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We study the transition widths of ϒð10753Þ and ϒð11020Þ into standard bottomonium under the
hypothesis that they correspond to the two lowest laying 1−− hybrid bottomonium states. We employ
weakly coupled potential NRQCD an effective field theory incorporating the heavy-quark and multipole
expansions. We consider the transitions generated by the leading order and next-to-leading order singlet-
octet operators. In the multipole expansion the heavy-quark matrix elements factorize from the production
of light-quark mesons by gluonic operators. For the leading order operator we compute the widths with a
single π0, η or η0 in the final state and for the next-to-leading operator for πþπ− orKþK−. The hadronization
of the gluonic operators is obtained, in the first case, from the axial anomaly and a standard π0 − η − η0

mixing scheme and, in the second case, we employ a coupled-channel dispersive representation matched to
chiral perturbation theory for both the S- and D-wave pieces of the gluonic operator. We compare with
experimental values and semi-inclusive widths. Our results strongly suggest that ϒð11020Þ is indeed a
hybrid bottomonium state.
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I. INTRODUCTION

Hadrons have been traditionally classified according to
their number of valence quarks. In the naive quark model,
three quark states are called baryons while quark-antiquark
states are called mesons. Even from the inception of the
quark model, it was noted that more complex states, for
example containing four or five quarks, were possible [1].
Another possibility, unique to QCD, is the participation of
gluons as valence degrees of freedom. The so-called hybrid
states are the ones combining both quark and gluonic
valence degrees of freedom. Such nonconventional states,
often referred as exotics, were absent from the experimental
observations up to 2003 when the Belle experiment
discovered the Xð3872Þ [2]. This opened a period, up until
present times, with the continuous discovery of new exotic
states, particularly in the double heavy-quark sector.
Heavy quarks in hadrons are nonrelativistic and therefore

their number is well defined. Heavy-quark–antiquark

states, called quarkonium, are nonrelativistic bound states
with quantum numbers akin to the hydrogen atom and are
well understood. Therefore, when new states appeared in
the charmonium and bottomonium spectrum that did not fit
the standard quarkonium expectations, these were clear
candidates to exotic states. In some cases the new states had
explicitly exotic quantum numbers, such as the charged
exotic quarkonium states which must include two heavy
and two light quarks.
Several proposals have been made concerning the

structure of the exotic quarkonium states: heavy hybrids,
compact tetraquarks, hadro-quarkonium and heavy meson
molecules. Moreover, for each of these pictures several
theoretical approaches can be found in the literature.
Some common predictions from these pictures and
approaches are the spectrum and the composition of
heavy-quark spin symmetry multiplets. However, often
several interpretations are consistent with the observed
spectrum and not enough quantum numbers of exotic
quarkonium are accessible experimentally to be able to
check heavy-quark spin symmetry multiplet predictions.
Another avenue to understand the structure of exotic
quarkonium is the study of their decays, in particular
transitions into standard quarkonium states with one or
two light-quark mesons in the final state, since many of the
known exotic quarkonium states have been discovered
through these decay channels.
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The objective of this paper is to study a set of exotic to
standard quarkonium transitions in a nonrelativistic effec-
tive field theory (EFT) approach. Since the heavy quarks in
exotic quarkonium are nonrelativistic, the natural starting
point for their study is NRQCD [3,4] at leading order, that
is in the static limit. In this limit the spectrum is composed
of the so-called static energies, which depend on the
quantum numbers of the light quarks and gluon degrees
of freedom, the heavy-quark antiquark distance, and the
representation of the cylindrical symmetry group D∞h.

1

The static energies are nonperturbative quantities that
should be computed in lattice QCD. So far only the
spectrum in the quenched approximation is known [6,7].
Going beyond the static limit, heavy-quark–antiquark
bound states are formed around the minima of the static
energies. These states correspond to the exotic quarkonium
and in the case of the static energies from Refs. [6,7] to the
hybrid quarkonium picture. Since the heavy-quark–anti-
quark binding energy is much smaller than the energy scale
that characterizes the static energies, ΛQCD, one can write
an EFT describing hybrid quarkonium [5,8–11], which at
leading order coincides with the Born-Oppenheimer
approximation for heavy hybrids [7,12–16]. This kind of
Born-Oppenheimer EFT has been generalized to any light-
quark and gluon states in Ref. [17] and also to double
heavy-quark states such as double heavy baryons [18].
Although the precise spectrum of heavy-quark–

antiquark static energies with dynamical light quarks is
not known, we do have pieces of information from lattice
studies to infer a general picture. In Ref. [19] the ground
and first excited static energies were obtained both in the
quenched and unquenched computations with no sig-
nificant differences encountered. We expect this to hold
for the rest of the static energies computed in Refs. [6,7].
Nevertheless, with dynamical light quarks new static states
appear, most importantly heavy-meson pairs. In fact, many
exotic quarkonium states have been interpreted as heavy-
meson shallow bound states, see Ref. [20] for a review on
the topic. The effect of these thresholds on the hybrid
quarkonium states can be assessed from the string breaking
studies in lattice QCD [21,22] which suggest that threshold
effects are only noticeable in a tiny energy band around the
threshold of a few tens of MeV. The emergent picture is that
the hybrid states, as described in the previous paragraph,
are a good approximation of a more general isospin I ¼ 0
exotic quarkonium states.
To study the exotic to standard quarkonium transitions

we will employ the multipole expansion. For heavy-
quark–antiquark systems the EFT that incorporates the
multipole expansion is weakly coupled potential NRQCD
(pNRQCD) [23,24]. Unfortunately, the multipole expan-
sion is a poor expansion for hybrid charmonium [5] and

even for standard charmonium states beyond the ground
state [25]. For this reason, in this paper we will restrict
ourselves to the bottomonium sector. In this sector we
encounter the following exotic states: three neutral 1−−

states: ϒð10753Þ, ϒð10860Þ and ϒð11020Þ [26–28]; and
two charged 1þ ones: Zbð10610Þ and Zbð10650Þ [29]. Both
the charged ones and ϒð10860Þ lay very close to B meson
pair thresholds and therefore are very likely to be molecular
states. Nevertheless the ϒð10860Þ could have a small
ϒð5SÞ component. Our interest will be in the states
ϒð10753Þ and ϒð11020Þ which we will identify as the
two lowest 1−− hybrid bottomonium states. The predictions
for these states from Ref. [5] are 10.79 and 10.98 GeV. For
the first state the difference is of 40 MeV, which is
significant, however this is off only a handful of data
points from Ref. [28], and it is possible that future data
might change the mass of this state by an amount of this
order. For the second state the difference is of 20 MeV
which is well within the uncertainties of the theoretical
prediction.
We will investigate the transitions of ϒð10753Þ and

ϒð11020Þ into standard bottomonium in weakly coupled
pNRQCD in a similar approach to the one used in Ref. [30]
to study transitions in standard quarkonium; that is, we will
assume the following hierarchy of scales mQ ≫ mQv ≫
ΛQCD is fulfilled, with mQ the heavy-quark mass and v the
relative heavy-quark–antiquark velocity. We will provide
predictions for the transition widths when the final state
includes a single π0, η or η0 or a pair of πþπ− or KþK−. The
matrix elements for the single meson production are
obtained using the Uð1ÞA anomaly and the Feldmann-
Kroll-Stech (FKS) π0 − η − η0 mixing scheme [31,32].
Unlike Ref. [30], the two pion and two kaon matrix
elements are not obtained through a chiral representation,
since the large mass difference between the initial exotic
state and the final standard quarkonium makes that unfea-
sible. Instead we build a dispersive representation of the
relevant gluonic matrix elements that takes into account the
pion and kaon scattering as well as their coupling. This is
analogous to the approach in Refs. [33–35] for the S-wave
part of the matrix element but is also applied for the first
time to the D-wave piece.
The paper is organized as follows. In Sec. II we

introduce the pNRQCD Lagrangian and define the stan-
dard and hybrid quarkonium states. In Secs. III and IV we
study the leading order (LO) and next-to-leading order
(NLO) transitions, respectively, and provide numerical
predictions for the widths of ϒð10753Þ and ϒð11020Þ
into a set of specific light-quark final states. We discuss
several ratios in Sec. V for which some uncertainties
cancel out. In Sec. VI we compute the semi-inclusive
width for the transitions that allow it and discuss the
results in relation to the ones in Secs. III and IV. We
give our conclusions in Sec. VII. In Appendix A we
review the computation of the π0, η and η0 production

1See, for example, Appendix A of Ref. [5] for a detailed
description of the D∞h group.
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matrix elements with the Uð1ÞA anomaly and the FKS
mixing scheme. In Appendix B we build the dispersive
representation for the two-pion and two-kaon production
form factors. Finally, in Appendix C, we collect the
definitions of the Mandelstam variables and several for-
mulas employed in the evaluation of widths from the
transition amplitudes.

II. STANDARD AND HYBRID
QUARKONIUM IN pNRQCD

A. pNRQCD Lagrangian

The pNRQCD Lagrangian at LO in 1=mQ, where mQ is
the heavy-quark mass, except for the kinetic term and at LO
in the multipole expansion reads

LLO
pNRQCD ¼

Z
d3R

�Z
d3rTr½S†ði∂0 − hð0Þs ÞSþ O†ðiD0 − hð0Þo ÞO� − 1

4
Ga

μνGμνa þ
Xnf
i¼1

q̄iði=D −miÞqi
�
: ð1Þ

S and O are the quark singlet and octet fields, respectively,
normalized with respect to color as S ¼ S1c=

ffiffiffiffiffiffi
Nc

p
and

O ¼ OaTa=
ffiffiffiffiffiffi
TF

p
. The dependence in t, the relative coor-

dinates r, and the center of mass coordinates R of the heavy
quarks of the singlet and octet fields is left implicit. The
trace should be understood as a double trace in color and
spin. The singlet and octet fields are organized in SUð2Þ
spin multiplets. For instance, S ¼ ðS · σ þ Sη12Þ=

ffiffiffi
2

p
. All

the fields of the light degrees of freedom in Eq. (1) are
evaluated at R and t; in particular, Gμνa ≡GμνaðR; tÞ,
qi ≡ qiðR; tÞ, and iD0O≡ i∂0O − g½A0ðR; tÞ; O�. The sin-
glet and octet Hamiltonian densities read as

hð0Þs ¼ −
∇2
r

mQ
þ Vð0Þ

s ðrÞ; ð2Þ

hð0Þo ¼ −
∇2
r

mQ
þ Vð0Þ

o ðrÞ; ð3Þ

where Vð0Þ
s ðrÞ and Vð0Þ

o ðrÞ are computed in perturbation
theory. Note that we have spin symmetry.
At NLO in the multipole expansion or in 1=mQ we have

the following operators that produce transitions between
singlet and octet fields:

LNLO
pNRQCD ¼

Z
d3Rd3r

�
gTr½S†r · EOþ O†r · ES� þ gcF

mQ
Tr½S†ðS1 − S2Þ · BOþ O†ðS1 − S2Þ · BS�

�
: ð4Þ

The spin vectors S1 and S2 correspond to the heavy-quark
and heavy-antiquark respectively. The chromoelectric and
chromomagnetic fields are defined as Ei ¼ Gi0 and Bi ¼
−ϵijkGjk=2 with ϵ123 ¼ 1.

B. Standard quarkonium states

Now, let us define the standard quarkonium states. In the
static limit these are simply

jR; r;Σþ
g i ¼ S†ðR; rÞj0i: ð5Þ

The full static potential corresponds to the static energy in
the Σþ

g representation

Vð0Þ
Σþ
g
ðrÞ ¼ lim

t→∞

i
t
lnhR; r;Σþ

g ; t=2jR; r;Σþ
g ;−t=2i

¼ Vð0Þ
s þ bΣþ

g
r2 þ � � � ¼ Eð0Þ

Σþ
g
ðrÞ: ð6Þ

We are going to use a fit to the full static energy as the static
potential instead of a multipole expanded expression in the
middle equality in Eq. (6) in order to increase accuracy. The
lattice data used for Σþ

g and the fitted potential can be found

in Fig. 1. The static eigenstates can be used as a basis for a
general quarkonium state,

jSmi ¼
Z

d3rd3RϕðmÞðR; rÞjR; r;Σþ
g i; ð7Þ

then, we can use quantum mechanical perturbation theory
to incorporate the kinetic term and obtain the Shrödinger
equation for the standard quarkonium states:�

−
∇2
r

mQ
þ Vð0Þ

Σþ
g
ðrÞ
�
ϕðmÞðrÞ ¼ Emϕ

ðmÞðrÞ; ð8Þ

where we have used the short-hand notation for the wave
function,

ϕðmÞðrÞ≡ ϕmjlsðrÞ ¼ ϕmðrÞΦ0
2sþ1lj

ðθ;ϕÞ; ð9Þ

with m the principal quantum number, lðlþ 1Þ the eigen-
value heavy-quark pair angular momentum L2

Q̄Q, sðsþ 1Þ
the heavy-quark pair spin S2 ¼ ðS1 þ S2Þ2 eigenvalue and
jðjþ 1Þ the eigenvalue of the total angular momentum
J2 ¼ ðLQ̄Q þ SÞ2. For brevity, we will use (m) to denote the
whole set of quantum numbers.
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C. Hybrid quarkonium states

The hybrid states are more complicated due to the
presence of nontrivial gluonic degrees of freedom. At
LO in the heavy-quark mass and multipole expansions
the gluonic excitations are characterized by local operators
belonging to irreducible representations of the Oð3Þ ⊗ C

group which are called gluelump operators. We write these
operators as Gia

k ðRÞ where a is the color index, k labels the
gluelump JPC and i labels its vector components. Let Hð0Þ
be the LO Hamiltonian density in the multipole and heavy-
quark mass expansions corresponding to the Lagrangian
in Eq. (1):

Hð0Þ ¼
Z

d3R
Z

d3rTr½S†Vð0Þ
s Sþ O†Vð0Þ

o O� þ
Z

d3R

�
1

2
ðEa · Ea þ Ba · BaÞ −

Xni
i¼1

q̄i½iD · γ −mi�qi
�
: ð10Þ

The gluelump operators are the eigenstates Hð0Þ in the presence of a local heavy-quark-antiquark octet source:

Hð0ÞGia
k ðRÞOa†ðR; rÞj0i ¼ ðΛk þ Vð0Þ

o ÞGia
k ðRÞOa†ðR; rÞj0i: ð11Þ

The gluelump operators are normalized as

h0jGia†
k ðR0ÞOaðR0; r0ÞOb†ðR; rÞGjb

k0 ðRÞj0i ¼ δijδkk0δðR0 −RÞδðr0 − rÞ: ð12Þ

For simplicity from now on we will only consider the
lowest laying gluelump operator with k ¼ 1þ− [37],
Gia

B ≡Gia
1þ− , which is the one associated to the lowest

laying hybrid states. Once we go beyond the short-distance
limit the symmetry of the system is reduced to the cylin-
drical symmetry group D∞h. One can construct gluonic
operators in irreducible representations of this group by
contracting the gluelump operator with appropriate pro-
jection vectors, hence the hybrid static states can be
written as

jR; r; λi ¼ r̂λ · Ga
BðRÞOa†ðR; rÞj0i; ð13Þ

with the projector vectors

r̂0 ¼ r̂; ð14Þ

r̂�1 ¼∓ ðθ̂� iϕ̂Þ=
ffiffiffi
2

p
; ð15Þ

where θ̂ ¼ ðcos θ cosφ; cos θ sinφ;− sin θÞT and φ̂ ¼
ð− sinφ; cosφ; 0ÞT are the usual local unit vectors in a
spherical coordinate system. The quantum number λ ¼
0;�1 is the eigenvalue of the projection of the gluelump
spin into the heavy-quark–antiquark axis.
For hybrid bound states the binding energies are smaller

than EB ≪ ΛQCD as they are of the order of small energy
fluctuations around the minimum of the hybrid static
energies,

Vð0Þ
λ ðrÞ ¼ lim

t→∞

i
t
lnhR; r; λ; t=2jR; r; λ;−t=2i

¼ ΛB þ Vð0Þ
o þ bBjλjr2 þ � � � ¼ Eð0Þ

jλj ðrÞ; ð16Þ

where Eð0Þ
0 ðrÞ ¼ Eð0Þ

Σ−
u
ðrÞ and Eð0Þ

j�1jðrÞ ¼ Eð0Þ
Πu
ðrÞ. As for

standard quarkonium, we are going to use a fit to the
full static energies as the static potential instead of a
multipole expanded expression in the middle equality in
Eq. (16) in order to increase accuracy. In Fig. 1 we show the
lattice data of Ref. [6] for these static energies and our fitted
potentials.
To go beyond the static limit we use that an eigenstate of

the full Hamiltonian can be expressed in the basis of
eigenstates of the static limit

FIG. 1. Lattice data on the heavy-quark–antiquark static en-
ergies Σþ

g , Πu and Σ−
u in the quenched approximation of Ref. [6].

The curves correspond to the fitted potentials used in the
numerical solution of the Schrödinger equations to find the
standard and hybrid states wave functions. Different energy
offsets are added to the Σþ

g data and to Πu and Σ−
u data. The

first is chosen so the ground state mass matches the experimental
ϒð1SÞ mass and the second is chosen so the lattice data matches
the short distance expansion in Eq. (16) with the gluelump mass
Λ1 ¼ 0.87ð15Þ GeV from Ref. [36].
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jHni ¼
Z

d3rd3R
X
λ

ψ ðnÞ
λ ðR; rÞjR; r; λi: ð17Þ

Using quantum mechanical perturbation theory to incor-
porate the kinetic operator (see Ref. [5] for a full dis-
cussion) one arrives at the coupled Shrödinger equations
for the hybrid bound states:

X
λ

�
−r̂�λ0

∇2
r

mQ
r̂λ þ Vð0Þ

λ ðrÞδλ0λ
�
ψ ðnÞ
λ ðrÞ ¼ Enψ

ðnÞ
λ0 ðrÞ: ð18Þ

As in standard quarkonium we use the following short-
hand notation for the hybrid quarkonium wave function,

ψ ðnÞ
λ ðrÞ≡ ψnjls

λ ðrÞ ¼ ψλ
nðrÞΦλ

2sþ1lj
ðθ;ϕÞ; ð19Þ

where we use (n) to denote the set of quantum numbers
that define a particular hybrid state. Notice that the hybrid
angular wave functions are not an eigenstate of the
heavy-quark angular momentum, L2

Q̄Q, but instead of

ðLQ̄Q þ S1Þ2, where S1 is the spin-1 gluelump spin operator
[5], with eigenvalue lðlþ 1Þ. To highlight this difference
we use a modified spectroscopic notation where l ¼
0; 1; 2;… is represented by S, P, D, etc. Moreover the
angular wave functions are also eigenstates of r̂ · S1 with
eigenvalue λ ¼ −1, 0, 1. Due to the projection vectors in
each side of the kinetic operator in Eq. (18) the contribu-
tions from the Πu and Σ−

u static potentials are mixed which
gives rise to pairs of solutions with the same principal and
angular quantum numbers but opposite parity [5].
Therefore, the parity should also be specified to single
out a specific solution of Eq. (18). These two solutions are
characterized by different radial wave functions,

ψ ðnÞ
þ ðrÞ ¼

0
BBB@

ψ ðnÞ
0 ðrÞ

1ffiffi
2

p ψ ðnÞ
þ ðrÞ

1ffiffi
2

p ψ ðnÞ
þ ðrÞ

1
CCCA; ψ ðnÞ

− ðrÞ ¼

0
BB@

0

1ffiffi
2

p ψ ðnÞ
− ðrÞ

− 1ffiffi
2

p ψ ðnÞ
− ðrÞ

1
CCA;

ð20Þ

with party corresponding to P ¼ �ð−1Þlþs. The two
lowest laying 1−− hybrid states correspond to n ¼ 1, l ¼
1 and s ¼ 0 and therefore correspond to the first type of
solution in Eq. (20).

D. Gluelump overlap with B

The gluelump operator GB is a sum of all possible
gluonic operators with the same quantum numbers with
unknown coefficients

GB ¼ Z−1=2
B gBa þ Z−1=2

D×EðD × gEÞa þ � � � : ð21Þ

We will follow the hypothesis, proposed in Ref. [30], that
there is a correlation between the dimensionality of the
interpolating operator and the strength of the interpolation,
such that higher dimension operators in Eq. (21) are
subleading and therefore the series can be truncated at
LO. One can estimate the value of ZB using the normali-
zation of the gluelump operators in Eq. (12) to relate it to
the value of the gluon condensate,

ZB ¼ 1

3
h0jg2B2j0i ¼ π2

3
h0j α

π
Ga

μνGaμνj0i
¼ 0.251ð14Þ GeV4; ð22Þ

taken from Ref. [38]. We note that the value in Ref. [38]
corresponds to a quenched computation and that the
uncertainty in Eq. (22) does not include an estimation of
the uncertainty of this or the truncation of the expansion
in Eq. (21).

III. LO TRANSITIONS

Now we look at the transitions generated by the first
operator in Eq. (4). Let Oπ denote a generic final light-
quark state. The transition amplitude is

A¼ hSmOπjgTr½S†r ·EO�jHni

¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffi
TF

NcZB

s
hOπjg2E ·Bj0i

Z
d3r
X
λ

ϕðmÞðrÞr · r̂λψ ðnÞ
λ ðrÞ:

ð23Þ

The gluonic operator has quantum numbers 0−þ and
isospin I ¼ 0, therefore the allowed final light-quark states
must match these quantum numbers. Some examples of
these states are π0, η, η0, higher mass η-like resonances or
odd numbers of mesons such as π0πþπ− or ηπþπ−.
Selection rules can be derived from the wave functions
integral. Since the transition operator is independent of the
heavy-quark spin this should be conserved. Furthermore,
only the λ ¼ 0 component of the hybrid wave function
contributes to the integral because r · r̂λ ¼ rδ0λ. For λ ¼ 0
the orbital wave function reduces to the usual spherical
harmonics and hence l ¼ l.

If we identify ϒð10753Þ and ϒð11020Þ as hybrid
quarkonia with n1P1 and n ¼ 1, 2, respectively, then the
final quarkonium states must be hbðm1P1Þ. In Table I we

TABLE I. Mass difference for the transitions Hðn1P1Þ →
hbðm1P1Þ in MeV.

Mass difference hbð11P1Þ hbð21P1Þ
ϒð10753Þ 854 493
ϒð11020Þ 1101 740
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collect the mass difference between these states for the
transitions we are going to compute.
An explicit computation of the wave function integral

can be done using the following expression for the angular
wave function:

Φλ
1P1

¼
ffiffiffiffiffiffi
3

4π

r
r̂�λ · êmj

12ffiffiffi
2

p ; ð24Þ

which with λ ¼ 0 also applies to hbðm1P1Þ states. êmj
are

the usual polarization vectors with mj the eigenvalue of J3.
The matrix elements for the production of a single π0, η or
η0 can be obtained from the Uð1ÞA anomaly using a mixing
scheme [31,32,39,40]. We will use the mixing scheme of
Ref. [32] which we briefly summarize in Appendix A.
Further kinematically allowed final states do exist, but are
left for a future work. We arrive at the following transition
amplitude:

Aðn1P1Þ→ðm1P1ÞP ¼ δmjmj0
4π2

3

ffiffiffiffiffiffiffiffiffiffiffiffi
TF

NcZB

s
ωPhmjrjn; 0i

P ¼ π0; η; η0; ð25Þ

with ωP given in Eqs. (A29)–(A31) and we have used the
following short-hand notation for the remaining integration
of the radial wave functions:

hmjrpjn; λi ¼
Z

∞

0

drr2þpϕmðrÞψλ
nðrÞ; ð26Þ

which we evaluate numerically.
The corresponding width is obtained using Eq. (25) into

Eq. (C14) and averaging over initial polarizations and
summing over the final ones. For the transitions in Table I
with π0, η or η0 in the final state we obtain the following
results:

Γϒð10753Þ→hbð1PÞπ0 ¼ 2.57ð�1.03Þm:e:ð�0.14ÞZB
ð�0.16Þωπ0

keV; ð27Þ

Γϒð10753Þ→hbð1PÞη ¼ 2.29ð�0.92Þm:e:ð�0.13ÞZB
ð�0.08Þωη

MeV; ð28Þ

Γϒð10753Þ→hbð2PÞπ0 ¼ 0.168ð�0.067Þm:e:ð�0.009ÞZB
ð�0.010Þωπ0

keV; ð29Þ

Γϒð11020Þ→hbð1PÞπ0 ¼ 2.04ð�0.82Þm:e:ð�0.11ÞZB
ð�0.13Þω

π0
keV; ð30Þ

Γϒð11020Þ→hbð1PÞη ¼ 2.04ð�0.81Þm:e:ð�0.11ÞZB
ð�0.07Þωη

MeV; ð31Þ

Γϒð11020Þ→hbð1PÞη0 ¼ 9.23ð�3.69Þm:e:ð�0.51ÞZB
ð�0.39Þωη0

MeV; ð32Þ

Γϒð11020Þ→hbð2PÞπ0 ¼ 0.104ð�0.042Þm:e:ð�0.006ÞZB
ð�0.006Þωπ0

keV; ð33Þ

Γϒð11020Þ→hbð2PÞη ¼ 81.8ð�32.7Þm:e:ð�4.6ÞZB
ð�2.7Þωη

keV: ð34Þ

We estimate the uncertainty from using the multipole
expansion (m.e.) as corrections of OðΛ2

QCDr
2Þ. In the

multipole expansion, the heavy-quark distance scales as
1=r ∼mQv ≫ ΛQCD, with v the heavy-quark pair relative
velocity. On the other hand, the adiabatic expansion
between heavy and light degrees of freedom requires
ΛQCD ≫ Eb ∼mQv2, with Eb the binding energy of the
heavy quarks [8]. A scaling of ΛQCD consistent with these
two constraints is ΛQCD ∼mQv3=2. Thus OðΛ2

QCDr
2Þ ∼ v ∼

0.4 for the states we consider. The uncertainties labeled as
ZB and ωP, P ¼ π0; η; η0 are just the standard propagation
of the uncertainty of these quantities in Eq. (22) and
Eqs. (A32)–(A34).

IV. NLO TRANSITIONS

Now, we study the transitions generated by the 1=mQ

order operator of the Lagrangian in Eq. (4). The transition
amplitude is as follows:

A ¼ hSmOππj
gcF
mQ

Tr½S†ðS1 − S2Þ · BO�jHni

¼ gcF
3mQ

ffiffiffiffiffiffiffiffiffiffiffiffi
TF

NcZB

s
hOππjB2j0i

×
Z

d3r
X
λ

ϕðmÞðrÞðS1 − S2Þ · r̂λψ ðnÞ
λ ðrÞ; ð35Þ
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where Oππ denotes generically the final light-quark meson
state. Since B2 has quantum numbers 0þþ and I ¼ 0, these
must be the quantum numbers of the light-quark final state.
Such states are, for instance πþπ−, KþK−, pairs of π0 or η
as well as f0 resonances up to the invariant mass allowed by
the specific initial and final heavy-quark states. The heavy-
quark spin structure of the operator requires the transitions
to be between singlet and triplet states. Therefore, if the
initial state is a spin singlet hybrid, as per our assignations
of the ϒð10753Þ and ϒð11020Þ, the final states must be
spin triplet quarkonium states. Furthermore the total JPC

must be conserved, therefore the final quarkonium states
can only be ϒðm3S1Þ or ϒðm3D1Þ. We will only consider
the first case sinceD-wave bottomonium states have not yet
been observed experimentally. In Table II we collect the
mass differences between the initial and final heavy-quark
states for the transitions Hðn1P1Þ → ϒðm3S1Þ that we will
consider.
The integral of the angular wave function in Eq. (4) can

be carried out using the wave function in Eq. (24) for the
1P1 hybrid state and

Φ0
3S1

¼ 1ffiffiffiffiffiffi
4π

p 12ffiffiffi
2

p ; ð36Þ

for the 3S1 standard quarkonium.
The transition widths for the amplitude in Eq. (35) with

two pions or kaons in the final state reads as

Aðn1P1Þ→ðm3S1ÞPþP−

¼ δmjmj0
8π2cF
3β0mQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TF

3NcZB

s �X
λ

hmj1jn; λi
�
FPðs; cos θÞ

P ¼ π; K; ð37Þ

with the form factor FPðs; cos θÞ that encodes the produc-
tion of two pions or kaons by the gluonic operator B2

defined in Eq. (B12). The definitions of s and θ can be
found in Appendix C. In Appendix B we give a dispersive
representation of FPðs; cos θÞ. Our approach consists in
coupled Muskhelishvili-Omnès equations as in Refs. [33–
35,41]. However, unlike those references our matrix
element contains not only an S-wave piece but also a D-
wave one. We have extended the coupled Muskhelishvili-
Omnès approach to the D-wave final state interactions for
the first time. We use the parametrizations of the ππ → ππ
and ππ → KK̄ partial waves from Refs. [42,43], which to
our knowledge are the most accurate currently available.
For the numerical solution of the coupled Muskhelishvili-
Omnès equations we use the techniques of Refs. [34,44].
The transition differential widths can be computed from

the amplitude in Eq. (37) by decomposing it into partial
waves and using Eq. (C12). In Figs. 2 and 3 we plot the nor-
malized differential decay widths for the transitions with
πþπ− andKþK− in the final states, respectively. The norma-
lized differential decay widths are independent of the heavy-
quarkmatrix elements, therefore the line shapes are a result of
the pion and kaon rescattering as well as the phase space
dependence. The prominent features of the ϒð10753Þ →
ϒð1SÞπþπ−, ϒð11020Þ → ϒð1SÞπþπ−, ϒð10753Þ →
ϒð1SÞKþK− and ϒð11020Þ→ϒð1SÞKþK− line shapes
makes these good observables to study experimentally.
Integrating the differential transition width over the

kinematically allowed range of s we obtain the following
transition widths:

FIG. 2. Normalized differential width for the transitions Hðn1P1Þ → ϒðm3S1Þπþπ−. The variable x is defined as
x ¼ ðs − 4m2

πÞ=ðmHðnPÞ −mϒðmSÞ − 4m2
πÞ.

TABLE II. Mass difference for the transitions Hðn1P1Þ →
ϒðm3S1Þ in MeV.

Mass difference ϒð13S1Þ ϒð23S1Þ ϒð33S1Þ
ϒð10753Þ 1293 730 398
ϒð11020Þ 1540 977 645
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Γϒð10753Þ→ϒð1SÞπþπ− ¼ 43.4ð�17.3Þm:e:ð�2.4ÞZB
ð�8.6Þαsðþ0.5

−0.0Þκ keV; ð38Þ

Γϒð10753Þ→ϒð2SÞπþπ− ¼ 2.75ð�1.10Þm:e:ð�0.15ÞZB
ð�0.55Þαsðþ0.13

−0.12Þκ keV; ð39Þ

Γϒð10753Þ→ϒð3SÞπþπ− ¼ 0.98ð�0.39Þm:e:ð�0.05ÞZB
ð�0.19Þαsð�0.03Þκ eV; ð40Þ

Γϒð11020Þ→ϒð1SÞπþπ− ¼ 99.1ð�39.6Þm:e:ð�5.5ÞZB
ð�19.7Þαsðþ26.3

−21.8Þκ keV; ð41Þ

Γϒð11020Þ→ϒð2SÞπþπ− ¼ 3.96ð�1.58Þm:e:ð�0.22ÞZB
ð�0.70Þαsð−0.16þ0.17Þκ keV; ð42Þ

Γϒð11020Þ→ϒð3SÞπþπ− ¼ 1.33ð�0.53Þm:e:ð�0.07ÞZB
ð�0.27Þαsð�0.02Þκ keV; ð43Þ

Γϒð10753Þ→ϒð1SÞKþK− ¼ 3.98ð�1.59Þm:e:ð�0.22ÞZB
ð�0.79Þαsð−0.50þ0.67Þκ keV; ð44Þ

Γϒð11020Þ→ϒð1SÞKþK− ¼ 5.93ð�2.37Þm:e:ð�0.33ÞZB
ð�1.18Þαsðþ1.75

−1.18Þκ keV: ð45Þ

We have used the renormalization group improved ex-
pression of cFð1 GeVÞ ¼ 0.879 up to next-to-leading
logarithmic order, with the values αsð1 GeVÞ ¼ 0.4798
and αsðmbÞ ¼ 0.214820 and mb ¼ 4.885 GeV [45]. The
values of αs were computed using the RUNDEC Mathema-
tica package [46].

The uncertainties are labeled by their source of origin.
The subscript m:e: denotes the uncertainty stemming
from the use of the multipole expansion. As in the
previous section these are estimated as corrections of
OðΛ2

QCDr
2Þ ∼ v ∼ 0.4. The uncertainty labeled as ZB is

just the standard propagation of the uncertainty in Eq. (22).
The uncertainty of the dispersive parametrization of the
form factors is dominated by the uncertainties in the chiral
representation in Eq. (B11) to which it is matched to in
order to determine the subtraction polynomials. There are
two of these sources of uncertainty: the first one from

neglecting the anomalous dimension γi and truncating
βðαsÞ=αs at LO in Eq. (B5) which we label with the
subscript αs and are of order αsðmcÞ=ð4πÞ [47]. The second
one is associated to the value of the parameter κ in
Eq. (B10) which affects the form factors asymmetrically.
Other sources of uncertainty for the form factors, such as
the parametrization of ππ → ππ and ππ → KK̄ phase shifts
are negligible in front of the other sources.
Experimental values for some of the transition widths in

Eqs. (38)–(45) are available. In Ref. [28] the widths for the
transitions ϒð11020Þ → ϒðnSÞπþπ−, n ¼ 1, 2, 3 are given
normalized to Γeþe−=Γtotal. The latter can be obtained from
the PDG average of Refs. [48,49]. The values, summing the
uncertainties quadratically, are as follows:

Γexp
ϒð11020Þ→ϒð1SÞπþπ− ¼ 85þ33

−36 keV; ð46Þ

Γexp
ϒð11020Þ→ϒð2SÞπþπ− ¼ 120þ105

−107 keV; ð47Þ

Γexp
ϒð11020Þ→ϒð3SÞπþπ− ¼ 61þ37

−38 keV: ð48Þ

It is remarkable the agreement between our theoretical
value for the width ofϒð11020Þ → ϒð1SÞπþπ− in Eq. (41)
with the experimental value in Eq. (46). Nevertheless, one
should be cautious considering the significant uncertainties
on both theoretical and experimental values. On the
other hand, the values for the widths of the ϒð11020Þ →
ϒðnSÞπþπ−, n ¼ 2, 3 transitions are not compatible with
our theoretical values in Eqs. (42) and (43). However, it
should be noted that the values in Eqs. (46)–(48) corre-
spond to the range of solutions from different fits and not
1σ intervals. Therefore, it is still possible that future
experimental studies produce a closer result to our
predictions.

FIG. 3. Normalized differential width for the transitions
Hðn1P1Þ → ϒð11S1ÞKþK−. The variable x is defined as
x ¼ ðs − 4m2

KÞ=ðmHðnPÞ −mϒð1SÞ − 4m2
KÞ.
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V. RATIOS

Our results for the ϒð10753Þ and ϒð11020Þ transition
widths into standard quarkonium have overall large uncer-
tainties as discussed in Secs. III and IV. We can obtain more
precise predictions if we consider various ratios of tran-
sition widths where some uncertainties cancel out.
Let us consider the following ratios of the LO transitions

with the same initial and final heavy-quark states:

Γϒð10753Þ→hbð1PÞη
Γϒð10753Þ→hbð1PÞπ0

¼ 891ð�64Þω; ð49Þ

Γϒð11020Þ→hbð1PÞη
Γϒð11020Þ→hbð1PÞπ0

¼ 1001ð�72Þω; ð50Þ

Γϒð11020Þ→hbð1PÞη0
Γϒð11020Þ→hbð1PÞη

¼ 4.52ð�0.25Þω; ð51Þ

Γϒð11020Þ→hbð2PÞη
Γϒð11020Þ→hbð2PÞπ0

¼ 786ð�52Þω: ð52Þ

These depend only on phase space factors and the values
of the gluonic matrix elements ωP. Therefore, these ratios
are free of the uncertainties associated to the multipole
expansion or the value of ZB. On the other hand, the value
of these ratios is mainly a test of the π0 − η − η0 mixing
scheme of Ref. [32]. Nevertheless, these ratios rely on the
factorization of the gluonic matrix elements from the
heavy-quark physics, which in our approach is the result
of the multipole expansion. Hence one can test this
factorization from experimental values of the ratios in
Eqs. (49)–(52). One can test more directly the validity of
the multipole expansion for ϒð10753Þ and ϒð11020Þ by
considering the ratios with the same final state light-quark
meson but different final standard quarkonium,

Γϒð10753Þ→hbð1PÞπ0
Γϒð10753Þ→hbð2PÞπ0

¼ 15.2ð�8.1Þm:e:; ð53Þ

Γϒð11020Þ→hbð1PÞπ0
Γϒð11020Þ→hbð2PÞπ0

¼ 19.6ð�11.1Þm:e:; ð54Þ

Γϒð11020Þ→hbð1PÞη
Γϒð11020Þ→hbð2PÞη

¼ 24.9ð�14.1Þm:e:; ð55Þ

since in this case the factors ωP and ZB cancel out.
Next we consider ratios of the NLO transitions in

Eqs. (38)–(45). Any ratio of these transition widths is
independent of the value of ZB. Furthermore, the uncer-
tainty due to the truncation of the β function in Eq. (B5)
also cancels out and the only remaining uncertainty of order
αsðmcÞ=ð4πÞ comes from neglecting the anomalous dimen-
sion γi. As we have seen for the LO transitions, the ratios of

transitions with the same initial and final heavy-quark states
are independent of the heavy-quark matrix elements and
therefore the uncertainties related to the multipole expan-
sion are not present. We obtain:

Γϒð10753Þ→ϒð1SÞπþπ−
Γϒð10753Þ→ϒð1SÞKþK−

¼ 10.9ð�2.2Þαsðþ1.7
−1.5Þκ; ð56Þ

Γϒð11020Þ→ϒð1SÞπþπ−
Γϒð11020Þ→ϒð1SÞKþK−

¼ 16.7ð�3.3Þαsðþ4.4
−3.7Þκ: ð57Þ

The values of the ratios in Eqs. (56) and (57) depend mainly
on the dispersive representation of the form factors and
therefore can be considered a test of it. However, this is
dependent on the factorization of the gluonic matrix
elements in an analogous manner to our discussion for
the ratios of the LO transitions in Eqs. (49)–(52). One can
consider 26 additional ratios among the widths in
Eqs. (38)–(45) with similar cancellation of uncertainties.
We are going to focus on the ones with the same final state
and different initial one, since those are most interesting in
order to learn about the nature of ϒð10753Þ and ϒð11020Þ.
These ratios are as follows:

Γϒð11020Þ→ϒð1SÞπþπ−
Γϒð10753Þ→ϒð1SÞπþπ−

¼ 2.28ð�0.91Þm:e:ð�0.46Þαsðþ0.57
−0.51Þκ;

ð58Þ

Γϒð11020Þ→ϒð2SÞπþπ−
Γϒð10753Þ→ϒð2SÞπþπ−

¼ 1.44ð�0.57Þm:e:ð�0.29Þαsð−0.06þ0.07Þκ;

ð59Þ

Γϒð11020Þ→ϒð3SÞπþπ−
Γϒð10753Þ→ϒð3SÞπþπ−

¼ 1.36ð�0.54Þm:e:ð�0.27Þαsð∓ 0.02Þκ
× 103; ð60Þ

Γϒð11020Þ→ϒð1SÞKþK−

Γϒð10753Þ→ϒð1SÞKþK−
¼ 1.49ð�0.59Þm:e:ð�0.30Þαsðþ0.72

−0.47Þκ:

ð61Þ

The uncertainty related to the value of κ is reduced in the
ratios in Eqs. (59) and (60) but enhanced in the ratios in
Eqs. (57) and (61). This behavior can be traced to the
similarity and difference, respectively, of the normalized
spectra in Figs. 2 and 3.
Finally, one could consider the ratios of LO and NLO

transition widths. These are independent of the value ZB,
however one needs to add the uncertainties of the two
gluonic operator matrix elements and the multipole expan-
sion uncertainties of the heavy-quark matrix elements,
which together make the relative uncertainty of these ratios
larger than the ones of the transition widths themselves.
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VI. COMPARISON WITH SEMI-INCLUSIVE
TRANSITION WIDTHS

When the energy gap between a hybrid and a standard
quarkonium state is large, the gluon emitted by the heavy
quarks in the transition from an octet to a singlet state can
be considered perturbative and semi-inclusive decay widths
can be computed [9]. These semi-inclusive decay widths
correspond to the expected value of the hybrid states of the
imaginary part of the diagram in Fig. 4. The vertices in the
diagram can be either of the operators in the Lagrangian in
Eq. (4). This computation was carried out in Ref. [9] for the
LO term of Eq. (4); here we reproduce it and extend it to the
NLO operator. We are going to consider only transitions for
which αsðEn − EmÞ ≤ 0.5 with En − Em the energy differ-
ence between the hybrid and standard quarkonium. We will
compare the semi-inclusive transition width values to our
results in Secs. III and IV.
For the LO operator the semi-inclusive width is

ΓLO
Hm→Sn

¼ 4αs
3

TF

Nc
ðEn − EmÞ3hψmjðr̂�λÞkrijϕnihϕnjrjr̂kλjψmi:

ð62Þ

The expected value for transitions from n1P1 to m1P1,

hn1P1jðr̂�λÞkrijm1P1ihm1P1jrjr̂kλjn1P1i

¼ 1

5
ð3hmjrjn; 0i2 þ 2

ffiffiffi
2

p
hmjrjn; 0ihmjrjn;þ1i

þ 4hmjrjn;þ1i2Þ: ð63Þ

Using Eq. (63) in Eq. (62) and taking αs at the scale En −
Em using the RUNDEC Mathematica package [46] we
compute the values for the semi-inclusive widths corre-
sponding to the transitions in Table I. Only one transition
has a large enough energy gap:

ΓLO
ϒð11020Þ→hbð1PÞ ¼ 20ð�9Þαs MeV: ð64Þ

The sum of Eqs. (29)–(31), with the uncertainties added in
quadrature, is Γ ¼ 11� 4 MeV. This value is compatible
with the result in Eq. (64), albeit with smaller central value,
which might indicate that other final states, such as π0πþπ−
and ηπþπ−, can have transition widths of similar size to the
ones we computed.
The semi-inclusive decay width mediated by the NLO

operator in the Lagrangian in Eq. (4) is

ΓNLO
Hm→Sn

¼ 4c2Fαs
3m2

Q

TF

Nc
ðEn − EmÞ3

× hψmjðr̂�λÞkðS1 − S2ÞijϕnihϕnjðS1 − S2Þir̂kλjψmi:
ð65Þ

The matrix element for transitions from n1P1 to m3S1 reads

hn1P1jðr̂�λÞkðS1 − S2Þijm3S1ihm3S1jðS1 − S2Þir̂kλjn1P1i

¼
�X

λ
hmj1jn; λi

�
2

: ð66Þ

In this case three transitions from Table II have large
enough energy gaps:

ΓNLO
ϒð10753Þ→ϒð1SÞ ¼ 9.7ð�3.8Þαs MeV; ð67Þ

ΓNLO
ϒð11020Þ→ϒð1SÞ ¼ 7.3ð�2.5Þαs MeV; ð68Þ

ΓNLO
ϒð11020Þ→ϒð2SÞ ¼ 1.1ð�0.5Þαs MeV: ð69Þ

All of these three widths are much larger than the sum of
the channels that we have computed for these transitions;
the first two, Eqs. (67) and (68), by 2 orders of magnitude
and the last one, Eq. (69), by 3 orders of magnitude.
Therefore, for the transitions in Eqs. (67)–(69) we expect
large contributions from light-quark final states different
from the ones considered here, such as 4π, ηη and f0
resonances.
Finally it is interesting to notice that the sum of semi-

inclusive widths for ΓLOþNLO
ϒð11020Þ ¼ 28.4� 9.4 MeV is com-

patible with the experimental value of the total width
Γexp
ϒð11020Þ ¼ 24þ8

−6 MeV. This is a strong indication that

the transitions to ϒð1SÞ, ϒð2SÞ and hbð1PÞ are the main
decay channels for ϒð11020Þ.

VII. CONCLUSIONS

We have computed the transition widths of ϒð10753Þ
and ϒð11020Þ into standard quarkonium states and light-
quark mesons using nonrelativistic EFT. We have worked
under the assumption that these two states are the first two
lowest laying 1−− hybrid bottomonium states. The hybrid
quarkonium states are heavy-quark–antiquark bound states
around the minima of the static energies computed in the

FIG. 4. The single and double lines represent quarkonia in
singlet and octet states respectively. The curly line stands for a
gluon. The imaginary part of this self-energy diagram, which can
be obtained by cutting the diagram by the dashed line, produces
the semi-inclusive width associated to the transition from Hn to
Sm states with any other light-quark hadrons in the final state.
Note that the spectator gluons forming the Hn state are not
displayed.
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quenched approximation in lattice QCD [6,7]. Although
the spectrum of quark-antiquark static energies is not
known with dynamical light quarks, the results from
Ref. [19] for the two lowest static energies show negligible
difference to the quenched approximation ones. Therefore,
it is plausible that the hybrid bottomonium states used in
our approach are a good approximation of a more general
isospin I ¼ 0 exotic quarkonium state mixing a nontrivial
gluonic component with a light-quark–antiquark pair
component.
Hybrid quarkonium states can be described in an EFT

setting that incorporates the heavy-quark mass expansion
and an adiabatic expansion between the heavy quark and
light degrees of freedom [5,9]. Since the EFT coincides
with the Born-Oppenheimer approximation at LO it is
sometimes referred to as Born-Oppenheimer EFT [8]. In
this EFT framework the two lowest laying 1−− hybrid states
correspond to the ground state and the first radial excitation
of the coupled Σ−

u − Πu static energies, with l ¼ 1,
negative parity and singlet heavy-quark spin [5].
Nevertheless, in this paper we do not formally perform
the adiabatic expansion at the Lagrangian level since we are
interested in the transitions to standard quarkonium. The
standard quarkonium states are the bound states over the
ground state static energy Σþ

g . We have used the lattice data
for the static energies from Ref. [6].
To study the transitions we work in weakly coupled

pNRQCD [23,24] an EFT incorporating the heavy-quark
mass and multipole expansions. Since it is doubtful that the
multipole expansion can be employed in the hybrid
charmonium sector, we have restricted ourselves to the
bottomonium one. In the multipole expansion, the tran-
sition amplitudes factorize into a heavy-quark matrix
element and a gluonic matrix element that creates the final
light-quark states. We have studied the transitions gener-
ated by the singlet-octet field couplings at NLO in the
multipole or heavy-quark mass expansions that can be
found in the Lagrangian in Eq. (4). We have found that the
LO transition operator generates transitions fromϒð10753Þ
and ϒð11020Þ to hbðmPÞ quarkonium with emission of
light-quark mesons in a 0−þ state. The NLO transition
operator, suppressed by the heavy-quark mass, generates
transitions from ϒð10753Þ and ϒð11020Þ to ϒðmSÞ with
0þþ light-quark meson states.
In the case of the LO transitions we have computed the

widths for transitions with π0, η, η0 in the final state. The
gluonic production matrix elements are obtained employ-
ing the Uð1ÞA anomaly and the mixing scheme from
Ref. [32]. The values of the transition widths can be found
in Eqs. (27)–(34). Our estimate for the uncertainties of
these widths are large and dominated by the multipole
expansion corrections. The gluonic matrix elements have
small uncertainties except for π0 production due to this
matrix element being proportional to the difference of the u
and d quark masses.

For the NLO transitions we consider the light-quark final
states πþπ− and KþK−. The corresponding production
matrix elements are obtained through a dispersive repre-
sentation similar to the one in Refs. [33–35]. This consists
of two coupled Muskhelishvili-Omnès integral equations
for the πþπ− and KþK− channels. The T-matrix inputs
are taken from Refs. [42,43], which as a whole provide
accurate results up to

ffiffiffi
s

p ¼ 1.42 GeV, with s the squared
sum of the momenta of πþπ− or KþK−. The numerical
solution of the integral equations is obtained using the
techniques of Refs. [34,44]. Since the gluonic operator
contains both an S- and D-wave pieces we have solved the
coupled Muskhelishvili-Omnès equations for both waves.
For the S-wave case we reproduce the results in the
literature.
The results for the D wave are presented here for the
first time. Our results are plotted in Figs. 5 and 6. The
subtraction polynomials are obtained by matching to a
chiral representation with the low-energy constants parti-
ally determined with the scale anomaly and the Feymann-
Hellmann theorem. The final free parameter left is obtained
from quarkonium hadronic transitions [30]. In Figs. 2 and 3
we plot the normalized differential widths for the transi-
tions we have computed. The total widths can be found in
Eqs. (38)–(45). As in the LO transitions the uncertainty is
dominated by multipole expansion corrections, however,
unlike the LO case, the gluonic matrix elements have
important uncertainties stemming from the determination
of the low-energy constants of the chiral representation.
For the transitions ϒð11020Þ → ϒðnSÞπþπ−,

n ¼ 1; 2; 3, we can compare to the experimental results
from Ref. [28]. We find remarkable agreement for n ¼ 1,
however the experimental values are larger for n ¼ 2; 3.
Nevertheless, the experimental determinations are yet not
very precise and future determinations might be closer to
our values. We note that the width for n ¼ 1 is the one with
the most precise experimental determination.
In Sec. V we provide several ratios of transition

widths in which some of the uncertainties cancel out.
These can be used to test the different approximations
made in this paper in an independent way. For instance,
the ratios in Eqs. (49)–(52), (56) and (57) are indepen-
dent of the heavy-quark matrix elements but still relying
on the factorization of the gluonic matrix elements.
Hence, these rations can be used to test for this
factorization. Finally, in Sec. VII, we have computed
the semi-inclusive widths, generated by the same oper-
ators in the Lagrangian in Eq. (4) we have considered so
far, for the transitions with large enough energy gaps to
allow it [9]. The comparison with our results in Secs. III
and IV allows us to evaluate the relative importance of
the specific light-quark final states for which we have
computed transition widths.
Another remarkable result is that the sum of the LO and

NLO semi-inclusive widths of ϒð11020Þ is compatible
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with the experimental total width. This, combined with the
good agreement in the ϒð11020Þ → ϒð1SÞπþπ− transition
width and the earlier prediction in Ref. [5] of the mass of a

hybrid bottomonium state within 20 MeV of the current
average for theϒð11020Þmass form, in our opinion, strong
evidence for the hybrid bottomonium nature of this state.

FIG. 6. Plot of the solutions Ωð2Þ of the two-pion and two-kaon coupled Muskhelishvili-Omnès equations for the D partial wave.

FIG. 5. Plot of the solutions Ωð0Þ of the two-pion and two-kaon coupled Muskhelishvili-Omnès equations for the S partial wave.
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APPENDIX A: PSEUDOSCALAR PRODUCTION
VIA THE AXIAL ANOMALY

We need the matrix elements of E · B between the
vacuum and π0, η and η0. First we note that

g2

π
E · B ¼ αsGμνG̃

μν; ðA1Þ

with the dual field-strength tensor defined as G̃μν ¼
1
2
ϵμναβGαβ and ϵ0123 ¼ 1. The matrix elements of GμνG̃

μν

can then be related to the divergence of the axial current and
the pseudoscalar current through the axial anomaly

∂μJa5μ ¼ 2maāiγ5aþ αs
4π

GμνG̃
μν; a ¼ u; d; s; ðA2Þ

with Ja5μ ¼ āγμγ5a. This leaves us with 18 nonperturbative
parameters corresponding to the matrix elements of the
axial and pseudoscalar currents a ¼ u, d, s and final states
π0, η, η0. This amount of free parameters can be greatly
reduced by the implementation of a mixing scheme
between π0 − η − η0. In the following we review the mixing
scheme from Refs. [31,32] that we have used in our
computation.
First, let us introduce the notation jηai ¼ jaāi, then our

primary nonperturbative parameters are fa andm2
aa defined

as follows:

h0jJa5μjηa0 ðpÞi ¼ ipμfaδaa0 ; ðA3Þ

2mah0jāiγ5ajηa0 ðpÞi ¼ fam2
aaδaa0 ; a; a0 ¼ u; d; s.

ðA4Þ

We also define the short-hand notation

ωc ¼ h0j αs
4π

GμνG̃
μνjηcðpÞi; c ¼ π0; η; η0: ðA5Þ

Since the mixing of π0 with η and η0 is weak while the
η − η0 mixing is strong, it is convenient to use isoscalar and
isovector combinations of ηu and ηd, that is a change in the
basis of states given by

ηb ¼ Mηa; a ¼ u; d; s; b ¼ −;þ; s; ðA6Þ

M ¼ 1ffiffiffi
2

p

0
B@

1 −1 0

1 1 0

0 0
ffiffiffi
2

p

1
CA; ðA7Þ

where M is an orthogonal matrix. We will consider the
physical π0, η, η0 states as different mixes of the ηb,
b ¼ −;þ; s. The unitary matrix that transforms between
these two bases is given by

ηc ¼ Ucbηb; b ¼ −;þ; s c ¼ π0; η; η0; ðA8Þ

U ¼

0
B@

1 β þ ψ cosϕ −ψ sinϕ

−ψ − β cosϕ cosϕ − sinϕ

−β sinϕ sinϕ cosϕ

1
CA: ðA9Þ

Since the mixing of π0 with η and η0 is weak, the mixing
parameters β and ψ are small. Neglecting quadratic terms in
these one finds UU† ¼ 1. Therefore, we can write

h0jJb5μjηcðpÞi ¼ Mbaipμfaδaa0 ðM⊤Þa0b0 ðU†Þb0c
¼ ipμF bb0 ðU†Þb0c; ðA10Þ

with

F ¼

0
B@

1 z 0

z 1 0

0 0 1=y

1
CA; z ¼ fu − fd

fu þ fd
; y ¼ fþ

fs
;

fþ ¼ fu þ fd
2

: ðA11Þ

Therefore

h0j∂μJb5μjηcðpÞi ¼ F bb0 ðU†Þb0c0Mc0c ¼ Mcc0Uc0b0F b0b;

ðA12Þ

with the mass matrix

M ¼

0
B@

m2
π0

0 0

0 m2
η 0

0 0 m2
η0

1
CA: ðA13Þ

On the other hand using the axial anomaly from Eq. (A2)
we obtain
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h0j∂μJb5μjηcðpÞi ¼ Mbaðfamaaδaa0 þ ωa0 ÞðM⊤Þa0b0 ðU†Þb0c ¼ Abb0 ðU†Þb0c; ðA14Þ

with

Abb0 ¼

0
B@

fumuuþfdmdd
2

fumuu−fdmdd
2

0

fumuu−fdmdd
2

þ ffiffiffi
2

p
ω−

fumuuþfdmdd
2

þ ffiffiffi
2

p
ωþ

ffiffiffi
2

p
ωs

ω− ωþ fsmss þ ωs

1
CA: ðA15Þ

Putting together Eqs. (A12) and (A14),

AU† ¼ FU†M; ðA16Þ

we arrive at a system of eight independent equations that
we choose to use to determine the mixing parameters β, ψ ,
sinϕ, the matrix elements ω−, ωþ, ωs and fs as well as
muu þmdd. We obtain

m2
π0
¼ 1

2
ðm2

uu þm2
ddÞ; ðA17Þ

y ¼
ffiffiffi
2

p ωs

ωþ
; ðA18Þ

z ¼ −
ω−

ωþ
; ðA19Þ

ωþ ¼ fþ
ðm2

η −m2
π0
Þðm2

η0 −m2
π0
Þffiffiffi

2
p ðm2

ss −m2
π0
Þ ; ðA20Þ

sinϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

η0 −m2
ssÞðm2

η −m2
π0
Þ

ðm2
η0 −m2

ηÞðm2
ss −m2

π0
Þ

vuut ; ðA21Þ

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ðm2

η0 −m2
ssÞðm2

ss −m2
ηÞ

ðm2
η0 −m2

π0
Þðm2

η −m2
π0
Þ

vuut ; ðA22Þ

β ¼ zþ m2
dd −m2

uu

2ðm2
η0 −m2

π0
Þ ; ðA23Þ

ψ ¼ 1

2
cosϕ

ðm2
dd −m2

uuÞðm2
η0 −m2

ηÞ
ðm2

η0 −m2
π0
Þðm2

η −m2
π0
Þ : ðA24Þ

Furthermore, fþ is fixed to the pion decay constant
Fπ ¼ 92.419 MeV,

fþ ¼ fπ ¼
ffiffiffi
2

p
Fπ: ðA25Þ

The remaining free parameters are z, m2
dd −m2

uu and mss or
fs. As far as we know, the value of z is unknown, however
we will not need it as we will see below. The value of
m2

dd −m2
uu can be estimated as

m2
dd −m2

uu ¼ 2½m2
K0 −m2

Kþ − Δm2
K e:m:�

¼ 0.01248ð76Þ GeV2 ðA26Þ

with the kaon mass difference in QCD taken from Eq. (9.5)
of Ref. [50]. The last parameter remaining is m2

ss which is
obtained through

m2
ss ¼ 2m2

K0 −m2
π0

¼ 0.477019ð26Þ GeV2: ðA27Þ

Finally we can obtain the matrix elements ωc, c ¼ π0;
η; η0 using the matrix in Eq. (A8), and the relations in
Eqs. (A17)–(A24):

ωc ¼ Ucbωb: ðA28Þ

We obtain

ωπ0 ¼ Fπ
m2

dd −m2
uu

2
; ðA29Þ

ωη ¼ Fπðm2
η −m2

π0
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

η0 −m2
π0
Þðm2

ss −m2
ηÞ

ðm2
η0 −m2

ηÞðm2
ss −m2

π0
Þ

vuut ; ðA30Þ

ωη0 ¼ Fπðm2
η0 −m2

π0
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

η −m2
π0
Þðm2

η0 −m2
ssÞ

ðm2
η0 −m2

ηÞðm2
ss −m2

π0
Þ

vuut : ðA31Þ

Using the meson mass values from the PDG we obtain
the following numerical values:

ωπ0 ¼ 0.574ð�0.035Þ × 10−3 GeV3; ðA32Þ

ωη ¼ 19.5ð�0.7Þ × 10−3 GeV3; ðA33Þ

ωη0 ¼ 55ð�2Þ × 10−3 GeV3: ðA34Þ

The uncertainty of ωπ0 is dominated by the uncertainty of
the m2

uu −m2
dd mass difference in Eq. (A26). The error in

not taking into account quadratic terms in β and ψ is
proportional to ðm2

uu −m2
ddÞ2 and negligible in front of the

uncertainty of m2
uu −m2

dd itself. In the case of ωη and ωη0

the parametric uncertainty is small. Nevertheless, it does
not account for the difference between the theoretical
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mixing angle obtained from Eq. (A21) ϕ ¼ 41.462ð4Þ and
the phenomenological determination ϕ ¼ 39.3 [31]. This is
likely the result of the model depended approximations of
the mixing scheme, as for instance the truncation of the
Fock space expansion of jηai to just the quark-antiquark
component. Therefore, we find it more adequate to assign
as uncertainty of ωη, ωη0 the propagation of the error in the
determination of the mixing angle ϕ.

APPENDIX B: DISPERSIVE REPRESENTATION
FOR TWO MESON PRODUCTION

MATRIX ELEMENTS

We want to determine the matrix elements for two pion
and two kaon production by B2:

hPþðpþÞP−ðp−Þjg2B2j0i; P ¼ π; K: ðB1Þ

First, we note that B2 contains both an S andD-wave terms.
This is more apparent rewriting it as follows:

B2 ¼ 1

4
GαβaGa

αβ þ vμvνθgμν; ðB2Þ

with vμ ¼ ð1; 0Þ and

θgμν ¼ 1

4
gμνGαβaGa

αβ − Ga
μαGαa

ν : ðB3Þ

One can write a chiral representation of the matrix elements
in Eq. (B1) which will depend on a set of unknown low-
energy constants. In order to partially determine these it is
useful to rewrite B2 as the sum of several terms and write a
chiral representation of the matrix elements of each one.
The first term in Eq. (B2) can be written in terms of the
trace of QCD energy-momentum tensor,

B2 ¼ αs
βðαsÞ

�
θμμ −

X
i

mið1 − γiÞq̄iqi
�
þ vμvνθgμν; ðB4Þ

with γi the anomalous dimension of the q̄iqi operator, β the
QCD β function and

θμμ ¼ 1

4

βðαsÞ
αs

GμνaGμνa þ
X
i

ð1 − γiÞmiq̄iqi: ðB5Þ

Now, one can write chiral representations for the matrix
elements of each one of the terms in Eq. (B4). At LO in the
chiral expansion each one of these matrix elements depends
on only one low-energy constant (the normalization of the
matrix element). Furthermore, for the θμμ and miq̄iqi these
can be determined by the scale anomaly [47,51,52] and the
Feymann-Hellmann theorem, respectively. At LO these
matrix elements read as

hPþðpþÞP−ðp−Þjθμμj0i ¼ 2ðpþ · p−Þ þ 4m2
P þ � � � P ¼ π; K; ðB6Þ

hPþðpþÞP−ðp−Þj
X
i

miq̄iqij0i ¼ m2
P þ � � � ; ðB7Þ

hPþðpþÞP−ðp−Þjθgμνj0i ¼ −V2ðμÞ
�
pþμp−ν þ p−μpþν −

1

2
gμνpþ · p− þ � � �

�
: ðB8Þ

Adding up all the contributions and neglecting the anomalous dimension and contributions to the β function beyond the LO
we arrive at

hPþðpþÞP−ðp−Þj
β0αs
2π

B2j0i ¼ −
��

2 −
3κ

2

�
pþ · p− þ 6κp0þp0

− þ 3m2
P

�
; ðB9Þ

where we have used the definition κ ¼ αsβ0V2ðμÞ=ð6πÞ as in Ref. [52]. The parameter κ cannot be determined from first
principles, however it can be extracted from the spectrum of the transitions ψð2SÞ → J=ψπþπ− and ϒð2SÞ → ϒð1SÞπþπ−
[30,52]. We use the value from Ref. [30],

κ ¼ 0.247ð20Þ: ðB10Þ

Using Eqs. (C2), (C7) and (C8) we can write Eq. (B9) in terms of the Mandelstam variables:

hPþðpþÞP−ðp−Þj
β0αs
2π

B2j0i ¼ −
��

1 −
3κ

4

�
sþ

�
1þ 3

2
κ

�
m2

P þ 3κ

2

�
Δ2 −

�
u − t
2mn

�
2
��

; ðB11Þ

where Δ ¼ mn −mm and mn and mm are the masses of the initial hybrid and the final standard quarkonium states,
respectively.
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The chiral representation we have just built is only valid
at low energies

ffiffiffi
s

p
≪ Λχ . For the computation of the

transitions we need these matrix elements up toffiffiffi
s

p
≃ 1.6 GeV. To do so we will build a dispersive

representation of the matrix elements. Let us define the
form factors,

FP ≡ hPþðpþÞP−ðp−Þj
β0αs
2π

B2j0i; P ¼ π; K:

ðB12Þ

We can write a general decomposition of these form
factors, in the spirit of the reconstruction theorem [53],
considering their analytic properties. In our case this is
greatly simplified since only the cuts in the right-hand side
of the complex s-plane corresponding to two-pion and two-
kaon rescattering need to be considered. Furthermore, we
know that the form factors only contain S and D waves.
Hence, a general decomposition of the form factors is as
follows:

FPðs;t;uÞ¼Fð0Þ
P ðsÞþ

�
ðu− tÞ2−4

3
m2

nσ
2
PðsÞρ2PðsÞ

�
Fð2Þ
P ðsÞ;

ðB13Þ

with σP and ρP defined in Eqs. (C3) and (C5), respectively.
FromWatson’s theorem [54] the discontinuity along the cut

of the form factors FðlÞ
P generated by the two-pion or kaon

rescattering has the following form:

Im½nPFðlÞ
P ðsÞ�

¼
X

P0¼π;K

ðT0�
l ðsÞÞPP0σP0 ðsÞnP0FðlÞ

P0 ðsÞθðs − 4m2
P0 Þ; ðB14Þ

where nπ ¼
ffiffiffiffiffiffiffiffi
3=2

p
and nK ¼ ffiffiffi

2
p

are factors resulting from
the projection of the pion and kaon states into isospin
I ¼ 0. The T-matrix T0

l ðsÞ is given by

T0
l ðsÞ ¼

0
B@

η0l ðsÞe
2iδ0

l
ðsÞ−1

2iσπðsÞ jg0l ðsÞjeiψ
0
l ðsÞ

jg0l ðsÞjeiψ
0
l ðsÞ η0l ðsÞe

2iðψ0
l
ðsÞ−δ0

l
ðsÞÞ−1

2iσKðsÞ

1
CA: ðB15Þ

The three inputs of the T-matrix are: the l-wave isoscalar ππ
phase shift δ0l ðsÞ and the modulus, jg0l j, and phase, ψ0

l ðsÞ, of
the l-wave isoscalar ππ → KK̄ amplitude. The inelasticity
η0l ðsÞ is related to jg0l j by

η0l ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4jg0l ðsÞj2σπðsÞσKðsÞθðs − 4m2

KÞ
q

: ðB16Þ

We want to find a functional form of the form factors that
fulfills Eq. (B14), is analytic in the complex s-plane, except
on the cuts, and is real on the real s axis below the cuts. This

is the two-channel Muskhelishvili-Omnès problem [55,56].
There are two independent canonical solutions [33,55]
which we arrange as columns of the following matrix:

ΩðlÞðsÞ ¼
 
CðlÞ
1 ðsÞ DðlÞ

1 ðsÞ
CðlÞ
2 ðsÞ DðlÞ

2 ðsÞ

!
: ðB17Þ

A general solution can be written as

nPF
ðlÞ
P ðsÞ ¼ ΩðlÞ

PP0 ðsÞQðlÞ
P0 ðsÞ; ðB18Þ

where QðlÞðsÞ ¼ ðQðlÞ
1 ; QðlÞ

2 Þ are the so-called subtraction
polynomials. The Ω-matrix satisfies a set of coupled
Muskhelishvili-Omnès singular integral equations,

ΩðsÞ ¼ 1

π

Z
∞

4m2
π

ds0

s0 − s
ðT0

l ðs0ÞÞ�Σðs0ÞΩðs0Þ; ðB19Þ

with ΣðsÞ ¼ diagðσπðsÞθðs − 4m2
πÞ; σKðsÞθðs − 4m2

KÞÞ.
The two independent solutions are generated choosing
the normalization Ωð0Þ ¼ 1.
In the limit s → ∞ we expect the form factors to go to

zero as 1=s, therefore ΩðlÞQðlÞ should also vanish in the
same way. If in this limit ΩðlÞ ∼ 1=sr, then QðlÞ should be a
degree (r − 1) polynomial. If we take the determinant of
both sides of Eq. (B19) the matrix equation reduces to a
one-dimensional equation for which an analytical solution
is available [55,56]. The asymptotic behavior can then be
obtained [34]:

detðΩðlÞÞ ∼s→∞s−ArgðdetðS
0
l ÞÞ=π ðB20Þ

with S0l the S-matrix associated to the T-matrix in
Eq. (B15). Assuming that the off-diagonal terms of S0l
vanish in the asymptotic limit, then ArgðdetðS0l ÞÞ is just the
sum of the asymptotic behaviors of the eigen phase shifts.
Since each component of Ω must vanish at least as 1=s,
Eq. (B20) establishes a constraint on the asymptotic
behavior of the T-matrix in order for solutions of the
Muskhelishvili-Omnès integral equations to exist,

lim
s→∞

ArgðdetðS0l ðsÞÞÞ ≥ nπ; ðB21Þ

with n the number of open channels considered. In the
present work we only consider the two-pion and two-kaon
channels (i.e., n ¼ 2), which is an approximation valid only
up to a certain value of s, therefore any given asymptotic
behavior of the T-matrix can only be considered as a model,
which we choose to ensure the existence of solutions
of Eq. (B19).
The inputs of the T-matrix are taken as follows: δ0l ðsÞ is

taken from the parametrization of Ref. [42] with the
CFD parameter set; jg0l j and ψ0

l ðsÞ are taken as the

JAUME TARRÚS CASTELLÀ and EMILIE PASSEMAR PHYS. REV. D 104, 034019 (2021)

034019-16



parametrizations from Ref. [43] with the CFDc and CFD
parameter sets for S and D waves, respectively. These
parametrizations are given up to

ffiffiffi
s

p ¼ 1.42 GeV for δ0l ðsÞ
and

ffiffiffi
s

p ¼ 2 GeV for jg0l j and ψ0
l ðsÞ, then they are

continued smoothly, up to first derivatives, to the following
asymptotic values δ0l → 2π, ψ0

l → 2π and jg0l j → 0.
The solution of Eq. (B19) is obtained numerically using

the procedure described in Refs. [34,44]. A very brief
summary is as follows.2 First, one rewrites Eq. (B19) in
terms of ReðΩÞ only. Then the dispersive integral is split in
j ¼ 1;…;M subintervals and the numerator of the inte-
grand is expanded in Legendre polynomials up to degreeN.
This allows the exact evaluation of the principal value
integration in terms of Legendre functions of the second
kind. The coefficients of the Legendre expansions for each

subinterval j are integrated using zðjÞi , i ¼ 1;…N Gauss-
Legendre points. This determines Re½ΩðsÞ� in terms of

Re½ΩðzðjÞi Þ�. Evaluating Re½ΩðsÞ� precisely at the same
Gauss-Legendre points generates a system of equations

with Re½ΩðzðjÞi Þ� as variables. Adding the normalization, an
overdetermined system ðNM þ 2Þ × NM is created. Using
a singular value decomposition one can obtain a pseu-
doinverse of the matrix and the variables are obtained in a
least squares fit. The imaginary parts can then be obtained
from the unitarity condition in Eq. (B14). We use N ¼ 25,
eight subintervals for the S-wave case and six for the D-
wave one. We plot our results in Figs. 5 and 6. For the S-
wave case we have checked that our results agree with
Refs. [34,35]. TheD-wave results are presented here for the
first time.
The final step in the construction of the dispersive

representation of the matrix elements in Eq. (B1) is the

determination of the QðlÞðsÞ polynomials. We do so by
requiring that the expansion of Eq. (B18) for small s
matches the chiral representation of Eq. (B11). In principle,
given the asymptotic behavior of the T-matrix we have
constructed, one would expect that these polynomials are
just constants. However, this does not produce appropriate
results [33] as the LO chiral representation in Eq. (B11)
depends on s and cannot be reproduced by the dispersive
representation unless one allows for QðlÞðsÞ polynomials of
order one. Doing so spoils the asymptotic behavior of the
dispersive representation of the form factors. However,
since we are only interested in these form factors up toffiffiffi
s

p
∼ 1.6 GeV the issue can be ignored. Furthermore, due

to the presence of a D wave, the partial wave projected
chiral amplitude in Eq. (B11) contains a singular 1=s term.
To accommodate it an analogous 1=s needs to be added to
theQð0Þ polynomials [57]. The resultingQðlÞ are as follows:

Qð0Þ
1 ¼ að0Þ11 s

−1 þ að0Þ12 þ að0Þ13 s; ðB22Þ

Qð0Þ
2 ¼ að0Þ21 s

−1 þ að0Þ22 þ að0Þ23 s; ðB23Þ

Qð2Þ
1 ¼ að2Þ1 ; ðB24Þ

Qð2Þ
2 ¼ að2Þ2 ; ðB25Þ

and the coefficients

að0Þ11 ¼ −
ffiffiffi
6

p
m2

πκΔ2; ðB26Þ

að0Þ12 ¼ −
ffiffiffi
3

2

r �
m2

π

�
1 −

κ

2

�
þ κΔ2

�
1 − 2m2

π
_C1ð0Þ −

4ffiffiffi
3

p m2
K
_D1ð0Þ

��
; ðB27Þ

að0Þ13 ¼ −
ffiffiffi
3

2

r �
1 −m2

π
_C1ð0Þ −

2ffiffiffi
3

p m2
K
_D1ð0Þ −

κ

4

�
1 − 2m2

π
_C1ð0Þ −

4ffiffiffi
3

p m2
K
_D1ð0Þ

�
− κΔ2

�
_C1ð0Þ þ

2ffiffiffi
3

p _D1ð0Þ

þm2
πðC̈1ð0Þ − 2ð _C2

1ð0Þ þ _C2ð0Þ _D1ð0ÞÞÞ þ
2ffiffiffi
3

p m2
KðD̈1ð0Þ − 2 _D1ð0Þð _C1ð0Þ þ _D2ð0ÞÞÞ

��
; ðB28Þ

að0Þ21 ¼ −2
ffiffiffi
2

p
m2

KκΔ2; ðB29Þ

að0Þ22 ¼ −
ffiffiffi
2

p �
m2

K

�
1 −

κ

2

�
þ κΔ2ð1 −

ffiffiffi
3

p
m2

π
_C2ð0Þ − 2m2

K
_D2ð0ÞÞ

�
; ðB30Þ

að0Þ23 ¼ −
ffiffiffi
2

p �
1 −

ffiffiffi
3

p

2
m2

π
_C2ð0Þ −m2

K
_D2ð0Þ −

κ

4

�
1 −

ffiffiffi
3

p
m2

π
_C2ð0Þ − 2m2

K
_D2ð0Þ

�
− κΔ2

� ffiffiffi
3

p

2
_C2ð0Þ þ _D2ð0Þ

þ
ffiffiffi
3

p

2
m2

πðC̈2ð0Þ − 2 _C2ð0Þð _C1ð0Þ þ _D2ð0ÞÞÞ þm2
KðD̈2ð0Þ − 2ð _C2ð0Þ _D1ð0Þ þ _D2

2ð0ÞÞÞ
��

; ðB31Þ

2A detailed explanation can be found in Ref. [44].
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að2Þ1 ¼
ffiffiffi
3

2

r
3κ

8m2
n
; ðB32Þ

að2Þ2 ¼
ffiffiffi
2

p 3κ

8m2
n
: ðB33Þ

APPENDIX C: MANDELSTAM VARIABLES AND
WIDTH FORMULAS

The Mandelstam variables for the transition HnðknÞ →
SmðkmÞPþðpþÞP−ðp−Þ with P ¼ π, K are as follows:

s ¼ ðpþ þ p−Þ2; t ¼ ðkn − pþÞ2; u ¼ ðkn − p−Þ2:
ðC1Þ

In the reference frame of the decaying exotic quarkonia,
one finds

p0
� ¼ 1

2
ðΔ� ρðsÞσPðsÞ cos θÞ; ðC2Þ

with

σP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

P=s
q

; ðC3Þ

Δ ¼ m2
n −m2

m þ s
2mn

; ðC4Þ

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 − s

p
; ðC5Þ

where mn and mm are the masses of initial and final
quarkonium respectively. In the nonrelativistic approxima-
tion of the final quarkonium momentum, the above
expressions for Δ reduce to

Δ ¼ mn −mm: ðC6Þ

In all our numerical computations we have used this
nonrelativistic approximation of Δ to be consistent with
the nonrelativistic nature of our EFT approach. It should be
noted that the specific form of Eqs. (B26)–(B33) depends
on this choice.
Continuing in the reference frame of the decaying exotic

quarkonia and using Eq. (C2) one finds

t ¼ 1

2
ðm2

n −m2
m þ 2m2

P − sÞ −mnρðsÞσPðsÞ cos θ; ðC7Þ

u ¼ 1

2
ðm2

n −m2
m þ 2m2

P − sÞ þmnρðsÞσPðsÞ cos θ; ðC8Þ

and consequently

cos θ ¼ u − t
2mnρðsÞσPðsÞ

: ðC9Þ

We are interested in finding the transition width of
amplitudes with an S and D wave as in Eq. (B13):

A2P ¼ Að0ÞðsÞ þ
�
ðu − tÞ2 − 4

3
m2

nσ
2
PðsÞρ2PðsÞ

�
Að2ÞðsÞ:

ðC10Þ

Using Eq. (C9) into Eq. (C10) we can write A2P ¼
A2Pðs; cos θÞ.
The differential decay width is

Γ2P

dsd cos θ
¼ ρðsÞσPðsÞ

8ð2πÞ3 jA2Pðs; cos θÞj2: ðC11Þ

Integrating θ we arrive at

dΓ2P

ds
¼ ρðsÞσPðsÞ

8ð2πÞ3
�
2jAð0ÞðsÞj2

þ 8

45
ð2mnσPðsÞρðsÞÞ2jAð2ÞðsÞj2

�
: ðC12Þ

To obtain the total decay width we integrate numerically

Γ2P ¼
Z ðmn−mmÞ2

4m2
P

ds

�
dΓ2P

ds

�
: ðC13Þ

In the transition with one light-quark meson in the final
state, the momenta are fixed by momentum conservation.
The final light-quark meson momentum is jpPj ¼ ρðmPÞ,
and the decay width is given by

ΓP ¼ ρðm2
PÞ

2π
jA1Pj2; ðC14Þ

with ρðsÞ given in Eq. (C5).
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