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Abstract

Hypothesis Selection is a fundamental distribution learning problem where given a comparator-
class @ = {q1, ..., qn} of distributions, and a sampling access to an unknown target distribution p,
the goal is to output a distribution ¢ such that TV(p, ¢) is close to opt, where opt = min;{TV(p, ¢;)}
and TV(-, -) denotes the total-variation distance. Despite the fact that this problem has been studied
since the 19th century, its complexity in terms of basic resources, such as number of samples and
approximation guarantees, remains unsettled (this is discussed, e.g., in the charming book by
Devroye and Lugosi ‘00). This is in stark contrast with other (younger) learning settings, such as
PAC learning, for which these complexities are well understood.

We derive an optimal 2-approzimation learning strategy for the Hypothesis Selection problem,
outputting ¢ such that TV(p,q) < 2 - opt + ¢, with a (nearly) optimal sample complexity
of O(log n/e?). This is the first algorithm that simultaneously achieves the best approximation
factor and sample complexity: previously, Bousquet, Kane, and Moran (COLT ‘19) gave a learner
achieving the optimal 2-approximation, but with an exponentially worse sample complexity of
O(y/n/*%), and Yatracos (Annals of Statistics ‘85) gave a learner with optimal sample complexity
of O(logn/e?) but with a sub-optimal approximation factor of 3.

We mention that many works in the Density Estimation (a.k.a., Distribution Learning) literature
use Hypothesis Selection as a black box subroutine. Our result therefore implies an improvement on
the approximation factors obtained by these works, while keeping their sample complexity intact.
For example, our result improves the approximation factor of the algorithm of Ashtiani, Ben-David,
Harvey, Liaw, and Mehrabian (JACM ’20) for agnostic learning of mixtures of gaussians from 9
to 6, while maintaining its nearly-tight sample complexity.
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1 Introduction

Hypothesis selection is a fundamental task in statistics, where a learner is getting a sample access
to an wunknown distribution p on some, possibly infinite, domain X, and wishes to output a
distribution ¢ that is “close” to p. The problem was studied extensively over the last century
and found many applications, most notably, in machine learning.

In this paper we study the hypothesis selection problem in the agnostic setting, where we assume
a fixed finite! class Q of reference distributions which is known to the learner, and which may or
may not contain p”. The goal of the learner is to output a distribution ¢ that is at least as close
to p as any of the distributions in Q in total variation distance (denoted here TV(-,-)).

The statistical performance of a learner is measured using two parameters, denoted o and
m = m(n,e,0), where « is the approzimation factor of the algorithm and m is its sample complezity.
Specifically, we say that a class of distributions Q@ = {q1,...,qn} is «a-learnable with sample
complexity m(n,e,0) if there is a (possibly randomized) learner such that for every £, > 0 and
every target distribution p, upon receiving m(n, e, §) random samples from p, the learner outputs
a distribution ¢ satisfying TV(p, ¢) < a- minge, {TV(p, ¢:)} + ¢ with probability at least 1 —4§. For
the discussion below, we think of § as a small constant.

How good can a learner be? A-priori, it is not even clear that every class Q is learnable
with finite sample complexity. Consider the following natural algorithm for hypothesis selection:
estimate TV(g;,p) for every ¢; € @ and output the ¢; that minimizes this quantity. While
this algorithm clearly works (and even achieves an approximation factor of a = 1), estimating
TV(q;,p) for any ¢; requires Q(|X|) samples from p (see, e.g., [JHW18]). Thus, if the domain X
is infinite (say X = R), the sample complexity of this algorithm is not even finite. However,
perhaps surprisingly, despite the impossibility of estimating the distance of p from even one of
the distributions ¢;, one can still find an approximate minimizer of the distances (even when X is
infinite!).

What are the smallest a and m for which any given class of distributions Q of size n
is a-learnable with sample complexity m? A seminal work by Yatracos [Yat85] (also see
[DL96, DLI7, DLO1]) shows that any reference class @ of size n is 3-learnable with sample
complexity O(logn/e?). For the case of n = 2, Mahalanabis and Stefankovic [MS08] improve the
approximation factor, constructing a 2-learner. This was extended by the recent work of Bousquet,
Kane, and Moran [BKM19] to give a 2-approximation for any finite n, using a very different scheme.
A matching lower bound of 2 on the approximation factor follows from the work of [CDSS14].

Although the work of [BKM19] obtains the optimal approximation factor for the agnostic
hypothesis selection problem, the sample complexity of their scheme is O(y/n/e%%), which is
exponential in the sample complexity of Yatracos’s algorithm®. Deriving optimal learners with
efficient sample complexity is left as the main open problem in their work. In this paper, we give
a novel 2-learner with (near) optimal sample complexity, getting the best of both worlds.

1See discussion of the infinite case at the end of this section.

2The setting where p is assumed to be in Q is called the realizable setting.

3We note that [BKM19] also provide poly(log|X|,logn,e~1) sample complexity bounds, which can be better than their
general O(y/n/e2?) bound for finite domains X



Density Estimation. Hypothesis selection, and, in particular, Yatracos’s algorithm, found
applications beyond learning finite classes. Specifically, it is used as a basic subroutine in density
estimation tasks where the goal is to learn an infinite class of distributions, in the realizable or
agnostic setting’. A popular method, where the reference class Q may be infinite, is the cover
method (a.k.a. the skeleton method). In this method, one “covers” the class Q by a finite a-cover;
that is, a subclass Q" C Q of distributions such that for every ¢ € Q there exists ¢ € Q' with
TV(q,q¢') < a. Often times it is the case that even if Q is infinite, a finite e-net Q' exists, and
Yatracos’s agnostic learning algorithm can be applied on Q' (see [DLO1, Dial6] and references
within for many such examples).

While the minimal possible size of such a cover Q' is often exponential in the natural parameters
of the class Q°, because Yatracos’s algorithm has poly-logarithmic sample complexity, the obtained
density estimation algorithm has a polynomial sample complexity. Since many density estimation
results follow the cover method, or other related methods® that use Yatracos’s algorithm as a black
box, our algorithm can imply an improvement for all of these results. (We mention a couple of
such examples below, in Section 1.4).

We note that in the realizable setting for density estimation, where the distribution p we wish
to learn is in the infinite class Q of distributions we are considering (that is, opt = 0), one can
typically get a better approximation factor by taking a finer cover (smaller o). By taking an a-
cover of Q, the above method results in a distribution ¢ with TV(p,q) < a + 3opt = a. However,
in the agnostic setting, even if we take a very small a, the resulting TV(p, ¢) may not be small as
it is dominated by 3opt. By using the result of this paper in lieu of Yatracos’s learning algorithm,
this distance can be made 2opt.

1.1 Our Results

We design a 2-learner for the agnostic hypothesis selection problem with sample complexity whose
dependence on both n and ¢ is (near) optimal.

Theorem 1. Let Q be a finite class of distributions and let n = |Q|. Then, Q is 2-learnable with
sample complezity” m(n,e,8) = O ((logn - min(log n,log(1/8)) + log(1/6))/€?). In particular, for

constant § > 0,
~ (1
m(n,e,d) =0 ( ogn) .

e2

Our learner in Theorem 1 is deterministic, and, as in the case for [BKM19], it only makes
statistical queries. That is, our learner can be implemented in the restricted model where instead
of getting random samples from p, the learner has access to an oracle that on a query (f,e¢)

4In fact, learning infinite classes was a part of Yatracos’s original motivation.

®One easy example of an exponential cover is when Q is the set of all convex combinations of k fixed distributions
Plo-- s Phs bty Q= {3 ey BiPi t Dy Bi = 1,8; = 0}. Theset Q= {3,y 7 pi: 1 € NU{0}, £ = M%7, Diew T =
1} is a cover of Q of exponential size (in k). Sub-exponential covers are not possible in this case. See Chapter 7.4 in
[DLO1] for this example, and the rest of Chapter 7 for more such examples.

6 Another such method is the recent sample compression method by [ABDH™20], used to obtain improved density
algorithms for the mixtures of Gaussians problem.

"We use the standard notation that f(n) = O(h(ni,...,n;)) if there exists k& € N such that f(ny,...,n;) =
O(h(ni,...,n¢)log"(h(n1,...,ny))).



answers by a value in E,,[f(x)] & ¢ (or, equivalently, on a query (F,¢), where F' is a set, answers
by p(F) + ¢). Furthermore, our algorithm consists of only O(logn/e?) such rounds of queries,
whereas the algorithm [BKM19] consists of O(n/e) such rounds.

1.2 QOwur Technique
1.2.1 The Cutting-With-Margin Game

To prove Theorem 1, we reduce the hypothesis selection problem to solving a geometric game we
call the “cutting-with-margin” game. This game is between a player and an adversary and it is
played over a convex body H C A, known to both parties, where A,, denotes the simplex of n-
dimensional probability vectors®. In every round of the game, the player selects a point h € H and
adversary updates the set H to a new convex set by “cutting out” a part of H that contains the ¢;
ball of radius € around h. The game ends when the set H is empty.

We first show that any strategy for the player which ensures that the game ends in at
most r rounds implies a 2-learner for the hypothesis selection problem with sample complexity
O(rlogn/e?) (this is because the implementation of each round requires n statistical queries that
should be approximated to within O(¢)). We then give an information-theoretic argument showing
that the game is solvable in 7 = O (log(n) / 52) rounds, implying a hypothesis selection algorithm
with O (logz(n)/s4) samples. Our player’s strategy views each point h € H C A,, as a distribution
and takes the point h € ‘H that mazimizes the entropy function.

Even though the cutting-with-margin game serves as a technical tool in this work, this simple
game may also be of independent interest, and it is natural to study it for different norms (other
than the ¢; norm considered in this paper). In a sense, this game is a dual perspective on the
geometric approach taken by [BKMI19] (see Section 2). Nevertheless, it is the move to this dual
perspective that allowed us to use the above maximum-entropy-based strategy. While entropy-
based strategies are widely used in online optimization (see Section 1.4), we find the fact that
such a strategy is helpful for making progress in this abstract statistical problem of hypothesis
selection, to be curious. We hope that this connection will inspire more collaboration between the
optimization and the statistical learning communities.

1.2.2 Achieving Optimal Sample Complexity

Our solution for the cutting-with-margin game yields a hypothesis selection algorithm with sample
complexity polynomial in logn/e, but still sub-optimal. While reducing the sample complexity of
this algorithm and achieving a near optimal complexity of O(logn /%) requires quite a bit of effort
(in fact, it is the main technical contribution of this paper), we believe that it makes our algorithm
more applicable (in the sense that it can replace Yatracos’s algorithm, without compromising the
sample complexity).

To this end, at a very high level, we consider a “dynamic” cutting-with-margin game that
allows the cutting of ¢; balls of different diameters, and we give a “win-win”’-style strategy, where
in rounds where we use more samples the diameter of the ball we cut is larger (see Section 2.4).
Thus, the player either makes a lot of progress towards the goal or uses few samples.

SLe, Ay :={heR": 3, hi =1, (Vi) :h; >0}



A detailed overview of our techniques can be found in Section 2.

Adaptive data analysis. As explained in Section 2, the (“primal”) geometric approach of
[BKM19] results in a hypothesis selection algorithm that makes O(n?/e) statistical queries, where
each should be approximated to within O(e). Had all these queries been submitted together, the
standard combination of Chernoff and union bound would imply a logarithmic sample complexity.
However, their algorithm submits these queries adaptively, in O(n/e) rounds, where in each round n
queries are submitted. Thus, naively, each of the rounds will require O(log n/e?) fresh samples for
the total sample complexity of O(n/e3). Their improved stated sample complexity of O(y/n/e25)
is made possible by importing clever tools from Adaptive Data Analysis.

Given the above, a natural question is whether similar “off-the-shelf” Adaptive Data Analysis
tools can be used to convert the hypothesis selection algorithm obtained in Section 1.2.1 from our
solution of the cutting-with-margin game, to a sample optimal one. (Recall that this protocol
consists of O(logn/e?) rounds and makes n statistical queries in each round). Unfortunately, we
were unable to apply these tools to get a significant quantitative improvements, as these tools are
mostly geared toward cases where there are many rounds of adaptivity, while in our algorithm, the
number of rounds O(logn/e?) is much smaller than the number of queries n made in every round
(see, e.g., [DFHT15]). Instead, as described above, we use a more direct solution and tune the
number of samples we use for each query adaptively, by monitoring (and verifying) the progress of
the algorithm.

It will be interesting to explore whether our technique can be extended to more general protocols
in adaptive data analysis.

1.3 Additional Discussion of The Model

In this work, we give an improper algorithm for the finite agnostic hypothesis selection problem
under the total variation distance. We next explain the modeling choices we have made:

The finite agnostic setting. We consider the finite agnostic setting; clearly, an algorithm in
this setting applies in the realizable setting as well. In addition, as discussed above, hypothesis
selection in the finite agnostic setting is often used as a building block in the infinite (agnostic and
realizable) settings (i.e., in density estimation).

Total variation distance. The total variation distance is used by numerous prior works in
the field, and is a natural choice for our study for several reasons: firstly, solving the hypothesis
selection problem for the total variation distance (which corresponds to the ¢; norm) implies solving
the corresponding problem for any ¢, norm, for p € [1,00], as ||z — y|lp < |l — y[[1. Another
reason is that for many other metrics, the sample complexity of a hypothesis selection problem
can depend on structural properties of the reference class Q, which is undesirable for formulating
problem-independent theorems like Theorem 1. For a more elaborate discussion of the advantages
in working with total variation, see Chapter 6.5 in [DL01], and Section 3.1 in [ABDH"20].

We believe that our technique can be extended to derive hypothesis selection algorithms for



other distance measures that satisfy (at least some approximate) version of the triangle inequality”

(e.g., Hellinger distance and other metric spaces).

Proper wvs. improper. A basic classification of machine learning problems distinguishes
between proper and improper learning. In the proper case the algorithm always outputs a
distribution ¢ € ©Q, whereas in the improper case it may output an arbitrary distribution.
Improperness has been shown to be beneficial in many settings (see, e.g., [SF12, DS14]), including
the agnostic hypothesis selection setting: while Yatracos’s 3-approximation algorithm is proper,
[BKM19] prove that the factor 3 cannot be improved by any proper algorithm (with any

10 For this reason, their and our 2-approximation algorithms are inherently

sample complexity)
improper. For many applications (e.g., applications to density estimation discussed above),

improper hypothesis selection algorithms suffice.

Computational complexity. Although our approach is algorithmic, our focus is not on
computational efficiency. While the sample complexity of our algorithm is only logarithmic in
the number of distributions n (and is independent of the domain size |X|), in the general case,
its running time scales polynomially with both n and |X|, as is the case for other sample-efficient
hypothesis selection algorithms. Clearly, the dependence on n cannot be sub-linear (each g; needs
to be accessed, unless some structure on Q is assumed). As for the dependence on |X|, our
algorithm assumes oracle access to operations on X, such as checking membership in sets of the
form F = {z € X : q1(x) > g2(x)}'!, and several other (somewhat involved) operations'? that can
only be implemented efficiently for restricted classes Q. We mention that the situation is similar for
many density estimation problems: the existence of polynomial time algorithms is unknown even
for specific natural classes, such as mixtures of gaussians (see [ABDH"20] for further discussion).

While efficient algorithms (e.g., with poly log(|X'|) running-time) for all classes Q are unlikely in
the simple and abstract learning setting considered by this work, this setting is particularly suited
to capture basic information-theoretic resources, such as sample-complexity and approximation
guarantees, which are not affected by the computational model. As discussed above, the complexity
of these resources is still poorly understood, even for very basic problems.

1.4 Additional Related Work

In this work we give a novel approximation algorithm for hypothesis selection of any (finite)
class Q, following the classical work of [Yat85, DL96, DL97, DL0O1] and the recent work of
[BKM19], discussed above. Over the last decade or so, hypothesis selection received quite a bit
of attention by different theoretical communities and many aspects of this problem were studied,
including computational efficiency, robustness, weaker access to hypotheses, privacy and more (see,

9See Section 2.1 for our usage of the triangle inequality.

10We mention that for the case n = 2, a proper 2-approximation algorithm for the agnostic hypothesis selection problem
was given by [MS08].

I These are the, so called, “Yatracos sets” and Yatracos’s algorithm also assumes membership oracle to them.

12In the language of the overview presented in Section 2, these operations include finding a distribution ¢ such that
v(q) < v, and solving the optimization problem corresponding to finding the discriminating sets F;.



e.g., [MS08, DDS15, DK14, SOAJ14, AJOS14, CDSS14, DKK*19, BKSW21, AFJ*18, BKSW21,
GKK™20]).

Hypothesis selection can also be viewed as a special case of density estimation (also known
as distribution learning), where one wishes to learn a (typically infinite) class of densities from
samples. In fact, as mentioned above, many density estimation algorithms use hypothesis
selection algorithms as fundamental subroutines. Density estimation is a very basic unsupervised
learning problem studied since the late nineteenth century, starting with the pioneering work of
Pearson [Pea95]. Since, it was systematically studied for many natural classes, such as mixtures
of gaussians (e.g., [KMV12, DKS17, DKS18, KSS18, ABM18, ABDH"20]), histograms (e.g.,
[Pead5, LN96, DL04, CDSS14, DLS18]), and more. For a fairly recent survey see [Dial6].

Our result yields improved approximation guarantees in many of these works. For example,
plugging it in [ABDH"20], instead of Yatracos’s algorithm which is used as a black box, improves
the approximation factor from 3 to 2 for learning gaussians, and from 9 to 6 for learning mixtures
of gaussians, while keeping the sample complexity near-optimal.

Optimization and online learning. A key component in our derivation is the cutting-
with-margin game. This game is reminiscent of dynamical processes which are studied in
optimization and online learning. In particular, our solution to this game is based on a
greedy approach of maximizing the entropy and a potential-based analysis which brings to mind
standard KL-divergence-based analyses of mirror-decent and multiplicative-weights update (see,
e.g., [AWO1, AHK12, Bubl5]). Moreover, the cutting-with-margin game naturally generalizes to
arbitrary norms || - || by replacing the ¢; norm with || - || and the simplex A,, by the unit ball with
respect to ||-||. One can extend our upper bound to arbitrary norms, by replacing the KL-divergence
with an appropriate Bregman divergence'?, as is the case for some optimization problems.

These technical interrelations suggest the possibility of a deeper connection between the cutting-
with-margin game and online optimization. Ideally, one could hope to find a formal reduction by
phrasing our game as a convex regret minimization problem. We remark, however, that, unlike
regret minimization problems, our game is not defined via a local regret function, but rather defined
using a very global cost function. We leave this further exploration of the relations between our

game to the regret minimization framework for future work.

The ellipsoid method. Another known algorithm that is of a particular syntactic similarity
to our cutting-with-margin game is the well-known ellipsoid method for solving linear programs: in
both settings a player maintains a convex set in R™ (in our game it is, without loss of generality,
a polytope, and when running the ellipsoid method it is an ellipsoid), and in each step it selects
a point within that set. If the selected point is not a “solution”, the player receives a separating
hyperplane from an adversary or a hyperplane oracle, which separates the selected point from the
target set of solutions. Then, the player moves to a “smaller” convex body that lies, in its entirety,
on one side of the hyperplane.

13Using the Bregman divergence, we have some preliminary results regarding the round complexity of our cutting-with-
margin game in other norms. These include a nearly tight bounds for the ¢, norm, when p € (1,2] U {oo}: if p € (1,2)
then the player can solve the corresponding game in r = O,(1 /%) rounds, and if p = 0o a then the round complexity of
the game is ©(nlog(1/e)).



We note that a crucial difference between the two is that when running the ellipsoid method,
the ellipsoids are getting rapidly smaller in terms of volume (and, for example, the next ellipsoids
need not be contained in the former one), and it is this decrease in volume that allows for a
fast convergence. In contrast, as will be discussed in Section 2.3, shrinking the volume of our
convex body between rounds of the cutting-with-margin game does not suffice for convergence
(and therefore, “centroid-based” methods do not apply).

2 Proof Overview

In this section we overview the proofs and highlight some of the more technical arguments. We
defer the full proof to the Appendix.

Let Q@ = {q1,...,qn} be a (known) finite reference class of distributions and let p denote the
target distribution to which we have sample access. Denote i* = arg min;{TV(p, ¢;)}. Our goal is
to use as few samples as possible from p in order to find ¢ such that TV(p,q) < 2-TV(p,q) + €.

2.1 A Geometric Approach to Hypothesis Selection

Our starting point is the 2-approximation algorithm of [BKM19]. In this subsection we describe
our interpretation of their technique (some of the claims we make here are implicit in their paper).

The basic observation of [BKM19] is that it suffices to find a distribution ¢ which is (almost)
at least as close to each of the g;’s as p,

(Vi) : TV(q, @) < TV(p, @) +e. (1)

Finding such a ¢ suffices, as by the triangle inequality, TV(¢,p) < TV(q,q) + TV(qi,p) <
2TV(¢;,p) + € for every i, and, in particular, for ¢*.

This suggests the following definitions: for a distribution g, let v(g) € [0, 1]™ denote the vector of
all distances v(q) = (TV(q,¢))?_1; a vector v € [0,1]" is feasible if v > v(q) for some distribution ¢
(when we write v > w for u,w € [0,1]" we mean (Vi) : u; > w;). With this notation, our goal is
to find v such that

(i) v <w(p)+e€-1,, where 1, is the all-one vector, and
(ii) v is feasible.

Once such a vector v is obtained, one can find a distribution ¢ satisfying v(¢q) < v, and consequently
a 2-approximation for the target distribution p.

Let P C [0,1]™ denote the set of all feasible vectors v and note that it is convex and upward-
closed. The approach of [BKM19] for finding a desired v proceeds in rounds, where in round k we
find a vector uy that is closer to the feasible set, while maintaining the invariant that ug < v(p):

1. Let ug = 0 € [0,1]" be the all-zero vector. Note that ug < v(p), so ug satisfies the above
Item (i), but not Item (ii) (except in trivial cases).

2. For k=0,1,...

(a) If up + € - 1, is feasible (that is, if doo(ug, P) < €, where doo(+,-) denotes £, distance),
then output a ¢ such that v(q) <wup +e-1, (Sv(p)+e-1,).

8



(b) Else, use samples from p to derive ug11 such that ux < ugiq < v(p), and ug4q is “closer”

(in some measure, see below) to P.

Selecting the new point wu;,;. The crux of this approach is the update step in which ugq
is computed given uy. Since doo(ug, P) > €, there exists a ug11 such that up < ugy; < v(p) and
di(ugy1,ux) > 5 (for instance, since there exists a coordinate i € [n] such that uy + 5 - e; < v(p),
where e; is the 4" unit vector). [BKM19] show how to find such a u 1 with few queries (discussed
next), and they use this uj,1 as their next point. However, since ||1,]|1 = n, their strategy may
require (%) rounds.

2.1.1 TImplementing the Strategy

Violated tests. We next explain how [BKM19] find the coordinate i of uy that they wish to
update. To this end, observe that whenever ui+¢-1,, is not feasible there is a hyperplane separating
the point uy + ¢ - 1,, from the set P of feasible vectors, witnessing the fact that d(u, P) > . We
call a normal h € A, to such a hyperplane a “violated test” (here A, denotes the simplex of
all probability vectors in R™). For u € [0,1]" and d > 0, we denote the set of all violated tests
witnessing the fact that u + d - 1,, is not feasible by

Ha(u) = {hEAn: h-u+d<minh-v}.
vEP
From a test h to an updated point wu;,.;. We next informally state a central lemma
proved by [BKM19], showing how to convert any violated test h to a new point uxy; (for a precise
statement, see Lemma 12 in [BKM19] or Lemma 7 in this paper).

Lemma 2. Using n statistical queries (queries of the form p(F) for some set F), any h € Hc(uy)
can be converted to a point upy1 satisfying:

1. up < ugr < v(p).

2. ugy1 passes the test induced by h: h ¢ H%(uk+1). This also implies that h - (ugp41 — ug) > §
(as h € H(ug) implies h - ug + & < mingep h - v and h ¢ H%(ukH) implies h - ug1 + 5 >
mingep h - v).

Observe that the w1 constructed by this lemma (for any h) satisfies di (ug41,ux) > 5 (due to
Item 2, recall that h € A,,), and therefore it can be used to implement the strategy of [BKMI19].

Proving the lemma. While the proof of Lemma 2 is pretty short, it is tricky. For completeness,
we will next give some intuition for it by showing how to construct ugy; for a specific (easy to
handle) h.

Assume that uy + € - 1, is not feasible and that h = (1,3,0,...,0) € H(uy). Denote
F=F(q,q)={x:q(x) > ¢(x)}. (Observe that this is the so-called Yatracos set which is used
in Yatracos’s 3-approximation algorithm and satisfies TV(q1,q2) = ¢1(F) — q2(F')). Use samples

€

from p to get an estimate p(F') of p(F) up to an § additive term. Set z; = [p(F) — ¢;(F)| — § for
i=1,2 and z; = 0 for i > 3. Obtain ug4q from wuy by setting (ug41); = max{(ug)i, zi}.



The resulting ug.y1 satisfies Item 1, as since |p(F) — ¢;(F)| < TV(p,¢;) = (v(p)); it follows that
zi < (v(p));. It also satisfies Item 2, as

heuppr + 5 = 5((uhp)1 + (wgs1)2) + 5 > 5(21 +22) + 5 (2)
> 3(IB(F) = a1 (F)] + [B(F) = g2(F)]) 2 3lar(F) = e2(F)| = 5TV(41,¢2) = minh - v,

where the last equality is because for every v = v(q) € P it holds that h-v = %(vl + v9) =
%(TV(Q, Q1) +TV(g,q2)) > %TV(ql, g2) and for v = v(q1) € P it holds that h-v = %TV(ql, q2)-

Query/sample complexity. For a general h, the proof of the lemma is more involved and
crucially relays on the Minmax theorem. The point uy; is computed as (ug41); = max{(ux)q, 2i},
where for every i € [n], 2; is of the form z; = |p(F;) — ¢;(F;)| — §, for some set F; and where p(F;)
is an approximation of p(F;) to within an additive error of ¢ - € for some constant ¢ < 1.

Computing ugy1 requires n statistical queries (the values of p(F;) for all i’s), where each needs
to be approximated to within an additive error of c-¢. While approximating each query separately
requires ©(1/¢2) samples, by a standard combination of Chernoff and union bound, all n queries
can be approximated using O(logn/e?) samples.

2.2 The Cutting-With-Margin Game: A Dual Perspective

Recall that we wish to find a rule for updating uy to a ugy; satisfying ur < uryr1 < v(p) that will
allow us to reach a feasible point after the minimum number of steps. We wish to define a measure
of progress to help us choose our next uy,1. As discussed above, [BKM19] use the ¢; norm as their
measure of progress, but this results in a slow convergence to a feasible point.

To find a better progress measure, we revisit Lemma 2, specifically Item 2 that shows that by
updating uy using the test b € H.(uy), it is not only that h & He(ug11), but also h & He (ug+1). We
interpret this as implying that the set of violated tests can shrink substantially between rounds.
This suggests a new approach: instead of measuring progress by comparing the locations of wuy
and ug41, we can take a “dual’ view and compare the sizes of the sets Ho(ux) and He(ug41) of
violated tests that we still need to rule out (recall that if this set is empty, we have found a feasible
point). We note that this “dual” view is lossy (and is not a dual in the standard sense) as the
mapping ux — He(ug) may not be one-to-one.

The cutting-with-margin game. Consider a sequence 0 = ug < u; < ... < uy, in which
the point ug11 was produced from uy by selecting some hy € H.(ux) and applying Lemma 2, and
where u,, is feasible. Denote Hy = H(uy). It can be shown that Hy is convex for every k, and
that Ho D H1 D Ha D ... D Hi =0 (Hi = 0 as uy, is feasible). Furthermore, we are able to
prove that Hjyy1 is disjoint from an ¢; ball of radius Q(e) around hy (see Lemma 9). Intuitively,
this is because hy ¢ He (ug+1) (Lemma 2, Item 2) implies that the generated ug+1 not only passes
the test induced by hy, but also passes all “similar” tests.

The above discussion gives rise to the cutting-with-margin game discussed in the introduction
(see Section 1.2.1). Recall that this is a game between a player and an adversary, and it is
played over a convex body H C A,, known to both the player and the adversary. Let Hg = H; in
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every round k = 0,1,... of the game, the player selects a point hy € Hj and the adversary picks
Hi+1 € Hy to be any convex set which is disjoint from the ¢; ball of radius € around hy. The
game ends when the set Hj is empty. See illustration in Figure 1. Of course, the task is now to
find a strategy that solves this game with minimum number of rounds. Note that, in the language
of this game, the strategy of [BKM19] selects an arbitrary hy € H.(ug) in round k. We will next
show a strategy for selecting hy that will allow for a faster convergence.

2.3 Warm-up: poly(logn/e?) Sample Complexity

So far, we reduced the hypothesis selection problem to solving the cutting-with-margin game.
We next outline a solution for the cutting-with-margin game in O(logn/e?) rounds. Since the
implementation of each round requires O(logn/e?) samples (see Section 2.1.1), this implies an
algorithm for hypothesis selection with O(log? n/e*) sample complexity.

First observe that an equivalent way of presenting the cutting-with-margin game lets the
adversary pick in each round a halfspace Hy which is disjoint from the ¢; ball of radius € around hy,
and the game continues with H; 1 = Hp N Hy. This presentation is reminiscent of Grunbaum’s
inequality [Grii60], which guarantees that if the player picks the centroid (which is a standard way
of defining the “center” of a body) of Hy, then vol(Hy1) < (1 —e™1) - vol(Hy), where vol(-) is the
standard (Lebesgue) volume. While the centroid is an intuitive choice for our player, a counter
strategy by the adversary will pick bodies that have small volumes but large diameters. Indeed,
note that as long as the diameter of the body is greater than €, the adversary can force at least one
additional round. This shows that the volume is too crude of a measure for our game. Ideally, we
would have wanted to use a different “centroid” that satisfies an analogous property with respect
to the diameter (say, diameter(Hy41) < +5 - diameter(#y,)). Unfortunately, no such object exists.

The approach we take for designing our player stems from the observation that if the player
could always pick a point hy € A,, that is close to the uniform distribution h* = ( %, cees %), then
the game would have been solved in a few rounds. It is the easiest to see why when using the

“primal” point of view from Section 2.1: indeed, assume uy + € - 1,, is separated from P by a
1 1
H7 sy E
hyperplane, it follows that |ug11 — uglt > en. So, when updating from u to ugyi, the £; norm

hyperplane perpendicular to h* = ( ). Then, since ug1 > ug lies on the other side of that
increases by at least en (recall from Section 2.1 that in the [BKM19] strategy the ¢; norm increases
by only Q(e) in each round). Thus, since in [0, 1] the ¢; norm is bounded by n, the total number
of such steps is at most O(1/e). Of course, this strategy is impossible, as if h; = h* then a ball of
radius ¢ is disjoint from Hj, for all k£ > 1.

Entropy as a progress measure. Inspired by the above intuition, our approach will be
to set hy € Hp to be as “close” to h* as possible. Indeed, we select hp € Hj that maximizes
the entropy function (here we view the point hy € A, as a distribution). This corresponds to
measuring the distance from the uniform distribution A* using KL-divergence. The reason that the
entropy function gives an efficient solution for our game boils down to that it is (i) strongly convex
w.r.t ¢1 (as is evident by Pinsker’s Inequality), (ii) bounded by log(n) over the simplex. Roughly
speaking, strong convexity means that in every step the entropy drops by Q(e2). This, combined
with the fact that the entropy is bounded by log(n), implies our O(log(n)/e?) solution for the
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Figure 1: An illustration of the cutting-with-margin game: in each step k the player picks a point h € Hj, and
announces it to the adversary. The adversary then replies with Hy11 C Hjy which is convex and disjoint from
an /1 ball of radius € around hy. The players’ goal is to empty the set as fast as possible (i.e., to reach Hy = ),
and the adversary’s goal is to delay the player.

cutting-with-margin game'.

As discussed in the introduction, entropy and KL-divergence based strategies are often used in
the context of optimization and regret minimization, basically for similar reasons (convexity and
boundedness). However, our game is not defined by a cost function measuring the cost of each
round separately, but rather, our “cost function” is the length of the game.

2.4 Near-Optimal Sample Complexity

In Section 2.3, we gave a hypothesis selection algorithm with O(log2 n/e*) samples, by solving the
dual game. While this algorithm uses exponentially less samples than the one by [BKM19], it still
sub-optimal. We next show how to obtain an algorithm with a near-optimal sample complexity of
O(logn/e?), by first improving the dependence on n to O(logn) (less involved), and then improving
the dependence on ¢ to O(1/¢2) (one of the main technical contributions of this paper). Since the
sample complexity of our resulting algorithm (almost) matches Yatracos’s, it can replace Yatracos’s
algorithm in density estimation algorithms to obtain a better approximation factor, while keeping
the same low sample complexity.

1 Given that, it is natural to look for a strongly convex function over the simplex that is bounded by < log(n). However,
no such function exists.
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2.4.1 Optimal Dependence on n

We revisit the basic observation from Section 2.1 that finding a distribution ¢ satisfying (Vi) :
TV(q,q:) < TV(p,q;) + € suffices in order to get a 2-approximation for hypothesis selection (see
Equation (1)). We observe that it also suffices to find ¢ that only satisfies TV(q, ¢;+) < TV(p, ¢i)+¢
(recall that ¢* minimizes TV(p, ¢;)) for exactly the same reason: TV(q,p) < TV(q, ¢ix)+TV(gix, p) <
2TV(¢i*,p) + €. Thus, it suffices for our algorithm to maintain the invariant (ug)ix < (v(p))ir,
instead of ux < v(p). This suggests that we can relax Item 1 in Lemma 2 and only require
(ug+1)ix < (v(p))i+ (in addition to up < ugy1).

Due to the above, had we known i*, we would only shoot for a good approximation (to within c-¢)
of (ug1)i+, which means that Lemma 2 can use only O(1/¢2) samples (to get a good approximation
of p(Fi+)). But, we don’t know the identity of i*. The crucial observation here is that this does
not matter. We can use the same O(1/c?) samples to evaluate each of the n statistical queries
corresponding to each of the coordinates of ux1q. Of course, since we are using too few samples,
some of these coordinates will not be well approximated. However, it is likely that each one by
itself will, and, in particular, this will be the case for (ug41)i«. In other words, since we only care
about (ug41):+, we no longer have to pay for a costly union bound over all n coordinates. (We also
show that Item 2 in Lemma 2 still holds under this approximation using an averaging argument).

2.4.2 Optimal Dependence on ¢

Recall that in each step of the cutting-with-margin game, the player picks a point hy € Hyg, and the
adversary sets Hir1 C Hy by cutting away an ¢; ball of radius € around hy. The algorithm we have
so far uses Q(logn/e*) samples from p: every round uses O(1/¢?) samples and maxyey_(u,) {H(h)}
drops by Q(g?) (recall that, to begin with, the entropy is at most logn and we want it to drop
to 0).

To reduce the sample complexity, we move away from this “static” type of algorithms and
design a “dynamic” algorithm whose number of samples per round may vary (but, will never
exceed Q(1/€%)). The important property of the new algorithm is that if the algorithm samples
more points from p, then the adversary cuts away a larger ¢1 ball around hy. Specifically, if O(1)
points are sampled then the radius of the removed ball is €, and if O(1/£?) points are samples then
the radius removed ball will be ©Q(1). We will show that this coupling of the number of samples
used in a step with the amount of progress made in that step (instead of using the maximum
number of samples in every step and expecting the minimum progress) enables a win-win analysis
which implies the desired saving in the sample complexity.

Bounding the radius of the removed ball. To explain how this idea is implemented, we
need to dive into the details of the algorithm. Recall that the algorithm aims to find a point v
such that v;= < TV(p, ¢;+) + ¢, and for which H.(v) = (. Assume that the current point uy satisfies
doo(ug, P) = d > e (which means Hy(ur) = 0) and that we aim at reducing the distance to,
say, 374d. That is, we want to get to a point u such that doo(u, P) < %, or, equivalently, Hsa (u) = 0.
Recall from Section 2.1 that towards this, we pick a violated test hy € H 34 (ug) which, by4applying
Lemma 2, yields the new point w41 € [0,1]™. Of course, the lemma uses sgmples from p to compute
this ux11. As we soon see, in some cases it will be worthwhile for our algorithm to only compute
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a crude approximation of this ug4; using fewer samples. Part of the difficulty is to decide on the
quality of this approximation without knowing w4 1.

Nevertheless, imagine for a moment that the algorithm does know this w1 and uses it as its
next point. How much “progress” does this imply in the cutting-with-margin game? That is, how
much smaller is H%(Uk_i_]_) compared to H%(uk)? Denote wy = ugst1 — ug. We next show that

Hsa(ur+1) is disjoint from an ¢; ball of radius
4

d

r = —-—
8[|w o

3)
around hy, (we wish for r to be as large as possible). Intuitively, if ||wg| oo is small, it means that we
have made progress in many coordinates (though the progress in each might be relatively small).
Since we are getting close to P in many directions, this should imply that u;1 passes many of the
tests hy that were violated by wuy, and thus that H s4 (ugy1) is much smaller.

More formally, let h € H 8 (ug+1), Equation (3) Tollows from:

Ak — hlly - lwklloo > (A — ) - (ugy1 — ug) >

(e ]IS

Here, the first inequality is due Hélder’s Inequality. The second inequality is because hy - (ug+1 —
ug) > %d (due to Lemma 2, Item 2) and because h - (ug+1 — ug) < % (since h € Haa(up41) it holds
4

that h-ug1+ %d < mingyep h-v, while since h ¢ Hy(ux) = 0 it holds that h-ug +d > minyep h-v).

Our “win-win” strategy. The take home message from the above discussion is that:
If |willoo is small then Hsza(ugs1) is small.
4

We next show that this relation leads us to a “win-win” situation: if ||wg||~ is large, it suffices to
only crudely approximate wy, and we save on samples. However, if ||wg||so is small, H s (ugy1) is
small and we made a lot of progress towards ruling out all violated tests.

To see the relation between ||wg||~ and the number of samples required to approximate wy,
first assume that wy, is uniform over a set of coordinates of size m (i.e., for every i € [n], either
(wg)i = 1/m or (wg); = 0). Now, if m is small than all non-zeros coordinates of wy, are large, and
thus wy, can be reasonably approximated with few samples. (In fact, the number of samples scales
with (1/||welloe)?).

Slicing. Of course, wy may not be uniform on a set. To deal with such wy’s, we partition wy, to
log(1/d) many “slices” wy = wi + ...+ w}:g(l/ 9 such that each w} is almost uniform over a set
(specifically, for £ < log(1/d), each of the coordinates of wf, is either 0 or in (27¢,2=(*~1]). We then
try to identify a slice with a significant contribution to hy - wp = Eze[log(l Jd)] h - wi (recall that
hy - wy > %d due to Lemma 2, Item 2). However, since wy, is not known to the algorithm, we use
samples to learn it “slice-by-slice”, starting by approximating wi, the slice containing the largest
values and requiring the least number of samples to estimate, and continuing to the slices that
require more samples, until reaching a “good” slice. We mention that this slice-searching process

is equivalent to playing the dual game with different ¢ values.
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3 Preliminaries

3.1 Notation

Let n € N. For u,v € R", we write u > v if (Vi € [n]) : w; > v;. We use uw-v =3, uivi to
denote the standard inner product of v and v.

For p € [1,00], we denote by || - ||, the £, norm. For v € R" and r > 0, let By(u,r) denote a
ball of radius r with respect to £, that is centered at wu,

By(u,e) = {v €R": [lv—ull, < 7}.
Let A,, denote the simplex of probability vectors in R",

Ap:={heR":> hi=1, (Vi): h; >0}.

1€[n]

The entropy function is denoted by H and the Kullback-Leibler divergence by KL.

3.2 Definition of the Hypothesis Selection Problem

Let X be a domain and let A(X) denote the set of all probability distributions over X. We assume
that either (i) X is finite in which case A(X) is identified with the set of | X |-dimensional probability
vectors, or (i) X = R? in which case A(X) is the set of Borel probability measures.

Let Q@ C A(X) be a set of distributions. We focus on the case where Q is finite and denote
its size by n. Let o > 0, we say that Q is a-learnable with sample complexity m(n,e,d) if there
is a (possibly randomized) algorithm A such that for every £,0 > 0 and every target distribution
p € A(X), if A receives as input at least m(n,e,d) independent samples from p then it outputs a
distribution ¢ such that

TV(p,q) < o - opt + ¢,

with probability at least 1 — 4, where opt = mingeg TV(p, ¢) and TV(p,q) = supcx{p(4) —q(4)}
is the total variation distance. We say that Q is properly a-learnable if it is a-learnable by a proper
algorithm; namely an algorithm that always outputs ¢ € Q.

Distances vectors and sets. Let Q = {qi1,...,q,} € A(X), and let p be a distribution. The
TV-distance vector of p relative to the g;’s is the vector v(p) = vo(p) = (TV(p, ¢))} .

Following [BKM19], our algorithm is based on the next claim which shows that in order to find
q such that TV(q,p) < 2min; TV(g;, p) + ¢ it suffices to find g such that v(q) < v(p) +e- 1.

Lemma 3. Let q,p such that v(q) < v(p) +e-1,. Then TV(q,p) < 2min; TV(q;,p) + €.

Proof. Follows directly by the triangle inequality; indeed, let ¢; be a minimizer of TV(-,p) in Q.
Then, TV(q,p) < TV(q, @) + TV(ai;p) < (TV(p, @) +¢) + TV(¢i,p) = 2TV(gi,p) + €. O

Next, we explore which v € R™ are of the form v = v(p) for some p € A(X). For this we make
the following definition. A vector v € R™ is called a TV-distance dominating vector if v > v(p) for
some distribution p. Define Pg to be the set of all dominating distance vectors.
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Claim 4. Pg is conver and upward-closed"”.

Proof. That Pg is upward-closed is trivial. Convexity follows since TV(-, ) is convex in both of its
arguments. O

3.3 Pythagorian Theorem for KL

We will use the following Pythagorian theorem for the KL divergence, the version here is taken
from [PW15].

Lemma 5. Let X be a set, let £ C A(X) be a convex set of distributions, and let p € A(X) be a
distribution. Let ¢* = arg mingeg{KL(q,p)}. Then, for all ¢ € £ it holds that

KL(q,p) > KL(¢,q") + KL(¢", p).

Proof. 1f KL(gq,p) = oo, then we are done. So, we can assume KL(g,p) < oo, which also implies
that KL(g*, p) < co. For @ € [0, 1], form the convex combination ¢(¥) = (1 — #)¢* + q. Since ¢* is
the minimizer of KL(q,p), then

0

0< —
— 00,

KL(¢“,p) = KL(g,p) — KL(q,q") — KL(¢", D),
0

If we view the picture above in the Euclidean setting, the “triangle” formed by p, ¢* and ¢
(for ¢*,q in a convex set, p is outside the set) is always obtuse, and is a right triangle only when
the convex set has a “flat face”. In this sense, the divergence is similar to the squared Euclidean
distance, and the above theorem is sometimes called the Pythagorean theorem.

An assumption. Our analysis uses the Minimax Theorem for zero-sum games [vN28| for the
same purpose that it was used in [BKM19]. Therefore, we will assume a setting (i.e., the domain X
and the class of distributions Q) in which this theorem is valid. Alternatively, one could state
explicit assumptions such as finiteness of X or forms of compactness under which it is known that
the Minimax Theorem holds. However, we believe that the presentation benefits from avoiding
such explicit technical assumptions and simply assuming the Minimax Theorem as an “axiom” in
the discussed setting.

4 A Geometric Game from Hypothesis Selection

We next describe a geometric game, called the (P, ¢ )-primal game. This game is between a player
and an adversary, where P C [0,1]" is a given upwards-closed and nonempty convex body, and
€ > 0 is a margin parameter. Both P and ¢ are known to both the player and the adversary. The
game proceeds in rounds roughly as follows: the player starts at position ug = 0 € [0,1]™ and its
goal is to get sufficiently close to P as fast as possible. Let uj denote the position of the player in

I5Recall that upwards-closed means that whenever v € Q7 and u > v then also u € Q.
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The (P,¢)-Primal Game
Let P C [0, 1]™ be a nonempty convex set which is upward closed.
1. Set k =0 and uo = 0.
2. While ug +¢-1,, ¢ P (equivalently Hp -(uy) # 0)

(a) The player picks a normal hy € Hp (uy) to a hyperplane tangent to P which separates
ug + € - 1, from P, and announces it to the adversary.

(b) The adversary replies with a point uy,; whose every coordinate is at least as great as
that of uy and is e/2-close to the hyperplane tangent to P whose normal is hy, i.e.,

Uk+1 2 U and hk *Uk+1 2 m17r31{hk : p} — 6/2 (4)
pE

(c) Set k =k + 1.

Figure 2: The Primal Game.

round k; if up+¢-1,, € P then the player wins the game. Else, the player picks a tangent hyperplane
to P which separates ug + ¢ - 1,, from P (such a hyperplane must exist since uy +¢-1, ¢ P ),
announces it to the adversary, and the adversary picks the player’s next position ugi; to be any
point such that ugy1; > ug and wug4q is €/2-close to the tangent hyperplane chosen by the player.
The (P, e)-primal game is formally described in Fig. 2. It uses the following notation:

Hp,e(u):{hEAn:h-(u+5-1n):h-u+5<rréi7r31{h-p}}.
p

In words, Hp.(u) is the set of normals h € A,, to hyperplanes separating u + ¢ - 1,, from P. Note
that the assumption h € A,, does not lose generality, because P is upwards-closed and therefore for
any u € [0,1]", u ¢ P, any hyperplane separating v and P has a normal of this form. (See Claim
5 in [BKM19] for a proof of this fact.) Thus, by the hyperplane separation theorem, Hp (uy) = ()
if and only if uy + ¢ - 1,, € P. Also observe that since P is a convex, the set Hp o(u) is convex for
every u € R".

Winning Strategies. Let player be a strategy'® for the player in the (P,¢)-primal game. A
sequence 0 = ug < ug < ... <y is a sequence of legal-adversary moves with respect to player if for
every k < t,

o Hpe(u)# 0 and

o hj-upy1 > minyep{hi-p}—e/2, where hy = hi(ug; uck, hai) € Hp(ug) is the normal picked
by player in round k.

6That is, in every round k, the strategy player provides a rule for picking hy € Hp o (us).
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We say that the strategy player wins the (P,¢e)-primal game in at most r rounds if no adversary

can force the game to last more than r rounds. That is, for every sequence 0= ug <up < ... <y
of legal adversary-moves with respect to player,

u+e-l, ¢ P = t<r.

Similarly, let adv be a strategy'’ for the adversary in the (P,e)-primal game. A sequence
ho,...,ht—1 € A, is a sequence of legal-player moves with respect to adv if for every k < t,
hi, € Hp e (ur) # 0, where ug, = ug(hg—1;u<—1, h<r—1) > up—1 is the point picked by adv in round
k. We say that the strategy adv forces the (P, ¢e)-primal game to last at least r rounds if for every

sequence hi,...,hi—1 € A, of legal-player moves with respect to adv,

u+ 1, e €P = t>r.

4.1 Reducing Hypothesis Selection to the Primal Game

For all that follows, we fix a finite class of distributions Q = {q1,...,q,} and € > 0, and use the
notation v(-) = vg(-). We next show that if the (Pg, €)-primal game is solvable in few rounds, then
Q is 2-learnable with low sample complexity. The following lemma is implicitly proved in [BKM19]:

Lemma 6. If there exists a strategy player that wins the (Pg, ¢ )-primal game in at most r rounds,
) 10gn+logr+log(l/6))
g2 :

then Q is 2-learnable with sample complexity ' (,0) = O(r

The reduction is described in Fig. 3. It is based on Lemma 3 and computes the output
distribution ¢ by finding v € Pg such that v < v(p) + € - n.

The following lemma is the crux of the reduction. It is used to show that the adversary induced
by the algorithm is a valid adversary for the (Pg,e)-primal game, and provides a bound on the
number of samples from p which are required to compute the adversary’s move.

Lemma 7. Let p € A(X) and let o, 3 > 0. Then, given m = O(WIXM) independent samples
from an unknown distribution p and h € A,, as an input, one can output a point z € [0,1]" that
satisfies the following with probability > 1 — 3:

1. h-z>minyepy{h-v} —a.

2. z <wv(p).

In words, this lemma provides a procedure that, given a hyperplane tangent to Pgo and m
samples from the target distribution p, outputs a point z < v(p) which is a-close to the tangent.

1"That is, in every round k, the strategy adv provides a rule for picking u; that satisfies Equation (4).
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Proof of Lemma 7. By the Minmax Theorem [vN28|:

min{h - v min hi - v(p); By definition of Po.
Uepg{ }= yEb 2 () (By Q)
= i hi - TV, qi By definiti fo(-
min W) (By definition of o(-))

1€[n]
= i h; Ep [fi] — Eq, [ fi By definiti f TV(., ).
pfén&?;c), e }{ [fi] — Eq,[fil} (By definition of TV(:,).)

€[n]
= min max Zh [ fil = Eq[fi])

p'EA(X) fi:X—]0,1]

T zr?—a»)i) 1 énAlle) & }hi( p [ fil = Eqlfi]) - (By the Minmax Theorem.)

Let F; for i € [n] be maximizers of the last expression. That is,

(F1,..., Fy) = argmaxy, 7fn)pg1Ai?X) 2 hi(Bp [fi] — Eq, [ fi])-

i€[n]

By the above derivation:

p/énAl?X) prnl ( P[ ] Ch[ ]) vlél%)r;{ U} (5)

Note that the F;’s depend only on the class Q and the direction h; in particular they do not depend
on p. Thus, the F;’s can be computed by the algorithm. Define the point w € [0, 1]™ by

w; = Ey[Fj] — Eq,[F],

and observe that w can be approximated given samples from p. Note that w satisfies:
L iep hiwi = mingepg {h - v}. (By Equation (5).)
2. wi = Bp[Fi] = Eq, [F] < maxy, x5 0,1{Ep[fi] — Eq [fi]} = TV(p, ¢:) = v(p)i-

Thus, it suffices to output a point z such that w > 2z > w — « - 1,,. This can be done using the

m = O(WYM) samples from p as follows: use the samples to approximate E,[F;]. That is,

let .
1
EZ
=1
where x1,...,z, are the m independent samples drawn from p. By a Chernoff and union

bounds, we have |[Ej[F;] — E,[F]| < « / 2, simultaneously for all ¢ < n. Therefore, the estimates
2 = Ep[Fi] — By, [F3] satisfy 2; € (w; — §,w; + §). Then, the desired vector z can be taken to be

.,

Z:'IU—2

O]

With Lemma 3, we are ready to prove Lemma 6 which shows how to use a black-box strategy
for the player in the primal game to get a 2-approximation algorithm.

19



A Hypothesis Selection Algorithm from the Primal Game.

Define the set P in the Primal Game to be Pg. (The Primal Game is described in Fig. 2)
1. Set k =0 and ug = 0.
2. While Hpr(uk) 7£ (Z)

(a) Run player to get hi, = hy(up; Uck, har) € Hpg (k).

(b) Let zx be the point z promised by Lemma 7 applied with u = ug, h = hg, p = p,
a=¢/2and f = §/r. Define ug,; by setting (ug,1); = max{(zy);, (ug);} for all ¢ € [n].

(c) Set k =k + 1.

3. Output v = uy + ¢ - 1,.

Figure 3: A Hypothesis Selection Algorithm from the Primal Game.

Proof of Lemma 6. Let player be a strategy for the player that wins the (Pg, ¢)-primal game in r
rounds. We will show that Q is 2-learnable with r/ = O(r- '8 n+1°g;2+log(1/ 9 samples. Let p € A(X)
be the target distribution. The approach we use for deriving the learning algorithm is based on
Lemma 3 by which it suffices to find a distribution ¢ € A(X) such that v(¢) < v(p)+¢-1,. Observe
that if we find v € Pg such that v < v(p) + ¢ - 1, a distribution ¢ € A(X) such that v(q) < v can
be found.

Consider the algorithm for computing such v which is depicted in Figure 3. The algorithm is

based on an execution of the primal game, where the player runs the strategy player (see Item 2a)
and the adversary moves are based on Lemma 7 (see Item 2b).

First note that Lemma 7 is applies with confidence parameter = ¢/r and error parameter
/2. This implies that: (i) the total number of samples used by the algorithm is 7 times the sample
complexity bound stated in Lemma 7 with & = ¢/2, 8 = 6 /r, which yields the stated bound on 7.
(ii) With probability at least 1 — J, the points z; satisfy the guarantee in Lemma 7 for all k£ < r.
In the remainder of the proof we condition on this event.

We next claim that the adversary strategy given in Item 2b provides a sequence of legal-
adversary moves w.r.t player. To this end, we need to show that the point up41 satisfies ugy1 > uyg
and hy - up1 > minyep{hy -p} —e/2. The former is obvious from the definition of 4 in Item 2b.
The latter follows since

by - w1 > by - 2 (Wkt1 = 2k, hig > 0)
> min{hy - p} — /2 (Lemma 7)
peEP

Thus, since player wins after at most r rounds, the while loop in Item 2 must terminate in round
t <r and the output v satisfies v € Pg.

Finally, it remains to show that v < v(p) + ¢ - 1,. We show that u; < v(p) for every k by
induction on £ (this implies v = u; +¢- 1, < v(p) +€-1,): For k = 0, it is clearly the case that
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uo = 0 < v(p). Assume that the claim holds for some k and prove it for k + 1. By the second item
in Lemma 7, z; < v(p), and by the induction hypothesis, ux < v(p). This implies that ug11 < v(p).
O

5 A Dual Game: Cutting-With-Margin

One of the key steps in our solution is to adapt a dual point of view, where the
separators/directions hy are thought of as points in the dual space. We next describe a second
geometric game, called the (H,e)-cutting-with-margin game (in short, (H e)-cutting game), which
can be seen as a manifestation of the primal game as seen in the dual space. This game too is
between a player and an adversary, where H C A" is a given convex body, and € > 0 is a margin
parameter. Both H and ¢ are known to both the player and the adversary.

The dual game proceeds in rounds roughly as follows: at the beginning, the universe is the set
Ho = H. In round k, the player chooses a point hy € Hy. The adversary then restricts the universe
to a set Hgi1, which must to be a convex subset of Hy that is disjoint from Bj(hg,e), an ¢1 ball
around hj with radius . If the new universe Hy,1 is not empty, the game continues to the next
round. Else, the game ends. A formal description of the dual game is given in Fig. 4.

Winning Strategies. Let player* be a strategy'® for the player in the (#, ¢)-cutting game. A
sequence H = Ho D H1 DO ... D H; is a sequence of legal-adversary moves with respect to player* if
for every k < t,

) ’Hk;é@and

® Hii1 N By(hg,e) = 0, where hy = hi(Hp; Hek, her) € Hy is the point picked by player* in
round k.

We say that the strategy player™ wins the (P, e)-cutting game in at most r rounds if no adversary

can force the game to last more than r rounds. That is, for every sequence H = Ho 2 H1 2D ... D H;
of legal adversary-moves with respect to player*,

’Ht?é(b = <

Similarly, let adv* be a strategy'” for the adversary in the (P,e)-primal game. A sequence
ho,...,hs—1 € A, is a sequence of legal-player moves with respect to adv* if hy € Hy for every
k < t, where Hy = hi(Hp—1;H<k—1,h<r_1) is the set picked by adv* in round k& — 1. We say
that the strategy adv* forces the (H,¢e)-cutting game to last at least r rounds if for every sequence

hi,...,hi—1 € A, of legal-player moves with respect to adv*,

Hi=0 = t>r.

8That is, in every round k, the strategy player provides a rule for picking hj € Hy.
9That is, in every round k, the strategy adv provides a rule for picking Hy,1 as in Item 2b.
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The (#,e)-Cutting-With-Margin Game
Let H C A" be convex.

1. Set k=0 and Hy = H.
2. While H,;, # 0

(a) The player picks a point hy € H; and announces it to the adversary.

(b) The adversary picks a convex set Hy1 C Hy, such that Hy 1 N By (hg,e) = 0. (Observe
that Hi1 = () always satisfies the above conditions.)

(c) Set k =k + 1.

Figure 4: The Dual Game.

5.1 Reduction from the Primal Game

For an upwards-closed convex set P C [0, 1]" and € > 0, let
Hp =Hp(0)={heA,: h-6+.€:€<mi71)1{h'u}}.
ue
We next show that the round complexity of the (P, £)-primal game is at most the round complexity
of the (Hp, e)-cutting game.

Lemma 8. Let P C [0,1]" be an upwards-closed convex set and let € > 0. If there exists a strategy
player* that wins the (Hp, §)-cutting game in at most r rounds, then there is a strategy player that
wins the (P, )-primal game in at most r rounds.

The proof of Lemma 8 uses the following lemma. Recall that Hp . (v') ={h € A, :h-u +e <
mingep h - u}.

Lemma 9. Let P C [0,1]" be an upwards-closed convex set and let h € Ay, u € [0,1]™. Then,

£
h ¢ Hp:(u) = Hpe(u) N Bi(h, Z) = 0.

In other words if h-w > minpep{h - p} — 5 then, Hp(u) N Bi(h,5) = 0.
Proof. Let h ¢ Hp =(u), we need to show that Hp(u) N Bi(h, 7) = 0. Define G : A, — R by

h) = min{h - p} — h - u.
G(h) ggg{ pt—h-u

Thus, G(h) measures the distance between u and the hyperplane tangent to P with normal h.
Observe that for every ¢ > 0:

Hpor(u) = {h € A : G(h) > €'} (6)
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Note that
(i) G(h) <5 (by Equation (6), because h ¢ Hp < (u)).
(i) G is 1-Lipschitz with respect to ¢1: Let b/, h” € A, and let p* := arg min,ep{h” - p}. It holds
that
Gh/ _Gh//: . h/' _ . h”' —h/—h”'
(W) = G(hT) = min{h"- p} — min{h™-p} = ( ) - u
Sh,~p*—h//-p*—(h/—h//)-u
= (h' = 1") - (p* — u)
<V =K1 |Ip* —ullee (Holder’s inequality, (Vv,v") : v - v < ||v]1]]v']|o0)

< | =1L (pfloo < 1, flufloe <1, p*,u = 0)

Let b’ € By(h, §), so [/ — hl|1 < 5. Thus,
G(I') < G(h) +Z (By Item (ii).)
<e (By Item (i).)

Thus, by Equation (6) h' & Hp(u), and Hp () N By(h, 5) =0, as required.
O

Proof of Lemma 8. Let player*(H) be a strategy for the player that solves the (Hp, §)-cutting game
in r rounds. Consider the reduction described in Figure 5 and the strategy player for the (P,¢)-
primal game which is described in Item 2b. Our goal is to show that player wins the game in at
most r rounds. That is, let 0 = u, . .., u; be a sequence of legal-adversary moves w.r.t player such
that u; +e -1, ¢ P. We need to show that ¢ < r. To this end it suffices to show that the sequence
{Hy}i_,, defined in Item 2a is a sequence of legal-adversary moves w.r.t player* and that H; # 0.

Indeed, by definition Ho = Hp . (0) = Hp .. Next,
Hi+1 = Hpe(upt1) € Hpe(ur) = Hi,

because ug11 > ur and Hiy1, Hrp € A, contains only nonnegative vectors. The last property we
need to show in order to establish that the Hy’s form a sequence of legal-adversary moves is that
Hi+1NBi(hg,e) = 0 for k < ¢, which follows from Lemma 9 because hy-ug41 > min,ep{hy-p}—e/2
(i.e., hi ¢ H'pé). Finally, it remains to show that H; # (). Indeed, by assumption, u; +¢ -1, ¢ P
and therefore there must be a hyperplane separating u; + € - 1,, from P. Hence, the normal to this
hyperplane (normalized so that it is in A,) belongs to Hp ¢ (u:) = H; and witnesses H; # 0.

O

5.2 Solution for the Cutting-With-Margin Game

Theorem 10. For every convex set H and e > 0, the (H,)-cutting game is solvable in O (loggn)>

€
rounds.
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Dual Player Strategy — Primal Player Strategy.

Let P C [0, 1]™ be an upward-closed convex set, let € > 0, and consider the (P,¢)-primal Game.
Let player®(-) be a strategy for the player in the (Hp.,e/4)-cutting game.

1. Setk::Oanduozd
2. While uy, + ¢ - 1,, ¢ P (equivalently Hp -(uy) # 0)

(a) Let Hi := Hp(ug).
(b) Run player* to get hy = hi(Hi; Hek, her) € Hp(ux) and announce hy, to the adversary.

(¢) Let uyy1 denote the next point which is picked by the adversary. le., ugi; > ug and
A, - U1 > mingep{hs - p} — /2.
(d) Set k =k + 1.

Figure 5: A reduction which uses a black box access to a strategy player” in the (Hp.,e/4)-cutting
game and produces a strategy player for the (P, e)-primal game. This reduction is used in the proof of
Lemma 8.

A Strategy for the Player in the Cutting-With-Margin Game.

In each round k, given a universe Hj from the adversary, the player outputs
hi, = arg maxy ey, {H(R')}.

Figure 6: A strategy for the player in the (H,e)-cutting game. Recall that H(-) denotes the entropy
function, and that H C A,, and therefore H(-) is defined on every h € H.

Proof. Consider the strategy player* for the player in the (H,¢)-cutting game that is depicted in
Figure 6.

Fix a sequence H = Ho O ... D H; of legal-adversary moves w.r.t player® such that H; # 0.
Our goal is to prove that t < O(logn/e?).

For k < 't, let hy = argmaxyey, H(h) denote the point chosen by player*. Note that hy is well
defined since Hj, # () for k < t. We next prove that for every k < r,

£2

H(he) =~ H(hii) > 5 ™

€

0 < H(h) < log(n) for every h € A,,. In particular, by Eq. (7),

This implies the desired bound ¢t < O (%) as follows: since the entropy function satisfies

2 2
0 < H(he) < H(ho) — % <log(n) — =
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KL(hk/u) + KL(hk+1lhk) < KL(hk+1/u)

Figure 7: An illustration of the Pythagorean Theorem for Kullback-Leibler divergence as it is used in
the proof of Theorem 10.

and therefore t < 81%%(70, as required.
It remains to prove Equation (7). Since H = Ho 2O ... D H; is a sequence of legal-adversary
moves, it holds that Hjy41 N Bi(h, 5) = 0. Since hjq1 € Hp41, it holds that hyyq € Bi(hy, 5), and

therefore, ||hpy1 — hyll1 > 5. Let u € A, denote the uniform distribution v = (2,...,1).

H(hg) — H(hgr1) = KL(hgt1, u) — KL(hg, w)

> KL(hgt1, hr) (Lemma 5, see reasoning below)
1

> §Hhk+1 — hyell? (Pinsker’s Inequality)
2

> % (lhgsr — il > 5)

For the second transition, the inequality KL(hg41,u) — KL(hg,u) > KL(hgt1, hi) follows from the
Pythagorean Theorem for the Kullback-Leibler divergence, Lemma 5, by taking £ = Hy, p = u,
q" = hg, ¢ = hiy1. For the theorem to apply, we need to use the facts that H is convex, that
hi € Hg, and that hgy1 € Hir1 € Hi. We also need

hy = arg }{relz?l{)i{H(h)} = arg f{gﬁlk{KL(h,u)}.

See Figure 7 for an illustration.
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5.3 Hypothesis Selection with poly(logn/¢) Samples

The results obtained so far already suffice for constructing a hypothesis selection algorithm with
sample complexity of poly(logn/e), as suggested by the proposition below. The algorithm we
obtain in this subsection will be refined in Section 6 to obtain an algorithm with near optimal
sample complexity.

Proposition 11. Let Q be a finite class of distributions and let n = |Q|. Then, Q is 2-learnable
with sample complexity

log® n + lognlog(1/e) + lognlog(1/5)>
et ’

m(n, e, 5) :0(

Proof. Let P = Pg denote the set of all dominating-distance vectors w.r.t Q. By Lemma 6, it
suffices to give a strategy for the player that wins the (P, )-primal game in at most r = O(logn/c?)
rounds. The existence of such a strategy follows from Theorem 10, which yields a strategy for the
player that wins the (Hp.,e/4) in O(logn/e?) rounds, and by Lemma 8 which transforms this
strategy to a strategy that wins the (P, &) game in the same number of rounds.

See Fig. 8 for a pseudo-code of the algorithm obtained by this series of reductions. O

A 2-Approximation Algorithm for Hypothesis Selection with poly(logn/e) Samples

Given: A class @ = {q,...,q,}, and a sampling access to a target distribution p and ¢,d > 0.
Output: A distribution py such that TV(py,p) < 2min; TV(g;, p) + € with probability at least
1-0.

1. Let v* =v(p) = (TV(p,¢)): € R", and set up = (0,...,0) € R". (Note that v* is not known
to the algorithm)

2. Fork=1,...

(a) If up, +¢-1, € P =Pg then find ¢ such that v(q) < ug + ¢ - 1,, and output it.

(b) Else, pick a separator hy = arg maXpep, . (z,) {1H(h)} with maximum entropy.

(c) Draw m = O(bg”“‘)glog"ﬂgg“/ ) tos/9)y samples from p to compute w1 such that

up < uppr < 0*, and .
hi - u > mindhg -ut — —.
ot > min{hy -l - S

(See Lemma 7 for the computation of u1.)

(d) Continue to the next iteration.

Figure 8: The hypothesis selection algorithm obtained by the reductions to the two games.
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6 Obtaining Near Optimal Sample Complexity

In this section we prove Theorem 1, giving a 2-approximation algorithm for hypothesis selection
with sample complexity that is tight up to lower-order terms. To this end, we first study a refined
version of the primal game from Section 4, and then study a refined version of the hypothesis
selection algorithm given in Figure 8 (that was based on our solution to the cutting-with-margin

game).

The Refined (P,¢)-Primal Game

Let P C [0, 1]™ be a nonempty convex set which is upward closed, Cj here is a large constant.
1. Set k=0, uy=0,d=1,d =d/(Cylog(1 + 1/d)).
2. While d > ¢/2
(a) While Hp g—a(ug) # 0

i. The player picks a normal
hy, = argmaxyycqy, () {H(A)} € Hpamar(wi)

to a hyperplane tangent to P which separates uy, + (d — d') - 1,, from P.

ii. Run Refined Hypothesis Select algorithm® to reply with a point uxy1, and an integer
J€{0,...,2+ [log(1+ 1/d)|} which satisfy

Ups1 > up  and Zmin(Q*j,ukH’i — upy) - hiy > 2d (8)

7

iii. Set k =k + 1.
(b) Set d=d —d', d' = d/(Cylog(1+ 1/d)).

3. Output a distribution r satisfying TV(r, ¢;) < ux; + d for all .

“Note that stage requires O(22j) qureies

Figure 9: The Refined Primal Game.

6.1 Refining the Primal Game

Consider the Refined Primal Game algorithm given in Figure 9. This algorithm uses the Refined
Hypothesis Select algorithm that can be found in Figure 10. Let us analyze the Refined Primal
Algorithm before presenting the Refined Hypothesis Select component. The critical property of
the refined hypothesis select part will be that the number of samples needed to get (8) to hold with
a given j is O(2%), which can be substantially smaller than 1/e2 required by the analogous step
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of the original algorithm. At the same time, when j is large (and thus the sample complexity cost
is large), we get a stronger estimate of (27 - d’) on the distance ||hy — hxy1||1, which translates
into more progress towards reducing the value of H(hy1), helping the algorithm terminate faster.
Thus we get a win-win situation, where small j means fewer samples needed, and a large j means
a lot of progress towards completion.

Claim 12. (Refined (P, e)-Primal Game — running time) Suppose that conditioned on outputting j,
Refined Hypothesis Select terminates after < A - 2% samples in expectation. Then the expected
number of samples needed by the Refined (P,e)-Primal Game is O((A - logn)/e?).

Proof. Note that the outer loop (Item 2), where d gets reduced runs a total of O(log?(1/¢)) times,
and therefore it suffices to analyze one execution of the loop to show that as long as d = (¢), the
number of samples used in reducing d to d — d’ is bounded by O((A -logn)/e?).

Consider a single iteration of the inner loop, we would like to lower bound the difference
H(hy) — H(hgy1). By the exection of the algorithm Hp g(ux) = 0, and thus hpy1 ¢ Hp a(ug).
Therefore, by definition of Hp 4(uy) it holds:

min{th . 1)} < hk+1 S Uk + d. (9)
vEP
On the other hand, hy11 € Hp g (ug41), and thus
min{hk+1 . ’U} > hk+1 cUk+1 +d— d/. <10)
veEP
Putting equations (9) and (10) together, we get:
his1 - uppr +d—d < H.lei%)l{hk-i-l v} < hgiq - ug + d.
v

Thus from above,

d' > hgyr - (upg1 — ug) > Zmin(Tj, Ukt1,i — Ukyi) - M1 =

(]

Z min(277, wgs1; — k) - b+ Z min(277, w1 — ) - (heg1i — i)

3 (2

Applying (8) on the RHS we get:

d > a2d -+ Zmin(?fj,ukﬂyi — ukﬂ;) . (hk+1,i — hk,i) > 2d — 27j . Hhk‘+1 — thl

1

Therefore,
‘|hk+1—th1 >d -2, (11)
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By the same derivation as in the proof of Theorem 10, Equation (11) implies

H(hk) — H(hk+1) = KL(hk_H, U) — KL(hk, u)

> KL(hgt1, hi) (Lemma 5)
1
> §||hk:+1 — 7 (Pinsker’s Inequality)
d12 o ‘
5 27 (Equation (11))
2 /1002 o '
> e /log”(1/¢) | 921 = ()(e2 - 2%).

4

At the beginning of execution with a given d, H(hy) < logn, and at the end it is at least 0.
Each step causing a reduction by Q(e? - 2%) takes < A - 2% queries. Thus the total number of
queries for a given value of d is bounded by O((Alogn)/e2. O

Claim 13. (Refined (P,e)-Primal Game — correctness) Let i € [n] be any fized index, which may
depend on p and the q’s but not on the execution of the algorithm. Suppose that at every step k of
Refined Hypothesis Select, the probability

Prlug1: > TV(p, ¢:)] < (3% / logn).
Then the probability that TV(r,q;) > TV(p,q;) + /2 is at most §.

Proof. At each step, H(hy) decreases by at least €(2), and thus the total number of calls to the
Refined Hypothesis Select algorithm is O((log n)/e?). Therefore, by union bound, except with
probability < ¢, at each step k, ug; < TV(p,q;). Therefore, the distribution r the algorithm
outputs satisfies

TV(r, qi) < up,,40 +d <TV(p,qi) +d < TV(p,q) + /2.

6.2 Refining the Hypothesis Selection Algorithm

We next turn our attention to the Refined Hypothesis Select algorithm in Figure 10.

Note that the number of samples used by the Refined Hypothesis Select algorithm is spelled
out explicitly. Therefore, our only task is to show that its success guarantees hold. Properties (ii)
and (iii) holds due to stopping conditions of the algorithm. Next claim proves that Property (iv)
holds.

Claim 14. Fiz an index i. Assuming Refined Hypothesis Select algorithm does not output ‘Fail’,
the probability of the event

Pr((v; > w;) A (Bp[F] — Eq, [Fi] < vi +27972)] < . (15)
Proof. Note that v; = max(u;, wj — 27771).  Therefore, v; > w; iff wj; > u; + 271,

Recall that wj; = >,7, Fy(zy) — Eg[F;]. Therefore event {v; > u;} dominated by the event
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The Refined Hypothesis Select Algorithm

Given d,d' = d/(Cylog(1+1/d)), error parameter v > 0, a point u such that Hp, 4(u) = 0, and a
distribution h € Hp, 4 (u) the algorithm will output j € {0,...,2+ [log(1+ 1/d)]}, a point v
and n functions F; : X — [0,1],4 = 1,...,n such that the following properties hold:

(i) The algorithm outputs ‘success’ with probability > 1 — 7, where the failure event only
depends on the randomness of the samples the algorithm receives;

(i) v >
(iil) >, min(277,v; — w;) - h; > 2d'

(iv) For any i € [n] which is fixed in advance (unknown to the algorithm) if v; > u;, then except
with probability v, E,[F;] — E,,[F;] > v; + 27772

Algorithm:

1. Let {F;}?_, be as in the proof of Lemma 7: F; : X — [0, 1] such that

S hi - (BylF] — Eg[F]) > min {h-v}. (12)

vEPg
i€[n]

2. For j € {0,...,2+ [log(1+1/d)]}:

(a) Use m; := Cylog(log(1/d)/v) - 2% samples {xx},’, from P to generate empirical

estimates _
1 <&
Wi = —— Z Fz(xk) - ]EQi [E]a (13)
mj i3
(b) Set ‘
vj; = max(u;, wy; — 2777, (14)

(¢) If Y, min(277, vj; — w;) - by > 2d":
1. set v :=v;

ii. terminate and output (j,v,{F;})

3. If the loop hasn’t terminated for any 7, output ‘Fail’ and restart the algorithm.

Figure 10: The Refined Hypothesis Select Algorithm.
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(m% W2 Fi(ay) — B, [B] = v + 2*3'*1). Therefore, the event from the claim is equal to the

event

s
i 1 i
(E,[F] — By [Fi] <vi+27772) A (m > Fi(ag) — Eg,[Fi] = v+ 277 1) ,
7 k=1
which is dominated by the event
1
E,[F;] — — ZFi(xk) > 97772
7 k=1

By Chernoff bound, this probability is bounded by coy/(logd) for a small constant ¢y (which
depends on (). By taking union bound on the different possible j’s in the algorithm, we obtain
an upper bound of v on the failure probability. O

Next — more importantly — we need to establish that the probability that the algorithm outputs
‘Fail’ is bounded by ~ (First property of the algorithm).

Claim 15. The probability that the Refined Hypothesis Select algorithm outputs ‘Fail’ is < ~y, where
the randomness comes from the samples from P that it receives.

Proof. Our starting point is the fact that h € Hp, 4 (u), and therefore min,ep,{h - v} >
h-u+d—d. Hence
> hi (Bp[F) = By [F] — i) > d — d.

1€[n]

Partition the set of coordinates [n] as follows. Let
Sj = {i € [n] : Bp[Fi] — Eq,[Fi] —w; € (277,2777]} (16)

for 7 € {0,...,2 + [log(1 + 1/d)|}. Denote jmaz = 2 + [log(1 + 1/d)]}. Note that the
sets S; are mutually disjoint. Some coordinates may belong to none of the sets, but only if
Ey[Fi] — Eg[Fi] — u; < 279ma=. We have

jmaz
SN hi- (BylFi] — Bg, [Fi] — ;) >
Jj=0 ieS;
. . d
> hi (Bp[F] = Bg,[F] — us — 279mer) > d — d — 27 Imer > 5
i€[n]
Therefore, there exists some j such that
d
> hi- (BplFi] = B [Fi] — ) > 5
Therefore, for any constant Cs > 0, for a sufficiently large Cj the is a j such that
> hi - (Bp[F)] — B [F] — w;) > Cy - d. (17)

i€S;
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Note that (17) and (16) implies
Zhi>02'd/'2j/2. (18)

i€S;
We claim that for a sufficiently large constant Co, the algorithm will terminate at step j with
probability > 1 — « (assuming it hasn’t terminated earlier). Thus, the failure probability of the
algorithm is bounded by 7.
For any given i € S;, we have by the Chernoff bound

Prlwj; > (Ep[Fi] — Eq, [Fi] — 27].72)] >1-7/2,
and thus
Prlwj; > u; +3-27972)] > 1 — /2.
Therefore
Y
E Z hi - 1wji§ui+3~2_j_2 < 5 : Z h.
1€S; 1€S;
Therefore, by Markov inequality, with probability at least 1 — ~,
h; - 1wji§Ui+3‘2_j_2 < 1 : h;.
e 2
[ Sj ZESj
Hence, with probability at least 1 — ~,
h; - lei>ui+3,2—j—2 > 1 . hi. (19)
e 2 -
7 Sj ’LGS]'
We claim that assuming (19) holds, the algorithm will terminate at step j. We have

Z min(2_j, v; — i) - hy > Z min(277, v; — u;) - hy =
i i€S;: wji>ui+3-2_j_2
Z min (277, wj; — 27771 hy >

iESjZ wji>u¢+3-2*j*2

Z 2-i=2 .. > 27772 . Zh. >
1 2 1

i€S;: ’ij¢>ui+3-2_j_2 i€S;

272
2

./
'Cg'd,'2j/2:c’2176d>2d/,

when Cs > 32 — guaranteeing that the algorithm terminates. O
Claim 15 implies:

Claim 16. Assuming v < d°, the expected number of queries contributed by ‘Fail’s is an additive

o(1).

Proof. The ‘Fail’ state is reached with probability < v < d?, while the number of queries of one
run of the main loop is bounded by O(1/d?). O
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Hypothesis Selection in the Tiny Error Regime

1. Repeat the following until Success is reached:

(a) Run the refined Primal Game with ¢’ = £?/n® to obtain a distribution r;

(b) Use O(log(1/62)/<?) fresh samples to verify that except with probability < 6/2, for all
calls of Hypothesis Selection Algorithm, whenever vj;; > w;, we have E,[F;] — E,, [F;] >
V.-
i. if verification passes, output Success and the distribution r;
ii. otherwise, restart the calculation.

Figure 11: The Tiny Error Case

6.3 Proof of Theorem 1

We are new ready to prove our main result, Theorem 1. We break the proof into two cases: the
case when § is not too small: § > £2/n3, and the case when & < £2/n? is very small.

The case § > &2 / n®. In this case, we simply run the Refined Primal Game algorithm from
Figure 9, where we set the error parameter v in the Refined Hypothesis Select algorithm to
6(6e2/logn).

Correctness. By Claim 13 applied to i* := argmin; TV(p, ¢;), we have, with probability > 1—4,
the output r satisfies
TV(Ta Qz*) < TV(p, QZ*) =+ 8/27

therefore,
TV(r,p) < TV(r,q+) + TV(p,qi») <2 -TV(p,qi+) + € =2 -min TV(p, ¢;) + €. (20)

Sample complexity. The conditions of Claim 12 are met with A = O(log(1/4)). Therefore,
by Claim 12, the total sample complexity in this case is bounded by

O <logn-log(1/6)> ] (21)

22
The case § < £2/n®.  Consider the algorithm on Figure 11.

Correctness. The number of calls to Hypothesis Selection Algorithm is significantly smaller
than o(1/6). Therefore, by union bound, the probability of Success being returned despite
E,[Fi] —Eq, [F;] < vj; holding at some point of the execution is 0(d). Assuming E,[F;] —Eg, [F;] > vj;
at all steps of the execution, the algorithm outputs a correct solution.

33




Sample complexity. In this case, we first run the previous case with &' = £2/n3. As seen

2
5 <log2n>
€

samples. Moreover, as noted earlier, by union bound, with probability > 1 — 1/n, the event (15)

above, this step only requires

from Claim 14 never happens throughout the execution of the algorithm. When (15) doesn’t
happen, we have
Ep[F] — Eq [Fi] > vji + 27772 > 0 + Q(e),

and verification will pass with probability > 1 — §’. Therefore, the expected number of samples
that will be needed until Success is reached is bounded by a

- (log®n + log(1/6
(14 0(1)) - (number of samples used by one iteration) = O < o8 1t t;g( / )> .
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