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Abstract: In this paper, we first give an exposition on mapping
problems between indefinite hyperbolic spaces. Then we formulate
a new problem along this direction, propose an approach and prove
some partial results.
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1. Introduction

We first recall some notations and definitions. Let n, ¢ be integers such that
n>2and 0 < /¢ <n—1. The generalized complex unit ball is defined as the
following domain in P™ :

B} = {[20, ., 2n) € P" : |20]* + ... + |2e* > |2ea > + - + |20}

In the special case of £ = 0, B is the standard unit ball B” in C* C P". The
generalized ball B} carries a canonically defined indefinite metric wpy that is
invariant under the action of its automorphism group SU (¢ + 1,n + 1):

Y4 n
wep = —ﬁ@@log(z |2|* — Z |2 [).
j=0 j=0+1

The generalized ball equipped with the metric wgy is often called an indefinite
hyperbolic space form. When ¢ = 0, it is reduced to the standard hyperbolic
space form (up to a normalization).
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The topological boundary 0B}, is often called a generalized sphere. Its
local realization is the real hyperquadric

l n—1
H? = {(Za U)) - (Zla o '7Zn71,w> €eC”: Imw = _Z ‘Zj’2 + Z |Z]"2}
J=1 j=t+1

which serves as a basic model for Levi-nondegenerate hypersurfaces (see [4])
and plays a fundamental role in CR geometry. Note that when ¢ = 0, H is
the standard Heisenberg hypersurface. Due to the special geometric structure
of the generalized spheres, many striking rigidity phenomena have been dis-
covered for mappings F': 9B} — 9BJ . The study of local holomorphic maps
that send an open piece of OB} to B} with [ > 0 was initiated by Baouendi-
Huang [3]. In particular, Baouendi and the first author [3] proved a holomor-
phic mapping F from an open connected subset U of C"* to CN(N > n),
sending a piece of OB}, 0 < ¢ < "T_l, to OBY, possesses a super-rigidity prop-
erty if it does not map the whole open neighborhood U into dBJ'. Here the
mentioned super-rigidity means that the map F' extends to a linear embed-
ding of P into PV. This super-rigidity phenomenon in [3] contrasts with the
rigidity of holomorphic mappings between Heisenberg hypersurfaces (i.e., the
0—signature hyperquadrics) in complex spaces of different dimensions. In the
O0—signature case, the rigidity only holds when the difference in dimension
is small. For instance, there is the well-known Whitney map sending dB™ to
OB?"~1 for n > 2 (see [5]). For more results on the 0—signature case, see
[9, 10, 6] and references therein. In this paper, we concentrate on the case of
¢ > 0. In [1], Baouendi-Ebenfelt-Huang generalized the rigidity result in [3]
as follows:

Theorem 0.1 (Baouendi-Ebenfelt-Huang [1]) Let N >n, 1 < ¢ < 71
1<V < % and 1 < ¢ < /¢ < 2l. Let U be an open subset in P" containing
some p € 0B} with U NB} being connected, and F' a holomorphic map from
U into PV. Assume F(U NB}) C B) and F(U NOB}) C 9B} . Then F is an
isometric embedding from (U N By, wgy) into BY ,wBZ).

Here we say F' is isometric if it preserves the indefinite hyperbolic metrics:
F *(ng) = wpy on UNBj. For many closely related results along these lines,
the readers are referred to the papers [7, 8, 14, 15, 16, 17, 18, 19, 20, 21] and
references therein. In particular, by analyzing the structure of the moduli
space of linear subspaces contained in generalized balls, Ng [17] establishes
the global version of Theorem 0.1.
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Theorem 0.2 (Ng [17]) Let 1 < ¢ < 2,1 < ¢ < T and f: B} — B} bea
proper holomorphic map. If ¢/ < 2¢—1, then f extends to a linear embedding
of P into PV.

In a recent paper [12], the authors and Lu-Tang induced a boundary CR
invariant— geometric rank for holomorphic mappings between hyperquadrics
of positive signatures. Then we gave a complete characterization for local
holomorphic isometric embeddings between indefinite hyperbolic spaces in
terms of this geometric rank.

Theorem 0.3 (Huang-Lu-Tang-Xiao [12]) Let N > n > 3,0 < ¢ <
n—1,¢ < ¢ < N —1. Let U be an open subset in P" containing some
p € OB} and F be a holomorphic map from U into PY. Assume that U N B}
is connected and F(U NBY) C BY, F(U N 0BY) C OBY. Then the following
are equivalent.

(1) F is CR transversal and has geometric rank zero at generic points on
U N OB} near p.
(2) F is an isometric embedding from (U NB}, wgy) to (By ,wBZ).

In a preprint [13], the authors and Lu-Tang use the above characterization
to generalize the aforementioned results in [1] and [17] as follows:

Theorem 0.4 (Huang-Lu-Tang-Xiao [13]) Let N >n > 3,1 < /(¢ <
n—2/0 < /(¢ < N—1. Let U be an open subset in P" containing some
p € 0B} and F' be a holomorphic map from U into PV, Assume U N B} is
connected and F(U NBY) C BY, F(UNOB}) C 9BY. Assume one of the
following conditions holds:

(1). ('<20, (' <n—1;
(2). (' <20,N -1 <n;
(3) N-lU'<2n—-20—1, 0 <n—1;
(4). N=lU'<2n—20—1,N—-V{"<n.

Then F is an isometric embedding from (U N By, wgy) to (By) ,wEg).

Corollary 0.5 (Huang-Lu-Tang-Xiao [13]) Let N > n >3 ,1 < (<
n—2,0<{ <N —1. Assume one of the conditions (1)—(4) in Theorem 0.4
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holds. Let F' be a rational proper map from B} to IB%@’ . Then F'is a linear
embedding from P" to PV. Moreover, there exists h € Aut(BJ) such that

ho F([’Z]) = [Zo, "'7257(); ...,0,2’@4_1, "'727170; "'70]7

for [z] = [20,.. 20, 2041, -y 2n) € P, where the first zero tuple has ¢ — [
components.

Here for a holomorphic rational map F from P™ to PV with I C P™ its
set of indeterminacy, we say F is a rational proper map from B} to BY, if F
maps from B? \ I to B) and maps 9B} \ I to 9BY.

If none of the conditions (1)—(4) holds, then one of the following two
cases must hold: (A). ¢/ >20and N — ¢ >2n—2(—1; (B). N —¢ >n and
¢ > n — 1. The following examples show that Theorem 0.4 and Corollary 0.5
are in a sense optimal.

Example 1.1. (Generalized Whitney map from BST* to B2 =1) Let ¢ >
1,k > 1. Write [w, z] = [wg, w1, ,wp, 21, - , 2] for the homogeneous co-
ordinates of PY* and

¢ k
By* = {[w, 2] € P** )" |wil* > > |z
i=0 j=1

Write U = P\ {wy = 2, = 0}. Consider the following map G : U —
p2k+26-1 .

G([w, 2]) = [w§, wow, - -+, Wowe, W12k, -+, We2k,

2
Wpz1, W22, *** , WORk—1, Z1%k, 22Rk, " " * ,Zk—ﬂk,Zk]-

Notice that |G|3,.; = (Jwo|* +|2k]?)(— Si \wi\Q—l—Ef:l |zj[?). Consequently,
G maps U N I[Bﬁ*'k to IB%%JF%_I and maps U N 81835'”“ to 8183%"’2’“_1.

Example 1.2. (Generalized Whitney map from BST* to E?ﬁikl_l ) Let ¢ >
1,k > 1. Let the homogeneous coordinates [w, z] of P“** and Bﬁ+k C P* e

the same as in Evample 1.1. Let V = P**\ {wy = wy = 0} and H : V —
P2k+20=1 be defined as follows:

H(['LU,Z}) = [wgawowlv o WoWY—1, WeR1, Wez2, -, WeR,

2
Woz1, Wpz2, *** , WoRk, W1We, WaWy, * * * 7w€}'
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Notice that |H|2,, = (Jwo|? — |we?)(— S |w,—|2+2§:1 |z|?). Thus H maps
V NOBI to 818%%‘;2}1_1. In particular, set Vi = {[w,z] € V : |wo| > |we|}.
Then H maps Vi N Bg““ to B?ﬁf_kfl and maps Vi N 8]13%5”“ to 8]13%%2%{1.

Example 1.3. (Generalized Whitney map from B to Bﬁﬁﬁf{l ). Let £ >
0,k > 2. Let the homogeneous coordinates [w, z] of P“** and Bﬁ““ C PHF pe
the same as in Example 1.1. Let V. = P™F\ {21 = 2z, =0} and H : V —
P2k+20=1 be defined as follows:

H([U), Z]) = [wozka W1R, * ** , WeRk, Z%) 21722,y R1Rk—1,

2
Z9Zky B3Ry * "y Ry WOR1, W1RL, ,U)(Zl].

Notice that |H|§+k = (|z]? — |21]?)(— f:o lw; |2 + Zle |z[?). Thus H maps
V N OB into 815%%4,;2_191_1. In particular, set Vi = {[w,z] € V : |z| > |z1]}.
Then H maps Vi N B to B2 and maps Vo N OBy to B2

It is then a natural question to classify holomorphic maps that send a
piece of OB} to 8183?,”*1. Inspired by the above results and examples, we make
the following conjecture:

Conjecture 1.4. Letn > 3,1 < /(< ”T_l, <V <2n—2. Let U be an open
subset in P™ containing some p € OB} and F' be a holomorphic map from U
into P21, Assume UNBY is connected and F(UNBY) C B!, F(UNOBY) C
818?,"71. Then one of the following holds:

(1) F is an isometric embedding from (U N B}, wpy) to (B?Pfl,wﬁiﬁq),

(2) After composing appropriate automorphisms of B} and Bg,"fl, F' equals
the generalized Whitney map in Fxample 1.1.

(3) After composing appropriate automorphisms of B} and IBE,"*I, F equals
the generalized Whitney map in Fxample 1.2.

(4) After composing appropriate automorphisms of B} and Bg,"_l, F equals
the generalized Whitney map in Fxample 1.5.

In the case of (2) and (3)-(4), we have ¢! = 2¢ and {' = n—1, respectively.

Note the special case of £ = ¢’ = 0, Conjecture 1.4 was confirmed by the
work of the first author and Ji [11]. To tackle the conjecture in its full gener-
ality, motivated by the approach in [11], we propose to first understand the
geometric rank of the map F' (see §2.1 for the notion of the geometric rank).
In this paper we prove some partial results along these lines by investigating
the geometric rank of a holomorphic map F sending a piece of OB} to OB
when the difference of ¢ and ¢’ is not too large. More precisely, we prove the
following result.
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Theorem 1.5. Let N >n >3,2< (<21 (< (" <N -1 Let U be an
open subset in P" containing some qo € OB} and F be a holomorphic map
from U into PN . Assume F(UNBY) C BY,F(UNOBY) C OBY . Furthermore,
assume F is CR transversal at qo and assume ¢ < 30 —2. Then the geometric
rank of F equals either O or 1 at every point sufficiently close to qq.

The paper is organized as follows. In §2.1, we recall some preliminaries
and the definition of geometric rank from [12]. We establish a lemma on the
Hermitian rank of real polynomials in §2.2. Then in §2.3, we use this lemma
to prove Theorem 1.5.

2. Proof of Theorem 1.5
2.1. Preliminaries

We first recall some notations from [12] which will be needed in the proof.
Given a fixed ¢/ > 1, we denote by d;, the symbol which takes value —1
when 1 < j < ¢ and 1 otherwise. For fixed integers ¢ > ¢ > 1 and n > 1,
we denote by 94, the symbol which takes value -1 when 1 < 57 < £ or
n<j<n+{¢—0—1and 1 otherwise. When ¢' = ¢,§; ¢ ¢, is the same as 9; .
Let m > 1. For two m-tuples © = (z1,- - -, &), ¥y = (y1,- - *, Ym) of complex
numbers, we write (z,y); = Y7L, ;ex;y;, and |z[j = (z,7),. Also write
(@, Y eon = S jey G0 mesy; and |z]F ., = (2,Z)gp . Note if m < n—1,
the two symbols (-,-); and (-, )¢ ¢, are identical.

For 0 < ¢ <n —1, we define the generalized Siegel upper-half space
L n—1
St ={(z,w) € C"!' x C: Im(w) > —Z |2 + Z 2]}
j=1 j=l+1
The boundary of S} is the standard hyperquadrics: H} = {(z,w) € C""1xC:
Im(w) = Z?;ll 8j.0]zj*}. We also define for £ < ¢/ < N —1

N-1
Sé\fe/ﬂ,l ={(z,w) € cN-lxC: Im(w) > Z 5j75’g/7n’2j’2}.
=1

We similarly define S%HéﬁH%“n. Now for (z,w) = (21, - -, 2n—1,w) € C",
let ¥, (z,w) = [i + w,2z,i — w] € P*. Then ¥, is the Cayley transformation
which biholomorphically maps the generalized Siegel upper-half space S} and
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its boundary Hj}' onto B} \ {[20, - - -, zn] : 20 + 2, = 0} and OB} \ {[z0, - -, 2] :
20 + zn, = 0}, respectively.

Note that H}), , is identical to Hy when ¢ = £. When ¢/ > ¢ , Hj' is
holomorphically equivalent to Hév’g,vn by a permutation of coordinates in CV.
We will more often work with Hév,z',n instead of HY, as it makes notations
simpler.

We will write Aut(H}) and Auto(H}) for the (holomorphic) automor-
phism group of Hj and the local isotropy group of Hj} at 0, respectively. Write
Aut™(HY?) and Aut (HY) for the automorphisms in Aut(H}) and Aute(H}),
respectively, that in addition preserves sides (that is, maps S} to S}). Clearly
they are subgroups of Aut(Hy) and Auto(Hy), respectively. We define Aut(Hy ,,)
, Auto(]H[éYg/’n) and Aut"'(HéV,z,’n) and Autd (Hév,z',n) similarly.

Recall we denote by (z,w) = (z1,-- ,2n—1,w) the coordinates of C".
Write u for the real part of w and write

0 0 0
. =200 02— + =— <j<n-— =
(2.1) L = 2id;7; 5 + 72 1<j<n-1, T 50

Then {L;, -, L,_1} forms a global basis for the CR tangent bundle T(MOHY of
H7, where T is a tangent vector field of H} transversal to T(HOHZ @ TO-DH?.

Let I = (fa g) = (fv ¢7g) = (f1> T fnfla ¢)17 T QZ)N*n)g) be a holomorphic
map from a neighborhood U of py € Hj into CV, satisfying F(UNS}) C Sy,
and F(UNH}) C Hé\f@,yn. We additionally assume M; := U NH} is connected
and F'is CR transversal on M;. We will define the geometric rank for such a
map F' as follows:

First for each p € M, we associate it with a map F), defined by

(2'2) Fp:TfOFOUSZ(fp,Qp) :(fpa¢pagp)-

Here for each p = (20, wp) € My, we write U?ZO wo) € Aut™ (HY) for the map
a?zO’wO)(z, w) = (2 + 20, w + wo + 2i(z, Z)¢),

and define T(Iio,wo) € Aut*(H}, ) by

ooy (&) = (€ = F(20,w0), 1 — g(20,w0) — 2i(&, f(20, wo))e.00n)-

Then F}, is a holomorphic map in a neighborhood of 0 € C", which sends an
open piece of Hy into Hy, ,, with F,(0) = 0. Moreover, F(U NS}) C S}y ..
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Note the fundamental commutator identities hold:

_ 0 0 0
Lo Ll = 268 o —— 1 2 — 938 )—
[Lj, Lj] Zéj’f(aijaw) Z5J’£8u’

[l_’j7Lk]7 [T> Lk]7 [L]7Lk]7 [Z/wfk] = 07 if 1 S j 7é k S n—1.

l<i<n-—1
(2.3) =J=nT

By the assumption that F(U N M;) C Hy, ,, we have

(2.4) Im g =(f, flegmn on M.

In the following, for a holomorphic map h = (hy,--- , hx) from C" to CK, we
. - 2 o2 .

wite H, — (%5, 225), W, — Wy, = (AL ) 1 < < .

The notatlons Wi B2 s Wiy are understood similarly. We apply L;L; to (2.4)

and obtain

(2.5)

A(P) = (99)w(0) = gu(p) = 20(F, (1), FP)) e = 856 (Ls (), Li()ern (),

Note this implies A(p) is a real number. Recall that the CR-transervsality
assumption is equivalent to A(p) # 0 (see for example, [3]). Furthermore,
since F, preserves the sides, we have A(p) > 0 (see e.g. page 396 in [3]).

We apply Ly, Lj,j # k to (2.4) and get (L;(f), Lr(f))eon |= 0. Let for

) _ % _ afp,l 8fp,nfl aQZS;D,l 8QZ)p,N n 3 X
E](p) - (82]) ’0* ( aZ] ; 3 82] 3 aZ] %y 82] ) |0* (f)(p>7
L afp 8fp,1 afp,nfl a¢5p,1 . a¢pN n
Ew(p).—( ) _(8w’ ’ 81[) ’ 8w E )‘_ ()()
Then
(2.6)
(Ei(p), Ei(p)iyn = 05uNDp), (Ej(p), Ex(P))ewrn=0, 1<j#k<n-—1
Write E for the (n—1) x (N —1) matrix whose j** row is \/3% 1<j<n-—1.

Then F satisfies E[gyg/m,N_lEt = Iy y—1. Here Iy, denotes the m xm diagonal
matrix whose 5" diagonal element equals to 0,1 < 7 < m. Similarly, Ip ¢ p.m
denotes the m x m diagonal matrix whose j*® diagonal element equals to
Ojeern, 1 <7 <m.

Asin [3], we can choose (N —1)-dimensional row vectors C1(p), -+, Cn—n(p)
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such that if we write

CN—n(p)
then

(27) A(p)[g,g/’n’N_lA(p)t = IE,K’,n,N—l, ie., A(p) S U(&K’,n, N — 1)

Here recall U (¢, ¢, n,m) = {T € GL(m,C) : T[g’g/,n,mTt = Iy ¢ nm}. Note
that one can choose Cj(p)’s in such a way that A(p) is smooth in p for p ~ py
by the standard Gram-Schmidt process.

Next note B(p) :== A7 1(p) = Igyggn’]\[,lmt]g’g/’n’]\ffl isalsoin U(¢, ¢, n, N—
1). Write

A

B(p) = (Bi(p),  *, Bu-1(p), Bu(p), - - -, Bn-1(p)),

where Bj(p)'s and B;(p)’s are (N — 1)-dimensional column vectors. Note
By(p),- -+, Bp—1(p) only depend on Ei(p),- - -, En—1(p). Indeed,we have

mt Enl(p)t> .

VAR T VD)
Define F; = ( N;ag;) = ((f;)la ) (f;)n—la (QS;)M ) (QS;)N—nag;) by
1 Bp) 0
(2.9) FF=——F ( 1 .
TVAp) " )
Then F is a holomorphic map in a neighborhood of 0 € C", which sends an

open piece of H} into H}, , with F¥(0) = 0 and the following holds (See [3],
[1] for more details).

(28)  (Bi(p),- - Bua(p)) = fe,e/,n,Nl(

fp =2+ 0(jwl +[(z w)P?)
¢ = O(Jw| +[(z, w)[?)
gy =w+O(|(z,w)[*).
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Let
(2.10) )
a ES
a(p) = (a1(p), -+ an-1(p), an(p), -+, an-1(p)) := 6{5(0) = ;p) Ey(p)B(p)
Note
(2.11) ) 1
ak(p) = ) Ew(p)B(p) for 1 <k <n—1, and |a(p)[;,,, = @’Ew(p)‘izzn
Set for 1 < k,j <n—1,
._ 82(f;)k _ 1 7\ o 1 7
dij(p) = dz0w 1~ \/W(fp)wzj (0)Bi(p) = ) Lj(fu)()Bk(p),
gy 1 1

4(1) 1= G 0= 5757 90 (0) = 5 Ly = 2670 TN ) by

1_ /0% 1 1 i
T(p) = 2R‘e(85§> ’O: MR’G((QP)ZW}(O)) = 2)\(]7) R‘e(gg)w - 22< Tlli’w? f(p)>27£/7n7N) |P :
Write (&,1) = (&1, ,én—1,7) for the coordinates of CV and define
§—alp)n
. G =
(212 6= (o aen)

where Q,(&,n) = 14 2i(&, a(p))e,en + (r(p) — i{a(p), a(p))een)n. Then G, €
Autg (H, ,,). Let F* be the composition of ¥ with G, :

Here f;* has n—1 components, and ¢;* has N —n components. Next we recall
some notations (from [9, 10] and [3]) for functions of weighted degree that will
be used in the remaining context of the paper. We assign the weight of z to be
1, and assign the weight of v and w to be 2. We say a smooth function h(z, z, u)

on U NHY is of quantity Oy (s) for 0 < s € N, if ’W‘ is bounded for

(z,u) on any compact subset of U N H} and ¢ close to 0. Similarly, we say h

h(tz,tz,t%u)
ts

is of quantity oy:(s) for 0 < s € N, if converges to 0 uniformly for

(z,u) on any compact subset of U NHJ as ¢ goes to 0.
In general, for a smooth function h(z, z, u) on UNHY, we denote h(¥)(z, Z, u)
the sum of terms of weighted degree k in the Taylor expansion of h at 0. And
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h(k)(z, Z,u) also sometimes denotes a weighted homogeneous polynomial of
degree k, if h is not specified. When h®*)(z, Z,u) extends to a holomorphic
polynomial of weighted degree k, we write it as h®)(z,w) or h(#)(2) if it
depends only on z.

Under the notations above, by Lemma 2.2 in [3], we have the follow-
ing normalization and CR Gauss-Codazzi equation. Here recall (z,w) =
(21, ,2n_1,w) denotes the coordinates in C* = C"~! x C.

Lemma 2.1. For each p € M, F;* satisfies the normalization condition:
fr=z+ %a;*(l)(z)w + Oyt (4)
05 = 0" (2) + Own(3)
gy~ = w + Owi(5),

with

(2.14) (z, a5V (2))elzl; = 165D )R, =€ -1

By [12], if we write a;*(l)(z) = zA(p) for any (n — 1) x (n — 1) matrix
A(p), then the geometric rank of F' at p is defined as the rank of the matrix
A(p). See more details of the definition in [12].

We next recall the definition of geometric rank for maps between gener-
alized spheres. Let F' be a holomorphic map from a small neighborhood U
of ¢ € OB} to CN. Assume F(U NBY}) C B) and F(U N oB}) C dB), and
in addition F' is CR-transversal along U N OB}. We can find some Cayley
transformations ®, that biholomorphically maps S} and H} to B} \ V and
OB} \ 'V, respectively, for some variety V with ¢ ¢ V. Write p = CI>q_1(q) € Hj.

Similarly, we can find some Cayley transformation Vg, that biholomor-
phically maps Sé\,fé’,n and Hé\f@,m to BY \ W and 0B) \ W, respectively, for
some variety W with F(q) ¢ W. Set P = \Il;,%q) o Fo®, and regard it as a
germ of map at p € Hj}. We then define the geometric rank of F' at ¢, denoted
by Rkp(q), to be the geometric rank Rkg(p) of F at p. By [12], Rkp(q) is
independent of the choices of ®; and Wp(,), and thus it is well-defined.

2.2. Proof of a lemma

In the paper [9], where the first author first introduced the ideas of normal
form and moving point trick to study mappings between hyperquadrics, a
lemma (Lemma 3.2 in [9]) played a fundamental role. After the work [9],
the lemma has been widely used in the study of mapping problems in CR
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geometry, as it provides an effective tool in determining the rank of Hermi-
tian polynomials. Here we recall the definition of the rank of a real polyno-
mial or more generally a real-valued real analytic function R(z,Z) at some

point zg € C. Suppose R(z,%) can be written as R(2,%2) = >0, |fi(2)]* —
1 119i(2)1%,p,q € Z=°, where f/s and gjs are holomorphic functions near
20, and f1,- -, fp, g1, -+, gq are linearly independent over C. Then we say

R(z,%) is of finite rank and r = p+ ¢ is called the rank of R(z,%). We remark
that the rank of R(z,%) is independent of the choices of f/s and g}s. The rank
of R(z,%) is zero if and only if R(z,%) is identically zero. Lemma 3.2 in [9]
can be stated as follows:

Write z = (21, -, zy,) for the coordinates in C™,m > 2. Write |z| for
the Euclidean norm of z. Let A(z,%) be a real analytic function near 0 such
that

(2.15) (2,2)|2)* = Z (2

where 9;(z) and ¢;(z) are holomorphic functions near 0 € C™. Then A(z, %)
must have rank zero, that is, A(z,Z) must be identically zero.

In this section, we prove a lemma of similar flavor, and will use it to
study the geometric rank of holomorphic mappings sending a piece of OB}
into OBY .

Lemma 2.2. Let {,m,a,b be nonnegative integers such that 2 < ¢ < 3
and 0 < a < 20 — 2. Let p1, ..., Pa, %1, ..., Yp be homogeneous holomorphic
polynomials of the same degree in C™ such that

(2.16) = i) + Z | (= (z,2)|2]7, ze€C™,
j=1

where A(z,2) is a real polynomial. Then A(z,%) = +|h(2)|* for some holo-
morphic polynomial h.

Remark 2.3. The above lemma is optimal in the sense that the conclusion
fails if a > 20 — 2. See the following example which corresponds to the case
where { =2, m =4 and a = 3.

Example 2.4. Let z = (21, -+ ,z4) € C* and thus |2]3 = —|21]? — |2)? +
|23]? + |24]?. Let A(z,Z) = |21)? + |22|?. Then we have

A(z,7)|2]5 = —|z1|*=2|z1 22 — 22| 4|21 1P| 28] 24|21 1?24 P+ 22| | 23] P+ ] 22| 24]
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Notice that A(z,%) is of rank two and cannot be written as |h|* or —|h|? for
any holomorphic function h.

Proof of Lemma 2.2: We assume ¢;(2) and v;(2) are not all identically
zero, for otherwise the conclusion is trivial. Also the conclusion is easy by
checking the zero locus of the two sides of (2.16), if each ¢; = 0 or each
1; = 0. We will therefore assume a > 1 and b > 1. We can also make a < b by
adding zero components to is. Write § = [£p, ..., {m—1] for the homogeneous
coordinates in P!, Define a rational map from P! to Pe+o-1 .

[F]([f]) = [Qpl(f)’ "‘>§0a(§),wl(§)a »¢b(§)]

Note [F] is a well-defined holomorphic map on P!\ V| where the variety
V={[]eP ! :p1(§) = ... = ¢a(§) = ¥1(§) = ... = ¥p(€)}. Recall that

OB ! = {[wo, ..., wn_1] € PV JwoP . A wi | = Jwpaa [P+ lwy_1] )

Note [F(2)[2 = — X%y |5 ()2 + S0 [65(2)[% = 0 when |22 = 0 for = €
C™. Consequently, [F]([¢]) gives a holomorphic map that sends an open piece
of OB ! into BTY™. We will make use of a transversality result, Theorem
1.1 of [2]. For that, we first verify the condition (1.2) in Theorem 1.1 of [2]
holds.

Note the numbers of the negative and positive eigenvalues of the Levi
form of OB~ are a — 1 and b — 1. Notice by assumption, a —1 < 20 —3 <
m — 3. Hence Condition (1.2) in Theorem 1.1 of [2] holds. Then it follows
from Theorem 1.1 in [2] (see also Lemma 4.1 in [3]) that one of the following
two mutually exclusive statements must hold:

(I). There exits a neighborhood V' C P™~! of some open piece of IB}" "
such that [F)(V) C 0BT~

(IT). [F] is transversal to B2~ at [F](p) for a generic point p € IB* .

If (I) holds, then |F(£)]2 = 0. In this case the quantity in (2.16) equals
zero, and consequently, A(z,Z) = 0. It then remains to consider the case
where (IT) holds. In this case, by moving to a generic point p, we assume [F]]
is CR transversal along V' N 818%2”__11 for a small neighborhood V' of p. By the
transversailty, [F] either preserves or interchanges the sides of 315%?:1 and
OBTt=1 We will apply Theorem 1.1 of [1] (we can also use Theorem 0.4) to
the two cases separately:
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Case (A). Suppose [F] preserves sides of OBy*;' and 9B (ie., [F]
maps VB! to B0, Recall from §2.1 the map (2, w) — [i+w, 22,7 —w]
from C™~! to P! gives the Cayley transformation which biholomorphically
maps the generalized Siegel upper-half space S7"7* to By 7'\ {[¢0, -+, &m_1] :
& + &m—1 = 0}. Denote this map by p. Notice that

i€ i — 16m—

([5075 gm 1]) (€0+£m 1 §0+§m—1

).

Likewise, denote by r the Cayley transformation from SZH{ Lo IB%“H’ I Com-
posing [F] with an automorphism of B~ and shrinking V' if necessary, we
can assume F' = r1o [F]o p is a well-defined holomorphic map in a neighbor-
hood of some piece of H"; 1 . Moreover it sends the piece of H"" 11 to H“+b L

and maps the S; Lside to Sa+b L

Applying part (a ( ) of Theorem 1.1 in [1] to F, we get £ < a and m — ¢ < b.
Furthermore, since a — 1 < 2(¢ — 1), there exist a local biholomorphism 7 of
He =1 and an automorphism 7 of HJ';' such that
(2.17)

70?07(21, coo L Zmeg,w) = yor Yo[Flopor = (21, -+ , 201, ®, 20, , Zm2, ¥, w).

Here ¢ and ¥ are holomorphic maps with a — ¢ and b + ¢ — m components
(In our case, we know they are rational maps), respectively. And they satisfy
] =[],

Next note there exist an automorphlsm g of By !'and an automorphism
G of BTt such that yor~' =+ oG and po7 = gop. Then (2.17) is
reduced to

GO[F]Og([§07 7£m71]) :TO(Zl,"' 7Zg,17@,2’g7'-' 7Zm727\117w)op71'

Using the explicit formulas of 7 and p~!, the above is reduced to

Go [F] Og([SOaflafmfl]) = [507517 Tt 355713(’13,5(7 e ,5m727{177§m71]~

Here ® and W are rational maps with @ — ¢ and b + ¢ — m components,
respectively, and they satisfy |®| = [U].

Finally since G and g preserve the indefinite norms | - |2 and | - |7, respec-
tively, we have in case (A) that |F(£)|2 = |h(£)|?|¢]? for some holomorphic
polynomial h.
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Case (B). Suppose [F] change sides of OB ;" and 9Bt (ie., [F]

maps V N B! to Pato—1\ Beti~! ~ BYTPY). Again composing [F] with
B th!

an automorphlsm of and shrinking V' if necessary, we can assume
F=r1o0 [F]op is a well-defined holomorphic map in a neighborhood of
some plece of H™ 1 , where p and r are as above. Moreover F' sends the piece
of HJ" ;! to HeTY™! and maps the S side to C**+0~1 \S“+b L

Applying part (b) of Theorem 1.1 in [1] to F, we have a > m — ¢ and
b > £. Moreover since a — 1 < 2/ —3 < m — 3 < m — 2, there exist a local

biholomorphism 7 of H2*}™! and an automorphism 7 of H*,! such that

) -1
’YOFOT(Zla e 7Zm—27w) = yor OFOPOT = (267 T 7Zm—27®7217 T 725—17\117 _w)

Here & and V¥ are rational maps with a + ¢ — m and b — ¢ components,
respectively. Moreover, they satisfy |®| = |¥].

Similarly as above, we see there exist an automorphism g of an__ll and an
automorphism G of ]B%a+b L such that

Go [F] Og([&%' o 7£m—1}) = [€M—1a£€7" ' 7£m—2757§17' o 7§f—17@7§0]'

Here ® and W are rational maps with @ + ¢ — m and b — ¢ components,

respectively. Moreover, they satisfy |®| = |¥|. As above, we have in case (B)
that |F(€)]2 = —|h(€)[*£|? for some holomorphic polynomial h.
This proves Lemma 2.2. [

2.3. Geometric rank of the map

In this section, we use the set up in §2.1 and Lemma 2.2 to give a proof for
Theorem 1.5.

Proof of Theorem 1.5: Composing F' with automorphisms of B} and
BY if necessary, we assume that F is Well—deﬁned in a neighborhood of ¢y =
[1,0,...,0,1] € 9B} with F(g) = [1,0,...,0,1] € OBY. Denote by ¥, the
Cayley transformatlon from Sy to B} as descrlbed in §2.1, and & the Cayley
transformation from SM/ to IB%E/ ) Then F = dy N loFo \Iin is well-defined in a
small neighborhood of 0 € H} (Recall ¥,,(0) = qo). Note F' is side-preserving
(i.e., it maps S} to Sé\fe’,n near 0). Moreover, by the definition of the geometric
rank (see Section 3 in [12]), the geometric rank of F' at ¢ &~ qq is equal to that
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of F at WU.1(q) near 0. Thus it suffices to prove the new map F has geometric
rank 0 or 1 near 0. To keep notations simple, we will still write the new map
as F instead of F. That is, F'is now a holomorphic map from a neighborhood
V of 0 € H} to CV, satisfying

FVNSE) CSpy, and  F(VNH}) CHYY .

By shrinking V' if necessary, we can additionally assume M; = V N Hy
is connected and F is CR transversal along M;. Fix p near 0 on M;. We
define F}, as in (2.2). We run the normalization process in §2.1 to F, and
obtain Fy, Fy* in (2.9) and (2.13), respectively. Write F;* = (f;*, 95%) =
(5, 0y 95%) as in (2.13). Then Lemma 2.1 holds, and in particular (2.14)

holds. Write a3 (z) = zA(p) and
A(2,2) = (205" (2))0 = 2A(p) 11 2.
Letm=n—1la=r=0—0b=(N—¢)—(n—{) and
(P1(2),- - s al2), ¥1(2), - () = 657 (2).

Then we have (2.16) holds:
a b
=D _lei@)P+ D[ (2)I° = Az, 227
= =1

Note by assumption a < 2¢ — 2. By Lemma 2.2, A(z, z) = +|h(z)|? for some
holomorphic polynomial h. Consequently, the Hermitian matrix A(p)ly,—1
has rank either 0 or 1; and so is A(p). The conclusion of the theorem then
follows by the definition of geometric rank. O
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