof of Lemma 2.2.3 in [MN]).
In particular F4 is the unique open orbit, which is indeed the smooth part
of 0D, and FE, is the Shilov boundary. We recall in general for a bounded
domain D, its Shilov boundary S is defined to be the (unique) smallest
closed subset of 0D such that for every holomorphic function f defined in a
neighborhood of D, it holds that

sup [f(2)| = sup [f(2)].

2€D z€S

Note the boundary 0D of a bounded symmetric domain D is non-smooth

and contains complex varieties, unless D is biholomorphic to the unit ball.
We now introduce our main result. Let p and Ejs be as above which are

associated to an irreducible bounded symmetric domain D. Write po F' =

p(F, F) for a holomorphic map F into D.

Theorem 1. Let Q@ C C" be a domain and D an (irreducible) classical
domain in C™ with rank r. Fix 1 <k <r. Let F' be a holomorphic map
from Q to D and extends C'—smoothly to a smooth boundary point a € OS).
Assume F(a) € Ey. Then

(1) The following limit exists (as a finite number) and satisfies the sign
condition:

(1.1) (—1)F Tim 22 Fl )

> 0.
t—0— tk

Here v is the outward pointing unit normal vector of  at a.
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(2) If in addition F is C* near a, then all derivatives of po F of order
< k — 1 must vanish at a. Moreover,

(1.2) A AT
(1.3) LF(po F)|, #0.

Here L is the complex normal direction of 002 at a with % = 2RelL.

Remark 1.1. (i). Note p o F' is always positive in 2, and thus part (1) in
Theorem 1 is equivalent to say the limit in (1.1) is finite and nonzero. In
this case, we will say p o F vanishes to the k' order at the point a along
the normal direction. This conclusion may fail if in Theorem 1 we merely
assume the map F' has a Holder continuous extension to the point a. See
Example 1.1.

(ii). In part (2) since all derivatives of p o F' of order < k — 1 vanish at
a, the quantities on the left hand side of (1.2) and (1.3) do not depend on
the extensions of % and L to a neighborhood of a.

(iii). Note the equation (1.2) follows from (1.1) when F' is C*¥ smooth at
a. In the proof, however, we indeed establish part (2) of Theorem 1 first.

Example 1.1. Let A C C be the unit disc and D!" the classical domain of
type IV (See Section 3.4 for the definition of the latter). Let F': A — DIV

be defined by
F(f):(f,o, ’0’1_ V 1_52)

Then F' is holomorphic in A and admits a Holder continuous extension up
to the circle dA. Set a =1 € JA. Then F(a) = (1,0,---,0,1) € Ey (thus
k = 2, see Section 3.4 for the explicit defining formula of Fs for type IV
domains) and F does not have a C!—extension to the point a. In this case,
the outward pointing normal unit vector of A at a is v = (1,0) € R? = C.
We compute lim;_,g- w = —2. Thus p o F vanishes only to the first
order at a along the normal direction.

We next recall the following definition.
Definition 1.1. Let k& > 1. Let U be an open subset in RY and ¢ € C*(U).

Denote by x = (x1,--- ,xy) the coordinates in RV and for a multi-index
— . ite 90— 9l - ..
a= (a1, ,an), write Gz = T and |a| = a1 + -+ + an. We say

1 vanishes to the k' order at p € U if 88‘(;‘& (p) =0 for all || <k —1 and
920 (p) # 0 for some multi-index By with |Go| = k.

ozPo
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To prove the main theorem, the first step is to establish the following
characterization of the boundary orbits of classical domains. Note when
k =1, Theorem 2 follows from Lemma 2 in [M5].

Theorem 2. Let D be an (irreducible) classical domain in C™ with rank
r. Let 1 <k <r. Then

E, ={be dD: p(Z,7Z) vanishes to the k™ order at b}.

Remark 1.2. From Theorem 1 and 2, one immediately sees that under
the setting of Theorem 1, there exists some component of the map F' whose
normal derivative is nonzero at a.

We next discuss applications of our Hopf lemma in studying holomorphic
isometric maps into classical domains. The study of metric-preserving maps
dates back to the work of Calabi [Ca] and Bochner [Bo]. More recently,
the isometric mappings between bounded symmetric domains attract lots
of attention from many researchers. One particular motivation comes from
arithmetic geometry in the work of Clozel-Ullmo [CU] in understanding the
modular correspondence problem, which was reduced to a rigidity problem
for isometric mappings in purely complex geometric settings (See [CU] for
more details). Mok (cf. [M2-5]) then led an extensive study on such holo-
morphic isometric mapping problem. Let F : (2, Ads3) — (D, ds%) be an
isometric mapping between bounded symmetric domains €2 and D which
we equip with the Bergman metrics ds%2 and dsQD. When D is irreducible
and of rank at least 2, Clozel-Ullmo [CU] observed the proof of Hermitian
metric rigidity of Mok (See [M1] and [M3]) yields already the total geodesy
of F. When € is a complex unit ball B"(n > 2), and D is a product of some
unit balls, Yuan-Zhang ([YZ], See also [M3], [Ngl] for related work) showed
F must be totally geodesic. Hence, if we assume (2 is irreducible and has
dimension at least two, then the simplest case that one can expect a non-
totally geodesic map F' is when € is the unit ball B™ and D is irreducible
and of rank > 2. Mok [M5] initiated the study of isometric maps from the
unit ball to bounded symmetric domains of higher rank, and in partiular
proved the existence of such non-totally geodesic maps. Since the work of
Mok [M5], various authors contributed along this direction of understanding
isometric maps from the unit ball to bounded symmetric domains of higher
rank, including [CM], [Chl], [UWZ], [XY1-2], etc. More related results on
metric-preserving or volume-preserving mappings between Hermitian sym-
metric spaces can be found in [HY], [MN], [Ng2-3], [Y], [FHX], [Ch2], [CY],
[X] and references therein.
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Let D be an irreducible bounded symmetric domain. Denote by wp and
wpn the normalized Bergman metric (Kéhler-Einstein metric) such that the
minimal disc is of constant Gaussian curvature —2 for D and B™, respec-
tively. One can verify the normalized Bergman metric wp of D is given by
wp = /—1001og p~Y(Z,Z), where p is the generic norm associated to D.
Let F:B™ — D be an isometric map satisfying F*(wp) = A\wg» for some
positive constant A. Chan-Mok [CM] showed that A must be an integer and
1 < X < r. We have the following consequence of Theorem 1 on the boundary
behavior of such isometric maps.

Theorem 3. Let F' be a holomorphic isometric map from B™(n > 1) to an
(irreducible) classical domain D of rankr : F*(wp) = Awg~ for some positive
constant A. Fix 1 < k < r. Then the following statements are equivalent:

1) A=k

(2) There is a point a € OB" such that F has a C* smooth extension to a
and F(a) € Ey.

(3) For every & € OB™ to which F has a C* smooth extension, it must hold
that F(§) € Ej.

Remark 1.3. (i). By Mok [M1], every (local) holomorphic isometry be-
tween bounded symmetric domains must be algebraic and thus extends holo-
morphically across a generic boundary point. Hence Theorem 3 implies that
A = k if and only if F maps a generic boundary point to Ej. Note this fact
was known to Mok [M5] when k = 1.

(ii). In particular, if F' is a holomorphic polynomial isometric map from
B™ to an (irreducible) classical domain D of rank r, i.e., F*(wp) = kwp~ for
some 1 < k < r, then F' maps every point on 0B" to Ej.

We have the following consequences of Theorem 3.

Corollary 1.1. Let F' be a holomorphic isometric map from B™(n > 1) to
an (irreducible) classical domain of with rank r : F*(wp) = kwgn for some
1 <k <r. Assume a € OB™ and there is a sequence {a;}52, C B" converging
to a such that im;_,~ F(a;) & Ey. Then F' cannot be extended Cl—smoothly
to a.

Corollary 1.2. Let F be a holomorphic isometric map from B" to an (irre-
ducible) classical domain D of rank r, i.e., F*(wp) = kwpn for some 1 < k <
r. Assume F' extends continuously to a point § € OB". Then F(§) € U]_, Ej.
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Remark 1.4. (i). Under the assumption of Corollary 1.2, where F' only
extends continuously to &, one cannot expect F'(§) € E} in general. See Ex-
ample 1.2.

(ii). When n =1, i.e., the source domain is the unit disc A, it follows
from [M3] that F' must extend continuously to the closed disc A. Thus the
conclusion in Corollary 1.2 holds for every boundary point of A. We remark,
however, for larger n, there exists a holomorphic isometric map from B” to
a classical domain which fails to extend continuously to the whole boundary
OB"™. See Example 1.3.

The following result shows that the image of a non-totally geodesic iso-
metric map F' : B" — D cannot touch the Shilov boundary of D at a high
order.

Corollary 1.3. Let F' be a holomorphic isometric map from B™ to an (ir-
reducible) classical domain D. If F extends C'—smoothly to a point & € OB"
and maps & to the Shilov boundary of D, then F must be totally geodesic.

Remark 1.5. The conclusion in Corollary 1.3 fails if we only assume F
has a Holder continuous extension to the point £. See Example 1.2.

In the following two examples, let DIV and Dziq be classical domains of
type IV and I, respectively. (See Section 3 for their definitions).

Example 1.2. Let F be a holomorphic map from B" to DIV (m >n + 1)
given by

21yt 7Zn—lazn’07"' 7071_

j=1

One can verify that F' is an isometric map satisfying F*(wp) = wp» and F
is not totally geodesic. Let V' be the real subvariety of 0B™ defined by

Vz{zE@IB":Zz?zl}.
i=1

Then for every point a € V, F' admits a Holder continuous extension to a, and
F(a) € E3, the Shilov boundary of DLV'. However, F has no C'!—extension
to a. This supports the assertions in Corollary 1.1 and Remark 1.5.

Example 1.3. Let ¢ > p > 2. Write the coordinates in BPt9~! as & =
(&1, &pma, -y 1g). Let F:BPTa—L Dé’q be the following isometric
map with respect to the normalized Bergman metrics (This example is taken
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from equation (42) in [XY?2]):

& & .
F¢) = n2  fao ... foqg

Tlp fp2 qu

where f;; = 57711'7]'1,2 <i<p,2<j<gq. Then F has no continuous exten-
sion to the point a:= (1,0,---,0). Indeed, one can verify F has differ-
ent limits when £ goes to a along the two paths: (1 —t¢,¢,¢,0,---,0) and
(1 —t{%,%,o,.-- ,0) where 0 < t << 1.

More generally, we can use Theorem 1 to study isometric maps be-
tween reducible bounded symmetric domains. Let 2= X --- X Qn C
C™ x --- x C™ be a bounded symmetric domain, where ;s are the irre-
ducible factors of Q, and D = Dy X --- X Dy, C C"™ x ... x C™~" a product
of irreducible classical domains. Assume rank(2;) = r; for 1 <i < N so that
rank(Q)) = r = Zfil r;. Similarly, assume rank(D;) =t; for 1 < j < N’ so
that rank(D) =t = ZN/ t;. Write the decomposmon of the boundaries of
Q; and D; as 0Q; = U, | E! and dD; = U; IEJ respectively, for 1 <1 <
N,1<j<N'. We will also write E} = Q;,1<i<N and E(]) =D,;, 1<
j < N’ so that Q; = UZ;OEé and Dijz Uzgoﬁg. Let F = (Fy,---,Fn/) be
a holomorphic isometric map from Q = (Q1, \Mwq,) X -+ X (Qn, Anway)
to D = (Dq, pawp,) X -+ x (Dn+, un'wp,,,) for some positive constants \;’s
and p;'s in the sense that

N’ N
(1.4) > wiFi(wp,) = P Aiwa,.
j=1 i=1

Then we have the following result for the boundary behavior of F.

Theorem 4. Let ), D be as above and F : Q0 — D a holomorphic isometric
map satisfying (1.4). Assume F extends C'—smoothly to a neighborhood of
a boundary point a of Q. Write a = (ay,--- ,ay), where a; € Q; and F(a) =
(b1, ,bns), where bj € D Assume for each 1<i<N, aj € E for some
0 <l; <. Similarly, for each 1 < j < N', assume b; € E for some 0 <
k;j <tj. Then

N N’
(1.5) Z /\ili = Z ,u,jkj
i=1 j=1
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Corollary 1.4. Let Q,D be as above, U a connected open subset of €,
and F :U — D a holomorphic isometric map satisfying (1.4) in U. Then
(A, AN) and (p1, -+ -, unv) satisfy the following number theoretic condi-
tion: For any N—tuple of integers (o1,--- ,on) with 0 < o; < 1y, there exists
an N'—tuple of integers (m,--- ,nn') with 0 < n; <t; such that

N N’
(1.6) D Nioi = pin;.
i=1 j=1

In particular, each \;,1 < i < N, is a linear combination of p;'s with integer
coefficients:

N/
(1.7) A= chuy,
j=1

where each cé- 1 an integer and 0 < cé- <t;.

Theorem 1 can be also applied to study the transversality of proper maps
into classical domains. Recall amap F' : M — M’ between real hypersurfaces

is said to be CR-transversal at p € M if T M + T}O(’pl))M’ + dF(CT,M) =

F(p)
CTp(p)M'(See [BER]). The following proposition generalizes a transversality

result of Mok (Lemma 7 in [M4]) when the target is a classical domain.

Proposition 1.1. Let F' be a holomorphic map from a domain € in C"
to an (irreducible) classical domain D in C™ with rank r. Let p € 0Q be a
smooth boundary point of Q. Assume F extends C'—smoothly across p and
F maps an open piece of 02 near p to Ey for some 1 < k <r. Then there
exists a germ of real algebraic smooth real hypersurface M’ in C™ containing
Ey near F(p) such that F is CR transversal to M’ at p. In particular, it
holds that dF (CT,(09)) ¢ Ty Bk + Ty Ex.

The paper is organized as follows. Section 2 discusses a typical applica-
tion of the classical Hopf lemma(i.e. Proposition 2.1), from which Theorem 1
follows in the special case k = 1. We prove the general case of Theorem 1
and Theorem 2 in Section 3. As applications of our high order Hopf lemma,
we prove in Section 4 Theorem 3, Theorem 4, and Proposition 1.1, as well
as their corollaries.

To end this section, we explain our strategy to prove our main theorem
(Theorem 1). The proof heavily relies on the invariance property of the
generic norm p under the action of the isotropy group K C Autg(D). This
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allows us to apply the action of the group K to normalize the map F.
Under a special normalization, to prove part (2) of Theorem 1 we show the
kth derivatives % ‘a and L¥(po F) }a only depend on the first jet of F' at
a. This also explains why the C''—smoothness assumption is essential in part
(1). Furthermore, under this normalization, the hypothesis that F'(a) € Ej
can be used to construct some holomorphic functions (from the map F')
which attain the maximal modulus at a. In this way, we can apply the
classical Hopf lemma to obtain certain non-degeneracy in the first jet of F’
at a. Although we stick to this basic strategy, due to the distinct structures
of K and expressions of p, we have to treat the four types of classical domains

case by case.

Acknowledgment: The author thanks Sui-Chung Ng for valuable dis-
cussions on Hermitian symmetric spaces and Shan Tai Chan for careful
reading and helpful comments on the article. He also thanks the anonymous
referees whose comments help improve the exposition of the paper.

2. A transversality result

We first observe in the case kK = 1, Theorem 1 is just a consequence of the
classical Hopf Lemma. For completeness, we sketch a proof for the following
folklore transversality result (See [Fo]). For a function h in U C C" and
a € U, we will often switch between the notations h|, and h(a) which both
denote the value of h at a.

Proposition 2.1. Let Q2 C C" be a domain and D a conver domain in
C™(m >mn >1). Assume b is a smooth point of 0D and r a local defining
function of D in a small neighborhood V of b :

DNV ={WeV:r(W,W) <0}, dr#0inV.

Let F be a holomorphic map from Q to D and extends C'—smoothly up to
a smooth point a € ON. If F(a) = b, then 8(g°F) la >0 and L(ro F)|, # 0.

14
Here v is the outward pointing normal vector of ) at a, and L is complex

normal direction of O at a such that 6% = 2RelL.

Remark 2.1. Let D be an irreducible bounded symmetric domain. Then D
is convex, and recall b € 9D is smooth if and only if b € F; (See Lemma 2.2.3
in [MN]). Moreover, the function —p, where p was introduced in Section 1, is
a local defining function of D (See Lemma 2 in [M5]) at every smooth point.
Then Theorem 1 follows from Proposition 2.1 in the special case k = 1.
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Proof of Proposition 2.1: We first recall the following well-known fact
(cf. [Ho|, [Kr]) about convex sets.

Lemma 2.1. If b is some smooth boundary point of a conver open set
D C R™, then there exists a neighborhood V' of b and some smooth defining
function ¢ of D in'V such that ¢ is convex in V. That is,

— PPo(x)
2.1 >0
. j.k=1 OO e
for everyx € V and u = (uy,- -+ ,um) € R™.

Lemma 2.1 yields that there exists a smooth local defining function ¢ of
D in some neighborhood V' of b such that ¢ is convex in V (in the sense of
(2.1)). This implies in particular ¢ is plurisubharmonic in V. Pick a small
neighborhood U of a, such that F' maps QN U to V. As F is holomorphic in
Q, we conclude ¢ o F := ¢(F, F) is plurisubharmonic and thus subharmonic
in QN U. Note ¢(F, F) <0 in ﬁ U and ¢(F(a), F(a)) = 0. It follows from
the classical Hopf lemma that )|a >0. Recall L = (2 +/-12 5,) for
some unit vector p tangent to 8(2 at a. Note qb oF, when restricted to 01,
attains its local maximum at a. It follows that ¢ZF lo = 0, and thus L(¢ o
F)|a #0. Since r and ¢ are both defining functions of D at the smooth
point b, we conclude that r = h¢ near b for some g)osmve smooth function A
in a small neighborhood of b. This implies TOF la = h(b ¢OF lo >0 and
L(roF)|a =h(b)L(¢o F)|, # 0. We have thus estabhshed Propos1t10n 2.1.
|

3. Proof of Theorem 1 and 2

The classical domains are classified into four different types, which are called
Cartan’s four types of classical domains. Due to their distinct structures, we
will prove Theorem 1 (as well as Theorem 2) separately for the four types
of domains.

3.1. Hopf lemma for type I case

Assume p < q and write CP*? for the space of p x ¢ matrices with entries of
complex numbers. The classical domain of type I is defined by:

—t
D!, ={ZeCri:.1,-ZZ > 0}.
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The Bergman kernel of Déq is given by

_ 4+ \ —(p+q)
Kp: (2,7) = (det(Ip - ZZt)> s

where cj is some positive constant. The generic norm p for D{,’q is given by
p(2,2) = det(I, — ZZ").
The boundary of D}I%q is given by
oDl ={ZeCr:1,- 27 >0; det(I,—ZZ') =0}.

Note the rank of Dzl),q is of rank p and the boundary ODIIW decomposes into
p orbits under the action of the identity component of Aut(D{Lq) : 8D£’q =
UleEi. Here Ej; lies in the closure of F; when k > [; E; is the smooth part
of GDZIW, and F, is the Shilov boundary. More explicitly in this type I case,
E,={Z ¢ GDIIW : the corank of I, — 77" equals k}, 1<k <p.

To better illustrate the boundary, we recall the following basic fact from
linear algebra. Let Z be a p x ¢(p < q) matrix. Then there exist a p x p
unitary matrix U and a ¢ x ¢ unitary matrix V' which normalize Z into the
following form:

rt 0 0 0 0

0 r9 -+ 0 0 --- 0
(3.1) Z=U A R ) Vv

0 0 -+ 7, 0 -~ 0

with r1 > rg > --- > r, > 0. The above equation is often called the singular
value decomposition of Z. The r;’s are called the singular values of Z and
their squares give the eigenvalues of 7Z7'. The strata E}.'s are then equiva-
lently given by

E,={ZecC%: 1l=r1= =1 >rp1>--->1p >0}

where r;’s are singular values of Z as above.
We recall the following well known Laplacian expansion for the determi-
nant of a square matrix in linear algebra. Let B be an m x m matrix. Let 1 <

i.s)

z'l<---<i5§mand1§j1<-~<js§m.VVedenotebyB(;.1 j
Lo s
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the determinant of the submatrix of B formed by its i1, - -, i, rows and

g1t 4™ columns.

Proposition 3.1. Let B = (Bjj)i<ij<m be an m x m matriz. Fiz 1 < s <
m. Then

1 ... 1 ...
(32)  detB= S &..B(- O )BETT M

1< < <goSm I Jo e Jm
where j1, -+, sy Js+1,° " »Jm 1S a permutation of 1,2,--- m with jsy1 <

oo < jm. Here we write &j,...;, = (—1)1T2TFstittis

We first give a proof for Theorem 2 in the type I case. The proof for this
case is inspired by [LT].

Proof of Theorem 2 for the type I case: Fix 1 < k < pand Z, € E}.
As discussed above, there exist a p x p unitary matrix U and a ¢ X ¢ unitary
matrix V' such that the single value decomposition in (3.1) holds for Zy with
l=ri=-=rp <rgp1 <--- <1y Note p is invariant under the action of
U and V, we can thus assume Z; takes the normalized form in (3.1), i.e.,

(3.3) Zo = (D(Z0) Opx(g—p)) »

where D(Zy) = diag(1,--- ,1,rg41,--- ,7p) is the p x p diagonal matrix and
0+ denotes the s x t zero matrix. Write the p X p matrix

(3.4) AZ)=AZ,Z)=1,- 77"
In particular,

(35) A(Z0770) = dlag(oa 7071 —’I”]%_;'_l,'-- al _T?))

where the first k entries on the diagonal are all zero.
In the following, we will denote by I a k—tuple of integers from 1 to p
in the increasing order:

I= (i1, ,ig), 1 <ip <ig <.+ <ix <p.

The length of I is defined to be k and will be denoted by [I] = k. For each
I = (i1, i), we will write

1 -k
i)
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for the determinant of the submatrix of A(Z) (defined in (3.4)) formed by
its 10, ... k™ rows and {8, - -+ " columns. It follows from (3.5) that all
entries of A(Z) in the first k rows vanish at Z = Zj. Consequently, A;(2)
vanishes at least to the k' order at Z = Z; for any I with length [I] = k.

For I = (i1, - ,ix), we write J;(Z) for the complement minor of A;(Z2),
i.e., the determinant of the submatrix of A(Z) obtained by deleting the
15t oo kM rows and ith, -+ | ith columns. In the special case k = p, J;(Z) is

understood to be identically 1. Again it follows from (3.5) that when k < p,

56) JI(ZO)—{O’ £, k)

?:kﬂ(l—?“iz), if I=(1,---,k)

By Proposition 3.1, we have

(3.7) p(Z,7) = det(A(2)) = Y ErANZ)T1(Z).
1=k

Here &7 is the sign defined in Proposition 3.1. As A;(Z) vanishes at least to
the k'™ order at Zy for each I, it follows that p(Z, Z) vanishes at least to the
kth order as well. To prove it vanishes precisely to the k*® order, we establish
the following lemma. Write the coordinates Z of CP*¢ in the matrix form

Z = (zij 1<i<p1<j<q-

Lemma 3.1. B
8 p(2,2)

0.
02110222 - - - Oz, ‘ZU 7

Proof. Note A;(Z) vanishes at least to the k™" order at Zy for all I with
length [I] =k and J;(Z) vanishes at Zy unless [ = Iy := (1,--- , k). Thus
Ap(Z)J1(Z) vanishes at least to (k+ 1)™ order at Zy if I # Iy. It then
follows from (3.7) that

" p Ok A,
' = 0 Z
(3 8) 82118222 e azkk ‘Zo g[g <82118222 . aZkk ’Z()) J[O( 0)
Ok A,
= 0 J Z .
(82118222 e OZkk |Z0> [0( 0)
Claim:

ok Ap, |
8,2118,222 s azkk Zo

£ 0.
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Proof of Claim: Write C(Z) for the submatrix of A(Z) formed by its
154 -+ k™ rows and 1%, - -+ | k'™ columns and thus A7, (Z2) = det C(Z). It
follows from (3.5) that C'(Zp) = Ogxr. We write

Cl(Z)
C(Z)= = (cst(2))1<s,t<ks
Ck(Z)

where c;,1 < j < k, is the j'" row of C(Z). Note that

_ q = -f t'
(39) Cst(Z) = Zl:; ZSlztﬁ 1 S 7& )
1 =31 z9Za, ifs=t.

One can easily verify

Ocst(Z)

82’]']'

‘Zoz—((ssjftj)‘zozo, iflgs#tﬁk.

Here d,; is the Kronecker symbol, i.e., d5; takes the value 1 if s = j and 0
otherwise. Similarly,

Ocss(Z)

ey ‘ZDZ—((SSJ‘Z;J') ]ZD:—dsj, for 1 <s<k.
3J
Consequently,
ocs(Z 0,---,0), ify ,
(310) CS( )‘ZU — ( ) 1 7j # S . .
8ZJJ (07"'703_1a0a"'70)a lf]:Sa
where “— 1”7 is at the j* position.

Note for any first order differential operator A in CP*Y, we have

AC1 Ccq
AAL(Z)=A(det C(2))=| P |+ + Nt
Ck Acy
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Using this property, we successively apply 8%, s, 29— to Aj,. Then we

Y Ozik

evaluate at Zy and use the fact that C'(Zy) = Ogxx to obtain

0c1(Zo)
8kA] 02iy4y
3.11 0 = e
(3.11) 02110202 - - - Oz, ‘ZO : Zﬁ dex(Zo)
1, ok szkzk
where Zil._,ik is the sum over all possible permutations iq,---,7; of
1,2,--- , k. It then follows from (3.10) that
dc1(Zo) B
o5 A e 1 0 0 0 .
‘Z =] o = e e s = (DR £0
02110292 -+ Ozkk ' ° | 9y (20) o 0 --- 0 -1
Ozpk
This establishes the claim. B
Now Lemma 3.1 follows from the claim and (3.8). O

Lemma 3.1 yields that p vanishes to the k*" order at Zy. We thus establish
Theorem 2 for the type I case. i

Proof of Theorem 1 in type I case: We will prove part (2) and (1) of
Theorem 1 separately. Write the coordinates in C" as & = (&1, -+ ,&n).

1. Proof of part (2): We will first prove part (2) of Theorem 1 and now
assume F extends C*—smoothly to & = a. Write Zg = F(a). By assumption,
Zy € Ej. By Theorem 2, p(Z, Z) vanishes to the k' order at Zy. It follows
that p(F(€), F(£)) vanishes at least to k" order at & = a. Thus it suffices to
prove equations (1.2) and (1.3).

Again as p is invariant under the actions of unitary matrices: p(F, F) =
p(UFV,UFV). Replacing F by UFV with suitable unitary matrices U,V
if necessary, we can assume Z; takes the form as in (3.3). Write A(F) =
AR F) =1, — Fft, where F' is in the matrix form: F' = (fi;)1<i<p,1<j<q-
By (3.7), we have

(3.12) p(F,F) = det(A(F)) = > EA[(F)J/(F)

Again as A;(Z) vanishes at least to the k' order at Zy for all I with
length [I] = k and J;(Z) vanishes at Zp unless I = I := (1,--- , k). We have
all k'™ order derivative of A7(F).J;(F) vanishes at a if I # Iy. Then (3.12)



A high order Hopf lemma 1953

yields that

(3.13)
Lop(FF)|, =&, (L AL (P)], ) Ji (P, = (1545, (F)], ) Ju(P)]

k n k &
= (T ) el = (S5, ) il

We pause to prove the following lemma. Recall F' is written in the matrix
form: F' = (fi;)1<i<p1<j<q-

Lemma 3.2. (i) The k x k matriz (Lfij(a)),<; j<; is nondegenerate.

(ii) The determinant of the k x k matrix (B(ﬁgijf?’)(a)) ik is positive.
<i,j<

Proof. Write the matrices

o(fij + fii
M = (Lfij(a)),<; i< N = <(f]6uf])(a)> 1<ij<k

By a Well—know? fact in linear algebra, there is a k x k unitary matrix T
such that TMT" is lower-triangular. NotetN is Hermitian, thus there exists
a k x k unitary matrix R such that RN R is diagonal. Now let

—t
U1 _ < T ka(p—k)) ,Vvl _ T OkX(q—k) ;
Op—iyxk  Ip—k O—iyxk  Lg—k

Similarly, let

Uy = ( R OkX(pk)> Vo = I O (g—k) .
O(p—k)xk Ip—k 0(q—k’)><k Iq,k
Clearly Ujs, Vs are pxp and ¢ x ¢ unitary matrices, respectively.
Set ﬁ: Uval and F: UQFVQ. Write ﬁ: (ﬁ'j)lgigp,lgqu and F:
(fij)1<i<pi<j<q, Tespectively. Noting that Z — U;ZV; is an automorphism
of ng,q for each | = 1,2, one can readily check the following facts hold:

2 7 I .
(1) F and F' both map 2 to D,, ;;

(2) F(a) = U F(a)Vy = Ui ZoVi = Zo.  Similarly, F(a) = UsF(a)Va =
Uz ZoVa = Zy;
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: =t =t . .
(3) (Lfi]-(a)) i T(Lf;; (a))lgi,jng =TMT" is lower-triangular;

(8(f%jfji)(a>> - R <a(fiéjfji) a)

( > R' = RNR'is diago-
1<i,j<k 1<4,j<k

nal.

~—=t ~—t
By (1), we have I, - FF >0, and I, — F'F' >0 in . In particular, we
must have for each 1 <i <p, 1fil? <1 and |f;|> <1 in Q. Note by (2),
fii(a) =1 and f;;(a) =1 for every 1 <i < k. By the classical Hopf lemma,

8'53' > 0 and 8|f”| } > 0 for 1 <1 < k. Consequently, 8(Ref”) . > 0and
W . >0 Tye latter in particular implies L fu’( ) # 0.
Now as (L fij(a))1<' . is lower-triangular and each of its diagonal
_Z7‘7_

entries L f‘ii(a) is nonzero, the matrix must be nondegenerate. By the fact
(3) above, (Lfij(a))1<ij<k is also nondegenerate. This proves part (i) of
Lemma 3.2.

Similarly, as Ref )| > 0, i.e., o iéjf ii) ‘a > 0, we conclude each of its

diagonal entries and thus the determinant of <a(fjdjfj)(a)> are pos-
1<i,j<k

itive. By the fact (3), the determinant of (a(fiéijf?)(a)) ek is positive as
_17.7 -
well. This proves part (ii) of the lemma. O

We now continue to prove the quantity in (3.13) is nonzero. For that we
establish the following lemma.

Lemma 3.3. LFA (F)|, #0 and (—l)kakgffk(F) ‘a > 0.

Proof. Let C(Z) be as in the proof of Lemma 3.1. Then Aj (F(&)) =
det C(F(&)), and

CF)=| | =(ca(F)zsi<k-
cx(F)

Moreover, C(F(a)) = Ogx. It follows from (3.9) that

ca(F) =4 S fafu,  ifs#t
"’ 1= Z?:l fSl?sh if s = t¢.
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It follows that for each 1 < s,t < k,

q
(3.14) Leg(F) = — Z Lfsl?tl?
=1
and
dest(F) Ifs of
(3.15) ng = (; = fut Zfsz ”)

Similarly as in (3.11), we apply L (or 8@) to Ay, (F) for k times, evaluate
at & = a and use the fact that C(F(a)) = Ogxx to obtain

L01 (F)|a
(3.16) LFAL(F)|, = k| - | =kdet(LO(F)):
LCk(F)|a
O Ay (F 5ol 9C(F
T T T ol I
okl e, (F) v
ov "l
Note (3.14) yields that
(3.18)
—t
(LC ( ZLfslftl > = — (Lfij’a)lﬁigk,lgqu - B
1<s,t<k

where the k x ¢ matrix B = (fijla);<;<p1<j<, - Similarly,
(3.19)

<808(VF) ‘a) = (Z afSl ‘ ftl’a + Zfsl|aaftl ‘ ) = —AEt _ th
1<s,t<k

=1

_ (9fi; _ _
Here A = (W a) Lcichici< . As F(a) = Zy, we have B = (Ik ka(q—k)) .

We substitute this into (3. 183 and (3.19) to obtain

(3.20) ( (F)‘a) (wa‘ )1§i,j§k;

<8 > (9 fzj + f]z ) ]
1<4,j<k
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With equations (3.16), (3.17), and (3.20), Lemma 3.3 becomes a consequence
of Lemma, 3.2. O

Now part (2) of Theorem 1 in the type I case follows from equation
(3.13) and Lemma 3.3 (Note Ji,(F')|, is positive by (3.6)). R

2. Proof of Part (1): By assumption, F extends C!—smoothly to a. Denote

by F* the first order truncation of F' at a. That is, writing a = (a1, - ,a,) €
C’n

3.21 F*( ;i — Q).

(3.21) @)+ Z e - e

Here F* is also understood as a matrix-valued function: F* =
(fi?)lgigp,léjSQ' By Taylor’s theorem,

(3.22) (&) = F*(£) + 0a(1).
Here we say a (vector-valued) function h(&) is 04(1) for some positive integer
if limg_,q I EHhHHL = 0. Recall by Theorem 2, p(Z, Z) vanishes to the k" order

at Zy. We write
(323) p(Z, 7) = Pk(Z - ZO) Z — ZO) + OZo(k)a

where we say a function ¢(Z,7) is oz, (k) if limz_,z, % = 0. Here
Py(n,7m) is a homogeneous polynomial in 7 and 77 of degree k, where n € CP*1.
Recall F(a) = Zy. Since F is C! at a, we have

F(&) = Zo = F(§) — F(a) = Oa(1).

if ||w(€)‘

Here we say a vector-valued function ¥ (&) is Og4(1) e QI < & for some

|

|
positive constant C' when ¢ is close to a. Consequently, if ¢(Z, Z) is oz, (k),
then ¢(F, F) and ¢(F*, F*) are both o, (k). We now substitute Z = F and
Z = F* respectively into (3.23) to obtain,

(3.24) p(F,F) = Po(F(§) = Fla), F(§) — F(a)) + 0q(k);

(3.25) p(F", F*) = P(F*(§) — F(a), F*(§) — F(a)) + oa(k).
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Combining (3.22) and (3.24) and using the fact that F*(§) — F(a) = O4(1),
we have

p(F,F) =Py (F*(€) = F(a) + 04(1), F*(€) — F() + 0a(1) ) + 0a(k)

(3.26)
=P (F*(€) = F(a), F*(€) = F(a)) + o(k).

Now it follow from (3.25) and (3.26) that
(3.27) p(F,F) = p(F*, F*) + 04(k), when £ is close to a.
We next prove the following fact.

Lemma 3.4.

(-1) Sk ‘a >0 and L%(F*,W)!a # 0.

Proof of Lemma 3.4: The argument that we applied to derive (3.13) also
leads to

(3.28)

OFp(F*, F*) ok Ap, (F*) i Ok Ay (F*)
. =& <ak!> T (Pl = (m)) Ji(F)la:

(3.29)
LEp(F* F7)|, = &, (LR A (F9)], ) Ji(F9), = (2R A5, (F9)], ) T (F)]

a

Writing F* in the matrix form F* = (f})1<i<p,1<j<q, we claim the following
facts hold.

(I). The k x k matrix (W(a)>l< . has positive determinant.
<i,j<
akA] F*
(1), (~1)F Al g

Note part (I) follows from part (ii) of Lemma 3.2. Part (II) can be proved
similarly as Lemma 3.3 by applying part (I). Indeed, we only used the in-
formation of the first jet of F' at a in the proof of Lemma 3.3. Then the
first equation of Lemma 3.4 follows from part (II) and equations (3.28) and
(3.6). The second equation of Lemma 3.4 can be proved similarly using
(3.29), Lemma 3.2, and (the proof of) Lemma 3.3. i

We apply an appropriate linear holomorphic change of coordinates in C"
to make a = 0 € C" and the outward pointing unit normal vector a% = 8%7
where &, = z + v/—1y. Set the real line H := {(0,---,0,2) € C" : x € R}.
As F(a) € Ej, Theorem 2 implies p(F*, F'*) vanishes to at least k™" order
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at a. It then follows from Lemma 3.4 that p(F*, F*)|g = ca® + oy(k) near
x =0 for some constant c satisfying (—1)*c > 0. We substitute this into
(3.27) to conclude part (1) of Theorem 1 for type I domains. B

We have thus established Theorem 1 for type I domains.

3.2. Hopf Lemma for type III domain

We postpone the )proof for type II case and now discuss the type III case.

m(m+1

Denote by C,;,? ={Z € C"™*™: Z = Z'} the set of all symmetric square
matrices of size m x m. Recall the classical domain of type III is defined by

m(m+1)

DI —{zeC,p :l.—2Z >0}
The Bergman kernel of D! is given by

_4 \ —(n+1)
KDTIY;TI =crJI (det(]m — ZZt))

for some positive intE%;er crrr- The generic norm for D{,LH is given by
p(Z,Z) = det(I,, — ZZ"). The boundary of D! is given by

m(m+1)

oD — {7z eC,;p :ln—27 >0; det(l,—ZZ') =0}.

Note DIIT is of rank m and the boundary 0D’ decomposes into m or-
bits under the action of the identity component G of Aut(DIT) : 9D =
U{ilEiI T where we use the superscript “I11” to distinguish the notations
from other types. Here E,gl I lies in the closure of E{H when k > [. More
explicitly in this type III case,

EIM = {Z € 9DM : the corank of I, — ZZ' equals k}, 1<k <m.

The type III classical domain D/T can be realized as a submanifold
of the type I domain D{n’m by the canonical embedding from DI/T to
DI . :i(Z) = Z. Recall the boundary of D,Imm is decomposed into m orbits:
9D, = UM, E! as in Section 3.1. Under the canonical embedding 4, the
boundary orbit E,gl I'is embedded into E,g for each 1 < k < m. Moreover, if
we write p! and p!!! respectively for the function p in the type case Dﬁhm
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and the type III case D#LH, then

p(i(2),1(2)) = p"1(2,Z) = det(I,, — ZZ").

Proof of Theorem 1 and 2 for type III domains: By the facts
mentioned above, Theorem 1 and 2 in the type III case for D! follows
from the theorems in the type I case for Dfmm. |

3.3. Hopf Lemma for type II domain

m(m—1)

Denote by C;; 2 ={Z € C"™*"™ : Z = —Z"} the set of all skew-symmetric
square matrices of size m x m. Recall the classical domain of type II is
defined by

I1 =t 7t
D,, ={ZeC;,* :I,—-2Z >0}.
The boundary of D! is given by

m(m—1)

oD ={zeC,;* :In—ZZ >0; det(l,, —ZZ') =0}.

Note the rank of D!! is of rank r = |1m/|. Here |-] denotes the floor func-
tion, i.e., 2r = m if m is even and 2r +1 = m if m is odd. The boundary
8D,In[ decomposes into r orbits under the action of the identity component
Go of Aut(DL): 0D = uUr_  EH | where we use the superscript “II” to
distinguish the notations from other types. Here E,gl lies in the closure of
ElH if £ > [. In particular, E{] is the smooth part of 0f2, ETH is the Shilov
boundary. More explicitly in this type II case (See [Wo] for more details),

El' ={Z € dD!I . the corank of I, — 77" equals 2k}, 1<k<r

The type II domain D!/ can be realized as a submanifold of the type I
domain D,Imm by the canonical embedding from D! to D{n’m ci(Z)=Z.
Under the canonical embedding 4, the boundary orbit E,gl is embedded into
EL for each k, where 8Dfn7m = U EL If we write p!(Z, Z) and p'!(Z,7)
respectively for the function p in the type case D,Imm and the type II case
DI then

(3.30) p'(i(2),i(2)) = (p"(2,7))° = det(I,, — ZZ").
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m(m—1)

Indeed, we have if Z € C;; * , then (cf. Lemma 4.3 in [X])

. . 2

A i)
11 e Uk

Here “2|k” means that k is divisible by 2. The expression in the big paren-

theses on the right hand side gives the formula for p!!(Z, 7).

—t ®
det(l, — Z27") = (1 + 2 1<k<n2k(—1)? (Zl§i1<...<ik§n

Proof of Theorem 2 for type II domains: Fix 1 <k <r. Let Z; €
E,gl . By the discussion above, under the canonical embedding i, Zy € E2Ik
By Theorem 2 for type I case,we have p!(Z,Z) vanishes to the (2k)™ or-
der. Then it follows from (3.30) that p’/(Z, Z) vanishes to k™" order. This
establishes Theorem 2. i

Proof of Theorem 1 for type II domains: By assumption, F is C*
at a. As in the type I case, we set F™* to be the first order truncation of F
as in (3.21), and thus (3.22) holds. By the same argument as in Section 3.1,
we can obtain similarly as in (3.27):
(3.31) pH(F,F) = p(F*,F*) + 0,(k), when £ is close to a.

Note p!!(F*, F*) is smooth (Indeed it is a real polynomial). Theorem 2

yields that p!l(F* F*) vanishes to at least k" order at a. It follows from
(3.30) that

* Tk * Tk 2
(3.32) pl(F* F*) = (p"(F*, F*))".
By Lemma 3.4, as F*(a) = F(a) € EL,,

a2ka(F*7ﬁ)

2k I+ Tox .
L p!(F*, F*)| # 0; o la >0
Combining this with (3.32), we conclude
o 8k 17 F* Fx
(3.33) LFp" (F*, F*)| # 0; ”a(yk’)|a #0.

As before, we apply an appropriate linear holomorphic change of coordinates
in C" to make a = 0 € C™ and the outward pointing unit normal vector (% =
a%, where &, = x 4+ +/—1y. Set the real line H := {(0,---,0,2) e C" : z €

R}. It follows from (3.33) that p!/(F*, F*)|g = cx* 4 09(k) near x = 0 for
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some ¢ # 0. Substituting this into (3.31), we get p!!(F, F)|g = ca® + oo(k)
for x near 0. This implies

pI(Fla+tv),Fla+tv)) _

tli%l— L =¢:=(—1)*c#0.

As p'l(F,F) > 0 in ©, we conclude ¢ > 0. This establishes part (1) of The-
orem 1. Moreover, when F is C* smooth at a, it follows that

L5 o F)

8yk’ ‘a > 07

(=1

and by equations (3.31), (3.33), we conclude L*(p!! o F)‘a # 0. This estab-
lishes part (2) of Theorem 1 for the type II case. B

3.4. Hopf lemma for the type IV case:

Recall the type IV classical domain DIV (m > 2), often called the Lie ball,
is defined by

_ 1
DIV ={Z = (2, ,2m) €C™: ZZ" <2, 1—ZZt+1|ZZt|2 > 0}.

When m = 2, D%V is biholomorphic to the bidisc. The Bergman metric of
DIV is given by

1 -m

KD#LV =crv <1 —Z7 + 4|ZZt|2>
for some positive constant cy-. The generic norm p for DIV is given by

7 =t 1 t)2

(2, 2)=1-27 +Z|ZZ |.

The boundary of DIV is given by
— — 1

DN ={Z = (21, ,2m) €C": ZZ' <2,1- 27 + A

Since the type IV domain D!V is always of rank two, its boundary is strat-
ified into two orbits: BD{,LV = Fy U FEs, where Ej is the smooth boundary
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and Ej is the Shilov boundary of D!V. Note

_ i1
(334) By ={Z=(21, ,2m) €EC": 27 < 21— ZZ + L122'P = o};

7 —t 1
_(zeCm||ZIP = |22 = 2},

We first observe the following characterization of points on the Shilov
boundary of DIV, Let S ! := {z = (21, ,xm) € R™ : ||z|| = 1} be the
unit sphere in R™.

Proposition 3.2. Let Z = (21, -+ ,2m) € C™. Then Z € Es if and only if
there exists some 6 € (—m,0] such that %eiaZ e S™1 c R™.

Proof. Note Z € Ej if and only if ||Z||? = |ZZ!| = 2. This is equivalent to
the existence of some « € [0, 27) such that for each 1 < i < n, we have 22 =
el rl Here r; > 0 and ZZ 1 i = 2. Consequently, if we take § = —5, then

L ¢if, — 4+, /T The conclusion thus follows. O
7 Ve

Theorem 2 can be easily proved for type IV domains in which case the
rank r always equals 2.

Proof of Theorem 2 for type I'V case: When k = 1, the result follows
from [M5] or one can directly compute that dp(Z, Z) # 0 when ||Z]? < 2.
Once we have the result for k£ = 1, since 02 = E1 U Es, we must have

Ey D {q € dDYY : p(Z,Z) vanishes to the second order at ¢}

To prove the other inclusion for k = 2, we note first if Zy € Fs, then by
Proposition 3.2, Zy = v/2¢!®x for some a € [0,7) and x = (z1,--- ,2,) €
Sm=1 < R™. This implies for each 1 < j < m,

dp

1 &,
aZJ(Zo) (— Zj+22j;2’i Nz, = 0.

Moreover,
1 .
Ez Q‘ZO#O I<j<m.

Hence p(Z, Z) vanishes to the second order at Zy. This proves Theorem 2
for the case k = 2. 1
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To establish Theorem 1, we first note the following fact for mappings
into type IV domain.

Lemma 3.5. Let Q be a domain in C™ and F be a holomorphic map from
Q to DIV and extends C'—smoothly up to a smooth point a € 0Q. Assume
F(a) € E3. Then

D FilaLFjla #0, Y Fjlas o #0.
j=1

j=1

Here v and L are the same as in Theorem 1.

Proof. Set h = FF' = """, F?. Note |h|? is subharmonic in { and achieves
a maximal value at a. Indeed, |h| < 2 in Q and |h(a)| =2 by the defining
equation (3.35) of Es. Then it follows from the classical Hopf lemma that
8‘8}32 lo # 0. Consequently, %]a # 0, and thus Lh|, # 0. The conclusion then

follows easily by a direct computation. U

Proof of Theorem 1 for type IV domains: Again we will prove part
(2) of Theorem 1 first.

1. Proof of Part (2): The case k = 1 is covered by Proposition 2.1. We now
assume k = 2, and F extends C2—smoothly to a and F(a) € E,. It follows
from Theorem 2 that all first order derivatives of p(F,F) vanish at a. It
remains to prove (1.2) and (1.3), i.e., 82”6(5’” , > 0 and L?p(F, F)‘a # 0.
We will prove them separately.

Proposition 3.3. 82”8(5;17) |a > 0.

Proof. We assume F is merely C''—smooth at the point a momentarily. Write
Zy = F(a) € Ey. By Proposition 3.2, there exists 6 € (—m,0] and a (real)
orthogonal matrix T such that e Z,T = (\/5,0, +++,0). As p is invariant
under the action Z — € ZT, i.e., p(Z,2Z) = p(eZT, e ZT), we can thus
assume Zg = F(a) = (v/2,0,---,0). We write %—ﬂa = (71, ,Tm) and prove
the following lemma. We emphasize that in Lemma 3.6, we only need to
assume F is C!'—smooth at a(This fact will be used later).

Lemma 3.6. (Rer)? — ZTZQ(ImTj)Q > 0.
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Proof of Lemma 3.6: Suppose not, i.e., suppose (Rer1)? — > 1", (Im7;)? <

0. Then there exists (c2, -+ ,¢p) € S™2 C R™! such that
m
(3.36) Rer = Y _ ¢j(Im;).

j=2

We next set ¢(Z) = Z1 +i 37" 5(c;Z;) and make the following claim.

Claim: |)(Z)| < V2 for Z € DIV.

Proof of Claim: We first note

m m

Z1+ cjZj)| < Z1+i 2
2 il < e 12 Z< 2

< Z
ngg\ 1+z§ ¢iZ

The last inequality holds due to the definition of the Shilov boundary. Now
fix Z € Fy. By Proposition 3.2, there exists some § € [0, 7) such that Z =
Vv2ePx, where x = (1, -+ ,2,) € S™"! € R™. Then

m m
r(2) = W(2)] = |21+ (¢;Z))] = V2|a1 +i ) (cjay)|
j=2 =2
We further conclude, by the Cauchy-Schwarz inequality,

2
m

TZ(Z) 2 - 2 G 2 2 % 2
s =@ | Yy | < @)+ | Y| [ Dot ) <D e <
=2 =2 j=1

Hence r(Z) <2 for Ze€ DIV. As ¥(2) =27, +1i> 7 5(cjZj) is non-
constant, we must have r(Z) < /2 for Z € DIV, This proves the claim.
[ |

Now set h(§) = Fi + i) ,(c;jF}y), where F' = (Fy,--+ , Fjy). As I maps
Q to DIV it follows from the above claim that |h(£)| < /2 for £ €Q. On
the other hand, by the normalization of F, h(a) = Fi(a) = v/2. Thus |h(¢)|
attains its maximal values at £ = a. By the classical Hopf lemma, we con-

clude a|h| lo > 0. Consequently, 8R§h lo > 0. This implies, by the definition
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of h,

m

Rer; — Z(chmTj) > 0.
=2

This is a contradiction to (3.36). We have thus established Lemma 3.6. B

We now assume F is C?—smooth at a and compute under the normal-

ization F'(a) = (v/2,0,---,0):

Pp(F.F), = (OF, aF
o2 'a—;<ay'a ) +2

1=

Zm la

(3.37) . .
Z —75) 24 4|71\2 =4 | (Rer)? Z ImTJ
J=1 J=
This is nonzero by Lemma 3.6. This establishes Proposition 3.3. g

Proposition 3.4. L%p(F,F)|, # 0.

Proof. Write v = LF|,. Note there exists a € [0,27) such that Re(e’®v)
and Im(e’®v) are orthogonal. Then there exists a (real) orthogonal matrix
T such that e*vT = (c1, ¢2i,0, - - - ,0) with c1, co € R. Note €T is an auto-
morphism of D!V and p(Z, Z) is invariant under the action of e!*T. Thus, by
applying this automorphism, we can assume v = LF|, = (c1, 23,0, O).
We next set F' = FT, where T is a (real) orthogonal matrix of form:

o < T 02><(m—2)>
0(m—2)x2 T
where 11, T, are 2 x 2 and (m — 2) x (m — 2) orthogonal matrices, respec-

tively. Here Oy y«; denotes a k X [ zero matrix. In light of Proposition 3.2, we
can choose appropriate orthogonal matrices 77 and 75 such that

F‘azeiia(Aaoanov'” 70)7 Lﬁ|a:(5‘7ﬂ707"’ 70)

Here 0 € [0,27),A,B € R, A >0, and A, i € C. In this way, replacing F' by
e’ F if necessary, we can assume F satisfies the following normalization:

(3.38) F|, = (4,0,B,0,---,0) € E5, LF|,=(\p,0,---,0),

where A, B € R, A>0 and A, u € C. Since F(a) € E9, by (3.35) we have
A? + B? = 2. It follows from Lemma 3.5 that A\ # 0. Consequently, A > 0.
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We will need the following lemma.
Lemma 3.7. \2 4 p? #0.

Proof of Lemma 3.7: We will prove by contradiction. Suppose A% + u? =
0. Then p = £Xi. Replacing F' by F .= (Fy, —Fy, F3,--- F,,) if necessary,
we can assume i = Ai. Set the vector u = (1,1, %,0, -++,0) € C™. Then we
have LF|,-u! =X+ pi =0. Set h:= F -u’. Note h is holomorphic in
and extends C2—smoothly to a. Moreover, Lh|, = 0. We make the following

claim:

Claim: |h| attains its maximal value at a. More precisely, |h(a)| > |h(£)| for
all € € Q.
Proof of Claim: we first note

supZeDinv|Z . ut\ < SuPZeW‘Z . ut| = SupZEEg’Z . ut|_

The last equality holds as Fs is the Shilov boundary of DZV. Now fix Z € Ej.
By Proposition 3.2, there exists some § € [0, 7) such that Z = v/2e*’x, where
X = (21, -+ ,Tm) € S™1 C R™. Consequently,

B
r(Z) = |Z-ul| = V2|x - ul| = V2|, + izo + Zazgl

Then

2

B B
= 2o+ G+ 203 <2 (04 Dp)lad + ) + )

2
<2 ((1+i2)(1 —x§)+x§> .

Here we have used the Cauchy-Schwarz inequality. Recall A2 4+ B% = 2. We
thus have

2 4 2 4
7‘2§2(142(1—x§)+x3> :ﬁ—l—Q(l—ﬁ)x%Sﬁ.

Hence r = |Z - u| < % for Z € DIV. Note the function ¢(Z) := Z - u’ is non-
constant. We must have, for every Z € DIV |Z -u!| < %. As F maps Q) to
DIV, we have |h(z)| < % in Q. On the other hand,

B? 2

= . t: - = —
h(a) =F|g-u"=A+ 1=

This establishes the claim. B
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Note |h|? is subharmonic and by the claim, it attains the maximal value
at a. By the classical Hopf lemma, |h| lo > 0. Consequently, ay|a # 0 and
thus Lh|, # 0. Thisis a Contradictlon We have thus established Lemma 3.7.

[ |
Now we compute, by using Lemma 3.7 and the fact that F|, € R™,
L*(po F)| Z L*F}| Fi|,

1 m m m 9

2 2 I

= (DLFz-\a) SN

i=1 i=1 i=1
=M+ 2 #0.

This proves Proposition 3.4. O

Part (2) of Theorem 1 thus follows from Propositions 3.3 and 3.4. B

2. Proof of Part (1): The statement follows from Proposition 2.1 in
the case k= 1. It remains to prove the case k = 2. Assume F extends
Cl—smoothly to a and F(a) € E;. As before, we can assume F(a) =
(v/2,0,---,0). Again write %—ﬂa = (71, -+ ,Tm). Recall Lemma 3.6 only re-
quires C''—smoothness of F at a and thus still holds in this setting. Now let
F* be the first order truncation of F' at a. Using the same argument as in
Section 3.1, we conclude equation (3.27) also holds in this case:

(3.39) p(F,F) = p(F*,F*) + 0,(2), when ¢ is close to a.

Write F* = (FY,---, F}). Then one can compute, similarly as in (3.37),

0%p(F*, F* oFr  OFF \’
H‘aZZ( _ay|a> +2

a

ov? Ov

;Fi a ov

i=1

(3.40) .
=4 ReTl Z ImT]
7j=2

Then equation (1.1) follows from (3.40) and (3.39) by the same argument
as we did for the type I case. This proves part (1) of Theorem 1. R

Theorem 1 is thus established for type IV case. B
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4. Applications of Theorem 1

In this section, as consequences of Theorem 1, we prove Theorem 3, 4, and
their corollaries, as well as Proposition 1.1.

Proof of Theorem 3: We first establish the following lemma.

Lemma 4.1. Let F be as in Theorem 3, a holomorphic isometric map from
B" to D with F*(wp) = \wg~. If F extends C'—smoothly across a € OB"™ and
F(a) € E, then A = k.

Proof of Lemma 4.1: By Chan-Mok [CM], we must have A = k for some
1 < k < r. By the metric-preserving assumption, we have

(4.1) ddlog p(F, F) = kddlog(1 — ||¢][?).

By composing F' with an automorphism of D if necessary, we assume F'(0) =
0. Moreover, Since the automorphisms of D preserve each Ej, we still have
F(a) € Ey. Now by standard reduction, as p(Z,Z) =1 when Z =0 and
p(Z,Z) — 1 consists of only mixed terms in Z and Z (cf. [CXY]), we derive
from (4.1) that

(4.2) p(F(6),F(€)) = (1— |||P) .

We compare the vanishing order of both sides of (4.2) at a along the normal
direction v. Note

1— 2)k -2 (o, i<k
P (7 L e L) MO (O
t—0- (—t)! t—0- (—t)! e, ifl=k

for some constant ¢; # 0. On the other hand, as F'(a) € E, it follows from
Theorem 1 that

Fla+tv),Flati 0, ifl<k
(4.4) fig P+ 1) l(“+ V) _ i<
t—0- (—t) co, ifl=k

for some constant ¢y # 0. By comparing (4.3) and (4.4), we conclude k = k.
]

By Mok’s algebraicity theorem [M3], the isometric map F' must be al-
gebraic, and thus extends holomorphically across a generic boundary point.



A high order Hopf lemma 1969

Combining this fact with Lemma 4.1, one easily sees ”(1) < (2)” and " (1)
< (3)”. This establishes Theorem 3. B

We next prove the corollaries.

Proof of Corollary 1.1: Suppose not, i.e., suppose F has a C!—extension
to & Then by assumption, F(§) = lim; o F(&) € E; for some [ # k. This
contradicts Theorem 3. We have thus proved Corollary 1.1.

Proof of Corollary 1.2: Again as F' is an isometric map, by Mok’s al-
gebraicity theorem [M3], F' is algebraic and extends holomorphically across
a dense open subset of the boundary dB". In particular, there exists a se-
quence {£;}9°, C OB" converging to & such that F' extends holomorphically
across every &;. By Theorem 3, F(;) € Ej. By continuity of F' at &, we
conclude F(§) = lim;_, F(&) € E, = U_, E.

Proof of Corollary 1.3: By assumption, F is C! at ¢ and F(¢) € E,, the
Shilov boundary of D. It follows from Theorem 3 that F™*(wp) = rwg~. Then
by a result of Chan and Mok (Proposition 1 in [CM]), F is totally geodesic.

Proof of Theorem 4: Let K; be the isotropy group of €; C C™ at 0
for each 1 <17 < N. By the polydisc theorem(cf. [M1], [Wol), there exists
an automorphism ~; € K, such that ~;(a;) takes the following form in the
Harish-Chandra coordinates:

(4'5) (17"'alanlrl-b"'7777"7:707"'70)7

where the first [; components all equal to 1, and all |ns| < 1forl; +1 < s <
r;. Hence, without loss of generality, we assume each a; takes the form in
(4.5). We define a holomorphic isometric map J from the unit disc A to Q :

J(&) = (1(§),- -, In(E)), €€ A.

Here each J; maps A to €2; and takes the following form in the Harish-
Chandra coordinates of €;: J;(§) = (&,--- . &, 41, , 0y, 0,- -+ ,0) with
the first [; components all equal to . Note J;(1) = a; and thus J(1) = a.
Moreover, we have J;(wq,) = lijwa. It then follows that

N N N
J* (6_? Aiwﬂi) = ;)‘i‘]i*(wﬂi) = (; Aili)wa.
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We now consider the map H := FoJ from A to D. It follows from the
assumption (1.4) that

N
(4.6) H*(wp) = J*(F*(wp)) = O Aili)wa.

i=1

Moreover, note H(1) = F(a) = (by,--- ,by/) and H extends C!'—smoothly
across £* =1. Pick an appropriate automorphism [ € Aut(D;p) X -+ X
Aut(Dpy/) such that fo H(0) = 0. For simplicity, we still denote the new
map 3 o H by H and the image of {* = 1 under the new map by (b1, -+, bn-).
Note, as the boundary orbit Eij is preserved by Aut(D;), we still have

bj € E,JC for each j. Moreover, the new H has a C'—extension to &* as well.
By (4.6),

N N’
(4.7) () Aili)9dlog(1 — [€7) = 9D 1og | [ (p; (Hy, Hy))™,
i=1 j=1
where p; is the generic norm associated to Q; and H = (Hy,--- , Hy') where

each Hj,1 <j < N’, maps A to Dj;. Note the generic norm p of a classical
domain D has the property (cf. [CXY]) that

p(Z,Z) =1+ Q(Za7)>

where @, with Q(0) = 0, is a real polynomial that only has mixed terms in
Z and Z. Using this fact, we conclude from (4.7) by a standard reduction
that

v
(4.8) (1= JeP)y=m M =T (o (H;, Hy))™, € € A.
J=1

Write @(§) and ®5(§) for the functions on the left and right hand side of
(4.8), respectively. Let v be the outward pointing unit normal vector of A
at £*. Then

Oy (EF 4t 0, if NNl
(4.9) lim M " 1' < 21;1
t—0~ (*t)s C, if s = Zi:l Nili

for some constant C' % 0. On the other hand, by Theorem 1, we have
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L CRa )  ( F
1m =
t—0- (—t)® Cj, if s =k;

for some C'; # 0. Consequently,

* if Nk
(4.10) lim M — OA’ s < Z];} Hijkj
t—0- (—t)® C, if s= Zj:l wik;

for some C #0. We compare equations (4.9) and (4.10) to obtain
Zf\il Nl = Z;VZI ik;. This proves Theorem 4. B

Proof of Corollary 1.4: We now prove the first part (i.e., equation
(1.6)) of Corollary 1.4. By applying the automorphisms of 2 and D if nec-
essary, we can assume 0 € U and F'(0) = 0.

Fix (o1, -+ ,on) with 0 < 0; < r;. Note (1.6) is trivially true if all o;s
are zero. Now assume o;’s are not all zero. We define a holomorphic isometric
map I from A to :

1(€) = (L&), -+, In(§))-

Here I;(§) = (§,-++,£,0,--+,0) in the Harish-Chandra coordinates of D,
with the first o; components all equal to £. Note If(wq,) = oijwa. Set G =
Fol. Then G is a holomorphic isometric map from a small neighborhood
VCcAofOtoD:

(4.11)

N’ N N
G*(wp) = I*(Z piF*(wp,)) = I" (@ AiWQi> = (Z )\iai> wa in V.
j=1 i=1 i=1

By Theorem 4.25 in [CXY], G is algebraic and extends to a proper map from
A to D. Consequently, G extends holomorphically across some boundary
point £ € OA. Then we apply Theorem 4 to the map G at the point £* to
conclude (1.6).

The second part (equation (1.7)) of Corollary 1.4 then follows from (1.6)
if we take (o1,---,0n) = (0,---,0,1,0,---,0), where ”1” is at the i*" posi-
tion. B

Proof of Proposition 1.1: When k =1, F; itself is a real algebraic

hypersurface and the conclusion follows from Proposition 2.1. Now assume
k > 2. Write x = (x1, -+, Z2p,) for the underlying real coordinates of C™. It
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follows from Theorem 2 that for every b € E}, and every multi-index 8 with
|B] = k — 1 it holds

1Pl p
0xP

(4.12) |, =0.

As before, write £ for the first order truncation of F' at a. We make the
following claim.

Claim: There is a multi-index [y with |5g| = k — 1 such that

(4.13) 0 (aﬂolp

o (G ) Lo

. ) . o 0!Pol p
gonsequently, there is some zj,,1 < jo < 2m, such that T <am—ﬁo) ‘F(a) #*

Proof of Claim: Suppose not, that is, suppose for every multi-index
with 8] = k — 1, it holds that

(4.14) 9 (Wlp(F*,F*)> |, =0.

Note by Theorem 2, (4.14) also holds when |3| < k — 1. On the other hand,
since F* is a linear polynomial, by chain rule we have

OF—Lp(F*, F*) _p ol p(F* F¥) OReF™ OlmF™
ovk—1 ox® 1< <k—1 ’ Ov ’ ov

for some real polynomial P. Combining this with (4.12) and (4.14), we con-
clude

ok |a ~ o Ovk—1

This, however, contradicts with (the proof of) Theorem 1(See Lemma 3.4 for
type I case and equation (3.40) for type IV case). We have thus established
the claim. B ,

We now set p = %. By the claim, dp # 0 near F(a). Thus M’ = {Z ~

F(a):p(Z) =0} is a germ of real algebraic smooth real hypersurface at
F(a). Note M’ contains Ej, near F(a) by Theorem 2. Moreover, it follows
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from (4.13) that

OpET), _ 0 (9
3 o= gy (G 5 D) 0

Hence F is CR transversal to M’ at a.
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