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Abstract

Given an alphabet size m € N thought of as a constant, and k= (k1, ..., km) whose entries sum of
up n, the k-multi-slice is the set of vectors z € [m]™ in which each symbol i € [m] appears precisely k;
times. We show an invariance principle for low-degree functions over the multi-slice, to functions over
the product space ([m]™, u™) in which p(i) = k;/n. This answers a question raised by [22].

As applications of the invariance principle, we show:

1. An analogue of the “dictatorship test implies computational hardness” paradigm for problems with
perfect completeness, for a certain class of dictatorship tests. Our computational hardness is proved
assuming a recent strengthening of the Unique-Games Conjecture, called the Rich 2-to-1 Games
Conjecture.

Using this analogue, we show that assuming the Rich 2-to-1 Games Conjecture, (a) there is an
r-ary CSP P, for which it is NP-hard to distinguish satisfiable instances of the CSP and instances
that are at most 2T2f + o(1) satisfiable, and (b) hardness of distinguishing 3-colorable graphs, and
graphs that do not contain an independent set of size o(1).

2. A reduction of the problem of studying expectations of products of functions on the multi-slice to
studying expectations of products of functions on correlated, product spaces. In particular, we are
able to deduce analogues of the Gaussian bounds from [40] for the multi-slice.

3. In a companion paper, we show further applications of our invariance principle in extremal com-
binatorics, and more specifically to proving removal lemmas of a wide family of hypergraphs H
called (-forests, which is a natural extension of the well-studied case of matchings.

1 Introduction

The invariance principle of Mossel, O’Donnell and Oleszkiewicz [42] is a powerful analytical tool with wide
range of applications throughout theoretical computer science, discrete mathematics and combinatorics.'
Initially motivated by proving optimal hardness of approximation result for Max-Cut [35] (assuming the
Unique-Games Conjecture [34]), this technique has become ubiquitous in analysis of PCP constructions,
and also has many other significant applications in different areas of discrete mathematics.
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The invariance principle has been since extended and generalized in several ways: for general product
spaces and operators [40], under weaker assumptions [41], and to a limited extent also beyond product
spaces [22, 23]. These extensions are crucial in the analysis of many PCP constructions (especially based
on the Unique-Games Conjecture), a prime example being Raghavendra’s result regarding the optimality
of semi-definite algorithms for CSPs [44]. They are also useful in other areas such as coding theory [27],
learning theory [20], property testing [7], as well as in combinatorics [11, 38, 33].

The main goal of this paper is to establish an invariance principle for the multi-slice, a generalization
of the Boolean slice for which an invariance principle was recently established [22, 23]. We also give
applications of this invariance principle to hardness of approximation, and extremal combinatorics.

1.1 The multi-slice

Much of this paper is devoted to the study of multi-slices, defined below.

Definition 1.1. Ler n € N and ¥ = [m] be a finite alphabet. For a tuple of non-negative integers k=
(K1, ..., km) that add up to n, we define the multi-slice Uy C [m|™ as the set of vectors x € [m|" that for
all i € [m], have exactly k; of their coordinates equal to i.

We will mostly be concerned with a-balanced multi-slices, which are multi-slices ¢ € [m]™ in which
k; > an for all i € [m]. Here and throughout, the alphabet m and the parameter « are thought of as
constants.” Given a multi-slice Uy, it is natural to consider its product analogue, i.e. [m]™ along with the

product measure V?” defined by v;(i) = %, and ask how different do the domains ({/;, Uniform) and

([m]™, uli:?") behave. More precisely, we will be interested in the following type of invariance between the

two domains: given a function f: U;; — R, can one associate with f a function f : [m]™ — R, such that f

and f are very close to each other? For the function to make sense, we must of course define what “close
to each other” even means — these are functions over two different domains, so distance measures such as
the L? distance do not make sense. To define things more precisely, we note that a typical point y ~ 1/}?” is
quite close to a point in the multi-slice — its distance from it is typically O,,(y/n). Thus, it makes sense to
consider a coupling between the two domains, say (x,y), such that x is (marginally) a uniform point from

the multi-slice, y is (marginally) distributed according to y}?”, and typically the Hamming distance between

x and y is Oy, (y/n). In this language, we will say that f and f are close if fx) ~ f(y) where we sample
x,y according to the above coupled distribution.?

Unfortunately, one cannot hope for a statement of this great generality. The issue is that “high-degree”
functions may be able to distinguish the multi-slice from its product analogue. To be more concrete, take

any A C ([k"l]) of size §(;"), and consider the function f(z) = AZG:A 1, ,_1x - Then there is no f that is close

to f in the above sense — the issue is that there is no good choice for f (y) when the number of 1’s in fis
different from k; (which happens with probability 1 — o(1)).

Our first result asserts that “high degree” functions are in fact the only obstruction to an invariance
between the multi-slice and its product analogue. Namely, we show that if f is a low-degree function, then
one may find f as above. To make a formal statement, we require a few definitions. First, we formally define
the degree of a function on the multi-slice.

There are natural extensions of our results to the case that m is not necessarily a constant but is allowed to grow with 7, but we
omit them from this paper.

3For our applications, we will need additional natural properties from the associated function f. These properties are mainly
concerned with the notion of “influence” and “noisy-influence” of coordinates, and we will want them to be roughly preserved.



Definition 1.2. For a multi-slice U;; over alphabet [n]. we say a function f: U; — R is a d-junta if
there exists a set of coordinates A C [n] of size at most d, such that f(x) = g(xa) for some function
g: [m]4 =R

We can now define the space of degree d functions. We will use expectation inner products throughout
the paper, i.e. for f, g: Uy — R we define (f, g) = Exe pus. [/ (x)g(x)]-

Definition 1.3. Ford = 0,1,...,n, we denote by Vq(U;) C {f: Uy — R} the span of d-juntas. We often
refer to this space as the space of degree d functions. We also define V_q(Uy) = Va(Uz) N Va1 (Z/{E)L.

Thus, slightly informally, we will often refer to functions from V(U;) for small d as low-degree func-
tions, and refer to functions perpendicular to that space, i.e. in Vg (Z/{E)L, as high-degree functions.

Next, we wish to define the notion of couplings that will be central in our paper, and we first need to
define symmetric distributions.

Definition 1.4. For r € N, we say a distribution 1 over ([m1] X ... X [m,])" is symmetric under the
action of Sy, (or simply symmetric) if for all m € Sy, the distribution of (7w(x(1)),...,m(x(r))), where
(x(1),...,x(7)) ~ p, is the same as .

We will often identify the domains ([m1] x ... X [m,])™ and [m1]™ X ... X [m,]"™, choosing the precise
view depending on the context. Next, we define a specific type of couplings that will be useful for us in this

paper.

Definition 1.5. Let o,( > 0, m € N. For symmetric distributions v1,vo over [m]"™, a («, ()-coupling

between ([m|",v1) and ([m]", v2) is a jointly distributed C = (x,y) satisfying the following properties.
1. The marginal distribution of X is vy, and the marginal distribution of y is vs.
2. The distribution of C is symmetric under the action of Sy,.

3. Foralli € [n], Prxyyc [Xi # yi] < ¢

2

4. Tail bounds: for all € > 0, it holds that Pr(x y)c [[{i | z;i # yi}| > en] < Lemoem,

A basic example is given by Boolean slices. For example, setting m = 2 and taking v; to be the uniform
distribution over {0,1}", v to be the uniform distribution over the vectors from {0, 1}" with Hamming
weight n/2. Indeed, a valid coupling in this case is simple to construct: (x,y) are sampled by taking
x ~ vy; if the Hamming weight of x is at least /2, we take y < x of Hamming weight n/2 randomly, and
otherwise we take y > x of Hamming weight /2 randomly. One may show that this is an («, ¢)-coupling

fora =Q(1)and( = O (ﬁ) We omit the proof of this fact as in Proposition 4.6, we give a more general

construction that also applies to this case and gives the same parameters.

Earlier, we have seen that couplings allow us to define distance measures between functions on differ-
ent domains. More importantly however, they also allow us to naturally lift functions from one domain to
another, as described below. Suppose C is a coupling between (U, Uniform) and ([m]", yg)”). We intro-

duce the operators Tc: L*(U, Uniform) — L?([m]", u’?") and its adjoint operator T} : L?([m]", y}%@”) —
L?(Uy, Uniform), defined as

Tef(y) = i« iE)NC [f(x)|y=vy],  Teglz)= « £E)~c [9(y) |x =z].



With this in mind, given a function f: U;; — R, our associated function on the product space will be T¢ f,
where C is a coupling with sufficiently good parameters. Our invariance principle for low-degree functions
reads:

Lemma 1.6. Let d,m,n € N, o, ¢ > 0, and let Uy be multi-slice over alphabet [m]. Suppose f: U — R
is a function of degree at most d, and C,C" are (o, {)-coupling between (Uy) and (Im]", V?"). Then

E [(f(x) = Tef(y))?] <8VdC|IfIl5-
(xy)~C’

Next, to go beyond low-degree functions, we must consider settings in which the contributions of high-
degree terms are vanishing (in which case the question is, in essence, about low-degree functions). In [42,
40], it was shown that connected product distributions provide an important such example, and we show that
an appropriate version of this result continues to hold in the multi-slice. To formally define this setting, we
require a few definitions. First, we define the notion of admissible distributions.

Definition 1.7. For a distribution p over (fmq] X -+ x [m,])" and @ € [m1] X -+ x [m,], we denote

o= P 1), = . ol
Ha (x(l),...,)E(r))wu [X( )z ai, ,X(T’)Z ar]
icr[n]
Definition 1.8. Ler a € (0,1), 7 € N and let Upys - - - Uy(,y be multi-slices over alphabets [ma], ..., [m,]

respectively. We say a distribution u over L[E(l) X oo X Z/{E(’I‘) is a-admissible if it satisfies the following
properties.

1. The distribution y is symmetric under Sy,
2. Forall@ € [m1] X ... X [m,] it either holds that uz = 0 or uz > o
Next, we define the notion of connectedness for a distribution .

Definition 1.9. Let r,mq,...,m, € N, and let . be a distribution over [m1]™ x ...[m,|". We say p is

connected, if for all i, the graph H; = (Vi U Vi, E) defined as follows is connected: (1) Vi C [m;]",

Vo = [[[m;]™ are the support of the corresponding marginal distributions of i, and (2) (v1,v2) is an edge
J#i

ifx € [m1]™ X ...[m.|™ whose ith component is in v, and the rest of its components are according to vo,

is in the support of .

Finally, we define the product analogue [ of a given distribution p over the multi-slice.
Definition 1.10. Let Uz - - - U,y be multislices over alphabets [m1l, ..., [m;], and let u be a distribu-
tion over Uy 1) X ... X Ug,\. Foreachi € [n], define the distribution [i; over [m1] X ... X [m,] as

1;(a) = Pr x(1); = a1,...,x(r); = a].
P8 = g, Py = @1 (r)i = a]

n
Then, the product analogue of p is defined as fi = [] fu.
i=1
We remark that we will mostly be interested with admissible distributions p, hence the marginal dis-
tributions p; (as well as of fi;) will be the same for all ¢ € [n]. We can now state our main invariance
principle.



Theorem 1.11. Forall a € (0,1), M,r € N, mqy,...,m, € N, € > 0 there are ( > 0, N € N such that
the following holds for n > N. Suppose that

e Fori = 1,...,r, the multi-slice Z/{»U C [my]™ is a-balanced, and C; is a («, ()-coupling between

(L{,;(i),Uniform) and ([m;]"™ ,VI%ZE”))

,
e L is a connected, oi-admissible distribution over H Ry
Palic}

e [i the product version of | as in Definition 1.10, and there is an (v, ()-coupling between . and fi.

Then for all f;: U

7(i) — R such that | fillo, < M for all i, it holds that

E [H fl-<x<z'>>]
i=1

(<(1),0x(r))

\

e <

A simple example application for Theorem 1.11 is given in the Boolean slice and the Kneser graph on it.
Namely, we consider the case that r = 2, m; = mg = 2, k(1) = k(2) = k = ({,n — ¢) for £ = 0.49n and
11 is the uniform distribution on (z, y) from { (z,y) € U x U; | (z5,5:) # (2,2) Vi € [n]}. The conditions
of the theorem are easily seen to hold in this case, and hence Theorem 1.11 applies. In this case, if fi, fo
are indicator functions of subsets of Uz, the first expectation in Theorem 3.10 counts the number of edges in
the Kneser graph that go between these two subsets, and the theorem allows us to transfer this problem into
a related problem over a product domain. In the latter domain good bounds are often already known (for
example in [40] bounds for such expectations were proved by further moving to Gaussian space).

(1), ,y

Remark 1.12. A few remarks are in order.

1. First, our result is more general, in the sense that it works for all distributions for which the contribu-
tion of high-degree functions to expectations such as Bx(1),....x(r))~pu [H fi(x(i ))] is negligible. See

Section 5 for details. Thus, the majority of the effort in the proof of Theorem 1.11 lies in showing that
high-degree terms do not contribute much to the expectation of the product provided (i is connected
and admissible.

2. We remark that for most distributions p of interest, the existence of couplings as in Theorem 1.11 is
easy to establish, and thus encourage the reader to think of these conditions as trivially holding. See
Proposition 4.6 for a general construction of couplings (which captures all of the cases considered
herein).

We note that our invariance principle is different from the one proved in [22, 23], even when specialized
to the Boolean slice, i.e. the alphabet m = 2. The reason is that therein, the authors find a canonical basis
of the space of functions f: U — R, which then allows them to interpret them as functions over {0, 1}"
without any ambiguity. The authors then show this extension then behaves very similarly to the original
function f. Our associated function with f on the other hand, namely T¢ f, can be thought of as mild
averaging of the function f. Typically, the parameter ¢ of our coupling would be ©(1/4/n), thus the points
(x,y) ~ C are typically of Hamming distance ©(+/n) apart, and so T¢ f (y) could be thought of as averaging
over points z in the mutli-slice that are at distance ©(y/n). In this language, our invariance principle for
low-degree functions (Lemma 1.6) asserts that this averaging barely affects the function f if its degree is



significantly smaller than /7, which is precisely the range of degrees that [22, 23] are able to handle. We
think however that our version of the invariance principle is perhaps more natural. Two points to support
that are as follows:

1. Our proofs are much more “generic”, i.e. less domain specific than of [22, 23], and can probably be
extended to other S,,-modules and not only the multi-slice.

2. The functions f and T¢ f enjoy many of the same properties that we will be concerned with. For
example, we have the following important properties:

(a) if all of the noisy influences of f are small (a notion that we only define in Section 6, but should
be thought of as an appropriate analogue of the noisy influences from the Boolean cube), then
all of the noisy influences of T¢ f are small.

(b) If f has a coordinate ¢ with significant noisy influence, then the same coordinate would have
significant noisy influence in T¢ f.

(c) If f is pseudo-random in the sense that fixing constantly many coordinates does not change the
average of f by too much, then the same holds for T¢ f.

These two properties are very important for us in our applications, and can be used to convert any of
the Gaussian bounds of [40] to the multi-slice (we do not do it explicitly in this paper).

1.2 Applications to Hardness of Approximation

In this section, we discuss an application of our invariance principle to the field of hardness of approximation.
More specifically, we show that it enables us to lift a certain class dictatorship tests with perfect completeness
to hardness results, assuming a conjecture of [9] that we discuss below.

1.2.1 The basic PCP Theorem

The primary goal in hardness of approximation is to show that approximate solutions to optimization prob-
lems within a certain approximation ratio is NP-hard. For some problems, the basic PCP theorem combined
with the long-code based paradigm developed over the last 20 years, yield tight inapproximability results
(such as the results in [30, 29]). This paradigm however fails to establish tight inapproximability results for
many problems, such as Max-Cut and Vertex-Cover. Towards this end, the Unique-Games Conjecture was
proposed [34], and is now known to imply tight inapproximability result for a wide range of optimization
problems. A prime example is Raghavendra’s result [44] regarding constraint satisfaction problems, who
showed a generic SDP algorithm for the class of CSPs, and proved that it is essentially optimal, assuming
the Unique-Games Conjecture. We remark that despite recent progress establishing a weaker variant of
the Unique-Games Conjecture, called the 2-to-1 Games Conjecture [36, 13, 12, 37, 4] (which can be used
to prove a wide range of weaker inapproximability results, see [5]), proving Unique-Games Conjecture or
some its consequences independently remains an open challenge.
To present the Unique-Games Conjecture, we first define the 2-Prover-1-Round problem.

Definition 1.13. A 2PIR Games instance ¥ = (LU R, E, X1, X, ®) consists of a regular, bipartite graph
(LUR, E), the alphabet 31, for the vertex set L, the alphabet X, for the vertex set R, and a set of constraints
D = {pe} cp one for each edge. Each vertex is supposed to receive a label from the respective alphabet.
The constraint ¢ for an edge e = (u,v) € E,u € L,v € R is defined by a relation ¢ C X1 X X, thought
of as the set of label-pairs to the vertices u and v that satisfy the constraint.



For 0 < s < ¢ < 1, we denote by Gap-2P1R]c, s| the promise problem, where given an instance W
of 2P1R Games, one has to distinguish between the case that there is an assignment satisfying at least ¢
fraction of the constraints in ¥. Combining the basic PCP Theorem [19, 3, 2] with the Parallel Repetition
Theorem [45], one can show that for all s > 0, the problem Gap-2P1R][1, s| is NP-hard on alphabets of size
n = poly(1/6). This result serves as the starting point of many hardness of approximation results. However,
for many other results, one needs a stronger structure from the constraints.

1.2.2 The Unique-Games Conjecture and Imperfect Completeness

Definition 1.14. A d-t0-1 Games instance is a 2PI1R Games instance V = (LU R, E, X1, Y, ®), in which
|X 1| = d|XR| and each constraint ¢, ,,: X1, — g is a d-to-1 map.

Khot conjectured that for d > 2, the problem Gap-d-to-1Games|[1, s] remains NP-hard provided the
alphabets are sufficiently large constant (depending on s). For d = 1 however, i.e. for 1-to-1 Games prob-
lem often called the Unique-Games problem, one cannot hope for such a strong hardness result: it is easy
to see that given a satisfiable instance of Unique-Games, one can efficiently find a satisfying assignment.
For that reason, to deal with Unique-Games, one has to give up the perfect completeness, and indeed the
Unique-Games Conjecture reads:

Conjecture 1.15. For all €,s > 0, there is n € N, such that given a Unique-Games instance ¥ with
alphabet size n, it is NP-hard to distinguish between the following two cases:

YES case: there is an assignment to U satisfying at least 1 — ¢ fraction of the constraints.

NO case: there is no assignment to V satisfying more than s fraction of the constraints.

It is thus clear that when working with the Unique-Games Conjecture, one cannot hope to prove hardness
for satisfiable instances of problems, and indeed all of the results based on the Unique-Games Conjecture
(such as Raghavendra’s result [44]) have imperfect completeness. We stress here that even though the
difference between perfect and imperfect completeness is often thought of as minor, it is critical for some
problems and affects their complexity dramatically: the problem of solving systems of linear equations of
over finite fields is such problem [30], and the Unique-Games problem is likely to be such problem, to name
a few.

This raises the following issue: how can one prove general hardness results for satisfiable instances,
assuming some feasible complexity assumption? One option is to work with 2-to-1 Games for which the
perfect completeness version is conjectured to be hard (and the imperfect completeness version was already
proved to be hard). Alas, the structure of the constraints in 2-to-1 Games is often not strong enough to use
the powerful reductions and tools used in the context of Unique-Games.

1.2.3 The Rich 2-to-1 Games Conjecture

Recently, a stronger variant of the 2-to-1 Games Conjecture, called the Rich 2-to-1 Games conjecture was
proposed [9] in the hope to shed more light on Unique-Games and the complexity of satisfiable instances,
and we present this conjecture below.

LetV = (LUR,E, X, YR, ®) be a 2-to-1-Game, with |[¥X1| = nand || = n/2. Fix a vertex u € L.
Let e = (u,v) € E be an edge incident on u and let 7. be the 2-to-1 projection defining that constraint. The
map defines a partition of Xy, as

Y= U ™ (p)

PEXR



into disjoint sets of size 2. Let us denote by P(u) the distribution over partitions of ¥, into sets of size 2,
given by first sampling a uniformly random edge e = (u, v) incident on u and then outputting the partition
of X, as above.

Definition 1.16. An instance of Rich 2-to-1 Games is an instance of 2-to-1 Games with the additional
property that for every vertex u € L, the distribution P(u) is uniform over all partitions of ¥, into sets of
size 2.

For 0 < s < ¢ < 1, we denote by Gap-Rich-2-to-1,,[¢, s] the promise problem, where given an instance
U of Rich 2-to-1 Games, one has to distinguish between the case that there is an assignment satisfying at
least c fraction of the constraints in W, or all assignments satisfy at most s fraction of the constraints in W.
The following conjecture was made in [9]:

Conjecture 1.17. For all § > 0, there is a sufficiently large even n € N such that Gap-Rich-2-to-1,,[1, §]
is NP-hard.

A few remarks are in order. First, one may consider the imperfect completeness variant of Conjec-
ture 1.17, i.e. the question of whether Gap-Rich-2-to-1,,[1 — &, J] is NP-hard for all £,§ > 0 provided
n(e, ) is large enough. It turns out that this problem is equivalent to the Unique-Games Conjecture [9], and
thus Conjecture 1.17 is strictly stronger than the Unique-Games Conjecture, and thus can be thought of as
a variant of it with perfect completeness. It is thus natural to ask whether one can base on it hardness of
satisfiable instances of problems, the prime example being constraint satisfaction problems.

1.2.4 Our application: hardness from dictatorship tests with perfect completeness

Using our invariance principle, we are able to convert certain dictatorship tests to NP-hardness results, as-
suming Conjecture 1.17. This result generalizes a theme from the context of Unique-Games Conjecture
based hardness results, for which one has an automatic machinery to convert dictatorship tests with imper-
fect completeness to hardness of approximation results (a theme that has started with in [35] and plays an
important role in Raghavendra’s work [44]). Thus, the task of proving hardness of approximation result for
a problem with imperfect completeness reduces to the design of a certain dictatorship test.

Our result extends this theme to the realm of perfect completeness, however we are not able to handle
dictatorship tests in full generality and require a certain technical condition that is nevertheless natural in
existing dictatorship tests. We hope that as more general dictatorship tests emerge in the literature, the ideas
in the work herein will be useful in converting these more general tests into hardness results.

A precise statement of our result (given in Theorem 6.7 and slightly extended in Remark 6.28) requires
quite a bit of set-up, and is deferred to Section 6. Instead, we give two instantiations of it, using existing
dictatorship tests from the literature.

For a collection of r-ary predicates P, C {P: {0,1}" — {0,1}}, an instance of CSP-P, consists of
a set of variables X = {z1,..., 2}, and a collection of constraints E of the form P(z;,,...,x;.) = 1
where P € ‘P,. The goal is to find a Boolean assignment to the variables that satisfies as many constraints
as possible. We also define the gap version, Gap-CSP-P, in the natural way. Using the dictatorship test
of [6], we have: *

4Strictly speaking, in [6] only a single predicate P, : {0,1}" — {0, 1} is used. However, they use the folding technique, and our
collection P;. replaces this folding. Forall @ € {0,1}", we define P z: {0,1}" — {0,1} as P, z(z) = Pr(z14a1,...,zr+ar)
(addition is done mod 2), and our collection P, is { P,z |a € {0,1}"}.



Corollary 1.18. Assuming Conjecture 1.17, for all r € N of the form 2™ — 1 there is a collection of
P, C {P:{0,1}" — {0, 1}} such that for all & > 0, Gap-CSP-P, [1, 2L + ¢] is NP-hard.

Unconditionally, it is known that there is a predicate P for which Gap-CSP-P, [1, 2O<2TT1/3> + €:| is
NP-hard [31]. Corollary 1.18 significantly improves upon this result, and is nearly tight (however, it is
conditioned on Conjecture 1.17).

Next, we show that assuming Conjecture 1.17, one can prove strong NP-hardness results for 3-colorable
graphs. Recently, it was shown that for all d > 2, the d-to-1 Games Conjecture implies the hardness of col-
oring 3-colorable graphs with constantly many colors [28]. We show that the Rich 2-to-1 Games Conjecture
implies the same result with a stronger soundness guarantee asserting that there are no independent sets of
significant size. More precisely, using the dictatorship test of [14], we get:

Corollary 1.19. Assuming Conjecture 1.17, for § > 0, given a graph G it is NP-hard to distinguish between
the cases:

1. YES case: G is 3-colorable;

2. NO case: G has no independent set of fractional size 6.

1.3 Applications to Combinatorics

In a subsequent paper [8], we show several applications of our invariance principle in extremal combina-
torics. Below, we explain the sort of problems that will be addressed in that paper.

We write [n] = {1,...,n} and ([Z]) for the family of all k-subsets of [n]. The following problems are
fundamental in hypergraph theory.

1. The hypergraph Turdn problem: Given H C ([Z}). How large can a family F C ([Z}) be if it does not
contain a copy of H?

2. The Ramsey problem: What is the largest r, such that every r-colouring of ([z}) contains a copy of
H?

3. Removal lemmas: Is it true that every family that contains few copies of H is close to a family without
any copies of H?

In the subsequent paper [8], we focus on the above problems in the case where k is linear in n. This regime
was extensively studied when H is an s-matching, i.e. the hypergraph consisting of s pairwise disjoint
edges. The methods used for tackling the problems above are varied and include shifting [25], algebraic
topology [39, 1], Regularity [26], sharp threshold results [17], and agreement testing [11].

In the companion paper we throw our invariance principal into the mix. We are then able to extend these
results from the case where H is an s-matching, to the case where H belongs to a wide class of hypergraphs
we call (-forests.

Definition 1.20. We say that a hypergrph H is a (-forest if its edges can be ordered as A1, ..., A, where

A; \ U;;l Aj > (n.

>In particular, the chromatic number of G is at least [1/§].



We show that every family that contains few copies of a (-forest H is close to an H -free family, provided
that ‘U AcH A| < (1 = ¢) n. We also show that every r-colouring of ([Z]) contains a monochromatic copy
of H, provided that n > ng (r, (). Finally, we make progress on the Turdn problem by reducing it to a
special case where the H-free family F C ([Z]) is a junta. This means that there exists a set J of size O (1),
such that the question whether A is in F, depends only on A N J.

We remark that such a reduction was shown to be useful Ellis et al. [17], who considered the i—forest
My 4 consisting of two edges that intersect in ¢-elements. The Turdn problem for M>; corresponds to an
old problem of Erdés and Sés [18]. One of the main ingredients in [17] was a reduction of the Erd6s-Sés
forbidden intersection problem to the special case where the M5 ;-free family is a junta.

1.4 Our techniques
1.4.1 The proof of our invariance principles

Invariance principle for low-degree functions. The proof of our invariance principle for low-degree
functions mainly involves representation-theoretic arguments, and builds on the approach of [21]. To
prove Lemma 3.25, we reduce the problem into the problem of understanding eigenvalues of a certain
operator associated with our couplings. For simplicity of presentation, let us consider the case that the
couplings C and C’ in Lemma 3.25 are identical, in which case we study the eigenvalues of the operator
S = T§Te: L*(Uz) — L?(Uz). Since this is a symmetric operator, we can find an eigenbasis of L?(Uz)
consisting of eigenvectors, and our claim reduces to showing that eigenvalues of eigenfunctions which are
low-degree functions are close to 1.

Using the symmetry of C, we show that the operator S preserve juntas. Namely, if f: U — R depends
only on coordinates from a set J C [n], then the value of Sf at a point z also only depends on x ;. This
allows to further reduce the question of studying eigenvalues corresponding to low-degree functions, to
studying eigenvalues corresponding to juntas. The last part is easy to do the, using fact that the probability
the coupling changes a specific coordinate is small (this is the parameter ().

Invariance principle for admissible distributions. For simplicity of presentation, let us assume we are
dealing with the case that r = 2 and that the two multi-slices are identical, in which case we denote the
functions from Theorem 1.11 by f and g. Roughly speaking, the proof proceeds by analyzing the contri-
bution of the high-degree parts of f and ¢ and the low-degree parts separately, say f = f<% + f>¢ and
g = g%+ g Lemma 1.6 allows us to handle the low-degree parts, and the main effort in our proof goes
into upper bounding the contribution of the high-degree parts, e.g. E(x x/)~u [ S4(x) g>d(y)] . We now turn
this problem again into the problem of understanding eigenvalues of a certain operator. More specifically,
we consider the operator T),: L*(Uy;) — L*(Uy) defined as T, f(2') = Exx)up [ f(X) | X' = 2/] s0 that
the expectation that we wish to study is (f<¢, Tug>d>, and using the Cauchy-Schwarz inequality it suffices
to bound HT;T#gMH. In other words, we want to prove that the operator T}, T, contracts high degree
functions very strongly, and to do that we study its eigenvalues.

To study the eigenvalues of T, 'T, we use the trace method: first, note that this operator defines a random
walk on L2(L{E). By considering long (but constant length) walks, we show that this random walk mixes
rather well — in the sense that the trace of the resulting operator is (1 + £)™. Intuitively, it is easy to observe
that this would happen in the product analogue of i, namely i, and we know by the coupling C that we
may consider the coupling along the random walk, so that we expect the two traces to be same. Thus, using
the trace method, we are able to bound eigenvalues whose multiplicity is exponentially large, say at least
(14 2¢)™, and this way we are able to handle functions of degree 2(n).
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To handle functions of degree o(n), we also use the eigenvalues approach, and in this case show that for
each eigenvalue 6 of degree d function, we may find a d-junta which is an eigenfunction with eigenvalue 6,
say on a set of variables [d] C [n]. At this point, we essentially project the problem on a set coordinates
slightly larger than J — say [3d] , ignoring the rest of the coordinates. That is, we consider the long random
walk T} T, induces on [m]34, and show again the trace of this operator is small, namely (1+¢)3%; intuitively
this happens for similar reasons as before, except that n is effectively 3d. Thus it remains to show that the
multiplicity of our eigenvalue 6 is at least (1 + 2¢)3%, and for that we again use symmetry: we note that for
each m € S3q4, the function ™ f: U;; — R defined as " f(z) = f(m(x)) is an eigenfunction of T}, T, with

eigenvalue 6, and then show that these functions span a subspace of dimension at least (1 + 2¢)34.

1.4.2 Converting dictatorship tests into hardness results

Our proof of Theorem 6.7, which converts a dictatorship test into a hardness result (and implies Corollar-
ies 1.18 and 1.19) uses roughly the same reduction as Raghavendra [44]. We begin by outlining a simple
adaptation of this reduction, which we do not know how to analyze, and then explain our adaptations and in
particular how multi-slices enter the picture.

For simplicity of presentation, let us assume that a dictatorship test for a predicate P: ¥" — {0,1} is a
distribution D over X" such that:

1. If f: ¥ — XY is a dictatorship (i.e. f(x) = x; for some %), then

[P(f(x(1)),-.., f(x(r)))] = 1.

E
(x(1)ye.eyx(r))~D®"

2. If f: ¥X™ — ¥ is far from dictatorship, i.e. has all of low-degree influences being small, then

[P(f(x(1)), ..., f(x(r))] <s.

E
(x(1),....x(r))~D®"

Given a Rich 2-to-1 Games instance, ¥ = (LU R, E, [n], [n/2], ®), we wish to encode a label to u € L
using the long-code of u, and encode a label to v € R using the long code of v. That is, we replace each
u € L with the cloud {u} x {0,1}" and each v € L by {v} x {0, 1}"/2. The intention is that a label o € [n]
to u would be encoded by the dictatorship assignment f,,: X" — ¥ defined as f,(z) = x,. Our goal is to
test, using the predicate P and the dictatorship test D, that the assignments f,’s (and f,’s) are correlated
with legitimate codewords.

The idea then is to sample v € R, and virtually perform the dictatorship test on its cloud. Namely,
sample queries (x(1),...,x(r)) according to the given dictatorship test, then sample u;, . . ., u, neighbours
of v independently, lift the points x(7) to x(z)" on the long-code of u; using the projection map ¢, ,,, and
then test that fy, (x(1)),. .., fu,(x(r)") satisfies the predicate P.

While the completeness of this reduction is straight-forward, the soundness analysis of this reduction
is more tricky. For one, the distribution of the points x(7)" that we consider in the reduction is not very
nice: ideally, we would have liked the distribution to be close to the distribution of y (i) if we sampled
(y(1),...,y(r)) according to the dictatorship test in the cloud of w;; alas this is not true. The distribution
of x(4)" is not a product distribution, its support is not even full (for example, each symbol appears even
number of times) and in general it is not convenient to work with. This is an artifact of the fact the constraints
maps ¢, ,, are only 2-to-1, as opposed to 1-to-1 as in Raghavendra’s theorem (in which case, these maps
preserve the distributions on the long-codes up to relabeling the coordinates).
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To bypass this issue, we note that if instead of the full long-code of u, we used a multi-slice Uz C

3" with an appropriate k (actually, we will use several multislices, each matching the statistics of one of
y(1),...,y(r) above) and the same for v, our distributions would align perfectly. Indeed, we use this idea,
and use our invariance principle to argue that the soundness of the multi-slice analogue of the dictatorship
test D®" from above is roughly the same as in the product version. To finish up the proof, we must then
define analogues of low-degree influences on the multi-slice (it will actually be more convenient for us to
work with noisy influence), and prove several basic properties of them — see Section 6.1 for more details.

2 Preliminaries

Notations. Throughout the paper, we denote random variables by boldface letters (such as x,y, ). We
denote [n] = {1,...,n}, and let S,, be the symmetric group, i.e. the set of all permutations 7: [n] — [n].
For a vector x of length n and A C [n], we denote by x4 the vector whose length is | A| corresponding to
the entries of x from A. For a vector = of length n and m € S,,, we denote by "z the vector of length n
whose ith entry is z ;).

In this section, we present standard background regarding various decompositions of functions the multi-
slice. More precisely, we will use the degree decomposition, as well as a refinement of it given by represen-
tation theory. Towards that end, it will be useful for us to think of the multi-slice U4, . ,, as a quotient space
Sn/(Sk, X Sk, X ...Sk, ), which will allow us to lift the standard representation-theoretic decomposition
of functions over .S, to decompositions of functions over Uy, . k...

2.1 The degree decomposition and representation-theoretic decomposition over S,
We begin by presenting the coarse degree decomposition of functions f: S, — R.

Definition 2.1. We say a function f: S,, — R is a d-junta if there exists a set of coordinates A C [n] of size
at most d, such that f(7) = g(w(A)) for some function g: [n]* — R.

We can now define the space of degree d functions. For that, we introduce the expectation inner product:
for f,g: S, — R, we define (f, g) = Ex [f(7)g(7)].

Definition 2.2. Ford = 0,1,...,n, we denote by V4(S,)) C {f: Sn, — R} the span of d-juntas. We often
refer to this space as the space of degree d functions. We also define V_q(Sy) = Va(Sn) N Vy_1(Sn)*.

Thus, one can write the space of real-valued functions as V_¢(S,,) ® V=1(Sp,) ® ... ® V_,_1(Sy), and
thus write any f: S,, — R uniquely as f = > f=" where f=" € V_;(S,). We next present a refinement
i=0
of this decomposition, given by representation theory of .Sy,.

Partitions and the decomposition by partitions

A partition of n, often denoted as A + n, is a monotonically decreasing sequence of positive integers,

A = (A,...,A\r), that sum up to n. It is well known that partitions index the equivalence classes of
representations of S, and thereby give rise to a decomposition of real-valued functions over S,,.
Given a partition \, a A-tabloid is a partition of [n] into sets A1, ..., Ay such that |A;| = \;. Thus, for

A-tabloids A = (A4,...,A) and B = (By, ..., By), we define
Tap={meS,|m(4d;)=DB;Vi=1,...,k},
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and refer to any such T4 p as a A-coset.

Definition 2.3. For a partition X of n, we define the space V(S,,) as the linear span of indicator functions
of all \-cosets.

It is easily seen that if Ay = n — k, then V\(S,,) C Vi (Sy), thus the V,(S;,) are a refinement of the
spaces V;(Sy,). Next, we define a natural ordering on partitions which will allow us to further refine the
space V\(Sy,), so that they will be refinements of he pure-degree spaces V_;(.Sy,).

Definition 2.4. Let A = (A\1,..., ), u = (p1, ..., ps) be partitions of [n]. We say that A\ dominates p,

j j
and denote \ > p, if forall j = 1,... kit holds that > \j = > ;.
i=1 =

Definition 2.5. For a partition X of n, we define Vox(Sy) = Va(Sn) N 0x Vi (Sn) L.

It is well known that the spaces V_,(.S,,) are orthogonal, and that this decomposition is a refinement of
the degree decomposition, namely that V_,(S,,) C V_i(S,) where Ay = n — k.

An important parameter of a partition A - n is its dimension, denoted by dim(\), which is the dimension
of the smallest irreducible sub-representation of a representation from the equivalence class of representa-
tions of A. The dimension of A\ will allow us to bound eigenvalues of certain operators using the trace
method, and for that we first define the action of S, on f: S,, — R. For a function f: 5,, = Rand 7 € .5,,,
define the function " f(o) = f(m o o); this way, we will think of the space of real-valued functions over
Sy, as a left module. With this action in hand, a situation that would often arise for us is the following: we
are given an operator T: L?(S,,) — L?(S,,) which is positive semi-definite, and has a small trace; given an
eigenvector f € V_5(S,) of T, we would like to argue that the eigenvalue oy of f is small. By the trace
method, oy < Tr(T)/mq +» Where my, , is the multiplicity of ay, and thus we would get a decent bound on
o provided the multiplicity m s is large. Here comes the importance of the parameter dim(\): our operators
of interest T will always commute with the action of S, and thus each ™ f is also an eigenvector of T with
eigenvalue ay. Thus, mq, > dim(span({™f |7 € S,})), and the latter quantity is well known to be at least
dim(), as the following claim asserts.

Claim 2.6. Suppose f € V_5(Sy,) is not identically 0. Then dim(span({™f |m € S,.})) = dim(\).

Proof. Let p: S,, — V_x(S,) be a representation, and let W = span({™f | 7= € S, }). Then since W is
closed under the action of .S,,, we have that W is a sub-representation. Since f is not identically 0, W is a
non-trivial subspace, and therefore it follows that dim(W') > dim(\). O

Thus, to get meaningful bounds on eigenvalues this way, it suffices to have effective bounds on the
dimension of partitions, and for that we use the well-known Hook formula (or rather a corollary of it).

Lemma 2.7 (Claim 1, Theorem 19 in [16]). For all ¢ > 0, there exists § > 0 such that the following holds.
Let A\ & n be givenas A\ = (A1, ..., \;), and denote d = min(n — A1, k).

1. If A = (n), then dim(\) = 1.
2. Ifd > 0, thendim()) > ()"
1

3. Ifd > c-n, thendim(\) > (1 + )™
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2.2 The degree decomposition and the representation-theoretic decomposition over //;

In this section, we refine the degree decomposition of functions on U/ presented in the introduction using
the representation-theoretic decomposition.

2.2.1 The maximal degree on the multi-slice

Recalling the spaces Vo(Uz), - . . Vi (Uz) from the introduction, we note that it is clear that V;, (i) contains
all real-valued functions on U;. The following claim shows that something stronger happens, and one
already has that V,,_, contains all real valued functions on Z/IE.

Claim 2.8. For a multi-slice UE’ one has that V,, = V,_g,.

Proof. Consider the set of functions
A= {Lmza A =n— ko€ {2 ..om} [{ioi =5} =k; Vj € {2,...,m}}. (1)

We note that each one of the functions in this set is a n — k1-junta, so their span is contained in V,,_j, Thus,
it is enough to prove that this set spans V,,. Indeed, let B C [n], and 8 € [m|™ and partition B = B’ U B”
where B’ is the set of coordinates 4 of 3 for which 8; = 1, and B” is the rest. We prove by induction on
|B'| that 1, ,—g is in span(.A).

Base case. For |B’| = 0, we have |B”| < n — k; and the statement is clear. For |B’| = 1, we have

1IB//=,B” - E 1xB/:’y,xB//:,8”a
76{277771}

1

rp=f =

we note that if |B' U B”| > n — kj, then all of the functions in the sum on the right hand side are 0 and so
lop=p = lz,,=p" € A. Otherwise, we clearly get 1, ,—5 € span(A).

Inductive step. Write B’ = {i} U B"" and note that

1zB:ﬁ = 1903//:,8”,:133///:,8”’ - Z 1961:“/,:03//zﬁ”,me:B”’-
ve{2,...,m}
The statement now follows as in the base case using the inductive hypothesis. O

Thus, letting k& = max; k;, we have that V; = {0} for all £ > n — k, and thus the space of real-valued

functions over U;; can be written as V_o(Uy;) © Vo1 (Uz) © ... © Vo (Uz).

2.2.2  The representation-theoretic decomposition over Uy

In this section we lift the decomposition according to partitions from .5, to the multi-slice. The basic
observation is that any function f: U;; — R may be identified with a function f: S, — R in the following
way. Partition [n] into m sets, K7, ..., K, where K; has size k;, and define f(r) = f(x) where x is
defined as x; = j for all i € w(K;). Itis easy to note that the mapping f — f is linear, and sends d-juntas
to d-juntas; it thus makes sense to define

B = {F1Fensa),  valh) = {717 evasa).
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This allows us to establish an analogue of Claim 2.6 for the multi-slice, and for that we first define the action
of S;, on functions over the multi-slice as (, f) —™ f, where ™ f: U;; — R is given by " f(z) = f("x).
Here and throughout, for x € [m]™ and 7 € S,, we denote by "z the vector whose ith coordinate is Tr(i)-

Claim 2.9. Suppose f € V_)(Uy) is not identically 0. Then dim(span({™ f | ™ € S, })) = dim(\).

Proof. Let W = span({™f |7 € S,}), and let W = {f fe W} Noting that W = {”f‘ ‘ T € Sn}, we
have by Claim 2.6 that dim(T/) > dim()). As dim(W) < dim(W) the claim follows. O

2.2.3 An alternative description

Lastly, we need an alternative, equivalent description of the spaces V) (U/;;) and V_(U;) in terms of cosets.
For A\ F n, a A-tabloid is a partition of [n] into A = (Aj,...,A,), and a partition of the multiset
{1,...,1,...,m,...,m} (where j appears k; times) into B = (B1,...,B,), where |4;| = |B;| = \;.
Given a A-tabloid (A, B), we define the corresponding coset as

Tap={zely|{z|tecA}=B Vi=1,..,r}.

Following the map f +— f directly, one sees that it sends A-tabloids over U;; into A-tabloids over Sy, and so
VA(U) is the span of 17  for all A-tabloids (A, B). It also follows that

Voa(Up) = Valtdz) 0 () VaUhp) ™
u>A

We will sometimes want to show that the space V) is an invariant space for some operators, and for that
it will be useful to further decompose V. Towards this end, for a partition A = (44, ..., A,) of [n] into r
sets where |A4;| = \;, we define

Valdy) = {f: Uy — R ’Wf =f Vm € Sy suchthat m(Ay) = Ayq,...,7(A,) = Ar}.

Claim 2.10. For all partitions A\ = (A1, ..., \.) of n we have

W) = > Valky).
A=(A1,...,Ay)
[Ail=Xi
Proof. The direction C is trivial: it is enough to observe that 1TA,B isin Vy (Z/lE) for all A-cosets T'4 g, which
is clear.

For the other direction, fix A = (A1,...,A;), let f € Va(Uy), and fix a sequence of multi-sets
Bi,...,B, C [m] for which |B;| = \;. We claim that f is constant on the coset TA, p. Indeed, let
x,y € Tap then for all j, the multi-sets {x; |i € A;} and {y; |i € A;} are equal to B; and hence the
same, so we may find a permutation 7; that maps A; to itself and has [n] \ A; as fixed point, such that
Yr(s) = ;i forall i € Aj. Thus, letting 7 = 7 0 12 0 ... o Ty, we have that x = 7(y) and 7(A;) = A; for
all j, and so f(x) = f(n(y)) =" f(y) = f(y). Thus, we get that f is constant on any coset T4 p for any
multi-sets By, ..., B, C [m] such that | B;| = \;, and we denote this value by f4 p. Since there co-sets are
disjoint, we get that

f=3Y fapls, , € Vil O
B
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2.3 Hypercontractivity

We will need the following variant of the hypercontractive inequality over general product space. For
that, given a probability measure D on a finite space €2, we define expectation L7 norms as || f[|,p =

(Ex~p [|f(x) \q])l/ 7. We often drop the D subscript from the notation whenever it is clear from context.

Theorem 2.11. [[43, Theorem 10.21]] Let (2 = Qq X ... X Qp, v = v1 X ... X vy,) be a product space.
Suppose o € (0,1/2) is such that v;(w) > « forall i € [n] and w € ;. Then foralld € N, p > 2 and

[+ Q — Rof degree at most d we have || f||, < <1Oq) I £1l5-

We will also need the following variant of the hypercontractive inequality on the multi-slice from [21].
Again, we use here expectation norms according to the uniform measure on ;.

Theorem 2.12. Forall ¢ > 0, d € N, and q € N there is N = N(c,d,q) > 0and C = C(c,d,q) > 0
such that the following holds. Letn > N, U C [m]™ be a c-balanced multi-slice and let f : Up — Rbea
function of degree at most d. Then || f||, < C'| f]l5.

2.4 Tail bounds

We need the following standard tail bound.

Theorem 2.13. Suppose Z, ..., Z, are independent random bits with the same expectation p. Then

n
T
i=1

We also need a tail bound for negatively associated random variables, introduced in [32].

n

2
€n] < 2e7% M,

Definition 2.14. We say a collection of random variables 7, . . . , Z,, over R is negatively associated if for
each pair of disjoint sets I, J C [n] and any two increasing functions fr: Rl — R, f;: R — R it holds
that the random variables f1((Z;)icr) and f;((Z;);c) have non-positive covariance.

Remark 2.15. An important example of negatively associated random that we will use proceeds as follows.
Suppose an urn contains n balls of different colors i = 1, ..., n, and we pick k < n balls from it randomly
without replacement. Then, letting Z; be the random variable indicating that the ball of color i has been
chosen, we have that the collection Z; fori = 1, ..., n is negatively associated [32].

We will make use of this fact throughout the paper as follows. Suppose Uz is a multi-slice over [m]. We
will be concerned with distributions (x,y) € Uz X Uz which is uniform over all pairs such that the number
of coordinates i such that (x;,y;) = (a,b) is some fixed number n,y, for all a,b € [m]. It is thus clear that
fixing a, b, defining for each i € [n] the random variable Z; indicating that (x;,y;) = (a,b), the collection
Z; is of the above form, and hence is negatively associated.

The following result is [15, Proposition 5].

Theorem 2.16. Suppose Z1,...,7Z, are negatively correlated random bits with the same expectation p.

Then
Pr [Z Z,>(p+e)n| < g2,
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3 A basic invariance principle: the bilinear case

Definition 3.1. We say a distribution p over ([m] x [m/])™ commutes with the action of Sy, if the following
distributions are the same for all m € Sy, and x € [m|": (a) X', where (x,X') ~ u conditioned on x = 7(z),
(b) w(x'), where (x,x") ~ p conditioned on x = z.

Claim 3.2. Suppose a distribution p over [m|™ x [m']" is symmetric under the action of S,. Then p
commutes with the action of S,.
Proof. Fix z,y € [m]|" and 7 € S,,. Then
(@), y) p, " (y))
Pr ly=y|x=n(z)] = , Pr [ny)=y|x=2z]= .
(x,y) Prx y)~u [x = 7m(z)] (x,y) Prx y)opu [x = 7]

By the symmetry of u, we have that
wr(z),y)= Pr [x=n(x)y=yl= Pr [r'(x)=z,7'(y)=7""(y)] = nle, 7" (y)),

(%,y)~p (x,y)~p

which shows that the numerators of the two fractions are equal; summing this over y also shows that the
denominators of the two fractions are equal. O

3.1 Couplings between measures on [m]"

Consider the multi-slice I{;; over alphabet [m], and consider the distribution over [m] defined by v;(i) =
ki/n. We will show that in several senses, the multi-slice {;; behaves very similarly to the product domain
([m]™, 1/]3?”), and for that we will use couplings, which we defined earlier in the introduction and recall for
convenience below.

Definition 3.3. Let o, > 0, m € N. For symmetric distributions vy,vy over [m|", a («,()-coupling
between ([m|"™,v1) and ([m]™, v2) is a jointly distributed C = (x,y) satisfying the following properties.

1. The marginal distribution of X is vy, and the marginal distribution of y is vs.
2. The distribution of C is symmetric under the action of S,,.

3. Foralli € [n], Prixy)~c [Xi # yi] < (.

4. Tail bounds: for all € > 0, it holds that Pr(x y)~c [[{1 |7 # yi}| > en] < ée‘a‘f%.

We also recall that given a coupling C between (U, Uniform) and ([m]", ué@”), we may define lifting

operators on functions between the two spaces, namely T¢: L*(Uz) — L*([m]", ul_f?") and its adjoint

operator T4 : L?([m]", ygn) — L*(Uy), as:

Tef(y) = i« %NC [fx)|ly=yl, Teglz)= i« iijc [f(y) [x=z].
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3.2 Invariance for low-degree functions: Proof of Lemma 1.6

A key property of couplings is that at least for low-degree functions f: Uy — R, we have that f(x) =~
Tef(y) where (x,y) ~ C. This is essentially the content of Lemma 1.6, restated below. We remark that
due to technical reasons, we will use two different couplings C and C’. Here C, will be used to lift functions
from the multi-slice to the product space, and C’ will be used to sample the inputs (x,y).

Lemma 1.6 (Restated) . Let d,m,n € N, o, ( > 0, and let Uy; be multi-slice over alphabet [m|. Suppose
[+ Uy — Ris a function of degree at most d, and C,C’" are (c, )-coupling between (Uy) and ([m]", Vli?”).
Then

[(f(x) = Tef(y))?] < 8VdC|Ifl3-

(x,y)~C’

The rest of this section is devoted to the proof of Lemma 1.6.

3.2.1 Proof overview

It will be more convenient for us to consider operators that map a space to itself, and more specifically we
will consider S: L?(Uy;) — L*(U;) defined as S = T}, T¢. With these definitions, expanding the difference
in Lemma 1.6 we see that

[(F(x) = Tef(y)?] = 115+ I Teflls — 2(f, SF) < 2| F13 = (£.SF) = 2(f, 1= S)[). 2)

(x,y)~C’

We would like to reason about the eigenvalues of I — S and say they are close to O for low-degree functions,
however this may be problematic since S may not be diagonizable. We thus use a standard trick by Cauchy-
Schwarz to bound

@ <2/l 1T =8)flly = 2[1f 1o VIT=S)f, A=) F) = 2|l VF, A= S) T = S))
22 1@ -8 T -8 fII*. 3

Thus, we reduced our question to understanding the operator S* = (I—8)*(I— &), for which we may study
eigenvalues since it is self-adjoint. Indeed, we show that it strongly contracts low degree functions, and for
that we follow the following plan:

1. We argue that S and its adjoint preserves juntas. Therefore S* preserves juntas.

2. We deduce that for each eigenvalue 6 of S* corresponding to an low-degree eigenfunction f, there is
a junta g which is also an eigenfunction of S* with eigenvalue 6.

3. Finally, we note that the coupling operator is unlikely to touch a small set of coordinates (given that
n is sufficiently large in comparison to d), so we must have that any eigenvalue # corresponding to a
junta must be close to 0.

4. Combining the above two items with Parseval’s equality establishes Lemma 1.6.

We begin with the formal proof of Lemma 1.6 following the above outline.
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3.2.2 S preserves juntas

For a set J, we denote by V;(U;;) the set of J-juntas. Note that we may write Vq(U;;) as the direct sum of
all V;(U;). Recall the action of S, on functions over the multi-slice is defined as: for 7 € Sy, f: Uy — R
define ™ f = f(m(z)). To prove that S preserves juntas, it will be more convenient for us to use the following
equivalent criteria.

Fact 3.4. A function f: U;; — Ris a J-junta if and only if ™ f = f for all 7 that fix J.

Proof. The = direction is clear, and we prove the <= direction. Suppose ™ f = f for all « that fix J, and
define g: [m]/ — Ras g(a) = Ezeu; [f(2)]; it suffices to argue that f(z) = g(z) for all z. Indeed, fix z,

T =
and denote o ;. If 2’ € Uy, is a point such that z'; = a, then we have that for all £ = 1,...,m, the sets

Xe={ie\J|z=0), Xi={ic]\J|z=10)

have the same size, and so there is ™ € S,,)\ s that maps each X to X ;- Thus, there is 7 fixing J such that

' =7(x),and so f(2') =T f(x) = f(x). O
Claim 3.5. Forall m € Sy and f: Uy — R, we have that S(" f) =" (Sf), as well as S* (" f) =" (S* ).

Proof. We prove the first assertion — the proof of the second assertion is analogous. By Claim 3.2, we get
that C,C’ commute with the action of S,,. Fix 2 € Uj; and sample y as (x,y) ~ C conditioned on x = z,
and then (x’,y’) ~ C’ conditioned on y’ = y. Then by definition of S and the definition on the adjoint
operator we have

SCH@) = E [f&)] = E_[f(=Ex))].

x'~Sz x'~Sz
Consider the points z” = 7(z), y” = 7(y’). Since C commutes with \S,,, the distribution of y” is the same
as of b where (a, b) ~ C conditioned on a = z”; also, the distribution of 7(x’) the same as of a’ where
(a’,b’) ~ C’ conditioned on b’ = b. Together, these two facts imply that the distribution of 7(x’) is Sw(z),
and the above average is equal to Sf (7w (z)) =" (Sf)(x), as required. O

Claim 3.6. Suppose R is an operator that commutes with the action of Sy, on functions over the multi-slice.
Then for each J C [n], we have that R (V;(Uy)) C V(Uz). Subsequently, R preserves Vy(U).

Proof. Let m € S, be a permutation that fixes J, and let f be a J-junta. Then, by Claim 3.5 we have
™(Sf) =S("f) = S(f), where the last transition is since f is a J-junta and 7 fixes J. Since this holds for
all T € S, that fixes .J, we get that S(f) is a .J-junta.

The “subsequently” part follows as Vy(Uy) = Z| Jl<d Vi (Uz). O

From Claims 3.5, 3.6 it follows that V;(U};) is invariant under S*, and since S* is self-adjoint we
may decompose this space as sum of eigenspaces. Let us denote by V¢ U5) € Vj(Uy) the subspace of
eigenvectors with eigenvalue 6, and write Vea(0) = D) 1<q 1% (Us).

Claim 3.7. Vey(Uy) = @, Vea(0).

Proof. To see that the space on the left hand side is the sum of the spaces on the right hand side, note that

S Vaal®) =D > ViU =D D ViU =D Vi) = VealUhy).
0

9 |J|<d |J|<d 6 |J|<d

The statement now follows as the spaces V<4(0) are orthogonal for different 6’s. O
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3.2.3 Bounding the eigenvalues of S*

Next, we will estimate the eigenvalues of S* corresponding to low-degree functions. We begin by the
following easy claim.

Claim 3.8. Let Uy, be a c-balanced multi-slice over alphabet [m], let J C [n] be of size at most d, and let
x € U. Then
Pr [x]; # x;] <2d¢

x'~Sz
Proof. The claim is immediate by the third property in Definition 1.5 and the union bound. 0

Claim 3.9. Let 6 be such that V<q(0) # {0}. Then 6 < 16d(.

Proof. By assumption, Ve 4(6) # {0} so by definition there is .J of size at most d such that V¢ Uz) # {0},
and we take g € V¢ (Uy). Let x € Uj; be a point achieving the maximum of |g(x)| (note that it is necessarily
positive); we may assume without loss of generality that g(x) > 0, otherwise we work with the function
—g. Letx' ~ Sz, then

which by Claim 3.8 is at least (1 — 4d()g(x). Since clearly Sg(z) < g(z), it follows that |[Sg(z) — g(x)| <
4d¢. A similar argument shows that |S*g(x) — g(z)| < 4dCg(x), and also that |S*Sg(x) — g(x)| <
8dCg(x). We thus get that

Og(x) = [8"g(x)| = |g(z) — Sg(z) — S7g(x) + S*Sg(x)| < 16d(g(x),

and dividing by g(z) finishes the proof. O

3.2.4 Proof of Lemma 1.6
Let f € Veq(Uy). From (2) and (3) we get that

[(f(x) = Tef(y)?] <2122 1S 152

(x,y)~C’

and we upper bound the last norm. By Claim 3.7 we may write f = > f=% where f=* € V<ai(0), and so
9

IS f13 ="
0

where we used Claim 3.9. Plugging this into the inequality above finishes the proof.

57 = >0 |+ < (160)* 3 7= = asac? g2
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3.3 Invariance for admissible distributions: the bilinear case

Next, we state and prove an invariance principle for admissible distributions as in Definition 1.8. Let u be
an admissible distribution on U}; x Uy, where the multi-slices are over alphabets m, m’ respectively, and let
[t be the product version of p as per Definition 1.10. In this section, we will prove Theorem 1.11 for the
case that r = 2, which captures the main ideas of the argument, and in the subsequent section we generalize
it for all » € N. Throughout, we will denote samples of 1 by (x,x’) ~ pu, and samples of i by (y,y’) ~ fi.
We will be interested in couplings between the distribution p and i, as in Definition 1.5 — namely, a jointly
distributed C = ((x, '), (y,y’)) satisfying the properties in Definition 1.5.

Theorem 3.10. Forall « € (0,1), m,m’ € N, ¢ > 0 there is { > 0 such that the following holds. Suppose
Uy and Uy, are a-balanced multi-slices over alphabets [m] and [m'] respectively, and ju is a connected,
a-admissible distribution over Uy x Uy,. Suppose C is a (a, ¢)-coupling between Uy and V]%@", C'isa

(@, ¢)-coupling between Uy, and l/l%%’n, and that there is a (o, ¢)-coupling C" between . and [i.
Then for all f: U — R and g: Uz, — R it holds that

E[f&g)] - B [Tef)Teay)]| <elfllzlgll;-

(%,x" )~ p (y,y" )~

The rest of this section is devoted to the proof of Theorem 3.10, and we begin by outlining the idea of
the proof.

3.3.1 Proof overview

We begin by noting that Lemma 1.6 implies Theorem 3.10 for low degree functions. Indeed, by adding and
subtracting £ ( ) o [f(x)Tcrg(y’)], the left hand side in Theorem 3.10 may be upper bounded by

x,x’
!

Yy

( % [f(x)(g(x') = Terg(y'))] +( % [(f(x) = Tcf(y)Terg(y')]

< Il E  [(9(x) = Teg(y')?] + I Tegll, E  [(fx) = Tef(y)],

/ /
X,X/ ~C! X»x’ ~C!

Y.y Y.y

where we used Cauchy-Schwarz. By Jensen’s inequality we have that || T¢/g||, < |/g]/5, and by Lemma 1.6
the expectations are at most 8,/dC ||g||3 and 8,/dC || f||3 respectively, yielding the bound 8(d¢) /4 || £l, [lgll,-

This observation suggests that we should consider the contribution from the high-degree parts and the
low-degree parts in Theorem 3.10 separately, and show that the contribution from the high-degree parts
is small. More precisely, we will decompose f and g into their high degree and low-degree parts as f =
fSe4f>dand g = gS%4¢>?, and analyze the terms corresponding to fS%g<¢, f>4g<? and fg>< separately.
We show that only the contribution from the first term is meaningful, i.e. of f<%g<¢, which by Lemma 1.6
is very close to I [Te(fS%) (y)Te (95%) ("))

To complete the proof, we have to show that the last quantity is very close to E [T¢ f(y) T g(y)]- The
first step in this argument is to observe yet another important property of T, T¢/, namely that they nearly
commute with degree truncations. This comes in the form of Lemma 3.25, asserting that T¢(f<?) and
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(Tcf)S? are close in 2-norm, provided that ¢ < d~7 (and similarly for T¢(g<?) is close to (T¢rg)<%).
Thus, E [Te(fS%)(y)Ter (959 (y')] is close to B [(Te f)S%y)(Terg)S%(y’)], and it remains to show that
the contribution from the high-degree parts is small. That is, we must show that the expectation of each
one of the terms Te¢(f)(Terg)”¢ and (Tef)>4(Teg)S? is small in magnitude. Such bounds have been
established in previous works, e.g. in [40], and we reproduce the argument in the appendix for completeness.

Finally, we elaborate on how we show that the expectations corresponding products involving a high-
degree functions over the multi-slice are small. To do so, it will be convenient to us to view the distri-
bution 1 as an operator Ty, : L*(Uz) — L*(Uy,) defined as T, f(y) = E(xy)~pu [f(x) |y =y]. Thus,
we are interested in studying expressions of the form (T, f >d_ g4\ which by Cauchy-Schwarz is at most
HTH f >dH2 HggdH. Again, it will be more convenient for us to work with operators from a space to itself,
which we may do again by defining S;, = T}, T, and using Cauchy-Schwarz to bound

2
sl = et < 77, 3],
Thus, it suffices to show that the eigenvalues of S, corresponding to high-degree functions are small. We
prove the latter statement using the trace method: we show that on the one hand, the multiplicity of each one
of them is exponentially large in n, say at least (1 + §)™, and that the sum of some constant power of them
is small. For the latter part, we consider a large enough (but constant) power h, and show that the operator
Sﬁ mixes well enough so that its trace is at most (1 + £(h))™, where limy,_,o, £(h) = 0.

The above argument works for d > 2(n), and does not immediately apply in the case that d = o(n).
The reason is that the upper bound we have on the trace, (1 + o(1))", is too weak in comparison to the
multiplicity we expect an eigenvalue corresponding to degree d functions to have (which we expect to be
29(d)). Fortunately, there is an elegant fix. We show that we may assume the eigenvalue we are interested
in bounding, say 6, corresponds to a d-junta (for the same reasons as in the proof of Lemma 1.6), and thus
we may ‘“restrict our view” to a set of 3d coordinates that contains the d-coordinates of the junta. Morally,
this view allows us to assume that n = 3d, in which case the previous argument appears to be applicable.
Due to technical reasons, however, we use a different and more direct argument once we have “focused our
view” on the set of 3d relevant coordinates.

3.4 Strong contraction for high-degrees functions

Throughout this section, we analyze operators such as S, defined above, and prove that they contract high
degree functions very strongly.

Lemma 3.11. For all « > 0, m € N there exist § > 0 and C > 0 such that the following holds. Let
Z/IE C [m]™ be a-balanced, and 1 be a a-admissible, connected distribution over UE X ME’ and suppose
there is a («, ¢)-coupling C between p and [i.

Then forall d € N, if f € Vsq(Uz,), we have | T, f]ly < C(1 4 8)~4||f]],.

The proof of Lemma 3.11 proceeds differently for d’s that are at least linear in 7, and d’s that are sub-
linear. We begin by presenting the argument for d’s that are at least yn, where v > 0 is to be thought of as
a small constant (depending on m, m’ and «).

Remark 3.12. We remark that we may, and will, assume that T, is self-adjoint (i.e. symmetric as a matrix).
We can do that without loss of generality as one has, by a standard Cauchy-Schwarz argument as before,
that HTung < Hng/2 HT:THf‘ ;/2. The operator T}, T, is self-adjoint and equal to T s for a distribution
w' which is sampled by taking (x,y) ~ p, then (x',y’) ~ p conditioned on'y' =y and outputting (x,x’).
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Clearly, if i1 is a-admissible, then ' is o-admissible, if  is connected then i/ is connected, and a (a, Q)-
coupling between . and [i naturally induces a («/2,2¢)-coupling between p' and 1’

3.4.1 The case thatd > yn

Claim 3.13. For all m € N and o,y > 0, there are § > 0, C' > 0 such that the following holds. Let
UE C [m]” be a-balanced, and |1 be a a-admissible, connected distribution over ME X UE’ such that T, is
self-adjoint.

Then for all d > yn, if f € V_q(Uz), then | T, flly < C(1+8)"% | fl,.

In the rest of this section, we will fix m € N, o,y > 0 and p as in the above claim. Consider the graph
H, whose vertex set is [m] and its edges are weighted as follows. For a,b € [m], the weight of the edge
(a,b)is

w(a,b)= Pr [x;=0 ’Xi =al.
(3, x")~p
i€[n]

We note that as p is connected, it follows that H is connected, and from the third property in Definition 1.8
it follows that for each a, b, we either have w(a,b) = 0 or w(a,b) > «. Therefore, by Claim B.1 it follows
that H has constant spectral gap, i.e. Ao(H) < 1 — Q,(1). Note that the stationary distribution of H is
precisely v. It follows from a standard spectral argument that random walks of length O, (1) from any

vertex reach distribution that is e-close to v

Claim 3.14. Forall € > 0, there is h = h(m, o, ¢) € N, such that for all v € V(H),

Pr vy, =a| —vz(a)| <e.
vor Lo [v, ] k( )| <e
random walk on H from v1

Let ¢ = g(m,a) > 0 to be determined later, and take h = h(m, a,¢) from Claim 3.14. We now
consider TZ, and want to argue it is almost mixing in the following sense.

Claim 3.15. For all a,b € [m], it holds that

xleDLrl,; [[#{i 1% = a,x'i = b} —nw(a)vp(b)| = 3en] < Ao Temoem,

/ h
X ~T#x

Proof. Let x(0) €r Uy, and sample x(1) as x” where (x,x’) ~ u conditioned on x = x(0). Inductively
for j > 0, once x(j) have been defined, sample x(j + 1) as x’ where (x,x’) ~ p conditioned on x = x(j).
Then the distribution of (x(0),x(h)) is the same as (x,x’) in the statement of the claim, and we wish to
study the number of coordinates on which it is equal to (a, b). This will be much more convenient to do over
product domains, and indeed we next use our coupling C to move to that scenario.

More precisely, let y(0),y(1) be distributed as (y,y’) where ((x,x’),(y,y’)) ~ C conditioned on
(x,x’) = (x(0),x(1)). Then inductively, for all j > 0, once y(¢ — 1) has been drawn, sample y(j) as y’
where ((x,x'), (y,y’)) ~ C conditioned on (x,x",y) = (x(j — 1),x(j),y(j — 1)).

Consider the distribution over (y(0),...,y(h)). An equivalent way to sample it, is by first taking
y(0) ~ 1/}?”, then taking y (1) as y’ where (y,y’) ~ fi conditioned on y = y(0), and continuing inductively.
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This shows that the random variables (y(0);,y(h);) are independent. Thus, letting Z; be the indicator of
the event that (y(0);,y(h);) = (a,b), we get that Z; are independent. Also, from Claim 3.14 we have that

so by Chernoff bound (Theorem 2.13) we have

Pr

Z Zl — nu];(a)y,;(b)
=1

Finally, we relate the statistics of (y(0),y(h)) to that of (x(0),x(h)). For each j, the distribution of
(x(j —1),x(j),y(7 — 1),y(j)) is C. Thus, using the tail bound property, we see that the probability that
x(0) and y(0) differ in at least en coordinates, is at most o Le="" Also, x(h), y(h) differ in at least en
coordinates with probability at most a~le="n We thus get

Pr H# {i]x(0); = a,x(h); =V} — m/E(a)l/E(b)‘ > 3en|

2
<2a e " 4+ Pr

Z Z; — nvp(a)vy(b)
1=1

= En]

—1_—oae?n
<4da ‘e .

O

Claim 3.15 motivates us to write the operator TZ as a convex combination of operators according to
the statistics of (x,y) where x € Uz and y ~ TZX. That is, for each list of non-negative integers
7= (Tap)abelm] that sum of to n, let R be the operator corresponding to the distribution of (x,y) where
X € Ug is uniform and y ~ Tﬁx, conditioned on the statistics of (x,y) being 7. Then we may write
TZ = Y p#R; where p; is the probability that the statistics ' is achieved by (x, TZX).

7:'

Definition 3.16. We say 7 is e-reasonable if |rq, — nvz(a)vz(b)| < 3en forall ' b € [m/].

By Claim 3.15 and the union bound, we have > Pr < 4m2a*16*°‘52", so it will be enough for
7 unreasonable .
us to show that the operators R strongly contract high degree functions for reasonable 7.

By the symmetry of , it follows that for each 7, the distribution of (x,y), where x € U,y ~ Ryx is
also symmetric, and hence uniform over vectors (z,y) € Uy x Uy achieving the statistics 7. In particular,
the operator R is self-adjoint. Also, from Claim 3.2 we get that the distribution (x, R7x) commutes with
the action of .S,,, and so the operator R commutes with the action of .S;, on functions. Thus, the following
claim finds invariant subspaces of R 7.

Claim 3.17. Suppose R: L*(Uz) — L*(Uy) is an operator such that both R and R* commute with the
action of Sy,. Then

1. forall \ = n, the space V_ /\(UE) is an invariant space of R;

2. consequently, for all d the space V:d(u,;) is an invariant space of 'R.
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Proof. Let A\ - n,and A = (A, ..., A,) be a partition of [n] such that | 4;| = ;. Recall the spaces V4 (U};)
from Section 2.2.3; then for all f € V4(U;;) and 7 € Sy, such that w(A;) = A; it holds that

"(Rf) =R("f) = RS,

and so Rf € Va(Uz). Thus, each V4 (Uy) is an invariant space of R, and by Claim 2.10 it follows that
VA(Uy,) is an invariant space of R; the same argument applies to R*.
Now, letting f € Vo (Uz), ' > Xand g € Vo) (U;;), we have that R*g € V_/ (U;;) and so

(Rf,g9)=(f,R"g) =0,

so by the alternative definition from Section 2.2.3 we get that R f € V_(Uj,).
The second item follows by summing the first item over A - n such that Ay = n — d. O

Claim 3.18. For all o,y > 0, m € N there exist § > 0 and € > 0 such that the following holds. Suppose
is e-reasonable. Then for all d > vyn and f € V_q(Uz,) we have that | Ryflly < (1 + 62) || fl,.

Proof. We prove that for all A = n such that \; = n — d, and f € V_x(Uy,) it holds that [|Ryfl|, <
(1 +6)~4] f|l5, from which the statement follows as Voaly) = @arnng=na VerUz)).

Fix A = n such that \; = n —d and V_\(U;;) # {0}. By Claim 3.17, the space V_,(Uj) is an
invariant under R, so we may decompose V_ (Uz, ) as Dy | 744 (U, ) where each Vo, (Uz,) is an eigenspace
of Rz with eigenvalue 6. Therefore, to establish our claim it suffices to show that for any # such that
V2, (Uz,) # {0}, it holds that |0] < (1 — &)™ for 62 = d2(cv,y) > 0.

Fix such 6, take a non-zero f € V? »(U;,), and let m be the multiplicity of 6. Then since the trace of
an operator is the sum of its eigenvalues, we have that

Tr(R%) > mf92, 4

and as my > dim(span({™ f |7 € S, })) (since each ™ f is an eigenvector of R with eigenvalue o) we get
by Claim 2.9 that m; > dim(\). By Claim 2.7, the latter is at least (1 + d1)" for some §; = d1(a,y) > 0,
where we used d > yn (which we assumed to hold) and A\; < (1 — a)n (which holds by Claim 2.8). Thus,
it is enough to prove that Tr(R2) < (1 + &1/2)", and this is done by a direct computation. Let x € Uz,
y ~ Rzx and z ~ Ry, then by symmetry the probability that z = x is ( L oy so by Fact A.1

aém] Tl Ta,m
n H(%,. kY H(w(1),....ve(m))n
Tr(R%) = (kl""’k];”) < an 2 nTa 1 - Ta,m = an 2 - Ta,1 - Ta,m : (5)
I (ra,l,...a,ra,m) I 2H(ﬁ,...,ﬁ>ka 0 2H(TT>ka

a€lm] a€[m] a€[m]

Since 7is reasonable, for all a,b € [m] we have

fab ()| = [ras — nvg(a)vg(b)| c3en 3
ka ka ke a
It follows from Fact A.2 that

Ta, Tam
‘H(VE,(l),...,VE,(m/))—H(kl,..., - )‘ZOm,a(e),

and plugging this into (5) yields that Tr(R2) < nm*920m.a(En < (1 + 61/2)" provided ¢ is small enough
with respect to m and «. Plugging everything into (4) yields that (1 + d;/2)" > (1 + 61)"#?, and so
|0] < (1 = d2)™ for da(cr,y) > 0. O
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We are now ready to prove Claim 3.13.

Proof of Claim 3.13. Fix d > ~yn, pick §(«, v, m),e(a, 7y, m) > 0 from Claim 3.18 and then h = h(a, €) >
0 from Claim 3.14. By the symmetry of y, it follows from Claims 3.2, 3.17 that V_4(U};) is invariant under
T,. We may therefore decompose it as a sum of eigenspaces of T, and so by Parseval it suffices to prove
the claim for each one of these eigenspaces.

Let f € V_4(Uy) be a non-zero eigenvector of T, with eigenvalue ¢, then

O 1l = | Thr |, < pelRefla = X2 pelRefla+ Y pelRefll.

T T
reasonable unreasonable

For the first sum, we bound ||Ryf|l, < (14 d2)™ || f|| by Claim 3.18, and the sum of the pz’s by 1. For
the second sum, we bound ||R7f||, < || f|, by Jensen’s inequality and the sum of pz’s by 4m2a~le—e’n,

Overall, we get that
0" 11 £y < (4mPa™"e™ " 4+ (14 62) ™) || f1l, .

and dividing by || f||,, simplifying and taking h-th root finishes the proof. O

3.4.2 The case thatd < yn
In this section, we prove the following claim.

Claim 3.19. Forall o > 0, m € N there are v > 0, § > 0 and C > 0 such that the following holds. Let
Z/lE C [m]"™ be a-balanced, and |1 be a a-admissible, connected distribution over Z/IE X Z/IE, such that T, is
self-adjoint.

Foralld < yn, if f € V_q(Uy), then || T, f|l, < C(1+ )= £y

For the rest of this section, we fix & > 0, m € N and p as in the above claim. The proof follows the
same sequence of claims as in the previous section, except for Claim 3.18 whose formulation and proof is
adjusted to this case.

Claim 3.20. Forall o > 0, m € N there arec > 0, v > 0, § > 0 such that the following holds. Suppose 7
be e-reasonable. Then for all d < yn and f € V_q(Uz) we have that |Ryf|l, < (1+6)" | fl,.

Proof overview. We begin with an outline of the argument. Let € > 0 be sufficiently small to be deter-
mined later, and take v = min(«/2, ). Then the a-balancedness of our multi-slices implies that for any
S C [n] of size yn, the support of zg where 2 € U is full, i.e. [m].

As before, we will reduce Claim 3.20 to understanding the eigenvalues of R on the space V_4(Uz).
Here however, we will show that for any eigenvalue § # 0 of R in this space, there is a d-junta f € V_q(Uj};)
for which R7f = 6f. Assume without loss of generality that the junta is S = {1,...,d}. Roughly
speaking, the idea then is to take a set of N = 3d coordinates containing the junta coordinates, then “project
everything” onto these coordinates, reducing us to case very similar to the d > yn case.

More precisely, we will consider the induced measure v on [m]”, and the natural projection of the
operator R on this space, i.e. Riy: L2([m]V,v) — L*([m]",v). We will do so while keeping f as
an eigenvector of Ry with eigenvalue . We will then study the operator Ry, and in particular show
(similarly to before) that: (a) Tr(R% N) S (1+¢ (h))¢ where limy, o, £(h) = 0, and (b) the multiplicity
of the eigenvalue 6 is large, namely at least (1 + ©(1))?. Combining these two facts yields, as before, that
0] < (1 — &) for some &' = &(cr,y,m) > 0.
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We remark that the proof of (a) is again by a direct computation (as can perhaps be expected). As for (b),
here we use the fact that the multiplicity of f is at least dim(span({ ™ f | 7 € Sny'})) (as each ™ f will automat-
ically be an eigenvector of R y), so our task reduces to showing that this is a space of large dimension. To
evaluate this dimension, we construct an invertible linear map v: L?([m]",v) — L?([m]", Uniform) that
commutes with the action of Sy, and show that the space ¢ (span({™ f | ® € Sy})) has a large dimension
by orthogonality considerations (which are much easier to carry out in a product space).

We now proceed to the formal proof, and we fix an e-reasonable statistics 7 for the rest of the proof. By
Claims 3.2, 3.17 the space V_4(Uy) is invariant under Ry Thus, we may decompose it as V_q(U}) =
D, de(u,;) where Vzod(L{E) is an eigenspace of Rz with eigenvalue #. Thus, by Parseval, to prove
Claim 3.2 it is enough to show that if V%, (4;) # {0}, then [0] < C(1 — §).

Recall the junta spaces V; (U;). We further refine them by considering V_; (Uz) = V;(Uz) N Vy—1(Uz)*
for all J of size d.

Claim 3.21. Let 6 be such that V2 ,(Uz) # {0}. Then there is a non-zero d-junta f € V? (Us).

Proof. By Claim 3.6 the operator R preserves the spaces V;(Uy) as well as Vy_1(U). Since it is self-
adjoint, it follows that R preserves V_;(U;). Thus, we may write each such space as V_;(U};) =
D, V2 7(Uy) where |74 7(U;) is an eigenspace of R with eigenvalue 6. Thus, we get that

P VL) = Veaty) = P V=sty) = P P VL) = P EP VL, WUp).
0 J J 0 7] J

By uniqueness of the decomposition into eigenvalues, we get that for all 6, Vﬁd(L{E) =@, Vi](l/l,;), and
the claim follows. ]

Fix 6 such that de(u,;) # {0}, and pick f* # 0 a J-junta from Claim 3.21 for | /| = d. Without loss of
generality, assume that J = [d], and set N = 3d. Let D be the uniform measure over Uy, and let D| be the
marginal distribution of 2] where x ~ D. Given a function g: [m]NY — R, we may lift it to §: U — Ras
g(2) = g(zn1). Define the operator Rj x : L*([m]™,v) — L?([m]™,v) as follows:

D

(Reng)(@) = B (Red)o.).

ye[m]
Abusing notation, since f* is a [d]-junta and [d] C [N], we may think of f* as a function over [m]".
Let F' =span({™f* |m € Sn}).

Claim 3.22. Forall f € F, we have Ry nf = 0f.

Proof. Clearly, it is enough to prove that each ™ f* is an eigenvector. The proof is virtually identical for all 7
(replacing the role of [d] with 7([d])), and we thus assume that 7 is the identity permutation. By definition,

Renf@= 3 DB (R 110) = Py S =0 S T

which is equal to 6 f*(z). O
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Thus, using the trace method we see that Tr(R2 ;) = 6dim(F), i.e. that

Tr(R%N)

< P b
S dim(F) ’

(6)
and in the rest of the proof we prove an upper bound on the above trace and lower bound on the dimension
of F.

Claim 3.23. dim(F) > (*%).

Proof. Using the expectation inner product according to D, we may define the spaces V_;([m]™, D)) for
j=0,1...,N.Itis easily seen then that ' C V_4([m]", D).

Consider the linear map ¥: V_4([m]™,D;) — V_4([m]", Uniform) defined as follows. Given a func-
tion g € V_q([m]",D,), we think of it as a function over [m]" with the uniform measure, and then take its
projection gq onto V_4([m]", Uniform); i.e. ¥(g) = ga.

We claim that ¥ commutes with the action of .S,,. Indeed, let 7 € S,,, and write "g as hg + ... + hg
where h; is the projection of "g onto V_4([m]", Uniform), so that ¥("(g)) = hg. Also, we have that
g(z) =" " ho+...4+™ ' hg, and since the spaces V_q([m]"~, Uniform) are invariant under the action of Sy,
we get that ™ ' hy is the projection of g onto V_g([m]N, Uniform). We get that "U(g) =" (" ' hg) = hq,
and U("g) = hg, and so ¥ commutes with 7.

We claim that ¥ is invertible. Indeed, we show that if ¥(g) = 0, then g = 0. As g € V_q(m]", D)),
we get that g is a linear combination of d-juntas so g € Vy([m]", Uniform), but as ¥(g) = 0 we have that its
projection onto V_g([m]?", Uniform) is 0, so g € Vy_1([m]", Uniform). Thus, g is a linear combination of
(d—1)-juntas, and so g € Vy_1([m]™, D)); it follows that g = 0. We conclude that dim(F) = dim(¥(F)),
and in the rest of the proof we lower bound the latter quantity.

We note that as f* is a [d]-junta, g* = ¥(f*) is also a [d]-junta. Thus, since ¥ commutes with the action
of Sy, for all m € S,,, the function ¥ (™ f*) = "g* is a 7([d])-junta. We now consider B = {"¢* | 7™ € Sn},
and we show that B contains a large orthogonal set.

We claim that if 7, 7’ are permutations such that 7([d]) # 7’([d]), then "g* and ™ g* are orthogonal. This
is equivalent to showing that if 7=*([d]) # [d], then ™ g* and g* are orthogonal. To see that, let I = 7~([d]);
then we have that

("g",9") = E lg"(m(z,9))g"(z, )] = E |g"(7(x,0))E[g"(z,y)]|.
ze[m/|1 ye[m/|INI\ ze[m/]! Y
Letting I’ be the intersection of [d] and I, we see that I’ has size at most d — 1 and E, [¢*(z,y)] =
E.cpmvnr [9%(zr, 2)] = 0,50 (Tg*, g*) = 0.
Consider the collection L of injections 7: [d] — [N] \ [d], and extend each # € L to a permutation
m € S, arbitrarily, to form a collection of permutations L. We get that any two permutations from L
disagree on [d], and by the above paragraph it follows that

dim(¥(F)) > |L| = |1| = (Zé)! - @l). 0

Claim 3.24. Tr(R%N) < (1 + Oq4(e))e
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Proof. Let x € [m]V, and let 1, € {0, 1}mN be the indicator vector of x. Denote the diagonal entry of
7'\’,1% y corresponding to x by a .; then a;, = 1; . 7?,1% ~1z. Expanding the definition of Ry, the vector
R% 1z is a probability vector whose x’s entry is equal to

Pr w'ivt =2 | wint = ], so Ay, = Pr wivi = |win = z].
ey [(Win =" | win) = 2], = [Win = | win) = 2]
T 7

Fix any w such that wyy] = . In the rest of the proof, we show that Pr,/ _r2,, [W'n] = 2] < Dy (x)(1 +
O, (€))", from which the claim quickly follows: it implies that a, , < Dy (x)(1 + O(€))", which by
summing over x and using N = 3d gives us Tr(R2 ) < (1 + O4(e))<.

Indeed, using conditional probabilities we have that

N
/ /
/P71£2 [W[N—x P71£2 wizxi‘w<i:x<i].
Wi /KW WN
™ —

By definition of the operator Rz, we have for i = 1 that Pry, 2, [W'1 = 21| = rle’zl, and forall? > 1

Tz, Yoo w, K T, z, N
P /. — . ! — . g Ti,Tq < L, Ty T — T, Tq 1
w/wég_w (Wi =i |Wai = wai] b =i S ke RN ke, k=N
which is at most %% ( + O4(e))as N < yn < en,an/2 and k;, > an. Thus we get that

N
Pro [win =] < (1+0a(e)V [ 2.

I JR2
w/~Row =1 kxz

Next, note that

Nk, i Ay
> Ti s (1—e)NV T2
o= [[F a8
i=1 =1
so we get that
D, (x) “ Pl k2 /n’
Since r is e-reasonable,
2
Tr; x; Taix; — nVE(xz) 3en 3
o <1+ 5 <1 ,
k2 /n + k2 /n + k2 /n T2t
Pros g2, [W v =2] [
where we used k;, > an. Plugging this into (7) shows that RE) < (1 + Oq(e))", finishing
the proof. O

Plugging Claims 3.23, 3.24 into (6) bounds all eigenvalues of R for reasonable 7, and the rest of the
proof of Claim 3.20 is identical to the proof of Claim 3.13 and we do note repeat it.
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3.4.3 Proof of Lemma 3.11

By Remark 3.12, we assume T, is self-adjoint. Fix o > 0 and m € N. Take v1,6; > O and C; > 0
from Claim 3.19. Now take do, Co > 0 from Claim 3.13 for ¢, m and ~1; we show that the lemma holds for
C = max(C4,C2) and 6 = min(dy, d2).

Let f € Voq(Uy), and write f = Y f=7 where f= € V_;(U;;). By Claims 3.2, 3.17, the spaces
jedrt

V_;(Uy) are invariant under T, so we get that (T, f)=/ = T,(f=/). Thus by Parseval HTung =

> ||T.(f=9)||2. By Claims 3.19, 3.13 we have that ||T,.f=7(|, < C(1 — 6)7 || /~/
j>d

5> SO summing and

using Parseval again gives us the statement of the lemma. O

3.5 Proof of Theorem 3.10

Let d € N to be chosen later, and write f = f<¢ + f>¢ g = g% + ¢>? Then we have that

E [fg)] = E [0+ B [fU0e00] + B[P g)],

(x,x )op (x,x Yo (x,x)op (x,x Yo
(8)

and we first show that the second expectation is small in absolute value. Indeed, writing it as an inner
product we have that it is equal to

1/2 1/2
0750, 7 < [Tt gl = (T 2 gl < a2 gl

Consider the distribution v defined as: pick (x,x’) ~ p, pick (x”,x”") conditioned on x"" = x’, and output
(x,x"). Note that as y is connected, v is connected, as j is a-admissible, v is o®-admissible, and that the
coupling between p and ji naturally induces a coupling between v and ¥ with similar parameters. Finally,
note that T, = T;:T#.

Write f>4 = Y f~‘for [~ € V_¢(Uz). By Claim 3.17, the operator T, preserves the spaces V_,(U;,),

£>d
so by Parseval we have ||Tl,f>dH§ => HT,,fzeHg. Using Lemma 3.11, we get that
>d

I < S a7 || < 2+ o8,
>d

so the third expectation in (8) is at most v/C(1 + 8)~%2 || f||, ||gll,- The same argument applies to show
that the absolute value of the second expectation is also upper bounded by that. We thus get that

<22V +8)2Ifll; gl - ©

We now argue that

<2V 1+ )| fls lglls -
(10)

E [Tef3)Teg)] = B [(Tef)™®)(Ten) ()]
(y.y')~it vy )~ii
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Indeed, we show that by proving upper bounding the expectation of each one of (T¢ f)>%(y)(T¢rg)(y’) and
(Tef)Sy)(Terg)>%(y’). The arguments are identical, and we demonstrate on the first one. Writing it as
an inner product and using Cauchy-Schwarz we get that

E [(Tef) ') (Teg)y)] = (Th(Tef)*, Teg) < | Ta(Te)>| ITegl,
¥y )~i 2

< [ramacren>|” |

alll/2
(T, ITergll-
Consider the distribution i/ on [m] X [m] corresponding to picking (a,b) ~ i1, and then (a’,b’) ~ [

conditioned on b’ = b, outputting a, a’. By properties of 1 we get that i’ is connected and the probability
of each atom is at least a2. Also, Ty = TETQ’ so from Lemma B.3

|Tamamen |, < @ = Qa)? | (en)||, < (1 = 2a)? I

This completes the proof of (10).
By Lemma 3.25,

@)= = Te(r=)|, = OaaleM ISl ||(Teg)™ = Ter(g™)|| < Oaal¢) gl

(we used H f gUlHQ < || f1], and similarly for g), so by another hybrid argument and Cauchy-Schwarz

< Oadl¢") 1£112 gl -

E |(Tef)™3)(Teg) )] = B [Te(f<))Te (™))

(vy')~i (y.y')~i
(11
Using Lemma 1.6 the same way we did as in Section 3.3.1, we get that
E [/ 6] - B [Tet= )Tl )] | < 0ac | =, ||
(3, x")~p vy )~i 2 2

<O0a(C™ £l lglly - (2)

Combining (9), (10), (11) and (12) with the triangle inequality, and choosing d large enough so that
2/ C'(1 + 8')~42,2\/C(1 + 6)~%? < /4, and then ¢ small enough so that Oy(v/C), On.a(¢Y*) < /4,
finishes the proof. 0

3.6 T almost commutes with degree truncations

In this section, we prove the following lemma, aseerting that if C is a coupling with good enough parameters
in comparison to d, then (T¢ f)S% ~ T¢(f<%). More precisely:

Lemma 3.25. Suppose C is a (o, ()-coupling between (U, Uniform) and ([m]", V}?") as in Definition 1.5.
If f: Uy — Ris a function, and d € N, then H(ch)gd — T(g(J‘<Cl)}|2 <0 (d7/4ofl/4§1/4 11l2)-

The rest of this section is devoted to the proof of Lemma 3.25.
Let T, be the standard noise operator on L?([m]", v;:) from Section B.3. Our main goal is to show that
forall p > 0 and f € V—(Uy), it holds that

|T,ef - prcsz < 3\/§Hf|!§. (13)
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Intuitively, this would say that T¢ f is nearly of purely degree ¢, and indeed once established, we will quickly
deduce Lemma 3.25 from (13).

Claim 3.26. Suppose that for every p > 0, £ € Nand g € V:g(LIE) we have that

. 2 4
|(eT,Te = o' nf| < <S5 (14)
Then (13) holds for all p > 0 and ¢ € N.

Proof.

/ 2 2 . o 2 ¢
|ToTes — ' Tef |, = T Tef I3 + o ITefIl3 — 26" (T, Te s, Te )
= (T¢T 2 Tef, f) + p*(TETef, f) — 20(TET, T f, f)
= ((TeT 2T — p*I)f, f) + p*((TeTe =D f, f) — 20" (Te T, Te — pT)f, £)

40
< -
\3 OéC”fHQa

where in the last transition we used Cauchy-Schwarz and our assumption. O

Let S, = T;T,T¢ — p'L, and think of S, : L2(Uz) — L*(Uz). By symmetry of C, it follows that T¢, T
commute with the action of \S,, on functions, and so S, commutes with the action of .S;, on functions. Thus,
by Claim 3.6 it preserves juntas. Clearly, S, is self-adjoint.

By Claim 3.17, S,, preserves the spaces V_;(U;;), hence we may decompose it as a sum of eigenspaces
@D, VY, (Uy). Thus, to establish (14), it suffices to show that if Ve, (U5) # {0}, then |0] < %C. We fix 0*
such that V7, (Uy) # {0} henceforth. Recall the spaces V= ;(Uy) from Section 3.4.2; it follows that these
spaces are invariant under S, so we may decompose each one of them as a sum of eigenspaces €, | %44 7 (Uz).
Denote Vi(0) = ) 1 V:("J(Z/IE), then

Do) =P P V2 = P PV = B P Vaslth) = Varly),
(%

0 |J]=¢ |J|=¢ 6 |J|=¢ 6

50 V;(0) are the eigenspaces of S,,. Therefore, as V" (Uy) # {0}, there is |.J| = £ such that Vﬁ}(l/l,;) # {0}.
We thus find a non-zero f* € V7' (Uz).

Next, define an auxiliary operator R, ;. For x € Uy, we choose a set S C J randomly by including
each 7 € [n] in S with probability p. We then pick y €r Uy, conditioned on yg = xg. We finish the proof
with the following two claims.

Claim 3.27. R, ; f* = i

Proof. Write R, j = > pr R, 51, where pr is the probability that S = T, and R, jr is the action of
TCJ

the operator conditioned on 8 = T'. Node that (R, jrf*)(y) is just the average of f*(x) over x € Uy

conditioned on x7 = y7, so it is proportional to the inner product ( f*, 1,,.—y,). If |T'| < £— 1, then the last

inner product is 0 as 1, —y, € Vg_l(u,;). Thus, R, jf* =ps- Ry yf* = p’ f*, where the last transition is

since f*is a J junta, and py = pl’/l = pt. O

: * 4@
Claim 3.28. [0*| < 7 C.
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Proof. By the previous claim, S, f* = (T;T,T¢—R,, s) f*. Take x that maximizes | f*(x)|. We now sample
y according to T3 T, Tex, and y’ according to R, jx in a coupled way so that Pr [y’; # yj] < %C .

To do that, first sample T C [n] by including each ¢ € [n] in T with probability p independently.
Sample y(0) ~ Tew, and sample y(1) by taking y(1)r = y(0)T and resampling y(1); ~ vy for each
i ¢ T independently, and finally sample y ~ T§y(1). To sample y’, run the sampling procedure of R, jx
with S =T N J.

We note that if none of the coupling operators T¢, T} change the coordinates in .J, then we indeed have
vy, = y. Since C is a («, )-coupling, it follows from the union bound that this probability is at least
1 — 2% 6 Yt follows that

L
0117 @)] = 8,0 @] = | [70) = 6] < Pr vy £ w217 @] < 2 1@l
and dividing by | f*(x)| finishes the proof. O

It thus follows that (14) holds, and by Claim 3.26 we have that (13) holds. Finally, to establish
Lemma 3.25, we require the following claim, asserting that T¢ cannot decrease degrees.
Claim 3.29. f € Vy(Uz)®, then Tef € Vy(Im]™, l/?”)J-.

Proof. To show that, it is enough to show that if g € Vy([m]", u}%@”) then Tig € Vy(Uy), as that would say
that
(Tef,9) = (f,Teg) =0,

implying T¢ f € Vy([m]™, V?”)L.

By linearity of the operator T¢, it suffices to show that if |A| < d, and g is a A-junta, then T} g is also a
A junta. Fix A; then as C is symmetric it follows that T commutes with the action of \S,, on functions, so
for all 7 € S, that fixes the coordinates of A we have that ™ (T5g) = T;"g = T}g, so by Fact 3.4 we get
that T g is indeed a A-junta. O

We are now ready to prove Lemma 3.25.

Proof of Lemma 3.25. Let p > 0to be determined later. By Claim 3.29 we get that (ch)gd = (Te(fs))s4
Let gj = Te(f~7), and write g; = g; . Then by Fact B.10 it follows that T,,gj = plgj—l, and so by
i=0

linearity T)g; = Z pZ =%. On the other hand, by (13) HTpgj — pjng < 64/ %C Hf:j’ ;, and plugging in

the expansion of g] we get that
n
>0 = [lg5 Iy < \/ 715

1=0

2 :
It follows that H 95" ) < 6% H = ; and therefore by Parseval
i#]

Z =il V6(j¢)V*

7T pi(1 = p)al/t |
2

i#]

8Strictly speaking, the second property in Definition 1.5 asserts that this is true when we sample (x,y) ~ C. However the
symmetry of C and the balancedness of our multi-slices imply that for all ¢ and =, when we sample (x,y) ~ C conditioned on
x = x, we have that Pr [y; # z;] < (/a.
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Summarizing, we get that

s e = fmer -1t < e et

=2 >
j<d lli>d 2
<229
j<d |[i#j )
f(JC)
<Y = || F7
> e a1
wédc i
<A ety [0 [
j<d J<d
< YOO D -1
R 2
O VBAOY
—Wﬂ 11l -
Choosing p =1 — % > ( finishes the proof. 0

4 Invariance principle in the multi-linear case

In this section, we generalize Theorem 3.10 to the case that the distribution p is over r-tuples, where r > 2.

4.1 Invariance principle for products
In this section we prove Theorem 1.11, restated below.

Theorem 1.11 (Restated) . For all « € (0,1), M,r € N, my,...,m, € N, & > 0 there are { > 0,

N € N such that the following holds for n > N. Suppose L[k(l), .. ,L{E(r) are a-balanced multi-slices
T

over alphabets [my], ..., [m;| respectively, p is a connected, a-admissible distribution over H Uy ;) and

let [i the product version of i as in Definition 1.10. Suppose Ci,...,C, are couplings such that Ciisa
(a, ¢)-coupling between UE(i) and ([m;]" and that there is a (a (¢)-coupling, say C, between 1 and

.

Ve

Then for all f;: Uy — Rsuch that | fillo, < M for all i, it holds that

E [H fi(X(i))]

(X(l),..‘,X(T))Np, i=1

\

e <

The rest of this section is devoted to the proof of Theorem 1.11. We choose a sequence of degrees
d; < ds < ... < d,, where d; is sufficiently large function of «, 7, m1, ..., m, and ¢, and for each ¢, once

(1), ,y
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d; has been picked, d; 1 is picked to be sufficiently large. Finally, IV is picked to be sufficiently large, and
( is picked to be sufficiently small.

Claim 4.1.
. €
E filx(@))| - E FFEE@) ] < 3
(X(1)ere (7)) ~pt [131 (x(1),-oe () ~pa 1;[1 3
Proof. Letg; = f\ . We intend to prove forall j = 0,1,...,r — 1 that
J r Jj+1 r c
E 9i(x(1)) fikx(@)) | — E 9i(x()) fix(@) ] < 52
(x(l)r“'vx(T))NM E ig—l (x(l)v"'rx(T))N:u' ZE[]_ Z'H_Q 3r

and the claim follows from summing this up and using the triangle inequality. Fix j, then the above expres-
sion is equal to

E h<x<1>,...,x<j>,x<j+2>,...,x<r>>fj>ff+1<x<j+1>>]‘, (15)
(x(1),..,x(r))~p

where h(z(1),...,2(j),z(j +2),...,2(r)) = ']%[1 gi(x(i)) H fi(x(i)). Next, we interpret this expecta-

= i=j+2
tion as an inner product. Consider the operator T4y : L? (Z/{k(j Jr1)) — L*( IT U )) defined as
i#j+1
Tj1f(z) = E [f(xG+1) [(x(1), ..., x(7),x( +2),...,x(r)) = 2].

(X(1) e (1))

Consider the distribution vj1 over Uy, ;) X Ug; . as the distribution of (x(j +1),x(j + 1)") where
we first pick (x(1),...,x(h)) ~ p, and then (x(1)’,...,x(h)) ~ u conditioned on x(i)" = x(i) for all

i # j + 1. Then note that T, = TJHT i+1, and so

d d; d d
(15) = <h’Tj+1f> J+1> < Hh“2 HTj+1f]ilj+l ) = ||h||2 \/< J+1f> J+1 _7+1f> J+1>

>djq1 Sdj |12
<Ml |7 | o ae
First, we use Lemma 3.11 to bound HT” ;_df 1| . Indeed, the connectedness of w1 implies that v is con-
2

nected, and the a-admissibility of . implies that v is o admissible. Also, using the coupling C one may
easily construct a («/2, 2¢)-coupling C’ between v and . We thus have by Lemma 3.11 that

>djy1
fied

>dji1
T

< Cm,a)(1+6)

< Cm,a)(1+8) " | fall

which is at most C'(m, M, a)(1 + 8)~%+1 as || fj41]ly < [[fi+1ly, < M. Here § > 0 depends only on o
and m. Plugging this into (16) we get that (15) < C(m, «)(1 + &) ~%+1 || h|,, and we next upper bound the
norm of h. By Holder’s inequality we get that

J

[LIEES ng H fur(x HHQ?HT 3 H 1£2]],._ Hllgz\lz(r ) H i1 31y

=j+2 =j+2 =j+2
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and we argue that [|g;[|o,_1) , [ firlla(-—1) = Or,m,ds,....d;(1)- Indeed, using monotonicity of the norms and
then hypercontractivity (Theorem 2.12) we get

19ill2—1) < 9illor < Oray,..a; (1) |ille < Oray,...oa; (V)M < Oraray...q; (1),

where we used Parseval to bound ||g;[|, < || filly < [[fillo, < M. For fir, we have || fi[ly, 1y < [ filla, <
M.

Plugging everything into (16) we get that (15) < Oa mrds,....d; (1) (1 +0)~ di+1_ 50 picking dj1 large
enough gives that (15) < 5. O

Claim 4.2.

T

[I(Te.f)= (X(i))]

i=1

<

Te, fi(x
HCf ] (1)

1 7"'7X(T))Nﬁ

€
3

(x(1

Proof. The proof is identical to the proof of Claim 4.1, except that we use Lemma B.3 instead of Lemma 3.11,
and Theorem 2.11 instead of Theorem 2.12. O

Claim 4.3.

T

[](Te, o)< <x<i>>]

i=1

<

[H AR ] E

(X(1) e (1)) i

B <
(1) () o 3
Proof. Let C be a («, )-coupling between y and fi guaranteed to exist by the assumption of the theorem.
Applying the hybrid argument again, it is enough to show that for all j = 0, ..., — 1, the absolute value of

r

E T @) (257 oG+ 1) = (Tepa S0 =5+ (v G+ D)) (Te,fi) (v (@)
<X(1)7 . (rg) i1 i=j 42

y(1),.y(r
)

is at most 5. By Cauchy-Schwarz, this absolute value is at most

<d; ) . 2
iy | B[R ) - (T e+ 1)
S
J r
where h = [] f5%(x(i)) T] (Te,fi)<% (y(i)). The norm of & is bounded as in the previous two claims
i=1

i=j+2
using hypercontractivity by O, ar.m a.d; .....d,. (1). For the other expectation, note first that by Lemma 3.25

. <d;
| (T fis0) 5 = Te (55| < O,

so by (a + b)? < 2(a? + b?) the expectation is upper bounded by

<d; . <d; . 2
O 11.0(V/C) +2 " E( ) [( (x4 1) = Te, (F) (G + 1))) }
x(1),....x(r
(y(l), Sy (r )) ~¢
Finally, Lemma 1.6 implies that the last expectation is upper bounded by 8./d ]+1 . Thus, overall (17) is

bounded by O, a1.m.a.ds,....d (€ 1/ 4), so taking ¢ small enough gives it is at most =. Summing (17) over all
7 and using the triangle inequahty finishes the proof. O
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Theorem 1.11 now follows from Claims 4.1, 4.2, 4.3 and the triangle inequality.

4.2 Invariance principle for label-assignments

In this section, we state a version of our invariance principle, Theorem 1.11, that will be useful in our PCP
T
reduction. Let ¥; = [m;] be alphabets for i = 1,...,r, and let P: [][ ¥; — {0,1} be a predicate. Let
i=1

fi Z/{,—C»(i) — [m;] be a functions where U,—C»(i) C [m;)™ are all a-balanced multislices. We will want to prove
invariance for expressions of the form E(x(1).... x(r))~u [P(f1(x(1)), .., f1(x(r)))]. At the moment, it does
not make any sense — the function T¢, f; is not even well defined (as ¥ does not have a sensible additive
structure). We therefore view our, as is standard, the alphabets as standard simplices.

Let Ay, = {(to,. . tm—1)|ti = 0, Z?;_Ol t; = 1} be the standard m-dimensional simplex. We identify
a symbol o € ; with the standard basis element e, € A,,,. This allows us to view a given function
fi: Z/IE(I.) — [m;] as a function f;: Z/{E(i) — Ayy,,, which we will do (slightly abusing notation by denoting
the two functions the same way). Thus, now given a coupling C; between UIQ(z’) and ([m]", VE(i)), we define

Te,fi = (Te, fins-- - Tei fimi)s

where f; ; is the jth coordinate of f;. We remark that clearly, if f;: Z’[E(i) — Ay, then as T, is an averaging
operator and A, is convex, we get that T¢, f;: L{E(i) — A,

~ T
Next, we define the natural extension of our predicate P, denoted by P: [[ A,,, — [0,1]. If fori =

i=1
1,...,r each y(i) € Ay, is standard basis elements, say y(i) = e,,, then we define P(y(1),...,y(r)) =
P(o1,...,0,). For the rest of the points, we extend P multilinearly; let y(i) € A,,, fori =1,...,r, and
express each y(7) using the standard basis as y(i) = > y(i),€,. Then we define

oEeY;

p(y(l),...,y(?“)): Z P(0—17"'70—T‘)Hy(i)0'i'
=1

016217---7Jr62r

Theorem 4.4. For all « € (0,1), r € N, my,...,m, € N, ¢ > 0 there are ( > 0, N € N such
that the following holds for n > N. Suppose UE(1)7 e ’UE(r) are a-balanced multi-slices over alphabets

T
[m1], ..., [my] respectively, and yi is a connected, a-admissible distribution over [ U ;) Suppose for each
i=1
), and that there is a («, C)-coupling between

@n

) k()

wand fi. Then forall P: [][mi] — [-1,1] and f;: Uiy = [mi] it holds that
i=1

i € [r], Ci is a (o, )-coupling between U;:

7 and ([mi]™, v

B PAGW). A) - E [P Ay, Te Sy ()] | <e
(%(1) -0 (r))~p D),y (r)~i
Proof. Sete’ =¢/(my ---m,;), and pick §, N from Theorem 1.11 for o, 7, m1, ..., m, and €. Then the left

hand side is at most

> |P(c1,...,00)]

o1€[mal,...,or€[me]

E [H fior <x<i>>] - E
=1

(x(1),.0ex(7)) ot (Y(1)sensy (1)~

H TCi fi,o‘i (y(l))] | :
i=1

37



By Theorem 1.11, the second absolute value is at most £’, hence we get the bound

> |P(o1,...,0,)|e <e. O

O‘]_E[Tﬂl],...,o're[mr]

4.3 Using our invariance principle: a construction of a useful coupling

In this section, we construct a useful coupling between admissible distributions over products of balanced
multi-slices, and their product version.

Definition 4.5. For each i = 1,...,r, let L{E(l) be a multi-slice over the alphabet [m;), and let p be a
distribution over Uz, X -XUE(T)- We say v is negatively correlated if for all @ € [m1]X...x[m,], defining
the events A; = {(z(1),...,z(r)) | (x(1),...,x(r);) = @}, the random variables 14, fori =1,...,n are
negatively associated (where the sampling of (z(1),...,z(r)) is done under ).

Proposition 4.6. Forall « > 0, r,m1,...,m, € Nthere are o, K > 0 such that the following holds. Let j

be an a-admissible distribution, negatively correlated distribution over L{E(l) X ... X uE(r)’ where for each
1, the multi-slice L{E(i) has alphabet [m;] and is a-balanced. Let [i be the product version of [u.
Then thereis a (o, K \}ﬁ)-coupling between i and fi.

Proof. We define the coupling C = ((x(1),...,x(r)), (y(1),...,y(r))) as follows:

1. Sample a statistics of (y(1)’,...,y(r)") ~ fi. Thatis, sample (y(1)’,...,y(r)") ~ [i, and for each
a = (ay,...,a;) € [m1] X ... x [m;], denote by rz the number of coordinates ¢ € [n] such that
Y(l); =az,... 7Y(T); = Qr.

/

2. Sample a statistics of (x(1)’,...,x(r)") ~ p. That is, sample (x(1)’,...,x(r)") ~ p, and for each
a= (a,...,a,) € [m1] X ... x [m,] denote by kz the number of coordinates i € [n] such that
x(1); = a1, ..., x(r), = ar.

3. Let us consider the lexicographical ordering on [m;] x ... x [m,]. Sample w € S, and divide
the integers 1,...,n into consecutive segments (I(i)ie[mﬂx...x[mr] of lengths kz, according to the
lexicographical ordering on [m;] x ... X [m,]. Also, divide the integers 1,...,n into segments
(Ja)ae[my]x...x[m,] Of lengths rz again according to the lexicographical ordering on [m1] x ... x [m,].

4. Define x(1),...,x(r) by setting x(1)r() = a1,...,%X(")x@) = a, forall @ € [m1] x ... x [m,]
and ¢ € Iz. Also, define y(1),...,y(r) by setting y(1)) = a1,...,y(")xe) = ar forall @ €
[mi] x ... x [m,] and ¢ € Jz

We now argue that C is a (Qq,r.m,,....m, (1), Oa,rmy,...m,. (1/+/1))-coupling according to Definition 1.5. The
first, second items are immediate, and we focus on the third and fourth items.

For the fourth item, let R C [m1] x ... x [m,] be the set of symbols that occur with positive probability
in a coordinate of y, and let @ € R. Setm = my---m,, £ = 4€W' Fix ¢ € R, and note that for
i=1,...,n,theevents (x(1)},...,x(r);) = d are negatively associated, so by Theorem 2.16 we have that
kz < nug + €'n with probability at least 1 — e~ m(e*n) g0 by the union bound kz < nug + &'n for all

a € R with probability at least 1 — me~%m (1) We note that in this case, we have for all @ € R that

kz >n— Zkl}' >n— Z(nug+€'n),
beR bER
bta b4a
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which is at least uzn—me’'n. We get that |kz — pgn| < me'nforall @ € R with probability 1—me m(E®n),

The same argument applies for rz to show that |rz — u5n| < me'n for all @ € R with probability 1 —

mem (1) Therefore, with probability 1 — me e m(€*1) e have |kz — rz| = 2me’n, and we show that
in this case (x(1),...,x(r)) and (y(1),...,y(r)) differ in at most en coordinates. Indeed, note that
[LaATz| <> 2)k; — | < 4m®¢n,
bja

and the set B = |Jzcp 1A Jz contains all 4’s in which (x(1);,...,x(r);) # (y(1)i,...,y(r)i). Thus,
|B| < 4m3e'n < en, and the fourth item is established.
For the third item, again we see that the number of coordinates (as a random variable) is at most

b=a
QWZEHkg_T 2mz,/ ‘k - QmZO Om(v/n).
b=a b=a b=a
The third item thus follows from symmetry. O

S Beyond connected distributions?

In this section, we remark that one can prove the invariance principle from the multi-slice to its product
version continues to holds for a class of distributions u in which the “contribution of high-degree functions”
is always small. For such distributions, one only has to care about the contribution of the low-degree parts
of the functions, and for we use Lemma 1.6. In this language, the main content of the previous section is
showing that in admissible, connected distributions, the contribution of high-degree functions is very small,
i.e. Lemma 3.11.

Definition 5.1. Let r,m € N and let ([m]",v1,),...,([m]", vrn,) be measure spaces for alln € N. Let jn =
T
{tn}pen be a sequence of distribution over (] [m])" whose marginals match v; ,. We say i annihilates

=1
high-degree functions, if for alle > 0, M € N, there are q,d € N and N € N such that the following holds
foralln > N.
Whenever f1, ..., fr: [m]"™ — R are functions such that:

1. foralli=1,...,rit holds that Ex~.,, [[i(x)?] < M, and

2. thereisi=1,... 7 suchthat f; € Vsq(Im]™, vin),

it holds that |Ex(1),... x(r))~un [H fi(x(i ))H S &

Thus one gets the following result.

Theorem 5.2. Let a« > 0, r,mq,...,m € N. For eachn € N, let ug(l),...,ug(r) be a-balanced
multi-slices over alphabets [mi], ..., [m,] of vectors of length n, respectively, let ;1 = {p,} be a sequence

of measures on H uz

k(i)
=1
{4in} e be the product version of .

whose marginal on each 1 is uniform on the respective multi-slice, and let [i =
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Suppose, that p and i both annihilate high-degree functions. Then for all € > 0 there are ( > 0, N € N
such that the following hold for n > N. If Cy, ... ,C, are couplings, where C; is a («, ¢)-coupling between
Z/{g(i) and Vg?), and there is a («, ¢)-coupling between i, and (i, then for all f;: L{E(i) — [—1, 1] we have

Le.

[T Te £ily ()

i=1

E [H ﬁ-(x(z‘))] - E
=1

(X(l),...,x(’f‘))"’ﬂn (y(l),,y(r))N;fn

We omit the proof since it follows easily from the argument in the previous section by replacing the use
of Lemmas 3.11 and Lemma B.3 with the property that i and & annihilate high degree functions. We believe
it would be interesting to identify new classes of distributions that annihilate high degrees. We also remark
that one immediately gets an analogue of Theorem 4.4 for distributions y such that both y and i annihilates
high-degree functions.

6 Applications to hardness of approximation

In this section, we use our invariance principle in order to convert dictatorship tests into NP-hardness results
assuming the Rich 2-to-1 Games Conjecture. We begin with some definitions to formally set up terminology.

Definition 6.1. Let X be a finite alphabet, P C {P: ¥ — {0, 1} } be a collection of predicates. An instance
of CSP-P is (Z,E) whete Z = {z1, ..., zn} is a set of variables, and E is the set of constraints of the form
P(ziy,...,2i,) =1 where P € P.

Given an instance ¥ = (Z, E) of CSP-P, we define the value of ¥ as follows. An assignment is a
mapping A: Z — ¥, and the value of the assignment valy (A) is the fraction of constraints that are satisfied
by it, i.e. Ece i [1 A satisfies ¢|- The value of the instance, val(¥), is defined to be max valy (A).

: Z—

Definition 6.2. Let 0 < s < ¢ < 1, r,m € Nand let P C {P: [m]" — {0,1}} be a collection of r-
ary predicates over alphabet [m]. We denote by Gap-CSP-P|c, s| the promise problem where one has to
distinguish between the following two cases, given an instance ¥ of CSP-P:

1. YES case: val(¥) > ¢;

2. NO case: val(¥) < s.

Next, we wish to define dictatorship tests, and for that we first define regular functions.
Definition 6.3. Let ¥ = [m)], let D = vy X ...vy, be a distribution over X", and let f: ¥ — R™. The
influence of variable i € [n)] is defined as

LIfiD = E_[I160) = Bif ()3

Here, E; is the averaging operator over coordinate i defined as E; f (x) = Ey,~, [f(X=i,¥i)]-

Note that denoting f: X" — R™ as f = (f1,..., fm) forreal-valued f;’s, we have I;[f] = > ILjf;].
j€[m]

Definition 6.4. Let > = [m)], let D = vy X ... v, be a distribution over ™, d € N, and let f: ¥ — R™.
The degree d influence of variable i € [n] is [=%[f; D] = L[f<% D). Here, <4 = (f;<%,.. ., fm=9).

40



Definition 6.5. Let X = [m] and D be a distribution over 3" with marginals D1, ..., D,, and let f: ¥ —
Y. As in Section 4.2, view f as a function from X" to A,. We say f is (d, T)-regular with respect to D, if
foralli € [r]and j € [n] we have that Ifd[f;DZ@"] < T

For a collection of distributions {D(t)},.+ and a measure p: T — [0,1], we say f: X" — X is
(v, d, 7)-regular with respect to T if choosing t ~ T, with probability at least 1 — v, we have that f is

(d, T)-regular with respect to D(t).

Definition 6.6. Letr € N, 0 < s <c< 1, and P C {P: ¥" — {0,1}} be a collection of r-ary predicates.
A (¢, s)-dictatorship test for P consists of a probability measure w: P — [0, 1], a collection of distributions
{D(t, P)}ier pep over ¥, and a measure p: T — [0, 1] such that

1. Completeness: for all n, if f: X" — X is a dictatorship, i.e. f(x) = x; for some i, then

o 5 [P((x(1), . ,f<x<v~>>>1] >e
pooT (x(1),..,%(r))~D(t,P)&n

2. Soundness: for all v,e > 0, there are T > 0 and d, N € N such that the following holds. If n > N,
and f: X" — Yis a (v, d, 7)-regular function with respect to {D(t)},.r then

E [ E [P(f(x(1)),.. .,f(x(r)))]] <sie
EpT [ (<), x(r))~D(E,P)O"

Raghavendra [44] showed that a given (¢, s)-dictatorship test for a predicate can be converted into a
(¢ — €, s + €) NP-hardness result for the predicate, assuming the Unique-Games Conjecture. When ¢ < 1,
this result is easily seen to be equivalent to a (¢, s + ) NP-hardness result, however the situation is very
different for the case of perfect completeness, i.e. ¢ = 1, which we focus on henceforth. In this case, the loss
of perfect completeness in Raghavendra’s result stems from two different places, each one of which seems
fundamental. First, in order to carry out his analysis, Raghavendra has to work with connected distributions
w; this is easy to achieve if one allows a small change in the completeness parameter ¢, by mixing each one
of the distributions p; with a small multiple of the uniform distribution (i.e. working with the distribution
() = (1 — e)ue(x) + ﬁ). Second, Raghanvedra starts off the reduction from the Unique-Games
problem, which inherently has to have imperfect completeness.

Roughly speaking, our result shows that if one is willing to assume the stronger Rich 2-to-1 Games
Conjecture, then only the first of these issues persist. More precisely, we show:

Theorem 6.7. Let v € N, m € N, and suppose P C {P: [m]" — {0,1}} is a collection of predicates.
Suppose there is a (1,s) dictatorship test, (w,{D(t)},c7,p), for P. If each one D(t) is connected, then
assuming Conjecture 1.17, for all € > 0, the problem Gap-P|1, s + | is NP-hard.

The rest of this section is devoted to proving Theorem 6.7. Our reduction is very similar to Raghaven-
dra’s reduction; however, we do not know how to analyze the most natural version of it using product spaces.
As is natural in many PCP reductions, the constraint maps of our starting initial Rich-2-to-1 Games instance
define a projection operator from the “large long-code” to the “small long-code”. The issue is that unlike in
Unique-Games, these projection operators do not behave well with respect to the measure on these spaces,
and this introduces several technical difficulties.

Our idea therefore is to use multi-slices instead of product spaces, for which we show that the above
issues no longer exist. As is often the case, the completeness of this reduction is trivial, and one only has to
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worry about the soundness of the test. This is where our invariance principle enters the picture: intuitively,
it asserts that the performance of our dictatorship test, when applied on multi-slices, is very close to its
performance of the original dictatorship test, which we know how to analyze. There are still technical issues
that arise because of multi-slices and the fact we are working with 2-to-1 constraints (as opposed to 1-to-1
constraints), mainly in the decoding phase. For that, we define an appropriate notion of “noisy influences”
that has similar properties to the standard noisy influences (e.g. the total noisy influence is small), and also
interacts well with 2-to-1 projections and couplings.

6.1 An appropriate notion of noisy influences

Definition 6.8. Suppose 0 < 8 < a < 1, and n € N. Suppose UE C [m]™ is a a-balanced multi-slice, and
pn is an integer. For each x € U, define the distribution'y ~ S1_gx over Uy as:

1. foreach j € [m], choose A; C {i € [n] |x; = j} of size fn randomly;
2. takey € Uz, where y; = x; if i ¢Uj€[m} Ajyi=j+1lific Ay, j#Fmandy; = 1ifi € Ay,

We will assume henceforth that Sn/2 is an integer, and the point is so that the operator S;_g is well
defined on Uz and U, /20 We remark that by adjusting the definition of S;_g slightly, the statements below
remain true without this assumption, however this only introduces more cumbersome notations.

Definition 6.9. Suppose 0 < 8 < a < 1, and n € N. Suppose U; C [m]" is a a-balanced multi-slice, and
Bn is an integer. The noise operator S1_g: L*(Uz) — L*(U;) is defined as

Grpf)z)=_ E [f¥)]

y~S1_gz
We will also define influences of functions on the multi-slice.

Definition 6.10. Let U C [m]", f: Uz — R, and i € [n]. The influence of coordinate i is I;[f] =

Eje[n] [| f(Mix) — f(x) ]2}, where T; ; is the transposition permutation between i and j. The total influence
n

of fis I[f] = Zlfi[f]-
1=

Definition 6.11. Suppose 0 < 3 < a < 1, and n € N. Suppose U;; C [m]" is a a-balanced multi-

slice, and fBn is an integer. For f: U; — R, the 3-noisy influence of a variable i & [n] is defined as

19 [f] = Li[S1-_pf). The total noisy influence of f is I'¥)[f] = zn: Ii(ﬁ) [f]-
i=1

2

We next state several properties of noisy influences in multi-slices, mostly analogous to properties of
noisy influences in product spaces, which will be crucial for us in the proof of Theorem 6.7. Namely:

1. Lemma 6.13: the total 5-noisy influence of a bounded function is O (1) (so the number of coordinates
with B-noisy influence at least 7 is Og(1/7)).

2. Lemma 6.16: if f: U — [—1,1] is a function in which all noisy influences are small, and C is a
good enough coupling between (U}, Uniform) and ([m]", 1/]?”), then all of the low-degree influences
of T¢ f are small.
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3. Lemma 6.21: in Definition 6.20 we consider the notion of projections of a function over the multi-
slice, which plays a crucial role in our analysis. Given a vector k= (k1,...,kn) of even integers
summing up to n and a 2-to-1 map 7: [n] — [n/2], we define the projection of f: U — R along
as f|r: Uy, — R, given by fl=(z) = f(y) where y is the point in which y; = ;). In Lemma 6.21
we prove that if f has a coordinate ¢ with significant noisy influence, then for a random projection 7r,
the coordinate 7r(7) has significant 5-noisy influence in f|, with significant probability.

6.1.1 The total noisy influence is constant

In this section we show that the sum of noisy influences of a function over the multi-slice is constant. We
begin with the following variant of the well-known connection between noisy influences and the Fourier
transform.

Claim 6.12. Forall f: U;; — R we have that Ilf]< > d Hf:ng
d>0

Proof. We recall the mapping f — f from Section 2.2.2 that given a function over the multi-slice produces
a function f: S, — R. We note that as we have already observes, this mapping is symmetric with respect
to the action of S, on function, so it preserves degrees, i.e. sends =% to f 4. This mapping also clearly

preserves norms, so Hf H = Hf dHQ.
Our claim will now easily follow from the results of [24]. To be more precise, defining the influence

of g: S, — R on a transposition m; ; € [n] as I; j[g] = Ex [(9(x™7) — g(m))?], we see that I;[f] =
n ~ n

1 ZIIM [f]. Thus, taking I[g] = zzlli [g], and using [24, inequality (32)] (adapting the definition of
= 1=

Laplacians and d from there), we get that

(Z")<f,Lf ZdAHf H

p\)

We now note that by [24, Corollary], one has that d) < %(n — A1), so we get that

1< m- [P =a 3 Hf:AHZ=dZ>0dHf:de:dZ>odHf:de .

AFn d>0 AFn
A1=n—d

Lemma 6.13. Suppose m € N, 0 < 8 < a < 1 andn € N are such that n is an integer. If Uy C [m]" is
a a-balanced multi-slice, then for all f: U — R we have IPf] < Om75(||f||§)

Proof. From Claim 6.12 ,

1911 = 1181f1 < S| S1-65)7] (18)

d>0

By symmetry of S;_s, we by Claim 3.17 that it preserves degrees, so (S;_sf)~¢ = S;_p(f~%). Note
that the operator S;_g is the same as the operator T, where 115 is the distribution (x,S;_gx), which is
B-admissible and connected. Also, j14 is negatively correlated as per Definition 4.5 (see Remark 2.15), so by
Proposition 4.6 there is a (€2, g(1), O g(1/4/n))-coupling between 153 and fig. Thus from Lemma 3.11
we get [[S1_s(f=)| < C(m, B)(1 + 8(m, 8) 4 |[f=¢]|, < Clm, B)(1 + 6(m, B)~ |[f]l, for some
C(m, ),d6(m, B) > 0. Plugging this into (18) we get

IO < CUFIE Y A1+ 6(m, 8)™" = Oms(lIf113). O

d>0

43



For technical reasons, we will also need the following claim. In spirit, it is close to Lemma 6.13 since
T¢S1—3 may be thought of as a noise operator. The bounds we get are however much worse (and are very
likely not optimal), but are still good enough for our purposes.

Claim 6.14. Suppose 0 < 8 < a < 1, and n € N such that n is an integer. Suppose Uy C [m]" is a
a-balanced multi-slice, and C is a («, ¢)-coupling between Uy, and vi. Then for all f: Uy — [—1,1] we
have that 1[T¢S1-_f] < Om”g’oé(log2 n) + Onp.0(Cn log® n).

Proof. Take D = M (m, ) logn for sufficiently large M depending on m, 3. We will use several basic
notions from Section B.2. By Fact B.5

I[TcS1-pf] = (TeS1-pf, LTeS1-pf) = (ST_gT¢LTeS1gf, f).

Each one of the operators S;_g, S7_ s Te, T7 commutes with the action of \S,, on functions, and it is also
easy to check that L. commutes with the action of S;,. Thus, R = S7_ BT;LTcsl_B commutes with the
action of Sy, and therefore by Claim 3.17 it preserves the spaces V_q(U};), so we may continue the last
chain of equalities as
n n
I[TeS1-4f] = Z = ST(R(Y, 17,
d=0

d=
We bound terms corresponding to d > D and d < D separately.

Contribution from d > D. By Cauchy-Schwarz and Jensen

n

Wd>’fd><§uw>uzuf A< 3 sl 5=,

d=D

as ||[Lg|l, < n| gH2 (which follows for example from Fact B.7) we get that the last sum is upper bounded by
n
nd—ZD”TC81 s(f HZHf dH2 n Z H81 d)HQHf:de' By Lemma 3.11, we have

12579, < O+ s |57

so we get that the above sum is at most

n - O p(1)(1+ (1) ZHf 7 = 10511 + 2 s (1) 1713 = O (1)
by the choice of D.

Contribution from d < D. By definition of R
SR, 17 =Y (LTeS1-5(f~), TeS1-p(f~) = Y I[TeS1-p(f~. (19
d<D d<D a<D

We now bound I[T¢S;_5(f~%)] for each d separately. Let g4 = S;_g(f=%), and note that g4 € Vy(Us)
by Claim 3.6 as S;_g commute with the action of S,,. Thus, by Claim 6.15 we get that /[T¢gy] <

(i—z(n + d2) ||gd|]§, and plugging this into (19) gives

D2 4D2
(19) < <a2<n+D2> > HgdHS:( 24n+D2> S1-5(f<P)|3 < <a2Cn+D2>. O

d<D

44



Claim 6.15. Let U C [m]" be a a-balanced multi-slice, and let C be a (o, C)-coupling between Uy and
([m]™, 1/}%@”). Then for all g € Vq(U;), we have I1[Tcg] < (%Cn + d2) ||g||§

Proof. Deferred to Section C. O

6.1.2 Relating noisy influences of f and low-degree influences of T¢ f

The goal of this section is to show that if C is a coupling between our multi-slice and the product domain,
then if a function f has all of its noisy influences small, then all low-degree influences of T¢ f are small. To
be more precise, we prove:

Lemma 6.16. Forall 7 > 0, « > 0, m,d € N there are Sy, 7" > 0, such that for all 0 < 3 < [y there is
N € N such that the following holds for alln > N, ¢ > 0 such that { < bg%n.

Let Uy C [m]" be a a-balanced mutlislice, and let C be a (v, ¢)-coupling between Uy and ([m]", v;®™).
Then for all f: Uy — [~1,1], if max; [i(ﬁ) [f] < 7/, then max; Ifd[ch] <7

The proof of the above lemma relies on two auxiliary claims. The first asserts that if all noisy influences
of f are small, then I;[T¢S;_gf] are all small.

Claim 6.17. Let Uy C [m]" be a-balanced, f: Uy — R, and let C be a («, ()-coupling between Uy; and
([m]™, vz®™). Then for all i € [n] we have that I;|Tc f] < 2L[f] + —5-I[Tc f].

Proof. First, consider the following definition of influences over product spaces, which will be easier for us
to establish the claim on. For g: ([m]", V]?”) — R define Qi(9) = Exp jepn) [(9("9%) — g(x))?].

Sample (x,y) ~ C, and j € [n]. Note that by the symmetry of C, the distribution of ™-ix is the same as
of x" where (x’,y’) ~ C conditioned on y’ =™ y. Thus

2
QilTef] = E [ITef (") - Tef(v)] = E
Y.

v,

E[f("x) = f(x) [y.]]

<E[If(™%) = fP]

which is precisely I;[f].

We now argue that Q;(g) > §1i[g] — a—lnl[g] to finish the proof (taking g = T¢f). Sample x ~ 1/}?”
and j € [n]. Consider the point z which is the same as x on all coordinates except 7, where it is equal
to the j coordinate of x. Then writing (g(™ix) — g(x)) = (g(™ix) — g(z)) + (g(z) — g(x)) and using
(a+0b)? > 2a® — b%, we get that

1 S
Qi(9) = 5 E [(9(2) = 9())*] = E [(9("%) = g(2))"].
X,J X,J
For the first expectation, note that the points z,x are equal on all coordinates except the ith coordinate
and distributed according to v on these coordinates. As vp(a) > « for all a € [m] it follows that
Ex [(g(z) — g(x))Q] > «;[g]. For the second expectation, conditioning on j = j we have by the same

argument that Ex [(g(™x) — g(z))?] < 11;]g], and we are done. O

The second claim directly relates max; I;[T¢S1_gf] to the low-degree influences of T¢ f, showing that
if the former are all small, then the latter are also small.
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Claim 6.18. Forall 7 > 0, « > 0, d € N there are By, > 0, such that for all 0 < 3 < g there are
N € N, ¢ > 0 such that the following holds for n > N. Let Z/lE C [m]™ be a a-balanced mutlislice, and
suppose C is a («, )-coupling between (Uz, Uniform), and ([m]", V}?”). Then for all f: Uy — [-1,1], if

max; [;[TeSy_gf] < 7', then max; [4[Te f] <

Proof. Fix 7,a > 0 and d € N. We choose 3y = g5, and 7" > 0 small enough. Fix 0 < 3 < fo; our proof
uses a parameter D € N which is large enough with respect to 1/3,1/7,1/«,d, and then N large enough
with respect to D.

Consider the distribution p defined by (x,S;_gx) where x €p L{E, and consider its product version
fi. By Proposition 4.6 we may find a (Qq,,, (1), ¢")-coupling C" = ((x(1),x(2)), (y(1),y(2))) between p
and /i, where (' = Oq g, (1/4/n) (see Remark 2.15). We intend to show that the functions T¢S;_sf and
T;Tc f are very close to each other in the 2-norm, which will tell us that their individual influences are very
close. From this, the statement of the claim quickly follows.

Consider g1 = Te((S1-5f)SP), g2 = (TpTe f)SP. Note that the operators T}, S(1—p) and their adjoint
operators preserve juntas, and therefore preserve V_,([m|",v;) and V_,(Uy) respectively for all £. Thus,
g2 = Ta((Tef)SP), and (S1_pf)SP = S1_5(f<P). We therefore get that

ITeS1-sf = gilly = | TeS1-(F7P) ||y < [|1S1-8F77 |, < (1 + Qgm(1))

where the third transition is by Lemma 3.11; this is at most (1 + Q3,,,,(1)) ™" as Hf>DH2 Il flly < 1. We
also get that

ITaTef = g2lly = [|[Ta(Tef)P|l, < A+ Qs (1) P [(Te )P, < 1+ Qam(1) P [ Tefll,

which is at most (1 + Qg,,(1))~ as f is [~1, 1]-valued; in the second transition we used Lemma B.3.
Thus,

ITaTef — TeSi—ally < g1 — g2lls + 2(1 + Qg (1)) 77,
and we bound || g1 — g2y < Oa,m.p(V/C + (7).
Claim 6.19. |lg1 — g2/l < Oa,p(v/C+ ().

Proof. Let C; ; denote the marginal distribution of x(i) and y(j), and define g = Tey, (fsP), ¢b =

TiTe(f<P). Then
(20)

lgr — g2ll5 < Hgl —gin + Hgll _géHz + Hgé _92‘ 9

and we upper bound each one of the norms on the right hand side separately. For the second norm in the
right hand side of (20), note that

a(y) = E [F<Px@2) [y() =y], gay) = E [Te(f<P)(v(2) |y(1) =],
(X(l),X(2))NC/ <X(1) x(2 )) ~C!
y(1),y(2) 1),y(2)
so by Cauchy-Schwarz

i —sslz< B [I70) - Tl @) < 0/DO)
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where the last inequality is by Lemma 1.6. To bound || g1 — g1]|,. consider the following distribution: sample
(x(1),x(2),y(1),y(2)) ~ (', and then y as (x,y) ~ C conditioned on x = x(1). Then

[f<D

9i(y) = E ) |y =y

x(1)x(2)\ e
(y(l),y(2)) v
The above sampling procedure naturally defines (€24, (1), + ¢’)-couplings C” of (x(2),y(1)) and a

coupling C" of (x(2),y), and with this notation ¢{(y) = Ter fSP(y) and g1(y) = Tem fSP(y), so by
Lemma 1.6

E [(91(y) = fS7(x(2)))°] <OWDE+()),  E [(6y) — f~7(x(2))*] <OWD(C+ ().

C//l CIN

Thus, by the triangle inequality

E [(g1(y) — 91(y))*] <O(/D((+ ),

yNV@n

ie. |lgh — g1l S O(D(C + )V,

Finally, we bound the third norm in (20):
g2 = g5]| = |[(TaTe f)SP = TaTe(fS7)| = | Ta((Tef)SP = Te(F5P))|]
< (T f)SP = Te(f57)|
< O0an(C") 111,
< Oa,D(C1/4)7
where we used Lemma 3.25. Thus by the triangle inequality ||g1 — g2l < Ou.p((¢ + ¢)V4). O

Combining all, we get that | TcS1_gf — TpTe fll, < Ou.p((C+C)Y*)4+2(14+9Qp (1)) P. Choosing
D large enough so that 2(1 + Q,, (1))~ < 7//2, and then N large enough so that ¢’ is small enough, and
then ¢ > 0 small enough, we get that || T¢S;_gf — TzTef||, < 7. Thus,

mzaXIi[TﬁTCf] < Qm?xli[Tcsl,ﬁf] + 2| TeSi—gf — TaTe f|l, = O().

Note that by definition of /i, on each coordinate , the probability that y(1); = y(2); is at least 1 —g >1-4

@9
so from Claim B.8 it follows that max; I~%[T¢ f] < O(7). Choosing 7/ = 7 for sufficiently small absolute
¢ > 0 finishes the proof. 0

We are now ready to prove Lemma 6.16.

Proof of Lemma 6.16. Choose 3y, 7", N’ from Claim 6.18 for 7,a,d. For 0 < B < [y we have by
Claim 6.14,

I[TCslfﬁf] = Om,ﬁ(logz n) + Om,ﬁ,a(cn log2 n)7
so by Claim 6.17 we get that

log?n

maXI [TeSi—pf] <

Q\N’

[f] + 7I[T0f] '+ Om,p ( > + Om,ﬁ,a(g 10g2 n)

1
"+ 0O
Tt Ompa <logn> ’

o Q\w

<
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where we used the upper bound on ¢. Choosing 7/ = 7"«/4 and N = N"(«, 8, m, T, d) large enough, it
follows that for N' = max(N’, N”), if n > N then max; I;[T¢S1_gf] < 7”, and from Claim 6.18 that we
conclude that max; Ifd[Tc /1 < 7 (we also use the fact that < 1/logn < 1/log N”, so € is small enough
to apply Claim 6.18 provided N” is large enough). O

6.1.3 Relation with projections

Suppose 7 is even. We denote by S,,.,, /5 the set of all 2-to-1 maps 7: [n] — [n/2]. For any = € [m]™/? and
T € Spupjo. We define the point y = 71 (x) € [m]™ as y; = ;) for all i € [n].

Definition 6.20. Suppose U is a multi-slice and k; is even for all i (so in particular n is even). Given T €
Spins2 define the projection of f: U — R along T as f|r: UIZ/Q — [m]"? 5 R, fla(x) = f(r (z)).

The main goal of this section is to prove the following lemma, asserting that if a function over the multi-
slice has a coordinate ¢ with large noisy influence, then for a random 2-to-1 map 7r, the coordinate 7 (7) will
have large noisy influence in f|, with constant probability. More precisely:

Lemma 6.21. Forall 7', > 0, m € N there exist 31 > 0, 7" > 0 and N € N such that the following holds
Jforn = N and 0 < B < 1. Suppose k is a vector of m even integers summing up to n. If f: Uy — [—1,1]

and i € [n] are such that Ii(ﬂ) [f] = 7/, then

B) I 1"
WE‘];nI:.’n/Q Iﬂ'(’) [fﬂ-] 2T 2T

The rest of this section is devoted to the proof of Lemma 6.21.

It will be convenient for us to consider different notions of influence for functions on the multi-slice.

Fori € [n] and g: Uy, define AY(x) = Ejepy [9(™+9x)] and then M;(g) = Exeu, [(Alg(x) - g(x))Q}

Claim 6.22. Forall g: U; — R and i € [n] we have M;(g) > 1Llg) — & 1I[gl.
Proof. Using (a + b+ c)? < 3(a® + b% + ¢?) we get
Llgl = E [(9("x) = 9(x))*] < BE [(A](x) = g(x))* + (A] ("*x) — g("*x))* + (A} ("=x) — A{(x))’]

= 6M;(g) + 3)£ES [(AZ(T=x) — A(x))?], (20

and we upper bound the last expectation by I[g]/n as follows.

E [(A7("ex) - A](x))’] = E

X,s X,s j X7S7j

2
(Eloeomx) — g5 ] < E [(gmamex) - g(ix))?].

Make the change of variables y =i x, and note that then we have that ™&.i"isx ="i.s y. Thus

, ) 1
E [(Af("ex) — A/(x)’] < E [(9(P*y) —9(y))*] = ~1[g].
X,s Y,S,J) n
Plugging this into (21) and rearranging finishes the proof. O
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We next define another notion of influence that will get us closer to the left hand of Lemma 6.21. Define

Bie)= B [o™4™in) oy —may —xi),  Qilo)= B [(BI60) - 9],
i'e[n)\{i} x€Ux
JER[n]
Jem\{i.i'.j}

(we stress that the distribution over j is uniform, and then the distribution over j’ is uniform among all j/
such that z;; = x; and different from 7,1, j)

Claim 6.23. Forall g: Uz — R and i € [n] we have Q;(g) > 3 M;(g) — O, (“g}).

n
Proof. Using (a+b)? > 1a? — b we get Qi(g) > 1 M;(g) — Ex [(A?(x) — BY(x))?] and we upper bound
the last expectation by O,, (%) Indeed, note that

r 2

B[40 - BIG)] =E || B o040 =g |30 = %0y = ]
x x i’e[n)\{:

jERE[n]
Jem\{3,7,j}

SE|E [@(”"’J’W“X) — g("ix))” ‘Xi' = Xi, Xj = XJ"}
x | i'en]\{i}
JERE[N]
Li'€ln]\{i,i".j}

<oz (140 (5)) B L5, Lowrmom - st
=0 <1> E [E [(g(”i/,j’x) — g(x))QH

o) x |iy

—o, (") 5

Finally, we relate the left hand side of Lemma 6.21 directly to the (); notion of influence.

Claim 6.24. For all o > 0, there is 3y > 0 such that if 0 < 8 < (31, then f: Uy — [~1,1] and i € [n] we
have
B

E - [18)if] > i@-(sl_gf) -0 (a> .

7Tesn:n/2

Proof.

E[(S1-fla)("5%) - <slﬁfrﬁ><x>>2}” |

7reSn:n/Q

E [ = E [E

x€Up 5 | j€[n/2]
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Next, we introduce z = 7~ !(x), condition on it and then use Cauchy-Schwarz to see that the above expres-
sion is at least

— 2_.

E E Si_ ™0ix) |[w i (x)=2z] - E Si— x) |7 (x)=2
E || B (Seatlron m 0 =a = B (Sl 17 0 =4
wESn:n/g 7resn:n/?
J€n/2] j€ln/2) i
(22)
We say m € S,,.,,/2 is consistent with z € U if z € 77*1(2/{,;/2). Fix z = z; in the second expectation,

we first sample 7 consistent with z, then take x = 7(z), then take x’ ~ S;_gx, and average fr(x') =
f(m 1(x')). Note that the distribution of w~!(x) is the same as S;_gz, so the second expectation is
nothing but S;_3 f(z).

We move on to the first expectation. Fix z = z; we first sample 7 consistent with z, then set x = 7(2),
take j € [n/2], look at the point x' ="~ x, then sample x” ~ S;_px’ to yield z’ = w1 (x”). The first
expectation is the average of f(z’) sampled this way, and we analyze the distribution of z’.

Note that the points x, x” differ in either 0 or 2 coordinates. Thus, there is a natural coupling between
Si—px and S;_pgx/, call it (u,u’), in which u, u’ always differ in either 0 or 2 coordinates. To see that,
consider for each a € [m] the set of coordinate of x equal to a, and the set of coordinates x’ equal to a.
Then either:

1. these sets are the same for all a — in which case we can make the sampling procedure S;_g to choose
the same subsets of coordinates to change in each color class.

2. Else, these sets are the same for all but 2 of the a’s, say a; and as. This, the sets of coordinates
corresponding to a; (as well as the sets of coordinates corresponding to as) have symmetric difference
of size 1. In this case, for each a # aj,az we may make the sampling procedure S;_g choose
the subsets of coordinates, and for a € {ai,as} we may choose subsets of coordinates that have
symmetric difference at most 1.

Denote the set of coordinates in which x’ and x” differ by U. Thus, we get a coupling of S;_gz
and Sl_gz’ , call it w, w/, in which the points differ in either 0 or 4 coordinates; denote the set of these
coordiantes as W = 7~ (U). Denote by 7w a composition of two transpositions on W, so that w’ ="W w
(or the identity if W = ()). Then Plugging this into (22), we get that

z WNSl_ﬁZ \Y% W WNSl_ﬁZ

2 2
(22)=E< E [E[fvwm—f(w)]]) ~E (1@ E [f(“WW)—f(W)]D ,

where in the last transition we used the fact that the distribution of w and W are independent. When W is
empty set get 0, so

2
liwi—s E [”Wf(W)—g(W)]D :

w~S1_g2z

2
(22)=E( E [E[f@wm—f(w)]]) ~E (g,%

z w~S1_gz |W

Next, we note that the probability that W is non-empty is (1 — O(3/a)) > 3, and we need to inspect the
distribution of W more closely when it is non-empty. In that case, U contains the coordinate 7 (i) along
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with a random coordinate j € [n/2]. Thus, the distribution of #=1(U) is {7, 1, j1, j2}, where: i’ is uniform
on i’ # i such that z;; = z;, j1 € [n] is uniform, and conditioned on j; = j; the distribution of jg is uniform
among ja # j such that z;, = z;,. Thus, we get that

(22) >

,MH

2
E  [Si-p("™2T f)(2) = S1-pf(2) |20 = 2,25, = 23] | |-
Z i ,j1€[n].j2

Next, observe that for all z and # € S,, which is a composition of two transpositions we have that
1S1-5("f)(2) = S1_5f("2)] < O <§> This is seen by considering a natural coupling between S;_g" 2
and "S;_ gz similar to the coupling of w, w’ above, and noting that the probability S;_g touches a coordi-

nate ¢ which is not a fixed point of 7 is at most O <§) , and if this doesn’t happen then the sampled points

are the same. Thus, the statistical distance between S1_g"z and "S_gz is O (g), and as f is bounded our
observation follows. Thus,

2
1
22) > - E  [Si—pf("2"z) = S1_pf(2) |20 = 2i,2), =2;,] | | —O <ﬂ> ,
iy i/ j1€ln].j2 @
which is equal to 2Q;(S1_s9) — O (g) O

We are now ready to prove Lemma 6.21

Proof. Fix a, 7" > 0 and m € N. We choose 7 = ﬁ, B] from Claim 6.24, then 31 > 0 small enough, and
finally N = N(a, 7', m, ) large enough.

Assume in the setting of the lemma we have I(ﬁ) [f] > 7. By Lemma 6.13 we have T/9)[f] = Op(1).
Set g = S1_4f and apply Claim 6.22 to get that M ( ) > 67 —Og ( ) > 77" by the choice of N. Thus,
by Claim 6.23 we get Q;(g) > 1147' O, (%) > 207 by choice of N. Thus, by Claim 6.24

(8) Lon_olBYsT _of8 7
ﬂegmm [Iﬂ-(i)[fw]} 21@@(9) O< > 20 O( ) 100°

provided (3 is small enough. Now as f is bounded, all of its projections are bounded and so I [ fr]l <
for all 7; thus

P I(B) ' 7’ -
] > > .
wesfm/g[’*“)[f ] 1000] 1000

6.2 The reduction

Let P be a weighted collection of r-ary CSPs over the alphabet ¥ = [m]. Given a (1, s) dictatorship test
for P, denoted by (w, {D;}.7,p), in which each D; is connected, we describe a polynomial time reduction
that takes as input an instance ¢ of Gap-Rich-2-to-1,[1, 4], and outputs an instance ¥ of CSP-P such that:

1. Completeness: if val(®) = 1, then val(¥) = 1.

2. Soundness: for all € > 0, there is sufficiently small § > 0 and sufficiently large even n, such that if
val(®) < 4, then val(¥) < s +e.
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6.2.1 Parameters

Throughout the proof, we will have several parameters €, r, m, «, 8o, 81, 3,7, 7,7, ¢, and n, as well as
a finite set 7’ whose size we’ll be interested in, and we state the hierarchy between them. We denote by
0 < a < b the relation that once we choose a, we take b to be sufficiently large in comparison to a. With
this notation, our hierarchy is

0<rme o |T| < r 7 e < Byt Bt < B <6 < N <,

and ¢ = n~4. Also, we will assume that Bn/2 is an integer (otherwise we change [ slightly to arrange
that, while keeping the hierarchy of the parameters).

6.2.2 Setting up the multi-slices and the distributions 1i; p

We may find a finite 7/ C 7 such that > p(t) < €/2, and we fix such 7. First, as n is an even integer,
teT\T'
we may assume that for all ¢ € 7', P € P and @ € supp(D(t, P)), we have that n - D(t, P)(d) is an
even integer. Otherwise, we may find distribution (D(¢, P)’)yc7+ such that D(t, P)’, D(t, P) have the same
support and are O,,(1/n?)-close in KL-divergence, and so D(t, P)’®", D(t, P)*" are O,,(1/n)-close in
KL-divergence and by Pinsker’s inequality the statistical distance between them is O,,(1/y/n) = o(1). In
particular, this collection of distributions forms a (1, s 4+ o(1)) dictatorship test, and we may proceed the
argument with it. Denote
a= min min  (D(t, P))(@) > 0.
teT!,PEP desupp(D(t,P))

Foreacht € T', P € P consider the distribution D(t, P) over [m]", and denote its marginal distributions
by D(t, P)1,...D(t, P),. Denote k(i,t, P), = n - D(t, P);(a), and note that k(i, t, P), is an even integer.
We thus have that k(i, t, P) = (k(i,t, P)1, ..., k(i,t, P)m) is a sequence of even integers summing up to
n.

N

Thus, we may consider the 7 |7”| |P|-mutli slices (UE(i . P)) ielr] [m]™; note that each one of

teT’!,PEP
-
them is a-balanced. Next, we define for each ¢ € 7', P € P a distribution y1; p over [ L{E(i +,P) that would
i=1 7
“simulate” the dictatorship test D(t, P)®™. The distribution p; p is uniform on (z(1),...,z(r)) whose

statistics match the expectation in D(t, P)®™, i.e. on

{(m(l),...,x(r))EHUE(i’tVP) v € [m]", #{i]x(l)i—al,...,x(r),-—ar}—n-(D(t,P))(c_i)}.

i=1

Itis easily seen that 1; p is a-admissible as per Definition 1.8, and negatively correlated as per Definition 4.5.
Also, we note that the product version of y; p as per Definition 1.10, i.e. p17 p, is nothing but D(¢, P)®".

Remark 6.25. Below, we will assume that fu, p?n and fu, pfzm are either identical, or are 1 — o(1) far
and hence the distribution can be recovered by a single sample except with probability o(1). This may be
guaranteed provided that n is large enough, as follows. We may find a constant 5 > 0 such that for any
i,t, P,i',t', P, either D(t, P); and D(t, P); are identical, or else they are at least (3 far in total variation
distance. Thus, the distributions ji; p?” and i, p?" are either identical, or are 1 — o(1) far. This means
that provided that n is large enough, sampling t ~ T, P ~ w and x ~ ( ut,p)?" for some i, and outputting
x, one may recover t', P’ and i’ such that g py" = py prS" except with probability o(1).
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6.2.3 The PCP construction
Write the Rich-2-to-1 Games instance ® as (L U R, E, [n], [n/2], {¢c}.c ). We replace each vertex v € R

with copies of the multi-slices (UE(i +P) /2) [m]"/ 2, we represent these as (v,i,t, P,x) where © €

i€(r] -
teT’

Pep
L{E(i t,P)/2° and denote by V the set of all of these tuples. Our instance ¥ of CSP-P will have a variable

Z(v,it,2) for each (v, i,t, P,x) € V. It will also be useful for us to imagine that each u € L also has r | T| | P|

multislices (UE(z‘, : P)) iclr) € [m]™ associated with it, but the reduction does not actually use these.

teT’
PeP

Folding. We define the relation ~ on V by (v(1),i(1),t(1), (1)) ~ (v(2),i(2),%(2),x(2)) if there is
a common neighbour u € R of v(1),v(2), as wellasi € [r],t € T, P € Pand x € uE(i,t,P)’ such
that z = ;j}(l)(:n(l)) and x = <b;})(2)(x(2)). In words and slightly informally, we say two vertices are
equivalent if they are the projection of the same point (u, ¢, ¢, P, z) in the imaginary copies of the multislices
corresponding to L, along the corresponding constraint 2-to-1 maps ¢, ,(1) and ¢, ,(2). We extend ~
to an equivalence relation on V, which, by abusing notation, we also denote by ~. Thus, we will look
at the equivalence classes of ~, and denote the equivalence class of (v,1i,t, P, z) by [(v,i,t, P,z)]. For
each equivalence class C' of ~, we choose a representative and identify all the variables corresponding to
(v,i,t, P,x) with the variable of the representative. Formally, let C' be an equivalence class and suppose
(v,i,t, P,x) is its representative. Then whenever we refer to a variable Z(v!,it t,P' 20y corresponding to
(v',4',t', P', x") from the same equivalence class C, we replace its occurrence with 2(,,; 1 p ).

Constraints. The constraints of ¥ are described by the following sampling procedure. Sample t ~ p, and
if t ¢ T’ put a trivial constraint (say, we add r variables ¢1,..., /., pick P € P, and put the constraint
that P(¢1,...,£.)). Otherwise, t € T, and then we sample u € L with probability proportional to its
degree, P ~ w, and (x(1),...,x(r)) ~ p¢p. Then for each i = 1,...,r, we sample v(i) a neighbour
of u conditioned on x(i) € qﬁ;i,(i) (L{E(i’hp) /2). Denote by x(4)’ the unique point in U such that
x(i) = qﬁ;b(i) (x(7)"), and add the constraint

i,t,P)/2

P (2v(1)1,6x(1)5 - - 3 Zv(r)mt,x(r))-

Remark 6.26. We note that in the sampling procedure above, one can take an arbitrary v(i) satisfying
this property as opposed to a random one, without introducing any ambiguity. The reason is that any two
possible such v;’s would yield two tuples in V, between which the relation ~ holds, and in that case by the
folding they correspond to the same variable.

The analysis of this reduction spans the following 2 subsections.

6.3 Completeness of the reduction

As is often the case, the completeness of the reduction is easy. Indeed, assume & is satisfiable, and let
Ar: L — [n], Ag: R — [n/2] be labeling that satisfy all of the constraints of ®. For each v, we define the
assignment A’ to the variables of ¥ as

AI(Zv,i,t,x) = TAg(v):
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First, we note that the variables in each equivalence class of ~ get the same value. For that, it suffices
to observe that for any (v(1),4(1),¢(1),2(1)) ~ (v(2),4(2),%(2),2(2)) in the basic form of ~, it holds
that their variables get the same value by A’. This is true, since if (u,,t,x) is the common neighbour
demonstrating that the basic form of ~ holds, then as x is the pullback of x(1) along ¢, ,(1) we have
that both coordinates in qﬁ;i(l)(A r(v(1))) have the same value in z, and since the constraint is satisfied
we have Ap(u) € qb;jj(l)(Av(v(l))). Thus, (1) 4, (v(1)) = TA, (u)> and a similar argument shows that
$(2)AR(U(2)) = TAp(u)- We thus get that

A'(2p(1),i1),1),2(1) = (1) Apw) = Ta, @) = (2) apw2) = A (20(2),i2).42),2(2))-

We may therefore think of the labeling A’ as also giving values to the imaginary multi-slices of vertices in
L, where (u,i,t,z) gets the value A'(z(, s ,+)) Where & = ¢, (/). Next, we show that the constraints

u,v
hold. Let P(2y, 142(1)>- - - Zv,rtz(r)) DE @ constraint in the instance, and let u € L be the vertex that
samples v1, ..., v,. The constraint being satisfied amounts to P(2(1) 4,(s)s - - -+ Z(") 45 (v,)) = 1, and as

i);‘L(u), sO we must
"™ — [m] defined as
f(¥) = ya, (), the constraint being satisfied is equivalent to P(f(x(1)'),..., f(z(r)")) = 1,and as fisa
dictatorship and (z(1)’,...,z(r)") is in the support z;, and hence of D™, we have that this is satisfied by
the completeness property of the dictatorship test (the first item of Definition 6.6).

before we have that if x(i)" is the pull-back of x(i) along @, , (i), then (i) 4, (v,) = 2(
show that P(z(1), () ,:U(r);‘L(u)). Considering the dictatorship function f: [m]

6.4 Soundness analysis

In this section we finish the analysis of the PCP construction by showing that if val(®) < 9, then val(¥) <
s + . We prove that counter-positively.

Namely, suppose we have an assignment A’ to the variables satisfying at least s + ¢ fraction of the
constraints; we show that it is possible to find an assignment to & satisfying more than ¢ fraction of the
constraints.

For each v, i, t, P we will think of the assignment on the multi-slice of v as f, ;¢ p: UIZ(z‘,t,P)m — [m].
Let u € L, since for all 4,¢, P,z such that z € UE(L 1,p) W€ have that all projections of x along m, , for
neighbours v of u get the same value by A’, we may think that this value is also given to (u, ,t, P, x), and
thus think of a function f,; ; p: Z/{E(i7 4.P) — [m] corresponding to these values. Thus, for all u € L and a

neighbour v of u, we have that f, ;1 p = fu,it.Pléu.,-
Below, when we write u € L we mean that we sample u with probability proportional to its degree.

Claim 6.27. EltleU [EPNw [IE(X(1),...,x(r))~m,P [P(fu1,ep(x(1)),... ,fu,r,t,P(X(T)))]H = s+e
~p

Proof. By construction of the functions f,,, this expression is equal to the fraction of constraints satisfied by
A O

Note that t ¢ 7" with probability at most £/2, so we get that

1
E |lterr E E P(furep(x(1)), ... furep(x(M))]| | = s+ 5e
uey Prw | (x(1),....x(r))~pe,p 2
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Denote

Good[L] =qu€L|E |lger E E  [P(furtp(x(1),. s furtp(X(r)]| | 25+ €7,
t~p Prw (X(Q}Lt7§(7‘))

then by an averaging argument Prycy, [u € Good[L]] > 1e. Next, we devise a randomized labeling strategy
for vertices in Good[L] and their neighbours.
Fix v € Good[L], t € T, P € P. Note that by Proposition 4.6 there is a (24, (1), ¢)-coupling

between L{E(MP) and Vi(it,P) denote it by C; ; p, and we also have a (4, (1), )-coupling between 1i; p

and pg p = D(t, P)®" (see Remark 2.15). We now think of the functions fu,i,t as receiving values in A,
(as in Section 4.2). Thus, we get from Theorem 4.4 that

Lter E

1
E = s+ —e.
trop P~w 8

E
(x(1),...,x(r))~D(t,P)®"

[P(Tcl,t,P Ju1t,p (x(1)),... 7Tcl,t,P furt,P (X(T)))}]

We now define a single function g,, in order to appeal to the assumption regarding the dictatorship test.
Upon receiving an input x, we guess ¢, P’ and 7 such that we believe x was sampled from D(t, P)Z@” as
in Remark 6.25. We then set g, (x) = T Covr pr fuiw.p(x). Then the above inequality and the assertion of
Remark 6.25 implies that

1 1
>s+-e—o(l) =2 s+ —e.

£ 8 16

t~p

lter E E
Prw | (x(1),...,x(r))~D(t,P)®"

P<gu<x<1>>,...,gu<x<r>>>]]

Pick d, 7 from the second item in Definition 6.6 for our dictatorship test for v = /16 and £/16. Then
from the soundness property of our dictatorship test, we get that for each u € Good|[L], there are t € T,

i € [r] and j € [n] such that Igd[gu, V%" )] > 7. Thus, by Remark 6.25 again we have that

I [TCZ tfu,z,taV-‘ = T/2.

k(i t)]

Now recall that Te;. . Ju,it is a function to A, so it follows that one of its m components has degree d
influence at least T ; denote the £th components by (T¢, , fu.i,¢)¢, and note that by definition of the action
of T¢, , on vector valued functions, this £th component is equal to Tcl ((fuizt)e). Thus, taking By, 7" > 0

from Lemma 6.16 for 5, we get that there is j € [n] such that I [( fuit)e] = 7' (here we use the choice
of (). Define

List[u] = { jen|3teT e mlielr]suchthat IL7[(fu)e) > T'} ,
then by the above reasoning List[u] # () for all u € Good[L], and by Lemma 6.13 and the union bound we
have that [List[u]| < Og 77| 1 (1).
Take 7", 3y > 0 from Lemma 6.21, and for each v € R denote

List[v] = {j € [n/2] |3t € T',€ € [m],i € [r] such that 17 [f,,;,] > 7 }

As before, we have |List[v]| < Og 77| m s (1). Fix u € Good[L] and j € List[u]. Choosing a neighbour v
of u randomly, by the richness of the game, the constraint ¢,, v is distributed uniformly on S,,.,, /2, and so by
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Lemma 6.21 we get that with probability at least 77, I, _ (;)[(fu,it)els, ] = 7". But by construction of the
Ju,i,t we have that (fui¢)ele, . = (fv.it)e so we get that ¢, (j) € List[v] with probability at least 7. We
have thus proved that for all u € Good[L], choosing a neighbour v of u randomly, with probability at least
7" the lists List[u], List[v] contain a pair of labels that satisfy ¢, v.

We thus use the following randomized strategy: define the assignment to ¢ by labeling each v € L
with an element o € List[u] chosen uniformly at random if this list is not empty (and otherwise an arbitrary
o € [n]), and similarly pick the label of each v € R using List[v]. It follows that the expected fraction of
constraints satisfied by this strategy is at least

uP;I(.] [u € GOOd[L” . Q,B,|T’|,m,?“ﬂ”,‘r”(1) = Qa7ﬁ,|7/|7m7r,7/,7”(1> > (5,

so there is an assignment to ® satisfying more than ¢ of the constraints, and we are done.

Remark 6.28. Using Theorem 5.2 (or rather the analogue of Theorem 4.4 that follows from it) instead
of Theorem 4.4, one may relax the connectedness assumption in Theorem 6.7 as in Theorem 6.29 below.
Roughly speaking, it is enough that for all t € T, P € P, the sequence of distributions {D(t, P)®"}
and its multi-slice analogue annihilate high degrees functions.

neN

Theorem 6.29. Let r € N, m € N, and suppose P C {P: [m]" — {0,1}} is a collection of predicates.
Suppose there is a (1,s) dictatorship test, (w,{D(t, P)},.+, P € P,p), for P satisfying the following
properties:

1. forallt € T,P € P, the collection of distributions {D(t, P)*"} _y annihilates high degree func-
tions as per Definition 5.1;

2. the multi-slice analogues of D(t, P)®™ also annihilate high-degree functions. That is, for eacht € T,
P € Pandn €N, considering ky(t, P) = (kn(t, P)g)ac|m)- a list of integers adding up to n such
that |k, (t, P)g —nD(t, P)(d@)| < 1 forall @ € [m]", the sequence of uniform distributions on the

kn(t_: P) multi-slice of ([m]")", that is (Z/{k @L.P) Uniform) . annihilates high degree functions.
nA® ne

Then, for all € > 0, the problem Gap-P|[1, s + €| is NP-hard assuming Conjecture 1.17.

We omit the full proof, as it is a straightforward adaptation of the argument above.

6.5 Proof of Corollaries 1.18, 1.19

In this section, we instantiate Theorem 6.7 to establish Corollaries 1.18, 1.19.

Proof of Corollary 1.18. Fix € > 0. In [6, Theorem 1.1], the authors have constructed an r-ary predicate
P.: {—1,1}" — {0,1} with 2r + 1 accepting assignments based on the Hadamard code, and constructed a
discrete distribution £ of § and a distribution D,. 5 for each 4 in the support of £, such that if

[P(f(z(1)),..., fz(r))]]| = 2r+1

E E .
5~E | (@(1),....n(r))~Dy s 2

+e

for f: {—1,1}" — {—1,1} that is folded’, then max;c,; Ifd[f] > 1 ford € N, 7 > 0 depending only on
e. Considering the multi-linear expansion of P, and thereby extending P, to [—1, 1], their proof actually

Le., f(z) = —f(—=x) for all .
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shows the same conclusion for f: {0,1}" — [—1, 1] that is folded, and we will make use of this. We also
record here that by [6, Observation 4.1], the marginal of z(j); is uniform for all 4, j.

We now transform this into a dictatorship test as per Definition 6.6. The measure w is uniform over
{—1,1}", and for each a € {—1,1}" we consider the predicate P, ,(z) = P(aiz1,...,a,z,). We take
T = supp(€), the measure p is the same as the distribution &, and the distribution D(J, P, ,) is defined as
aD,s,ie. (a1xz(1),...,a,x(r)) where (x(1),...,2(r)) ~ Dys.

As all dictators satisfy P, with probability 1, it is easy to see that the completeness of the above test is 1.

As for the soundness, given a function f: {—1,1}" — {—1,1} that passes the dictatorship test with
probability at least 22—’:3 + ¢, we have

2r+3
27‘

+e <
a

,0

E [Pr(g(x(l))v---79(3«“(7‘)))]],

(@(1),-2(r))~Dr 5

where g(z) = 3(f(z) — f(—x)). Note that g: {—1,1}" — [—1, 1] is folded. Thus, by the main result of [6]
it follows that there is ¢ € [n] such that Ifd[g] > 7 for d, 7 depending only on €. Looking at the Fourier
expression for I~%[g], it follows that I=?[f] > 7, and thus we have shown that (w, p, D(6, P, ,)) forms a
dictatorship test with completeness 1 and soundness 27;3.

The result now follows by Theorem 6.7 O

Proof sketch of Corollary 1.19. Consider = {0,1,2} and P: ¥2 — {0, 1} defined as P(z,y) = 1,
The distributions w, ¢ are trivial, and the distribution D(¢, P) is uniform over (z, y) € {(z,y) € ¥? |z # y}.
We execute the reduction in Theorem 6.7 to construct a graph H whose vertices correspond to variables of
the instance produced, and edges correspond to pairs of variables between which there is a constraint. The
completeness is clear, as any dictatorships satisfies P,(f(x), f(y)) = 1if (x,y) € P, 1(1)®".

As for the soundness, if the resulting graph has an independent set of size at least § fraction of the
vertices, then we may consider its indicator function f, and note that for every edge (x, y) in H we have that
either f(x) = 0 or f(y) = 1. As in the analysis therein, we consider the set of vertices I/ of the Rich-2-to-1
Games instances for which the average of f inside their cloud is at least §/2, so that the fractional size of
U is at least 6/2. In other words, letting Q(z,y) = ly=y=1, we have that E(, ;) [Q(fu(z), fu(y))] = 0 for
all u € U. Applying our invariance principle, it follows that there is a coupling C between the multi-slice of
u and X" such that E, )~ p-1(1)en [Q(Tefu(z), Te fu(y))] = o(1). From this and Theorem [14, Theorem
3.1] it follows that there is a coordinates ¢ such that Ifd[Tc fu] = 7 where d € N, 7 > 0 depend only on
0 > 0. From here the analysis in the proof of Theorem 6.7 continues as is. O
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Facts about multinomial coefficients

Let H(p1,...,pm) = >_ pilog(1/p;) be the entropy function. We need the following standard facts. The

7
first estimates multinomial coefficients with the entropy function and is easy to derive from Stirling approx-
imation, and we omit the proof
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Fact A.1. For positive integers vy, . . . , v, that sum up to n we have

" = (r=1)/2 n H(Y,.,%)n
(0" 0) = (vene2 o) s

Second, we need the following crude estimate on the difference between the entropy of two distributions
that are close point-wise.

Fact A.2. Suppose p1,...,pm and qi, ..., qm are distributions satisfying that |p; — q;| < € for all i. Then
|H(p1, .-, pm) — H(q1, ..., qm)| < 4melog(1/e).

Proof. We prove that H (p1,...,pm)—H(q1,...,qm) < 4emlog(1l/e), and the claim follows by symmetry
between p and ¢q. Let X = {i|p; > 2¢}. Then > p;log(1/p;) < 2melog(1l/e), and for any i € X we
igX

have that ¢; > €. Thus,

1 1
H(p1,...,pm) — H(q1, - -, qm) < 2melog () + E p; log () — ¢q;log ()
9 £ Di 4
i€X
1 1 1
< 2melog <> + E p; log <) — (pi —€)log ()
3 . Di qi
e X
1 qi
<3melog | — ) + E pilog [ —
€ ‘ Di
i€X

B Facts about product spaces

B.1 Contraction of high degrees

Claim B.1. [Lemma 2.9 in [40]] Let « > 0. Suppose p is a connected measure on [m] X [m| whose
marginal distributions both are equal to v, and the probability of each atom is at least . Consider T, :
L?([m],v) — L?*([m)],v) defined as

Then \2(T,) < 1—a?/2.

Claim B.2. Let puy, ..., iy, be measures on [m| x [m], such that
1. For each i, the marginal distribution of u; on both coordinates is the same, denote it by v;;
2. M(Ty,) <1-5

Let n,d € N, and consider T : L*(Im|",v) — L*([m]",v) defined as T = Ty, ® ... ® T, where
V=11 X ...X vy Then forall f € Vs4(Im]™, v®") it holds that

ITFIS, < @ =B8) ], -
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Proof. Write f by its Efron-Stein decomposition with respect to the measure v, f = > f=5. Then
SCln],|S|>d

we have that | Tf[5= 30 HTf:SH;,soitis enough to show thatHszst < (1—B)2dHf:SH§.
SClnl,|S|>d

Assume without loss of generality that S = {1, ..., s}. For each j, define T<; = &), <; Ty, ® =),

and g; = T<;f~°. We argue that ||g;+1 Hg L < (1=5)?g; Hg ,» Which by induction finishes the proof. For

each j and z € [m]"\U+1} Tet g;[2]: [m] — R be the restriction of the function g; wherein all coordinates,
except j + 1, have been fixed according to z.

2
ol = B [Tt )< B [0-07 s, ] =0 -8 s,

v; z~ ] v
i1 i+l
In the second transition, we used the fact that the average of g;[z] according to ;41 is 0 for all z. O

Combining the two claims, we get the following lemma.

Lemma B.3. Forall o > 0, there is € > 0 such that the following holds. Let p be a measure on [m] x [m],
such that

1. The marginal distribution of p on both coordinates is the same, denote it by v.

2. The probability of each atom in i is at least .

3. wis connected.
Let n,d € N, and consider T : L*([m]",v®") — L*([m]",v®") defined as T = T$". Then for all
f € Vaa([m)",v®") it holds that || T f||3 . < (1= B8)4]| Il n-
B.2 Influences

In this section, we define influences in product spaces, and state several well-known statements. Our expo-
sition will be very brief and we defer the reader to [43, Chapter 8] for a more thorough presentation. Let
([m]™, v®") be a product space. For f: [m]™ — R, we define the averaging operator E; according to the ith
coordinate as E; f(z) = Ey;~v; [f(xz_;,yi)]. We then define the Laplacian operator of the ith coordinate as

Lif(z) = f(z) — Eif(z), and the Laplacian L as L f(z) = i L;f(x).
i=1

Definition B.4. The influence of variable i on f: ([m]™,v®™) — Ris I;[f] = || Lif||3. The total influence
of fis I[f] = ;Ii[f]-

Fact B.5. I[f] = (f,Lf).

We will also use the Efron-Stein decomposition of product spaces. For S, we denote by Vg([m]™, v®")
the subspace of functions f: [m]™ — R depending only on the coordinates of S, and by V_g([m]™, v®") C
Vs([m]™, v®™) the subspace of functions that are also orthogonal to all Vi ([m]™, v®") for T ¢ S. Then

it is well known that any f: [m]® — R may be uniquely written as f = 5. f=°, where f=° ¢
SCn]
V_g([m]™, v®™). We also define the degree decompositionas f=% = > =5 and f<% = f=04. . 4=
1S|=d
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Definition B.6. The degree d influence of variable i on f: ([m]™, v®") — Ris Ifd[f] = H (Llf)gdH;

FactB.7. Let f: [m]" — R, i € [n] and d € N. Then L[f] = 3 || /=52 and I7[f) = S ||/=5])5.
S>i S3i

|S[<d

Claim B.8. Suppose d € N, 3 > 0 are such that d < %, and let ;1 be a connected distribution on [m] x [m]
whose marginals are both equal to v(a), such that p(a,a) > (1—B)v(a). Then forall f: ([m]", v®") — R
and i € [n) it holds that I=%[f] < 2I,[ T, f].

Proof. Consider the spaces V_g([m]™, v®") defining the Efron-Stein decomposition of f, and note that
both T, and 5, = T}T, preserves each one of them. We may therefore write Ves([m]™, v®") =
@D VI2s(Im]", v®=™), where V¢ ([m]", v®") is an eigenspace of S,, with eigenvalue 6, and note that all

eigenvalues 6 are non-negative. Thus, we write f = > f=5Y where =3¢ € VI4([m]", v®") so by
SCIn],0
Fact B.7 and Parseval

LITuf) =Y T =5 = S 0=5.8,75) = S0 S (=50, 0550 = S HHf:SﬂHz
S2i 534 $2i,0 54,0
: 3o

5340
|S|<d

, (23)

and we show that > % for all |S| < d and 6 such that VO ([m]",v®") # {0}. Indeed, let g €
VO ([m]™, v®") be non-zero, and let = € [m]" be the point maximizing |g(z)|. Denote by 4/ the distribu-
tion corresponding to S, (i.e. taking (a,b) ~ p, then (a’, b’) ~ p conditioned on b’ = b and outputting
(a,a’). Then as g is a S-junta, we have that

019(x)| = |Sug()]

>| Pr [ys=uzs|x=uzlgx)+ Pr |ys#zs|x=2] E [9(y)|x=2zys5#zs]
(x,y)~p/®n (,y)~pen (x,y)~pen

>(1-2 Pr  [ys#zs|x=2])|g(z)|.
(x,y)~p'®n

As by the union bound Pry . on [ys #xzg |[x=z] < 26]S| < 20d < i, it follows that 6 >
Plugging this into (23) and using

D=

S sl = 32 7l = 1o

551,60 B
|S|<d |S]<d

where the first transition is by Parseval and the second transition is by Fact B.7, finishes the proof. O

B.3 The noise operator

Let L?([m]™, v X ... X vy,) be a product space.
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Definition B.9. For p > 0, the standard noise operator T, is defined as follows. For each x € [m]", we
have a distribution T ,x defined as: to sample 'y ~ Tz, for each i € [n] independently, take y; = x; with
probability p, and otherwise sample y; ~ v;.

We then define the operator Tp: L*([m]™, vy X ... x v) — L2([m]™ vy X ... X vp,) as

T,f(x)= E [f(y)]

y~Tpx

Fact B.10. Let f € V_g([m]™, 11 X ... x v,). Then T, f = plSlf.

C Deferred proofs

C.1 Proof of Claim 6.15

The main component in the proof of Claim 6.15 is the following claim.

Claim C.1. Let J C [n] be of size at most d, let Uy; C [m]" be a-balanced, and let C be a (c, )-coupling
between Uy C [m]" and ([m]", V}?”). Then for all g € V—;(Uy), we have I[Tcg] < (%Cn + d2> lgll3.

Proof. Fix i, and denote h = T¢g. For i € .J, we use the trivial bound I;[h] < ||h||5 < ||g||5, and the rest of
the argument is devoted to bounding the influence of ¢ & J.

By Cauchy-Schwarz we have I;[h] < Ey,y'~u. [(h(y—i,y';) — h(y))?]. We sample y, y’, and then take
y" = (y—i,y’;). We now sample x as (x,y(0)) ~ C conditioned on y(0) = y and x” as (x”,y(0)) ~ C
conditioned on y(0) = y”. Then we get that

<E [(960) = 9(x"))?]

)

2
L < E [(& [9(x) = g(x") IyaY’]>

Denote by j1, ..., joo the set of coordinates on which x and x’ differ. We stress here that £ is also a random
variable, and by the third property of couplings its expectation is at most 2n(.

We may find a matching between them, say jos+1 and jas+2 for s = 0,...,¢ — 1, such that performing
the transpositions 7j, ., j,. ., in the order s = 0,...,¢ — 1 on x gives x’. We then permute these pairs
randomly. Denote x(0) = x, and inductively x(s + 1) = ™2s+1925+2x(s). We note that if jos+1, jos+2 & J,
then g(x(s + 1)) = g(x(s)). We thus get

-1 2
E [(g(x) — g(x”))z} = E (Z(Q(X(S)) —g(x(s+ 1)))1Jm{j23+1,j25+2}7é(2)>

yvy” " s=0
r /-1 -1
< E/ ( (g(X(S)) - g(X(S + 1)))2> (Z 1Jﬂ{j25+1,j23+2}75@>]
y’y” L \s=0 s=0
-1
<AE ) (9(x(s)) = g(x(s +1)))*|. (24)
y,y” s=0
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Conditioning, we get that

-1
CH<AE |} E [(90x(s)) = g0x(s + 1)* | £dost1,osra # 1]
s=0 y7y//
/-1 -
+ dIE: E, Z 1i€{j2s+1,j2s+2}(g(x(s)) —g(x(s+ 1)))2 2, (25)
y,y” s=0 ]

and we analyze each expectation separately. For the first expectation, conditioned on ¢, by symmetry, for
each s, the marginal distribution of x(s) is uniform over Uy Conditioned on x($), jos+1,J2s+2 # i, by
symmetry, for all j, j we have that the probability that jos+1 = j,josto = 4 is at most m, thus
the first conditional expectation in (25) is at most

2B (o)~ 9] = gl <

2 ”g”g )
J€[nl.j’€ln]
X

na?

where we used Claim 6.12. Thus, the contribution of the first term in (25) is at most i%‘i lgll3E [ <
%QC lgll3. As for the second term, for at most one s we have that Lic{jass1,josio} = L; denote this as a
random variable s, and note that by symmetry it is uniform over ¢, so we may as well assume that s = 1.
Thus, this expectation is at most I;[g]. We therefore get that I;[h] < (25) < 44¢ || g||3+dI;[g], and summing

over ¢ we get that , , 07
110 < ool + atla] < (5 n+ a2 ol
where we used Claim 6.12. O
We are now ready to prove Claim 6.15.

Proof of Claim 6.15. First, note that by Fact B.5
I[Tcg] = (LTcg, Teg) = (T¢LTcy, g)-

Denote R = T{LT¢. Note that C is symmetric, and so by Claim 3.2 commutes with S, and L also
commutes with Sy, we get that R: L?(U) — L*(U;;) commutes with the action of Sy, and therefore by
Claim 3.17 preserves degrees. As R is self-adjoint, we may then decompose V (UE) as a sum of eigenspaces
@, VY (Uy). Thus, if 6 is the maximum eigenvalue of R on Vy(U;), then we get that I[Tcg] < 6% lgll3.
To bound 6*, note that by Claim 3.29 we get that R preserves juntas and degrees, so V_;(Uj;) are
invariant spaces under R. We may therefore write it as a sum of eigenspaces &, |74 ;(U;), and get as we

i
have seen previously that the spaces @‘ Jl<d | %44 7(Uz) are the eigenspaces of R on Vy(Uz). Thus, there is

|J| < d such that Vﬁ}(bl,;) # {0}, and we take a non-zero g* € Vﬁ}(UE). We now get from Claim C.1 that

* 2
0" < I‘[gf”gg] < %Cn + d?, and we are done. 0
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