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Periodic boundary conditions and Ewald sums used in standard simulation protocols require finite-size correc-
tions when the total charge of the simulated system is nonzero. Corrections for ion solvation were introduced
by Hummer, Pratt, and Garcia and refined by Hünenberger and McCammon. The later approach is extended
here to derive finite-size correction for the Stokes shift and reorganization energy applied to electron-transfer
reactions. The same correction term, scaling inversely with the box size, adds to the reorganization energy
from the energy-gap variance, but is subtracted from the reorganization energy calculated from the Stokes
shift. Finite-size corrections thus widen the gap between these two quantities which were recently found to
diverge for protein electron transfer. Corrections to the free energy of dipole solvation and the variance of
the electric field scale as m2/L3 with the solute dipole m and the box size L.

I. INTRODUCTION

Simulation of electrostatic interactions requires correc-
tions for artifacts introduced by periodic boundary con-
ditions in combination with Ewald sums.1,2 Corrections
become particularly significant for simulations of infinite-
dilution ionic solvation when the total charge of the sim-
ulation cell is non-zero.3–6 There are two corrections in-
volved. The first correction is the self free energy of in-
teraction of an ionic charge in the simulation cell with its
periodic replicas and the neutralizing background charge
in each replica cell. The neutralizing background charge
is imposed by the requirement of periodicity of the elec-
trostatic potential φ(r), which implies that the electric
field should vanish at the boundary of the simulation cell.
This condition is obtained from the Poisson equation

∫

V
dr∇2φ = −

∮

SL

dSL ·E = −4π

∫

V
drρ̃ = 0. (1)

Here, the electric field E = −∇φ vanishes on the surface
SL of the simulation box and the charge density ρ̄ is
composed of that of the ion ρ and of the compensating
uniform background charge

ρ̃ = q
[

ρ− L−3
]

. (2)

A cubic simulation cell with the side length L is adopted
here.
The replica charges and the background charge are

introduced instantaneously when the ionic charge is al-
tered (in analogy with solvation by electronic polariza-
tion). The corresponding contribution to the electro-
static energy of an ion comes in the form of free energy
of charging3,7

uel = qφs +
1
2q

2ξ. (3)

Here, ξ = −2.837298/L is the Wigner potential of the
lattice of replicas of the central cell surrounded by a con-
ducting sphere2 (“tin-foil” boundary conditions) and φs
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is the electrostatic potential of the solvent in the central
simulation cell

φs =
N
∑

i=1

∑

α

qiαψ(riα). (4)

Further, qiα are partial atomic charges of N solvent
molecules with coordinates riα. The Ewald potential
is given as a sum of the real-space and reciprocal-space
terms1,8

ψ(r) =
erfc(κr)

r
+

4π

L3

∑

k ̸=0

1

k2
e−k2/(4κ2)+ik·r−

π

L3κ2
, (5)

where erfc(x) is the complementary error function and
the last term is chosen to make the Ewald potential in-
tegrate to zero over the cell volume2,4

∫

V
drψ = 0. (6)

The decay parameter κ in Eq. (5) is typically chosen to be
sufficiently large to eliminate the need to perform lattice
sums in real space, k is the lattice vector in reciprocal
space.
Because of the instantaneous character of solvation by

replica charges, the second term in Eq. (3) needs to be
added to the instantaneous electrostatic energy of the
ion calculated along the simulation trajectory. When the
simulated configurations are used to calculate thermody-
namic free energies of solvation, the need for a second
type of correction appears.
Solvation of an ion in a polar liquid occurs through

the interaction of the ionic charge with the medium po-
larization induced by it. For a periodic system, it can
be viewed as the interaction of the ion with the polar-
ization density in the primary cell plus the interactions
with dipole moments in the replica cells. However, those
are zero by symmetry, and a lattice of cubic cells under-
solvates compared to an infinite system.6 To account for
this fact, Hummer, Pratt, and Garcia9 suggested to esti-
mate the difference in the solvation free energies between
the infinite system and the lattice of cell replicas from
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dielectric theories. Their result for the difference of sol-
vation free energies in the the dielectric cube and in the
infinite dielectric becomes

F q
L − F q

∞ = − 1
2q

2
(

1− ϵ−1
)

ζ(R,L). (7)

In this equation,

F q
∞ = −

q2

2R
(1− ϵ−1) (8)

refers to the Born solvation free energy in the infinite
system and F q

L is the solvation energy of the ion placed
at the center of the dielectric cube. Their numerical
calculations9 produced

ζ(R,L) = ξ +
Ω

2RL3
, (9)

where the expansion terms in R/L of the order higher
than (R/L)2 have been omitted; Ω = (4π/3)R3 is the
ion volume.
Hünenberger and McCammon reviewed this problem6

and mostly confirmed the results of Hummer et al,5 but
they found that the (R/L)2 correction term (second term
in Eq. (9)) does not require the factor of 1/2. More specif-
ically the ζ(R,L) function in Eq. (7) becomes6,10

ζ̄(R,L) = ξ +
Ω

RL3
−

Ω2

5RL6
. (10)

Simulations with periodic systems extend far beyond
the problem of calculating the free energy of ion solvation
and involve many applications of electrostatics.8 Among
those are simulations of electron-transfer reactions11,12

and applications to spectroscopy when one often needs to
calculate the electric field in addition to the electrostatic
potential13,14 to address solvatochromism.15 Another sig-
nificant area is dielectric phenomena where finite-size cor-
rections are very essential.16,17

The main parameter of interest in simulations of
electron-transfer reactions is the statistics of the energy
gap between the donor and acceptor states of the trans-
ferred electron.18,19 The electrostatic component of the
energy gap often dominates and is typically the main
focus of simulations of charge-transfer reactions.20 Ay-
ala and Sprik21 reviewed corrections for the reorgani-
zation energy of electron transfer by applying the for-
malisms due to Hummer et al5 and Hünenberger and
McCammon6 to the classical Marcus model22 in which
this parameter can be calculated either from the variance
of energy-gap fluctuations or from the difference in the
mean values of the energy gap (Stokes shift). However,
they also noticed that the Marcus description breaks
down for some molecular systems23,24 and the free en-
ergy barrier cannot be described by a single reorgani-
zation energy. This difficulty gains in significance for
protein electron transfer25 for which the reorganization
energy obtained from the energy gap variance often sig-
nificantly exceeds that from the Stokes shift. Separate

corrections for the Stokes-shift and variance reorganiza-
tion energies are required and those are introduced here
through the cumulant expansion considered by Hummer
and co-workers.3 They are briefly reviewed below.
Finally, simulations26,27 and experimental

measurements14,28,29 of electric fields in proteins
and molecular assemblies is a quickly developing area
of research. Given that proteins possess high dipole
moments of hundreds of Debye units,30,31 finite-size
corrections in the calculation of the field statistics and
solvation energies might be required. Corrections to
the dipole solvation energy and electric field variance
are derived here based on the algorithm proposed by
Hünenberger and McCammon.6

II. ION SOLVATION

The discussion of ion solvation and corrections required
to calculate the electron-transfer activation barrier starts
with a brief review of the Hünenberger and McCammon6

algorithm. One needs to solve the Poisson equation
∇2φ = −4πρ̃ for the charge-neutralized charge density
ρ̃ in Eq. (2). The solution for the electrostatic potential
φ of the ion is sought as a sum of the Ewald potential (Eq.
(5)) and a general homogeneous solution of the Laplace
equation given as an expansion in spherical harmonics.
The electrostatic potential inside the ion is φ1 and within
the dielectric cubic cell with the dielectric constant ϵ is
φ2

φ1 = qψ + ψ1,

φ2 = (q/ϵ)ψ + ψ2,
(11)

where ∇2ψi = 0, i = 1, 2. One writes32

ψ1(r) =
√
4π

∑

n,m

anmrnYmn(r̂),

ψ2(r) =
√
4π

∑

n,m

[

bnmrn +
cnm
rn+1

]

Ymn(r̂),
(12)

where Ynm(r̂) are spherical harmonics of the unit vector
r̂ = r/r. Given that ∇2ψ2 = 0 and the electric field
vanishes on the sides of the cube, one finds from the
Gauss theorem that the average of ψ2 over the surface of
the solute SΩ must vanish as well

∮

SΩ

dS ·∇ψ2 = 0. (13)

This implies c00 = 0 in Eq. (12). From this result, one
finds that only coefficients a00 and b00 are required to
calculate the solvation free energy by the dielectric cube.
Specifically, one calculates

F q
L = 1

2

∫

V
drρ̃ [φ− qψ] , (14)

where the term in square brackets represents the electro-
static potential of the dielectric medium. This formula
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reduces6 to the expression in terms of the surface and
volume integrals of the Ewald potential

F q
L = −

q2

2

(

1− ϵ−1
)

[(

1−
Ω

L3

)

B(R) + C(R)

]

, (15)

where the main function to determine is the surface in-
tegral of the Ewald potential (Eq. (5)) over the surface
of the ion SΩ

B(R) = S−1
Ω

∮

SΩ

dSψ. (16)

The second term in the brackets in Eq. (15) is the integral
of the Ewald potential over the volume of the solute,
which can be represented in terms of the function B(r)

C(R) =
1

L3

∫

Ω
drψ =

4π

L3

∫ R

0
drr2B(r). (17)

It is clear from Eqs. (15)-(17) that the only function
that needs to be calculated is

B(R) =
erfc(κR)

R
+

4π

L3

∑

k ̸=0

k−2e−k2/(4κ2)j0(kR)−
π

L3κ2
,

(18)
where j0(x) is the zeroth-order spherical Bessel function.
One can use the definition of the Wigner potential1,2

ξ = lim
r→0

[

ψ(r)− r−1
]

(19)

to rewrite Eq. (18) as

B(R) = ξ +
erfc(κR)

R
+

2κ√
π
+ S, (20)

where Eq. (5) was used to arrive at the correction term

S =
4π

L3

∑

k ̸=0

k−2e−k2/(4κ2) (j0(kR)− 1) (21)

The term j0(kR) − 1 in Eq. (21) vanishes at k → 0
thus eliminating the small lattice vectors from the sum.
It therefore can be evaluated by switching to a continuous
integration over the wavevectors (subscript ∞) with the
result

S∞ =
erf(κR)

R
−

2κ√
π
, (22)

where erf(x) = 1 − erfc(x) is the error function. One
therefore finds

B(R) = ξ +
1

R
, (23)

which recovers Eq. (7) with ζ(R,L) according to Eq. (9).
This approximate evaluation of the lattice sum leads to
the result reported by Hummer et al5 while omitting the
corrections of the order (R/L)5.

Figure 1. S/S∞ from Eqs. (21) and (22) at the values of κL
indicated in the plot. The sum S in Eq. (21) is calculated
numerically. Replacing S∞ with S̄∞ according to Eq. (25)
leads a nearly exact agreement with the numerical summation
as shown by the dotted line referring to κL = 7.0.

The calculations of Hünenberger and McCammon6

have resulted in a different expression for B(R)

B̄(R) = ξ +
1

R
+

Ω

2RL3
. (24)

and

S̄∞ =
erf(κR)

R
−

2κ√
π
+

Ω

2RL3
. (25)

At R → 0, all expressions tend to the limit proposed by
Figueirido et al.33

Equations (10) and (25) are superior in accuracy to
Eqs. (9) and (22) when compared to direct numerical
summation in Eq. (21) (Fig. 1). This improvement can be
achieved by eliminating the second-order term from the
small-k expansion of j0(kR) in Eq. (21) when switching
to the continuous k−integral

S = S′ −
Ω

2RL3

∑

k ̸=0

e−k2/(4κ2), (26)

where by applying the continuum k-integral one gets

S′ =
2

π

∫ ∞

0
dke−k2/(4κ2)

[

j0(kR)− 1 + 1
6 (kR)2

]

. (27)

By using the identity for the theta function34

∞
∑

m=−∞

e−m2x = (π/x)1/2
∞
∑

m=−∞

e−m2π2x−1

(28)

one arrives at

S = S∞ +
Ω

2RL3

[

1 +

(

κL√
π

)3
(

1− θ3(e
−(κL)2)3

)

]

,

(29)
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Figure 2. Schematic representation of dipole moments of
replica cells produced by non-spherical solutes with asymmet-
ric charge distribution (denoted with an off-center dot). The
central cell is shaded.

where S∞ is from Eq. (22) and θ3(z) =
∑

n z
n2

is Jacobi’s
theta function.34 The second term in the square brackets
can be dropped at κL ≫ 1 and one arrives at S = S̄∞

supplied by Hünenberger and McCammon.6 This result
agrees well with numerically evaluated lattice sum S (Fig.
1). It is obvious that one can consistently produce terms
of higher order in R/L by eliminating higher-order ex-
pansion terms of j0(kR) when switching to the continu-
ous k-integral. This extension is not practically signifi-
cant since the term quadratic in R/L is the only one that
matters for most simulations. The same note applies to
the fact that Eq. (15) neglects6 solvation by the corners
of the simulation cell at r > L/2 since those are insignif-
icant for simulation boxes currently employed in molecu-
lar dynamics simulations. These effects can be evaluated
at the expense of including more expansion terms in Eq.
(12).
Including the self-energy due to the Wigner potential,

the electrostatic free energy of an ion Fel corrected for
finite-size effects becomes6

Fel = FL + 1
2q

2ζsolv, (30)

where FL is the free energy calculated from simulations
in the periodically replicated simulation box and

ζsolv = ϵ−1ξ −
(

1− ϵ−1
)

[

Ω

RL3
−

Ω2

5RL6

]

. (31)

As expected, the correction term is overall negative, con-
sistent with the expectation that periodic systems under-
solvate the charge. For highly polar systems with ϵ ≫ 1,
the second term in this equation, ∝ R2/L3, gains in
prominence.
Before proceeding to applying the formalism to

electron-transfer reactions, it is useful to summarize the
assumptions made in the analysis. In addition to ne-
glecting the corner effects mentioned above, the formal-
ism does not specify an algorithm of dealing with non-
spherical particles. All the issues pertinent to specifying
an effective radius of the spherical cavity representing a
nonspherical solute apply here. In addition, when so-
lutes or their charge distributions are non-spherical, the
argument that the dipole moments of the replica cells are
zero by symmetry does not apply anymore. The replica

cells carry dipole moments and calculating the solvation
energy by the dielectric in the central simulation cell is
generally not sufficient (Fig. 2). This complication does
not apply to the cubic simulation cell since, from Lorentz
argument,35 a cubic lattice of dipoles makes zero elec-
tric field at a tagged lattice node (see below). However,
deviations from the cubic symmetry should produce ad-
ditional corrections not accounted for here. Multipolar
expansion can be applied when the charge distribution
of the solute deviates from the spherical symmetry of a
spherical ion. The leading correction term due to the
solute dipole m is considered below in the discussion of
the electric field produced by the solvent at the solute.
Solutes lacking inversion symmetry require a correction
term ∝ qmΩ/(R2L3) to the free energy of ion solvation.
This correction can be of the same order of magnitude as
the leading term in Eq. (31).

III. ELECTRON TRANSFER

Solvation thermodynamics considered here can also be
used to derive finite-size corrections for activation pa-
rameters of electron-transfer reactions. We will follow
the arguments presented by Hummer et al3 in viewing
the solvation problem in terms of the cumulant pertur-
bation expansion. To simplify the argument, we consider
a nonpolarizable solvent with a single redox site to which
the charge∆q = qf−qi is transferred in a half reaction to
alter the solute charge from qi to qf . The main problem
of interest is the electrostatic component of the energy
gap18 (cf. to Eq. (3))

∆E = ∆qφs +
1
2 (q

2
f − q2i )ξ. (32)

The free energy of solvating the charge ∆q in the Gaus-
sian approximation becomes3

F∆q = ⟨∆E⟩L+
β

2
⟨(δ∆E)2⟩L− 1

2 (q
2
f−q2i )(1−ϵ−1)ζ̄, (33)

where δ∆E = ∆qδφs, δφs = φs − ⟨φs⟩L and the angular
brackets ⟨. . . ⟩L specify averages over configurations taken
from simulations. By applying the identity q2f − q2i =
∆q(2qi+∆q), one can separate the correction terms into
the ones linear in ∆q, which apply to the first moment
of ∆E, and the terms quadratic in ∆q applying to the
second moment. The second cumulant of the energy gap
is associated with the reorganization energy of electron
transfer

λ = 1
2β⟨(δ∆E)2⟩. (34)

This definition corresponds to the curvature at the min-
imum in the picture of crossing parabolas (Fig. 3).
By collecting the corresponding terms, one obtains

⟨∆E⟩ = ⟨∆E⟩L + 1
2 (q

2
f − q2i )ξ −∆qqi(1 − ϵ−1)ζ̄ (35)

and

λ = λL − 1
2 (∆q)2(1 − ϵ−1)ζ̄. (36)
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The physical meaning of Eq. (35) is straightforward:
the average vertical transition energy ⟨∆E⟩L is corrected
by two contributions: the instantaneous solvation by the
replica charges (similar to the free energy of solvation
by electronic polarization) and a constant electrostatic
potential by the nuclear degrees of freedom −qi(1−ϵ−1)ζ̄
which does not change for a vertical transition. This
electrostatic potential disappears at ϵ → 1.

The correction to the free energy of reorganizing
the nuclei (electron-transfer reorganization energy λ22)
comes solely from the nuclear degrees of freedom and
disappears at ϵ → 1. Equation (36) is equivalent to the
one previously derived by Ayala and Sprik.21 When the
solvent is viewed as polarizable with the high-frequency
dielectric constant ϵ∞, the Born solvation factor 1− ϵ−1

is often replaced with the Pekar factor ϵ−1
∞ − ϵ−1, but

the polarizability corrections can become involved when
a more careful treatment of electronic polarization is
introduced36 or when the solvent is treated on the mi-
croscopic scale.37

The derivation by Ayala and Sprik21 follows the stan-
dard arguments of the Marcus theory. These arguments
invoke38 the linear response approximation when one ob-
tains ⟨∆E⟩ = −β⟨(δ∆E)2⟩ resulting in the solvation en-
ergy equal to −β⟨(δ∆E)2⟩/2. This final expression is
in fact used in the Marcus theory, which interprets the
reorganization energy as the negative of the free energy
of solvation of the difference charge distribution (after
electron transfer minus before electron transfer) by the
nuclear degrees of freedom of the solvent.39 Since this re-
sult is used as the definition of the reorganization energy
in Eq. (34), the present derivation is equivalent to the
one given by Ayala and Sprik.
The reorganization energy in terms of the second cu-

mulant of the energy gap (Eq. (34)) is not the only pos-
sible definition of this parameter. An alternative route
within the picture of crossing parabolas is through the
Stokes shift24,40,41

λSt = 1
2 |⟨∆E⟩i − ⟨∆E⟩f | , (37)

where the averages ⟨∆E⟩a, a = i, f are taken in the ini-
tial and final states of the redox complex. The verti-
cal transition energies ⟨∆E⟩a, a = i, f represent charge-
transfer absorption (a = i) and emission (a = f) ener-
gies when the final state is sufficiently lifted in energy
such that the return electron transfer is in the inverted
electron-transfer region and both optical transitions can
be observed. The difference of transition energies is the
Stokes shift between absorption and emission, whence the
name24 for the reorganization energy λSt. The average
energy ⟨∆E⟩f becomes negative in the normal electron-
transfer region (Fig. 3). This is related to Warshel’s def-
inition of the energy-gap reaction coordinate18 for elec-
tron transfer, which gives ∆E(Γ) = Ef (Γ) − Ei(Γ) as
the difference of energies in the final and initial states
at a given instantaneous nuclear configuration Γ. The
index i, f in the average ⟨. . . ⟩a applies to the state over
which the statistical average is performed while keeping

∆E

⟨∆E⟩f

2λ
St

i f

(2λ)−1

Figure 3. Picture of crossing parabolas with curvatures
(2λ)−1 and separation between the minima 2λSt. ⟨∆E⟩f
marks the average energy of the vertical transition in the fi-
nal state, which is negative in the normal region of electron
transfer and positive when backward electron transfer is in
the inverted region (corresponding to the emission energy).
“i” and “f” mark the electron-transfer initial and final states.
Displayed is the configuration with zero reaction free energy.

the same definition of the reaction coordinate∆E in both
states. Applying this rule to Eq. (35) leads to the follow-
ing result

⟨∆E⟩a = ⟨∆E⟩aL + 1
2 (q

2
f − q2i )ξ −∆qqa(1− ϵ−1)ζ̄, (38)

where the “instantaneous” solvation term by the back-
ground charge is the same for both vertical energy gaps,
similarly to the analogous result for the instantaneous
solvation by electronic medium polarization.
Subtracting the energies ⟨∆E⟩a according to Eq. (37)

leads to the following expression for the Stokes-shift re-
organization energy

λSt = λSt
L + 1

2 (∆q)2(1 − ϵ−1)ζ̄. (39)

Importantly, the finite-size correction for this parameter
becomes equal in magnitude but opposite in sign to that
for λ defined from the second cumulant of the energy gap
according to Eq. (34).
Two average vertical transition energies can also be

used to arrive at the reaction free energy (electrostatic
component)21,24,41 for which one obtains

∆Fel = 1
2 (⟨∆E⟩i + ⟨∆E⟩f ) = ∆FL + 1

2 (q
2
f − q2i )ζsolv.

(40)
As anticipated, and consistent with the preceding discus-
sion, the parameter ζsolv from Eqs. (30) and (31) provides
correction to the equilibrium free energy.
The main result of this derivation is that the finite-

size correction enhances λ but reduces λSt. A number
of recent simulations of protein electron transfer25 have
shown λSt

L < λL. Applying finite-size corrections must
broaden this gap. For the sake of an estimate, our recent
simulations of protein azurin42 used the cubic simulation
box with side length L = 104 Å and the protein volume
Ω = 12508 Å3 and R ≃ 14.4 Å. With these parameters
and ϵ ≃ 97 for TIP3P water, one arrives at the correction
term in Eq. (36) equal to ≃ 0.19 eV, which is about
10% of λL ≃ 1.65 eV, in accord with similar corrections
reported by Ayala and Sprik.21 Applying corrections of
opposite signs in Eqs. (36) and (39) adds a gap of 0.38
eV to the difference between λ and λSt.
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The picture of crossing parabolas22 anticipates that a
Gaussian bath coupled to a quantum subsystem makes
the distribution of energy gap a Gaussian function with
the maximum depending on the electron-transfer state
(i, f). The application of the Gibbsian statistics and the
linear-response approximation leads to a specific connec-
tion between the width of the Gaussian distribution (Eq.
(34)) and the separation between the distribution max-
ima (Eq. (37)) in terms of a single reorganization energy
λ = λSt. When sampling is incomplete (nonergoidic),
the direct correspondence between the difference of two
first distribution moments (λSt) and the second cumulant
(λ) is broken43 and two separate reorganization energies
are required.25 However, the Gaussian statistics of energy
gap is often preserved through the central-limit theorem
given that many particles affect the energy state of the
electron by electrostatic interactions. When two parabo-
las characterized by λSt < λ are allowed to cross (Fig. 3),
the Marcus expression for the activation barrier ∆F † is
preserved

∆F † =
(λr ±∆F0)2

4λr
, (41)

but with an effective25 (reaction, subscript “r”) reorga-
nization energy

λr = (λSt)2/λ. (42)

In Eq. (41), + and − refer to the forward, i → f , and
backward, f → i, reactions, respectively and ∆F0 is the
reaction free energy.22 In contrast to the standard de-
scription combining full Gibbsian sampling with linear
response, the condition λSt < λ of incomplete sampling
allows low activation barriers facilitating efficient charge
transfer in biology’s energy chains.44 According to the
derivation presented here, finite-size corrections widen
the gap between λSt

L and λL found from statistics of ∆E
in a finite-size simulation box.

IV. DIPOLE SOLVATION AND

ELECTROSTATIC FIELD

Lorentz was first to establish that the field on a
tagged dipole in a dipolar lattice is zero.35 Dipole lat-
tice calculations45 support this result for a finite lattice
of dipoles within a spherical cutoff (the dipole lattice sum
is piecewise convergent at k = 0 for an infinite lattice).
The lattice of simulation cell replicas (Fig. 2) surrounded
by a conducting sphere is typically adopted in simulation
protocols and one does not need to worry about calcu-
lating the electrostatic energy of the solute dipole with
its images in cell replicas. For correcting the solvation
free energy of a dipole and the electric field moments,
one only needs to account for solvation corrections.
The solute at the center of the cubic cell now carries the

charge q and dipole m, which we assume to be aligned

with the z-axis of the laboratory frame. The general
solution for the electrostatic potential becomes

φ1 = qψ −m∂zψ + ψ1,

φ2 = (q/ϵ)ψ − χcm∂zψ + ψ2,
(43)

where χcm is the dipole moment screened by the surface
charge at the dividing surface of the dielectric and spec-
ified by the cavity field susceptibility χc = 3/(2ϵ+ 1).46

The solutions of the homogeneous Laplace equation ψ1

and ψ2 are given by Eq. (12).
Repeating calculations for the ion solvation free energy

in Eq. (15), one obtains

F q
L − F q

∞ = − 1
2q

2
(

1− ϵ−1
)

ζ̄(R,L) +
3qmf

2R

Ω

L3
D(R),

(44)
where

f =
2(ϵ− 1)

2ϵ+ 1
(45)

is the reaction-field polarity function35 and

D(R) = S−1
Ω

∮

SΩ

dSn̂zψ. (46)

Here, n̂z = n̂ · ẑ is the projection of the normal n̂ at the
surface SΩ on the z-axis. It is clear that D(R) = 0 for a
lattice allowing inversion symmetry and the presence of a
dipole does not affect charge solvation. However, there is
a nonvanishing correction to ion solvation due to solute’s
dipole for solutes with more complex geometry. Similarly
to the leading term in Eq. (31), this correction term scales
as Ω/(RL3)× (m/R) assuming that D(R) ∼ 1/R.

The solvation free energy for the dipole reads

Fm
L = 1

2

∫

V
drρm∂z (φ− qψ +m∂zψ) , (47)

where ρm = mδ(r) is the dipolar density. From this
equation and the expansion in Eq. (12), one obtains

Fm
L =

√
3

2
ma10. (48)

The electrostatic potential φ satisfies the following
boundary conditions at the surface of the solute

φ1

∣

∣

R
= φ2

∣

∣

R
,

∂rφ1

∣

∣

R
= ϵ∂rφ2

∣

∣

R
.

(49)

Assuming bnm = 0 for n > 0 in Eq. (12), these boundary
conditions lead to the following relations for the expan-
sion coefficients a01 and c01

c10
R3

− a10 = −
√
3mf

R
E(R),

2ϵc10
R3

+ a10 = −
√
3mf

2
F (R),

(50)
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where

E(R) = S−1
Ω

∮

SΩ

dSn̂2
z∂rψ,

F (R) = S−1
Ω

∮

SΩ

dSn̂2
z∂

2
rψ.

(51)

It is easy to show that

E(R) = 1
3∂rB̄(r)

∣

∣

R
, (52)

where B̄(r) is given by Eq. (24). One further notices that

F (R) +
2

R
E(R) = S−1

Ω

∮

SΩ

dSn2
z∇2

rψ. (53)

Assuming ∇2
rψ ≈ ∇2ψ = −4π

[

δ(r)− L−3
]

, one gets

c10 = −
fm

2ϵ+ 1

√
3Ω

2L3
. (54)

From Eqs. (48) and (50), one finally gets

Fm
L = Fm

∞

(

1 +
Ω

L3

ϵ+ 2

2ϵ+ 1

)

, (55)

where

Fm
∞ = −

m2

R3

ϵ− 1

2ϵ+ 1
(56)

is the free energy of dipole solvation in an infinite dielec-
tric. The result of this calculations is that the finite-size
correction to the solvation free energy scales as Ω/L3

Fm
L − Fm

∞ = − 1
2m

2χ (57)

with

χ =
8π

3L3

(ϵ− 1)(ϵ+ 2)

(2ϵ+ 1)2
. (58)

The free energy of dipole solvation can be calculated
from the perturbation expansion47 with the result

Fm = −λm = − 1
6βm

2⟨(δEs)
2⟩0, (59)

where the variance of the solvent field Es is calculated
at statistical configurations in the absence of the dipole
indicated with the “0” subscript. The variance of Es is
invariant to the presence of the solute multipole in linear
response theories and the subscript can be dropped. In
analogy with Eq. (34), the variance of the solute-solvent
interaction energy is associated with the reorganization
energy λm for dipole solvation. Given the correction in
Eq. (57), one obtains

λm = λm
L + 1

2m
2χ, (60)

where λm
L = (βm2/6)⟨(δEs)2⟩L is the field variance calcu-

lated in finite-size computer simulations. The finite-size
corrections thus increase the variance of the dipole-liquid

interaction energy compared to the result from simula-
tions. Correspondingly, the variance of the electrostatic
field gains a temperature-dependent correction

⟨(δEs)
2⟩ = ⟨(δEs)

2⟩L + 3kBTχ. (61)

Taking the recent simulations of the protein cy-
tochrome c26 as an example, the average magnitude of
the electric field at the iron metal of the active site
was found to be ⟨E⟩ ≃ 0.26 V/Å and the field vari-
ance was ⟨(δE)2⟩L ≃ 0.014 (V/Å)2. With the simulation
box of L = 100.1 Å, the last term in Eq. (61) becomes
≈ πkBT/L3 ≈ 10−6 (V/Å)2. With the dipole moment of
cytochrome c equal to ≃ 238 D,26 the correction to λm

in Eq. (60) amounts to 0.055 eV. These corrections are
much less significant than corresponding finite-size effects
on the electron-transfer reorganization energies for half
reactions.
Solvatochromic shift of optical or vibrational spectral

lines is often used to quantify microscopic polarity.48 The
shift is caused by an instantaneous change of the chro-
mophore’s dipole in the reaction field of the medium nu-
clei frozen on the time scale of the vertical electronic
transition.15 The reaction field in a given initial configu-
ration of the chromophore a = i, f is defined as the deriva-
tive of the solvation free energy

Ra = −∂Fm
a /∂m = RLa +maχ. (62)

One therefore obtains for the correction of the spectral
shift ∆Ea = −∆mRa

∆Ea = ∆ELa −∆mmaχ, (63)

where χ is from Eq. (58). Half of the Stokes shift provides
the Stokes-shift reorganization energy λSt = 1

2 |∆Ei −
∆Ef | (Fig. 3) for which one obtains

λSt = λSt
L + 1

2∆m2χ. (64)

In contrast to a half reaction of electron transfer, the
correction is the same for λm and λSt. The reason is
the absence of the instantaneous solvation energy by the
replicas of the solute dipole and no need to account for
the interaction of the dipole with either the solute charge
or with the neutralizing background. Intramolecular
electron-transfer reactions in which the total charge of
the simulation cell does not change fall into this category
and require relatively small finite-size corrections scaling
as ∝ L−3. The charge-transfer dipole m = e|rA − rD|
formed by centroids of the electron rA,D at the donor
and acceptor sites can be used in Eq. (60) given that
|rA − rD| ≪ L in most cases of interest.

V. CONCLUSIONS

The method of Hünenberger and McCammon6 is ap-
plied to show how to systematically produce the series

7



expansion in Ω/L3 for the solvation energy of an ion in a
cubic simulation cell. The approach suggested here elimi-
nates low order terms in the series expansion of the spher-
ical Bessel function when the lattice sum is evaluated as a
continuous reciprocal-space integral. The numerical re-
sult by Hummer et al9 is reproduced when the lowest
order correction is applied. The refined result by Hünen-
berger and McCammon follows from the next expansion
term. It is shown that the correction term, scaling in
the leading order as L−1, comes with opposite signs to
the variance of the electrostatic energy and the Stokes
shift when applied to the electron-transfer half reaction.
The gap between the Stokes-shift and variance reorgani-
zation energies is widened by finite-size corrections. The
same method is applied to define finite-size corrections
to solvation free energy of a dipole and the variance of
the electric field. Those scale as m2/L3 and are less sig-
nificant for sufficiently large simulation systems.
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