
Statistically Near-Optimal Hypothesis Selection

Olivier Bousquet∗ Mark Braverman† Klim Efremenko‡ Gillat Kol§

Shay Moran¶

Abstract

Hypothesis Selection is a fundamental distribution learning problem where given a comparator-

class Q = {q1, . . . , qn} of distributions, and a sampling access to an unknown target distribution p,

the goal is to output a distribution q such that TV(p, q) is close to opt, where opt = mini{TV(p, qi)}
and TV(·, ·) denotes the total-variation distance. Despite the fact that this problem has been studied

since the 19th century, its complexity in terms of basic resources, such as number of samples and

approximation guarantees, remains unsettled (this is discussed, e.g., in the charming book by

Devroye and Lugosi ‘00). This is in stark contrast with other (younger) learning settings, such as

PAC learning, for which these complexities are well understood.

We derive an optimal 2-approximation learning strategy for the Hypothesis Selection problem,

outputting q such that TV(p, q) ≤ 2 · opt + ε, with a (nearly) optimal sample complexity

of Õ(log n/ε2). This is the first algorithm that simultaneously achieves the best approximation

factor and sample complexity: previously, Bousquet, Kane, and Moran (COLT ‘19) gave a learner

achieving the optimal 2-approximation, but with an exponentially worse sample complexity of

Õ(
√
n/ε2.5), and Yatracos (Annals of Statistics ‘85) gave a learner with optimal sample complexity

of O(log n/ε2) but with a sub-optimal approximation factor of 3.

We mention that many works in the Density Estimation (a.k.a., Distribution Learning) literature

use Hypothesis Selection as a black box subroutine. Our result therefore implies an improvement on

the approximation factors obtained by these works, while keeping their sample complexity intact.

For example, our result improves the approximation factor of the algorithm of Ashtiani, Ben-David,

Harvey, Liaw, and Mehrabian (JACM ’20) for agnostic learning of mixtures of gaussians from 9

to 6, while maintaining its nearly-tight sample complexity.
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1 Introduction

Hypothesis selection is a fundamental task in statistics, where a learner is getting a sample access

to an unknown distribution p on some, possibly infinite, domain X , and wishes to output a

distribution q that is “close” to p. The problem was studied extensively over the last century

and found many applications, most notably, in machine learning.

In this paper we study the hypothesis selection problem in the agnostic setting, where we assume

a fixed finite1 class Q of reference distributions which is known to the learner, and which may or

may not contain p2. The goal of the learner is to output a distribution q that is at least as close

to p as any of the distributions in Q in total variation distance (denoted here TV(·, ·)).
The statistical performance of a learner is measured using two parameters, denoted α and

m = m(n, ε, δ), where α is the approximation factor of the algorithm and m is its sample complexity.

Specifically, we say that a class of distributions Q = {q1, . . . , qn} is α-learnable with sample

complexity m(n, ε, δ) if there is a (possibly randomized) learner such that for every ε, δ > 0 and

every target distribution p, upon receiving m(n, ε, δ) random samples from p, the learner outputs

a distribution q satisfying TV(p, q) ≤ α ·mini∈[n]{TV(p, qi)}+ ε with probability at least 1− δ. For

the discussion below, we think of δ as a small constant.

How good can a learner be? A-priori, it is not even clear that every class Q is learnable

with finite sample complexity. Consider the following natural algorithm for hypothesis selection:

estimate TV(qi, p) for every qi ∈ Q and output the qi that minimizes this quantity. While

this algorithm clearly works (and even achieves an approximation factor of α = 1), estimating

TV(qi, p) for any qi requires Ω̃(|X |) samples from p (see, e.g., [JHW18]). Thus, if the domain X
is infinite (say X = R), the sample complexity of this algorithm is not even finite. However,

perhaps surprisingly, despite the impossibility of estimating the distance of p from even one of

the distributions qi, one can still find an approximate minimizer of the distances (even when X is

infinite!).

What are the smallest α and m for which any given class of distributions Q of size n

is α-learnable with sample complexity m? A seminal work by Yatracos [Yat85] (also see

[DL96, DL97, DL01]) shows that any reference class Q of size n is 3-learnable with sample

complexity O(log n/ε2). For the case of n = 2, Mahalanabis and Stefankovic [MS08] improve the

approximation factor, constructing a 2-learner. This was extended by the recent work of Bousquet,

Kane, and Moran [BKM19] to give a 2-approximation for any finite n, using a very different scheme.

A matching lower bound of 2 on the approximation factor follows from the work of [CDSS14].

Although the work of [BKM19] obtains the optimal approximation factor for the agnostic

hypothesis selection problem, the sample complexity of their scheme is Õ(
√
n/ε2.5), which is

exponential in the sample complexity of Yatracos’s algorithm3. Deriving optimal learners with

efficient sample complexity is left as the main open problem in their work. In this paper, we give

a novel 2-learner with (near) optimal sample complexity, getting the best of both worlds.

1See discussion of the infinite case at the end of this section.
2The setting where p is assumed to be in Q is called the realizable setting.
3We note that [BKM19] also provide poly(log|X |, log n, ε−1) sample complexity bounds, which can be better than their

general Õ(
√
n/ε2.5) bound for finite domains X .
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Density Estimation. Hypothesis selection, and, in particular, Yatracos’s algorithm, found

applications beyond learning finite classes. Specifically, it is used as a basic subroutine in density

estimation tasks where the goal is to learn an infinite class of distributions, in the realizable or

agnostic setting4. A popular method, where the reference class Q may be infinite, is the cover

method (a.k.a. the skeleton method). In this method, one “covers” the class Q by a finite α-cover;

that is, a subclass Q′ ⊆ Q of distributions such that for every q ∈ Q there exists q′ ∈ Q′ with

TV(q, q′) ≤ α. Often times it is the case that even if Q is infinite, a finite ε-net Q′ exists, and

Yatracos’s agnostic learning algorithm can be applied on Q′ (see [DL01, Dia16] and references

within for many such examples).

While the minimal possible size of such a cover Q′ is often exponential in the natural parameters

of the class Q5, because Yatracos’s algorithm has poly-logarithmic sample complexity, the obtained

density estimation algorithm has a polynomial sample complexity. Since many density estimation

results follow the cover method, or other related methods6 that use Yatracos’s algorithm as a black

box, our algorithm can imply an improvement for all of these results. (We mention a couple of

such examples below, in Section 1.4).

We note that in the realizable setting for density estimation, where the distribution p we wish

to learn is in the infinite class Q of distributions we are considering (that is, opt = 0), one can

typically get a better approximation factor by taking a finer cover (smaller α). By taking an α-

cover of Q, the above method results in a distribution q with TV(p, q) ≤ α + 3opt = α. However,

in the agnostic setting, even if we take a very small α, the resulting TV(p, q) may not be small as

it is dominated by 3opt. By using the result of this paper in lieu of Yatracos’s learning algorithm,

this distance can be made 2opt.

1.1 Our Results

We design a 2-learner for the agnostic hypothesis selection problem with sample complexity whose

dependence on both n and ε is (near) optimal.

Theorem 1. Let Q be a finite class of distributions and let n = |Q|. Then, Q is 2-learnable with

sample complexity7 m(n, ε, δ) = Õ
(
(log n ·min(log n, log(1/δ)) + log(1/δ))/ε2

)
. In particular, for

constant δ > 0,

m(n, ε, δ) = Õ

(
log n

ε2

)
.

Our learner in Theorem 1 is deterministic, and, as in the case for [BKM19], it only makes

statistical queries. That is, our learner can be implemented in the restricted model where instead

of getting random samples from p, the learner has access to an oracle that on a query (f, ε)

4In fact, learning infinite classes was a part of Yatracos’s original motivation.
5One easy example of an exponential cover is when Q is the set of all convex combinations of k fixed distributions

p1, . . . , pk, i.e., Q = {
∑
i∈[k] βipi :

∑
i∈[k] βi = 1, βi ≥ 0}. The set Q = {

∑
i∈[k]

ri
` ·pi : ri ∈ N∪{0}, ` = d kαe,

∑
i∈[k]

ri
` =

1} is a cover of Q of exponential size (in k). Sub-exponential covers are not possible in this case. See Chapter 7.4 in
[DL01] for this example, and the rest of Chapter 7 for more such examples.

6Another such method is the recent sample compression method by [ABDH+20], used to obtain improved density
algorithms for the mixtures of Gaussians problem.

7We use the standard notation that f(n) = Õ(h(n1, . . . , nt)) if there exists k ∈ N such that f(n1, . . . , nt) =
O(h(n1, . . . , nt) logk(h(n1, . . . , nt))).
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answers by a value in Ex∼p[f(x)]± ε (or, equivalently, on a query (F, ε), where F is a set, answers

by p(F ) ± ε). Furthermore, our algorithm consists of only Õ(log n/ε2) such rounds of queries,

whereas the algorithm [BKM19] consists of O(n/ε) such rounds.

1.2 Our Technique

1.2.1 The Cutting-With-Margin Game

To prove Theorem 1, we reduce the hypothesis selection problem to solving a geometric game we

call the “cutting-with-margin” game. This game is between a player and an adversary and it is

played over a convex body H ⊆ ∆n known to both parties, where ∆n denotes the simplex of n-

dimensional probability vectors8. In every round of the game, the player selects a point h ∈ H and

adversary updates the set H to a new convex set by “cutting out” a part of H that contains the `1
ball of radius ε around h. The game ends when the set H is empty.

We first show that any strategy for the player which ensures that the game ends in at

most r rounds implies a 2-learner for the hypothesis selection problem with sample complexity

Õ(r log n/ε2) (this is because the implementation of each round requires n statistical queries that

should be approximated to within O(ε)). We then give an information-theoretic argument showing

that the game is solvable in r = Õ
(
log(n)/ε2

)
rounds, implying a hypothesis selection algorithm

with Õ
(
log2(n)/ε4

)
samples. Our player’s strategy views each point h ∈ H ⊆ ∆n as a distribution

and takes the point h ∈ H that maximizes the entropy function.

Even though the cutting-with-margin game serves as a technical tool in this work, this simple

game may also be of independent interest, and it is natural to study it for different norms (other

than the `1 norm considered in this paper). In a sense, this game is a dual perspective on the

geometric approach taken by [BKM19] (see Section 2). Nevertheless, it is the move to this dual

perspective that allowed us to use the above maximum-entropy-based strategy. While entropy-

based strategies are widely used in online optimization (see Section 1.4), we find the fact that

such a strategy is helpful for making progress in this abstract statistical problem of hypothesis

selection, to be curious. We hope that this connection will inspire more collaboration between the

optimization and the statistical learning communities.

1.2.2 Achieving Optimal Sample Complexity

Our solution for the cutting-with-margin game yields a hypothesis selection algorithm with sample

complexity polynomial in log n/ε, but still sub-optimal. While reducing the sample complexity of

this algorithm and achieving a near optimal complexity of Õ(log n/ε2) requires quite a bit of effort

(in fact, it is the main technical contribution of this paper), we believe that it makes our algorithm

more applicable (in the sense that it can replace Yatracos’s algorithm, without compromising the

sample complexity).

To this end, at a very high level, we consider a “dynamic” cutting-with-margin game that

allows the cutting of `1 balls of different diameters, and we give a “win-win”-style strategy, where

in rounds where we use more samples the diameter of the ball we cut is larger (see Section 2.4).

Thus, the player either makes a lot of progress towards the goal or uses few samples.

8I.e., ∆n :=
{
h ∈ Rn :

∑
i∈[n] hi = 1, (∀i) : hi ≥ 0

}
.
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A detailed overview of our techniques can be found in Section 2.

Adaptive data analysis. As explained in Section 2, the (“primal”) geometric approach of

[BKM19] results in a hypothesis selection algorithm that makes O(n2/ε) statistical queries, where

each should be approximated to within O(ε). Had all these queries been submitted together, the

standard combination of Chernoff and union bound would imply a logarithmic sample complexity.

However, their algorithm submits these queries adaptively, in O(n/ε) rounds, where in each round n

queries are submitted. Thus, naively, each of the rounds will require Õ(log n/ε2) fresh samples for

the total sample complexity of Õ(n/ε3). Their improved stated sample complexity of Õ(
√
n/ε2.5)

is made possible by importing clever tools from Adaptive Data Analysis.

Given the above, a natural question is whether similar “off-the-shelf” Adaptive Data Analysis

tools can be used to convert the hypothesis selection algorithm obtained in Section 1.2.1 from our

solution of the cutting-with-margin game, to a sample optimal one. (Recall that this protocol

consists of Õ(log n/ε2) rounds and makes n statistical queries in each round). Unfortunately, we

were unable to apply these tools to get a significant quantitative improvements, as these tools are

mostly geared toward cases where there are many rounds of adaptivity, while in our algorithm, the

number of rounds Õ(log n/ε2) is much smaller than the number of queries n made in every round

(see, e.g., [DFH+15]). Instead, as described above, we use a more direct solution and tune the

number of samples we use for each query adaptively, by monitoring (and verifying) the progress of

the algorithm.

It will be interesting to explore whether our technique can be extended to more general protocols

in adaptive data analysis.

1.3 Additional Discussion of The Model

In this work, we give an improper algorithm for the finite agnostic hypothesis selection problem

under the total variation distance. We next explain the modeling choices we have made:

The finite agnostic setting. We consider the finite agnostic setting; clearly, an algorithm in

this setting applies in the realizable setting as well. In addition, as discussed above, hypothesis

selection in the finite agnostic setting is often used as a building block in the infinite (agnostic and

realizable) settings (i.e., in density estimation).

Total variation distance. The total variation distance is used by numerous prior works in

the field, and is a natural choice for our study for several reasons: firstly, solving the hypothesis

selection problem for the total variation distance (which corresponds to the `1 norm) implies solving

the corresponding problem for any `p norm, for p ∈ [1,∞], as ‖x − y‖p ≤ ‖x − y‖1. Another

reason is that for many other metrics, the sample complexity of a hypothesis selection problem

can depend on structural properties of the reference class Q, which is undesirable for formulating

problem-independent theorems like Theorem 1. For a more elaborate discussion of the advantages

in working with total variation, see Chapter 6.5 in [DL01], and Section 3.1 in [ABDH+20].

We believe that our technique can be extended to derive hypothesis selection algorithms for

5



other distance measures that satisfy (at least some approximate) version of the triangle inequality9

(e.g., Hellinger distance and other metric spaces).

Proper vs. improper. A basic classification of machine learning problems distinguishes

between proper and improper learning. In the proper case the algorithm always outputs a

distribution q ∈ Q, whereas in the improper case it may output an arbitrary distribution.

Improperness has been shown to be beneficial in many settings (see, e.g., [SF12, DS14]), including

the agnostic hypothesis selection setting: while Yatracos’s 3-approximation algorithm is proper,

[BKM19] prove that the factor 3 cannot be improved by any proper algorithm (with any

sample complexity)10. For this reason, their and our 2-approximation algorithms are inherently

improper. For many applications (e.g., applications to density estimation discussed above),

improper hypothesis selection algorithms suffice.

Computational complexity. Although our approach is algorithmic, our focus is not on

computational efficiency. While the sample complexity of our algorithm is only logarithmic in

the number of distributions n (and is independent of the domain size |X |), in the general case,

its running time scales polynomially with both n and |X |, as is the case for other sample-efficient

hypothesis selection algorithms. Clearly, the dependence on n cannot be sub-linear (each qi needs

to be accessed, unless some structure on Q is assumed). As for the dependence on |X |, our

algorithm assumes oracle access to operations on X , such as checking membership in sets of the

form F = {x ∈ X : q1(x) > q2(x)}11, and several other (somewhat involved) operations12 that can

only be implemented efficiently for restricted classes Q. We mention that the situation is similar for

many density estimation problems: the existence of polynomial time algorithms is unknown even

for specific natural classes, such as mixtures of gaussians (see [ABDH+20] for further discussion).

While efficient algorithms (e.g., with poly log(|X |) running-time) for all classes Q are unlikely in

the simple and abstract learning setting considered by this work, this setting is particularly suited

to capture basic information-theoretic resources, such as sample-complexity and approximation

guarantees, which are not affected by the computational model. As discussed above, the complexity

of these resources is still poorly understood, even for very basic problems.

1.4 Additional Related Work

In this work we give a novel approximation algorithm for hypothesis selection of any (finite)

class Q, following the classical work of [Yat85, DL96, DL97, DL01] and the recent work of

[BKM19], discussed above. Over the last decade or so, hypothesis selection received quite a bit

of attention by different theoretical communities and many aspects of this problem were studied,

including computational efficiency, robustness, weaker access to hypotheses, privacy and more (see,

9See Section 2.1 for our usage of the triangle inequality.
10We mention that for the case n = 2, a proper 2-approximation algorithm for the agnostic hypothesis selection problem

was given by [MS08].
11These are the, so called, “Yatracos sets” and Yatracos’s algorithm also assumes membership oracle to them.
12In the language of the overview presented in Section 2, these operations include finding a distribution q such that

v(q) ≤ v, and solving the optimization problem corresponding to finding the discriminating sets Fi.
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e.g., [MS08, DDS15, DK14, SOAJ14, AJOS14, CDSS14, DKK+19, BKSW21, AFJ+18, BKSW21,

GKK+20]).

Hypothesis selection can also be viewed as a special case of density estimation (also known

as distribution learning), where one wishes to learn a (typically infinite) class of densities from

samples. In fact, as mentioned above, many density estimation algorithms use hypothesis

selection algorithms as fundamental subroutines. Density estimation is a very basic unsupervised

learning problem studied since the late nineteenth century, starting with the pioneering work of

Pearson [Pea95]. Since, it was systematically studied for many natural classes, such as mixtures

of gaussians (e.g., [KMV12, DKS17, DKS18, KSS18, ABM18, ABDH+20]), histograms (e.g.,

[Pea95, LN96, DL04, CDSS14, DLS18]), and more. For a fairly recent survey see [Dia16].

Our result yields improved approximation guarantees in many of these works. For example,

plugging it in [ABDH+20], instead of Yatracos’s algorithm which is used as a black box, improves

the approximation factor from 3 to 2 for learning gaussians, and from 9 to 6 for learning mixtures

of gaussians, while keeping the sample complexity near-optimal.

Optimization and online learning. A key component in our derivation is the cutting-

with-margin game. This game is reminiscent of dynamical processes which are studied in

optimization and online learning. In particular, our solution to this game is based on a

greedy approach of maximizing the entropy and a potential-based analysis which brings to mind

standard KL-divergence-based analyses of mirror-decent and multiplicative-weights update (see,

e.g., [AW01, AHK12, Bub15]). Moreover, the cutting-with-margin game naturally generalizes to

arbitrary norms ‖ · ‖ by replacing the `1 norm with ‖ · ‖ and the simplex ∆n by the unit ball with

respect to ‖·‖. One can extend our upper bound to arbitrary norms, by replacing the KL-divergence

with an appropriate Bregman divergence13, as is the case for some optimization problems.

These technical interrelations suggest the possibility of a deeper connection between the cutting-

with-margin game and online optimization. Ideally, one could hope to find a formal reduction by

phrasing our game as a convex regret minimization problem. We remark, however, that, unlike

regret minimization problems, our game is not defined via a local regret function, but rather defined

using a very global cost function. We leave this further exploration of the relations between our

game to the regret minimization framework for future work.

The ellipsoid method. Another known algorithm that is of a particular syntactic similarity

to our cutting-with-margin game is the well-known ellipsoid method for solving linear programs: in

both settings a player maintains a convex set in Rn (in our game it is, without loss of generality,

a polytope, and when running the ellipsoid method it is an ellipsoid), and in each step it selects

a point within that set. If the selected point is not a “solution”, the player receives a separating

hyperplane from an adversary or a hyperplane oracle, which separates the selected point from the

target set of solutions. Then, the player moves to a “smaller” convex body that lies, in its entirety,

on one side of the hyperplane.

13Using the Bregman divergence, we have some preliminary results regarding the round complexity of our cutting-with-
margin game in other norms. These include a nearly tight bounds for the `p norm, when p ∈ (1, 2] ∪ {∞}: if p ∈ (1, 2)
then the player can solve the corresponding game in r = Op(1/ε

2) rounds, and if p =∞ a then the round complexity of
the game is Θ(n log(1/ε)).
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We note that a crucial difference between the two is that when running the ellipsoid method,

the ellipsoids are getting rapidly smaller in terms of volume (and, for example, the next ellipsoids

need not be contained in the former one), and it is this decrease in volume that allows for a

fast convergence. In contrast, as will be discussed in Section 2.3, shrinking the volume of our

convex body between rounds of the cutting-with-margin game does not suffice for convergence

(and therefore, “centroid-based” methods do not apply).

2 Proof Overview

In this section we overview the proofs and highlight some of the more technical arguments. We

defer the full proof to the Appendix.

Let Q = {q1, . . . , qn} be a (known) finite reference class of distributions and let p denote the

target distribution to which we have sample access. Denote i? = arg mini{TV(p, qi)}. Our goal is

to use as few samples as possible from p in order to find q such that TV(p, q) ≤ 2 · TV(p, qi?) + ε.

2.1 A Geometric Approach to Hypothesis Selection

Our starting point is the 2-approximation algorithm of [BKM19]. In this subsection we describe

our interpretation of their technique (some of the claims we make here are implicit in their paper).

The basic observation of [BKM19] is that it suffices to find a distribution q which is (almost)

at least as close to each of the qi’s as p,

(∀i) : TV(q, qi) ≤ TV(p, qi) + ε. (1)

Finding such a q suffices, as by the triangle inequality, TV(q, p) ≤ TV(q, qi) + TV(qi, p) ≤
2TV(qi, p) + ε for every i, and, in particular, for i?.

This suggests the following definitions: for a distribution q, let v(q) ∈ [0, 1]n denote the vector of

all distances v(q) = (TV(q, qi))
n
i=1; a vector v ∈ [0, 1]n is feasible if v ≥ v(q) for some distribution q

(when we write u ≥ w for u,w ∈ [0, 1]n we mean (∀i) : ui ≥ wi). With this notation, our goal is

to find v such that

(i) v ≤ v(p) + ε · 1n, where 1n is the all-one vector, and

(ii) v is feasible.

Once such a vector v is obtained, one can find a distribution q satisfying v(q) ≤ v, and consequently

a 2-approximation for the target distribution p.

Let P ⊆ [0, 1]n denote the set of all feasible vectors v and note that it is convex and upward-

closed. The approach of [BKM19] for finding a desired v proceeds in rounds, where in round k we

find a vector uk that is closer to the feasible set, while maintaining the invariant that uk ≤ v(p):

1. Let u0 = ~0 ∈ [0, 1]n be the all-zero vector. Note that u0 ≤ v(p), so u0 satisfies the above

Item (i), but not Item (ii) (except in trivial cases).

2. For k = 0, 1, . . .

(a) If uk + ε · 1n is feasible (that is, if d∞(uk,P) ≤ ε, where d∞(·, ·) denotes `∞ distance),

then output a q such that v(q) ≤ uk + ε · 1n (≤ v(p) + ε · 1n).
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(b) Else, use samples from p to derive uk+1 such that uk ≤ uk+1 ≤ v(p), and uk+1 is “closer”

(in some measure, see below) to P.

Selecting the new point uk+1. The crux of this approach is the update step in which uk+1

is computed given uk. Since d∞(uk,P) > ε, there exists a uk+1 such that uk ≤ uk+1 ≤ v(p) and

d1(uk+1, uk) ≥ ε
2 (for instance, since there exists a coordinate i ∈ [n] such that uk + ε

2 · ei < v(p),

where ei is the ith unit vector). [BKM19] show how to find such a uk+1 with few queries (discussed

next), and they use this uk+1 as their next point. However, since ‖1n‖1 = n, their strategy may

require Ω(nε ) rounds.

2.1.1 Implementing the Strategy

Violated tests. We next explain how [BKM19] find the coordinate i of uk that they wish to

update. To this end, observe that whenever uk+ε·1n is not feasible there is a hyperplane separating

the point uk + ε · 1n from the set P of feasible vectors, witnessing the fact that d∞(u,P) > ε. We

call a normal h ∈ ∆n to such a hyperplane a “violated test” (here ∆n denotes the simplex of

all probability vectors in Rn). For u ∈ [0, 1]n and d > 0, we denote the set of all violated tests

witnessing the fact that u+ d · 1n is not feasible by

Hd(u) =
{
h ∈ ∆n : h · u+ d < min

v∈P
h · v

}
.

From a test h to an updated point uk+1. We next informally state a central lemma

proved by [BKM19], showing how to convert any violated test h to a new point uk+1 (for a precise

statement, see Lemma 12 in [BKM19] or Lemma 7 in this paper).

Lemma 2. Using n statistical queries (queries of the form p(F ) for some set F ), any h ∈ Hε(uk)
can be converted to a point uk+1 satisfying:

1. uk ≤ uk+1 ≤ v(p).

2. uk+1 passes the test induced by h: h /∈ H ε
2
(uk+1). This also implies that h · (uk+1 − uk) > ε

2

(as h ∈ Hε(uk) implies h · uk + ε < minv∈P h · v and h /∈ H ε
2
(uk+1) implies h · uk+1 + ε

2 ≥
minv∈P h · v).

Observe that the uk+1 constructed by this lemma (for any h) satisfies d1(uk+1, uk) ≥ ε
2 (due to

Item 2, recall that h ∈ ∆n), and therefore it can be used to implement the strategy of [BKM19].

Proving the lemma. While the proof of Lemma 2 is pretty short, it is tricky. For completeness,

we will next give some intuition for it by showing how to construct uk+1 for a specific (easy to

handle) h.

Assume that uk + ε · 1n is not feasible and that h = (1
2 ,

1
2 , 0, . . . , 0) ∈ Hε(uk). Denote

F = F (q1, q2) = {x : q1(x) ≥ q2(x)}. (Observe that this is the so-called Yatracos set which is used

in Yatracos’s 3-approximation algorithm and satisfies TV(q1, q2) = q1(F ) − q2(F )). Use samples

from p to get an estimate p̂(F ) of p(F ) up to an ε
4 additive term. Set zi = |p̂(F ) − qi(F )| − ε

2 for

i = 1, 2 and zi = 0 for i ≥ 3. Obtain uk+1 from uk by setting (uk+1)i = max{(uk)i, zi}.

9



The resulting uk+1 satisfies Item 1, as since |p(F )− qi(F )| ≤ TV(p, qi) = (v(p))i it follows that

zi ≤ (v(p))i. It also satisfies Item 2, as

h · uk+1 + ε
2 = 1

2((uk+1)1 + (uk+1)2) + ε
2 ≥

1
2(z1 + z2) + ε

2 (2)

≥ 1
2(|p̂(F )− q1(F )|+ |p̂(F )− q2(F )|) ≥ 1

2 |q1(F )− q2(F )| = 1
2TV(q1, q2) = min

v∈P
h · v,

where the last equality is because for every v = v(q) ∈ P it holds that h · v = 1
2(v1 + v2) =

1
2(TV(q, q1) + TV(q, q2)) ≥ 1

2TV(q1, q2) and for v = v(q1) ∈ P it holds that h · v = 1
2TV(q1, q2).

Query/sample complexity. For a general h, the proof of the lemma is more involved and

crucially relays on the Minmax theorem. The point uk+1 is computed as (uk+1)i = max{(uk)i, zi},
where for every i ∈ [n], zi is of the form zi = |p̂(Fi)− qi(Fi)| − ε

2 , for some set Fi and where p̂(Fi)

is an approximation of p(Fi) to within an additive error of c · ε for some constant c < 1.

Computing uk+1 requires n statistical queries (the values of p(Fi) for all i’s), where each needs

to be approximated to within an additive error of c · ε. While approximating each query separately

requires Θ(1/ε2) samples, by a standard combination of Chernoff and union bound, all n queries

can be approximated using O(log n/ε2) samples.

2.2 The Cutting-With-Margin Game: A Dual Perspective

Recall that we wish to find a rule for updating uk to a uk+1 satisfying uk < uk+1 < v(p) that will

allow us to reach a feasible point after the minimum number of steps. We wish to define a measure

of progress to help us choose our next uk+1. As discussed above, [BKM19] use the `1 norm as their

measure of progress, but this results in a slow convergence to a feasible point.

To find a better progress measure, we revisit Lemma 2, specifically Item 2 that shows that by

updating uk using the test h ∈ Hε(uk), it is not only that h /∈ Hε(uk+1), but also h /∈ H ε
2
(uk+1). We

interpret this as implying that the set of violated tests can shrink substantially between rounds.

This suggests a new approach: instead of measuring progress by comparing the locations of uk
and uk+1, we can take a “dual” view and compare the sizes of the sets Hε(uk) and Hε(uk+1) of

violated tests that we still need to rule out (recall that if this set is empty, we have found a feasible

point). We note that this “dual” view is lossy (and is not a dual in the standard sense) as the

mapping uk → Hε(uk) may not be one-to-one.

The cutting-with-margin game. Consider a sequence ~0 = u0 ≤ u1 ≤ . . . ≤ um in which

the point uk+1 was produced from uk by selecting some hk ∈ Hε(uk) and applying Lemma 2, and

where um is feasible. Denote Hk = Hε(uk). It can be shown that Hk is convex for every k, and

that H0 ⊃ H1 ⊃ H2 ⊃ . . . ⊃ Hm = ∅ (Hm = ∅ as um is feasible). Furthermore, we are able to

prove that Hk+1 is disjoint from an `1 ball of radius Ω(ε) around hk (see Lemma 9). Intuitively,

this is because hk /∈ H ε
2
(uk+1) (Lemma 2, Item 2) implies that the generated uk+1 not only passes

the test induced by hk, but also passes all “similar” tests.

The above discussion gives rise to the cutting-with-margin game discussed in the introduction

(see Section 1.2.1). Recall that this is a game between a player and an adversary, and it is

played over a convex body H ⊆ ∆n known to both the player and the adversary. Let H0 = H; in
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every round k = 0, 1, . . . of the game, the player selects a point hk ∈ Hk and the adversary picks

Hk+1 ⊆ Hk to be any convex set which is disjoint from the `1 ball of radius ε around hk. The

game ends when the set Hk is empty. See illustration in Figure 1. Of course, the task is now to

find a strategy that solves this game with minimum number of rounds. Note that, in the language

of this game, the strategy of [BKM19] selects an arbitrary hk ∈ Hε(uk) in round k. We will next

show a strategy for selecting hk that will allow for a faster convergence.

2.3 Warm-up: poly(log n/ε2) Sample Complexity

So far, we reduced the hypothesis selection problem to solving the cutting-with-margin game.

We next outline a solution for the cutting-with-margin game in Õ(log n/ε2) rounds. Since the

implementation of each round requires O(log n/ε2) samples (see Section 2.1.1), this implies an

algorithm for hypothesis selection with Õ(log2 n/ε4) sample complexity.

First observe that an equivalent way of presenting the cutting-with-margin game lets the

adversary pick in each round a halfspace Hk which is disjoint from the `1 ball of radius ε around hk,

and the game continues with Hk+1 = Hk ∩ Hk. This presentation is reminiscent of Grunbaum’s

inequality [Grü60], which guarantees that if the player picks the centroid (which is a standard way

of defining the “center” of a body) of Hk then vol(Hk+1) ≤ (1− e−1) · vol(Hk), where vol(·) is the

standard (Lebesgue) volume. While the centroid is an intuitive choice for our player, a counter

strategy by the adversary will pick bodies that have small volumes but large diameters. Indeed,

note that as long as the diameter of the body is greater than ε, the adversary can force at least one

additional round. This shows that the volume is too crude of a measure for our game. Ideally, we

would have wanted to use a different “centroid” that satisfies an analogous property with respect

to the diameter (say, diameter(Hk+1) ≤ 99
100 ·diameter(Hk)). Unfortunately, no such object exists.

The approach we take for designing our player stems from the observation that if the player

could always pick a point hk ∈ ∆n that is close to the uniform distribution h? = ( 1
n , . . . ,

1
n), then

the game would have been solved in a few rounds. It is the easiest to see why when using the

“primal” point of view from Section 2.1: indeed, assume uk + ε · 1n is separated from P by a

hyperplane perpendicular to h? = ( 1
n , . . . ,

1
n). Then, since uk+1 ≥ uk lies on the other side of that

hyperplane, it follows that |uk+1 − uk|1 ≥ εn. So, when updating from uk to uk+1, the `1 norm

increases by at least εn (recall from Section 2.1 that in the [BKM19] strategy the `1 norm increases

by only Ω(ε) in each round). Thus, since in [0, 1]n the `1 norm is bounded by n, the total number

of such steps is at most O(1/ε). Of course, this strategy is impossible, as if h1 = h? then a ball of

radius ε is disjoint from Hk, for all k > 1.

Entropy as a progress measure. Inspired by the above intuition, our approach will be

to set hk ∈ Hk to be as “close” to h? as possible. Indeed, we select hk ∈ Hk that maximizes

the entropy function (here we view the point hk ∈ ∆n as a distribution). This corresponds to

measuring the distance from the uniform distribution h? using KL-divergence. The reason that the

entropy function gives an efficient solution for our game boils down to that it is (i) strongly convex

w.r.t `1 (as is evident by Pinsker’s Inequality), (ii) bounded by log(n) over the simplex. Roughly

speaking, strong convexity means that in every step the entropy drops by Ω(ε2). This, combined

with the fact that the entropy is bounded by log(n), implies our Õ(log(n)/ε2) solution for the
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𝜺

Figure 1: An illustration of the cutting-with-margin game: in each step k the player picks a point h ∈ Hk and
announces it to the adversary. The adversary then replies with Hk+1 ⊆ Hk which is convex and disjoint from
an `1 ball of radius ε around hk. The players’ goal is to empty the set as fast as possible (i.e., to reach Hk = ∅),
and the adversary’s goal is to delay the player.

cutting-with-margin game14.

As discussed in the introduction, entropy and KL-divergence based strategies are often used in

the context of optimization and regret minimization, basically for similar reasons (convexity and

boundedness). However, our game is not defined by a cost function measuring the cost of each

round separately, but rather, our “cost function” is the length of the game.

2.4 Near-Optimal Sample Complexity

In Section 2.3, we gave a hypothesis selection algorithm with Õ(log2 n/ε4) samples, by solving the

dual game. While this algorithm uses exponentially less samples than the one by [BKM19], it still

sub-optimal. We next show how to obtain an algorithm with a near-optimal sample complexity of

Õ(log n/ε2), by first improving the dependence on n to Õ(log n) (less involved), and then improving

the dependence on ε to O(1/ε2) (one of the main technical contributions of this paper). Since the

sample complexity of our resulting algorithm (almost) matches Yatracos’s, it can replace Yatracos’s

algorithm in density estimation algorithms to obtain a better approximation factor, while keeping

the same low sample complexity.

14Given that, it is natural to look for a strongly convex function over the simplex that is bounded by� log(n). However,
no such function exists.
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2.4.1 Optimal Dependence on n

We revisit the basic observation from Section 2.1 that finding a distribution q satisfying (∀i) :

TV(q, qi) ≤ TV(p, qi) + ε suffices in order to get a 2-approximation for hypothesis selection (see

Equation (1)). We observe that it also suffices to find q that only satisfies TV(q, qi?) ≤ TV(p, qi?)+ε

(recall that i? minimizes TV(p, qi)) for exactly the same reason: TV(q, p) ≤ TV(q, qi?)+TV(qi? , p) ≤
2TV(qi? , p) + ε. Thus, it suffices for our algorithm to maintain the invariant (uk)i? ≤ (v(p))i? ,

instead of uk ≤ v(p). This suggests that we can relax Item 1 in Lemma 2 and only require

(uk+1)i? ≤ (v(p))i? (in addition to uk ≤ uk+1).

Due to the above, had we known i?, we would only shoot for a good approximation (to within c·ε)
of (uk+1)i? , which means that Lemma 2 can use only O(1/ε2) samples (to get a good approximation

of p(Fi?)). But, we don’t know the identity of i?. The crucial observation here is that this does

not matter. We can use the same O(1/ε2) samples to evaluate each of the n statistical queries

corresponding to each of the coordinates of uk+1. Of course, since we are using too few samples,

some of these coordinates will not be well approximated. However, it is likely that each one by

itself will, and, in particular, this will be the case for (uk+1)i? . In other words, since we only care

about (uk+1)i? , we no longer have to pay for a costly union bound over all n coordinates. (We also

show that Item 2 in Lemma 2 still holds under this approximation using an averaging argument).

2.4.2 Optimal Dependence on ε

Recall that in each step of the cutting-with-margin game, the player picks a point hk ∈ Hk, and the

adversary sets Hk+1 ⊆ Hk by cutting away an `1 ball of radius ε around hk. The algorithm we have

so far uses Ω(log n/ε4) samples from p: every round uses Θ(1/ε2) samples and maxh∈Hε(uk){H(h)}
drops by Ω(ε2) (recall that, to begin with, the entropy is at most log n and we want it to drop

to 0).

To reduce the sample complexity, we move away from this “static” type of algorithms and

design a “dynamic” algorithm whose number of samples per round may vary (but, will never

exceed Ω(1/ε2)). The important property of the new algorithm is that if the algorithm samples

more points from p, then the adversary cuts away a larger `1 ball around hk. Specifically, if O(1)

points are sampled then the radius of the removed ball is ε, and if O(1/ε2) points are samples then

the radius removed ball will be Ω(1). We will show that this coupling of the number of samples

used in a step with the amount of progress made in that step (instead of using the maximum

number of samples in every step and expecting the minimum progress) enables a win-win analysis

which implies the desired saving in the sample complexity.

Bounding the radius of the removed ball. To explain how this idea is implemented, we

need to dive into the details of the algorithm. Recall that the algorithm aims to find a point v

such that vi? ≤ TV(p, qi?) + ε, and for which Hε(v) = ∅. Assume that the current point uk satisfies

d∞(uk,P) = d � ε (which means Hd(uk) = ∅) and that we aim at reducing the distance to,

say, 3d
4 . That is, we want to get to a point u such that d∞(u,P) ≤ 3d

4 , or, equivalently, H 3d
4

(u) = ∅.
Recall from Section 2.1 that towards this, we pick a violated test hk ∈ H 3d

4
(uk) which, by applying

Lemma 2, yields the new point uk+1 ∈ [0, 1]n. Of course, the lemma uses samples from p to compute

this uk+1. As we soon see, in some cases it will be worthwhile for our algorithm to only compute
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a crude approximation of this uk+1 using fewer samples. Part of the difficulty is to decide on the

quality of this approximation without knowing uk+1.

Nevertheless, imagine for a moment that the algorithm does know this uk+1 and uses it as its

next point. How much “progress” does this imply in the cutting-with-margin game? That is, how

much smaller is H 3d
4

(uk+1) compared to H 3d
4

(uk)? Denote wk = uk+1 − uk. We next show that

H 3d
4

(uk+1) is disjoint from an `1 ball of radius

r =
d

8‖wk‖∞
(3)

around hk (we wish for r to be as large as possible). Intuitively, if ‖wk‖∞ is small, it means that we

have made progress in many coordinates (though the progress in each might be relatively small).

Since we are getting close to P in many directions, this should imply that uk+1 passes many of the

tests hk that were violated by uk, and thus that H 3d
4

(uk+1) is much smaller.

More formally, let h ∈ H 3d
4

(uk+1), Equation (3) follows from:

‖hk − h‖1 · ‖wk‖∞ ≥ (hk − h) · (uk+1 − uk) ≥ d
8 .

Here, the first inequality is due Hölder’s Inequality. The second inequality is because hk · (uk+1 −
uk) ≥ 3d

8 (due to Lemma 2, Item 2) and because h · (uk+1 − uk) ≤ d
4 (since h ∈ H 3d

4
(uk+1) it holds

that h ·uk+1 + 3d
4 < minv∈P h ·v, while since h /∈ Hd(uk) = ∅ it holds that h ·uk +d ≥ minv∈P h ·v).

Our “win-win” strategy. The take home message from the above discussion is that:

If ‖wk‖∞ is small then H 3d
4

(uk+1) is small.

We next show that this relation leads us to a “win-win” situation: if ‖wk‖∞ is large, it suffices to

only crudely approximate wk, and we save on samples. However, if ‖wk‖∞ is small, H 3d
4

(uk+1) is

small and we made a lot of progress towards ruling out all violated tests.

To see the relation between ‖wk‖∞ and the number of samples required to approximate wk,

first assume that wk is uniform over a set of coordinates of size m (i.e., for every i ∈ [n], either

(wk)i = 1/m or (wk)i = 0). Now, if m is small than all non-zeros coordinates of wk are large, and

thus wk can be reasonably approximated with few samples. (In fact, the number of samples scales

with (1/‖wk‖∞)2).

Slicing. Of course, wk may not be uniform on a set. To deal with such wk’s, we partition wk to

log(1/d) many “slices” wk = w1
k + . . . + w

log(1/d)
k such that each w`k is almost uniform over a set

(specifically, for ` < log(1/d), each of the coordinates of w`k is either 0 or in (2−`, 2−(`−1)]). We then

try to identify a slice with a significant contribution to hk · wk =
∑

`∈[log(1/d)] hk · w`k (recall that

hk · wk ≥ 3d
8 due to Lemma 2, Item 2). However, since wk is not known to the algorithm, we use

samples to learn it “slice-by-slice”, starting by approximating w1
k, the slice containing the largest

values and requiring the least number of samples to estimate, and continuing to the slices that

require more samples, until reaching a “good” slice. We mention that this slice-searching process

is equivalent to playing the dual game with different ε values.
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3 Preliminaries

3.1 Notation

Let n ∈ N. For u, v ∈ Rn, we write u ≥ v if (∀i ∈ [n]) : ui ≥ vi. We use u · v :=
∑

i∈[n] uivi to

denote the standard inner product of u and v.

For p ∈ [1,∞], we denote by ‖ · ‖p the `p norm. For u ∈ Rn and r ≥ 0, let Bp(u, r) denote a

ball of radius r with respect to `p that is centered at u,

Bp(u, ε) = {v ∈ Rn : ‖v − u‖p ≤ r}.

Let ∆n denote the simplex of probability vectors in Rn,

∆n :=
{
h ∈ Rn :

∑
i∈[n]

hi = 1, (∀i) : hi ≥ 0
}
.

The entropy function is denoted by H and the Kullback-Leibler divergence by KL.

3.2 Definition of the Hypothesis Selection Problem

Let X be a domain and let ∆(X ) denote the set of all probability distributions over X . We assume

that either (i) X is finite in which case ∆(X ) is identified with the set of |X |-dimensional probability

vectors, or (ii) X = Rd in which case ∆(X ) is the set of Borel probability measures.

Let Q ⊆ ∆(X ) be a set of distributions. We focus on the case where Q is finite and denote

its size by n. Let α > 0, we say that Q is α-learnable with sample complexity m(n, ε, δ) if there

is a (possibly randomized) algorithm A such that for every ε, δ > 0 and every target distribution

p ∈ ∆(X ), if A receives as input at least m(n, ε, δ) independent samples from p then it outputs a

distribution q such that

TV(p, q) ≤ α · opt + ε,

with probability at least 1− δ, where opt = minq∈Q TV(p, q) and TV(p, q) = supA⊆X {p(A)− q(A)}
is the total variation distance. We say that Q is properly α-learnable if it is α-learnable by a proper

algorithm; namely an algorithm that always outputs q ∈ Q.

Distances vectors and sets. Let Q = {q1, . . . , qn} ⊆ ∆(X ), and let p be a distribution. The

TV-distance vector of p relative to the qi’s is the vector v(p) = vQ(p) = (TV(p, qi))
n
i=1.

Following [BKM19], our algorithm is based on the next claim which shows that in order to find

q such that TV(q, p) ≤ 2 mini TV(qi, p) + ε it suffices to find q such that v(q) ≤ v(p) + ε · 1n.

Lemma 3. Let q, p such that v(q) ≤ v(p) + ε · 1n. Then TV(q, p) ≤ 2 mini TV(qi, p) + ε.

Proof. Follows directly by the triangle inequality; indeed, let qi be a minimizer of TV(·, p) in Q.

Then, TV(q, p) ≤ TV(q, qi) + TV(qi, p) ≤ (TV(p, qi) + ε) + TV(qi, p) = 2TV(qi, p) + ε.

Next, we explore which v ∈ Rn are of the form v = v(p) for some p ∈ ∆(X ). For this we make

the following definition. A vector v ∈ Rn is called a TV-distance dominating vector if v ≥ v(p) for

some distribution p. Define PQ to be the set of all dominating distance vectors.
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Claim 4. PQ is convex and upward-closed15.

Proof. That PQ is upward-closed is trivial. Convexity follows since TV(·, ·) is convex in both of its

arguments.

3.3 Pythagorian Theorem for KL

We will use the following Pythagorian theorem for the KL divergence, the version here is taken

from [PW15].

Lemma 5. Let X be a set, let E ⊆ ∆(X ) be a convex set of distributions, and let p ∈ ∆(X ) be a

distribution. Let q∗ = arg minq∈E{KL(q, p)}. Then, for all q ∈ E it holds that

KL(q, p) ≥ KL(q, q∗) + KL(q∗, p).

Proof. If KL(q, p) = ∞, then we are done. So, we can assume KL(q, p) < ∞, which also implies

that KL(q∗, p) <∞. For θ ∈ [0, 1], form the convex combination q(θ) = (1− θ)q∗ + θq. Since q∗ is

the minimizer of KL(q, p), then

0 ≤ ∂

∂θ

∣∣∣∣
θ=0

KL(q(θ), p) = KL(q, p)− KL(q, q∗)− KL(q∗, p),

If we view the picture above in the Euclidean setting, the “triangle” formed by p, q∗ and q

(for q∗, q in a convex set, p is outside the set) is always obtuse, and is a right triangle only when

the convex set has a “flat face”. In this sense, the divergence is similar to the squared Euclidean

distance, and the above theorem is sometimes called the Pythagorean theorem.

An assumption. Our analysis uses the Minimax Theorem for zero-sum games [vN28] for the

same purpose that it was used in [BKM19]. Therefore, we will assume a setting (i.e., the domain X
and the class of distributions Q) in which this theorem is valid. Alternatively, one could state

explicit assumptions such as finiteness of X or forms of compactness under which it is known that

the Minimax Theorem holds. However, we believe that the presentation benefits from avoiding

such explicit technical assumptions and simply assuming the Minimax Theorem as an “axiom” in

the discussed setting.

4 A Geometric Game from Hypothesis Selection

We next describe a geometric game, called the (P, ε)-primal game. This game is between a player

and an adversary, where P ⊆ [0, 1]n is a given upwards-closed and nonempty convex body, and

ε ≥ 0 is a margin parameter. Both P and ε are known to both the player and the adversary. The

game proceeds in rounds roughly as follows: the player starts at position u0 = ~0 ∈ [0, 1]n and its

goal is to get sufficiently close to P as fast as possible. Let uk denote the position of the player in

15Recall that upwards-closed means that whenever v ∈ QF and u ≥ v then also u ∈ QF .
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The (P , ε)-Primal Game

Let P ⊆ [0, 1]n be a nonempty convex set which is upward closed.

1. Set k = 0 and u0 = ~0.

2. While uk + ε · 1n /∈ P (equivalently HP,ε(uk) 6= ∅)

(a) The player picks a normal hk ∈ HP,ε(uk) to a hyperplane tangent to P which separates
uk + ε · 1n from P , and announces it to the adversary.

(b) The adversary replies with a point uk+1 whose every coordinate is at least as great as
that of uk and is ε/2-close to the hyperplane tangent to P whose normal is hk, i.e.,

uk+1 ≥ uk and hk · uk+1 ≥ min
p∈P
{hk · p} − ε/2. (4)

(c) Set k = k + 1.

Figure 2: The Primal Game.

round k; if uk+ε·1n ∈ P then the player wins the game. Else, the player picks a tangent hyperplane

to P which separates uk + ε · 1n from P (such a hyperplane must exist since uk + ε · 1n /∈ P ),

announces it to the adversary, and the adversary picks the player’s next position uk+1 to be any

point such that uk+1 ≥ uk and uk+1 is ε/2-close to the tangent hyperplane chosen by the player.

The (P, ε)-primal game is formally described in Fig. 2. It uses the following notation:

HP,ε(u) =
{
h ∈ ∆n : h · (u+ ε · 1n) = h · u+ ε < min

p∈P
{h · p}

}
.

In words, HP,ε(u) is the set of normals h ∈ ∆n to hyperplanes separating u+ ε · 1n from P. Note

that the assumption h ∈ ∆n does not lose generality, because P is upwards-closed and therefore for

any u ∈ [0, 1]n, u /∈ P, any hyperplane separating u and P has a normal of this form. (See Claim

5 in [BKM19] for a proof of this fact.) Thus, by the hyperplane separation theorem, HP,ε(uk) = ∅
if and only if uk + ε · 1n ∈ P. Also observe that since P is a convex, the set HP,ε(u) is convex for

every u ∈ Rn.

Winning Strategies. Let player be a strategy16 for the player in the (P, ε)-primal game. A

sequence ~0 = u0 ≤ u1 ≤ . . . ≤ ut is a sequence of legal-adversary moves with respect to player if for

every k < t,

• HP,ε(uk) 6= ∅ and

• hk ·uk+1 ≥ minp∈P{hk ·p}−ε/2, where hk = hk(uk;u<k, h<k) ∈ HP,ε(uk) is the normal picked

by player in round k.

16That is, in every round k, the strategy player provides a rule for picking hk ∈ HP,ε(uk).
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We say that the strategy player wins the (P, ε)-primal game in at most r rounds if no adversary

can force the game to last more than r rounds. That is, for every sequence ~0 = u0 ≤ u1 ≤ . . . ≤ ut
of legal adversary-moves with respect to player,

ut + ε · 1n /∈ P =⇒ t < r.

Similarly, let adv be a strategy17 for the adversary in the (P, ε)-primal game. A sequence

h0, . . . , ht−1 ∈ ∆n is a sequence of legal-player moves with respect to adv if for every k < t,

hk ∈ HP,ε(uk) 6= ∅, where uk = uk(hk−1;u<k−1, h<k−1) ≥ uk−1 is the point picked by adv in round

k. We say that the strategy adv forces the (P, ε)-primal game to last at least r rounds if for every

sequence h1, . . . , ht−1 ∈ ∆n of legal-player moves with respect to adv,

ut + 1n · ε ∈ P =⇒ t ≥ r.

4.1 Reducing Hypothesis Selection to the Primal Game

For all that follows, we fix a finite class of distributions Q = {q1, . . . , qn} and ε > 0, and use the

notation v(·) = vQ(·). We next show that if the (PQ, ε)-primal game is solvable in few rounds, then

Q is 2-learnable with low sample complexity. The following lemma is implicitly proved in [BKM19]:

Lemma 6. If there exists a strategy player that wins the (PQ, ε)-primal game in at most r rounds,

then Q is 2-learnable with sample complexity r′(ε, δ) = O(r · logn+log r+log(1/δ)
ε2

).

The reduction is described in Fig. 3. It is based on Lemma 3 and computes the output

distribution q by finding v ∈ PQ such that v ≤ v(p) + ε · n.

The following lemma is the crux of the reduction. It is used to show that the adversary induced

by the algorithm is a valid adversary for the (PQ, ε)-primal game, and provides a bound on the

number of samples from p which are required to compute the adversary’s move.

Lemma 7. Let p ∈ ∆(X ) and let α, β > 0. Then, given m = O( logn+log(1/β)
α2 ) independent samples

from an unknown distribution p and h ∈ ∆n as an input, one can output a point z ∈ [0, 1]n that

satisfies the following with probability ≥ 1− β:

1. h · z ≥ minv∈PQ{h · v} − α.

2. z ≤ v(p).

In words, this lemma provides a procedure that, given a hyperplane tangent to PQ and m

samples from the target distribution p, outputs a point z ≤ v(p) which is α-close to the tangent.

17That is, in every round k, the strategy adv provides a rule for picking uk+1 that satisfies Equation (4).
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Proof of Lemma 7. By the Minmax Theorem [vN28]:

min
v∈PQ

{h · v} = min
p′∈∆(X )

∑
i∈[n]

hi · v(p′)i (By definition of PQ.)

= min
p′∈∆(X )

∑
i∈[n]

hi · TV(p′, qi) (By definition of v(·))

= min
p′∈∆(X )

∑
i∈[n]

hi max
fi:X→[0,1]

{Ep′ [fi]− Eqi [fi]} (By definition of TV(·, ·).)

= min
p′∈∆(X )

max
fi:X→[0,1]

∑
i∈[n]

hi(Ep′ [fi]− Eqi [fi])

= max
fi:X→[0,1]

min
p′∈∆(X )

∑
i∈[n]

hi(Ep′ [fi]− Eqi [fi]) . (By the Minmax Theorem.)

Let Fi for i ∈ [n] be maximizers of the last expression. That is,

(F1, . . . , Fn) = argmax(f1,...,fn) min
p′∈∆(X )

∑
i∈[n]

hi(Ep′ [fi]− Eqi [fi]).

By the above derivation:

min
p′∈∆(X )

∑
i∈[n]

hi(Ep′ [Fi]− Eqi [Fi]) = min
v∈PQ

{h · v}. (5)

Note that the Fi’s depend only on the class Q and the direction h; in particular they do not depend

on p. Thus, the Fi’s can be computed by the algorithm. Define the point w ∈ [0, 1]n by

wi = Ep[Fi]− Eqi [Fi],

and observe that w can be approximated given samples from p. Note that w satisfies:

1.
∑

i∈[n] hiwi ≥ minv∈PQ{h · v}. (By Equation (5).)

2. wi = Ep[Fi]− Eqi [Fi] ≤ maxfi:X→[0,1]{Ep[fi]− Eqi [fi]} = TV(p, qi) = v(p)i.

Thus, it suffices to output a point z such that w ≥ z ≥ w − α · 1n. This can be done using the

m = O( logn+log(1/β)
α2 ) samples from p as follows: use the samples to approximate Ep[Fi]. That is,

let

Ep̂[Fi] =
1

m

m∑
j=1

Fi(xj),

where x1, . . . , xm are the m independent samples drawn from p. By a Chernoff and union

bounds, we have |Ep̂[Fi] − Ep[Fi]| ≤ α/2, simultaneously for all i ≤ n. Therefore, the estimates

ẑi = Ep̂[Fi] − Eqi [Fi] satisfy ẑi ∈ (wi − α
2 , wi + α

2 ). Then, the desired vector z can be taken to be

z = ŵ − α
2 · 1n.

With Lemma 3, we are ready to prove Lemma 6 which shows how to use a black-box strategy

for the player in the primal game to get a 2-approximation algorithm.
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A Hypothesis Selection Algorithm from the Primal Game.

Define the set P in the Primal Game to be PQ. (The Primal Game is described in Fig. 2)

1. Set k = 0 and u0 = ~0.

2. While HPQ,ε(uk) 6= ∅

(a) Run player to get hk = hk(uk;u<k, h<k) ∈ HPQ,ε(uk).
(b) Let zk be the point z promised by Lemma 7 applied with u = uk, h = hk, p = p,

α = ε/2 and β = δ/r. Define uk+1 by setting (uk+1)i = max{(zk)i, (uk)i} for all i ∈ [n].

(c) Set k = k + 1.

3. Output v = uk + ε · 1n.

Figure 3: A Hypothesis Selection Algorithm from the Primal Game.

Proof of Lemma 6. Let player be a strategy for the player that wins the (PQ, ε)-primal game in r

rounds. We will show that Q is 2-learnable with r′ = O(r· logn+log r+log(1/δ)
ε2

) samples. Let p ∈ ∆(X )

be the target distribution. The approach we use for deriving the learning algorithm is based on

Lemma 3 by which it suffices to find a distribution q ∈ ∆(X ) such that v(q) ≤ v(p)+ε ·1n. Observe

that if we find v ∈ PQ such that v ≤ v(p) + ε · 1n, a distribution q ∈ ∆(X ) such that v(q) ≤ v can

be found.

Consider the algorithm for computing such v which is depicted in Figure 3. The algorithm is

based on an execution of the primal game, where the player runs the strategy player (see Item 2a)

and the adversary moves are based on Lemma 7 (see Item 2b).

First note that Lemma 7 is applies with confidence parameter β = δ/r and error parameter

ε/2. This implies that: (i) the total number of samples used by the algorithm is r times the sample

complexity bound stated in Lemma 7 with α = ε/2, β = δ/r, which yields the stated bound on r′.

(ii) With probability at least 1 − δ, the points zk satisfy the guarantee in Lemma 7 for all k ≤ r.

In the remainder of the proof we condition on this event.

We next claim that the adversary strategy given in Item 2b provides a sequence of legal-

adversary moves w.r.t player. To this end, we need to show that the point uk+1 satisfies uk+1 ≥ uk
and hk ·uk+1 ≥ minp∈P{hk ·p}− ε/2. The former is obvious from the definition of uk+1 in Item 2b.

The latter follows since

hk · uk+1 ≥ hk · zk (uk+1 ≥ zk, hk ≥ 0)

≥ min
p∈P
{hk · p} − ε/2 (Lemma 7)

Thus, since player wins after at most r rounds, the while loop in Item 2 must terminate in round

t ≤ r and the output v satisfies v ∈ PQ.

Finally, it remains to show that v ≤ v(p) + ε · 1n. We show that uk ≤ v(p) for every k by

induction on k (this implies v = ut + ε · 1n ≤ v(p) + ε · 1n): For k = 0, it is clearly the case that
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u0 = ~0 ≤ v(p). Assume that the claim holds for some k and prove it for k+ 1. By the second item

in Lemma 7, zk ≤ v(p), and by the induction hypothesis, uk ≤ v(p). This implies that uk+1 ≤ v(p).

5 A Dual Game: Cutting-With-Margin

One of the key steps in our solution is to adapt a dual point of view, where the

separators/directions hk are thought of as points in the dual space. We next describe a second

geometric game, called the (H, ε)-cutting-with-margin game (in short, (H,ε)-cutting game), which

can be seen as a manifestation of the primal game as seen in the dual space. This game too is

between a player and an adversary, where H ⊆ ∆n is a given convex body, and ε ≥ 0 is a margin

parameter. Both H and ε are known to both the player and the adversary.

The dual game proceeds in rounds roughly as follows: at the beginning, the universe is the set

H0 = H. In round k, the player chooses a point hk ∈ Hk. The adversary then restricts the universe

to a set Hk+1, which must to be a convex subset of Hk that is disjoint from B1(hk, ε), an `1 ball

around hk with radius ε. If the new universe Hk+1 is not empty, the game continues to the next

round. Else, the game ends. A formal description of the dual game is given in Fig. 4.

Winning Strategies. Let player? be a strategy18 for the player in the (H, ε)-cutting game. A

sequence H = H0 ⊇ H1 ⊇ . . . ⊇ Ht is a sequence of legal-adversary moves with respect to player? if

for every k < t,

• Hk 6= ∅ and

• Hk+1 ∩ B1(hk, ε) = ∅, where hk = hk(Hk;H<k, h<k) ∈ Hk is the point picked by player? in

round k.

We say that the strategy player? wins the (P, ε)-cutting game in at most r rounds if no adversary

can force the game to last more than r rounds. That is, for every sequenceH = H0 ⊇ H1 ⊇ . . . ⊇ Ht
of legal adversary-moves with respect to player?,

Ht 6= ∅ =⇒ t < r.

Similarly, let adv? be a strategy19 for the adversary in the (P, ε)-primal game. A sequence

h0, . . . , ht−1 ∈ ∆n is a sequence of legal-player moves with respect to adv? if hk ∈ Hk for every

k < t, where Hk = hk(Hk−1;H<k−1, h<k−1) is the set picked by adv? in round k − 1. We say

that the strategy adv? forces the (H, ε)-cutting game to last at least r rounds if for every sequence

h1, . . . , ht−1 ∈ ∆n of legal-player moves with respect to adv?,

Ht = ∅ =⇒ t ≥ r.

18That is, in every round k, the strategy player provides a rule for picking hk ∈ Hk.
19That is, in every round k, the strategy adv provides a rule for picking Hk+1 as in Item 2b.
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The (H, ε)-Cutting-With-Margin Game

Let H ⊆ ∆n be convex.

1. Set k = 0 and H0 = H.

2. While Hk 6= ∅

(a) The player picks a point hk ∈ Hk and announces it to the adversary.

(b) The adversary picks a convex set Hk+1 ⊆ Hk such that Hk+1∩B1(hk, ε) = ∅. (Observe
that Hk+1 = ∅ always satisfies the above conditions.)

(c) Set k = k + 1.

Figure 4: The Dual Game.

5.1 Reduction from the Primal Game

For an upwards-closed convex set P ⊆ [0, 1]n and ε > 0, let

HP = HP,ε(~0) =
{
h ∈ ∆n : h ·~0 + ε = ε < min

u∈P
{h · u}

}
.

We next show that the round complexity of the (P, ε)-primal game is at most the round complexity

of the (HP , ε)-cutting game.

Lemma 8. Let P ⊆ [0, 1]n be an upwards-closed convex set and let ε ≥ 0. If there exists a strategy

player? that wins the (HP , ε4)-cutting game in at most r rounds, then there is a strategy player that

wins the (P, ε)-primal game in at most r rounds.

The proof of Lemma 8 uses the following lemma. Recall that HP,ε(u′) = {h ∈ ∆n : h · u′ + ε <

minu∈P h · u}.

Lemma 9. Let P ⊆ [0, 1]n be an upwards-closed convex set and let h ∈ ∆n, u ∈ [0, 1]n. Then,

h /∈ HP, ε
2
(u) =⇒ HP,ε(u) ∩B1(h,

ε

4
) = ∅.

In other words if h · u ≥ minp∈P{h · p} − ε
2 then, HP,ε(u) ∩B1(h, ε4) = ∅.

Proof. Let h /∈ HP, ε
2
(u), we need to show that HP,ε(u) ∩B1(h, ε4) = ∅. Define G : ∆n → R by

G(h) = min
p∈P
{h · p} − h · u.

Thus, G(h) measures the distance between u and the hyperplane tangent to P with normal h.

Observe that for every ε′ ≥ 0:

HP,ε′(u) = {h ∈ ∆n : G(h) > ε′}. (6)
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Note that

(i) G(h) ≤ ε
2 (by Equation (6), because h /∈ HP, ε

2
(u)).

(ii) G is 1-Lipschitz with respect to `1: Let h′, h′′ ∈ ∆n and let p∗ := arg minp∈P{h′′ · p}. It holds

that

G(h′)−G(h′′) = min
p∈P
{h′ · p} −min

p∈P
{h′′ · p} − (h′ − h′′) · u

≤ h′ · p∗ − h′′ · p∗ − (h′ − h′′) · u
= (h′ − h′′) · (p∗ − u)

≤ ‖h′ − h′′‖1 · ‖p∗ − u‖∞ (Hölder’s inequality, (∀v, v′) : v · v′ ≤ ‖v‖1‖v′‖∞)

≤ ‖h′ − h′′‖1. (‖p∗‖∞ ≤ 1, ‖u‖∞ ≤ 1, p∗, u ≥ 0)

Let h′ ∈ B1(h, ε4), so ‖h′ − h‖1 ≤ ε
4 . Thus,

G(h′) ≤ G(h) +
ε

4
(By Item (ii).)

≤ ε (By Item (i).)

Thus, by Equation (6) h′ /∈ HP,ε(u), and HP,ε(u) ∩B1(h, ε2) = ∅, as required.

Proof of Lemma 8. Let player?(H) be a strategy for the player that solves the (HP , ε4)-cutting game

in r rounds. Consider the reduction described in Figure 5 and the strategy player for the (P, ε)-
primal game which is described in Item 2b. Our goal is to show that player wins the game in at

most r rounds. That is, let ~0 = u0, . . . , ut be a sequence of legal-adversary moves w.r.t player such

that ut + ε · 1n /∈ P. We need to show that t < r. To this end it suffices to show that the sequence

{Hk}tk=0, defined in Item 2a is a sequence of legal-adversary moves w.r.t player? and that Ht 6= ∅.
Indeed, by definition H0 = HP,ε(~0) = HP,ε. Next,

Hk+1 = HP,ε(uk+1) ⊆ HP,ε(uk) = Hk,

because uk+1 ≥ uk and Hk+1,Hk ⊆ ∆n contains only nonnegative vectors. The last property we

need to show in order to establish that the Hk’s form a sequence of legal-adversary moves is that

Hk+1∩B1(hk, ε) = ∅ for k < t, which follows from Lemma 9 because hk ·uk+1 ≥ minp∈P{hk ·p}−ε/2
(i.e., hk /∈ HP, ε

2
). Finally, it remains to show that Ht 6= ∅. Indeed, by assumption, ut + ε · 1n /∈ P

and therefore there must be a hyperplane separating ut + ε · 1n from P. Hence, the normal to this

hyperplane (normalized so that it is in ∆n) belongs to HP,ε(ut) = Ht and witnesses Ht 6= ∅.

5.2 Solution for the Cutting-With-Margin Game

Theorem 10. For every convex set H and ε > 0, the (H, ε)-cutting game is solvable in O
(

log(n)
ε2

)
rounds.
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Dual Player Strategy =⇒ Primal Player Strategy.

Let P ⊆ [0, 1]n be an upward-closed convex set, let ε > 0, and consider the (P , ε)-primal Game.
Let player?(·) be a strategy for the player in the (HP,ε, ε/4)-cutting game.

1. Set k = 0 and u0 = ~0.

2. While uk + ε · 1n /∈ P (equivalently HP,ε(uk) 6= ∅)

(a) Let Hk := HP,ε(uk).
(b) Run player? to get hk = hk(Hk;H<k, h<k) ∈ HP,ε(uk) and announce hk to the adversary.

(c) Let uk+1 denote the next point which is picked by the adversary. I.e., uk+1 ≥ uk and
hk · uk+1 ≥ minp∈P{hk · p} − ε/2.

(d) Set k = k + 1.

Figure 5: A reduction which uses a black box access to a strategy player∗ in the (HP,ε, ε/4)-cutting
game and produces a strategy player for the (P , ε)-primal game. This reduction is used in the proof of
Lemma 8.

A Strategy for the Player in the Cutting-With-Margin Game.

In each round k, given a universe Hk from the adversary, the player outputs
hk = arg maxh′∈Hk

{H(h′)}.

Figure 6: A strategy for the player in the (H, ε)-cutting game. Recall that H(·) denotes the entropy
function, and that H ⊆ ∆n and therefore H(·) is defined on every h ∈ H.

Proof. Consider the strategy player? for the player in the (H, ε)-cutting game that is depicted in

Figure 6.

Fix a sequence H = H0 ⊇ . . . ⊇ Ht of legal-adversary moves w.r.t player? such that Ht 6= ∅.
Our goal is to prove that t ≤ O(log n/ε2).

For k ≤ t, let hk = arg maxh∈Hk
H(h) denote the point chosen by player?. Note that hk is well

defined since Hk 6= ∅ for k ≤ t. We next prove that for every k < r,

H(hk)−H(hk+1) ≥ ε2

8
. (7)

This implies the desired bound t ≤ O
(

log(n)
ε2

)
as follows: since the entropy function satisfies

0 ≤ H(h) ≤ log(n) for every h ∈ ∆n. In particular, by Eq. (7),

0 ≤ H(ht) ≤ H(h0)− t · ε2

8
≤ log(n)− t · ε2

8
,
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hk

u

hk+1

KL(hk ,u) + KL(hk+1 ,hk) ≤ KL(hk+1 ,u)

Hk

Hk+1

Figure 7: An illustration of the Pythagorean Theorem for Kullback-Leibler divergence as it is used in
the proof of Theorem 10.

and therefore t ≤ 8 log(n)
ε2

, as required.

It remains to prove Equation (7). Since H = H0 ⊇ . . . ⊇ Ht is a sequence of legal-adversary

moves, it holds that Hk+1 ∩B1(hk,
ε
2) = ∅. Since hk+1 ∈ Hk+1, it holds that hk+1 /∈ B1(hk,

ε
2), and

therefore, ‖hk+1 − hk‖1 ≥ ε
2 . Let u ∈ ∆n denote the uniform distribution u = ( 1

n , . . . ,
1
n).

H(hk)−H(hk+1) = KL(hk+1, u)− KL(hk, u)

≥ KL(hk+1, hk) (Lemma 5, see reasoning below)

≥ 1

2
‖hk+1 − hk‖21 (Pinsker’s Inequality)

≥ ε2

8
. (‖hk+1 − hk‖1 ≥ ε

2)

For the second transition, the inequality KL(hk+1, u) − KL(hk, u) ≥ KL(hk+1, hk) follows from the

Pythagorean Theorem for the Kullback-Leibler divergence, Lemma 5, by taking E = Hk, p = u,

q∗ = hk, q = hk+1. For the theorem to apply, we need to use the facts that Hk is convex, that

hk ∈ Hk, and that hk+1 ∈ Hk+1 ⊆ Hk. We also need

hk = arg max
h∈Hk

{H(h)} = arg min
h∈Hk

{KL(h, u)}.

See Figure 7 for an illustration.
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5.3 Hypothesis Selection with poly(log n/ε) Samples

The results obtained so far already suffice for constructing a hypothesis selection algorithm with

sample complexity of poly(log n/ε), as suggested by the proposition below. The algorithm we

obtain in this subsection will be refined in Section 6 to obtain an algorithm with near optimal

sample complexity.

Proposition 11. Let Q be a finite class of distributions and let n = |Q|. Then, Q is 2-learnable

with sample complexity

m(n, ε, δ) = O

(
log2 n+ log n log(1/ε) + log n log(1/δ)

ε4

)
.

Proof. Let P = PQ denote the set of all dominating-distance vectors w.r.t Q. By Lemma 6, it

suffices to give a strategy for the player that wins the (P, ε)-primal game in at most r = O(log n/ε2)

rounds. The existence of such a strategy follows from Theorem 10, which yields a strategy for the

player that wins the (HP,ε, ε/4) in O(log n/ε2) rounds, and by Lemma 8 which transforms this

strategy to a strategy that wins the (P, ε) game in the same number of rounds.

See Fig. 8 for a pseudo-code of the algorithm obtained by this series of reductions.

A 2-Approximation Algorithm for Hypothesis Selection with poly(log n/ε) Samples

Given: A class Q = {q1, . . . , qn}, and a sampling access to a target distribution p and ε, δ > 0.
Output: A distribution p0 such that TV(p0, p) ≤ 2 mini TV(qi, p) + ε with probability at least
1− δ.

1. Let v∗ = v(p) = (TV(p, qi))i ∈ Rn, and set u0 = (0, . . . , 0) ∈ Rn. (Note that v∗ is not known
to the algorithm)

2. For k = 1, . . .

(a) If uk + ε · 1n ∈ P = PQ then find q such that v(q) ≤ uk + ε · 1n and output it.

(b) Else, pick a separator hk = arg maxh∈HP,ε(xk){H(h)} with maximum entropy.

(c) Draw m = O( logn+log logn+log(1/ε)+log(1/δ)
ε2

) samples from p to compute uk+1 such that
uk ≤ uk+1 ≤ v∗, and

hk · uk+1 ≥ min
u∈P
{hk · u} −

ε

2
.

(See Lemma 7 for the computation of uk+1.)

(d) Continue to the next iteration.

Figure 8: The hypothesis selection algorithm obtained by the reductions to the two games.
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6 Obtaining Near Optimal Sample Complexity

In this section we prove Theorem 1, giving a 2-approximation algorithm for hypothesis selection

with sample complexity that is tight up to lower-order terms. To this end, we first study a refined

version of the primal game from Section 4, and then study a refined version of the hypothesis

selection algorithm given in Figure 8 (that was based on our solution to the cutting-with-margin

game).

The Refined (P , ε)-Primal Game

Let P ⊆ [0, 1]n be a nonempty convex set which is upward closed, C0 here is a large constant.

1. Set k = 0, u0 = ~0, d = 1, d′ = d/(C0 log(1 + 1/d)).

2. While d > ε/2

(a) While HP,d−d′(uk) 6= ∅
i. The player picks a normal

hk = argmaxh′∈HP,d−d′ (uk){H(h′)} ∈ HP,d−d′(uk)

to a hyperplane tangent to P which separates uk + (d− d′) · 1n from P .

ii. Run Refined Hypothesis Select algorithma to reply with a point uk+1, and an integer
j ∈ {0, . . . , 2 + dlog(1 + 1/d)e} which satisfy

uk+1 ≥ uk and
∑
i

min(2−j, uk+1,i − uk,i) · hk,i > 2d′ (8)

iii. Set k = k + 1.

(b) Set d = d− d′, d′ = d/(C0 log(1 + 1/d)).

3. Output a distribution r satisfying TV(r, qi) ≤ uk,i + d for all i.

aNote that stage requires Õ(22j) qureies

Figure 9: The Refined Primal Game.

6.1 Refining the Primal Game

Consider the Refined Primal Game algorithm given in Figure 9. This algorithm uses the Refined

Hypothesis Select algorithm that can be found in Figure 10. Let us analyze the Refined Primal

Algorithm before presenting the Refined Hypothesis Select component. The critical property of

the refined hypothesis select part will be that the number of samples needed to get (8) to hold with

a given j is Õ(22j), which can be substantially smaller than 1/ε2 required by the analogous step
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of the original algorithm. At the same time, when j is large (and thus the sample complexity cost

is large), we get a stronger estimate of Ω(2j · d′) on the distance ‖hk − hk+1‖1, which translates

into more progress towards reducing the value of H(hk+1), helping the algorithm terminate faster.

Thus we get a win-win situation, where small j means fewer samples needed, and a large j means

a lot of progress towards completion.

Claim 12. (Refined (P, ε)-Primal Game – running time) Suppose that conditioned on outputting j,

Refined Hypothesis Select terminates after ≤ A · 22j samples in expectation. Then the expected

number of samples needed by the Refined (P, ε)-Primal Game is Õ((A · log n)/ε2).

Proof. Note that the outer loop (Item 2), where d gets reduced runs a total of O(log2(1/ε)) times,

and therefore it suffices to analyze one execution of the loop to show that as long as d = Ω(ε), the

number of samples used in reducing d to d− d′ is bounded by Õ((A · log n)/ε2).

Consider a single iteration of the inner loop, we would like to lower bound the difference

H(hk) − H(hk+1). By the exection of the algorithm HP,d(uk) = ∅, and thus hk+1 /∈ HP,d(uk).
Therefore, by definition of HP,d(uk) it holds:

min
v∈P
{hk+1 · v} ≤ hk+1 · uk + d. (9)

On the other hand, hk+1 ∈ HP,d−d′(uk+1), and thus

min
v∈P
{hk+1 · v} > hk+1 · uk+1 + d− d′. (10)

Putting equations (9) and (10) together, we get:

hk+1 · uk+1 + d− d′ < min
v∈P
{hk+1 · v} ≤ hk+1 · uk + d.

Thus from above,

d′ > hk+1 · (uk+1 − uk) ≥
∑
i

min(2−j , uk+1,i − uk,i) · hk+1,i =∑
i

min(2−j , uk+1,i − uk,i) · hk,i +
∑
i

min(2−j , uk+1,i − uk,i) · (hk+1,i − hk,i).

Applying (8) on the RHS we get:

d′ > 2d′ +
∑
i

min(2−j , uk+1,i − uk,i) · (hk+1,i − hk,i) > 2d′ − 2−j · ‖hk+1 − hk‖1.

Therefore,

‖hk+1 − hk‖1 > d′ · 2j . (11)
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By the same derivation as in the proof of Theorem 10, Equation (11) implies

H(hk)−H(hk+1) = KL(hk+1, u)− KL(hk, u)

≥ KL(hk+1, hk) (Lemma 5)

≥ 1

2
‖hk+1 − hk‖21 (Pinsker’s Inequality)

>
d′2

2
· 22j (Equation (11))

>
ε2/ log2(1/ε)

4
· 22j = Ω̃(ε2 · 22j).

At the beginning of execution with a given d, H(hk) ≤ log n, and at the end it is at least 0.

Each step causing a reduction by Ω̃(ε2 · 22j) takes ≤ A · 22j queries. Thus the total number of

queries for a given value of d is bounded by Õ((A log n)/ε2.

Claim 13. (Refined (P, ε)-Primal Game – correctness) Let i ∈ [n] be any fixed index, which may

depend on p and the q’s but not on the execution of the algorithm. Suppose that at every step k of

Refined Hypothesis Select, the probability

Pr[uk+1,i > TV(p, qi)] < õ(δε2/ log n).

Then the probability that TV(r, qi) > TV(p, qi) + ε/2 is at most δ.

Proof. At each step, H(hk) decreases by at least Ω̃(ε2), and thus the total number of calls to the

Refined Hypothesis Select algorithm is Õ((log n)/ε2). Therefore, by union bound, except with

probability < δ, at each step k, uk,i ≤ TV(p, qi). Therefore, the distribution r the algorithm

outputs satisfies

TV(r, qi) ≤ ukend,i + d ≤ TV(p, qi) + d < TV(p, qi) + ε/2.

6.2 Refining the Hypothesis Selection Algorithm

We next turn our attention to the Refined Hypothesis Select algorithm in Figure 10.

Note that the number of samples used by the Refined Hypothesis Select algorithm is spelled

out explicitly. Therefore, our only task is to show that its success guarantees hold. Properties (ii)

and (iii) holds due to stopping conditions of the algorithm. Next claim proves that Property (iv)

holds.

Claim 14. Fix an index i. Assuming Refined Hypothesis Select algorithm does not output ‘Fail’,

the probability of the event

Pr[(vi > ui) ∧ (Ep[Fi]− Eqi [Fi] ≤ vi + 2−j−2)] < γ. (15)

Proof. Note that vi = max(ui, wji − 2−j−1). Therefore, vi > ui iff wji > ui + 2−j−1.

Recall that wji =
∑mj

k=1 Fi(xk) − Eqi [Fi]. Therefore event {vi > ui} dominated by the event
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The Refined Hypothesis Select Algorithm

Given d, d′ = d/(C0 log(1 + 1/d)), error parameter γ > 0, a point u such that HPQ,d(u) = ∅, and a
distribution h ∈ HPQ,d−d′(u) the algorithm will output j ∈ {0, . . . , 2 + dlog(1 + 1/d)e}, a point v
and n functions Fi : X → [0, 1], i = 1, . . . , n such that the following properties hold:

(i) The algorithm outputs ‘success’ with probability > 1 − γ, where the failure event only
depends on the randomness of the samples the algorithm receives;

(ii) v ≥ u;

(iii)
∑

i min(2−j, vi − ui) · hi > 2d′

(iv) For any i ∈ [n] which is fixed in advance (unknown to the algorithm) if vi > ui, then except
with probability γ, Ep[Fi]− Eqi [Fi] > vi + 2−j−2.

Algorithm:

1. Let {Fi}ni=1 be as in the proof of Lemma 7: Fi : X → [0, 1] such that∑
i∈[n]

hi · (Ep[Fi]− Eqi [Fi]) ≥ min
v∈PQ
{h · v}. (12)

2. For j ∈ {0, . . . , 2 + dlog(1 + 1/d)e}:

(a) Use mj := C1 log(log(1/d)/γ) · 22j samples {xk}
mj

k=1 from P to generate empirical
estimates

wji :=
1

mj

mj∑
k=1

Fi(xk)− Eqi [Fi]; (13)

(b) Set
vji := max(ui, wji − 2−j−1); (14)

(c) If
∑

i min(2−j, vji − ui) · hi > 2d′:

i. set v := vj

ii. terminate and output (j, v, {Fi})

3. If the loop hasn’t terminated for any j, output ‘Fail’ and restart the algorithm.

Figure 10: The Refined Hypothesis Select Algorithm.
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(
1
mj

∑mj

k=1 Fi(xk)− Eqi [Fi] = vi + 2−j−1
)

. Therefore, the event from the claim is equal to the

event

(Ep[Fi]− Eqi [Fi] ≤ vi + 2−j−2) ∧

(
1

mj

mj∑
k=1

Fi(xk)− Eqi [Fi] = vi + 2−j−1

)
,

which is dominated by the event∣∣∣∣∣Ep[Fi]− 1

mj

mj∑
k=1

Fi(xk)

∣∣∣∣∣ ≥ 2−j−2.

By Chernoff bound, this probability is bounded by c2γ/(log d) for a small constant c2 (which

depends on C1). By taking union bound on the different possible j’s in the algorithm, we obtain

an upper bound of γ on the failure probability.

Next – more importantly – we need to establish that the probability that the algorithm outputs

‘Fail’ is bounded by γ (First property of the algorithm).

Claim 15. The probability that the Refined Hypothesis Select algorithm outputs ‘Fail’ is < γ, where

the randomness comes from the samples from P that it receives.

Proof. Our starting point is the fact that h ∈ HPQ,d−d′(u), and therefore minv∈PQ{h · v} >

h · u+ d− d′. Hence ∑
i∈[n]

hi · (Ep[Fi]− Eqi [Fi]− ui) > d− d′.

Partition the set of coordinates [n] as follows. Let

Sj := {i ∈ [n] : Ep[Fi]− Eqi [Fi]− ui ∈ (2−j , 2−j+1]} (16)

for j ∈ {0, . . . , 2 + dlog(1 + 1/d)e}. Denote jmax := 2 + dlog(1 + 1/d)e}. Note that the

sets Sj are mutually disjoint. Some coordinates may belong to none of the sets, but only if

Ep[Fi]− Eqi [Fi]− ui < 2−jmax . We have

jmax∑
j=0

∑
i∈Sj

hi · (Ep[Fi]− Eqi [Fi]− ui) >

∑
i∈[n]

hi · (Ep[Fi]− Eqi [Fi]− ui − 2−jmax) > d− d′ − 2−jmax >
d

2
.

Therefore, there exists some j such that∑
i∈Sj

hi · (Ep[Fi]− Eqi [Fi]− ui) >
d

2jmax

Therefore, for any constant C2 > 0, for a sufficiently large C0 the is a j such that∑
i∈Sj

hi · (Ep[Fi]− Eqi [Fi]− ui) > C2 · d′. (17)
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Note that (17) and (16) implies ∑
i∈Sj

hi > C2 · d′ · 2j/2. (18)

We claim that for a sufficiently large constant C2, the algorithm will terminate at step j with

probability > 1 − γ (assuming it hasn’t terminated earlier). Thus, the failure probability of the

algorithm is bounded by γ.

For any given i ∈ Sj , we have by the Chernoff bound

Pr[wji > (Ep[Fi]− Eqi [Fi]− 2−j−2)] > 1− γ/2,

and thus

Pr[wji > ui + 3 · 2−j−2)] > 1− γ/2.

Therefore

E

∑
i∈Sj

hi · 1wji≤ui+3·2−j−2

 < γ

2
·
∑
i∈Sj

hi.

Therefore, by Markov inequality, with probability at least 1− γ,∑
i∈Sj

hi · 1wji≤ui+3·2−j−2 <
1

2
·
∑
i∈Sj

hi.

Hence, with probability at least 1− γ,∑
i∈Sj

hi · 1wji>ui+3·2−j−2 >
1

2
·
∑
i∈Sj

hi. (19)

We claim that assuming (19) holds, the algorithm will terminate at step j. We have∑
i

min(2−j , vi − ui) · hi ≥
∑

i∈Sj : wji>ui+3·2−j−2

min(2−j , vi − ui) · hi =

∑
i∈Sj : wji>ui+3·2−j−2

min(2−j , wji − 2−j−1) · hi ≥

∑
i∈Sj : wji>ui+3·2−j−2

2−j−2 · hi ≥
2−j−2

2
·
∑
i∈Sj

hi ≥

2−j−2

2
· C2 · d′ · 2j/2 =

C2 · d′

16
> 2d′,

when C2 > 32 – guaranteeing that the algorithm terminates.

Claim 15 implies:

Claim 16. Assuming γ < d3, the expected number of queries contributed by ‘Fail’s is an additive

O(1).

Proof. The ‘Fail’ state is reached with probability < γ < d3, while the number of queries of one

run of the main loop is bounded by Õ(1/d2).
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Hypothesis Selection in the Tiny Error Regime

1. Repeat the following until Success is reached:

(a) Run the refined Primal Game with δ′ = ε2/n3 to obtain a distribution r;

(b) Use Õ(log(1/δ2)/ε2) fresh samples to verify that except with probability < δ/2, for all
calls of Hypothesis Selection Algorithm, whenever vji > ui, we have Ep[Fi]− Eqi [Fi] >
vji.

i. if verification passes, output Success and the distribution r;

ii. otherwise, restart the calculation.

Figure 11: The Tiny Error Case

6.3 Proof of Theorem 1

We are new ready to prove our main result, Theorem 1. We break the proof into two cases: the

case when δ is not too small: δ ≥ ε2/n3, and the case when δ < ε2/n3 is very small.

The case δ ≥ ε2/n3. In this case, we simply run the Refined Primal Game algorithm from

Figure 9, where we set the error parameter γ in the Refined Hypothesis Select algorithm to

õ(δε2/ log n).

Correctness. By Claim 13 applied to i∗ := argmini TV(p, qi), we have, with probability > 1−δ,
the output r satisfies

TV(r, qi∗) ≤ TV(p, qi∗) + ε/2,

therefore,

TV(r, p) ≤ TV(r, qi∗) + TV(p, qi∗) < 2 · TV(p, qi∗) + ε = 2 ·min
i

TV(p, qi) + ε. (20)

Sample complexity. The conditions of Claim 12 are met with A = Õ(log(1/δ)). Therefore,

by Claim 12, the total sample complexity in this case is bounded by

Õ

(
log n · log(1/δ)

ε2

)
. (21)

The case δ < ε2/n3. Consider the algorithm on Figure 11.

Correctness. The number of calls to Hypothesis Selection Algorithm is significantly smaller

than o(1/δ). Therefore, by union bound, the probability of Success being returned despite

Ep[Fi]−Eqi [Fi] < vji holding at some point of the execution is o(δ). Assuming Ep[Fi]−Eqi [Fi] > vji
at all steps of the execution, the algorithm outputs a correct solution.
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Sample complexity. In this case, we first run the previous case with δ′ = ε2/n3. As seen

above, this step only requires

Õ

(
log2 n

ε2

)
samples. Moreover, as noted earlier, by union bound, with probability > 1 − 1/n, the event (15)

from Claim 14 never happens throughout the execution of the algorithm. When (15) doesn’t

happen, we have

Ep[Fi]− Eqi [Fi] > vji + 2−j−2 > vji + Ω̃(ε),

and verification will pass with probability > 1 − δ′. Therefore, the expected number of samples

that will be needed until Success is reached is bounded by a

(1 + o(1)) · (number of samples used by one iteration) = Õ

(
log2 n+ log(1/δ)

ε2

)
.
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Learning Theory (COLT), volume 35, pages 287–316, 2014.

[GKK+20] Sivakanth Gopi, Gautam Kamath, Janardhan Kulkarni, Aleksandar Nikolov,

Zhiwei Steven Wu, and Huanyu Zhang. Locally private hypothesis selection. In

Conference on Learning Theory (COLT), volume 125 of Proceedings of Machine

Learning Research, pages 1785–1816, 2020.
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