

Perspective

Will coral reefs survive by adaptive bleaching?

Ross Cunning

Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, U.S.A.

Correspondence: Ross Cunning (rcunning@sheddaquarium.org)

Some reef-building corals form symbioses with multiple algal partners that differ in ecologically important traits like heat tolerance. Coral bleaching and recovery can drive symbiont community turnover toward more heat-tolerant partners, and this 'adaptive bleaching' response can increase future bleaching thresholds by 1-2°C, aiding survival in warming oceans. However, this mechanism of rapid acclimatization only occurs in corals that are compatible with multiple symbionts, and only when the disturbance regime and competitive dynamics among symbionts are sufficient to bring about community turnover. The full scope of coral taxa and ecological scenarios in which symbiont shuffling occurs remains poorly understood, though its prevalence is likely to increase as warming oceans boost the competitive advantage of heat-tolerant symbionts, increase the frequency of bleaching events, and strengthen metacommunity feedbacks. Still, the constraints, limitations, and potential tradeoffs of symbiont shuffling suggest it will not save coral reef ecosystems; however, it may significantly improve the survival trajectories of some, or perhaps many, coral species. Interventions to manipulate coral symbionts and symbiont communities may expand the scope of their adaptive potential, which may boost coral survival until climate change is addressed.

Introduction

Coral reef ecosystems are declining rapidly due to human influence, with ocean warming causing more frequent and severe coral bleaching and mortality worldwide [1,2]. Until action to limit warming is taken on a global scale, corals must navigate challenging future environments through mechanisms of acclimatization and adaptation, and potential human interventions to accelerate these processes [3-5]. One mechanism by which some corals might rapidly acclimatize to rising temperatures is through changes in the composition of their Symbiodiniaceae communities. Through 'adaptive bleaching' [6-8], heat-sensitive Symbiodiniaceae may be replaced or outcompeted by more heattolerant types, thereby increasing the thermal tolerance of the coral holobiont. Such shifts toward heattolerant symbionts have been observed in some corals during natural bleaching events [9-11] and field and laboratory manipulations [12-14], and have been shown to increase bleaching thresholds by 1-2°C [13,15]. While bleaching may promote rapid turnover in symbiont dominance, changes in community composition may also gradually and dynamically track the environment [16,17], suggesting 'symbiont shuffling' is a general mechanism of acclimatization to environmental change [18]. Here, 'shuffling' is used to describe any change in symbiont community composition regardless of mechanism, though scientists have historically distinguished changes in the relative abundance of existing symbionts ('shuffling') from the acquisition of new symbionts from the environment ('switching') [19]. While both mechanisms may play important roles in the various ecological contexts described here, they can be impossible to distinguish in the field; therefore, 'shuffling' is used in a general sense to encompass both mechanisms and shift focus to the ecology of symbiont community changes.

Received: 31 August 2021 Revised: 10 November 2021 Accepted: 15 November 2021

Version of Record published: 9 December 2021

Ecological scope of symbiont shuffling

The scope for adaptive symbiont shuffling to improve coral reef survival depends on understanding when and where it occurs. Even though corals commonly host multiple symbionts at background

levels [20,21], many exhibit high specificity and fidelity to a single symbiont type [22] and may not be capable of shuffling [23]. Others have highly flexible symbioses, such as *Orbicella* spp. in the Caribbean, which routinely shift toward dominance by the thermally tolerant symbiont *Durusdinium trenchii* after bleaching and recovery [10,24–26]. Several other Caribbean species undergo similar shifts to *D. trenchii* [14], while others may shift to dominance by more tolerant *Symbiodinium* [27] or *Breviolum* species [28]. Shuffling toward heat-tolerant symbionts after bleaching has also been observed throughout the Indo-Pacific [9,11,29–31], suggesting it is a widespread phenomenon. Nevertheless, shuffling is much rarer in other well-studied species despite the prevalence of background symbionts [32,33]. The reason why dynamic, multi-partner symbiont assemblages occur in some coral species but not others remains poorly understood, though it may relate to variation in symbiont acquisition strategies [34,35] and the genetic architecture of symbiont recognition and immune pathways [36,37]. A better understanding of these constraints and mechanisms will be gained by studying symbiont shuffling in a wider range of host species, which should be a priority for future research.

While host-symbiont specificity may set the biological capacity for symbiont shuffling, its actual occurrence is an ecological outcome dependent on interactions between symbionts and the environment. Resources such as light and nutrients may limit symbiont growth and determine competitive outcomes among symbionts [38,39], while physical stressors and disturbance can further affect competitive hierarchies and drive successional changes in symbiont community structure [40,41]. For example, shuffling to tolerant symbiont dominance is more likely in corals that bleach more severely (reducing self-shading), and recover in a warmer environment [26], since higher light and temperature give stress-tolerant symbionts a greater competitive advantage as they repopulate the host. The difference in stress tolerance between co-occurring symbionts also determines the community trajectory through a disturbance event, with more evenly matched competitors changing less in relative abundance compared with symbionts with very different levels of tolerance, which may experience complete turnover in dominance [14]. Finally, minimum threshold abundances may also be needed in order for a symbiont to rise to dominance after bleaching [42]. In this way, symbionts' physiological traits and relative abundances, along with the environment and disturbance regime, drive variable community trajectories that sometimes result in changes in the dominant symbiont, and sometimes do not.

As reefs enter unprecedented environments and disturbance regimes, symbiont shuffling remains difficult to predict, but is likely to become even more prevalent. For example, repeated disturbances may incrementally increase background levels of tolerant symbionts such that they surpass minimum thresholds to rise to dominance after multiple bleaching events [43]. Furthermore, as tolerant symbionts increase in prevalence in coral hosts and the environment, they may be more readily available for uptake by bleached corals [44,45], leading to recovery with these symbionts in even more cases. While more research into these metacommunity feedbacks linked to symbiont availability and acquisition is needed to better predict the prevalence of symbiont shuffling (including long-term monitoring of its actual occurrence in the field), modeling studies indicate that if it is sufficiently widespread, coral cover decline may be delayed by several decades [46,47], helping to buy additional time to mitigate climate change.

Leveraging symbiont shuffling in interventions

Dynamic symbiont communities may also be leveraged in interventions to boost reef resilience, by incorporating directed symbiont manipulations into reef restoration and conservation actions [5,48]. For example, corals propagated in field or land-based nurseries could be manipulated to host tolerant symbionts prior to out planting, though to date such directed manipulations have only been performed in the laboratory (e.g. [14]). Tolerant symbionts could also be introduced into large, valuable colonies on the reef via grafting, where extracted tissue plugs are manipulated in the lab to host tolerant symbionts and re-implanted to the parent colony [49]. Seeding reef environments with thermotolerant symbionts could also boost their availability for uptake by bleached corals (e.g. [44]), but seeding approaches may be most effective in early coral life stages when symbionts are acquired from the environment. For example, rearing *O. faveolata* recruits in proximity to adult corals hosting *D. trenchii* increases uptake of these tolerant symbionts during symbiosis establishment [50], and such manipulations could be integrated into existing coral restoration approaches that rear and outplant sexual recruits to reefs [51,52]. Finally, the scope of any of these manipulations could be further increased with the use of symbionts evolved or engineered to be compatible with more hosts [53], and/or better cope with climate change stressors [54].

Tradeoffs and limitations of symbiont shuffling

The scope for tolerant symbionts to improve coral reef survival also depends on their net effect on coral performance, including potential tradeoffs, and the longevity of any positive impacts. One primary limitation is the transient nature of shuffling to heat-tolerant symbionts, since subsequent reversion toward less tolerant types may occur over months to years [24,25,55]. However, as both baseline temperatures and the frequency of bleaching events (now averaging every 6 years [1]) continue to increase, associations with heat-tolerant symbionts are likely to become more persistent, and more beneficial. Yet, tradeoffs of these associations may also occur, such as reduced carbon translocation and calcification of corals hosting thermally tolerant symbionts [56–61], which could reduce reef growth and ecosystem resilience [62]. Other physiological tradeoffs associated with thermotolerant symbionts could include reduced reproductive output [58], or increased disease susceptibility [63]. However, such metabolic costs of stress-tolerance are likely to vary across distinct host-symbiont associations [61,64], with some heat-tolerant symbionts potentially having no negative tradeoffs. Any tradeoffs will also depend on the environment, and growth disadvantages of heat-tolerant symbionts at cooler temperatures may be eliminated or reversed as temperatures rise [65,66]. Therefore, the benefits of heat-tolerant symbionts are likely to exceed their costs, with this advantage increasing as oceans continue to warm.

Conclusion

The survival of some corals may benefit from adaptive bleaching and symbiont shuffling, with these outcomes governed by host-symbiont compatibility, disturbance ecology, symbiont availability, and metacommunity dynamics. Given these various biological and ecological constraints, symbiont shuffling alone cannot ensure the survival of coral reef ecosystems. Indeed, many coral species may not be capable of changing symbiont partners, while those that are may only do so when conditions are 'just right' to promote community turnover and persistence. Nevertheless, symbiont shuffling may positively influence the survival trajectories of some, and perhaps many, coral species under continued warming, with its effects amplified by more frequent bleaching and strengthened metacommunity feedbacks. Research on symbiont community dynamics in a broader range of coral taxa, as well as in field settings, will be critical to understand and predict the cases in which symbiont shuffling may boost coral survival. In the meantime, interventions that leverage symbiont community manipulations should also be considered to maximize their potential benefits until climate change stressors are mitigated.

Acknowledgements

A. C. Baker, D. M. Baker, and one anonymous reviewer provided valuable feedback on this manuscript.

Competing Interests

The author declares that there are no competing interests associated with this manuscript.

Funding

The author acknowledges funding support from NSF OCE-1851305.

References

- Hughes, T.P., Anderson, K.D., Connolly, S.R., Heron, S.F., Kerry, J.T., Lough, J.M. et al. (2018) Spatial and temporal patterns of mass bleaching of corals in the anthropocene. *Science* 359, 80–83 https://doi.org/10.1126/science.aan8048
- 2 Kleypas, J., Allemand, D., Anthony, K., Baker, A.C., Beck, M.W., Hale, L.Z. et al. (2021) Designing a blueprint for coral reef survival. *Biol. Conserv.* **257**, 109107 https://doi.org/10.1016/j.biocon.2021.109107
- 3 van Oppen, M.J.H., Oliver, J.K., Putnam, H.M. and Gates, R.D. (2015) Building coral reef resilience through assisted evolution. *Proc. Natl Acad. Sci. U.S.A.* **112**, 2307–2313 https://doi.org/10.1073/pnas.1422301112
- 4 Bay, L.K., Rocker, M., Boström-Einarsson, L., Babcock, R., Buerger, P., Cleves, P. et al. (2019) Reef Restoration and Adaptation Program: Intervention Technical Summary. A report provided to the Australian Government by the Reef Restoration and Adaptation Program. Reef Restoration and Adaptation Program
- 5 National Academies of Sciences Engineering, Medicine. (2019) A Research Review of Interventions to Increase the Persistence and Resilience of Coral Reefs, The National Academies Press, Washington, DC
- 6 Buddemeier, R.W. and Fautin, D.G. (1993) Coral bleaching as an adaptive mechanism. Bioscience 43, 320–327 https://doi.org/10.2307/1312064
- Ware, J.R., Fautin, D.G. and Buddemeier, R.W. (1996) Patterns of coral bleaching: modeling the adaptive bleaching hypothesis. *Ecol. Modell.* 84, 199–214 https://doi.org/10.1016/0304-3800(94)00132-4
- 8 Buddemeier, R.W., Baker, A.C., Fautin, D.G. and Jacobs, J.R. (2004) The adaptive hypothesis of bleaching. In *Coral Health and Disease* (Rosenberg, E. and Loya, Y., eds), Springer, Berlin, Heidelberg, pp. 427–444 https://doi.org/10.1007/978-3-662-06414-6_24

- Jones, A., Berkelmans, R., van Oppen, M.J.H., Mieog, J.C. and Sinclair, W. (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. *Proc. Biol. Sci.* 275, 1359–1365 https://doi.org/:10.1098/rspb. 2008.0069
- Kemp, D.W., Hernandez-Pech, X., Iglesias-Prieto, R., Fitt, W.K. and Schmidt, G.W. (2014) Community dynamics and physiology of *Symbiodinium* spp. before, during, and after a coral bleaching event. *Limnol. Oceanogr.* **59**, 788–797 https://doi.org/10.4319/lo.2014.59.3.0788
- 11 Claar, D.C., Starko, S., Tietjen, K.L., Epstein, H.E., Cunning, R., Cobb, K.M. et al. (2020) Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. *Nat. Commun.* **11**, 6097 https://doi.org/10.1038/s41467-020-19169-y
- 12 Baker, A.C. (2001) Ecosystems; reef corals bleach to survive change, Nature 411, 765–766 https://doi.org/10.1038/35081151
- Berkelmans, R. and van Oppen, M.J.H. (2006) The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. *Proc. Biol. Sci.* **273**, 2305–2312 https://doi.org/:10.1098/rspb.2006.3567
- 14 Cunning, R., Silverstein, R.N. and Baker, A.C. (2018) Symbiont shuffling linked to differential photochemical dynamics of *Symbiodinium* in three Caribbean reef corals. *Coral Reefs* **37**, 145–152 https://doi.org/10.1007/s00338-017-1640-3
- 15 Silverstein, R.N., Cunning, R. and Baker, A.C. (2017) Tenacious D: *Symbiodinium* in clade D remain in reef corals at both high and low temperature extremes despite impairment. *J. Exp. Biol.* **220**, 1192–1196 https://doi.org/10.1242/jeb.148239
- 16 Chen, C.A., Wang, J.-T., Fang, L.-S. and Yang, Y.-W. (2005) Fluctuating algal symbiont communities in *Acropora palifera* (Scleractinia: Acroporidae) from Taiwan. *Mar. Ecol. Prog. Ser.* 295, 113–121 https://doi.org/10.3354/meps295113
- Huang, Y.-Y., Carballo-Bolaños, R., Kuo, C.-Y., Keshavmurthy, S. and Chen, C.A. (2020) Leptoria phrygia in southern Taiwan shuffles and switches symbionts to resist thermal-induced bleaching. Sci. Rep. 10, 7808 https://doi.org/10.1038/s41598-020-64749-z
- Fautin, D.G. and Buddemeier, R.W. (2004) Adaptive bleaching: a general phenomenon. Hydrobiologia 530/531, 459–467 https://doi.org/10.1007/s10750-004-2642-z
- Baker, A.C. (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu. Rev. Ecol. Evol. Syst. 34, 661–689 https://doi.org/10.1146/annurev.ecolsys.34.011802.132417
- 20 Silverstein, R.N., Correa, A.M.S. and Baker, A.C. (2012) Specificity is rarely absolute in coral–algal symbiosis: implications for coral response to climate change. *Proc. Biol. Sci.* 239, 2609–2618 https://doi.org/10.1098/rspb.2012.0055
- 21 Quigley, K.M., Baker, A.C., Coffroth, M.A., Willis, B.L. and van Oppen, M.J.H. (2018) Bleaching Resistance and the Role of Algal Endosymbionts. In Coral Bleaching: Patterns, Processes, Causes and Consequences (van Oppen, M.J.H. and Lough, J.M., eds), pp. 111–151, Springer International Publishing, Cham
- 22 LaJeunesse, T.C., Pettay, D.T., Sampayo, E.M., Phongsuwan, N., Brown, B.E., Obura, D.O. et al. (2010) Long-standing environmental conditions, geographic isolation and host-symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J. Biogeogr. 37, 785–800 https://doi.org/10.1111/j.1365-2699.2010.02273.x
- 23 Goulet, T.L. (2006) Most corals may not change their symbionts. Mar. Ecol. Prog. Ser. 321, 1–7 https://doi.org/10.3354/meps321001
- 24 Thornhill, D.J., LaJeunesse, T.C., Kemp, D.W., Fitt, W.K. and Schmidt, G.W. (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. *Mar. Biol.* **148**, 711–722 https://doi.org/10.1007/s00227-005-0114-2
- LaJeunesse, T.C., Smith, R.T., Finney, J.C. and Oxenford, H.A. (2009) Outbreak and persistence of opportunistic symbiotic dinoflagellates during the 2005 Caribbean mass coral 'bleaching' event. *Proc. Biol. Sci.* **276**, 4139–4148 https://doi.org/10.1098/rspb.2009.1405
- 26 Cunning, R., Silverstein, R.N. and Baker, A.C. (2015) Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc. Biol. Sci. 282, 20141725 https://doi.org/10.1098/rspb.2014.1725
- 27 Grottoli, A.G., Warner, M.E., Levas, S.J., Aschaffenburg, M.D., Schoepf, V., McGinley, M. et al. (2014) The cumulative impact of annual coral bleaching can turn some coral species winners into losers. *Glob. Chang. Biol.* 20, 3823–3833 https://doi.org/10.1111/gcb.12658
- 28 Lewis, C., Neely, K. and Rodriguez-Lanetty, M. (2019) Recurring episodes of thermal stress shift the balance from a dominant host-specialist to a background host-generalist zooxanthella in the threatened pillar coral, *Dendrogyra cylindrus. Front. Mar. Sci.* 6, 5 https://doi.org/10.3389/fmars.2019.00005
- 49 Hsu, C.-M., Keshavmurthy, S., Denis, V., Kuo, C.-Y., Wang, J.-T., Meng, P.-J. et al. (2012) Temporal and Spatial Variations in symbiont communities of catch bowl coral *Isopora palifera* (Scleractinia: Acroporidae) on reefs in Kenting National Park, Taiwan. *Zool. Stud.* 51, 11
- Thinesh, T., Meenatchi, R., Jose, P.A., Kiran, G.S. and Selvin, J. (2019) Differential bleaching and recovery pattern of southeast Indian coral reef to 2016 global mass bleaching event: Occurrence of stress-tolerant symbiont *Durusdinium* (Clade D) in corals of Palk Bay. *Mar. Pollut. Bull.* **145**, 287–294 https://doi.org/10.1016/j.marpolbul.2019.05.033
- Oladi, M., Rouzbehani, S., Ahmadzadeh, F. and Ghazilou, A. (2021) Dynamics of Dipsastraea pallida-symbiont association following bleaching events across the northern Persian Gulf and Gulf of Oman. *Symbiosis* **84**, 141–149 https://doi.org/10.1007/s13199-021-00773-5
- 32 McGinley, M.P., Aschaffenburg, M.D., Pettay, D.T., Smith, R.T., LaJeunesse, T.C. and Warner, M.E. (2012) *Symbiodinium* spp. in colonies of eastern Pacific *Pocillopora* spp. are highly stable despite the prevalence of low-abundance background populations. *Mar. Ecol. Prog. Ser.* **462**, 1–7 https://doi.org/10.3354/meps09914
- 33 Cunning, R., Ritson-Williams, R. and Gates, R.D. (2016) Patterns of bleaching and recovery of *Montipora capitata* in Kāne'ohe Bay, Hawai'i, USA. *Mar. Ecol. Prog. Ser.* **551**, 131–139 https://doi.org/10.3354/meps11733
- 34 Baird, A.H., Cumbo, V.R., Leggat, W. and Rodriguez-Lanetty, M. (2007) Fidelity and flexibility in coral symbioses. Mar. Ecol. Prog. Ser. 347, 307–309 https://doi.org/10.3354/meps07220
- 35 Quigley, K.M., Willis, B.L. and Bay, L.K. (2017) Heritability of the *Symbiodinium* community in vertically- and horizontally-transmitting broadcast spawning corals. *Sci. Rep.* **7**, 8219 https://doi.org/10.1038/s41598-017-08179-4
- Davy, S.K., Allemand, D. and Weis, V.M. (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 https://doi. org/10.1128/MMBR.05014-11
- 37 Mansfield, K.M. and Gilmore, T.D. (2019) Innate immunity and cnidarian-Symbiodiniaceae mutualism. *Dev. Comp. Immunol.* **90**, 199–209 https://doi.org/10.1016/j.dci.2018.09.020
- Palmer, T.M., Stanton, M.L. and Young, T.P. (2003) Competition and coexistence: exploring mechanisms that restrict and maintain diversity within mutualist guilds. Am. Nat. 162, S63–S79 https://doi.org/10.1086/378682

- Wong, J.C.Y., Enríquez, S. and Baker, D.M. (2021) Towards a trait-based understanding of Symbiodiniaceae nutrient acquisition strategies. *Coral Reefs* **40**, 625–639 https://doi.org/10.1007/s00338-020-02034-1
- 40 McIlroy, S.E., Cunning, R., Baker, A.C. and Coffroth, M.A. (2019) Competition and succession among coral endosymbionts. Ecol. Evol. 18, 3532 https://doi.org/10.1002/ece3.5749
- 41 McIlroy, S.E., Wong, J.C.Y. and Baker, D.M. (2020) Competitive traits of coral symbionts may alter the structure and function of the microbiome. *ISME J.* **14.** 2424–2432 https://doi.org/10.1038/s41396-020-0697-0
- 42 Bay, L.K., Doyle, J., Logan, M. and Berkelmans, R. (2016) Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral. Open Sci. 3. 160322 https://doi.org/10.1098/rsos.160322
- 43 Winter, R.N. (2017) Environmental Controls on the Reassembly of Symbiodinium Communities in Reef Corals Following Perturbation: Implications for Reef Futures Under Climate Change, University of Miami
- 44 Jones, P.R. (2014) Biotic and Abiotic Influences on Algal Symbiont (Symbiodinium spp.) Community Dynamics in Reef Corals Recovering From Disturbance, University of Miami
- 45 Boulotte, N.M., Dalton, S.J., Carroll, A.G., Harrison, P.L., Putnam, H.M., Peplow, L.M. et al. (2016) Exploring the *Symbiodinium* rare biosphere provides evidence for symbiont switching in reef-building corals. *ISME J.* **10**, 2693–2701 https://doi.org/10.1038/ismej.2016.54
- 46 Logan, C.A., Dunne, J.P., Eakin, C.M. and Donner, S.D. (2014) Incorporating adaptive responses into future projections of coral bleaching. Glob. Chang. Biol. 20, 125–139 https://doi.org/10.1111/gcb.12390
- 47 Logan, C.A., Dunne, J.P., Ryan, J.S., Baskett, M.L. and Donner, S.D. (2021) Quantifying global potential for coral evolutionary response to climate change. *Nat. Clim. Chang.* **11**, 537–542 https://doi.org/10.1038/s41558-021-01037-2
- 48 Quigley, K.M., Bay, L.K. and Willis, B.L. (2018) Leveraging new knowledge of symbiodinium community regulation in corals for conservation and reef restoration. *Mar. Ecol. Prog. Ser.* **600**, 245–253 https://doi.org/10.3354/meps12652
- 49 Buzzoni, D. (2020) A Novel Field-Based Method of Vectoring Thermotolerant Algal Symbionts (Family Symbiodiniaceae) into Coral Colonies, University of Miami. 991031495486602976
- 50 Williamson, O.M., Allen, C.E., Williams, D.E., Johnson, M.W., Miller, M.W. and Baker, A.C. (2021) Neighboring colonies influence uptake of thermotolerant endosymbionts in threatened Caribbean coral recruits. Coral Reefs 40, 867–879 https://doi.org/10.1007/s00338-021-02090-1
- 51 Chamberland, V.F., Vermeij, M.J.A., Brittsan, M., Carl, M., Schick, M., Snowden, S. et al. (2015) Restoration of critically endangered elkhorn coral (*Acropora palmata*) populations using larvae reared from wild-caught gametes. *Glob. Ecol. Conserv.* **4**, 526–537 https://doi.org/10.1016/j.gecco.2015. 10.005
- 52 Guest, J.R., Baria, M.V., Gomez, E.D., Heyward, A.J. and Edwards, A.J. (2014) Closing the circle: is it feasible to rehabilitate reefs with sexually propagated corals? *Coral Reefs* **33**, 45–55 https://doi.org/10.1007/s00338-013-1114-1
- 53 Weis, V.M. (2019) Cell biology of coral symbiosis: foundational study Can inform solutions to the coral reef crisis. *Integr. Comp. Biol.* **59**, 845–855 https://doi.org/10.1093/icb/icz067
- 54 Chakravarti, L.J., Beltran, V.H. and van Oppen, M.J.H. (2017) Rapid thermal adaptation in photosymbionts of reef-building corals. *Glob. Chang. Biol.* 23, 4675–4688 https://doi.org/10.1111/qcb.13702
- 55 Baker, A.C., McClanahan, T.R., Starger, C.J. and Boonstra, R.K. (2013) Long-term monitoring of algal symbiont communities in corals reveals stability is taxon dependent and driven by site-specific thermal regime. *Mar. Ecol. Prog. Ser.* **479**, 85–97 https://doi.org/10.3354/meps10102
- 56 Little, A.F., van Oppen, M.J.H. and Willis, B.L. (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304, 1492–1494 https://doi.org/10.1126/science.1095733
- 57 Cantin, N.E., van Oppen, M.J.H., Willis, B.L., Mieog, J.C. and Negri, A.P. (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. *Coral Reefs* **28**, 405 https://doi.org/10.1007/s00338-009-0478-8
- 58 Jones, A.M. and Berkelmans, R. (2011) Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant symbiodinium type-D. *J. Mar. Biol.* **2011**, 185890 https://doi.org/10.1155/2011/185890
- 59 Pettay, D.T., Wham, D.C., Smith, R.T., Iglesias-Prieto, R. and LaJeunesse, T.C. (2015) Microbial invasion of the Caribbean by an Indo-Pacific coral zooxanthella. *Proc. Natl Acad. Sci. U.S.A.* **112**, 7513–7518 https://doi.org/10.1073/pnas.1502283112
- Baker, D.M., Freeman, C.J., Wong, J.C.Y., Fogel, M.L. and Knowlton, N. (2018) Climate change promotes parasitism in a coral symbiosis. *ISME J.* 12, 921–930 https://doi.org/10.1038/s41396-018-0046-8
- 61 Wall, C.B., Kaluhiokalani, M., Popp, B.N., Donahue, M.J. and Gates, R.D. (2020) Divergent symbiont communities determine the physiology and nutrition of a reef coral across a light-availability gradient. *ISME J.* **14**, 945–958 https://doi.org/10.1038/s41396-019-0570-1
- 62 Ortiz, J.C., Rivero, M.G. and Mumby, P.J. (2013) Can a thermally tolerant symbiont improve the future of Caribbean coral reefs? *Glob. Chang. Biol.* **19**, 273–281 https://doi.org/10.1111/qcb.12027
- 63 Shore-Maggio, A., Callahan, S.M. and Aeby, G.S. (2018) Trade-offs in disease and bleaching susceptibility among two color morphs of the Hawaiian reef coral, *Montipora capitata. Coral Reefs* **37**, 507–517 https://doi.org/10.1007/s00338-018-1675-0
- 64 Matthews, J.L., Crowder, C.M., Oakley, C.A., Lutz, A., Roessner, U., Meyer, E. et al. (2017) Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. *Proc. Natl Acad. Sci. U.S.A.* **114**, 13194–9 https://doi.org/10.1073/pnas.1710733114
- 65 Cunning, R., Gillette, P., Capo, T.R., Galvez, K. and Baker, A.C. (2015) Growth tradeoffs associated with thermotolerant symbionts in the coral *Pocillopora damicornis* are lost in warmer oceans. *Coral Reefs* **34**, 155–160 https://doi.org/10.1007/s00338-014-1216-4
- 66 Quigley, K.M., Randall, C.J., van Oppen, M.J.H. and Bay, L.K. (2020) Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. *Biol. Open* **9**, bio047316 https://doi.org/10.1242/bio.047316