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Abstract

This paper explores whether Big Data, taking the form of extensive high dimen-
sional records, can reduce the cost of adverse selection by private service providers in
government-run capitation schemes, such as Medicare Advantage. We argue that using
data to improve the ex ante precision of capitation regressions is unlikely to be help-
ful. Even if types become essentially observable, the high dimensionality of covariates
makes it infeasible to precisely estimate the cost of serving a given type: Big Data
makes types observable, but not necessarily interpretable. This gives an informed pri-
vate operator scope to select types that are relatively cheap to serve. Instead, we argue
that data can be used to align incentives by forming unbiased and non-manipulable ex
post estimates of a private operator’s gains from selection.

KEYWORDS: adverse selection, big data, capitation, health-care regulation, detail-
free mechanism design, delegated model selection.

1 Introduction

This paper explores the value of Big Data in reducing the cost of adverse selection by

private service providers in government-run capitation or voucher schemes. We emphasize
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an application to healthcare insurance. School voucher programs are an other example.

In the context of public health-insurance, a capitation scheme pays private insurance
plans an estimate of the cost of insurance for individuals they enroll. An example is Medicare
Advantage, a program which lets US Medicare recipients switch to private health insurance
plans. Capitation payments can be conditioned on agreed upon user characteristics (then,
they are said to be risk-adjusted). While capitation programs are a popular way to outsource
government mandated services to the private sector, they are often plagued by adverse
selection. Private plans have strong incentives to select types that are cheaper to serve
than their capitation payment, which increases the cost of serving the overall population.
In the context of Medicare Advantage, Batata (2004) and Brown et al. (2014) report yearly
overpayments in the thousands dollars for patients selected by private plans.

A natural strategy to reduce adverse selection is to increase the precision of risk-adjusted
capitation schemes by reimbursing private plans for the expected cost of taking care of the
specific patients they select. This suggests that Big Data — i.e., the availability of high-
dimensional patient records — could be used to condition capitation payments on precise
individual characteristics, and eliminate the scope for adverse selection. We take a different
view and argue that in realistic Big Data environments, this naive use of high-dimensional
co-variates is likely to be of limited value. Instead, we suggest that data may be more
successfully used to form unbiased ex post estimates of strategic selection by private plans.
Correcting capitation formulas with these ex post estimates aligns the public and private
plans’ incentives.

Our model considers a single public plan pg seeking to outsource the provision of health-
care services to a single private plan p;.! The private plan may have a genuine comparative
advantage in insuring certain types of patients so that some selection into plans may be
welfare enhancing. For instance, plan p; may have expertise in tobacco cessation, inducing

a comparative advantage insuring current smokers. However, the private plan also has in-

'Tn the case of Medicare Advantage, the private plan would correspond to a preferred provider organization
(PPO) or a health management organization (HMO).



centives to select patients whose cost of care is overestimated; for instance, patients that are
more healthy or less likely to use costly services than their official risk-rating suggests. This
leads us to distinguish legitimate selection characteristics, which predict comparative ad-
vantage, from illegitimate selection characteristics, which predict costs but not comparative
advantage. Efficient selection strategies need only depend on legitimate selection characteris-
tics. We assume that comparative advantage can be captured using a small set of legitimate
characteristics, while the underlying set of types predicting cost of care is large. In addition,
we assume that public plan pg has access to a hold-out sample of cost realizations that is
not observed by private plan p;, such as cost realizations for the patients it serves.

Our modeling choices reflect both the opportunities and limitations presented by Big
Data. We assume that high-dimensional records isomorphic to patients’ types — i.e. sufhi-
cient statistics for patients’ cost of care — are observable. However, we also recognize that
the number of such possible types need not be small relative to the sample size of available
cost data, thereby limiting their use for prediction.? This leads us to study mechanism de-
sign for environments where both the sample size and the number of relevant covariates are
large. In such Big Data environments, sufficient statistics of types are observable but not
interpretable: even conditional on type and cost data, it is not possible to form a precise
estimate of a patient’s cost of care. This creates a trade-off when setting capitation rates:
“sparse” cost estimates, conditioned on a few patient characteristics, have low standard er-
rors but high bias; in contrast “rich” cost estimates, conditioned on an exhaustive set of
patient characteristics, have low bias, but large standard errors.

Concerns over estimation error are reflected in the capitation scheme employed by Medi-
care Advantage, as well as in the risk-adjustment formula used to calculate transfers be-
tween plans under the Affordable Care Act (ACA). The Medicare Advantage risk adjust-
ment model, rolled out in 2004 by the Centers for Medicare and Medicaid Services (CMS),
uses Hierarchical Condition Categories (HCCs) (Pope et al., 2004). The HCCs are groups

2The statistics literature concerned with Big Data makes similar assumptions. See Belloni et al. (2013,
2014) for recent examples in econometrics.



of conditions that can be inferred from the patient diagnosis data. The number of HCCs in
the model varies between editions, but generally is under 100. HCCs are used in conjunction
with condition severity modifiers and demographic factors to estimate individual patients’
expected expenditures in the subsequent year. Thus the model falls under the “sparse capita-
tion” category discussed above: there are relatively few categories, and a reasonably precise
estimator can be formed for each category (Evans et al., 2011). The desire for “adequate
sample sizes to permit accurate and stable estimates of expenditures” has been a design
principle for the risk adjustment scheme, and a factor in keeping the number of patient
types in the model relatively low (Pope et al., 2004).

The model used for risk-adjustment transfers under the ACA uses a somewhat expanded
set of HCCs (114 in 2014), reflecting the fact that the ACA transfer model is a general-
population model, while the Medicare Advantage model is primarily for patients above the
age of 65 (Kautter et al., 2014). As in the case of the Medicare Advantage model, the need
for statistical power to get good ex ante estimates is one of the design principles limiting
the number of categories used (Centers for Medicare and Medicaid Services, 2016). We
discuss implications of our analysis to the ACA setting, where no public option is available,
in Section 5.

Our first set of results considers traditional capitation schemes, which, as emphasized
by Brown et al. (2014), seek to reimburse private plans for the expected cost of treating
patients given ex ante observables. Sparse capitation schemes condition cost estimates on
a small set of patient characteristics, while rich capitation schemes condition cost estimates
on the full set of characteristics made available by Big Data. We show that such schemes
induce efficient selection when the private plan is constrained to select only on the basis
of legitimate characteristics (determinants of comparative advantage). However, if private
plans can engage in illegitimate selection, then patient assignment is bounded away from ef-
ficiency in Big Data environments. Indeed, even though types are observable, cost-estimates

conditional on types remain noisy even for large samples. As a result it is possible for the



private plan to maintain an informational advantage which induces inefficient selection and
increases the average cost of care.

In spite of these limitations, if legitimate selection characteristics are common knowledge,
we can construct a prior-free mechanism that achieves efficient patient assignment at no
excess cost for the public plan. Big Data is not used to obtain a more precise ex ante
capitation formula. Instead, we augment the baseline capitation formula (based on legitimate
characteristics) with a single additional term measuring ex post selection by the private
plan. This additional term takes the form of an appropriately weighted covariance between
the distribution of types selected by the private plan, and the residuals from the sparse
capitation regression evaluated on out-of-sample costs. More concretely, it uses Big Data to
form an unbiased estimate of the cost savings obtained by the private plan from selecting a
non-representative sample of patients. This “strategic capitation scheme” induces efficient
selection, and, importantly, does not give the public plan any incentive to bias its report of
out-of-sample costs. This last property allows us to extend our approach to health exchanges
for which out-of-sample cost realizations would be reported by competing healthcare plans
(see Section 5).

Strategic capitation can be extended to environments where legitimate selection char-
acteristics are not common knowledge. It is still possible to achieve a meaningful share of
first-best efficiency by using generalized strategic capitation schemes that let private plans
specify the characteristics they wish to select on. This flexibility comes at a cost related
to the complexity of the class of models the private plan can use to select patients. We
show that the performance guarantees of this indirect prior-free mechanism are essentially
unimprovable by studying the unrestricted direct mechanism design problem in a specific
environment.

The paper contributes to the theoretical literature on adverse selection in insurance mar-

kets.®> Our work is particularly related to Glazer and McGuire (2000), who study optimal

3See for instance Rothschild and Stiglitz (1976), Bisin and Gottardi (1999, 2006), Dubey and Geanakoplos
(2002).



risk-adjustment in a Bayesian setting. They show that when selection is possible, optimal
ex ante reimbursement schemes should deviate from simply reimbursing private plans the
expected cost of taking care of patients. In particular, capitation schemes should adjust
reimbursement rates to dull the effect of “cream-skimming” by private plans. We show how
to induce efficient selection by using information about patient types and ex post cost data.

Our mechanism is closely related to that of Mezzetti (2004), which also uses noisy ex post
information to provide accurate ex ante incentives. Also related is the work of Riordan and
Sappington (1988) who show how to exploit noisy ex post signals to screen agents at no cost
to the principal. As we clarify in greater detail in Section 6, our work differs for two main
reasons. First, we are interested in prior-free mechanisms and do not make the identification
assumptions required in Riordan and Sappington (1988). Second, ex post signals (here the
public plan’s hold-out cost data) need not be publicly observed and we must ensure that the
relevant party has correct incentives for reporting. Third, unlike Mezzetti (2004), we require
exact budget-balance.

Our work is motivated by a growing empirical literature which documents cream-skimming
in health insurance markets, and studies the efficiency of various risk-adjustment schemes
(Frank et al., 2000, Mello et al., 2003, Batata, 2004, Newhouse et al., 2012, Brown et al.,
2014). Our analysis is inspired by Brown et al. (2014) which shows that increasing the
number of covariates used in Medicare Advantage’s capitation formulas has in fact led to

an increase in the cost of adverse selection to the state.*

We complement their result by
showing that naive uses of data are unlikely to resolve adverse selection, but progress can be
made by using data to detect selection ex post.

The paper is structured as follows. Section 2 describes our framework, and in particular
our approach to Big Data. Section 3 uses a simple example in which legitimate selection

characteristics are common knowledge to delineate the mechanics of adverse selection under

various capitation schemes. Section 4 generalizes the analysis to settings in which the private

4Newhouse et al. (2012) argues that the cost of adverse selection may be overstated.



plan’s comparative advantage is not common knowledge. Section 5 uses a stylized model
to show how strategic capitation can help reduce adverse selection in healthcare exchanges.
Section 6 and Appendix A present several extensions addressing potential risk inflation,
dynamic selection, and reduced quality provision by private plans. Proofs are collected in

Appendix B unless mentioned otherwise.

2 Framework

Our model seeks to capture three features of healthcare capitation. The first is selection by
private healthcare plans, such as HMOs or PPOs, which we model as a reduced form cost for
attracting different populations. Selection may be achieved through targeted advertisement
and marketing (consistent with Starc (2014)), heterogenity in the quality of customer service
during enrollment procedures, as well as targeted service bundles.

Second, public and private plans may have heterogeneous comparative advantages in
treating patients. While there is controversy about the real value added of private plans over
Medicare, there is evidence that insurance plans are more than mere financial intermediaries.
Plans play an important role in selecting, monitoring and generally resolving agency problems
vis a vis doctors and hospitals, as well as encouraging preventive care and healthy habit
formation. Data from Bundorf et al. (2012) provides evidence for such comparative advantage
across different plans. In their sample, HMOs have a comparative advantage over PPOs in
insuring high risk patients. In our model, the possibility of comparative advantage creates
a reason for both public and private plans to be active, and raises the question of efficient
patient allocation.

Third, we seek to correctly capture the forces that make Big Data attractive but chal-
lenging: we assume that high dimensional records make patients’ types observable, but that
as a result, even with a large sample of patients, it is not possible to form precise estimates of
expected cost of treatment conditional on individual types (the concern for power is explicit

in discussions of CMS formulas by Pope et al. (2004), Evans et al. (2011), Kautter et al.
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(2014)). In short, types are observable but not interpretable.

The lead example for our work is Medicare Advantage, a program that lets US Medicare
recipients switch to private insurance plans such as HMOs and PPOs. Medicare Advantage is
a large and growing program. It covers approximately 15 million patients, out of the roughly
50 million enrolled in Medicare, and its size was multiplied by three from 2005 to 2015.
Selection by private plans is an ongoing concern threatening the financial sustainability of

the program (Batata, 2004, Brown et al., 2014).

2.1 Players, Actions, Payoffs

We study the relationship between a public health care plan pg, responsible for the health

expenses of a set [ = {1,--- | N} of patients, and an independent private plan p;.

Treatment costs. FEach patient ¢ € [ has a type 7; € T C R™ where the set of types
T is potentially very large, but finite. Type 7 is a sufficient statistic for a patient’s cost
of care, and is observable to both plans. For any sample J of patients, we denote by

w1y € A(T) the empirical distribution of types 7 in sample J, defined by p;(7) = T“, where

|J7
\
JT ={j € J|t; = 7}, and |J| denotes the cardinal of J.

The realized cost of care for a patient i of type 7 insured by plan p is positive, bounded
above, and denoted by ¢;(p) € [0, cmax]. The distribution of potential costs (¢;(po), ¢i(p1))
conditional on type 7 is distributed according to a c.d.f. F(7). Treatment costs across

patients ¢ are exchangeable conditional on patient type 7, cost distribution F', and plan p.

We allow for aggregate uncertainty so that c.d.f. F' is itself uncertain.

Selection. The key difficulty is that private plan p; may strategically seek to attract a
targeted subset of patients. Specifically, private plan p; can choose an expected selection
policy A : T — [0,1] at a cost K(A) > 0. A patient ¢ enrolls with private plan p; with

probability A(7;). Consistent with observations in Starc (2014), this reduced-form cost of



selection may be thought of as a cost of advertisement.® Realized selection A C I is a mean

preserving spread of intended selection A defined by
Lien = A(7i) + i-

Error terms (¢;);e; have expectation equal to zero, and may be correlated across different
types 7 € T, but are otherwise independent of cost realization ¢;(p). For instance, a recruit-
ment ad may unexpectedly attract a population different from the targeted one. Patients

i € I'\ A that do not enroll with private plan p; are insured by public plan py.

Realized payoffs and preferences. Transfers I € R from public plan pg to private plan
p1 are feasible. Given a selection decision A by private plan p;, a realized selection A, and a

transfer II, the realized surpluses U, and U; accruing to the public and private plans are

Up=—11+Y G(p) and Uy =T1—> G(p1) — K(N.
1€EA 1EA

Conditional on selection rule A and a distribution of costs F', surplus takes the form

S(A) ==K\ +Ep | Y Am) @(po) —@lp))
iel
Public plan pg has lexicographic preferences: its main objective is to maximize surplus S
in expectation; however, taking as given selection behavior A\ and surplus S, its secondary
objective is to maximize cost savings Uy in expectation. Private plan p; seeks to maximize
its profits U; in expectation.
Note that although we let the public plan care about surplus, we will seek mechanisms

such that the expectation of cost savings U, is approximately non-negative in equilibrium.

5Cost K implicitly includes any information acquisition costs needed to implement A. Under a more
standard model of selection along the lines of Rothschild and Stiglitz (1976), the private plan would screen
patients through a menu of discounts and benefits specifically appealing to desirable types. In a dynamic
setting, plans may be able to select patients by offering better customer service to types they wish to retain.



This can be thought of as a financing constraint.

2.2 Data

We model explicitly the role that data plays in the contracting problem. We assume that in
Big Data environments, the richness of covariates makes patients’ types essentially observ-
able, but prevents the public plan from forming a precise estimate of expected treatment
costs conditional on types. A consequence illustrated in Section 3 is that even imprecise

additional signals of costs may allow the private plan to profit from selecting patients.

Samples. Both plans p, and p; observe a public dataset of types and cost realizations
Dy = {(i,7,¢(po))|i € Do} for plan py, where i € Dy denotes a patient ¢ whose record is
included in Dy. In addition, we denote by Df = {(i,7;,¢(po))|7 = 7,7 € Do} the cost data
relating to patients of type 7. We assume that for every 7 € T', the set D{ is non-empty,
which implies |T'| < |Dg|: the sample size of dataset Dy is at least as large as the type space.

Plan p; privately observes a dataset D1 = {(i,x;,¢;(p1))|i € D1} reporting both her own
costs, and side-signals x; for a sample of patients i € D;. Side signal x; (which can include
type 7;) captures other signals beyond cost realizations that the plan may be able to use in
order to select patients.

Finally, we assume that plan py has access to a hold-out sample H = {(i,7;, ¢;(po))|i € H}
of its own costs, independent of data D; conditional on the realization of cost distribution
F'. Hold-out sample H may consist of ex post cost realizations for the current set of patients
enrolled by the public plan. Alternatively, H may correspond to past cost data, securely
encrypted, and verifiably released only after patient selection has occurred.® Contractual
transfers Il will be allowed to depend on hold-out sample H, but we will take seriously
the public plan’s incentive to reveal correct information. Specifically, we will address the

public plan’s incentives to bias its records in order to reduce payments to the private plan.

SFor instance, an encrypted version of the data can be released before selection occurs, with a decryption
key publicized after patient enrollment has occurred.
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For instance the public plan could down-code interventions happening to its own patients.
Access to a hold-out sample is essential. It allows the public plan to obtain estimates of its
own costs whose errors are uncorrelated to the private plan’s information. We motivate the
asymmetric treatment of data-sets Dy (publicly observed) and H (privately observed by the

public plan) when we discuss the timing of actions.

Big Data. Recall that u;(7) = % denotes the sample distribution of types 7 in patient

population I. Our model of Big Data consists of two assumptions:
(i) types 7 € T are publicly observed,;

(ii) even if sample data Dy is large, type space T' is of comparable size; i.e. there
exists a fixed constant a > 0 such that

1

VDG

Points (i) and (i7) summarize what we think are the opportunities and limitations of Big

1228

Data. Point (i) captures the idea that high dimensional records make types observable.
Point (77) implies that even if sample Dy is very large, the size |Df| of many subgroups D]
remains bounded above. As a result the public plan’s estimates of type-specific costs on the
basis of data Dy remains noisy.

Note that all our results are non-asymptotic: we provide efficiency bounds that depend
explicitly on E,, [\/ﬁﬁg] Point (i7) clarifies the terms we consider negligible and non-
negligible when we provide performance bounds. Our large type-space model of Big Data

contrasts with small type-space environments in which the sample size maybe considered

large compared to the set of types.

2.3 Beliefs, Contracts, and Equilibrium

Beliefs. The plans’ environment is described by: healthcare-cost distribution F'; data-sets

Dy, Dy and H; cost of selection K. All these objects are in principle random variables.
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For simplicity, we assume that plans p, and p; share a common prior v over the tuple
(F, Dy, D1, H, K).

Note that the capitation mechanisms we study do not rely on the common prior assump-
tion. Our performance bounds remain valid in a non-common prior setting if expectations
are taken under the private plan’s prior.”

Reporting of hold-out data. We allow mechanisms to depend on reports of hold out
sample H made by public plan py. We denote by 3 : H — Hp the public plan’s strategy,
mapping hold-out data H to (potentially biased) reported hold-out data Hr. We note that g
does not depend on realized selection A. This can be thought of as a restriction on timing (the
hold-out sample must be encrypted and shared before selection occurs), or a restriction on
strategies (the public plan cannot tailor misreporting to simultaneous selection by the private
plan). We denote by f*(H) = H the truthful reporting strategy, and break indifferences in

favor of truth-telling, reflecting small costs in misreporting.

Contracts. For any set of patients J C I, let 75 = (7;)ies and ¢;(p) = (¢i(p))ies de-
note profiles of types and costs. We denote by Hr = {(i,7;,¢%(po)),i € H} the hold-out
data reported ex post by public plan py. We emphasize that these are reports of privately
observed costs, and that the public plan must be given appropriate incentives in order to
report truthfully. A capitation contract between the public and private plan is a mapping
II(A, Hg) € R, specifying the aggregate transfer to private plan p; as a function of realized
selection A, and reported hold-out sample data Hg. Note that contract IT implicitly depends
on data Dy, but we suppress this dependency in the notation since Dy is common-knowledge

between plans.

"For recent work emphasizing prior-free approaches to mechanism design, see Segal (2003), Bergemann
and Schlag (2008), Hartline and Roughgarden (2008), Chassang (2013), Carroll (2015), Madarédsz and Prat
(2014), Brooks (2014), Antic (2014).
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Timing and equilibrium. Given public data Dy and a common knowledge contract II,

the timing of the interaction between public and private plans is as follows:

1. the public and private plans simultaneously pick a cost reporting strategy 3, and a

selection strategy A;

2. potentially biased hold-out data Hg is reported, and actual selection A C I by the

private plan is realized, resulting in a contractual transfer II(A, Hg).

We assume away potential incentive issues related to the revelation of data Dy by public plan
po for simplicity. It is sufficient for our analysis that the contract II be common knowledge
in stage 1. We only care about data Dy to the extent that it lets us specify contract II.

Note that since the public plan’s primary objective is to maximize surplus, there would be
little incentive to misreport Dy: biased costs would distort the selection of patients A taking
place at a later stage, and reduce surplus S. In contrast, sending a biased report Hg of hold-
out data H cannot influence the selection of patients A, which takes place simultaneously.
As a result, biasing hold-out data H does not affect surplus S; it only affects the allocation
of surplus across the public plan’s cost savings Uy, and the private plan’s profits U;. This
is why we take seriously strategic issues related to the reporting of hold-out data H, but
simplify away strategic considerations pertaining to the release of initial data Dy.

Given a capitation contract II, a selection strategy A, and a reporting strategy [, the

public and private plans’ expected payoffs under common prior v are

]EVUO = El/ —II + Z@(PO)’)HB] )
€A

E,U; =E, [TT- &(p)

(IS

A, 5] — K(N).

Given a contract II, abstractly denoting by Zy and Z; the information available to plans pg
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and py, a strategy profile (8, A) is an equilibrium if and only if § and A respectively solve

mgXE,,[—H‘IO,ﬂ,)\] and m)?JXEZ,

- am)

1€EA

Ty, B, — K(A).

In words, taking selection A as given, the public plan’s reporting strategy f must minimize
expected transfers to the private plan. Taking reporting 5 as given, the private plan picks

the selection strategy that maximizes its expected profit.

Design objectives. We seek contracts II such that for all priors v, data Dy, Dy, and all

equilibria (A, 8), surplus S and public and private plan payoffs Uy, U; satisfy:

E,[SA] = E, [maxE,[S|A, Do, Di] | = o(1]); (1)
E, [Uo|\, 8, D] = —o(| 1)) 2)
E, |:U1 )\>57D1} >0, (3)

where o(|1|) is the usual little-o notation for “negligible relative to |I].”

In words, we seek ex post budget-balanced prior-free mechanisms that: (i) maximize
efficiency given available information up to a term negligible compared to the size |I| of the
patient population; (i7) satisfy approximate interim individual rationality for the public plan
(reflecting some willingness to subsidize the market); (zii) satisfy exact interim individual

rationality for the private plan.

3 Strategic Capitation

In this section we clarify why existing ex ante capitation schemes may work under idealized
conditions, but likely fail in a realistic Big Data setting. Still, we are able to exhibit a prior-
free mechanism that achieves first-best allocation by using an ex post measure of selection to

correct capitation payments. Since this indirect prior-free mechanism achieves the first-best,
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there are no performance benefits from using a prior-dependent Bayesian mechanism.
To make the key forces more transparent we make a few simplifying assumptions that

we relax in Section 4.

Legitimate and illegitimate selection. We assume for now that there exists a common
knowledge partition E of type space T, with typical element n € E, such that treatment

costs can be decomposed as

Gi(p) = (i, p) + eir, (4)

where error terms e; ,, do not depend on provider p, and have mean zero conditional on 7;
in the patient population:

By i [€im:1mi, Do) = 0. (5)

In the example of a private plan with expertise running smoking cessation programs, £ would
partition patients into smokers, and non-smokers; n would be a patient’s smoking status.

Cost decomposition (4) implies that the comparative advantages of plans py and py,
described by k(7, ), depend only on characteristics n € E. We think of £ as a small set
compared to type space T, so that it is possible for each plan to form accurate estimates of
its costs conditional on n € E. For simplicity, we assume that the costs of the public plan
(-, po) are known by both plans, and that private plan p; knows its own costs (-, py). Error
term e; ; captures residual errors in cost estimates.

We assume (for this section) that the private plan can engage in arbitrary costless selec-
tion: VA € [0,1]7, K(\) = 0. Let M(E) denote the set of selection rules measurable with

respect to E.

Remark 1. First-best surplus, Smax = maxy E, [ZieA/c}(pg) — Ei(pl)] is attained by a selec-

tion policy N*(7) = Ly po)>r(npy) that is measurable with respect to partition E.

Accordingly, a selection rule is said to be legitimate if and only if it is measurable with

respect to E (i.e. A € M(E)). Selection rules that are not measurable with respect to
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type-space partition E depend on features of types 7 that do not matter for efficiency. They

are referred to as illegitimate.

A stylized example. The following very stylized example makes for simple computations
in the proofs that follow. We denote by 1 the corresponding prior. We assume that |I| =
|T| = |Do| = |D1|. Types 7 € T take the form 7 = (n,n,d), with n in some finite set F,
n € {1,---,m} an integer, and 6 € {—1,1}. Sample [ includes one patient per type 7 € T
Data Dy (resp. D) consists of a cost realization ¢;(pg) (resp. ¢;(p1)). Thus |I| =2 x 7 x |E|.

Comparative advantage is determined by x(n, p) = ko + A x g,1,—,,, where A € [0, K¢ /4]
parameterizes the magnitude of comparative advantages, and e, ~ U{—1,1} (uniformly
distributed over {—1,1}) indicates which plan has a comparative advantage. Error term
e;r is distributed e; . ~ U{0, e, nko}, with €,,, ~ U{—1,1}. Every n is associated with
two types (corresponding to ¢ equal to 1 or —1), one whose idiosyncratic cost shocks has a
positive average, and one with a negative average. Random variables €, and ¢, , are drawn

independently. Shocks e; , are drawn independently across individuals ¢ conditional on &, .

It is immediate that E, ;,~,,[e; Do, n] = 0. Cost data for types (n,n,1) and (n,n, —1) is

either fully revealing of ¢, ,, or not at all, leading to straightforward conditional expectations.

3.1 Why Ex Ante Capitation Schemes Fail

Existing capitation mechanisms attempt to align incentives through capitation rates that
are fixed ex ante. This removes concerns that the public plan may misreport its hold-out
cost data H to reduce payments. We clarify when such schemes are potentially effective:
when the private plan p; is unable to engage in illegitimate selection, or when type-specific
cost estimates are arbitrarily precise. We then show that in Big Data environments, if plan
py is able to engage in illegitimate selection, such schemes are either bounded away from
efficiency, or generate large losses for the public plan.

We consider sparse and rich capitation contracts that differ in the sophistication of the
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information used to predict treatment costs. For simplicity, and since we mostly establish
negative results, we allow these ex ante capitation schemes to depend on the common prior

v.8 Transfers take one of the following forms:

Hsparse(A) _ Z EV,NI [@(po)!% DO] = Z H(%po) (6)

ieA €A
Hrich(A) — ZEV[/C\’L(pONTU Do] = Z K(Th‘,po) + Eu[ei,ﬁ' Tis DO] (7)
i€A €A

In both schemes the private plan is paid the public plan’s expected cost of treating selected
patients, conditional on some set of ex ante observables. We denote by S%2*¢ and S"" the
associated surpluses in equilibrium.

Sparse capitation, like the existing CMS formulas, estimates patients’ costs conditional
on legitimate characteristics  alone. Rich capitation estimates patients’ costs conditional
on the full set of observables 7 — i.e. it exploits Big Data to form targeted estimates.

Under sparse capitation, private plan p;’s expected payoffs for engaging in selection A
can be decomposed as the sum of social surplus, and a rent equal to the covariance between

selection profile A\ and the bias in cost estimates conditional on type 7:

Z A7) [5(ni, po) — K(mis p1)] + Z M7i)E,[€ir| Do, D1, 7i] : (8)
jEI , \iEI
sociafsglrplus rents from ;yrpe selection

Proposition 1 (sparse capitation). Consider capitation scheme I1°P%™,

(i) If the private plan is constrained to use legitimate selection (A € M(FE)), then

efficient selection and truthful reporting (X\*, 5*) is the unique equilibrium.

(i) Under prior vy, if the private plan is not constrained to use legitimate selec-

8In contrast, we establish positive results for mechanisms that do not depend on the prior v.
9We include Dy in the information set of the private plan since this information is essentially conveyed
by the capitation rate set by the public plan.
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tion rules, then By, [Smax — S¥7*¢] = 3A[I].

If A = 0 so that there is no comparative advantage, the public plan makes expected

losses B, (U] = — koI ].

Since E, ,, [€;.,| Do, D1, ;] = 0, rents from type selection in (8) are equal to zero whenever

selection strategy A is measurable with respect to legitimate selection characteristics n € E.

Hence, under the constraint that A € M(FE), sparse capitation leads to efficient selection.
When the private plan can select on the basis of illegitimate characteristics 7, bias

Eu [ei,n

Dq, Dy, 7] in cost estimates can be exploited. The private plan will seek to avoid
under-reimbursed patients and recruit over-reimbursed patients, thereby deviating from ef-
ficient selection. In addition, rents from such selection come at the expense of the public
provider, potentially resulting in large losses to pg if the gains from trade are small. The
inefficiency loss due to selection does not vanish even for large samples Dy.

Dy, Dy, 73] in cost estimates, rich capitation IT17" conditions

In order to correct bias E, [e; -,
capitation rates on the full set of observables 7. Unfortunately, this does not solve the
problem in Big Data settings since conditional cost estimates remain noisy, allowing the

private plan to exploit estimation error, instead of estimation bias.

Proposition 2 (rich capitation). (i) Under any prior v, efficiency l0ss Syax —

Srich satisfies E, [Smax — S”'Ch} < 2¢max|[E,, [\/ﬁ]
(it) Under prior vy, By [Smax — 5™ = SA|1].
If A =0, the public plan makes ezpected losses E, [Uy] = —Z kol I|.

While sparse capitation schemes do not achieve efficiency, regardless of data Dy, rich
capitation schemes may achieve near efficiency provided that E,, {\/ﬁ] is small, i.e. for
almost every type 7, subsample Df is large. This is ruled out in Big Data environments.
Cost estimates E,[e; ;| Do, 7;] remain imprecise for a non-vanishing mass of types 7 (under

the sample distribution of types ;). As a result, the private plan’s additional data D; has a

non-vanishing impact on cost estimate E, [e, ;| Dy, Dy, 7;]. This result would arise even if the
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private plan did not observe data Dy but only observed the capitation rates E,[¢;(po)|7:, Do

offered by the public plan for enrolling patients with type 7;.

3.2 Aligning Plan Incentives via Strategic Capitation

We now describe a capitation scheme that eliminates incentives for strategic selection by p;

and strategic reporting by py. Payments take the form

(A, Hp) = Y 7(mi) + Am(ni, Hg, A), (9)

ieA
where () = k(n, po) is the baseline capitation rate conditional on legitimate characteristics
used in sparse capitation. Term An(n, Hg, A) is a correction dependent on reported hold-out
data Hg and selected sample A. It correlates a measure of the private plan’s deviation from
legitimate selection with hold-out estimates of cost-prediction bias. It is equal to zero in

expectation when the plan does not engage in illegitimate selection. Formally, it takes the

form:
1
Am(n;, Hg, N) = covi(sy,, r|m =n) = oz Z Sr,Tr, Where
ieln
5, = % — 1 measures selected sample A’s deviation from legitimate selection;!®

o 1, = == >y [CR(po) — k(1. po)] s the average residual of costs for type 7; in the
|HR | J R

reported hold-out sample Hj; = {(7, Tj,/C\JR)U € Hp, 7, = 1;}.

Strategic capitation satisfies the following key properties

VA, E [An(n, Hr, A)|Do, D1, 5%\ = B, | Y (pal7ln) — (1) Eyfer

TEN

VA€ M<E)7v57V77 € Ea Ell HAn|A7T<7]7HR7A>|DO7D17ﬁv >\] =0. (11>

D17D07T] ) (1())

H;I‘ denotes the distribution of types 7 conditional on charac-

0Recall that for any sample J, us(7|n) =
teristic n C T' in sample J.
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Condition (10) implies that under truthful reporting 5*, the strategic capitation adjustment
is an unbiased estimate of the excess profits plan p; may have obtained through illegit-
imate selection (the adjustment is negative if private plan p; overselects types that are
comparatively cheaper to treat). This noisy ex post estimate provides an accurate ex ante
correction and dissuades inefficient selection. Condition (11) ensures that regardless of the
public plan’s reporting strategy 3, the private plan can guarantee itself expected capitation
payments 7(n) = k(n,po), provided it uses a legitimate selection strategy A € M(E).!!
Strategic capitation essentially turns illegitimate selection into a zero-sum game in which

both the public and private plans can guarantee themselves a value of zero.

Proposition 3. Strategic capitation contract 1I°"* induces a unique equilibrium (\*, 3*).
Private plan p, selects patients efficiently, and public plan py truthfully reports hold-out
sample H. Both plans get positive expected payoffs:

]EV[U0|D0,D1,)\*,6*] Z 0 and ]EV[U1|D0,D1,/\*,B*] Z 0.

Section 6 discusses possible alternative mechanisms and clarifies the importance of dif-
ferent moving parts needed to make strategic capitation work. In a nutshell, Big Data
(i.e. observable types 7) is needed to measure the private plan’s deviation from legitimate
selection, and ensure that in equilibrium, public plan py does not benefit from misreport-
ing hold-out sample costs. The hold-out sample is needed to ensure that residuals r,, are

uncorrelated to plan p;’s information.

4 General Analysis

The strategic capitation scheme presented in Section 3 relies on cost decomposition (4): the
surplus maximizing policy depends on a small number of commonly known characteristics

n € E. This is not realistic. A private plan’s dimensions of comparative advantage are likely

' This point plays a key role when studying incentives for truthful revelation in exchanges.
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to be its private information. For instance, a private plan may be able to innovate and develop
comparative advantages along new dimensions. In addition, it need not be the case that the
optimal selection policy be measurable with respect to a small set of characteristics. Finally,
in practice, the public plan’s expected cost of treatment conditional on a characteristic n will
have to be estimated from data. This creates additional room for selection by the private
plan. This section extends strategic capitation to such environments.

We denote by e; the idiosyncratic cost shocks of a patient enrolled in public plan py,
conditional on cost distribution F: e; = ¢;(py) — Er[c;(po)|7;]. By construction, it must be
that €; € [—Cmax, Cmax|. Finally, let

S()\|D0, D1) = Eu,,\ Z/C\z'(po) —a’(pl)

(IS

SE\DO,Dl = )\él’l/\j&[()%) S(}\’Do, Dl)

Do, D1] — K()\), and

respectively denote the surplus achieved by selection rule A\ given data Dy, D;, and the
maximum surplus achievable using selection rules measurable with respect to a partition F

of types.

4.1 Generalized Strategic Capitation

For any given collection £ of partitions £ € £ — i.e. for any family of possible definitions
of legitimate and non-legitimate characteristics — our goal is to approach the maximum
achievable efficiency Sg|p, p, with respect to partitions £/ € £. We take on two difficulties:
first, the relevant partition E is no longer common knowledge, but must be elicited from the
private plan; second the public plan’s expected costs conditional on characteristics n € E
must estimated from data. We define the generalized strategic capitation scheme GE™' as

follows:

1. data Dy is shared with plan pq;
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2. plan p; picks a partition E € £ according to which it will be allowed to select patients;

we continue to refer to characteristics n € E as legitimate selection characteristics;

3. plan p; is rewarded using the strategic capitation scheme IT1°"®* defined by

Hstrat(A’ HR) = Zﬂ-(m) + Aﬂ'(m, HR, A)
1EA

where 7(n) = K(n,po) = >, /L](T‘n)ﬁ Zz‘eDg ¢i(po) is the empirical estimate %(, po)
(in sample data D) of the public plan’s expected treatment costs conditional on char-

acteristic n € E. As in Section 3, Aw(n, Hg, A) takes the form:

Am(n, Hr, A) = covy(sy,, s

;= 77 ’[77| Z St Trs

ieln
with

MA(Ti|77i) — 1_ o ®
So= s =1 and v = Y [ (po) — R(n,po)] -
por (7] m5) |HE| ~—. & |
JEHE

An equilibrium of mechanism G¥™* is a triplet (E, A, 8) where E € £ is private plan p;’s
choice of the characteristics it can use for selection.

Mechanism G#™* expands on strategic capitation by letting the private plan specify the
set of characteristics it wishes to use for selection. As we show below, this additional degree
of freedom results in unavoidable losses related to the complexity of the class of models £
the private plan is allowed to pick from. These losses are related to penalties encountered
in the model selection literature (Vapnik, 1998, Massart and Picard, 2007), and indeed one

can think of our problem as one of delegated model selection.

Definition 1. For any class of partitions £ and idiosyncratic errors e = (e;)iep,, let V(E,e)

denote the random variable

D e . (12)

€D

V(€ e) = max Dol Tln‘ 7]

nek TEN
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Variable U (&, e) is an upper-bound to the gains a perfectly informed private plan could
obtain from selecting the partition E that lets it optimally target over-reimbursed types.
The scope for selection comes from the fact that generalized capitation uses slightly noisy
sample averages k(1, po) to estimate the public plan’s cost of service Eg[¢;(po)|n] conditional
on legitimate characteristics n € E. In Section 3 we simply assumed that the public plan
knew its own cost (7, pp) conditional on 7.

Generalized capitation extends the performance bounds described in Proposition 3 up to

a penalty of order E,[U(E, e)].

Proposition 4 (efficiency bounds). Consider a collection £ of partitions E € £. In any

equilibrium (E, X\, B) of mechanism GE™" we have that

S()\) Z EV [rggg SE|D0,D1:| — QEV [\11(57 6)] ) (13)

E, |11+ Za(po)‘z)o > K, [U(E,e)]: (14)
€A J

E, |IT = @(pi)|{Do, D1 | > 0. (15)
€A J

Note that Proposition 4 takes as given the class of models £. Corollary 2 will show how
to endogenize the class of models &, provided £ can be chosen before data Dy is shared with
the private provider.

To operationalize the performance bounds of Proposition 4 we need to evaluate term

E,[¥ (&, e)], which depends depends on prior v through error term e. Lemma 1 provides prior-

free bounds for E, [U(€,¢e)]. Let a = E,, [||l]777|| %} > 1 denote the average representativeness
0

of data Dy for patients in 1.2 Let M = >, (2/FI —1).

Lemma 1 (bounds on penalties). (i) Let (€))icr denote i.i.d. random variables

uniformly distributed over {—cmaz, Cmaz t- For any class € and any centered error

12The fact that a > 1 follows from the observation that a = E,, [#1(7)/up,(r)] > 1/E,., [+ /urn] = 1.
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terms (e;)ier arbitrarily distributed over |—Cmax, Cmax), we have that

E, [T(E,e)] <E[U(E, )] = T (16)

(1) Regardless of the distribution of error terms (e;)ier,

E, [U(E, )] < [T cmany /% (1 +/log M) . (17)

Bound (16) is a tight bound that can be computed through numerical simulation. We
denote by Wg the corresponding upper-bound, which does not depend on prior v. Bound
(17) is a more explicit but coarser bound. While it may seem overly conservative, we now
show that it delivers non-trivial results in a setting of interest: the class of sparse linear

classifiers.

Example: sparse linear classifiers. We now evaluate bound (17) for a natural class of
partitions &: those generated by sparse linear classifiers. This is consistent with the use of
LASSO and other penalized regression techniques for prediction in Big Data settings. We
assume that type space T is a subset of R/ (we will use the inequality f < |T| < |Dy|). For
de{l,---,f}, a d-sparse vector v = (Uy)kef1,.. ;3 € R’ is a vector with at most d non-zero

coordinates. The family of partitions £ induced by d-sparse classifiers is defined as

E={E,={nl n}veRS v is d-sparse}

where nf = {r €T s.t. (r,v) >0} and n, = {7 € T s.t. (r,v) <0}.

For any d-sparse vector v € R/ E,, is the partition of R/ in the two half-spaces 1, and n;

defined by direction v.'?

The private plan is allowed to use any d-sparse linear classifier to decide whether or not

13Note that affine hyperplanes can be generated by including a constant in the type vector.
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to select a particular set of types or not.

Corollary 1. When the class of possible partitions € consists of partitions induced by d-
sparse classifiers, penalty E, [V(E, )] satisfies

ladlog|D
E, [T(E,e)] < demalI]| %{)“0‘. (18)

Corollary 1 follows from a direct application of Lemma 1(ii) and the fact that |T'| < |Dy].
Indeed, the number of possible partitions of |T’| points generated by d-sparse linear classifiers
is bounded by 27 x (ﬁ) X (‘5') < 3T, where () = (mf;!)!m.u Since each E € & contains

two elements, we obtain that M < K?¢. Applying bound (17) implies (18).

Note that for all practical purposes, term \/log |Dy| may be treated as a constant between

4 and 5. For |Dy| = 48 x 105, approximately the size of the US Medicare population,
V9og|Dy| =~ 4.2. For |Dy| = 7 x 10%, roughly the current world population, /log |Dg| ~ 4.8.

Endogenizing £. While Proposition 4 takes as given the class £ of type partitions, it is

possible to endogenize £. Consider the following extension of generalized strategic capitation:

1. private plan p; picks a class of partitions &€, and pays a price pe = We (where U is
defined within bound (16));

2. the private and public plan play mechanism GE™.

Note that the private plan must choose £ before information Dy is shared. The proof of

Proposition 4 implies the following corollary.

14To obtain this bound, observe that there are (2) ways to choose the d non-zero coordinates in the d-
sparse classifier. For each such choice, the classifier can be written in the form a1z, + ...+ aqgzg < 1, where
T1,...,Tq are the relevant coordinates, and aq,...,aq € R are appropriately chosen coefficients. The set of
appropriate d-tuples (ay,...,aq) forms a polytope A in R?, with each of the |T'| points representing a linear
constraint on the possible values of (ai,...,aq). A node of such a polytope is an intersection of d constraints,
and thus A can be identified using d points from T along with the signs of the d constraints. This gives at
most 2¢ x (‘5‘) choices.
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Corollary 2. Let P(T) denote the set of partitions of type space T. In any equilibrium

(E,E, )\, B) of the extended generalized strategic capitation mechanism,

E, [S(\|Dy, D;)] > E, S —2Ug. 19
S(IDa. D] > g B o Sein | - 20 19

By charging the private plan a price taking the form of a complexity penalty, it is possible
to let the private plan choose the class of models it can use to select patients. Note that if
the upfront price pg is transferred to the public provider, then the public provider makes no

losses in expectation.

4.2 Unimprovability of Strategic Capitation

In the spirit of Hartline and Roughgarden (2008), we now provide a lower-bound for the min-
imal efficiency losses that any mechanism can guarantee, even if the mechanism is allowed to
depend on prior v. The proof will construct a specific prior v over the tuple (F, Dy, D1, H, K)
for which we establish minimal efficiency losses under any direct mechanism, along the lines
of Myerson and Satterthwaite (1983). Sample size | Dy, as well as the distributions of types
wr € A(T) in the patient population I, and pup, € A(T') in public data Dy, are known.

We consider the problem of Bayes-Nash implementation using budget-balanced direct

mechanisms g of the following form:

e data Dy is publicly observable;
e plan p; sends a message m; = (D", K™), reporting its data and selection costs;

the mechanism suggests a selection \,(Dgy, my) € [0, 1] by private plan py;

plan p; makes a selection decision A € [0,1]7, with realized selection A C I;

plan py sends a message my = Hg corresponding to a reported hold-out sample;

transfers [1( Dy, mq, mg, A) from py to p; are implemented.

We denote by G, the set of incentive compatible direct revelation mechanisms under prior
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v. For any mechanism g, we denote by A, the equilibrium selection by private plan p; that

maximizes social surplus.

Proposition 5. For any class of partitions &, there exists a prior v such that

maxE,5(A;) < B, {m S} = Pl lemas hax By,

1
_’Dg‘] @

where h is a fized constant independent of £ and sample size |Dy|.

In particular, the efficiency loss achieved by strategic capitation for linear classifiers
(Corollary 1) is tight up to an order y/log|Dg|, which, for all plausible values of |Dy|, can

be treated as a constant less than 5.

5 Extension: Adverse Selection in Exchanges

So far, we have studied adverse selection in a setting with a single private plan and a single
public plan. Adverse selection is also a significant concern in insurance markets consisting
of multiple private plans, such as the ones organized by the American Healthcare Act.
If regulation constrains prices to depend only on a subset of observables (as is the case
with community rating), plans have incentives to select patients that are cheaper to serve
given characteristics excluded from legal pricing formulas. This increases the cost of serving
patients and can result in limited entry. A simple example suggests that strategic capitation

may help improve market outcomes in such environments.

A stylized model. As in Section 2, a set I of patients with types 7 € T has inelastic
unit demand for insurance, where insurance corresponds to a single standardized insurance
contract. Plan pg is now an incumbent private plan, while p; is a potential entrant. For
simplicity, we assume that each plan’s cost technology is the same: Vi € I, ¢;(po) ~ ¢i(p1)-

Here the objective is not to improve the allocation of patients to plans, but rather to increase
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competition so that insurance is priced at marginal cost. By law, each plan p is constrained
to offer insurance at prices m,(n) that depend only on a coarse set of patient characteristics
n € E, where E is a partition of type-space T'. Prices are bounded above by 7.1

We assume that the private plans both know their common expected cost of treatment
x(7) = E[¢;|7; = 7] conditional on type 7. Let x(n) = E,,[x(7)|n] denote the expected cost
of treatment conditional on legitimate characteristics. Each plan p has access to a hold-out
sample of its own costs H,. We assume that both plans have lexicographic preferences over
maximizing their own revenue and minimizing that of their competitor.! The timing of

decisions is as follows:
1. potential entrant p; decides to enter the market or not;
2. each plan p active in the market submits a price formula 7, : n — m,(n);
3. each plan p active in the market chooses a selection \, € [—1/2,1/2]7 of patients;

4. if m,,(n) # mp, (n), patients of type n purchase insurance from the cheapest plan;
if 7,,(n) = 7, (1), plan p serves a patient of type 7 € n with probability

) % (34 2l0) = A} )

where —p denotes the other plan.

We assume that the cost of selection K (\,) is positive, strictly convex, continuously
differentiable, and equal to 0 when ), is constant and equal to 0: K (0) = 0. In addition,
K () is sufficiently steep around A = 0 that 1/2 4+ X\, — A, > 0 for all individually

rational selection policies.

The cross-price elasticity of patient demand is infinite, so that patients always go to the
cheapest plan. As a result an entrant will make at most zero profits when entering. We
assume that whenever the entrant can guarantee itself zero profits it enters.!” We denote

the realized selected sample of patients purchasing from plan p by A,,.

5Parameter 7 may be viewed as the patients’ (common) value for insurance.

16This could be because reducing a competitor’s profits reduces its ability to expand and compete in the
future.

1"This could be due to small subsidies for entry, or high but finite cross-price elasticities.
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The following result holds.

Proposition 6. The market entry game described above has a unique subgame perfect equi-
librium. The potential entrant does not enter, and the incumbent charges price m, (1) = 7.
In the off-equilibrium subgame following entry, both the entrant and the incumbent make

equilibrium losses —K (A\*) < 0 where \* solves maxyco1yr Ex [>;c0 £(mi) — 6(7)] — K ().

Indeed, because cross-price elasticities are infinite, in equilibrium, both plans price at
marginal cost conditional on 7: 7,(n) = k(n). Furthermore, since the marginal cost of
selection at A, = 0 is zero, both players find it profitable to engage in non-zero selection. In
aggregate however, selection efforts by the two plans cancel one another and merely destroy

surplus.
Strategic capitation. Consider now the following extension of the strategic capitation
scheme introduced in Section 3. The market entry game is modified in two ways:

e at stage 2 each active plan p submits a pricing formulas m,, and a report Hp ), of its

hold-out sample;

e after selection has occurred, for each type 7 it serves, plan p receives price m,(n) and

capitation adjustment An(n, Hg -, A,) taking the form:

1
An(ni, Hr—p, Np) = covi(Sr, p, Trip|hi = 1) Z Sri pVrips

IRTEF
ieln
with )
KA, (Ti |1 1 R~
Spp=—r—-—1 and r,, = —— [C-’p<p0)—ﬂ'(77)].
P p(Tilm) TUHE Z ! :
JEHR,W

Proposition 7. The market game with strategic capitation described above has an efficient
truthful equilibrium in which: the potential entrant enters; both plans submit prices m,(n) =
k(n); both plans select a representative population in expectation (A, = 0); both plans submit

their hold-out sample costs truthfully (Hg, = H,); and expected ex post adjustments are

equal to 0 (EAm, =0).
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The intuition for Proposition 7 result is identical to that of Proposition 3. Given ex ante
representative selection, a plan’s expected capitation adjustment is equal to zero regardless of
messages sent by the other plan. Given truthful revelation of costs, representative selection

is a best-response. This reduces the costs of adverse selection and encourages entry.

6 Discussion

This paper explores the value of Big Data in reducing the extent of adverse selection in
government-run capitation schemes. We argue that in realistic Big Data environments,
including a large number of covariates in an ex ante capitation formula is unlikely to succeed.
Instead, we suggest that Big Data may be used to align incentives by using ex post capitation
adjustments that interact an unbiased estimate of counterfactual costs to the public plan,
with the private plan’s deviation from legitimate selection.

This section discusses alternative mechanisms, as well as extensions dealing with dynamic

selection, risk-inflation, and heterogeneity in the quality of care.

6.1 Alternative Mechanisms

Generalized strategic capitation deals with three different difficulties: common values, ex-
act budget balance, and prior-free implementation. As Proposition 5 shows, using prior-
dependent mechanisms does not imply large performance improvements. Still, in order to
clarify the economic forces at work in our analysis it is useful to delineate the mechanics of

other relevant mechanisms.

Mechanisms from the literature. Other work has emphasized the value of ex post noisy
signals in environments with quasi-linear preferences. Riordan and Sappington (1988) show
that it is possible to efficiently regulate a monopoly with unknown costs by exploiting public
signals correlated to the monopoly’s type. Using a construction related to that of Cremer

and McLean (1988), they show how to extract all the surplus by offering the monopoly
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appropriately chosen screening contracts. Strategic capitation also exploits the fact that
noisy ex post signals (here, hold-out cost realizations) can be used to construct accurate ex
ante incentives, but our environment differs in key ways. First, signals are not public, and we
need to take care of the public plan’s incentives to reveal its hold-out cost data H. Second,
the identification condition at the heart of Riordan and Sappington (1988) is not satisfied:
neither the distribution of the public plan’s cost, nor the private plan’s beliefs thereover, are
sufficient statistics of the private plans’ costs.

Mezzetti (2004) shows that it is possible to obtain efficiency in common value environ-
ments using ex post reports of the players’ realized payoffs. In our application the mechanism
proposed by Mezzetti (2004) would proceed by making the private plan a negative ex post
transfer equal to the public plan’s realized cost, and a positive ex ante transfer to cover
expected costs. This mechanism does not satisfy budget balance (the public plan does not
receive the private plan’s transfer — if it did truthful reporting of hold-out data H by the
public plan would not be incentive compatible) and relies on priors to set ex ante transfers.!®

The differences between our environment and that of Mezzetti (2004) help clarify the role
played by the Big Data assumption, i.e. the assumption that types are observable but not
interpretable. We align incentives under budget balance by forming a measure of the private
plan’s deviation from legitimate selection, and interacting this measure with an unbiased
estimate of the public plan’s counterfactual costs. This ensures that in equilibrium, neither
the private nor the public plan can affect their expected payoffs by deviating from legitimate
selection and truthful reporting. The observability of types is used to compute the private
plan’s deviation from legitimate selection, as well as correctly reweight the distribution of
types in the hold-out sample H to obtain estimates of counterfactual costs in the sample A

of patients selected by the private plan.

18Budget balanced expected externality mechanisms along the lines of d’Aspremont and Gérard-Varet
(1979) or Athey and Segal (2013) require private values. They are also prior-dependent.
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Intuitive alternative mechanisms. A key step in strategic capitation is to use hold-out
data to form estimates of counterfactual costs for the public plan. The assumption that
types are observable is needed to reweight the distribution of types in the hold-out sample to
match that of the selected sample. There may be other ways to form an unbiased estimate
of counterfactual costs to public plan py. For instance, if it were possible to assign patients
selected by the private plan back to the public plan with a fixed uniform probability, one
could form an estimate of counterfactual costs without observing types. Beyond feasibility
issues (patients would likely object), a difficulty with this approach is that it does not take
care of the public plan’s incentives to bias its own cost reports.

Strategic capitation dissuades illegitimate selection by forming unbiased estimates of the

private plan’s excess profits. An alternative way to dissuade illegitimate selection is to impose

pa(mln)
pr(Tiln:)

sufficiently large penalties, say proportional to 1’, when the sample selected by
the private plan deviates from legitimate selection. This scheme requires the observability
of types but does not require the availability of a hold-out sample. If the private plan
can perfectly select patients at no cost (K(\) = 0 for all \), this schemes induces efficient
legitimate selection. However this scheme induces an efficiency loss if it is costly for private
provider p; to ensure that realized selection A is perfectly representative of population I.

Strategic capitation avoids the issue by using hold-out data to form an unbiased estimate of

the profits from selection.

6.2 Extensions and Implementation Concerns

We now briefly discuss various realistic challenges with capitation programs like Medicare
Advantage, and how they can be addressed within our framework. Details are provided in

Appendix A.

Dynamic selection and risk-inflation. The process of selection is dynamic. In the

context of Medicare Advantage, patients have the opportunity to switch back and forth
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between public and private plans once a year. This implies that costs of care need to be
evaluated over time. Plans with low short-term cost of care may end up generating greater
longer term costs if they skimp on quality, and encourage patients to disenroll once they get
sick enough (Ellis, 1998). Appendix A shows how to adjust strategic capitation to address
this issue. It becomes important to keep track of the counterfactual distribution of types
over time, had the patient remained with the public plan.

A key insight from Appendix A is that correct dynamic capitation fees remove incentives
for risk-inflation by private plans. Indeed, if a patient with legitimate characteristic 7, enrolls
in the private plan at time ¢, then baseline repayments 7. s to the private plan at all times

t + s where the patient remains with the private plan take the form

Ti4s = W(t + s, TIt) = E[Ei,t+s(p0)’77t]-

In other words, target repayments depend only on the type 7, of the patient when she enrolls
with the private plan, and on elapsed time t 4+ s. Target repayments do not depend on the
patient’s type n,4s after enrollment time t. As a result, the private plan has no incentives
to exaggerate the medical condition of patients it enrolls (for instance by running a battery
of tests detecting mild conditions). Plans may have incentives to exaggerate the medical

condition of patients it enrolls when repayments 7, s depend on types 7., at time ¢ + s.

Quality. Throughout the paper we assume that the quality of actual healthcare delivery is
homogeneous across plans. In practice, insurance plans may differ in the quality of care they
deliver to their enrollees. It may be important to take into account this quality dimension
when designing capitation schemes. Otherwise, costs could be kept low at the expense
of quality. Appendix A describes an extension of strategic capitation that correctly reflects
differences in the quality of care. An important limitation is that it requires health outcomes

(including death) to be observable and assigned monetary values.
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Surplus Extraction. The paper focuses on the efficient allocation of patients across public
and private plans. However, if there is a deadweight loss of public funds, it may be welfare
improving for the public plan to extract some of the surplus. Since the private plan has
private information over its costs conditional on patient types, this is a difficult multidimen-
sional screening problem. Two observations are helpful to make progress on this issue. First,
given that we consider prior-free mechanisms, the argument of Carroll (2017) suggests there
may not be much value in complex multidimensional screening. It may be near-optimal to
focus on separable one-dimensional screening mechanisms that associate a discounted base-
line capitation rate p(n)r(n, po) to each patient with characteristics n, with p(n) € [0,1] a
discount factor. A second useful observation is that strategic capitation adjustments used to
prevent selection of mispriced types can be applied to any baseline repayment scheme. This

suggests using capitation schemes of the form

TI(A, Hg) = ) _ p(n)k(n, po) + Am(ni, Hr)
ieA

where Am(n;, Hr, A) = ﬁ Y icrn 87T, With

This separates the problems of extracting revenue and preventing illegitimate selection.

Ethical concerns. Regulators frequently ban indexing ex ante capitation rates on certain
observables, such as ethnicity or income. One rationale for such bans is that the law has
expressive content that affects social norms, and it is desirable to reinforce the norm that all
citizens deserve equal treatment. We believe that these ethical concerns admit an important
refinement: differential treatment on the equilibrium path weakens the norm of equality;
differential treatment off of the equilibrium path does not. The latter is the case for strategic

capitation: it punishes plans off of the equilibrium path for non-representative selection of
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types.

Volatility of revenues and profits. One concern with strategic capitation is that capi-
tation payments to the private plan are uncertain at the interim stage. If correlated noise (;
in selection causes the private plan to enroll types that are relatively cheap (resp. expensive)
to treat for the public plan, it receives lower (resp. higher) payments than anticipated. This
increases the volatility of revenues, but may in fact reduce the volatility of profits. Indeed,
types that are relatively cheap (resp. expensive) to treat to the public plan are also likely to
be cheap (resp. expensive) to treat for the private plan. If noise in selection causes a plan to
overselect types that are relatively cheap to treat for the public plan, it receives a negative
capitation adjustment. However, it is likely that the cost of treating these types is also rel-
atively cheap for the private plan, keeping net profits stable. A similar reasoning applies if
the plan overselects types that are relatively expensive to treat for the public plan. Positive
capitation adjustments may well compensate a corresponding increase in the private plan’s
cost of care. In other words, strategic capitation can serve as insurance against selection

shocks.

A Extensions

A.1 Dynamic Selection and Risk-Inflation

In dynamic settings, capitation schemes need to control for differential transitions in health
status across plans. For simplicity, as in Section 3, we assume that comparative advantage
depends on a commonly known set E of legitimate selection characteristics 7 € F, and that
expected costs conditional on legitimate characteristics are known. We denote by 7;; the
type of patient ¢ at date t € N, by n;, her legitimate selection characteristics at date ¢, and
by ¢i(t,p) her realized cost of care if treated by plan p at time t. Types (7¢),c,.. 7 and

characteristics (1;),¢ (0,7} follow Markov chains, whose process ¢, depends on the plan p
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in which the patient is enrolled. Future costs are discounted using discount factor § € (0, 1],
and T denotes an upper bound to the duration of patients’ lives in the system.

For a patient i of type 7; enrolled with the public plan from time ¢ to time 7', we define

Ci(t, po) = 25 (s;po) and C(t,n,po) =E, [@(t,po)

m:n}-

In dynamic environments, strategic capitation must accommodate the possible reenroll-
ment of patients with the public plan. As a result, transfers must occur at the reentry of
patients into the public system. Let us denote by A; the selection of patients enrolled with
the private plan at time ¢, and by A} the selection of patients disenrolling from the private
plan and re-enrolling with the public plan at time t. The following scheme extends strategic
capitation. At initial time of enrollment ¢ = 0, the public plan commits to the following

baseline payments conditional on legitimate characteristics n € E:

e A capitation payment 7 (¢, ) = E,[¢;(¢,po)|ni0 = mo] whenever patient ¢ with initial

type 1o is enrolled with the private plan at time t;

Note that because transfers depend only on type 79, there is no incentive for risk-

inflation by the plan, i.e. an incentive to requalify the patient as a different type;

e A signed transfer 77¢ (with positive transfers being made from the public plan to the pri-
vate plan) at every time T patient i returns to the public plan: 77 = E, [Ci(T, po) 7i.0] —
C(T,mir, po)-

Provided that the private plan does not engage in illegitimate selection, this scheme induces
efficient dynamic behavior by the private plan. To dissuade illegitimate selection, dynamic
strategic capitation makes payment adjustments Aw(t,19) and An"(T,n) using reported

dynamic hold-out data Hg as follows:
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i Aﬂ-(ta 770) = |[Tlo| Zielno SitTits with

i, (Ti0lmi0 = 10) 1 -
Sit = 01"k, -1, and 1 = —%5 SR (1, po) — 7(t, 10).
' ,uI(Ti,O‘Th',O = 7]0) t |HR,0 Z Ji ( O) ( 0)

11780
JEHR

re _ 1 re ,.re :
o Am"(t,m) = 7% 2 ierm Sig Tig, With

Nit = 1) re 1

_ pape(Tig _
e L -1, and ;= \H—;’tl |
J

e = pr(Tielmie = )

Z [C(T7 1,7 Po) — af‘(t,po)

Ti,t
€H

A.2 Quality

If the private and public plan differ in the quality of health outcomes they deliver to patients,
the value associated with different health outcomes needs to be reflected in capitation trans-
fers. We assume that health outcomes (including death) for each patient i € I treated by
plan p are observable and associated with realized monetary values U;(p). As in the case of
costs, we assume that the private plan’s comparative advantage is measurable with respect
to a relatively small set of characteristics 7;. Given selection rule \ and transfers II, the

surpluses accruing to the public and private plans take the form

E,Uy=E, |-II+ Za'(ﬁo) +0i(p1) — @(po)‘)\] ;

iEA

A

— K(\).

E,U; =E, [TT-) @(p)

€A

Differences in quality of care are isomorphic to a change in the public plan’s cost of care.
Since we assume that health outcomes are observable, data Dy should now include values
Ui(po) of patients in Dy. Health outcomes v;(p;) of patients in A (selected by private plan

p1) should be visible to the public plan. Strategic capitation can be extended by setting
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transfers:

(A, Hi) = 32 04(p) + 7(n) + Ao, Hor

where

() = 3 () | 51 3 @) = Tlow)

TEN 8 €D
and An(n, Hg) takes the form:
Am(ni, Hg, \) > sera,
!I | &

with s, = M — 1 and
o pr(Tlmg)

Zc Do) (po) | — m(n).

]GH

IHT‘

B Proofs

B.1 Proofs for Section 3

Proof of Proposition 1: We begin with point (i). Reports from plan py do not affect
reimbursements so that truth-telling strategy §* is dominant. In turn, for any selection A
measurable with respect to characteristics n € E, the private plan’s expected payoffs from

selection take the form

Z Liea(K(ni, po) — K(Ni p1))

el

leEA 7717]90 <ni7p1)+6in

el

where we use the fact that E, , [e;-|m:] = 0. It follows that the optimal selection rule is

indeed A(7) = N(7) = Lupypo)>r(np1)-
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Let us turn to point (i7). Under environment vy, the public plan sets a fixed capitation
payment kg for every patient. For 7 = (n,n,d), the private plan’s conditional expectation
about error shock e; ,, is E,[e; ;|D1, 7] = 0 if both types (n,n,1) and (n,n, —1) have real-
ized costs k(n,p1) in data D; — this happens with probability 1/4. In the complementary
event, the private plan is informed, and E,[e; ;|Dy, 7] = ¢, ,,k0/2. Since the magnitude
A of comparative advantage is less than kg/4, the optimal selection scheme for the private
plan consists of: selecting only the relatively cheap type with characteristics (1, n) when the
private plan is informed about ¢, , (proba 3/4); and selecting type 7 on the basis of com-
parative advantage when the private plan is uninformed about ¢, (proba 1/4). This implies

that in expectation, the efficiency loss is equal to
sparse 3
Euo [Smax_sp ] :§A|I|

When A = 0, the private plan only profits from selecting the relatively cheap type with
characteristics (n,n). This yields an aggregate expected profit equal to 1%/4;0|[ |. Since there

is no comparative advantage, this profit comes entirely at the expense of public plan py. [

Proof of Proposition 2: We first establish point (z). Given selected set A, and data Dy,

D1, private plan p; gets payoff

E[Uﬂ/\, Dy, D1] = Z F&(po, 771') - /i(pl, 77i) + Eu[enﬂ'
ieA

Ti, Do] -E, [en,i

Ti7D07D1]-
Using the fact that a — |b| < a+b < a+ |b], we have that

—P + Z K<p07 Th) - /i(ph 77z) S E[Ul‘A7 D07 Dl] S o + Z ’%(p(b ,r]Z) - H(ph 77@)
[ISHN 1EA
with

2=E, | [Elen, Dy

iel

Dy, Dl] —-E [e‘ri,'i
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The private plan’s optimal selection A must yield a higher payoff than the surplus-

maximizing selection A* = 1, po)>r(np:)- Hence it follows that

Z K(po, mi) — k(p1,mi) = —2@ + Z k(o i) — K(p1, 1i)-

IS 1EA*

Since |€; -] < Cmax, it follows that

El/ UE [e'rz-7i

Dy, Dl] -E [en,i

Dol < (B, (E e,

2\1/2 C?nax 12 Cmaz
(]EV <€Ti,i —E [eT,-,i|DO]) ) S T~T -

1D VIDET

Hence ® < ¢yuux|I|E,, | —~—|. This establishes point (7).
< conll[Ey | point ()

Point (i) follows directly from Proposition 1(ii) and the observation that: with proba-
bility 3/4 the public plan is fully informed of ¢, ,, in which case the capitation rate is set
precisely, and the private plan selects types efficiently; with probability 1/4, the public plan

is uninformed about ¢, ,, and sets capitation rate x(n,p). In this last event, the analysis of

Proposition 1(ii) applies as is. ]

Proof of Proposition 3: We begin by establishing (10) and (11). We begin with (10). We
have that

]E,/ A7 ,H,A D,D,/ﬁ*,)\—EV —_ -1 ]E’Ven-iDaDaT
[ (n R )| 0 1 ] _|[77| Pt ( ](TZ|77) [ R | 0 1 ]

=B, | ui(rln) (Z?((;‘Z)) = 1) E, [e-| Do, Dl,T]]

=B, | Y (ualrln) = ur(r|n)) Evler| Do, DhT]] :

L7T€EN

We turn to (11). Using the fact that A is measurable with respect to E (allowing us to define
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A(n) = A(7)), and the fact that selection error ¢; is orthogonal to 7., have that

_ i
B, [WIAn(n, H, D0, Dy, 57, =B, | 55 (147 = 17 f1a7) ]
LTEN
: ;
=E. > (wm - }[n}wuw) ] —0,
LTEN

We now return to the proof of Proposition 3. In equilibrium, the public plan will get a
payoff at most equal to 0. By condition (10), it follows that the public plan can guarantee it-
self a payoff of 0 by reporting costs truthfully: g = *. Hence, it must be that in equilibrium
the public plan gets a payoff of 0. Since we break indifferences towards truthtelling, it must
be that the public plan reports truthfully in equilibrium. This implies that the private plan
gets a payoff equal to E, [Zze A k(Po, 1) — K(p1, 7],-)], which is maximized by using optimal

selection policy A = \*. O

B.2 Proofs for Section 4

Proof of Proposition 4: Given a cost distribution F', let x(n,p) = E,, plci(p)|n: = 1]
denote the expected cost of service for plan p conditional on legitimate selection characteristic
7 in patient population I. We also denote by (7, p) = Er[c;(p)|7; = 7] the expected cost of

treatment by plan p conditional on type 7.
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Given a partition F and a selection rule A, plan p;’s expected returns are
EV[U1|D07D1] :E Z)\ T’L 77@71)0 +A7T(7717HR7A) _H(Tiapl)] ‘D();Dl] _K(A)

=E, Z)\ (7:) [k(73, o) — K(7i, p1)] ‘Dg,Dli —K(\)
Liel

+E, Z)\ (1:) [(iy po) + A (ni, Hr, A) — k(74,p0)] ‘Do,Dll
Liel

+E, [ > A7) [R(ns, po) (ni,po)])Do,Dll
Licl

U+ UP +UF.

wnere s al are demnneda as (S ree respective terms 11 € expression apove.
here Ui, UB and UL are defined as the th pective t in the expression ab

Note that Ui* = S(\| Dy, D;). The key steps of the proof are the following,
(i) in any equilibrium (E, \, 8), UZ < 0;
(ii) for any reporting strategy 3, if A is measurable with respect to E, then UP = 0;

(iii) for any E and A,
|E,[UF|Do]| < E,[T(E, €)].

Let us first show that points (i), (ii) and (iii) imply properties (13), (14) and (15). We have

that under equilibrium strategies (E, A, ),

]EV[U1|D07-D1] SS(AlD()a Dl) +]EV[UlB’-D07 -D17)\7/8] + ]E’V[UIC|DO7 D17 Aaﬁ}

SS(AIDO’ Dl) +EV[U10|D07D17 )\75]

In addition, from the fact that the private plan is weakly better off using (E,\) over any

strategy (E’, \') where X' is measurable with respect to E’, it follows that
]E [U]_] >]E |:maXSEI|DO D1:| — ]E,,[\I/(S,e)]
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Altogether, this implies that S(A| Do, D1) > E, [maxges Sgipy,p, | — 2E,[¥ (€, €)]. Condition
(14) follows from the fact that truthful reporting 5*(c, 7) guarantees that

_E ZA 7—1 nlapo +A7T(7717HR7A) _’{(Tivpo ] > E [Z/\ Tz 77%7p0 +A7T("727HR,A) - H(Thp())]]
el el

=0

ZA 7i) [K (i, po) (%po)]] :

el

> E, [U(Ee)]

Finally, condition (15) follows from the fact that plan p; can choose a selection strategy
measurable with respect to E, which guaranteed p; positive expected payoffs.

Let us return to the proofs of points (i), (i) and (zii¢) above. Point (i) follows from the
fact that in equilibrium the expected transfers of py to plan p; under equilibrium reporting
strategy [ must be weakly lower than under truthful reporting strategy g*, i.e. E, [II|3] <
E, [IT|5*]. This implies that

Z)‘ 7'1 772>p0 + Aﬂ- 7717HRa )/8 <E, Z)\ 7_@ nz,po + ATF(%H&A)] ‘6*] , so that
el el
Z)\ Tl 771;290 + Aﬂ—(nZaHR7A) Tzapo )/3 <E Z)‘ TZ nz7p0) + AW(T/%HRvA) - H(TiapO)] ‘B*] .
el el
Using

By [AT (15, Hiy M]i € A, 57 =By | S (a(rle) — por(7le)) (s(7, o) — R, po)) i € A,B*]

LTEN;

=By | > (ualr|ns) — pr(rlm)) (k(7,po) — H(%Po))‘i € Aaﬁ*]

TGTh

=E, Z 1A (7[mi) (K (7, po) — (m,po))‘i e A p*

LTEN;
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and

Ey | Y 5(nipo) — k(7 p0) + A (i, Hr, A)

LIS

=E, {Z |A|

nekr TEN

we obtain that indeed,

Z )\ 7—7, 7717])0 + A’ﬂ'(lr]m HR7 A) - ’%(Tiva)]

el

/6*] :OJ

and hence, for any reporting strategy 3, UZ < 0, which yields point (7).
Point (ii) follows from the fact that whenever A is measurable with respect to F, then

for all reporting strategies (8

Z)‘ Tz K (735 Po) (Tz‘,po))] =0

el

and

E, [An(n, Hg,A)] = E,

> lualrln) - uz(Tln)]TT] =0,

TEN
where r, = |H—1T‘ > icnr € (po) — R(1n, po) denotes the mean residual of the baseline capitation

formula computed in the reported hold-out sample.

Finally,
UC < )\ [ i (%)
_AE[O%%§E€5 Z i) (R (15, po) — k(7 po))]
< /\ i (%) 1)
AeMmaXEGE Z 73) (K(ni, po) — K(n po))]
+
< =(n. _ )
s [zm,po) ] |.
nek Lieln
which yields point (7i1). O
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Proof of Lemma 1: We begin with point (i) and show that E, [U(€,e)] < E[¥ (&, ¢’)] using
a coupling argument, i.e. by carefully jointly sampling original errors e and Rademacher
errors €.

Consider the following process for generating errors e and €. Errors e are generated
according to the original distribution of e; (where the different e;’s are independent of one
another). In turn, each error term ¢ is generated from e; as follows: conditional on e;,
€ € {—Cmax, Cmaz } is chosen so that E,[e}|e;] = e;. This is possible since €; € [—Cmnaz, Cmaz)
and there is a unique such distribution. Since error terms (e;);ep, are independent, so are

error terms (e});cr. In addition,

Ey[eg] = EeiEV[eﬂei] = Ee; =0,

which implies €], ~ U{—Cnaz, Cmaz }-
We now show that E, [¥(€,e)] < E,[¥(&,€)]. Note that U(E,e) can be viewed as the

maximum value for S C E € € of

D el (21)

€Dy

ESEZHU Zp,] 7|n) |DT]

nes TEN

Fix e, and assume that W(&, e) is realized by Xg for some set S of 1’s. We have by linearity

of expectation that

17| 17|
=S P13 gy 2| =B | S| S i e |

nes TEN €D nes TEN €D

E, [¥(&,¢€)|e].

Using the law of iterated expectations, this completes the proof of point (7).

We now turn to point (i7). Let £ € £ be any partition, and let S C F be a selection of

YIndeed, the corresponding set S will only select ns such that doren pI(T\n)‘D—lTI ZieDg e; > 0.
0
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elements in partition . We first show that for all ¢,

b(Sg > 1) < 1Dl (22)
ro ex e
P 8 =S\ Toe a?|1)?

max

where Y5 is defined by (21). Using Hoeffding’s inequality (see Hoeffding (1963) or Cesa-
Bianchi and Lugosi (2006), Lemma 2.2) we have

2t>
prob (Xg > t) =exp | — G
ZneS,Ten ZiEDT Actmax [Dg |2
< t2 s
S exp | — - =exp |— 2 T T
2 12 2 2 [17| |Dol |17|
| 2 Crer 1o 2Chax Do 2reT 10g] 111 11
- 2 ]
<exp | -———1| .
- 2 12
2Cmax|D0|Oé

Since there are at most M =}, o 2lEl — 1 possible non-empty sets S, this implies

2 12
2Cmax|D0‘

2
prob (¥(€,e) > t) < M exp [ t—] :
a

To complete the proof, we use the fact that E, [ fo prob(¥ (&, e) > t)dt. Pick ¢,
such that M exp —% =1, 1ie. tg= |I\cmax QO‘IDOgM. We have
2c§naxma [Dol

E,[U(E, ¢)] < /0 " prob(T(E, ) > £)dt + / T prob(T(E.e) > )

to
“+00 t2
<t + Mexp | ————
|Oé

to
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Proof of Corollary 2: Let £* be defined as

E* € argmax E, [max Sg|p,.p,] — 2Ue.
EEP(T) Eee

It follows from the proof of Proposition 4 that, net of payments pg¢, the payoft U; to the

private plan in equilibrium (&, E, A, ) must satisfy:

EV[Ul] S EZ,S(A|D0,D1), and

VE' P(T), EV[Ul] >E, {glagx SE|D0,D1:| — 2@5/.
E ’
This implies that

> — 2Wg.
EVS(A|D0, Dl) = 8’127%5%) El, {%135)5 SE]DO,D1:| 2\115

Proof of Proposition 5: Let £ be the partition maximizing - . H;m,ul(n). We start
0

with the following simple claim:

Claim 1 (hard to distinguish distributions). For each integer d > 0, there exists a pair

of distributions ¢;, ¢y taking finitely many values € € [0, Cpaz| and such that By = k¢,

Ey, ¢ = k%, with k3, k¢ € [Cmaz/4, 3Cmaz/4], kI — K& > K o/ (1 + \/3), and ¢ is hard to

distinguish from ¢}, in the sense that their statistical distance is less than 1/4:

sup ¢(S) — ¢5(S) < 1/4, (23)

SC[0,cmax]?

for some universal constant k' > 0, where ¢¢ and ¢ denote the d-product measures.

47



We defer the proof of Claim 1 until after the proof of the proposition. The following class

of environments v lets us establish our results.

e Selection cost K is identically equal to 0.

e Cost distributions F' for the public and private plans are determined as follows. Let
(by)yer be independent Bernoulli draws over {0,1} such that prob(b, = 1) = 1/2.
For patients i with characteristic n € E costs ¢;(pg) are independent and identically

n
distributed according to the distribution gblf“' described in Claim 1. Its expected value

n n
is denoted by k( € {HLDO‘, /i‘]lD()'}. Note that illegitimate selection characteristics 7 are

independent of costs, and play no role in this construction.

e For patients with characteristic n € FE, costs ¢;(p;) are deterministic and equal to
n n
K = (/ig + K}D()' + /<a|hD°|) /3.

e Holdout set H contains sufficient information to identify (b,),cr. Hence, we can let

messages mg be reports of (by),ck-

e Private plan p; knows (b,),cp. Hence, we can also let messages m; be reports of
(bn)n€E~

Since only legitimate characteristics 1) are correlated to costs, making illegitimate types 7
irrelevant, we can restrict attention to suggested selection strategies A\(Dy, m;) taking values

in [0,1]%.

Step 1: exploiting incentive compatibility to obtain monotonicity constraints.
Fix a characteristic 7 (there are u;(n)|I| such patients), and let d = |DJ|. We establish
minimum performance losses that any direct mechanism must accumulate with respect to
patients with characteristic n. Our first step is to exploit incentive compatibility constraints
to derive a monotonicity condition.

Let m{ and m] denote the truthful reporting strategies by plans py and p;. Let my,
my (resp. my, m,) denote the reporting strategies in which the two plans correctly report

(bn’)n’#? but always report b, = 1 (resp. report b, = 0).
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Fix a realization of Dy. In principle, Dy is an argument of transfer function II, and of
suggested selection A\. We suppress this dependency for now since Dy is held constant. We
denote by A, () the selection intensity of patients with characteristic 7 given message m;.

We define plans py and p;’s conditional expected values Uy and U; given messages and a

value of b, as

Us(mo, by| Do) = B, | =II(mo, m, Apr) + Z 117 | x KD x A (17) Do,bn]
L n'ek

Ur(mi, by Do) = Ey [TL(my, ma, Ay) — 3 7| X K % Ay, ()| Do, by
L n'ekE

By incentive compatibility of plan p;’s messages if b, = 1, we must have
Ui (M, by, = 1|Dy) > Ur(my, b, = 1|Dy). (24)
Incentive compatibility of plan py’s message when b, = 0 implies that
Uo(myg, by, = 0|Dy) > Uy(Tg, b, = 0| Dy).
Since the true value of b, does not affect expected transfers, this inequality simplifies to
E, [(mg, my, Am,) | Do] < E, [I1(Mo, my, Am, ) | Do - (25)
Combining (24) and (25) implies

]El/ [H(m07m17 )\ﬁl) - H(mo;Mp )\ml) ‘ DO] (26)

>E, Z |I’7/| X /i’f/ X (/\ml(n') — )\ml(n’)) ‘Do,b77 = 1] )

n'ek
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A symmetric argument implies

El/ [H(m07m17 )\ml) - H(mo;mlu )\ml) ‘ DO] (27)

<E,

S| L% () = A, (7)) [ Do by = 0] -
n'eE

By construction, b, affects the value ] but not that of /417’ for ' # n. Hence, (26) and (27)

imply

264 + k3 2k 4 K4
E, [|_]77| ( 13 o h3 l) X ()\ml(ﬁ) — )‘m1<n)) ‘DO} > 0.

This yields the following monotonicity condition:
E, [)‘Wl (77)|D0} <E, [)‘m1<77)‘D0] . (28)

Step 2: establishing a lower bound on performance losses. Under first-best pa-
tient selection, the unconditional expected cost of treatment for a patient with legitimate

characteristic 7 is

1

E, [po) + A" () (@p1) — 2pw))]) = 5 h) =

au
+
| —
/|\
=
~gq,
+
)

nd) _ 260 nh (29)
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Monotonicity condition (28) implies that under any selection A induced by a direct mecha-

nism, the expected cost of treatment for a patient with characteristic 7 satisfies:

E, [€(po) + A(n)(@(p1) — €po))] = E, [E, [¢(po) + A(n)(€(p1) — €(po))| Do) |

2@% (1= A, (1)) X ﬁ?‘DO]

265 + K
3

=E, |prob(b, = 0|Dy) x E, {)"m(n) X

+ prob(b, = 1|Dy) x E, [Aml(ﬂ) X + (1= A, () X KZ‘DOH

:2/ifl;- Kp K g Ky « E, [prob(@7 = 0|Do)E, [Am, ()| Do]

+ prob(By, = 1IDp)Eu[1 — A, (1) Do)
25 ;- ki Kl - QN [pmb(bn — 0|Do)E, [Ass, ()| Do

+ prob(b, = 1| Do)E,[1 = Ase, ()| Dol
22/#; Kp KR ; ki x K, [min {prob(b, = 0|Dy), prob(b, = 1|Dy)}]

Step 3: quantify the lower bound using Claim 1. Since prob(b,|Dy) only depends
on Df, it suffices to bound E, [min {prob(b, = 0|D{), prob(b, = 1|D{)}].
Recalling that d = |D{|, Bayes rule and Claim 1 imply that

E, [min {prob(b, = 0|DJ), prob(b, = 1|DI)}] =
o) {on
B QW+ﬁwnw@+¢wn)
U J6HDD) — DRI 1 < I68(DR) - (DY)
E42 207 + )(@1 32 1

>1
4

where we used the fact that the statistical distance satisfies § > Dy o3 (DY) — ¢(DY)| =

SUDSC[0 e DF (S) — S7(S5)-

Altogether, it follows that for patients with characteristic 7, the per-patient efficiency

o1



loss is least
1rd — K K Crnaa
Shh R Do e
4 3 12 1++/|D]]

Setting k = k'/12 completes the proof. ]

We now prove Claim 1.
Proof of Claim 1: Given d > 1, let ¢; ~ cnaxBij2—¢, and ¢, ~ CpaaBija4e, Where By
denotes Bernoulli variables taking values in {0, 1}, and equal to 1 with probability ¢. Set
€ so that 0 < € < 1/4 (with the relationship between € and d to be specified below). The
Kullback-Leibler divergence D(¢f||¢%) between ¢ and ¢¢ satisfies (see Cover and Thomas
(2012) for a reference)

D(¢fll¢5) = d x D(¢ill¢n) = d X D(Byjo—c||Bijase) = d x O(€?),

By Pinsker’s Inequality (e.g. Csiszar and Kérner (2011), Section 3) the statistical distance

between ¢ and ¢¢ satisfies

25 sup G(S)=64(S) = =0l < /2 x D(efllof) = v/ x O() < by xevd, (30)

SC[Oﬁmax}

where k; > 2 is a constant.

Choose € = 1/(2k;v/d) < 1/4. Claim 1 holds with
K — k! =2 = 1/(kiVd).

Setting k' < 1/k; completes the proof. n
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B.3 Proofs for Section 6

Proof of Proposition 6: Consider the subgame following entry. For any continuation
pricing equilibrium (7, 7, ), the usual Bertrand competition argument implies that price

formulas must satisfy

vn, mo(n) = m(n) = k(n).

Given these prices, profits are determined by the plans’ selection behavior (A, Ay, ). Given

the selection rule A, of its competitor, plan p chooses

\p € argmax 3 (w(n) — £(r))ur(r) (1 () - AW)) C KO

PYS (V) s 2

= a;"g[ﬁ%x; pi(TAT) (k) — k(7)) = K(N).
Since K is strictly convex, minimized at 0, and smooth, it follows that its gradient VK|q at
0 is equal to 0. As a result both plans engage in the same non-zero amount of selection \*,
and in aggregate selection has no effect on each plan’s treated sample. Strict convexity of
K implies that K(\*) > 0, and the entrant gets strictly negative expected profits following
entry.
It follows that the unique equilibrium involves no entry, allowing the incumbent to charge

prices equal to 7. O

Proof of Proposition 7: Consider the subgame following entry. For any continuation
pricing equilibrium (7,,, 7, ), the usual Bertrand competition argument implies that price

formulas must satisfy

vn, mo(n) = m(n) = k(n).

Assuming truthful reporting by plan —p, strategic capitation ensures that plan p does

not benefit from selecting a non representative sample of types. Hence plan p’s payoff is
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equal to

1
S wt) = k() = Aol ) = KO
TET
It is therefore optimal for plan p to set A, = 0 and minimize selection cost. Given this choice,
it is indeed optimal for plan —p to report its hold-out sample truthfully. O
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