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Will coral reefs survive by adaptive bleaching?
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Some reef-building corals form symbioses with multiple algal partners that differ in eco-
logically important traits like heat tolerance. Coral bleaching and recovery can drive sym-
biont community turnover toward more heat-tolerant partners, and this ‘adaptive
bleaching’ response can increase future bleaching thresholds by 1–2°C, aiding survival in
warming oceans. However, this mechanism of rapid acclimatization only occurs in corals
that are compatible with multiple symbionts, and only when the disturbance regime and
competitive dynamics among symbionts are sufficient to bring about community turn-
over. The full scope of coral taxa and ecological scenarios in which symbiont shuffling
occurs remains poorly understood, though its prevalence is likely to increase as warming
oceans boost the competitive advantage of heat-tolerant symbionts, increase the fre-
quency of bleaching events, and strengthen metacommunity feedbacks. Still, the con-
straints, limitations, and potential tradeoffs of symbiont shuffling suggest it will not save
coral reef ecosystems; however, it may significantly improve the survival trajectories of
some, or perhaps many, coral species. Interventions to manipulate coral symbionts and
symbiont communities may expand the scope of their adaptive potential, which may
boost coral survival until climate change is addressed.

Introduction
Coral reef ecosystems are declining rapidly due to human influence, with ocean warming causing
more frequent and severe coral bleaching and mortality worldwide [1,2]. Until action to limit
warming is taken on a global scale, corals must navigate challenging future environments through
mechanisms of acclimatization and adaptation, and potential human interventions to accelerate these
processes [3–5]. One mechanism by which some corals might rapidly acclimatize to rising tempera-
tures is through changes in the composition of their Symbiodiniaceae communities. Through ‘adaptive
bleaching’ [6–8], heat-sensitive Symbiodiniaceae may be replaced or outcompeted by more heat-
tolerant types, thereby increasing the thermal tolerance of the coral holobiont. Such shifts toward heat-
tolerant symbionts have been observed in some corals during natural bleaching events [9–11] and
field and laboratory manipulations [12–14], and have been shown to increase bleaching thresholds by
1–2°C [13,15]. While bleaching may promote rapid turnover in symbiont dominance, changes in com-
munity composition may also gradually and dynamically track the environment [16,17], suggesting
‘symbiont shuffling’ is a general mechanism of acclimatization to environmental change [18]. Here,
‘shuffling’ is used to describe any change in symbiont community composition regardless of mechan-
ism, though scientists have historically distinguished changes in the relative abundance of existing
symbionts (‘shuffling’) from the acquisition of new symbionts from the environment (‘switching’)
[19]. While both mechanisms may play important roles in the various ecological contexts described
here, they can be impossible to distinguish in the field; therefore, ‘shuffling’ is used in a general sense
to encompass both mechanisms and shift focus to the ecology of symbiont community changes.

Ecological scope of symbiont shuffling
The scope for adaptive symbiont shuffling to improve coral reef survival depends on understanding
when and where it occurs. Even though corals commonly host multiple symbionts at background
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levels [20,21], many exhibit high specificity and fidelity to a single symbiont type [22] and may not be capable
of shuffling [23]. Others have highly flexible symbioses, such as Orbicella spp. in the Caribbean, which rou-
tinely shift toward dominance by the thermally tolerant symbiont Durusdinium trenchii after bleaching and
recovery [10,24–26]. Several other Caribbean species undergo similar shifts to D. trenchii [14], while others
may shift to dominance by more tolerant Symbiodinium [27] or Breviolum species [28]. Shuffling toward heat-
tolerant symbionts after bleaching has also been observed throughout the Indo-Pacific [9,11,29–31], suggesting
it is a widespread phenomenon. Nevertheless, shuffling is much rarer in other well-studied species despite the
prevalence of background symbionts [32,33]. The reason why dynamic, multi-partner symbiont assemblages
occur in some coral species but not others remains poorly understood, though it may relate to variation in
symbiont acquisition strategies [34,35] and the genetic architecture of symbiont recognition and immune path-
ways [36,37]. A better understanding of these constraints and mechanisms will be gained by studying symbiont
shuffling in a wider range of host species, which should be a priority for future research.
While host-symbiont specificity may set the biological capacity for symbiont shuffling, its actual occur-

rence is an ecological outcome dependent on interactions between symbionts and the environment.
Resources such as light and nutrients may limit symbiont growth and determine competitive outcomes
among symbionts [38,39], while physical stressors and disturbance can further affect competitive hierarchies
and drive successional changes in symbiont community structure [40,41]. For example, shuffling to tolerant
symbiont dominance is more likely in corals that bleach more severely (reducing self-shading), and recover
in a warmer environment [26], since higher light and temperature give stress-tolerant symbionts a greater
competitive advantage as they repopulate the host. The difference in stress tolerance between co-occurring
symbionts also determines the community trajectory through a disturbance event, with more evenly
matched competitors changing less in relative abundance compared with symbionts with very different
levels of tolerance, which may experience complete turnover in dominance [14]. Finally, minimum threshold
abundances may also be needed in order for a symbiont to rise to dominance after bleaching [42]. In this
way, symbionts’ physiological traits and relative abundances, along with the environment and disturbance
regime, drive variable community trajectories that sometimes result in changes in the dominant symbiont,
and sometimes do not.
As reefs enter unprecedented environments and disturbance regimes, symbiont shuffling remains difficult to

predict, but is likely to become even more prevalent. For example, repeated disturbances may incrementally
increase background levels of tolerant symbionts such that they surpass minimum thresholds to rise to domin-
ance after multiple bleaching events [43]. Furthermore, as tolerant symbionts increase in prevalence in coral
hosts and the environment, they may be more readily available for uptake by bleached corals [44,45], leading to
recovery with these symbionts in even more cases. While more research into these metacommunity feedbacks
linked to symbiont availability and acquisition is needed to better predict the prevalence of symbiont shuffling
(including long-term monitoring of its actual occurrence in the field), modeling studies indicate that if it is suf-
ficiently widespread, coral cover decline may be delayed by several decades [46,47], helping to buy additional
time to mitigate climate change.

Leveraging symbiont shuffling in interventions
Dynamic symbiont communities may also be leveraged in interventions to boost reef resilience, by incorporat-
ing directed symbiont manipulations into reef restoration and conservation actions [5,48]. For example, corals
propagated in field or land-based nurseries could be manipulated to host tolerant symbionts prior to out plant-
ing, though to date such directed manipulations have only been performed in the laboratory (e.g. [14]).
Tolerant symbionts could also be introduced into large, valuable colonies on the reef via grafting, where
extracted tissue plugs are manipulated in the lab to host tolerant symbionts and re-implanted to the parent
colony [49]. Seeding reef environments with thermotolerant symbionts could also boost their availability for
uptake by bleached corals (e.g. [44]), but seeding approaches may be most effective in early coral life stages
when symbionts are acquired from the environment. For example, rearing O. faveolata recruits in proximity to
adult corals hosting D. trenchii increases uptake of these tolerant symbionts during symbiosis establishment
[50], and such manipulations could be integrated into existing coral restoration approaches that rear and out-
plant sexual recruits to reefs [51,52]. Finally, the scope of any of these manipulations could be further increased
with the use of symbionts evolved or engineered to be compatible with more hosts [53], and/or better cope
with climate change stressors [54].
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Tradeoffs and limitations of symbiont shuffling
The scope for tolerant symbionts to improve coral reef survival also depends on their net effect on coral per-
formance, including potential tradeoffs, and the longevity of any positive impacts. One primary limitation is
the transient nature of shuffling to heat-tolerant symbionts, since subsequent reversion toward less tolerant
types may occur over months to years [24,25,55]. However, as both baseline temperatures and the frequency of
bleaching events (now averaging every 6 years [1]) continue to increase, associations with heat-tolerant sym-
bionts are likely to become more persistent, and more beneficial. Yet, tradeoffs of these associations may also
occur, such as reduced carbon translocation and calcification of corals hosting thermally tolerant symbionts
[56–61], which could reduce reef growth and ecosystem resilience [62]. Other physiological tradeoffs associated
with thermotolerant symbionts could include reduced reproductive output [58], or increased disease suscepti-
bility [63]. However, such metabolic costs of stress-tolerance are likely to vary across distinct host-symbiont
associations [61,64], with some heat-tolerant symbionts potentially having no negative tradeoffs. Any tradeoffs
will also depend on the environment, and growth disadvantages of heat-tolerant symbionts at cooler tempera-
tures may be eliminated or reversed as temperatures rise [65,66]. Therefore, the benefits of heat-tolerant sym-
bionts are likely to exceed their costs, with this advantage increasing as oceans continue to warm.

Conclusion
The survival of some corals may benefit from adaptive bleaching and symbiont shuffling, with these outcomes
governed by host-symbiont compatibility, disturbance ecology, symbiont availability, and metacommunity
dynamics. Given these various biological and ecological constraints, symbiont shuffling alone cannot ensure the
survival of coral reef ecosystems. Indeed, many coral species may not be capable of changing symbiont part-
ners, while those that are may only do so when conditions are ‘just right’ to promote community turnover and
persistence. Nevertheless, symbiont shuffling may positively influence the survival trajectories of some, and
perhaps many, coral species under continued warming, with its effects amplified by more frequent bleaching
and strengthened metacommunity feedbacks. Research on symbiont community dynamics in a broader range
of coral taxa, as well as in field settings, will be critical to understand and predict the cases in which symbiont
shuffling may boost coral survival. In the meantime, interventions that leverage symbiont community manipu-
lations should also be considered to maximize their potential benefits until climate change stressors are
mitigated.
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