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Abstract— With over 10 million people currently suffering
from significant long-term gait disability in the United States
only, robot-assisted rehabilitation and wearable devices are
increasingly gaining attention as a mean to regain functional
mobility. Since these devices work collaborative and syn-
chronously with the human gait, it is necessary to be able to
detect gait events, such as heel-strikes, in real-time. Although
many algorithms have been proposed for detecting heel-strikes
with either wearable (e.g. Inertial Measurement Units (IMUs))
or non-wearable (e.g. force plates) sensors, there is a great
need for employing less obtrusive and reliable sensors that
rely only on recording the kinematics of the leg motion. This
work proposes a novel and efficient kinematic algorithm, called
the Foot VErtical & Sagittal Position Algorithm (F-VESPA),
which has several advantages over existing methods. First, it
accurately estimates heel-strike events using kinematic data
without requiring access to future data points, rendering it the
first to our knowledge kinematic algorithm capable of real-time
implementation during treadmill walking. Moreover, it does not
require tuning of the utilized parameters, rendering it robust
to different subjects, conditions and equipment. The algorithm
is tested in a large set of subjects across various treadmill
speeds, and it is shown to outperform online and offline
implementations of existing prominent kinematic algorithms.
Using a 150 Hz data collection system, the F-VESPA achieved
a total true error of 33 ms (median) in detecting heel-strike.
The F-VESPA is the first to our knowledge kinematic algorithm
that can detect heel-strike events during treadmill walking in
real-time, with high accuracy, robustness and fast response,
enabling real-time control of a variety of assistive platforms
and devices, among others.

I. INTRODUCTION

Over 10 million people in the United States currently suf-
fer from significant long-term disability due to stroke, or are
living with a lower limb amputation [1, 2]. This population
could benefit from robot-assisted rehabilitation and wearable
devices, as a mean to regain functional mobility. Since gait
support systems need to be synchronized with the human
motion [3,4], precise characterization of the walking phases
is critical. Human gait is separated into gait cycles, defined
as the intervals between consecutive heel-strikes of the same
foot [5]. To ensure proper functionality of the gait support
systems, accurate and robust gait segmentation is necessary.

Numerous algorithms have been proposed for the detection
of heel-strike events during gait. In general, these algorithms

*This material is based upon work supported by the National Sci-
ence Foundation under Grants No. #2020009, #2015786, #2025797, and
#2018905. This scientific paper was partially supported by the Onassis
Foundation - Scholarship ID: F ZQ029-1/2020-2021.

Chrysostomos Karakasis and Panagiotis Artemiadis are with the Mechan-
ical Engineering Department, at the University of Delaware, Newark, DE
19716, USA. chryskar@udel.edu, partem@udel.edu

∗Corrresponding author: partem@udel.edu

can be divided into two categories based on whether they
utilize wearable or non-wearable sensors [6]. In indoor
experiments, non-wearable sensors such as force platforms
and opto-electronic systems stand out as the most accurate
options for gait analysis, with the first representing the
gold standard in gait partitioning [6–12]. However, force
platforms are not always available or suitable, while they
usually require specialized equipment that might complicate
the experimental procedure [13, 14]. On the other hand,
opto-electronic systems utilize kinematic methods, which
represent the most popular technology found in clinical
laboratories, and they have been recognized as the gold
standard for routine gait analysis [6].

Kinematic algorithms utilize 3D-kinematic data of the
lower limbs recorded using a camera motion capture system
[15]. After a thorough research we performed in the literature
amongst publications comparing and reviewing kinematic
algorithms, the Foot-Contact Algorithm (FCA) [12], the
Foot-Velocity Algorithm (FVA) [10] and the Foot Vertical
Position (FPOSV) method [7] stood out as prominent due to
their increased reported accuracy [7,10–12]. However, most,
if not all, kinematic algorithms that have been proposed so
far provided only offline estimates for the heel-strike events.

At the same time, applications such as real-time control
frameworks for wearable assistive devices [4,16], functional
electrical stimulation and gait biofeedback [8, 17], require
the real-time detection of gait phases. For those purposes,
wearable sensors, such as accelerometers, foot-switches,
gyroscopes, etc., which allow for real-time detection even
in outdoor environments [3, 8, 16, 18], have been employed.
However, despite the unique portability they offer, wearable
sensors present certain drawbacks, such as challenging place-
ment and reduced reliability and durability [9,15]. Therefore,
the question arises of whether a kinematic algorithm could be
proposed for real-time implementation that would maintain
high accuracy, without being restricted by the limitations of
wearable sensors.

In order to address this gap, this work proposes a novel
and efficient kinematic algorithm, called the Foot VErtical &
Sagittal Position Algorithm (F-VESPA), which has several
advantages over existing algorithms. First, the F-VESPA
accurately estimates heel-strike events using kinematic data
without requiring access to future data points, rendering it the
first to our knowledge kinematic algorithm capable of real-
time implementation. Moreover, unlike previous works, it
does not require tuning of the utilized parameters, rendering
it robust to different subjects, conditions and equipment.
The algorithm is tested in a large set of subjects across



various treadmill speeds and it is shown to outperform online
and offline implementations of existing prominent kinematic
algorithms. The F-VESPA is the first to our knowledge
kinematic algorithm that can detect heel-strike events during
treadmill walking in real-time, with high accuracy, robustness
and fast response, enabling real-time control of a variety of
assistive platforms and devices, among others.

II. METHODS

A central feature of this paper is the introduction of a new
real-time algorithm for heel-strike detection during treadmill
walking, followed by its evaluation with real kinematic data
and its comparison with real-time and offline implementa-
tions of existing algorithms. For evaluation and comparison,
we first define the set of kinematic data used throughout
the paper in Subsection II-A. Then, the implementation of
existing algorithms is discussed in Subsections II-B, II-C
and II-D. Since all existing algorithms have been proposed
only for offline implementation, specific considerations and
changes need to be made in order to be fairly compared
with our proposed method. Finally, Subsection II-E details
the proposed algorithm.

A. Description of Dataset

In this work, we utilize data from a publicly available
dataset [19]. Specifically, in the study by Fukuchi et al.,
a group of 42 healthy subjects participated, consisting of
24 young adults (age 27.6 ± 4.4 years, height 171.1 ±
10.5 cm, and mass 68.4 ± 12.2 kg) and 18 older adults
(age 62.7 ± 8.0 years, height 161.8 ± 9.5 cm, and mass
66.9 ± 10.1 kg). Both kinematic and kinetic data were
recorded during treadmill walking at a wide range of gait
speeds. Kinematic data were collected at 150 Hz via a camera
based motion-capture system (12 cameras, Raptor-4; Motion
Analysis Corporation, Santa Rosa, CA, USA), while a dual-
belt instrumented treadmill (FIT; Bertec, Columbus, OH,
USA) measured the ground-reaction force data at 300 Hz.

The treadmill walking experiments for each subject in-
cluded trials at eight different controlled speeds: 40%, 55%,
70%, 85%, 100%, 115%, 130%, and 145% of the self-
selected speed. The range of the self-selected speeds across
subjects was 0.89 - 1.54 m/s.

Lower-extremity kinematics were recorded by tracking the
position of 26 anatomical reflective markers. Amongst the
available markers, only three were utilized for the implemen-
tation of the algorithms analyzed below: the heel (HEEL),
metatarsal head #1 (MTH1) and metatarsal head #5 (MTH5)
markers1.

For calculating the ground truth timing of the heel-strike
events in the data, we used the force plate measurements
to calculate the instance the foot hits the ground, as this
represents the gold standard in gait partitioning and heel-
strike detection [6–12]. Specifically, the vertical ground
reaction force (GRF) component was utilized, after applying
a 4th order zero-phase low-pass Butterworth filter with a

1Pictures of the markers placement can be found here: https://
motion-database.humanoids.kit.edu/marker_set/.

cutoff frequency of 20 Hz. To match the kinematic sampling
frequency, the GRF data were down-sampled to a frequency
of 150 Hz. It should be noted that a zero-phase filter was
adopted to avoid any temporal delays and hence derive the
actual timing of the heel-strike events. According to the
literature, typically a threshold level of 5-40 N on the vertical
GRF is utilized for the heel-strike detection algorithms
[7, 8, 10–14]. We employed a threshold value of 30 N on
a rising edge for our dataset.

B. Implementation of the modified FCA

Given the fact that the FCA was rendered as one of the
most accurate amongst the kinematic algorithms described in
the literature, we believe that it should be used as a reference
for the validation of the proposed algorithm. For that reason,
presenting the details of its implementation is necessary and
is included below.

Due to the nature of the algorithm [12], a real-time
implementation is not feasible, and therefore we opted for
a modified implementation that includes an offline ver-
sion with real-time filtering conditions. In detail, the three-
dimensional kinematic data were filtered via a 2nd order,
low-pass Butterworth filter (cut-off frequency of 20 Hz),
without removing any introduced delays from the filter. The
FCA detects touchdown using the vertical position of two
markers: the posterior midsole of the heel (HEEL) and the
lateral midsole at MTH5 (MTH5). Initially, all prominent
local extrema that have a specific prominence and minimum
separation were derived. Naturally, this procedure requires
the knowledge of the whole signal throughout each trial.
In particular, for the local minima, the optimal minimum
separation values were derived to maximize the accuracy
of the algorithm in each trial, while the same minimum
separation was utilized for both markers.

Next, each trial was divided into gait cycles using the
prominent local maxima, and for each gait cycle the fol-
lowing procedure was followed. Initially, the timing of the
earliest event between the prominent local minima of the
two signals is set as the approximate time of touch down
(TDapprox), while the corresponding marker is selected as
the target marker. Based on that, the TI time interval is
defined as:

TI = [TDapprox − o1, TDapprox + o2], (1)

where o1 = 6 samples and o2 = 12 samples. The assigned
size of the time interval was decided based on the trials
and values noted in [12]. Then, the vertical acceleration
of the target marker is derived from its filtered position
using finite difference methods. Finally, the time instance of
touchdown (or heel-strike) is defined as the most prominent
local maximum in the vertical acceleration of the target
marker during the time interval TI .

C. Implementation of the modified FVA

Besides the FCA, another algorithm that stood out
amongst the proposed algorithms in the literature is the FVA

https://motion-database.humanoids.kit.edu/marker_set/
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[10]. Similarly to the FCA, a modified offline version was
implemented for comparison purposes, as described below.

As proposed in [10], the FVA utilizes the vertical position
of two markers: the posterior midsole of the heel (HEEL)
and the metatarsal head II (MTH2). In the employed
dataset, the MTH2 was not available and the metatarsal
head I (MTH1) marker was used instead. Similarly to
the FCA, the kinematic data were filtered via a 2nd order,
low-pass Butterworth filter (cut-off frequency of 20 Hz).
Next, the midpoint of the HEEL and the MTH1 marker
locations was computed, as a representation of the foot’s
center, while its vertical velocity was calculated via finite
difference methods. Next, all prominent local minima of the
foot’s center vertical velocity were extracted by selecting
the appropriate prominence and minimum separation. Again,
the optimal minimum separation values were calculated to
maximize the accuracy of the algorithm in each trial, while
a fixed value was selected for the prominence across all
trials. Subsequently, in order to distinguish the specific local
minima described in [10], constraints were imposed on
the corresponding vertical position of the prominent local
minima. The constraint imposed was that the foot center
should be close to the ground level at heel-strike. Finally, the
heel-strike events were defined as the frames that correspond
to prominent negative local minima in the foot center’s
vertical velocity with a corresponding vertical position that
satisfies the imposed thresholds.

D. Real-time implementation of the FPOSV

The last algorithm that will be used as a reference is
the FPOSV [7]. The FPOSV detects heel-strikes using only
the vertical position of the posterior midsole of the heel
(HEEL). The latter was filtered via a 2nd order, low-
pass Butterworth filter (cut-off frequency of 20 Hz), without
removing any introduced delays, similarly to the FCA and
FVA. In this case, a real-time implementation was possible
and hence it was realized.

For each incoming sample, the current vertical velocity
is calculated using a first-order finite difference approxima-
tion2:

dyH(k) , ∆yH(k) = yH(k)− yH(k − 1), (2)

where yH(k) is the filtered vertical position and dyH(k)
is the vertical velocity of the heel marker at the sample
k, respectively. Next, all future samples are ignored until a
local maximum with a temporal prominence of two past and
two future samples is found that exceeds a specific threshold
(yGM ). This criterion is defined in the following equations:

dyH(k) < 0 and dyH(k − 1) ≤ 0, (3)
dyH(k − 2) ≥ 0 and dyH(k − 3) ≥ 0, (4)

yH(k − 2) > yGM . (5)

If all of the above conditions are met, the corresponding
sample (k−2) is defined as the “global” maximum kGM for

2Since only the velocity’s sign is of interest, the fixed temporal element
dt is omitted.

that gait cycle, and a search for local minima is initiated.
Then, for each upcoming sample, the vertical velocity is
computed again using Eq. (2), and all samples are ignored
until a local minimum with a temporal prominence of three
past and one future samples is found not exceeding a specific
fixed threshold (ymax), i.e. meeting the conditions listed
below:

dyH(k) ≥ 0, (6)
dyH(k − i) ≤ 0 ∀ i ∈ {1, 2, 3}, (7)

yH(k − 1) < ymax. (8)

A sample (k−1) satisfying these conditions is defined as the
heel-strike event for that gait cycle. Moreover, the search for
local minima (heel-strikes) is disabled until the next “global”
maximum is discovered and the same procedure is repeated
until the end of the trial.

E. Proposed Foot VErtical & Sagittal Position Algorithm
(F-VESPA)

The proposed algorithm F-VESPA was designed in or-
der to provide a robust and accurate method of detecting
heel-strikes in real-time, using solely kinematic data. The
algorithm can be considered as a significant extension of
the FPOSV algorithm analyzed above, since instead of using
only the vertical position, it also utilizes the sagittal position
of the heel marker in the subject’s leg. Throughout this paper,
we will refer the position on the horizontal sagittal axis as
the sagittal position. The motivation behind this was the fact
that as the leg moves backwards, the rate of change in the
sagittal position has a fixed sign, same as the speed of the
treadmill belt3. As a consequence, this information could be
exploited to filter out any unwanted local minima in the
vertical position that do not correspond to heel-strikes. It
should be noted that this feature is only observed during
treadmill walking, hence the algorithm is not suitable for
overground walking.

Initially in the implementation, the same real-time filtering
conditions were applied, as in the previous algorithms. Sim-
ilarly to the FPOSV, at the beginning of a trial all incoming
samples are ignored until the “global” maximum for that gait
cycle is found, as shown in Eqs. (3-5). Then, for each sample
k, the current vertical velocity (dyH(k)) is calculated again
using Eq. (2), while the sagittal velocity is computed using
the following equation:

dxH(k) , ∆xH(k) = xH(k)− xH(k − 1), (9)

where xH(k) is the filtered sagittal position and dxH(k)
is the sagittal velocity of the heel marker at sample k,
respectively. Next, all future samples are ignored until a local
minimum with a temporal prominence of three past and one
future samples is found, as shown in Eqs. (6-7). Notice that
the fixed threshold shown in Eq. (8) is not necessary in this

3On the used dataset, the rate of change of the sagittal position was
negative, but generally, it depends on each dataset formulation of the
reference system whether it is going to be negative or positive. That said,
the proposed algorithm is based on the fact that the sign is fixed.
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Fig. 1. Example of heel-strike identification using the F-VESPA. Top
and bottom subplots show the vertical position and sagittal velocity of
the heel marker at a subject’s left foot, respectively. Circles (◦) indicate
“global” maxima and diamonds (�) indicate prominent local minima in the
vertical position. Crosses (×) illustrate heel-strike events identified using the
F-VESPA. Heel-strikes are defined as prominent local minima in the vertical
position yH(t) that correspond to a negative sagittal velocity dxH(t).

case. When such a point is found, the corresponding sign of
the sagittal velocity is checked. The point is kept only if the
sign is negative, while discarded if positive, i.e. the condition
to be met is:

dxH(k − 1) < 0. (10)

If the condition is satisfied, then the sample (k − 1) is
defined as the heel-strike event (kHS) for that gait cycle.
Based on the vertical position of the heel marker at heel-
strike, the yGM threshold is updated:

yGM = ymin + yH(kHS), (11)

where ymin is a fixed variable equal to 30 mm that represents
a sufficient height distance between the vertical position
of the heel at heel-strike and its next “global” maximum.
Moreover, the search for local minima (heel-strikes) is dis-
abled until the next “global” maximum is found and the
same procedure is repeated until the end of the trial. The
pseudo-code for the proposed F-VESPA algorithm is given
in Algorithm 1. Figure 1 demonstrates an example of heel-
strike identification using the F-VESPA.

Algorithm 1 F-VESPA
1: procedure F-VESPA (yr

H = raw vertical position of heel marker, xr
H = raw

sagittal position of heel marker, f = boolean flag)
2: f = 0 . Disable search for local minima
3: ymin = 30 mm . Define fixed parameter
4: while true do . New motion capture sample
5: Obtain [k, yr

H(k), xr
H(k)] from motion capture system

6: [yH(k), xH(k)] ← Filter (yr
H , xr

H )
7: Derive dyH(k) and dxH(k) . Eqs. (2, 9)
8: if dyH(k) < 0 & dyH(k − 1) ≤ 0 then . Eq. (3)
9: if dyH(k − 2) ≥ 0 & dyH(k − 3) ≥ 0 then . Eq. (4)

10: if yH(k − 2) > yGM then . Eq. (5)
11: kGM = k − 2 . “Global” maximum
12: f = 1 . Initiate search for local minima
13: end if
14: end if
15: end if
16: if f 6= 0 & dyH(k) ≥ 0 then . Eq. (6)
17: if dyH(k − i) ≤ 0 ∀ i ∈ {1, 2, 3} then . Eq. (7)
18: if dxH(k − 1) < 0 then . Eq. (10)
19: kHS = k − 1 . Heel-stike
20: yGM = ymin + yH(kHS) . Eq. (11)
21: f = 0 . Disable search for local minima
22: end if
23: end if
24: end if
25: end while
26: end procedure
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Fig. 2. Evaluation and comparison between FPOSV and F-VESPA
algorithms across all trials of young subjects and speeds. Mean values and
standard deviations are shown for each algorithm across all trials.

III. RESULTS

In this section, the performance of the FCA (offline), FVA
(offline), FPOSV (real-time) and F-VESPA (real-time) in
identifying the heel-strike events is evaluated. All algorithms
were implemented and executed in MATLABTM version 9.7
(R2019b) (The MathWorks, Natick, MA USA). The ground
truth of the heel-strike event times were determined using the
force plate measurements as discussed in Subsection II-A.
The accuracy of each method is quantified by defining the
estimation error in frames between the real (ground truth)
and estimated timing of the heel-strike. For example, if i
is the frame at which the heel strike really happened for a
gait cycle, and an algorithm estimates the heel-strike at frame
i+3, then the error for this step is 3 frames. Moreover, if the
algorithm estimates the heel-strike earlier than when really
occurred (e.g. at frame i − 2), the error can take negative
values, i.e., the error is -2 frames in this example. In order
for the comparison to be more generalizable, all the errors are
reported in frames, or samples, without imposing a specific
sampling frequency for the kinematic data.

A comprehensive evaluation and comparison of the algo-
rithms needs to include multiple subject trials across differ-
ent walking speeds. Using the aforementioned dataset [19],
we evaluated the algorithms using nine young adults that
shared similar nominal speeds with statistical significance
(p < 0.05), across 8 different walking speeds around their
nominal speed. Their average nominal speed was equal to
vm = 1.26± 0.05 m/s.

A. Evaluation and comparison between FPOSV & F-VESPA

As mentioned earlier, the F-VESPA is a significantly
extended version of the FPOSV that was designed to pre-
dict heel-strikes more accurately. Hence, we believe that
a comparison between the two is necessary to illustrate
their differences and validate the alleged precision. Heel-
strike event times were estimated using the two algorithms
for all trials. Subsequently, the mean true error (Etrue) of
each algorithm was computed, along with the corresponding
standard deviation. The results are shown in Fig. 2 where
mean and standard deviation values are shown for each
algorithm across all trials. As it is seen, the F-VESPA has
a mean error of 4.15 frames and a standard deviation of
0.57 frames, while FPOSV has a mean error of -3.11 frames
with a standard deviation of 8.23, while the range of error
is from -11.34 to 5.12 frames. This large contrast between



Fig. 3. Evaluation and comparison of the FCA, FVA and F-VESPA algorithms across all treadmill speeds and subjects. Blue, orange and yellow solid
bars represent the mean absolute errors (MAE) in frames of the FCA, FVA and F-VESPA algorithms, respectively. Blue, orange and yellow opaque and
dashed bars represent the mean time delay (MTD) in frames of the FCA, FVA and F-VESPA algorithms, respectively. The total error is defined as the
sum of the MAE and MTD for each speed. Thick black lines represent the standard deviation of the errors across subjects for each speed. Note that the
vertical axis was broken into a low (0-12) and a high (20-80) part to emphasize behaviors at different regions.

the two algorithms can be explained by taking into account
the main difference between them, which is the inclusion
of the negative sagittal velocity criterion shown in Eq. (10).
Specifically, given a sample that is the first one to satisfy
Eqs. (6-7) after finding a “global” maximum, that condition
might lead into the F-VESPA disregarding it. At the same
time, if Eq. (5) is satisfied, the FPOSV will classify it as
a heel-strike event. In other words, the FPOSV is prone
to early detection of heel-strike events, which causes the
negative mean error value shown in Fig. 2 with large standard
deviation. As a result, the FPOSV provides in many cases
erroneous estimations, which lead to a worse performance
than this of the F-VESPA.

B. Evaluation and comparison of F-VESPA to FCA & FVA

In addition to the true and absolute errors of estimation,
the true time delay required for the calculation of the heel-
strike estimation was computed for each algorithm.

Both the FPOSV and the F-VESPA were designed for real-
time deployment, while real-time conditions were simulated
during their execution. In detail, for a given trial, the algo-
rithms processed each sample one by one, without having
access to any future samples. As a consequence, in order to
determine whether a given sample has a specific temporal
prominence (i.e. Eqs. (3,4,7)), both algorithms had to wait
for the required number of future samples. This property
introduces an inherent time delay that has to be accounted
for when evaluating performance. For both FPOSV and
F-VESPA, the inherent delay of their predictions is equal
to one sample, as they require a maximum number of one
future sample for the identification of heel-strike events using
Eqs. (7,8,10).

In contrast, only offline implementations were possible

for the FCA and the FVA. Specifically, in both algorithms
local extrema were computed with a specific prominence
that by definition requires the apriori knowledge of the
whole signal. For comparison purposes, only the time delays
associated with temporal prominence and time windows are
analyzed. For the FCA, knowledge over the whole time
interval TI is required as shown in Eq. (1), which introduces
a delay of 12 samples. Moreover, local minima required a
minimum separation, which was optimized to maximize the
performance of the algorithm. Therefore, the time delay for
the FCA was defined as the sum of the two components. For
the FVA, only the minimum separation for the local minima
introduced additional time delay, which was again optimized
to maximize the performance of the algorithm.

The results of the FCA, FVA and F-VESPA across all
subjects and walking speeds are shown in Fig. 3. For each
walking speed, the mean absolute error (MAE) and mean
time delay (MTD) are shown, along with standard deviations.
The MAE quantifies the accuracy of each algorithm in
estimating heel-strike events without taking into account the
aforementioned time delays. Then, the MTD needs to be
added to each algorithm to show the error in estimating
the heel-strike event due to the inherent delay. This is of
high importance since we are interested in real-time heel-
strike event detection and the MTD captures how late the
predictions would be in real-time.

Amongst all implemented algorithms, the F-VESPA ex-
hibits the lowest total error in frames across all speeds
and subjects. Although FVA seems to have slightly better
performance than the F-VESPA if MAE is only considered
across all speeds, its standard deviation is significantly larger
than that of F-VESPA. Moreover, the performance of the
FVA declined as the treadmill speed increased, while the
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Fig. 4. Histograms of true error et in frames for F-VESPA (a), FCA (b),
and FVA (c). Bars represent the frequency of each true error value in gait
cycles.

performance of the F-VESPA is not affected by walking
speed. The error induced due to the inherent time delay
of the F-VESPA is equal to one across all trials, hence no
deviation is observed. In contrast, both the FCA and FVA
have significantly high MTD values, bringing their total error
higher than that of the F-VESPA across all speeds.

The statistical differences of accuracy (true error of estima-
tion) between the algorithms were tested using paired t-tests.
In both pairs (F-VESPA, FCA) and (F-VESPA, FVA) the null
hypothesis was rejected (p < 0.05), indicating statistically
different distributions of errors among the algorithms.

The distribution of true errors et across all trials for each
algorithm without including the inherent time delays was
calculated for each algorithm, and normal distribution fit was
attempted. The histograms of the errors are shown in Fig. 4.
The histogram data were tested for normal distribution using
the Kolmogorov–Smirnov test [20]. In all three cases, the
null hypothesis was rejected using the default significance
threshold (p < 0.05). Therefore it was determined that the
et data do not originate from normal distributions for all
three algorithms. As a consequence, we choose to compare
the data by median and range. Amongst all implemented
algorithms, the F-VESPA exhibits the lowest median (4) and
range (from 2 to 7) in frames across all trials. The median
corresponds to a total error of 5 (4+1) frames or 33 ms (150
Hz sampling frequency). The FCA and the FVA have larger
and smaller medians equal to 5 and 3 frames, respectively,
while the FCA is more consistent as it has a range from 2
to 8 frames. On the other hand, the FVA has a significantly
higher range from -2 to 10 frames.

IV. CONCLUSION

This paper presents for the first time a real-time algorithm
for detecting the heel-strike event during treadmill walking
using only kinematic data. The algorithm was shown to
have superior efficiency and robustness compared to previous
works, even though most of them were implemented offline
in much more favorable conditions than the proposed algo-
rithm. As the detection of gait events is important for the im-
plementation of controllers for robot-assisted rehabilitation,

wearable and prosthetic devices, the work can significantly
advance the field by allowing robust and accurate detection
of gait events in real-time using only kinematic data.
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