
Received: 10 October 2021 Revised: 8 February 2022 Accepted: 10 February 2022

DOI: 10.1002/nme.6942

RE S EARCH ART I C L E

Consistency of the full and reduced order models for
evolve-filter-relax regularization of convection-dominated,
marginally-resolved flows

Maria Strazzullo1 Michele Girfoglio1 Francesco Ballarin2 Traian Iliescu3

Gianluigi Rozza1

1mathLab, Mathematics Area, SISSA,
Trieste, Italy
2Department of Mathematics and Physics,
Catholic University of the Sacred Heart,
Brescia, Italy
3Department of Mathematics, Virginia
Tech, Blacksburg, Virginia, USA

Correspondence
Gianluigi Rozza, mathLab, Mathematics
Area, SISSA, via Bonomea 265, I-34136
Trieste, Italy.
Email: gianluigi.rozza@sissa.it

Funding information
H2020 European Research Council,
Grant/Award Number: CoG
AROMA-CFD 681447

Abstract
Numerical stabilization is often used to eliminate (alleviate) the spurious oscil-
lations generally produced by full order models (FOMs) in under-resolved or
marginally-resolved simulations of convection-dominated flows. In this arti-
cle, we investigate the role of numerical stabilization in reduced order models
(ROMs) of marginally-resolved, convection-dominated incompressible flows.
Specifically, we investigate the FOM–ROM consistency, that is, whether the
numerical stabilization is beneficial both at the FOM and the ROM level. As a
numerical stabilization strategy, we focus on the evolve-filter-relax (EFR) regu-
larization algorithm, which centers around spatial filtering. To investigate the
FOM-ROM consistency, we consider two ROM strategies: (i) the EFR-noEFR,
in which the EFR stabilization is used at the FOM level, but not at the ROM
level; and (ii) the EFR-EFR, in which the EFR stabilization is used both at the
FOM and at the ROM level. We compare the EFR-noEFR with the EFR-EFR in
the numerical simulation of a 2D incompressible flow past a circular cylinder in
the convection-dominated, marginally-resolved regime. We also performmodel
reductionwith respect to both time and Reynolds number. Our numerical inves-
tigation shows that the EFR-EFR is more accurate than the EFR-noEFR, which
suggests that FOM-ROM consistency is beneficial in convection-dominated,
marginally-resolved flows.
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1 INTRODUCTION

In the numerical simulation of incompressible fluid flows modeled by the Navier–Stokes equations (NSE), standard full
order models (FOMs) (e.g., finite element (FE) methods, finite volume (FV) methods, finite difference (FD) methods or
spectral elements (SE)) work well in the resolved regime, that is, when the number of degrees of freedom is large enough
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to represent the complex flow dynamics. However, FOMs are generally not accurate in the under-resolved regime, that is,
when the number of degrees of freedom is too low to represent the flow dynamics. We note that FOMs are also inaccurate
in the marginally-resolved regime, when the number of degrees of freedom is just enough to capture the flow dynamics.
However, the FOM inaccuracy is less pronounced in the marginally-resolved regime than in the under-resolved regime.
A classic illustration of under-resolved andmarginally-resolved FOMs is in the convection-dominated regime (i.e., at high
Reynolds numbers, when the viscosity is low and the convective term dominates the diffusion term), when the FOM
mesh-size is larger than the smallest flow scales. In this case, the FOMs generally yield spurious numerical oscillations
that significantly degrade the FOM numerical accuracy.

To eliminate or alleviate the spurious numerical oscillations of the FOMs in convection-dominated, under-resolved
and marginally-resolved simulations, various numerical stabilizationmethods have been proposed over the years. Many
of these FOM numerical stabilization approaches are surveyed in the research monograph of Roos et al..1 Regularized
models are a popular class of numerical stabilizationmethods inwhich spatial filtering is used to regularize (smooth) vari-
ous terms in the NSE and eliminate (alleviate) the spurious numerical oscillations of the FOMs in convection-dominated,
under-resolved and marginally-resolved simulations. A plethora of regularized models are surveyed in the research
monograph of Layton and Rebholz.2 A classical regularized model is the Leray model (proposed in 1934 by the great
mathematician Jean Leray3), which regularizes the convective field in theNSE nonlinearity. Another classical regularized
model is the evolve-filter-relax (EFR)model, which consists of three steps: (i) in the “evolve” step, a standard FOM is used
to obtain an intermediate approximation of the velocity; (ii) in the “filter” step, a spatial filter is used to filter (regular-
ize) the intermediate approximation obtained in step (i) and eliminate (alleviate) its spurious numerical oscillations;4-13
(iii) in the “relax” step, a more accurate velocity approximation is obtained as a convex combination between the filtered
and unfiltered flow approximations.14,15 The EFR model is a popular regularized model that has been used for different
classical numerical methods, for example, the FE method14,16 and the SE method.7 The main reasons for the popularity
of the EFR model are its simplicity and modularity: given a legacy FOM code, the “evolve” step is already implemented,
the “filter” step requires the addition of a simple subroutine, and the “relax” step is just one line of code.

To summarize the above discussion, when FOMs are used in the convection-dominated, under-resolved
(marginally-resolved) regime, regularized models (e.g., the Leray or the EFR models) can be used to eliminate (allevi-
ate) the spurious numerical oscillations. In general, the need for numerical stabilization in the convection-dominated,
under-resolved (marginally-resolved) regime is well known and well documented in the realm of classical numerical
methods: there are hundreds (if not thousands) of papers and several researchmonographs on this topic, and commercial
software often includes numerical stabilization strategies for the under-resolved (marginally-resolved) regime. Our goal
is to investigate this topic in a reduced order modeling context.

Reduced order models (ROMs) are relatively low-dimensional computational models that can reduce the FOM com-
putational cost by orders of magnitude.17-22 The basic ROM idea is to collect solutions of the system computed for several
parameter values, build a relatively low-dimensional manifold, and then perform efficient simulations on this mani-
fold for new parameter values. ROM strategies have been successfully applied in several contexts, from elliptic coercive
problems19,22 to Stokes flows23,24 to nonlinear frameworks.25-27 The ultimate ROM goal is to make an impact in important
applications (e.g., uncertainty quantification, shape optimization, flow control, and data assimilation), where numerical
simulations need to be repeated for a large number of physical and/or geometrical parameter values. In these applica-
tions, ROMs could represent an efficient alternative to FOMs, whose computational cost is generally prohibitively high.
We emphasize, however, that many of these practical applications take place in the convection-dominated regime. Since
in the convection-dominated, under-resolved (marginally-resolved) regime numerical stabilization plays a central role for
FOMs, a natural question is whether numerical stabilization is also beneficial in the ROM setting. To address this issue,
one could first ask the following question:

(Q1) Assuming that the FOM is run in the convection-dominated, resolved regime and the ROM is run in the
convection-dominated, under-resolved (marginally-resolved) regime, is numerical stabilization needed for the ROM?

For Galerkin projection based ROMs, it was shown in References 25,28-33 that, in the convection-dominated regime,
under-resolved (marginally-resolved) ROMs (i.e., ROMs in which the number of ROM basis functions is too low to
capture all the flow scales) yield numerical oscillations even though the snapshots used to construct the ROMs were
generated by FOMs used in a resolved regime (i.e., with a sufficiently large number of degrees of freedom to capture all
the flow scales). Furthermore, it was also shown that regularized ROMs (Reg-ROMs), for example, the Leray ROM33-35 and
the EFR-ROM,33 can alleviate the spurious numerical oscillations and significantly increase the standard ROM accuracy.
Finally, in Reference 33, it was shown that the EFR-ROMwas more accurate than the Leray ROM in the numerical simu-
lation of a three-dimensional flow past a cylinder. These results suggest that the answer to question (Q1) is that numerical
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stabilization is needed for Galerkin projection based ROMs in the convection-dominated, under-resolved
(marginally-resolved) regime and that Reg-ROMs can alleviate the numerical oscillations and increase the accuracy of
standard ROMs. (See Reference 36 for an alternative approach, based on a least-squares Petrov–Galerkin projection.)

A natural follow-up question to (Q1) is the following:
(Q2) Assuming that both the FOM and the ROM are run in convection-dominated, marginally-resolved regime, if

numerical stabilization is used for the FOM, is numerical stabilization still needed for the ROM?
To our knowledge, question (Q2) is still open. In this article, we take a step in answering question (Q2). Specifically,

we consider two scenarios in which both the FOMand the ROMare run in themarginally-resolved regime. In this setting,
we compare two types of ROMs:

(i) EFR-noEFR, in which we use the EFR regularization at the FOM level but not at the ROM level; and
(ii) EFR-EFR, in which we use the EFR regularization both at the FOM level and at the ROM level. In this article, we

call this strategy “FOM-ROM consistency”.

We compare the EFR-noEFR and the EFR-EFR in the numerical simulation of a 2D incompressible flow past a
circular cylinder with time-dependent Reynolds number.37,38 The numerical results show that the EFR-EFR is signifi-
cantly more accurate than the EFR-noEFR. Thus, these results suggest that the answer to question (Q2) is that, in the
convection-dominated, marginally-resolved regime, numerical stabilization should be used both at a FOM level and at a
ROM level, that is, that FOM-ROM consistency is beneficial.

To our knowledge, this is the first time the FOM-ROM consistency is investigated for the EFR regularization. The
FOM-ROM consistency has been advocated only in a few other settings, for example, for classical residual based stabiliza-
tion methods28,30,39 and for a variational multiscale method.40 The FOM-ROM consistency has also been investigated for
a hybrid approach in Reference 41, where which the Leray model was combined with the EF algorithm. We emphasize
that our study is different from the numerical investigation in Reference 41 in several key aspects.

1. The main difference between the two investigations is the algorithm used: we use the EFR algorithm, whereas
in Reference 41 the authors use a combination of Leray and EF algorithms. In particular, in our current investigation
we use the “relax” step, whereas the investigation in Reference 41 does not. This is a critical difference between the
two investigations, since the “relax” step has been shown to be essential in increasing the algorithm’s accuracy.14,15

2. An important difference between the two investigations is that in the current study we perform the model reduction
both in time and in the parametric space. Specifically, we leverage a nested proper orthogonal decomposition (POD)
approach to develop ROMs that include variations with respect to the Reynolds number, which is a critical parameter
in practical ROM applications. In contrast, the investigation in Reference 41 does not consider parametric variations
with respect to the Reynolds number (although it includes a standard POD reduction strategy with parametric filter
radius).

3. Another significant difference between the two investigations is the spatial discretization at a FOM level: in the current
study we employ the FE method, whereas the investigation in Reference 41 uses the FV method. The FE and FV
methods are two of the most used spatial discretizations in the numerical simulations of fluid flows. Since the FE
and FV methods yield different ROM formulations (e.g., different ROM operators42), it is important to investigate the
FOM-ROM consistency in both settings.

Remark 1. Although enforcing FOM-ROM consistency may seem a natural choice,28,43-45 there exist numerous investi-
gations that are FOM-ROM inconsistent. For example, for turbulent flow simulations, there exist investigations that use
a closure model at the FOM level, but not at the ROM level: On page 722 in Reference 46, the authors note that the FOM
data is generated by using the AERO-F code, which employs a DES turbulence model based on the Spalart–Allmaras
one-equationmodel. Instead of using a closuremodel, the ROMuses a least-squares Petrov–Galerkin (LSPG) formulation.
On page 17 in Reference 47, the authors mention that the FOM data is generated by using Vreman’s LES model. How-
ever, the ROM utilizes the LSPG formulation instead of a closure model. On page 15 in Reference 32 (see also Appendix
A), the authors note that the FOM data is generated by using a DNS. However, at the ROM level, the authors use sev-
eral closure models of LES type (e.g., the dynamic SGS model). In Reference 48, the author employs a regularized model
to generate the FOM data, and a data-driven LES closure model to construct the ROM. On page 604 in Reference 33,
the authors mention that the FOM data is generated by the same type of DNS as that used in Reference 32. However, at
the ROM level, the authors employ two types of regularized ROMs, that is, the EF-ROM and the Leray-ROM. On page
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317 in Reference 49, the authors note that RANS equations are used to generate the FOM data. However, the RANS
equations are not used at the ROM level. There are, of course, examples of FOM-ROM inconsistencies with respect to
discretization choices other than closure, for example, time discretization,32,46,50 nonlinearity discretization,51 and sta-
bilization. Examples of FOM-ROM inconsistency with respect to stabilization include,30,39 where the authors employ a
FOM equipped with residual-based stabilization, and discuss advantages (e.g., accuracy) and disadvantages (e.g., com-
putational cost) of including such stabilization in the ROM. The FOM–ROM inconsistency with respect to stabilization
is also investigated in the case of a residual-based variational multiscale (VMS) formulation in Reference 40, where
it is shown that dropping the VMS terms in the ROM formulation leads to a considerable deterioration of the ROM
accuracy.

The reason for the relative popularity of the FOM–ROM inconsistency is most probably its practical convenience:
to build the ROM, one is not restricted by the particular choices made in the FOM numerical discretization. Thus, the
FOM–ROM inconsistency belongs to the general class of approaches that consider the FOMdata and the ROMas different
entities. In this article, we espouse a different line of thought inwhich the FOMandROMare not completely independent.
Specifically, we show numerically that building ROMs that are consistent with the FOMs with respect to the particular
numerical regularization used can yield more accurate solutions.

The rest of the article is outlined as follows: In Section 2, we describe the FOM and the EFR algorithm. In Section 3,
we focus on ROMs for time reduction, and compare the EFR-noEFR and EFR-EFR in the numerical simulation of a
2D flow past a circular cylinder. In Section 4, we compare the EFR-noEFR and EFR-EFR when model reduction is per-
formed both in time and in the Reynolds number. Finally, in Section 5, we present conclusions and future research
directions.

2 THE FULL ORDER MODEL AND THE EVOLVE-FILTER-RELAX
ALGORITHM

In this section, we present the FOM and the EFR algorithm. As a mathematical model, we use the incompressible
Navier–Stokes equations (NSE). Given a fixed domainΩ ⊂ RD, withD = 2, 3,we consider themotion of an incompressible
fluid having velocity u

.
= u(x, t) ∈ U and pressure p

.
= p(x, t) ∈ Q represented by the NSE:

⎧⎪⎪⎨⎪⎪⎩

𝜕u
𝜕t

+ (u ⋅ ∇)u − 𝜈Δu + ∇p = 0 in Ω × (t0,T),
∇ ⋅ u = 0 in Ω × (t0,T),
u = uD on 𝜕ΩD × (t0,T),
− p n + 𝜈

𝜕u
𝜕n

= 0 on 𝜕ΩN × (t0,T),

(1)

endowed with the initial condition u = u0 in Ω × {t0}, where 𝜕ΩD ∪ 𝜕ΩN = 𝜕Ω, 𝜕ΩD ∩ 𝜕ΩN = ∅, 𝜈 is the kinematic
viscosity, and U and Q are suitable Hilbert function spaces. The functions uD and u0 are given.

The flow regime is defined by the Reynolds number

Re
.
= UL

𝜈
, (2)

where U and L represent the characteristic velocity and length scales of the system, respectively. When the
Reynolds number is large, the inertial forces dominate the viscous forces; this setting is generally referred to as the
convection-dominated regime. As explained in the introduction, it is well known that in the convection-dominated
regime standard spatial discretizations yield spurious numerical oscillations in under-resolved and marginally-resolved
numerical simulations. In our numerical investigations in Sections 3.4,3.5, and 4, we consider marginally-resolved
simulations. To alleviate the spurious numerical oscillations of standard spatial discretizations, we equip the FOM
with the evolve-filter-relax (EFR) algorithm. This strategy has been exploited with standard numerical discretiza-
tion techniques, ranging from FE to SE to FV methods: see, for example, References 5-13. In this article, we use
the FE method and a backward differentiation formula of order 1 (BDF1) for the space and time discretization,
respectively.

In what follows, we denote the semidiscrete FE velocity and pressure with u ∈ UNu
h and p ∈ QNp

h , respectively, where
Nu
h and N

p
h are the corresponding numbers of degrees of freedom. We denote the time step with Δt. Let tn = t0 + nΔt for
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n = 0, … ,NT , and T = t0 + NTΔt. We denote with yn the approximation of a generic quantity y at the time tn. The EFR
algorithm at the time tn+1 yields:

(I) Evolve ∶

{
wn+1−un

Δt
+ (wn+1 ⋅ ∇)wn+1 − 𝜈Δwn+1 + ∇pn+1 = 0 in Ω × {tn+1},

∇ ⋅wn+1 = 0 in Ω × {tn+1},

(II) Filter:
⎧⎪⎨⎪⎩
− 2𝛿2 Δwn+1 +wn+1 = wn+1 in Ω × {tn+1},
wn+1 = un+1D on 𝜕ΩD × {tn+1},
𝜕wn+1

𝜕n
= 0 on 𝜕ΩN × {tn+1}.

(III) Relax: un+1 = (1 − 𝜒) wn+1 + 𝜒 wn+1
,

where 𝜒 ∈ [0, 1] is a relaxation parameter. Herew is the evolved velocity andw is the filtered velocity. We note that using
wn+1 = un+1 in step (I) (i.e., the evolve step) is equivalent to solving the NSE. In step (II), we use a differential filter (DF)
with an explicit length scale, 𝛿, which is the filtering radius (i.e., the radius of the neighborhood from which the spatial
filter extracts information). The success of DFs is due to several appealing properties.52 For example, the DF leverages an
elliptic operator and acts as a spatial filter by eliminating the small scales (i.e., high frequencies) from the input data. Step
(III) is a relaxation step in which the EFR velocity approximation at the new time step is defined as a linear combination
of the approximations in Step (I) and Step (II). The relaxation parameter 𝜒 diminishes the magnitude of the numerical
diffusion7,12,15 and increases the accuracy; see, for example, the numerical results in Reference 14 and the theoretical
results in Reference 15. The scaling 𝜒 ∼ Δt is commonly used.15 In References 10 and 14, however, the authors provide
heuristic formulas that advocate higher values.

3 MODEL REDUCTION WITH RESPECT TO TIME

In this section, we focus on our POD-Galerkin ROM framework for model reduction with respect to time. In Section 3.1,
we give a brief description of the POD algorithm.19,25,53 Then, in Sections 3.2 and 3.3, we describe the two different ROM
algorithms proposed, that is, EFR-noEFR and EFR-EFR. Finally, in Sections 3.4 and 3.5, we report and discuss some
numerical experiments. All the ROM computations are performed with RBniCS,54 which is a FEniCS-based55 library.

3.1 The POD algorithm

The basic idea of ROMs is to build a low-dimensional frameworkwhere the problemat hand can be solvedmore efficiently
than the FOM. To this end, assume that we have two bases, {𝝋j}rj=1 and {𝜓j}rj=1, for the reduced velocity and pressure
spaces Ur and Qr, respectively, so that

ur
.
= ur(x, t) =

r∑
j=1
auj (t)𝝋j(x) and pr

.
= pr(x, t) =

r∑
j=1
apj (t)𝜓j(x), (3)

where {auj (t)}
r
j=1 and {a

p
j (t)}

r
j=1 are the sought time-varying coefficients.

56 The bases are linear combinations of the snap-

shots, that is, FOMsolutions computed at properly chosen time instances, {ui}
Nu
i=1 ⊆

{
uk

}NT
k=1 and {pi}

Np

i=1 ⊆
{
pk
}NT
k=1, where

Nu and Np denote the number of snapshots for velocity and pressure, respectively. We utilize the EFR at the FOM level
to generate the snapshots for both the EFR-noEFR and the EFR-EFR strategies. We employ the POD algorithm19,25,53 to
compress the snapshot information and to build the reduced spaces.

It is well known that, in a standard NSE setting, the POD may be combined with a supremizer stabilization for the
reduced velocity space in order to guarantee the well-posedness of the system. We emphasize that the main role of
the supremizers is to avoid spurious reduced pressure modes. To tackle the convection-dominated, marginally-resolved
regime, different approaches are needed. The supremizer stabilization proposed in Reference 24 relies on a supremizer
operator S ∶ QNp

h → UNu
h defined as

(S(p), 𝝉)U = (p,∇ ⋅ 𝝉), ∀𝝉 ∈ UNu
h . (4)
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Then, the considered reduced velocity space is

Urus
.
= POD

(
{ui}

Nu
i=1

)
⊕ POD

(
{S(pi)}

Nu
i=1

)
, (5)

where {pi}
Nu
i=1 in (5) are the pressure snapshots related to the velocity snapshots, that is, derived from the solution (ui, pi)

Nu
i=1.

However, a standard POD procedure is applied to {pi}
Np

i=1:

Qrp
.
= POD

(
{pi}

Np

i=1

)
,

where only the first rp PODeigenpairs are retained to build the bases. The supremizer technique leads to a reduced velocity
space of dimension rus = ru + rs. We denote the enriched reduced velocity dimension with rus, and consider {𝝋j}

rus
j=1 as the

enlarged velocity-supremizer basis. We define the pressure basis as {𝜓k}
rp
k=1.

3.2 EFR-noEFR

The EFR-noEFR consists of the Galerkin projection of the NSE on the reduced space, which leads to the solution of the
following system: at the time tn+1, find the pair (un+1r , pn+1r ) that solves

⎧⎪⎨⎪⎩
(
un+1r −unr

Δt
,𝝋i

)
+ 𝜈 (∇un+1r ,∇𝝋i) + ((un+1r ⋅ ∇)un+1r ,𝝋i) − (pn+1r ,∇ ⋅ 𝝋i) = 0,

(∇ ⋅ un+1r , 𝜓k) = 0,
(6)

for all i = 1, … , rus, and j = 1, … , rp. Algebraically, we are looking for the (n + 1)-st solution of{
1
Δt
M(un+1 − un) + 𝜈Kun+1 + C(un+1)un+1 − BTpn+1 = 0,

Bun+1 = 0,
(7)

where un+1 ∈ Rrus and pn+1 ∈ Rrp are the vectors of the reduced coefficients of (3) and represent the unknowns of the
problem,M is the reduced velocity space mass matrix, K the reduced stiffness matrix, that is,

Mij
.
= (𝝋i,𝝋j) and Kij

.
= (∇𝝋i,∇𝝋j), (8)

while

C(un+1)ij
.
= ((un+1 ⋅ ∇)𝝋i,𝝋j) and Bij

.
= (∇ ⋅ 𝝋i, 𝜓j). (9)

In Algorithm 1, we present the pseudocode for EFR-noEFR: the POD bases are extracted from EFR solutions, the
supremizer enrichment is performed, and the standard NSE are projected on the reduced spaces.

Algorithm 1. Pseudocode for EFR-noEFR

1: u0,uin,Nu,Np ⊳ Inputs needed
2: for n ∈ {0,… ,NT − 1} do ⊳ Time loop
3: (I) + (II) +(III) ⊳ EFR simulation
4: end for
5: {ui}

Nu
i=1 ⊆ {uk}NT

k=1 {pi}
Np

i=1 ⊆ {pk}NT
k=1 ⊳ Snapshot collection

6: Ur .
= POD

(
{ui}

Nu
i=1

)
⊕ POD

({
S(pi)

Nu
i=1

)}
⊳ Supremizer enrichment for velocity space

7: Qrp
.
= POD

(
{pi}

Np

i=1

)
⊳ Standard POD for pressure space

8: for n ∈ {0,… ,NT − 1} do ⊳ Time loop
9: Solve system (6) ⊳ Standard Galerkin projection
10: end for
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3.3 EFR-EFR

In the EFR-EFR, we apply a double stabilization. Specifically, we employ the EFR algorithm not only at the FOM level,
but also at the ROM level. Indeed, after the POD modes are built from the EFR snapshots, we apply the EFR steps (I),
(II), and (III) in a reduced setting, as specified in Algorithm 2:

(I)r

⎧⎪⎨⎪⎩
(
wn+1
r −unr
Δt

,𝝋i

)
+ 𝜈 (∇wn+1

r ,∇𝝋i) + ((wn+1
r ⋅ ∇)wn+1

r ,𝝋i) − (pn+1r ,∇ ⋅ 𝝋k) = 0,

(∇ ⋅wn+1
r , 𝜓i) = 0,

(II)r 2𝛿2 (∇wn+1
r ,∇𝝋i) + (wn+1

r ,𝝋i) = (wn+1
r ,𝝋i),

(III)r un+1r = (1 − 𝜒) wn+1
r + 𝜒 wn+1

r .

As we did in (3), we expand the reduced variableswr andwr of Ur as

wr
.
= wr(x, t) =

r∑
j=1
awj (t)𝝋j(x) and wr

.
= wr(x, t) =

r∑
j=1
awj (t)𝝋j(x). (10)

Thus, at the time instance tn+1, we solve the following system:

⎧⎪⎪⎨⎪⎪⎩

1
Δt
M(wn+1 − un) + 𝜈Kwn+1 + C(wn+1)wn+1 − BTpn+1 = 0,

Bwn+1 = 0,
2𝛿2Kwn+1 +Mw

n+1 = Mwn+1,

un+1 = (1 − 𝜒)wn+1 + 𝜒w
n+1

,

(11)

where wk+1 ∈ Rrus and w
k+1 ∈ Rrus are the unknown reduced coefficient vectors of the evolved and filtered velocity fields,

respectively, as defined in (10). All the matrices in (11) have been defined in (8) and (9). Although the DF has been widely
used in a ROM framework,33,35,41,57-59 to the best of our knowledge, the analysis of a Relax step is still limited.29 We stress
that, at the ROM level, the computational effort of the DF filter (II)r and the relaxation step (III)r is negligible and thus
the costs of the EFR-noEFR and EFR-EFR will be comparable. Moreover, the ROM model is consistent with respect to
the choice of 𝛿 and 𝜒 , which are the same as those used in the FOMmodel.

For the sake of clarity, in Table 1, we report all the acronyms that we use, together with the corresponding equations
or algorithms. We also note that, in what follows, we make no distinction between the EFR and FOM simulation, since
in the FOM numerical results the EFR strategy is always performed.

Remark 2. We remark that, for the NSE, the online phase still depends on the FOM dimension and this affects the
EFR-noEFR and EFR-EFR performances in terms of computational time. For this reason we are not presenting a com-
parative analysis between the FOM and the ROM solutions with respect to the computational costs. To overcome this
issue, hyper-reduction techniques, such as the empirical interpolationmethod (EIM), may be employed, see, for example,
References 19 (chapter 5) or 60. However, this goes beyond the scope of the present work.

TABLE 1 Acronyms

Acronym Equation or algorithm Offline stabilization Online stabilization

EFR (or FOM) (I) + (II) + (III) ✓

EFR-noEFR Algorithm 1 ✓

EFR-EFR Algorithm 2 ✓ ✓

EFR-noEFR and n-POD Algorithm 3 ✓

EFR-EFR and n-POD Algorithm 4 ✓ ✓
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Algorithm 2. Pseudocode for EFR-EFR

1: u0,uin,Nu,Np ⊳ Inputs needed
2: for n ∈ {0,… ,NT − 1} do ⊳ Time loop
3: (I) + (II) +(III) ⊳ EFR simulation
4: end for
5: {ui}

Nu
i=1 ⊆ {uk}NT

k=1 {pi}
Np

i=1 ⊆ {pk}NT
k=1 ⊳ Snapshot collection

6: Ur .
= POD

(
{ui}

Nu
i=1

)
⊕ POD

({
S(pi)

Nu
i=1

)}
⊳ Supremizer enrichment for velocity space

7: Qrp
.
= POD

(
{pi}

Np

i=1

)
⊳ Standard POD for pressure space

8: for n ∈ {0,… ,NT − 1} do ⊳ Time loop
9: (I)r + (II)r + (III)r ⊳ EFR at the reduced level
10: end for

IGURE 1 F The FE mesh

F IGURE 2 The computational domain, Ω. 𝜕ΩD
.
= 𝜕Ωin

D ∪ 𝜕Ωwall
D , where the inlet boundary 𝜕Ωin

D is represented by a dashed red line and
the no-slip boundaries by a solid blue line

3.4 Numerical results: Reconstructive regime

In this section, we analyze and compare the performances of EFR-noEFR (see Algorithm 1) and EFR-EFR (see
Algorithm 2). The goal is to investigate the FOM-ROM consistency for the EFR stabilization algorithm. We consider an
incompressible 2D flow past a cylinder at time-dependent Reynolds number 0 ≤ Re ≤ 100. This benchmark has been
thoroughly studied at full order level37,38,41 (Figure1).

We consider the motion of an incompressible flow in a domain Ω
.
= {[0, 2.2] × [0, 0.41]} ⧵ {(x, y) ∈

R2 such that (x − 0.2)2 + (y − 0.2)2 − 0.052 = 0}, which is depicted in Figure 2. We set 𝜈 = 10−3 and use no-slip bound-
ary conditions on 𝜕Ωwall

D , representing the union of the lower and upper walls of the channel, and the cylinder wall
(solid blue boundary in Figure 2), with a time varying inlet velocity profile uin on 𝜕Ωin

D (red dashed line in Figure 2). The
prescribed inlet condition is given by

uin
.
=
(

0.6
0.412

sin(𝜋t∕8)y(0.41 − y), 0
)
. (12)

Furthermore, on 𝜕ΩN (black line in Figure 2) we employ homogeneous Neumann conditions. The value of the initial
condition u0 is (0, 0). The time-dependent inlet velocity leads to a Reynolds number that varies in time,38 with
0 ≤ Re ≤ 100. We perform our tests on a triangular mesh with hmin = 4.46 ⋅ 10−3 and hmax = 4.02 ⋅ 10−2 (Figure 1). We
employ the Taylor-Hood P2 − P1 FE pair for velocity and pressure, respectively, and this leads to a FE space of dimension
Nh

.
= Nu

h + Np
h = 14053.
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Remark 3. We note that the mesh that we use in our numerical investigation does not feature the level of refinement
required by a direct numerical simulation, which is about 100k degrees of freedom.37 Therefore, although the Reynolds
number is not high, the computational setting is still relatively challenging for the FOM and ROM simulations. For the
EFR validation at the FOM level performed by investigating this benchmark on coarse meshes, the reader is referred
to References 10,14,61.

For both the FOM and the ROM simulations, we set Δt = 4 ⋅ 10−4 and 𝛿 = L ⋅ Re−3∕4 = 0.0032 as in Reference 41 (i.e.,
we set the filter radius to the Kolmogorov scale62,63).

Remark 4. The value of 𝛿 is still an arguable choice in CFD applications. For unstructured meshes, a common choice is
to set the filtering radius as the hmin. Indeed, 𝛿 = hmin avoids an excessive diffusion action of system over the elements
of the mesh.14 However, in the following experiments, we used the Kolmogorov scale L ⋅ Re−

3
4 to be consistent with the

parameters of Reference 10. Moreover, we underline that L ⋅ Re−
3
4 ∼ hmin, thus the choice is reasonable.

We define the L2 relative errors for the velocity and the pressure fields, respectively, as

Eu(t)
.
=

||u(t) − ur(t)||L2(Ω)||u(t)||L2(Ω) and Ep(t)
.
=

||p(t) − pr(t)||L2(Ω)||p(t)||L2(Ω) . (13)

Furthermore, we test the ROM accuracy by using the drag coefficient

CD(t)
.
= 2
U2L ∫𝜕ΩC

((2𝜈∇u − pI) ⋅ nC) ⋅ tC ds, (14)

and the lift coefficient

CL(t)
.
= 2
U2L ∫𝜕ΩC

((2𝜈∇u − pI) ⋅ nC) ⋅ nC ds, (15)

where nC and tC are the normal and tangential unit vectors to the cylinder boundary 𝜕ΩC (see Figure 2), respectively.
Specifically, we compute the L2-errors of the force coefficients:

ECD
.
=

||CD − CD||L2(t0,T)||CD||L2(t0,T) and ÊCD
.
=

||CD − ĈD||L2(t0,T)||CD||L2(t0,T) , (16)

ECL
.
=

||CL − CL||L2(t0,T)||CL||L2(t0,T) and ÊCL
.
=

||CL − ĈL||L2(t0,T)||CL||L2(t0,T) . (17)

We denote the EFR-noEFR drag and lift coefficients as CD(t) and CL(t), respectively. Similarly, we denote the EFR-EFR
drag and lift coefficients as ĈD(t) and ĈL(t).

Remark 5. At the FOM level, one has to tackle the issue of preserving the incompressibility constraint when applying the
DF (II). Indeed, while the DF preserves the incompressibility under periodic boundary conditions, it does not preserve
the incompressibility under no-slip boundary conditions.15,64,65 In our specific test case, this might translate in unaccept-
able divergence values near the cylinder boundary, 𝜕ΩC. In References 15 and 64, a Stokes differential filter is proposed as
a solution to recover the mass conservation at the DF level. However, as underlined by the authors, this is a more expen-
sive filtering operation. We decided to address this problem by exploiting another technique, easier to implement and
which gave us acceptable divergence values: a div-grad stabilization that penalizes the violation of the incompressibility
constraint.66,67 Namely, in the DF equations, we added a term of the form

𝛾∇(∇ ⋅wn+1), (18)

with 𝛾 = 100, as used in Reference 66. The reader interested in an overview of grad-div stabilization and the choice of 𝛾
may refer to References 67-69.

In our investigation, we present numerical experiments where the relaxation is considered and others where it is not.
When 𝜒 ≠ 1, we do not use the grad-div stabilization at the FOM level. The rationale for our choice is the following.
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F IGURE 3 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1, full order EFR results. Top left and top right: Av(t) and divergence nodal values over the
cylinder without grad-div stabilization. Bottom left and bottom right: Av(t) and divergence nodal values over the cylinder with grad-div
stabilization

When we utilize the Relax step (III), it expresses the velocity approximation as a convex combination of the intermediate
velocity approximation obtained in the Evolve step (I) and the filtered velocity approximation obtained in the Filter step
(II). Since the Evolve step (I) enforces the incompressibility constraint in the intermediate velocity approximation, the
velocity approximation in the Relax step (III) displays low divergence values and the grad-div stabilization is no longer
needed in this scenario.

We also note that other techniques may be employed to achieve divergence-free snapshots,67 such as the filters
described in Reference 57.

Experiment 1.
As a first step in the comparison of EFR-noEFR and EFR-EFR, we consider the EF stabilization strategy both at the

FOM level and at the ROM level. That is, we discard the Relax step (i.e., we consider 𝜒 = 1) both for EFR-noEFR and
for EFR-EFR. We note that, in a FOM (and, consequently, in a ROM) setting, the EF algorithm is overdiffusive and high
frequency modes are completely damped (see, e.g., Reference 10).

As already specified in Remark 5, we apply the grad-div stabilization at a FOM level to enforce the incompressibility
constraint along the cylinder boundary. The improvements with respect to the incompressibility of the flow are displayed
in Figure 3. We denote with (xci , y

c
i )
Nc
i=1 the mesh nodal coordinates related to the cylinder boundary 𝜕ΩC. In our case,

Nc = 100. We plot

Av(t) = 1
Nc

Nc∑
i
|∇ ⋅ u(xi, yi)|, (19)

that is, the averaged absolute value of the divergence over the nodal coordinates at time t, and the nodal values∇ ⋅ u(xi, yi),
for 1 ≤ i ≤ 100 for t = 4,which is the time instancewith theworst behaviorwith respect to the incompressibility constraint
violation (as can be seen in the left panel of Figure 3). As expected, the use of the grad-div stabilization allows us to reach
much smaller divergence values in time. Indeed, from values of order O(1), thanks to the grad-div stabilization term, we
obtain values of order O(10−4).

We note that we utilize the grad-div stabilization at the FOM level, but not at the ROM level. Thanks to the grad-div
stabilization, the velocity snapshots display acceptable divergence values. Thus, the divergence values of the ROMvelocity
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F I GURE 4 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1, r = 2 and t = 1. Top: full order EFR velocity magnitude. Bottom left: reduced EFR-noEFR
velocity magnitude. Bottom right: reduced EFR-EFR velocity magnitude

F IGURE 5 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1, r = 2 and t = 4. Top: full order EFR pressure field. Bottom left: reduced EFR-noEFR
pressure field. Bottom right: reduced EFR-EFR pressure field

approximations are relatively low and the grad-div stabilization is not needed at the ROM level, that is, FOM and ROM
are not consistent with respect to grad-div stabilization. Moreover, in our specific case, using the grad-div stabilization
at the ROM level with the same parameters as those used at the FOM level leads to an over-diffusive reconstruction of
the aerodynamics coefficients at the ROM level. For the application of the grad-div stabilization at the ROM level, the
interested reader is referred to Reference 70.

We collect Nu = Np = 200 snapshots for both velocity and pressure with an equally spaced grid in the time interval
[t0,T] = [0, 8]. After the POD procedure, we retain the first 2 modes for both velocity and pressure, representing 99.9%
of the snapshot energy. Here, for the sake of notation, we use r

.
= ru = rs = rp = 2. We show representative solutions of

velocity for t = 1 and pressure for t = 4 in Figures 4 and 5, respectively. It is clear that the EFR-noEFR is not able to recon-
struct the solution provided by the FOM, while the EFR-EFR leads to very accurate results for both the fields. To allow an
easy comparison, we plot the velocity and pressure fields on the FOM scale, that is, [0, 0.7] and [−0.71, 0.61], respectively.
The relative log-error temporal trend, displayed in Figure 6, confirms this conclusion: it shows how the EFR-EFR yields
more accurate results for both velocity and pressure, reaching values around 10−3 for the velocity, and reducing the error
by two orders of magnitude with respect to the EFR-noEFR for both variables. The comparison between FOM and ROM
aerodynamic coefficients over time is reported in Figure 7. The coefficients are well recovered by the EFR-EFR, while
the EFR-noEFR is not able to accurately approximate them. Indeed, the relative errors (16) and (17) have the following
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F IGURE 6 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1 and r = 2. Left: comparison of relative log-errors over time of the velocity profiles: EFR full
order versus EFR-noEFR solutions and EFR full order versus EFR-EFR solutions, represented by solid blue and dashed orange lines,
respectively. Right: analogous representation for the relative log-errors over time of the pressure profiles

F IGURE 7 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1 and r = 2. Left: CD(t) comparison over time. Right: CL(t) comparison over time

TABLE 2 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1 and r = 2

EFR-noEFR EFR-EFR

Maximum Minimum Average Maximum Minimum Average

Eu(t) 3.721e+1 2.533e-1 1.115e+0 3.298e+0 3.145e-4 6.252e-2

Ep(t) 7.450e+0 3.431e-3 2.306e+0 1.620e-1 2.877e-2 1.701e-2

Note: Maximum, minimum, and average relative error over the considered time interval for velocity and pressure fields.

values: ECD = 1.02, ÊCD = 0.13, and ECL = 1.69, ÊCL = 0.11. The advantage of using the EFR-EFR is remarkable, since we
are reducing the relative L2-errors of the force coefficients by an order of magnitude. Table 2 lists the maximum, mini-
mum, and average relative errors for the velocity and pressure fields in the EFR-noEFR and EFR-EFR settings. Overall,
the results in Table 2 are consistent with the plots in Figure 6. With respect to the velocity approximation, the EFR-EFR
is significantly more accurate than the EFR-noEFR. The maximum, minimum, and average relative errors are at least
one order of magnitude lower for the EFR-EFR than for the EFR-noEFR. With respect to the pressure approximation,
the EFR-EFR is again more accurate than the EFR-noEFR, but the improvement is not as dramatic as for the velocity
approximation.

Experiment 2. The next step in our comparison of EFR-noEFR and EFR-EFR is the numerical investigation of the
EFR stabilization strategy both at the FOM level and at the ROM level. Specifically, we use 𝜒 = 5 ⋅ Δt = 0.002 in the Relax
step for both the EFR-noEFR and the EFR-EFR. This choice limits the amount of dissipation introduced by the DF in the
Filter step of the EFR algorithm, and yields a more challenging test problem than Experiment 1 for both the EFR-noEFR
and the EFR-EFR. Specifically, Experiments 1 and 2 share the same computational setting except that for Experiment 1
no relaxation is performed. Indeed, in Experiment 1 we use 𝜒 = 1, and thus

un+1r = (1 − 𝜒) wn+1
r + 𝜒 wn+1

r = wn+1
r . (20)
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The relationship in (20) shows that, in Experiment 1, the final velocity coincides with the filtered velocity. This setting
is overly diffusive and, as a result, the vortices that appear in Experiment 2 are totally damped in Experiment 1. We also
note that, in contrast with Experiment 1, in Experiment 2 we do not use the grad-div stabilization at the FOM level (see
Remark 5). Indeed, in Experiment 2, the divergence values are O(10−2) in the worst case scenario. Thus, the grad-div
stabilization is no longer needed and the FOM and ROM are consistent with respect to the grad-div stabilization.

Remark 6. As already noted in Section 2, 𝜒 ∼ Δt is a common choice used in the literature for academic benchmarks
(see, e.g., Reference 15). However, in Reference 14 the authors propose the scaling 𝜒 = cΔt. Thus, we choose c = 5, that
is, a higher 𝜒 value, which introduces a larger amount of dissipation. This setting can be of interest in more realistic
applications.10,14

We construct and test the EFR-noEFR and EFR-EFR on the time interval [4, 8]. The rationale for our choice is that the
flow dynamics is significantly more complex on the time interval [4, 8] than on the time interval [0, 4] (see Experiment 3).

In order to approximate all the relevant features of the flow field, we increase the number of snapshots. Indeed, to build
the EFR-noEFR and EFR-EFR, we collectNu = Np = 2000 snapshots, which are equally spaced on the time interval [4, 8].
To retain 99.9% of the snapshots energy, we employ the following numbers of POD basis functions to build the ROMs:
ru = 43, rs = rp = 8. We note that, with respect to Experiment 1, the system shows a slower decay of the eigenvalues and
thereforemoremodes need to be used to construct theROMs. Thehigher accuracy of EFR-EFR is displayed inFigure 8: the
EFR-EFR solution perfectly matches the FOM solution, while the EFR-noEFR solution is slightly different from the FOM
solution. The relative log-errors in Figure 9 (left) yield the same conclusions: the EFR-EFR velocity errors are an order of
magnitude lower than the EFR-noEFR velocity errors. We also note that EFR-EFR is more accurate than the EFR-noEFR
in approximating the pressure field, especially at the beginning and at the end of the time interval (see Figures 9 (right)
and 10). The force coefficients CD(t) and CL(t) plotted in Figure 11 show that, while both EFR-noEFR and EFR-EFR are
accurate, the latter is more accurate than the former. This is also illustrated by the L2-errors of the force coefficients:
ECL = 0.26,ÊCL = 0.11 andECD = 0.018,ÊCD = 0.010. Themaximum,minimum, and average error values over time for the
velocity and pressure fields, which are listed in Table 3, confirm that the EFR-EFR is more accurate than the EFR-noEFR.
The improvement in the EFR-EFR is also highlighted by the Pareto plot in Figure 12. Indeed, fixing rp = rs = 8 and
choosing ru = 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 shows that, over this range of ru values, the EFR-EFR performs better
than theEFR-noEFRwith respect to both the velocity and the pressure approximations. Indeed, theEFR-EFRwith ru = 30
yields a low relative error that the EFR-noEFR cannot attain by increasing its ru value (and, consequently, its relative wall
time).

Overall, the numerical investigation in Experiment 2 yields the same conclusions as the numerical investigations in
Experiment 1: the EFR-EFR is more accurate than the EFR-noEFR with respect to all the criteria used, that is, pointwise,
average, maximum, and minimum velocity and pressure errors, lift and drag coefficient errors, and Pareto front. Thus,
these numerical results suggest that the FOM-ROM consistency is beneficial for the EFR stabilization strategy.

F IGURE 8 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002, ru = 43, rp = rs = 8 and t = 8. Reconstruction for t ∈ [4, 8]. Top: full order EFR
velocity magnitude. Bottom left: reduced EFR-noEFR velocity magnitude. Bottom right: reduced EFR-EFR velocity magnitude
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F IGURE 9 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002 and ru = 43, rp = rs = 8. Reconstruction for t ∈ [4, 8]. Left: comparison of relative
log-errors over time for the velocity profiles: EFR-noEFR (solid blue line) and EFR-EFR (dashed orange line). Right: comparison of relative
log-errors over time for the pressure profiles: EFR-noEFR (solid blue line) and EFR-EFR (dashed orange line)

F IGURE 10 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002, ru = 43, rp = rs = 8, and t = 8. Reconstruction for t ∈ [4, 8]. Top: full order EFR
pressure field. Bottom left: Reduced EFR-noEFR pressure field. Bottom right: reduced EFR-EFR pressure field

F IGURE 11 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002, ru = 43, and rp = rs = 8. Reconstruction for t ∈ [4, 8]. Left: CD(t) comparison over
time: all the approaches almost coincide. Right: CL(t) comparison over time: full order EFR and EFR-EFR lift coincide (solid blue and dotted
green lines)
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TABLE 3 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002, ru = 43, rp = rs = 8

EFR-noEFR EFR-EFR

Maximum Minimum Average Maximum Minimum Average

Eu(t) 1.718e-1 1.561e-3 6.781e-2 2.267e-2 1.446e-3 5.175e-3

Ep(t) 8.815e-2 1.068e-2 5.366e-2 5.491e-2 7.753e-3 2.688e-2

Note: Reconstruction for t ∈ [4, 8]. Maximum, minimum, and average relative error over the considered time interval for velocity and pressure fields.

F IGURE 12 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002 and ru = {30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50}, rp = rs = 8. Pareto plots for velocity
(orange) and pressure (teal) fields: averaged relative error in time versus relative wall time for varying ru

Experiment 3.
In this experiment, which is based on the computational setting in References 37,38,41, we investigate the EFR-noEFR

and EFR-EFR models in a regime that is more challenging than the regime used in Experiment 2. Specifically, we con-
sider a regime that, while still marginally-resolved, employs a coarser resolution than Experiment 2 (i.e., relatively fewer
snapshots and relatively fewer basis functions) and two different dynamical regimes (a laminar regime in the first half
of the time interval, and a more complex regime in the second half). This investigation focuses on the reconstruction
of the whole time interval [0, 8] using Nu = Np = 2000 snapshots that are equally spaced in this time interval. Thus,
we are using coarser resolution than the resolution used in Experiment 2, since we are employing the same number of
snapshots as in Experiment 2 but consider a time interval that is twice as long as that used in Experiment 2. Further-
more, in the first half of the time interval the flow displays laminar dynamics, whereas in the second half it displays
more complex dynamics (e.g., vortex shedding). We note that the mixed dynamics in Experiment 3 is more challeng-
ing to represent at the ROM level than the dynamics in Experiment 2 (i.e., in the time interval [4, 8]). In order to retain
99.9% of the energy of the snapshots, we choose ru = 47 and rp = rs = 7. We note that in Experiment 3 we utilize a
similar number of basis functions as in Experiment 2. Since the dynamics in Experiment 3 is more challenging than
the dynamics in Experiment 2, we conclude that the Experiment 3 ROM resolution is coarser than the Experiment
2 resolution.

Overall, in Experiment 3, neither EFR-noEFR nor EFR-EFR give satisfactory results. Furthermore, both EFR-noEFR
and EFR-EFR are significantly less accurate in Experiment 3 than in Experiment 2. Indeed, the log-relative errors
for the velocity field reported in Figure 13 (left) show that, even if the EFR-EFR performs better on the first
half of the time interval, both the EFR-noEFR and the EFR-EFR are inaccurate on the second half of the time
interval.

This is confirmed by the velocity solution for t = 8 displayed in Figure 14. The plot in Figure 13 (left) shows that,
while for t ∈ [0, 4] EFR-EFR yields relative errors below 10−2 for the velocity field, this advantage is lost in the last part of
the time interval, reaching unacceptable errors values (close to 1). On the other hand, concerning the pressure field (see
Figure 13(right)), EFR-EFR is able to perform better than EFR-noEFR for almost the entire time window. However, the
error values are high, even greater than 1 for some time instances. Moreover, the pressure field presents a checkerboard
type of instability (although EFR-noEFR model is inf-sup stable thanks to supremizer stabilization) and the reconstruc-
tion is inaccurate, as displayed in Figure 15. These issues are visible also in Figure 16: the lift coefficient CL(t) is well
recovered only for the first part of the time interval, when the vortex shedding does not occur and the low frequencymodes
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F IGURE 13 Experiment 3: 𝛿 = 0.0032, 𝜒 = 0.002 and ru = 47, rp = rs = 7. Left: comparison of relative log-errors over time for the
velocity profiles: EFR-noEFR (solid blue line) and EFR-EFR (dashed orange line). Right: comparison of relative log-errors over time for the
pressure profiles: EFR-noEFR (solid blue line) and EFR-EFR (dashed orange line)

F IGURE 14 Experiment 3: 𝛿 = 0.0032, 𝜒 = 0.002, ru = 47, rp = rs = 7 and t = 8. Top: full order EFR velocity magnitude. Bottom left:
reduced EFR-noEFR velocity magnitude. Bottom right: reduced EFR-EFR velocity magnitude

F IGURE 15 Experiment 3: 𝛿 = 0.0032, 𝜒 = 0.002, ru = 47, rp = rs = 7 and t = 8. Top: full order EFR pressure field. Bottom left: reduced
EFR-noEFR pressure field. Bottom right: reduced EFR-EFR pressure field
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F I GURE 16 Experiment 3: 𝛿 = 0.0032, 𝜒 = 0.002 and ru = 47, rp = rs = 7.) Left: CD(t) comparison over time: all the approaches almost
coincide. Right: CL(t) comparison over time

are dominant. Even the drag coefficient CD(t) is not reconstructed in a satisfactory way and shows spurious oscillations
for t > 4. This behavior is worse in the EFR-noEFR results, which exhibit larger amplitude oscillations. The EFR-noEFR
and EFR-EFR yield the following L2−errors of the force coefficients: ECL = 2.39, ÊCL = 1.2, ECD = 0.33, and ÊCD = 0.15.
Overall, although the EFR-EFR results are significantly more accurate than the EFR-noEFR results, both ROMs yield rel-
atively inaccurate results. These results show that, as expected, utilizing a more challenging regime (i.e., a coarser ROM
resolution andmixed dynamics) in Experiment 3 deteriorates the EFR-noEFRandEFR-EFRperformance.We emphasize,
however, that even in this more challenging regime EFR-EFR performs better than EFR-noEFR.

3.5 Numerical results: Predictive regime

This section focuses on preliminary results on the predictive capabilities of the EFR-noEFR and EFR-EFR algorithms.We
stress that the offline phase and the parameters 𝜒 and 𝛿 do not change with respect to the reconstructive setting although
this choice may be suboptimal. In this section, we answer the following questions: (i) are the EFR-noEFR and EFR-EFR
algorithms predictive? (ii) Which algorithm performs better in the predictive regime?

Experiment 1. To study the predictability of ERF-EFR and EFR-noEFR strategies, we collect Nu = Np = 200 equally
spaced snapshots for both velocity and pressure in [0,8]. After the POD procedure, we retain the first 2 modes for both
velocity and pressure since they represent 99.9% of the snapshot energy. We recall that the filter radius is 𝛿 = 0.0032
and the relaxation parameter is 𝜒 = 1. We test the predictive capability of the model in the time interval [8,12]. In
terms of relative velocity errors, EFR-EFR performs better than EFR-noROM, reaching values around 10−2 and reducing
the error by two order of magnitude, as illustrated in the left plot of Figure 17. Focusing on the pressure field relative
error, that is, the right plot of Figure 17, the EFR-noEFR strategy performs better until t = 9.4. After that value, the
EFR-noEFR error increases, while the EFR-EFR remains stable around 10−1. For the sake of completeness, we report
the L2-error values over the force coefficients: ECL = 0.23, ÊCL = 0.08 and ECD = 1.41, ÊCD = 1.49. These values are con-
sistent with Figure 18, where the EFR-EFR lift representation is more accurate than the EFR-noEFR one, while the
opposite happens for the drag coefficient. Table 4 lists maximum, minimum, and average error values over time for
the velocity and pressure fields. This table confirms that, overall, EFR-EFR is more accurate than EFR-noEFR. The
only exception is the minimum error for the pressure field, which is smaller for the EFR-noEFR strategy, as already
pointed out in analyzing Figure 17. The numerical results for Experiment 1 yield the following conclusions: (i) both
approaches are predictive in time, and (ii) EFR-EFR is, overall, more accurate than EFR-noEFR, except for the drag
representation.

Experiment 2. The next step is represented by the analysis of the predictive regime in the setting of Experiment 2.
Namely, we collect Nu = Np = 2000 equally spaced snapshots in the time interval [4, 8]. We employ ru = 43, rs = rp = 8
to retain 99.9% of the snapshots energy. In this case 𝛿 = 0.0032 and 𝜒 = 0.002.

We analyze the predictive regime up to T = 11. We do not go further in time, since for t > 11 the Newton’s solver of
the FOM simulation does not converge. From the plots in Figures 19 and 20, it is clear that EFR-noEFR and EFR-EFR
are comparable. In the relative error plots of Figure 19, we see how both approaches struggle to represent velocity and
pressure fields for large time values. Moreover, EFR-noEFR and EFR-EFR are not capable to accurately predict the force
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F IGURE 17 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1 and r = 2. Prediction for t ∈ [8, 12]. Left: comparison of relative log-errors over time of
the velocity profiles: EFR full order versus EFR-noEFR solutions and EFR full order versus EFR-EFR solutions, represented by solid blue and
dashed orange lines, respectively. Right: analogous representation for the relative log-errors over time of the pressure profiles

F IGURE 18 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1 and r = 2. Prediction for t ∈ [8, 12]. Left: CD(t) comparison over time. Right: CL(t)
comparison over time

TABLE 4 Experiment 1: 𝛿 = 0.0032, 𝜒 = 1, r = 2

EFR-noEFR EFR-EFR

Maximum Minimum Average Maximum Minimum Average

Eu(t) 1.239e+1 2.891e-1 8.466e-1 1.157e+0 1.739e-2 5.692e-2

Ep(t) 5.508e-1 9.898e-3 1.613e-1 1.818e-1 4.814e-2 8.480e-2

Note: Prediction for t ∈ [8, 12]. Maximum, minimum, and average relative error over the considered time interval for velocity and pressure fields.

F IGURE 19 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002 and ru = 43, rp = rs = 8. Prediction for t ∈ [8, 11]. Left: comparison of relative
log-errors over time of the velocity profiles: EFR full order versus EFR-noEFR solutions and EFR full order versus EFR-EFR solutions,
represented by solid blue and dashed orange lines, respectively. Right: analogous representation for the relative log-errors over time of the
pressure profiles
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F I GURE 20 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002 and ru = 43, rp = rs = 8. Prediction for t ∈ [8, 11].) Left: CD(t) comparison over time.
Right: CL(t) comparison over time

TABLE 5 Experiment 2: 𝛿 = 0.0032, 𝜒 = 0.002, ru = 43, rp = rs = 8

EFR-noEFR EFR-EFR

Maximum Minimum Average Maximum Minimum Average

Eu(t) 1.000e+0 1.558e-1 4.549e-1 1.000e+0 3.211e-2 4.437e-1

Ep(t) 1.721e+0 2.569e-2 6.856e-1 1.704e+0 2.040e-2 6.779e-1

Note: Prediction for t ∈ [8, 11]. Maximum, minimum, and average relative error over the considered time interval for velocity and pressure fields.

coefficients, as illustrated in Figure 20. These results are, respectively, confirmed by Table 5 and by the L2−error over the
force coefficients:ECL = 1.00,ÊCL = 1.00, and ECD = 0.99, ÊCD = 0.99. EFR-EFR performs slightly better than EFR-noEFR
for all criteria, except for the drag coefficient. We note that, as in Experiment 3, both the EFR-EFR and the EFR-noEFR
approaches struggle since the flow we investigate displays mixed dynamics (more complex dynamics in the time interval
[4, 8] and more laminar dynamics in [8, 11]).

Overall, we conclude that (i) both the EFR-EFR and the EFR-noEFR approaches struggle in the predictive regime,
and (ii) both approaches are comparable in terms of accuracy with respect to all the criteria. Finally, we also note that we
do not investigate the EFR-EFR and EFR-noEFR algorithms in the predictive regime of themore challenging Experiment
3 since the two approaches struggled in the predictive regime of Experiment 2.

4 MODEL REDUCTION: WITH RESPECT TO TIME AND THE REYNOLDS
NUMBER

In Section 3, we showed that the EFR-EFR is more accurate than the EFR-noEFR when model reduction is performed
in the time domain. In this section, we perform a numerical investigation of the EFR-EFR and EFR-noEFR when model
reduction is performed not only in the time domain (as we did in Section 3), but also in the parameter domain (i.e.,
with respect to 𝜈). To this end, we consider the NSE (1) with a variable kinematic viscosity: 𝜈 ∈ [𝜈min, 𝜈max] ⊂ R+. From
definition (2), it is clear that changing 𝜈 will change the Reynolds number, which will vary in the interval [0,Remax] ⊂ R+.

To perform the model reduction both in the time domain and in the parameter domain, a standard POD approach
that performs a simultaneous compression in time and in the parametric space would require a significant computational
effort. Thus, to avoid the high computational cost of this brute force POD approach, in our numerical investigation we use
a nested-POD (n-POD) algorithm. This compression algorithm is very popular (and goes by different names) in the ROM
community: see, for example, References 71-74. In the n-POD algorithm, the compression is performed in two different
stages, which operate first in time and then in the parametric space. Namely, first each time trajectory related to the param-
eter set explored is compressed, and then a POD reduction is performed on the already reduced parametric solutions.
By decoupling the model reduction in time from the model reduction in the parameter domain, the n-POD algorithm
achieves significant reductions in computational time and storage with respect to the monolithic POD algorithm. In our
numerical investigation, we use the n-POD algorithm presented in Reference 75. The n-POD is based on two decoupled
levels.
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1. A first compression of the time trajectories. In this first phase, a training set over the parameter space is chosen: {𝜈i}
N𝜈

i=1.
For each 𝜈i, a standard POD in time is applied, retaining the first Nt

u,Nt
p,Nt

s modes for the velocity, pressure, and
supremizer variables, respectively.We denote thesemodes scaled by their singular valueswithmj

u(𝜈i)
,mj

p(𝜈i)
andmj

S(p(𝜈i))
,

for j = 1, … ,Nt .
= Nt

u = Nt
p = Nt

s . For the sake of simplicity, in our setting we choose the same number of modes for
all the variables and for all the parameters in the training set. However, in principle, one can choose the number of
modes for each parametric snapshot through energy criteria, and the number can be different for each variable.

2. A global compression of the scaledmodes. Using the POD procedure presented in Section 3, the following reduced space
for velocity

Urus
.
= POD

({
mj
u(𝜈1)

}Nt

j=1
, … ,

{
mj
u(𝜈N𝜈 )

}Nt

j=1

)
⊕ POD

({
mj
S(p(𝜈1))

}Nt

j=1
, … ,

{
mj
S(p(𝜈N𝜈 ))

}Nt

j=1

)
,

and the following space for pressure

Qrp
.
= POD

({
mj
p(𝜈1)

}Nt

j=1
, … ,

{
mj
p(𝜈N𝜈 )

}Nt

j=1

)
are obtained.

For the sake of readability, we introduce the following notation

Ur .
= n-POD

(
{u(𝜈i)}

N𝜈

i=1;N
t
)
⊕ n-POD

(
{S(p(𝜈i))}

N𝜈

i=1;N
t
)

and

Qrp
.
= n-POD

(
{p(𝜈i)}

N𝜈

i=1;N
t
)

for the ROM velocity and pressure fields, respectively. Here,Nt denotes the first phase of the time evolution compression,
while r and rp are the final reduced space dimensions for velocity and pressure, after supremizer stabilization.

Pseudocodes that describe the EFR-noEFR and EFR-EFR approaches coupled with the n-POD algorithm are reported
in Algorithms 3 and 4, respectively.

Algorithm 3. Pseudocode for EFR-noEFR with n-POD

1: u0,uin,Nu,Np,N𝜈 ,Nt ⊳ Inputs needed
2: for i ∈ {1,… ,N𝜈} do ⊳ Parameter loop
3: for n ∈ {0,… ,NT − 1} do ⊳ Time loop
4: (I) +(II) + (III) ⊳ EFR simulation
5: end for
6: {u(𝜈i)j}

Nu
j=1 ⊆ {uk(𝜈i)}

NT
k=1 {p(𝜈i)j}

Np

j=1 ⊆ {pk(𝜈i)}
NT
k=1 ⊳ Snapshot collection

7: end for
8: Ur .

= n-POD
(
{u(𝜈i)}

N𝜈

i=1;N
t
)
⊕ n-POD

({
S(p(𝜈i))

N𝜈

i=1

)}
⊳ Supremizer enrichment for velocity

9: Qrp
.
= n-POD

(
{p(𝜈i)}

N𝜈

i=1;N
t
)

⊳ Standard n-POD for pressure space
10: for n ∈ {0,… ,NT − 1} do ⊳ Time loop
11: Solve system (6) ⊳ Standard Galerkin projection
12: end for

Experiment 4. In this experiment, we use the same test problem as the one used in Section 3.4 generalized to a
parametric kinematic viscosity.

In our numerical investigation, we consider the parametric domain 𝜈 ∈ [10−3, 1.575 × 10−3], which yields Remax ∈
[65,100]. To explain the rationale for choosing this parametric domain, we define the averaged Reynolds number as

Re
.
= UL

𝜈
, (21)
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Algorithm 4. Pseudocode for EFR-EFR with n-POD

1: u0,uin,Nu,Np,N𝜈 ,Nt ⊳ Inputs needed
2: for i ∈ {1,… ,N𝜈} do ⊳ Parameter loop
3: for n ∈ {0,… ,NT − 1} do ⊳ Time loop
4: (I) +(II) + (III) ⊳ EFR simulation
5: end for
6:

{
u(𝜈i)j

}Nu

j=1
⊆

{
uk(𝜈i)

}NT

k=1

{
p(𝜈i)j

}Np

j=1
⊆

{
pk(𝜈i)

}NT

k=1
⊳ Snapshot collection

7: end for
8: Ur .

= n-POD
(
{u(𝜈i)}

N𝜈

i=1;N
t
)
⊕ n-POD

({
S(p(𝜈i))

N𝜈

i=1

)}
⊳ Supremizer enrichment for velocity

9: Qrp
.
= n-POD

(
{p(𝜈i)}

N𝜈

i=1,N
t
)

⊳ Standard n-POD for pressure space
10: for n ∈ {0,… ,NT − 1} do ⊳ Time loop
11: (I)r + (II)r + (III)r ⊳ EFR at the reduced level
12: end for

whereU is the time averagedmagnitude of the inflowvelocity,uin. For our parametric domain,we choose 𝜈 = 1.575 × 10−3
since this value yields , which is the lower bound of the kinematic viscosity that achieves a vortex shedding behavior in
the case of a steady inlet condition (see, e.g., Reference 76). We note that we choose a parametric domain that ensures
only one type of flow dynamics (i.e., a vortex shedding regime). Choosing a parametric domain that spans various flow
dynamics would be a more challenging test for the proposed ROMs, as noted in Experiment 3.

In the numerical investigation in Section 3, we used the Kolmogorov scale62,63 as a filtering radius. However, the
Kolmogorov scale changes with respect to the choice of the kinematic viscosity, 𝜈. Thus, in Experiment 4, we use 𝛿 =
hmin, that is, a classical choice for nonuniform meshes, as specified in Remark 4. We also fix 𝜒 = 0.002. To build the
ROM basis, we collect Nu = Np = 2000 equally spaced snapshots in the time interval [4, 8], which is the setting used in
Experiment 2. In the n-POD algorithm, we perform the first compression choosing Nt = 60 for each sampled parametric
instance. We pick N𝜈 = 20 parameters using a log-equispaced distribution. We choose the log-uniform distribution since
it allows us to collect more snapshots around the value 𝜈 = 10−3, where we believe more information is needed because
of higher vortex shedding frequency. We choose theNt value heuristically, seeking an accurate approximation of the time
evolution for the various parametric snapshots. We pick N𝜈 = 20 seeking to minimize the computational costs of the
building phase. Of course, a more detailed investigation would probably find better parameters, that is, parameters that
yield more accurate approximations. In the second stage of compression of the n-POD algorithm, we retain 99.9% of the
system energy employing ru = 33, rs = rp = 3.

In Section 4.1, we compare the EFR-noEFR with the EFR-EFR for Remax = 65 (i.e., 𝜈 = 1.575 × 10−3). In Section 4.2,
we compare the EFR-noEFR with the EFR-EFR for Remax = 100 (i.e., 𝜈 = 10−3).

4.1 Reynolds number Remax = 65: Reconstructive regime

The relative log-errors plotted in Figure 21 for both the velocity and the pressure are lower for the EFR-EFR than
for the EFR-noEFR. The EFR-EFR is also more accurate than the EFR-noEFR in approximating the velocity field at
t = 8 (Figure 22) and the pressure field at t = 5 (Figure 23). Both algorithms yield accurate approximations for the
drag coefficient, CD(t) (Figure 24, left) and relatively inaccurate approximations for the lift coefficient, CL(t) (Figure 24,
right). Table 6 lists the maximum, minimum, and average error values over time for the velocity and pressure fields,
and shows that the EFR-EFR is more accurate than the EFR-noEFR. However, the EFR-noEFR strategy is slightly
more accurate in the reconstruction of the force coefficients in terms of L2−errors: ECL = 1.75, ÊCL = 1.84, ECD = 0.025,
and ÊCD = 0.030.

Overall, the improvement in the EFR-EFR is highlighted by the left Pareto plot in Figure 25. Indeed, fixing rp = rs = 3
and choosing ru = 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40 shows that, over this range of ru values, the EFR-EFR performs
better than the EFR-noEFRwith respect to both the velocity and the pressure approximations. Indeed, the EFR-EFRwith
ru = 20 yields a low relative error that the EFR-noEFR cannot attain by increasing its ru value (and, consequently, its
relative wall time).
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F IGURE 21 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002 and ru = 33, rp = rs = 3, Remax = 65. Reconstruction for t ∈ [4, 8].) Left: comparison of
relative log-errors of the velocity profiles: EFR-noEFR (solid blue line) and EFR-EFR (dashed orange line). Right: comparison of relative
log-errors of the pressure profiles: EFR-noEFR (solid blue line) and EFR-EFR (dashed orange line)

F IGURE 22 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002 and ru = 33, rp = rs = 3, Remax = 65, and t = 8. Top: full order EFR velocity magnitude.
Bottom left: reduced EFR-noEFR velocity magnitude. Bottom right: reduced EFR-EFR velocity magnitude

F IGURE 23 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002 and ru = 33, rp = rs = 3, Remax = 65, and t = 5. Top: full order EFR pressure field.
Bottom left: reduced EFR-noEFR pressure field. Bottom right: reduced EFR-EFR pressure field
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F I GURE 24 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002 and ru = 33, rp = rs = 3, Remax = 65. Reconstruction for t ∈ [4, 8].) Left: CD(t)
comparison over time. Right: CL(t) comparison over time

TABLE 6 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, rp = rs = 3, and Remax = 65

EFR-noEFR EFR-EFR

Maximum Minimum Average Maximum Minimum Average

Eu(t) 1.086e-1 1.229e-3 2.636e-1 3.635e-2 1.230e-3 4.269e-3

Ep(t) 1.157e-1 1.136e-2 6.507e-1 6.316e-2 8.833e-3 3.651e-2

Note: Reconstruction for t ∈ [4, 8]. Maximum, minimum, and average relative error over the considered time interval for the velocity and pressure fields.

4.2 Reynolds number Remax = 100: Reconstructive regime

The relative log-errors plotted in Figure 26 for both the velocity and the pressure are significantly lower for the EFR-EFR
than for the EFR-noEFR. The EFR-EFR is also more accurate than the EFR-noEFR in approximating the velocity field at
t = 7 (Figure 27) and the pressure field at t = 5 (Figure 28). Furthermore, both the EFR-EFR and the EFR-noEFR yield
accurate drag coefficients, CD(t) (Figure 29, left). Although both the EFR-EFR and the EFR-noEFR lift coefficients, CL(t)
(Figure 29, right), are relatively inaccurate, the EFR-EFR approximation is more accurate than the EFR-noEFR.

Focusing on Table 7, we observe that EFR-EFR and EFR-noEFR present comparable results for the minimum value
of the velocity relative error. For the other pointwise error values, EFR-EFR is more accurate than EFR-noEFR, both for
velocity and pressure. In terms of L2−errors of the force coefficients, EFR-EFR is always more accurate than EFR-noEFR.
Indeed,ECL = 5.55,ÊCL = 4.08,ECD = 0.04, andÊCD = 0.02.We also present a Pareto plot forRemax = 100 in the right panel
of Figure 25. We fix rp = rs = 3 and choose ru = 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40. Over this range of ru values, we
observe that, although EFR-noEFR is optimal for smaller ru values, the relatively low EFR-EFR error for ru = 20 cannot
be reached by EFR-noEFR even by increasing its ru value (and, consequently, its relative wall time).

The numerical results for Remax = 65 and Remax = 100 show that, for both Reynolds numbers and for all criteria,
the EFR-EFR is consistently more accurate than the EFR-noEFR (although this difference between the EFR-EFR and
EFR-noEFR seems to be somewhat lower for Remax = 100). Thus, the numerical investigation in this section suggests that
the FOM-ROM consistency is important when the EFR stabilization is used and model reduction is performed both in
time and in the parametric domain.

4.3 Reynolds number Remax = 110: Predictive regime

In this section, we analyze the predictive capabilities of the EFR-EFR and EFR-noEFR algorithms with respect to the
Reynolds number.We note that we do not investigate the predictive capabilities of the two algorithmswith respect to both
time and Reynolds number since both algorithms struggled in the predictive regime for Experiment 2 in Section 3.5. We
follow the approach used in Section 3.5 and try to answer the following questions: (i) are the EFR-noEFR and EFR-EFR
algorithms predictive? (ii) Which algorithm performs better in the predictive regime with respect to the Reynolds
number?
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F IGURE 25 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = {20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40}, and rp = rs = 3. Left: pareto plots for
velocity (orange) and pressure (teal) fields and Remax = 65: averaged relative error in time versus relative wall time for varying ru. Right:
analogous plot for Remax = 100

F IGURE 26 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, rp = rs = 3, and Remax = 100. Reconstruction for t ∈ [4, 8]. Left: comparison of
relative log-errors of the velocity profiles: EFR-noEFR (solid blue line) and EFR-EFR (dashed orange line). Right: comparison of relative
log-errors of the pressure profiles: EFR-noEFR (solid blue line) and EFR-EFR (dashed orange line)

F IGURE 27 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002 and ru = 33, rp = rs = 3, Remax = 100, and t = 7. Top: full order EFR velocity
magnitude. Bottom left: reduced EFR-noEFR velocity magnitude. Bottom right: reduced EFR-EFR velocity magnitude
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F I GURE 28 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002 and ru = 33, rp = rs = 3, Remax = 100, and t = 5. Top: full order EFR pressure field.
Bottom left: reduced EFR-noEFR pressure field. Bottom right: reduced EFR-EFR pressure field

F IGURE 29 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, rp = rs = 3, and Remax = 100. Reconstruction for t ∈ [4, 8]. Left: CD(t)
comparison over time. Right: CL(t) comparison over time

TABLE 7 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, rp = rs = 3, and Remax = 100

EFR-noEFR EFR-EFR

Maximum Minimum Average Maximum Minimum Average

Eu(t) 4.383e-1 1.115e-3 1.220e-1 1.354e-1 1.117e-3 3.871e-2

Ep(t) 7.720e-1 3.419e-2 2.426e-1 4.949e-1 3.215e-2 1.581e-1

Note: Reconstruction for t ∈ [4, 8]. Maximum, minimum, and average relative error over the considered time interval for velocity and pressure fields.

We first present results for Remax = 110. In our numerical investigation, we use the same computational setting as
that used in Experiment 4. Specifically, we use 𝛿 = hmin and 𝜒 = 0.002. We also collect Nu = Np = 2000 equally spaced
snapshots in the time interval [4, 8] for N𝜈 = 20. For these snapshots, we choose a log-equispaced distribution in the
parametric domain 𝜈 ∈ [10−3, 1.575 × 10−3].We employ ru = 33 and rs = rp = 3 to retain 99.9% of the snapshot energy. The
relative error plots in Figure 30 show that EFR-EFR is consistently more accurate than the EFR-noEFR in approximating
both the velocity and the pressure.Wenote, however, that both the EFR-EFR and the EFR-noEFR are relatively inaccurate
in approximating the pressure field.

A similar behavior is observed with respect to the force coefficients, which are displayed in Figure 31: EFR-EFR is
consistently more accurate than the EFR-noEFR. We note that the EFR-EFR improvement over the EFR-noEFR is only
marginal for the drag coefficient. Furthermore, both the EFR-EFR and the EFR-noEFR produce relatively inaccurate
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F IGURE 30 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, and rp = rs = 3. Prediction for Remax = 110 in [4, 8]. Left: comparison of
relative log-errors over time of the velocity profiles: EFR full order versus EFR-noEFR solutions and EFR full order versus EFR-EFR
solutions, represented by solid blue and dashed orange lines, respectively. Right: Analogous representation for the relative log-errors over
time of the pressure profiles

F IGURE 31 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, and rp = rs = 3. Prediction for Remax = 110 in [4, 8]. Left: CD(t) comparison
over time. Right: CL(t) comparison over time

TABLE 8 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, and rp = rs = 3

EFR-noEFR EFR-EFR

Maximum Minimum Average Maximum Minimum Average

Eu(t) 5.943e-1 2.138e-3 1.636e-1 3.752e-1 2.146e-3 9.869e-2

Ep(t) 2.451e+0 3.758e-2 3.247e-1 2.451e+0 3.633e-2 2.558e-1

Note: Prediction for Remax = 110 in [4, 8]. Maximum, minimum, and average relative error over the considered time interval for the velocity and pressure fields.

approximations of the lift coefficient. The qualitative behavior of the plots in Figures 30 and 31 is supported by the max-
imum, minimum, and average relative errors listed in Table 8, and by the L2−error of the force coefficients: ECL = 4.77,
ÊCL = 3.99, and ECD = 0.048, ÊCD = 0.037.

Overall, these results yield the following conclusions: (i) the EFR-EFR and EFR-noEFR algorithms are predictive in
the approximation of the velocity field and the drag coefficient, but both struggle in the approximation of the pressure
field and the lift coefficient. (ii) The EFR-EFR algorithm is consistently more accurate than the EFR-noEFR algorithm
with respect to all criteria, especially in the approximation of the velocity field.

4.4 Reynolds number Remax = 140: Predictive regime

In this numerical investigation, we increase the Reynolds number to Remax = 140 and use the same computational setting
as that used in Experiment 4. Specifically, we use 𝛿 = hmin and 𝜒 = 0.002, and collect Nu = Np = 2000 equally spaced
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F I GURE 32 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, and rp = rs = 3. Prediction for Remax = 140 in [4, 8]. Left: Comparison of
relative log-errors over time of the velocity profiles: EFR full order versus EFR-noEFR solutions and EFR full order versus EFR-EFR
solutions, represented by solid blue and dashed orange lines, respectively. Right: Analogous representation for the relative log-errors over
time of the pressure profiles

F IGURE 33 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, and rp = rs = 3. Prediction for Remax = 140 in [4, 8]. Left: CD(t) comparison
over time. Right: CL(t) comparison over time

TABLE 9 Experiment 4: 𝛿 = hmin, 𝜒 = 0.002, ru = 33, and rp = rs = 3

EFR-noEFR EFR-EFR

Maximum Minimum Average Maximum Minimum Average

Eu(t) 6.387e-1 9.922e-3 2.617e-1 7.310e-1 9.930e-3 2.768e-1

Ep(t) 1.029e+1 7.233e-2 5.289e-1 1.029e+1 5.260e-2 4.744e-1

Note: Prediction for Remax = 140 in [4, 8]. Maximum, minimum, and average relative error over the considered time interval for velocity and pressure fields.

snapshots in the time interval [4, 8] for N𝜈 = 20. For these snapshots, we choose a log-equispaced distribution in the
parametric domain 𝜈 ∈ [10−3, 1.575 × 10−3]. We employ ru = 33 and rs = rp = 3 to retain 99.9% of the snapshot energy.
The relative error plots in Figure 32 show that the EFR-EFR and EFR-noEFR algorithms perform similarly: they predict
accurately the velocity field at the beginning, but their accuracy starts to degrade toward the end of the time interval. Their
predictions of the pressure field are inaccurate at the beginning of the simulation, but they becomemore accurate toward
the end of the time interval. A similar behavior is observed with respect to the force coefficients, which are displayed in
Figure 33. The EFR-EFR and EFR-noEFR algorithms perform similarly and provide relatively accurate approximations
of the drag coefficient, but their approximations of the lift coefficient are inaccurate. The qualitative behavior of the plots
in Figures 32 and 33 is supported by the maximum, minimum, and average relative errors listed in Table 9, and by the
L2−error of the force coefficients: ECL = 3.91, ÊCL = 3.64, and ECD = 0.098, ÊCD = 0.11. Overall, these results yield the
following conclusions: (i) the EFR-EFR and EFR-noEFR algorithms are predictive in the approximation of the velocity
field and the drag coefficient, but both struggle in the approximation of the pressure field and the lift coefficient. (ii)
The EFR-EFR and EFR-noEFR algorithms perform similarly with respect to all criteria. We believe that, to increase the
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predictive capabilities of theEFR-EFRandEFR-noEFRalgorithms, the parameters 𝛿 and𝜒 should be tuned appropriately.
This, however, goes beyond the scope of the current investigation.

5 CONCLUSIONS

In this article, we took a step in the study of FOM-ROM consistency when the EFR algorithm is used as numerical sta-
bilization in convection-dominated, marginally-resolved flows. To this end, as a mathematical model we considered the
incompressible Navier–Stokes equations. We used moderate Reynolds numbers, which yielded a convection-dominated
regime.We performed FOMandROMsimulations in themarginally-resolved regime, that is, when the number of degrees
of freedom is barely capable of capturing the main features of the underlying flow. To tackle the inaccuracies of the
FOM and ROM simulations in the marginally-resolved regime, we employed the EFR algorithm, which leverages spatial
filtering to alleviate the spurious oscillations.

To investigate the FOM-ROM consistency, we considered two models:

• the EFR-noEFR, in which the EFR regularization is used at a FOM level, but not at a ROM level;
• the EFR-EFR, in which the EFR regularization is used both at a FOM and at a ROM level.

We investigated the EFR-noEFR and EFR-EFR in the numerical simulation of a 2D flow past a circular cylinder
at time-dependent Reynolds numbers with a maximum value Re = 100. As criteria for our comparison, we used the
relative velocity error, the relative pressure error, and the lift and drag coefficients. We also considered two types of model
reduction: (i) model reduction in time, for which we used the POD algorithm; and (ii) model reduction in time and in
the parameter space, for which we used the nested-POD algorithm. In all our tests, for both types of model reduction,
and for all three criteria, the EFR-EFR was more accurate than the EFR-noEFR. These results suggest that FOM–ROM
consistency is beneficial for the EFR regularization in a convection-dominated, marginally-resolved regime.

These first steps in the study of the FOM-ROMconsistency of regularizedmodels are encouraging. There are, however,
other research directions that should be investigated for a deeper understanding of this important topic. Probably themost
important investigation should focus on the FOM-ROM consistency for regularized models in the under-resolved regime,
which is important in many realistic settings (e.g., turbulent flows) where the ROM dimension is significantly lower
than the number of degrees of freedom needed to accurately represent the complex dynamics of the underlying system.
Related to this investigation, higher Reynolds number flows should be considered. Another important research direction
is the investigation of FOM-ROM consistency when different regularized models are used at the FOM and ROM levels
(e.g., the Leray model is used at the FOM level and the EFR model is used at the ROM level). Related to this, one could
also investigate the parameter FOM-ROM consistency, which is complementary to the model FOM-ROM consistency
investigated in this article. Specifically, one could consider the same regularized model at the FOM and ROM levels, but
use different parameters (e.g., different 𝛿 values) in these regularized models. Using different 𝛿 or 𝜒 values at the FOM
and ROM levels (i.e., 𝛿FOM ≠ 𝛿ROM or 𝜒FOM ≠ 𝜒ROM) could yield more accurate ROM solutions in several settings, such
as hyper-reduction.

Finally, we emphasize thatmost of the existing studies (including this article) on the FOM-ROMconsistency have been
numerical investigations. Although theoretical investigations could support the existing numerical investigations and
shed new light on the FOM-ROM consistency, these studies are relatively scarce (for notable examples, see the numerical
analysis performed in References 28 and 30 for FOM-ROM consistency of the streamline upwind Petrov-Galerkin (SUPG)
stabilization, and Reference 51 for FOM-ROM consistency with respect to the discretization of the nonlinearity of the
Navier–Stokes equations). In a future study, we plan to perform the numerical analysis of the FOM-ROM consistency
with respect to the EFR regularization, and investigate whether the theoretical results support the numerical findings in
the numerical investigation in this article.

These numerical and theoretical investigations of various types of FOM-ROM consistency could provide a new
impetus for the development of ROMs that are consistent with their corresponding FOMs.
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