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A B S T R A C T

Detection of foot-strike events is an integral part of gait analysis, as it allows the temporal registration of gait
cycles. At the same time, it is necessary to register gait phases in real-time for applications such as wearable
assistive devices and gait biofeedback that work synchronously with the human gait. Although many algorithms
have been proposed for detecting foot-strikes with either wearable (e.g. Inertial Measurement Units (IMUs))
or non-wearable (e.g. force plates) sensors, there is a great need for real-time algorithms that rely only on
recording the kinematics of the leg motion. This work proposes a novel and efficient kinematic algorithm,
called the Foot VErtical & Sagittal Position Algorithm (F-VESPA), which has several advantages over existing
methods. First, it accurately estimates foot-strike events using kinematic data without requiring access to future
data points, hence achieving reduced latency during real-time implementation. Moreover, it does not require
tuning of the utilized parameters, rendering it robust to different subjects and treadmill speeds. The algorithm
is tested in a large set of subjects across various treadmill speeds, and it is shown to outperform even offline
implementations of existing prominent kinematic algorithms. Using a 150 Hz data collection system, the F-
VESPA achieved a median of 33 ms for the total true errors in detecting foot-strike. The F-VESPA is a highly
responsive kinematic algorithm that can detect foot-strike events in real-time, with high accuracy, robustness
and reduced latency, enabling real-time temporal registration of gait cycles.
1. Introduction

Precise characterization of individual gait events is critical for any
gait analysis study. Human gait is separated into gait cycles, defined as
the intervals between consecutive foot-strikes of the same foot (Perry
et al., 1992). Hence, foot-strike detection techniques are usually em-
loyed for the temporal registration of gait cycles, as well the time
ormalization of data across multiple gait cycles. Thus, datasets ob-
ained from different trials or subjects can be analyzed and compared
n a meaningful way (Maiwald et al., 2009; O’Connor et al., 2007).
Numerous techniques have been proposed for foot-strike detection

uring gait. In general, these techniques can be separated into two
ategories based on whether they utilize wearable or non-wearable
ensors (Taborri et al., 2016). In fact, non-wearable sensors stand out as
he most accurate option for gait analysis in indoor experiments. Typi-
al examples include force platforms and opto-electronic systems, with
he former representing the gold standard in gait partitioning (Taborri
t al., 2016; Tao et al., 2012). However, force platforms are not always
vailable or suitable for certain studies, while they usually require
pecialized equipment that might increase the complexity of the exper-
mental procedure (Hreljac and Marshall, 2000; Mickelborough et al.,
000). On the other hand, opto-electronic systems utilize kinematic
ethods, which represent the most popular technology found in clinical

∗ Correspondence to: Department of Mechanical Engineering, University of Delaware, 130 Academy Street, 126 Spencer Lab, Newark, DE 19716, USA.
E-mail address: partem@udel.edu (P. Artemiadis).

laboratories, while being recognized as the gold standard for routine
gait analysis (Taborri et al., 2016).

Kinematic-based algorithms utilize 3D-kinematic data of the lower
limbs recorded using a camera motion capture system (Rueterbories
et al., 2010). Several kinematic algorithms have been published for
foot-strike estimation, such as the Hreljac–Stergiou Algorithm (HSA)
(Hreljac and Stergiou, 2000), Hreljac–Marshall Algorithm (HMA) (Hrel-
jac and Marshall, 2000), Foot Vertical Velocity (FVELV) (Schache et al.,
2001; Fellin et al., 2010) and Velocity-Based Treadmill Algorithm
(VBTA) (Zeni Jr. et al., 2008). After an extensive research we per-
formed in the literature amongst publications reviewing and comparing
kinematic algorithms across different conditions and subjects, the Foot-
Contact Algorithm (FCA) (Maiwald et al., 2009), the Foot-Velocity
Algorithm (FVA) (O’Connor et al., 2007) and the Foot Vertical Position
(FPOSV) method (Alton et al., 1998; Fellin et al., 2010) stood out as
prominent due to their increased reported accuracy (Leitch et al., 2011;
Sinclair et al., 2011; Fellin et al., 2010; Maiwald et al., 2009; Desailly
et al., 2009; O’Connor et al., 2007; Alvim et al., 2015). A summary
of the analysis above is illustrated in Table 1. However, most, if not
all, kinematic algorithms that have been proposed so far provided only
offline estimates for the foot-strike events. Although some of them have
vailable online 8 November 2021
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been deployed in real-time in previous works (Roeles et al., 2018;
Barkan et al., 2014), to the best of our knowledge, kinematic algorithms
have never been evaluated both in terms or accuracy and latency during
real-time implementation.

This is of high importance, as certain applications require real-time
detection of gait phases, such as real-time control for wearable assistive
devices (Kang et al., 2021; Holgate et al., 2009; Walsh et al., 2006),
Function Electrical Stimulation (FES) and gait biofeedback (Hanlon
and Anderson, 2009; Drolet et al., 2020). In these cases, wearable
sensors have also been employed, such as Inertial Measurement Units
(IMUs), foot-switches, etc., which allow for real-time detection even
in outdoor environments (Kang et al., 2021; Walsh et al., 2006; Lind
t al., 2009; Kormushev et al., 2012; Lim et al., 2015; Saccares et al.,
018; Dollar and Herr, 2008; Kadoya et al., 2014). However, despite
he unique portability they offer, wearable sensors present certain
rawbacks, such as challenging placement and reduced reliability and
urability (Rueterbories et al., 2010; Tao et al., 2012). Therefore, the
uestion arises of whether a kinematic algorithm could be devised
or real-time implementation that would maintain high accuracy and
inimal latency, without being restricted by the limitations of wearable
ensors.
In order to address this gap, this work proposes and evaluates a

ovel kinematic algorithm, called the Foot VErtical & Sagittal Posi-
ion Algorithm (F-VESPA).1 The algorithm exhibits unique properties
hat provide significant advantages over existing algorithms. First, the
-VESPA predicts foot-strike events with high precision without requir-
ng access to future data points, hence achieving reduced latency during
eal-time implementation. Furthermore, unlike previous works, tuning
f the utilized parameters is not required, rendering the F-VESPA robust
o different subjects and treadmill speeds. A comparative analysis was
onducted in a large set of subjects across various treadmill speeds,
here F-VESPA was shown to outperform even offline implementa-
ions of existing prominent kinematic algorithms. In summary, the
-VESPA is a highly responsive kinematic algorithm that can detect
oot-strike events in real-time, with high accuracy, robustness and
educed latency, enabling real-time temporal registration of gait cycles.

. Methods

The main aspect of this work is to evaluate a new real-time algo-
ithm for foot-strike detection during walking, by comparing it with
ffline implementations of prominent existing algorithms using real
inematic data. For evaluation and comparison, we first define the set
f kinematic and kinetic data used throughout the paper in Section 2.1.
hen, the implementation of existing algorithms is discussed in Sec-
ions 2.2 and 2.3 . To the best of our knowledge, all existing algorithms
ave been proposed only for offline implementation. Hence, specific
onsiderations and changes need to be made in order for them to be
airly compared with our proposed method. Finally, Section 2.4 details
he proposed algorithm.

.1. Description of dataset

In this work, we utilize data from a publicly available dataset
Fukuchi et al., 2018a,b). Specifically, in the study by Fukuchi et al.
group of 42 healthy subjects participated, consisting of 24 young
nd 48 older adults, respectively. Both kinematic and kinetic data were
ecorded during treadmill walking at a wide range of gait speeds.
inematic data were collected at 150 Hz via a camera based motion-
apture system (12 cameras, Raptor-4; Motion Analysis Corporation,
anta Rosa, CA, USA), while a dual-belt instrumented treadmill (FIT;
ertec, Columbus, OH, USA) measured the ground-reaction force data

1 A preliminary version of this work is included in (Karakasis and
rtemiadis, 2021).
2

at 300 Hz. Lower-extremity kinematics were recorded by tracking the
position of 26 anatomical reflective markers.

The treadmill walking experiments for each subject included trials
at eight different controlled speeds: 40%, 55%, 70%, 85%, 100%,
115%, 130%, and 145% of the self-selected speed. The range of the
self-selected speeds across subjects was 0.89–1.54 m/s.

For the calculation of the ground truth timing of the foot-strike
events in the data, the measured vertical GRF component was utilized,
as this represents the gold standard in gait partitioning. After applying
a 4th order zero-phase low-pass Butterworth filter (cut-off frequency of
20 Hz), the GRF data were down-sampled to a frequency of 150 Hz,
to match the kinematic sampling frequency. It should be noted that a
zero-phase filter was adopted to derive the actual timing of the foot-
strike events. For the foot-strike detection, a threshold value of 30 N
on a rising edge was employed for the vertical GRF, which is within
the documented range (5–40 N) of the literature (Alvim et al., 2015;
Mickelborough et al., 2000; Hreljac and Stergiou, 2000; Hreljac and
Marshall, 2000; Maiwald et al., 2009; Zeni Jr. et al., 2008; Leitch
et al., 2011; Sinclair et al., 2013; Fellin et al., 2010; Sinclair et al.,
2011; Hanlon and Anderson, 2009; O’Connor et al., 2007; Desailly
et al., 2009). Fig. 1 demonstrates an example of ground truth timing
identification for foot-strike events using the GRF component.

2.2. Implementation of the modified FCA

As analyzed in the Introduction Section, the FCA is one of the
most accurate kinematic algorithms proposed in the literature. For that
reason, it was implemented to provide a reference for the validation of
the proposed algorithm. The details of its implementation are included
below.

Due to the nature of the algorithm (Maiwald et al., 2009), a real-
time implementation is not feasible, and therefore we opted for a
modified implementation that includes an offline version with real-
time filtering conditions. In detail, the three-dimensional kinematic
data were filtered via a 2𝑛𝑑 order, low-pass Butterworth filter (cut-off
at 20 Hz), without removing any introduced delays from the filter. The
FCA detects touchdown using the vertical position of two markers: the
posterior midsole of the heel (𝐻𝐸𝐸𝐿) and the lateral midsole at MTH5
(𝑀𝑇𝐻5). Initially, all prominent local extrema that have a specific
fixed prominence and an optimal minimum separation were derived.
In particular, for the local minima, the optimal minimum separation
values were derived to maximize the accuracy of the algorithm in each
trial. Naturally, this procedure requires the knowledge of the whole
signal throughout each trial.

Next, each trial was divided into segments using the prominent
local maxima, and for each one the following procedure was followed.
Initially, the timing of the earliest event between the prominent local
minima of the two signals is set as the approximate time of touch down
(𝑇𝐷𝑎𝑝𝑝𝑟𝑜𝑥), while the corresponding marker is selected as the target
marker. Based on that, the 𝑇 𝐼 time interval is defined as:

𝑇 𝐼 = [𝑇𝐷𝑎𝑝𝑝𝑟𝑜𝑥 − 𝑜1, 𝑇𝐷𝑎𝑝𝑝𝑟𝑜𝑥 + 𝑜2], (1)

where 𝑜1 = 6 samples and 𝑜2 = 12 samples. The assigned size of
the time interval was decided based on the trials and values noted
in (Maiwald et al., 2009). Finally, the time instance of touchdown
(or foot-strike) is defined as the most prominent local maximum in
the vertical acceleration of the target marker during the time interval
𝑇 𝐼 . The above procedure is repeated for all segments until the end
of the trial in question. Fig. 2 demonstrates an example of foot-strike
identification using the FCA.



Journal of Biomechanics 129 (2021) 110849C. Karakasis and P. Artemiadis

i
N

2

p
S
c

i
u

N
t
c
m
o
o
o
e
p
i
a

Table 1
Comparison of kinematic algorithms for foot-strike detection. Each column corresponds to the publication cited in the top row and each row
corresponds to a different kinematic algorithm. For each column-publication, ○ indicate which algorithms were included for evaluation and
×indicate which algorithms were classified as the most accurate. Cells are left blank when an algorithm was not evaluated in the respective
publication. Kinematic algorithm abbreviations are as follows: Foot Vertical Position (FPOSV) (Alton et al., 1998; Pappas et al., 2001; Fellin
et al., 2010), Hreljac–Marshall Algorithm (HMA) (Hreljac and Marshall, 2000), Hreljac–Stergiou Algorithm (HSA) (Hreljac and Stergiou, 2000),
Custom Algorithm #1 (CA1) (Dingwell et al., 2001), Foot Vertical Velocity (FVELV) (Schache et al., 2001; Fellin et al., 2010), Custom Algorithm
#2 (CA2) (Mickelborough et al., 2000), Foot-Velocity Algorithm (FVA) (O’Connor et al., 2007), Coordinate-Based Treadmill Algorithm (CBTA)
(Zeni Jr. et al., 2008), Velocity-Based Treadmill Algorithm (VBTA) (Zeni Jr. et al., 2008), High-Pass Algorithm (HPA) (Desailly et al., 2009), Foot-
Contact Algorithm (FCA) (Maiwald et al., 2009), Custom Algorithm #3 (CA3) (Leitch et al., 2011), and Vertical Displacement Algorithm (VDA)
(Alvim et al., 2015). 𝐶𝐴1–𝐶𝐴3 correspond to custom algorithms that were not identified by a specific name when proposed.

Leitch et al., 2011 Sinclair et al., 2011 Fellin et al., 2010 Maiwald et al., 2009 Desailly et al., 2009 Alvim et al., 2015

FPOSV × × ×

HMA ○ ○ ○

HSA × ○ ○ ○

CA1 × ○

FVELV ○ ×

CA2 ○

FVA × × ○ × ×

CBTA ○ ○

VBTA ○ ○

HPA ×

FCA × ×

CA3 ○

VDA ○
Fig. 1. Example of the ground truth timing identification using the GRF component. The chart shows the GRF component at a subject’s left foot with respect to time. Circles (◦)
ndicate the samples of the measured vertical GRF component. Crosses (×) illustrate foot-strike events identified using a threshold on a rising edge. Dashed line represents the 30
threshold applied. True foot-strikes are defined as the first samples that exceed the 30 N threshold on a rising edge.
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.3. Implementation of the modified FVA

Besides the FCA, another algorithm that stood out amongst the
roposed algorithms in the literature is the FVA (O’Connor et al., 2007).
imilarly to the FCA, a modified offline version was implemented for
omparison purposes, as described below.
Since the metatarsal head II (𝑀𝑇𝐻2) marker was not available

n the employed dataset, the metatarsal head I (𝑀𝑇𝐻1) marker was
tilized instead, along with the 𝐻𝐸𝐸𝐿 marker (O’Connor et al., 2007).
The same filtering with the FCA was applied to the kinematic data.

ext, the midpoint between the vertical positions of the 𝐻𝐸𝐸𝐿 and
he 𝑀𝑇𝐻1 markers was computed, as a representation of the foot’s
enter, while its vertical velocity was calculated via finite difference
ethods. Next, all prominent local minima in the vertical velocity
f the foot’s center were computed in each trial, by selecting the
ptimal minimum separation with respect to accuracy. Subsequently, in
rder to distinguish the specific local minima described in (O’Connor
t al., 2007), constraints were imposed on the corresponding vertical
osition of the prominent local minima (𝑚𝑎𝑥𝑡ℎ𝑙𝑑 , 𝑚𝑖𝑛𝑡ℎ𝑙𝑑). The constraint
mposed was that the foot center should be close to the ground level
t foot-strike. Finally, the foot-strike events were defined as the frames
3

n

hat correspond to prominent negative local minima in the foot center’s
ertical velocity with a corresponding vertical position that satisfies
he imposed thresholds. Fig. 3 demonstrates an example of foot-strike
dentification using the FVA.

.4. Proposed Foot VErtical & Sagittal Position Algorithm (F-VESPA)

The proposed algorithm F-VESPA was designed in order to provide
robust and accurate method of detecting foot-strikes in real-time,
sing solely kinematic data. The algorithm can be considered as a
ignificant extension of the FPOSV algorithm (Alton et al., 1998; Fellin
t al., 2010), since instead of using only the vertical position, it also
tilizes the sagittal position of the heel marker in the subject’s leg.
hroughout this paper, we will refer the position on the horizontal
agittal (antero-posterior) axis as the sagittal position. The motivation
ehind this was the fact that as the leg moves backwards, the rate of
hange in the sagittal position has a fixed sign2. As a consequence, this

2 On the used dataset, the rate of change of the sagittal position was
egative, but generally, it depends on each dataset formulation of the reference



Journal of Biomechanics 129 (2021) 110849C. Karakasis and P. Artemiadis

i

Fig. 2. Example of the foot-strike identification using the FCA. Top and middle subplots show the vertical position of the heel (𝐿𝐻𝐸𝐸𝐿) and MTH5 (𝐿𝑀𝑇𝐻5) markers at a
subject’s left foot with respect to time, respectively. Bottom subplot depicts the vertical acceleration of the target marker (𝐿𝐻𝐸𝐸𝐿∕𝐿𝑀𝑇𝐻5) with respect to time. Diamonds
(⋄) and circles (◦) indicate local minima and maxima of each signal in the corresponding subplot, respectively. Crosses (×) illustrate foot-strike events identified using the FCA.
Dashed lines represent the time instances defining the 𝑇 𝐼 interval together with the 𝑇𝐷𝑎𝑝𝑝𝑟𝑜𝑥 instance. Foot-strikes are defined as the most prominent local maxima in the vertical
acceleration of the target marker during the time interval 𝑇 𝐼 .
Fig. 3. Example of the foot-strike identification using the FVA. Top and bottom subplots show the vertical position and velocity of the foot center at a subject’s left foot with
respect to time, respectively. Diamonds (⋄) indicate local minima in the vertical velocity of the foot center. Crosses (×) illustrate foot-strike events identified using the FVA. Dashed
lines represent the imposed constraints on the prominent local minima. Foot-strikes are defined as prominent negative local maxima in the foot center’s vertical velocity, satisfying
the imposed constraints.
information could be exploited to avoid false foot-strike estimations,
hence improving the accuracy of the FPOSV. It should be noted that this
feature is only observed during treadmill walking, hence the algorithm
is not suitable for overground walking.

Initially in the implementation, the same real-time filtering condi-
tions were applied, as in the previous algorithms. However, unlike the
previous algorithms, a real-time implementation was designed for the
F-VESPA.

For each incoming sample, the current vertical and sagittal veloci-
ties are calculated using a first-order finite difference approximation3:

𝑑𝑦𝐻 (𝑘) ≜ 𝛥𝑦𝐻 (𝑘) = 𝑦𝐻 (𝑘) − 𝑦𝐻 (𝑘 − 1), (2)

𝑑𝑥𝐻 (𝑘) ≜ 𝛥𝑥𝐻 (𝑘) = 𝑥𝐻 (𝑘) − 𝑥𝐻 (𝑘 − 1), (3)

system whether is going to be negative or positive. That said, the proposed
algorithm is based on the fact that the sign is fixed.

3 Since only the velocity’s sign is of interest, the fixed temporal element 𝑑𝑡
s omitted.
4

where 𝑦𝐻 (𝑘) and 𝑥𝐻 (𝑘) are the filtered vertical and sagittal positions
of the heel marker at the sample 𝑘, respectively, and 𝑑𝑦𝐻 (𝑘), 𝑑𝑥𝐻 (𝑘)
are the corresponding velocities. Next, all future samples are ignored
until a local maximum with a temporal prominence of two past and two
future samples is found in the vertical velocity that exceeds a specific
threshold (𝑦𝐺𝑀 ). This criterion is defined in the following equations:

𝑑𝑦𝐻 (𝑘) < 0 𝑎𝑛𝑑 𝑑𝑦𝐻 (𝑘 − 1) ≤ 0, (4)

𝑑𝑦𝐻 (𝑘 − 2) ≥ 0 𝑎𝑛𝑑 𝑑𝑦𝐻 (𝑘 − 3) ≥ 0, (5)

𝑦𝐻 (𝑘 − 2) > 𝑦𝐺𝑀 . (6)

If all above conditions are met, the corresponding sample (𝑘 − 2) is
defined as the ‘‘global’’ maximum 𝑘𝐺𝑀 for that gait cycle, and a search
for local minima is initiated. Then, for each upcoming sample, the
vertical velocity is computed again using Eq. (2), and all samples are
ignored until a local minimum with a temporal prominence of three
past and one future samples is found, i.e. meeting the conditions listed
below:

𝑑𝑦𝐻 (𝑘) ≥ 0, (7)

𝑑𝑦 (𝑘 − 𝑖) ≤ 0 ∀ 𝑖 ∈ {1, 2, 3}. (8)
𝐻
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Algorithm 1 F-VESPA
1: procedure F-VESPA (𝑦𝑟𝐻 = raw vertical position of heel marker, 𝑥𝑟𝐻 = raw sagittal

position of heel marker, 𝑓 = boolean flag)
2: 𝑓 = 0 ⊳ Disable search for local minima
3: 𝑦𝑚𝑖𝑛 = 30 𝑚𝑚 ⊳ Define fixed parameter
4: while true do ⊳ New motion capture sample
5: Obtain [𝑘, 𝑦𝑟𝐻 (𝑘), 𝑥𝑟𝐻 (𝑘)] from motion capture system
6: [𝑦𝐻 (𝑘), 𝑥𝐻 (𝑘)] ← Filter (𝑦𝑟𝐻 , 𝑥

𝑟
𝐻 )

7: Derive 𝑑𝑦𝐻 (𝑘) and 𝑑𝑥𝐻 (𝑘) ⊳ Eqs. (2), (3)
8: if 𝑑𝑦𝐻 (𝑘) < 0 & 𝑑𝑦𝐻 (𝑘 − 1) ≤ 0 then ⊳ Eq. (4)
9: if 𝑑𝑦𝐻 (𝑘 − 2) ≥ 0 & 𝑑𝑦𝐻 (𝑘 − 3) ≥ 0 then ⊳ Eq. (5)
10: if 𝑦𝐻 (𝑘 − 2) > 𝑦𝐺𝑀 then ⊳ Eq. (6)
11: 𝑘𝐺𝑀 = 𝑘 − 2 ⊳ ‘‘Global’’ maximum
12: 𝑓 = 1 ⊳ Initiate search for local minima
13: end if
14: end if
15: end if
16: if 𝑓 ≠ 0 & 𝑑𝑦𝐻 (𝑘) ≥ 0 then ⊳ Eq. (7)
17: if 𝑑𝑦𝐻 (𝑘 − 𝑖) ≤ 0 ∀ 𝑖 ∈ {1, 2, 3} then ⊳ Eq. (8)
18: if 𝑑𝑥𝐻 (𝑘 − 1) < 0 then ⊳ Eq. (9)
19: 𝑘𝐻𝑆 = 𝑘 − 1 ⊳ Foot-strike
20: 𝑦𝐺𝑀 = 𝑦𝑚𝑖𝑛 + 𝑦𝐻 (𝑘𝐻𝑆 ) ⊳ Eq. (10)
21: 𝑓 = 0 ⊳ Disable search for local minima
22: end if
23: end if
24: end if
25: end while
26: end procedure

Algorithm 1: The pseudo-code for the proposed F-VESPA algorithm.

hen such a point is found, the corresponding sign of the sagittal
elocity is checked. The point is kept only if the sign is negative, while
iscarded if positive, i.e. the condition to be met is:

𝑥𝐻 (𝑘 − 1) < 0. (9)

f the condition is satisfied, then the sample (𝑘 − 1) is defined as the
oot-strike event (𝑘𝐻𝑆 ) for that gait cycle. Based on the vertical position
f the heel marker at foot-strike, the 𝑦𝐺𝑀 threshold is updated:

𝑦𝐺𝑀 = 𝑦𝑚𝑖𝑛 + 𝑦𝐻 (𝑘𝐻𝑆 ), (10)

where 𝑦𝑚𝑖𝑛 is a fixed variable equal to 30 mm that represents a sufficient
height distance between the vertical position of the heel at foot-strike
and its next ‘‘global’’ maximum. Moreover, the search for local minima
(foot-strikes) is disabled until the next ‘‘global’’ maximum is found and
the same procedure is repeated until the end of the trial. The pseudo-
code for the proposed F-VESPA algorithm is given in Algorithm 1.
Fig. 4 demonstrates an example of foot-strike identification using the
F-VESPA.

3. Results

In this section, the performance of the FCA (offline), FVA (offline)
and F-VESPA (real-time) in identifying foot-strike events is evaluated.
All algorithms were implemented and executed in MATLABTM version
.7 (R2019b) (The MathWorks, Natick, MA, USA). The ground truth
f the foot-strike event times were determined using the force plate
easurements as discussed in Section 2.1. The accuracy of each method
s quantified by defining the estimation error in frames between the
eal (ground truth) and estimated timing of the foot-strike. In order for
he comparison to be more generalizable, all the errors are reported in
rames, or samples, without imposing a specific sampling frequency for
he kinematic data.
The implemented algorithms were evaluated using nine young

dults from the aforementioned dataset (Fukuchi et al., 2018b), who
hared similar nominal speeds with statistical significance (𝑝 < .001,
ohen’s 𝑑 (effect size): 𝑑 = 24.41, 95% Confidence Interval: 𝐶𝐼 =
1.7659 to 1.8807) m/s), across 8 different walking speeds around their
ominal speed. Their average nominal speed was equal to 𝑣𝑚 = 1.26 ±
5

.05 m/s. c
.1. Evaluation and comparison of F-VESPA to FCA, and FVA

In addition to the true and absolute errors of estimation, the true
ime delay required for the calculation of the foot-strike estimation was
omputed for each algorithm.
As discussed in Section 2.4, the F-VESPA was designed for real-

ime deployment. Therefore, real-time conditions were simulated for
he evaluation of its performance. In detail, for a given trial, each
ample was processed one by one, with the algorithm having no access
o any future samples. As a consequence, in order to determine whether
given sample has a specific temporal prominence (i.e. Eqs. (4), (5),

(8)), the algorithm had to first process the required number of future
samples. This property introduces an inherent time delay that has to
be accounted for when evaluating performance. The inherent delay
of its predictions is equal to one sample for all cases, as it requires
a maximum number of one future sample for the identification of
foot-strike events using Eqs. (7), (8), (9).

In contrast, only offline implementations were possible for the FCA
and the FVA. Specifically, in both algorithms the apriori knowledge
of the whole trial was required, since they utilize local extrema with
a specific prominence. For comparison purposes, only the time delays
associated with temporal prominence and time windows are analyzed.
For the FCA, knowledge over the whole time interval 𝑇 𝐼 is required as
shown in Eq. (1), which introduces a delay of 12 samples. Additionally,
local minima required a minimum separation, which was optimized to
maximize the performance of the algorithm. Therefore, the time delay
for the FCA was defined as the sum of the two components. For the
FVA, only the minimum separation for the local minima introduced
additional time delay, which was again optimized to maximize the
performance of the algorithm.

The results of the FCA, FVA and F-VESPA across all subjects and
walking speeds are shown in Table 2. For each walking speed, the mean
absolute error (MAE) and mean time delay (MTD) are shown, along
with standard deviations. The MAE quantifies the accuracy of each
algorithm in estimating foot-strike events without taking into account
the aforementioned time delays. The MTD shows the error in estimating
the foot-strike event due to the inherent delay of each algorithm. This
is of high importance since we are interested in real-time foot-strike
event detection and the MTD captures how late the predictions would
be in real-time. The total mean absolute error of each algorithm for a
specific speed is defined as the sum of the respective MAE and MTD
components.

Amongst all implemented algorithms, the F-VESPA exhibits the
lowest total error in frames across all speeds and subjects. Although
FVA seems to have slightly better performance than the F-VESPA, if
only MAE is considered across all speeds, its standard deviation is
significantly larger than that of F-VESPA. Moreover, the MAE perfor-
mance of the FVA declined as the treadmill speed increased, while the
performance of the F-VESPA is not affected by walking speed. The error
induced due to the inherent time delay of the F-VESPA is equal to one
across all trials, hence no deviation is observed. In contrast, both the
FCA and FVA have significantly high MTD values, both in terms of
magnitude and deviation, bringing their total error higher than that
of the F-VESPA across all speeds.

The statistical differences of accuracy (true error of estimation)
between the algorithms were tested using paired t -tests. In both pairs
(F-VESPA, FCA) and (F-VESPA, FVA) the null hypothesis was rejected,
indicating statistically different distributions of errors among the algo-
rithms. P-values, Cohen’s d (effect sizes) and 95% Confidence Intervals
(𝐶𝐼) are reported in Table 3. Significance level was set at 𝛼 = 5%.

The distribution of true errors 𝑒𝑡 across all trials was calculated
or each algorithm without including the inherent time delays, and
ormal distribution fit was attempted. The histograms of the errors are
hown in Fig. 5. The histogram data were tested for normal distribution
sing the Kolmogorov–Smirnov test (Massey Jr., 1951). In all three

ases, the null hypothesis was rejected using the default significance
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Fig. 4. Example of foot-strike identification using the F-VESPA. Top and bottom subplots show the vertical position and sagittal velocity of the heel marker at a subject’s left foot
with respect to time, respectively. Circles (◦) indicate ‘‘global’’ maxima and diamonds (⋄) indicate prominent local minima in the vertical position. Crosses (×) illustrate foot-strike
events identified using the F-VESPA. Dashed lines represent the height thresholds applied. Foot-strikes are defined as prominent local minima in the vertical position 𝑦𝐻 (𝑡) that
correspond to a negative sagittal velocity 𝑑𝑥𝐻 (𝑡).
Table 2
Evaluation and comparison of the FCA, FVA and F-VESPA algorithms across all treadmill speeds for young subjects. MAE columns represent
the mean absolute errors and standard deviations in frames of the FCA, FVA and F-VESPA algorithms, respectively. MTD columns represent the
mean time delays and standard deviations in frames of the FCA, FVA and F-VESPA algorithms, respectively. For each speed, the MAE and MTD
pair that resulted in the lowest total error is highlighted in bold. The total error of each algorithm for a specific treadmill speed is defined as
the sum of the MAE and MTD values.
Treadmill speed (m/s) FCA FVA F-VESPA

MAE (SD) MTD (SD) MAE (SD) MTD (SD) MAE (SD) MTD (SD)

T01: 0.50 4.91 (0.43) 30.11 (17.52) 2.49 (0.96) 11.22 (8.41) 4.36 (0.41) 1 (0)
T02: 0.69 4.89 (0.34) 37.78 (11.29) 2.84 (0.79) 8.0 (6.46) 4.27 (0.22) 1 (0)
T03: 0.88 4.90 (0.14) 30.0 (10.71) 3.13 (0.87) 5.67 (5.61) 4.29 (0.15) 1 (0)
T04: 1.07 5.03 (0.04) 28.0 (8.89) 3.24 (0.84) 5.44 (5.27) 4.30 (0.09) 1 (0)
T05: 1.26 5.08 (0.16) 31.56 (19.63) 3.53 (0.90) 6.22 (3.93) 4.27 (0.17) 1 (0)
T06: 1.45 4.99 (0.19) 32.67 (16.87) 3.56 (0.85) 4.11 (5.01) 4.26 (0.16) 1 (0)
T07: 1.64 4.97 (0.12) 45.78 (25.79) 3.78 (0.90) 3.0 (4.58) 4.22 (0.15) 1 (0)
T08: 1.82 4.93 (0.15) 37.78 (23.05) 4.18 (0.76) 1.67 (3.32) 4.20 (0.19) 1 (0)
Table 3
Confidence intervals for the evaluation and comparison of the FCA, FVA and F-VESPA algorithms across all treadmill speeds for young subjects.
For each algorithm, the 95% confidence intervals for both the absolute error and the time delay are reported. The total error of each algorithm
for a specific treadmill speed is defined as the sum of the absolute error and the time delay values.
Treadmill speed (m/s) FCA FVA F-VESPA

Absolute error Time delay Absolute error Time delay Absolute error Time delay

T01: 0.50 4.58 to 5.24 16.65 to 43.58 1.75 to 3.23 4.76 to 17.60 4.05 to 4.68 1 to 1
T02: 0.69 4.62 to 5.15 29.10 to 46.46 2.23 to 3.45 3.03 to 12.97 4.10 to 4.44 1 to 1
T03: 0.88 4.79 to 5.0 21.77 to 38.23 2.46 to 3.80 1.35 to 9.98 4.17 to 4.40 1 to 1
T04: 1.07 5.0 to 5.06 21.17 to 34.83 2.60 to 3.89 1.39 to 9.50 4.23 to 4.37 1 to 1
T05: 1.26 4.96 to 5.21 16.46 to 46.65 2.84 to 4.21 3.20 to 9.24 4.15 to 4.40 1 to 1
T06: 1.45 4.85 to 5.14 19.70 to 45.63 2.91 to 4.21 0.26 to 7.96 4.14 to 4.38 1 to 1
T07: 1.64 4.88 to 5.06 25.95 to 65.60 3.09 to 4.47 −0.52 to 6.52 4.10 to 4.34 1 to 1
T08: 1.82 4.81 to 5.04 20.06 to 55.50 3.59 to 4.77 −0.88 to 4.22 4.06 to 4.35 1 to 1
4

o
m
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threshold (𝑝 < .001). Therefore it was determined that the 𝑒𝑡 data of
ll three algorithms do not originate from normal distributions. As a
onsequence, we choose to compare the data by median and range.
urthermore, the paired t -tests between the implemented algorithms
ere verified (𝑝 < .001) using the non-parametric alternative through
he Kruskal–Wallis test (Kruskal and Wallis, 1952). Amongst all imple-
ented algorithms, the F-VESPA exhibits the lowest median (4) and
ange (from 2 to 7) in frames across all trials. The median corresponds
o a total error of 5 (4+1) frames or 33 ms (150 Hz sampling frequency).
he FCA and the FVA have a larger and smaller median of 5 and 3
rames, respectively, while the FCA is more consistent as it has a range
rom 2 to 8 frames. On the other hand, the FVA has a significantly
igher range from −2 to 10 frames.
6

. Discussion

This work evaluated a new kinematic algorithm for the detection
f the heel-strike event during gait in real-time. Although several kine-
atic algorithms have predicted foot-strike events with high accuracy
n the past, such as the FCA (Maiwald et al., 2009), FVA (O’Connor
et al., 2007) and FPOSV (Alton et al., 1998; Fellin et al., 2010), they
have been implemented mostly offline (Fellin et al., 2010; Sinclair
et al., 2011; Alvim et al., 2015), while their precision and latency
have not been validated in real-time implementation (Roeles et al.,
2018; Barkan et al., 2014). This is a major limitation that prevents
the use of such algorithms in real-time. This work advances the field
by proposing the F-VESPA, an extended version of FPOSV, which does
not need access to future data points, and therefore can be imple-
mented in real-time without loss of accuracy. The novel utilization
of the sagittal position of the heel marker in the F-VESPA allows the
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Fig. 5. Histograms of true error 𝑒𝑡 for young subjects in frames for F-VESPA (a), FCA (b), and FVA (c). Bars represent the frequency of each true error value in gait cycles.
s
t
t
i
c
d

C

w

recise detection of foot-strikes, without depending on complex and
omputational intensive tools. Direct comparison between the FPOSV
real-time implementation) and the F-VESPA showed that the latter
as more accurate across multiple subjects and walking speeds. The
erformance of the FPOSV was orders of magnitude worse, hence the
espective analysis was omitted for brevity.
In addition to the real-time implementation, another feature that
akes the F-VESPA unique is its overall efficiency, in terms of both
ccuracy and latency. That was shown in a comparison of the F-VESPA
ith two prominent existing algorithms: the FCA and the FVA. Real-
ime conditions were simulated for the execution of the F-VESPA, while
he FCA and FVA were implemented in offline conditions, by having
ccess to future data samples. Namely, the FCA and FVA required
xtensive parameter tuning to maximize performance, based on the
nowledge of future data that would not be available in real-time
onditions. Moreover, for comparison purposes, an ideal scenario for
heir latency was considered, as major time delay components were
gnored. On the other hand, the F-VESPA had access only to the current
nd previous samples. All local extrema had to be found without
tilizing any sophisticated functions, while the utilized parameters
ere not tuned to the given dataset. Furthermore, the true latency was
onsidered, as it resulted from the algorithm’s inherent time delay of
ne sample. As a result, the conditions of the comparison between the
eal-time F-VESPA and the offline FCA and FVA favored significantly
he latter. Regardless, the F-VESPA managed to outperform the other
wo algorithms across all speeds and subjects, by exhibiting an average
otal error of 33 ms, as shown in Section 3.
Although the proposed algorithm achieved reduced latency and

mproved accuracy, it should be noted that the F-VESPA was tested
nly in normal gait. As this work is intended for rehabilitation pur-
oses on impaired individuals, future work is underway to examine
he performance of the algorithm on subjects with pathological gait.
urthermore, the F-VESPA is only suitable for treadmill walking, which
ainly takes place in indoor environments. On the other hand, some
otential fields of application, such as FES and wearable devices,
rovide practical benefits outside a motion laboratory. However, these
ields require extensive time spent inside a lab for calibration and
raining phases, especially during the development of new technologies.
s a consequence, motion capture could be utilized to stream kinematic
ata in real-time to the employed device. Therefore, the proposed
lgorithm could be implemented, hence providing reliable and robust
ait segmentation in real-time.
In conclusion, this paper introduces a novel real-time kinematic

lgorithm for detecting foot-strike events during treadmill walking
cross different subjects and speeds. The algorithm was shown to have
7

uperior efficiency and robustness compared to previous works, even
hough they were implemented offline in much more favorable condi-
ions than the proposed algorithm. As real-time detection of gait events
s important for rehabilitation and gait analysis studies, this work
an significantly advance the field by allowing robust and accurate
etection of gait events in real-time using only kinematic data.
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