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We study the transition widths of Y(10753) and Y(11020) into standard bottomonium under the
hypothesis that they correspond to the two lowest laying 17~ hybrid bottomonium states. We employ
weakly coupled potential NRQCD an effective field theory incorporating the heavy-quark and multipole
expansions. We consider the transitions generated by the leading order and next-to-leading order singlet-
octet operators. In the multipole expansion the heavy-quark matrix elements factorize from the production
of light-quark mesons by gluonic operators. For the leading order operator we compute the widths with a
single 7%, i or i in the final state and for the next-to-leading operator for z+z~ or K™ K~. The hadronization

of the gluonic operators is obtained, in the first case, from the axial anomaly and a standard z° — 5 — 7’
mixing scheme and, in the second case, we employ a coupled-channel dispersive representation matched to
chiral perturbation theory for both the S- and D-wave pieces of the gluonic operator. We compare with
experimental values and semi-inclusive widths. Our results strongly suggest that Y(11020) is indeed a

hybrid bottomonium state.
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I. INTRODUCTION

Hadrons have been traditionally classified according to
their number of valence quarks. In the naive quark model,
three quark states are called baryons while quark-antiquark
states are called mesons. Even from the inception of the
quark model, it was noted that more complex states, for
example containing four or five quarks, were possible [1].
Another possibility, unique to QCD, is the participation of
gluons as valence degrees of freedom. The so-called hybrid
states are the ones combining both quark and gluonic
valence degrees of freedom. Such nonconventional states,
often referred as exotics, were absent from the experimental
observations up to 2003 when the Belle experiment
discovered the X(3872) [2]. This opened a period, up until
present times, with the continuous discovery of new exotic
states, particularly in the double heavy-quark sector.

Heavy quarks in hadrons are nonrelativistic and therefore
their number is well defined. Heavy-quark—antiquark
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states, called quarkonium, are nonrelativistic bound states
with quantum numbers akin to the hydrogen atom and are
well understood. Therefore, when new states appeared in
the charmonium and bottomonium spectrum that did not fit
the standard quarkonium expectations, these were clear
candidates to exotic states. In some cases the new states had
explicitly exotic quantum numbers, such as the charged
exotic quarkonium states which must include two heavy
and two light quarks.

Several proposals have been made concerning the
structure of the exotic quarkonium states: heavy hybrids,
compact tetraquarks, hadro-quarkonium and heavy meson
molecules. Moreover, for each of these pictures several
theoretical approaches can be found in the literature.
Some common predictions from these pictures and
approaches are the spectrum and the composition of
heavy-quark spin symmetry multiplets. However, often
several interpretations are consistent with the observed
spectrum and not enough quantum numbers of exotic
quarkonium are accessible experimentally to be able to
check heavy-quark spin symmetry multiplet predictions.
Another avenue to understand the structure of exotic
quarkonium is the study of their decays, in particular
transitions into standard quarkonium states with one or
two light-quark mesons in the final state, since many of the
known exotic quarkonium states have been discovered
through these decay channels.
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The objective of this paper is to study a set of exotic to
standard quarkonium transitions in a nonrelativistic effec-
tive field theory (EFT) approach. Since the heavy quarks in
exotic quarkonium are nonrelativistic, the natural starting
point for their study is NRQCD [3,4] at leading order, that
is in the static limit. In this limit the spectrum is composed
of the so-called static energies, which depend on the
quantum numbers of the light quarks and gluon degrees
of freedom, the heavy-quark antiquark distance, and the
representation of the cylindrical symmetry group Dooh.l
The static energies are nonperturbative quantities that
should be computed in lattice QCD. So far only the
spectrum in the quenched approximation is known [6,7].
Going beyond the static limit, heavy-quark—antiquark
bound states are formed around the minima of the static
energies. These states correspond to the exotic quarkonium
and in the case of the static energies from Refs. [6,7] to the
hybrid quarkonium picture. Since the heavy-quark—anti-
quark binding energy is much smaller than the energy scale
that characterizes the static energies, Agcp, one can write
an EFT describing hybrid quarkonium [5,8—11], which at
leading order coincides with the Born-Oppenheimer
approximation for heavy hybrids [7,12—-16]. This kind of
Born-Oppenheimer EFT has been generalized to any light-
quark and gluon states in Ref. [17] and also to double
heavy-quark states such as double heavy baryons [18].

Although the precise spectrum of heavy-quark—
antiquark static energies with dynamical light quarks is
not known, we do have pieces of information from lattice
studies to infer a general picture. In Ref. [19] the ground
and first excited static energies were obtained both in the
quenched and unquenched computations with no sig-
nificant differences encountered. We expect this to hold
for the rest of the static energies computed in Refs. [6,7].
Nevertheless, with dynamical light quarks new static states
appear, most importantly heavy-meson pairs. In fact, many
exotic quarkonium states have been interpreted as heavy-
meson shallow bound states, see Ref. [20] for a review on
the topic. The effect of these thresholds on the hybrid
quarkonium states can be assessed from the string breaking
studies in lattice QCD [21,22] which suggest that threshold
effects are only noticeable in a tiny energy band around the
threshold of a few tens of MeV. The emergent picture is that
the hybrid states, as described in the previous paragraph,
are a good approximation of a more general isospin / = 0
exotic quarkonium states.

To study the exotic to standard quarkonium transitions
we will employ the multipole expansion. For heavy-
quark—antiquark systems the EFT that incorporates the
multipole expansion is weakly coupled potential NRQCD
(PNRQCD) [23,24]. Unfortunately, the multipole expan-
sion is a poor expansion for hybrid charmonium [5] and

'See, for example, Appendix A of Ref. [5] for a detailed
description of the D, group.

even for standard charmonium states beyond the ground
state [25]. For this reason, in this paper we will restrict
ourselves to the bottomonium sector. In this sector we
encounter the following exotic states: three neutral 17~
states: T(10753), T(10860) and Y(11020) [26-28]; and
two charged 11 ones: Z,,(10610) and Z,(10650) [29]. Both
the charged ones and Y'(10860) lay very close to B meson
pair thresholds and therefore are very likely to be molecular
states. Nevertheless the Y (10860) could have a small
T(5S) component. Our interest will be in the states
Y(10753) and Y(11020) which we will identify as the
two lowest 17~ hybrid bottomonium states. The predictions
for these states from Ref. [5] are 10.79 and 10.98 GeV. For
the first state the difference is of 40 MeV, which is
significant, however this is off only a handful of data
points from Ref. [28], and it is possible that future data
might change the mass of this state by an amount of this
order. For the second state the difference is of 20 MeV
which is well within the uncertainties of the theoretical
prediction.

We will investigate the transitions of Y(10753) and
Y(11020) into standard bottomonium in weakly coupled
pNRQCD in a similar approach to the one used in Ref. [30]
to study transitions in standard quarkonium; that is, we will
assume the following hierarchy of scales mg > mgv >
Aqcp is fulfilled, with m, the heavy-quark mass and v the
relative heavy-quark—antiquark velocity. We will provide
predictions for the transition widths when the final state
includes a single z°, 5 or 1’ or a pair of z7z~ or K™ K~. The
matrix elements for the single meson production are
obtained using the U(1), anomaly and the Feldmann-
Kroll-Stech (FKS) 7° —# —#' mixing scheme [31,32].
Unlike Ref. [30], the two pion and two kaon matrix
elements are not obtained through a chiral representation,
since the large mass difference between the initial exotic
state and the final standard quarkonium makes that unfea-
sible. Instead we build a dispersive representation of the
relevant gluonic matrix elements that takes into account the
pion and kaon scattering as well as their coupling. This is
analogous to the approach in Refs. [33-35] for the S-wave
part of the matrix element but is also applied for the first
time to the D-wave piece.

The paper is organized as follows. In Sec. II we
introduce the pNRQCD Lagrangian and define the stan-
dard and hybrid quarkonium states. In Secs. III and IV we
study the leading order (LO) and next-to-leading order
(NLO) transitions, respectively, and provide numerical
predictions for the widths of Y(10753) and Y(11020)
into a set of specific light-quark final states. We discuss
several ratios in Sec. V for which some uncertainties
cancel out. In Sec. VI we compute the semi-inclusive
width for the transitions that allow it and discuss the
results in relation to the ones in Secs. III and IV. We
give our conclusions in Sec. VII. In Appendix A we
review the computation of the z°, # and #' production
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matrix elements with the U(1), anomaly and the FKS
mixing scheme. In Appendix B we build the dispersive
representation for the two-pion and two-kaon production
form factors. Finally, in Appendix C, we collect the
definitions of the Mandelstam variables and several for-
mulas employed in the evaluation of widths from the
transition amplitudes.

LiRrocp = /d3R{/d3rTr[SI(180

S and O are the quark singlet and octet fields, respectively,
normalized with respect to color as S = S1,./y/N, and
O = 0°T*/\/Ty. The dependence in ¢, the relative coor-
dinates r, and the center of mass coordinates R of the heavy
quarks of the singlet and octet fields is left implicit. The
trace should be understood as a double trace in color and
spin. The singlet and octet fields are organized in SU(2)
spin multiplets. For instance, S = (S -6 + S,1,)/v2. All
the fields of the light degrees of freedom in Eq. (1) are
evaluated at R and #; in particular, G**“ = G**“(R, 1),
q; =q;(R, 1), and iDyO = i0yO — g[Ay(R, 1), O]. The sin-
glet and octet Hamiltonian densities read as

LRocp = / d3Rd3r{ gTr[S'r- EO 4 O'r - ES]

The spin vectors S, and S, correspond to the heavy-quark
and heavy-antiquark respectively. The chromoelectric and
chromomagnetic fields are defined as E' = G and B’ =
—€; 3G/ /2 with €53 = 1.

B. Standard quarkonium states

Now, let us define the standard quarkonium states. In the
static limit these are simply

IR.r;27) = ST(R,r)[0). (5)

The full static potential corresponds to the static energy in
the X representation

+=

v

v (r) = lim - ln<R rXZ /2R X —1/2)

b b
t—oo f 9

<

=V 4 b+ = ED (1), (6)
g

We are going to use a fit to the full static energy as the static

potential instead of a multipole expanded expression in the

middle equality in Eq. (6) in order to increase accuracy. The

lattice data used for X and the fitted potential can be found

II. STANDARD AND HYBRID
QUARKONIUM IN pNRQCD
A. pNRQCD Lagrangian

The pNRQCD Lagrangian at LO in 1/m, where m, is
the heavy-quark mass, except for the kinetic term and at LO
in the multipole expansion reads

NS + 0% (iDy — h ))O}——G" G"”"—i—Zq, iD—m,) } (1)

VZ

W=~ vI(r), 2)
Q
V2

RO — - 2 v, (3)
0

where V! (r) and V. )(r) are computed in perturbation

theory. Note that we have spin symmetry.

At NLO in the multipole expansion or in 1/m, we have
the following operators that produce transitions between
singlet and octet fields:

+ IFy[ST(S, = S,) - BO + O'(S, = S,) -BS]}. (4)

mo

in Fig. 1. The static eigenstates can be used as a basis for a
general quarkonium state,

|S,,) = / drd®Rep™ (R, r)|R,r; ), (7)

then, we can use quantum mechanical perturbation theory
to incorporate the kinetic term and obtain the Shrodinger
equation for the standard quarkonium states:

(-Vi + v;‘?(r)) Pr) = End™E). (8)

where we have used the short-hand notation for the wave
function,

d)(m) (I‘) = ¢mjls (l‘) = d)m(r) 25+1/ (9 ¢) (9)

with m the principal quantum number, /(I + 1) the eigen-
value heavy-quark pair angular momentum L2 90’ s(s+1)
the heavy-quark pair spin $> = (S, + S,)? eigenvalue and
Jj(j+ 1) the eigenvalue of the total angular momentum
J? = (Lyg + S)?. For brevity, we will use (m) to denote the
whole set of quantum numbers.
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C. Hybrid quarkonium states

The hybrid states are more complicated due to the
presence of nontrivial gluonic degrees of freedom. At
LO in the heavy-quark mass and multipole expansions
the gluonic excitations are characterized by local operators
belonging to irreducible representations of the O(3) ® C

group which are called gluelump operators. We write these
operators as Gi(R) where a is the color index, k labels the
gluelump JP€ and i labels its vector components. Let H(©)
be the LO Hamiltonian density in the multipole and heavy-
quark mass expansions corresponding to the Lagrangian

in Eq. (1):

1
(0) :/d3R/d3rTr[sTV§°)s+0TV£°>0]+/d3R<2(E“-E“+B”-B“ Z [iD -y —m, q) (10)

The gluelump operators are the eigenstates H®) in the presence of a local heavy-quark-antiquark octet source:

HOG(R)O (R.1)[0) =
The gluelump operators are normalized as

(0IG" (RO (R

For simplicity from now on we will only consider the
lowest laying gluelump operator with k= 11t~ [37],
Gié‘ = G’i‘i,, which is the one associated to the lowest
laying hybrid states. Once we go beyond the short-distance
limit the symmetry of the system is reduced to the cylin-
drical symmetry group D.;. One can construct gluonic
operators in irreducible representations of this group by
contracting the gluelump operator with appropriate pro-
jection vectors, hence the hybrid static states can be
written as

IR.1:2) =#;- G§(R)O“"(R.1)[0). (13)

with the projector vectors

AO — i', (14)
Fip =F (9i l‘;b)/\/i (15)
where 0 = (cos@cos @, cos@sing, —sinf)” and @ =

(—sing, cos,0)” are the usual local unit vectors in a
spherical coordinate system. The quantum number A =
0,=£1 is the eigenvalue of the projection of the gluelump
spin into the heavy-quark—antiquark axis.

For hybrid bound states the binding energies are smaller
than Ep < Agcp as they are of the order of small energy
fluctuations around the minimum of the hybrid static
energies,

0)

vO(r) = tlifg%lﬂ(R,r;/l;t/2|R,r;/1;—t/2>
=Ag + VY + bpyr* + - :E‘(/?‘)(r), (16)

(A + VE)Gia(R) 0% (R, 1)|0).

)0 (R, x)G)) (R)|0) = §76,,6(R’ — R)S(r' — ).

(11)

(12)

[
where Eéo)(r) = Eg?(r) and E‘(i)l‘( )—Eg)“)(r). As for
standard quarkonium, we are going to use a fit to the
full static energies as the static potential instead of a
multipole expanded expression in the middle equality in
Eq. (16) in order to increase accuracy. In Fig. 1 we show the
lattice data of Ref. [6] for these static energies and our fitted
potentials.

To go beyond the static limit we use that an eigenstate of
the full Hamiltonian can be expressed in the basis of
eigenstates of the static limit

VOm)[GeV]
2.5F

2.0F

0.5

0.0 : ' ' r[fm
2 . . [fm]
_0.5,
_1‘0,

FIG. 1. Lattice data on the heavy-quark—antiquark static en-
ergies X/, IT, and X, in the quenched approximation of Ref. [6].
The curves correspond to the fitted potentials used in the
numerical solution of the Schrodinger equations to find the
standard and hybrid states wave functions. Different energy
offsets are added to the X} data and to II, and X, data. The
first is chosen so the ground state mass matches the experimental
T(1S) mass and the second is chosen so the lattice data matches
the short distance expansion in Eq. (16) with the gluelump mass
Ay, = 0.87(15) GeV from Ref. [36].
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H) = [ Ry RRA).(17)
A

Using quantum mechanical perturbation theory to incor-
porate the kinetic operator (see Ref. [5] for a full dis-
cussion) one arrives at the coupled Shrodinger equations
for the hybrid bound states:

A V% A n n
S (<t + V06 o0 = £ ). (19

A

As in standard quarkonium we use the following short-
hand notation for the hybrid quarkonium wave function,

v () = w)" () =

Vi, (0.4).  (19)
where we use (n) to denote the set of quantum numbers
that define a particular hybrid state. Notice that the hybrid
angular wave functions are not an eigenstate of the

heavy-quark angular momentum, LQQ, but instead of

(Lpo + S1)%, where S is the spin-1 gluelump spin operator
[5], with eigenvalue £(Z + 1). To highlight this difference
we use a modified spectroscopic notation where 7 =
0,1,2,... is represented by S, P, D, etc. Moreover the
angular wave functions are also eigenstates of 7 - §; with
eigenvalue A = —1, 0, 1. Due to the projection vectors in
each side of the kinetic operator in Eq. (18) the contribu-
tions from the I, and X, static potentials are mixed which
gives rise to pairs of solutions with the same principal and
angular quantum numbers but opposite parity [5].
Therefore, the parity should also be specified to single
out a specific solution of Eq. (18). These two solutions are
characterized by different radial wave functions,

wy (r) 0
Wy |, m (= | Sw?(r)
wy'(r) = Nk (r) . ' (r) = Niid )
" _ Ly
o )

(20)

with party corresponding to P = £(—1)‘*S. The two
lowest laying 17~ hybrid states correspond to n =1, £ =
1 and s = 0 and therefore correspond to the first type of
solution in Eq. (20).

D. Gluelump overlap with B

The gluelump operator Gy is a sum of all possible
gluonic operators with the same quantum numbers with
unknown coefficients

Gy=275"gB + 7, 2(Dx gE)* +---. (21)

We will follow the hypothesis, proposed in Ref. [30], that
there is a correlation between the dimensionality of the
interpolating operator and the strength of the interpolation,
such that higher dimension operators in Eq. (21) are
subleading and therefore the series can be truncated at
LO. One can estimate the value of Zp using the normali-
zation of the gluelump operators in Eq. (12) to relate it to
the value of the gluon condensate,

2

Zs = S {01B%0) = (012 G2,G0)
3 3 T

=0.251(14) GeV*, (22)

taken from Ref. [38]. We note that the value in Ref. [38]

corresponds to a quenched computation and that the

uncertainty in Eq. (22) does not include an estimation of

the uncertainty of this or the truncation of the expansion
in Eq. (21).

III. LO TRANSITIONS

Now we look at the transitions generated by the first
operator in Eq. (4). Let O, denote a generic final light-
quark state. The transition amplitude is

A= (S,,0,|gTr[S'r- EO]|H,,)

1/ Tr O|2EB|O/d3Z¢ e (r).

(23)

The gluonic operator has quantum numbers 0~ and
isospin I = 0, therefore the allowed final light-quark states
must match these quantum numbers. Some examples of
these states are z°, 7, 17/, higher mass 7-like resonances or
odd numbers of mesons such as 7z°z*7~ or yzta.
Selection rules can be derived from the wave functions
integral. Since the transition operator is independent of the
heavy-quark spin this should be conserved. Furthermore,
only the 4 =0 component of the hybrid wave function
contributes to the integral because r - #*; = rdy;. For A =0
the orbital wave function reduces to the usual spherical
harmonics and hence ¢ = /.

If we identify Y(10753) and Y(11020) as hybrid
quarkonia with n'Pyand n =1, 2, respectively, then the
final quarkonium states must be /,(m'P;). In Table I we

TABLE I Mass difference for the transitions H(n'P;) —
hy(m'Py) in MeV.

Mass difference hy(1'P)) hy(2'Py)
T(10753) 854 493
Y(11020) 1101 740
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collect the mass difference between these states for the
transitions we are going to compute.

An explicit computation of the wave function integral
can be done using the following expression for the angular

wave function:
3 1
Y e S S
Pr =\ g o

which with 4 = 0 also applies to h,(m'P,) states. &, are

(24)

the usual polarization vectors with m; the eigenvalue of J5.
The matrix elements for the production of a single z°,  or
1’ can be obtained from the U(1), anomaly using a mixing
scheme [31,32,39,40]. We will use the mixing scheme of
Ref. [32] which we briefly summarize in Appendix A.
Further kinematically allowed final states do exist, but are
left for a future work. We arrive at the following transition
amplitude:

47[2 TF

A(nlpl)—%mlPl)P = 5mjm/./ T N.Zg

wp(m|r{n.0)

P=7n79, (25)
with wp given in Egs. (A29)-(A31) and we have used the
following short-hand notation for the remaining integration
of the radial wave functions:

(mlr?ln. ) = / dr g, (). (26)

which we evaluate numerically.

The corresponding width is obtained using Eq. (25) into
Eq. (C14) and averaging over initial polarizations and
summing over the final ones. For the transitions in Table I
with 7°,  or ' in the final state we obtain the following
results:

Ty (10753)y (17100 = 2.57(£1.03) ., (£0.14), (£0.16),, | keV, (27)
Tt (10753) =y (17 = 2:29(£0.92),,.. (0.13),, (£0.08), MeV, (28)
Ty (10753)y 20y = 0-168(£0.067),,. (0.009),, (£0.010),, , keV, (29)
Tt (1020) i (1720 = 2.04(£0.82),  (£0.11),,, (+£0.13),, , keV, (30)
Tr(11020) iy (1) = 2-04(£0.81)p . (£0.11),,, (£0.07),, MeV, 31)
Cr(11020), (1) = 9-23(£3.69)c (+0.51)7, (£0.39),, MeV, (32)
Cr(11020) 2p)0 = 0-104(£0.042),, . (£0.006),,, (£0.006),, , keV, (33)
(34)

Uy (11020)5 1, 2P)y = 81.8(:I:32.7)m'e.(:|:4.6)ZB(:I:2.7)(‘,” keV.

We estimate the uncertainty from using the multipole
expansion (m.e.) as corrections of O(Agepr?). In the
multipole expansion, the heavy-quark distance scales as
1/r ~mgv > Agcp, With v the heavy-quark pair relative
velocity. On the other hand, the adiabatic expansion
between heavy and light degrees of freedom requires
Aqgcp > Ejp ~ vaz, with E, the binding energy of the
heavy quarks [8]. A scaling of Agcp consistent with these
two constraints is Aqcp ~ mov*/2. Thus O(Ajepr?) ~ v ~
0.4 for the states we consider. The uncertainties labeled as
Zg and wp, P = 7°, 1,1 are just the standard propagation
of the uncertainty of these quantities in Eq. (22) and
Egs. (A32)—-(A34).

IV. NLO TRANSITIONS

Now, we study the transitions generated by the 1/m,
order operator of the Lagrangian in Eq. (4). The transition
amplitude is as follows:

A= (8,05 2L THIS'(S) = 52) - BOI|H,)
0

_ gcr Tr
3mQ NCZB

% /d3r2¢(’">(r) (Sl - Sz) : i’ﬁl//,(ln) (r)’
A

(Ox|B?|0)

(35)
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TABLE II. Mass difference for the transitions H(n'P,) —
Y (m3S,) in MeV.

Mass difference Y(13S)) T(23)) T(3%S))
T(10753) 1293 730 398
T(11020) 1540 977 645

where O, denotes generically the final light-quark meson
state. Since B? has quantum numbers 0** and 7 = 0, these
must be the quantum numbers of the light-quark final state.
Such states are, for instance 7+ z~, KT K™, pairs of z° or 5
as well as f) resonances up to the invariant mass allowed by
the specific initial and final heavy-quark states. The heavy-
quark spin structure of the operator requires the transitions
to be between singlet and triplet states. Therefore, if the
initial state is a spin singlet hybrid, as per our assignations
of the Y(10753) and Y(11020), the final states must be
spin triplet quarkonium states. Furthermore the total J©¢
must be conserved, therefore the final quarkonium states
can only be Y(m3S;) or Y(m?D;). We will only consider
the first case since D-wave bottomonium states have not yet
been observed experimentally. In Table II we collect the
mass differences between the initial and final heavy-quark
states for the transitions H(n'P,) — Y(m3S,) that we will
consider.

The integral of the angular wave function in Eq. (4) can
be carried out using the wave function in Eq. (24) for the
P, hybrid state and

11,
Vaz /2

0

3_91 (36)

for the 3S; standard quarkonium.
The transition widths for the amplitude in Eq. (35) with
two pions or kaons in the final state reads as

1dr
Fdx
5»

Y(10753)->Y(1S)r* -
Y(10753)->Y(2S)r* -

—— — Y(10753)->Y(3S)rt* 1T

A("]Pl)_’(m3SI)P+P7
oz (il

with the form factor Fp(s,cos6) that encodes the produc-
tion of two pions or kaons by the gluonic operator B>
defined in Eq. (B12). The definitions of s and 6 can be
found in Appendix C. In Appendix B we give a dispersive
representation of Fp(s,cos@). Our approach consists in
coupled Muskhelishvili-Omnes equations as in Refs. [33—
35,41]. However, unlike those references our matrix
element contains not only an S-wave piece but also a D-
wave one. We have extended the coupled Muskhelishvili-
Omnes approach to the D-wave final state interactions for
the first time. We use the parametrizations of the 7z — 7z
and 7z — KK partial waves from Refs. [42,43], which to
our knowledge are the most accurate currently available.
For the numerical solution of the coupled Muskhelishvili-
Omnes equations we use the techniques of Refs. [34,44].

The transition differential widths can be computed from
the amplitude in Eq. (37) by decomposing it into partial
waves and using Eq. (C12). In Figs. 2 and 3 we plot the nor-
malized differential decay widths for the transitions with
at 7~ and KK~ in the final states, respectively. The norma-
lized differential decay widths are independent of the heavy-
quark matrix elements, therefore the line shapes are a result of
the pion and kaon rescattering as well as the phase space
dependence. The prominent features of the Y(10753) —
Y(1S)ztz~, 7Y(11020) - Y(1S)z"z~, Y (10753) -
T(1S)KTK~ and Y(11020) - Y(1S)K*K~ line shapes
makes these good observables to study experimentally.

Integrating the differential transition width over the
kinematically allowed range of s we obtain the following
transition widths:

5 87’ 8zcp
- Ym; m// 3ﬂ0mQ

P=nK,

)Fp(s, cos )

(37)

1dr

r dx
2.0r

151

-
N

Y(11020)->Y(1S)r* -

Y(11020)->Y(28) 7 1

—— — Y(11020)->Y(3S)rT*

L L L J

0 / : : : :
0.0 0.2 0.4 0.6 0.8
FIG. 2. Normalized differential width for the
x = (s —4mz)/(mpy(p) —4mz).

transitions

= My (mns)

0.4 0.6 0.8

The variable x is defined as

H(n'Py) —» Y(m3S))n*n~.

034019-7



JAUME TARRUS CASTELLA and EMILIE PASSEMAR

PHYS. REV. D 104, 034019 (2021)

Cr(10753)-1@s) 2~ = 0.98(£0.39),,,

Iy (10753)-1(18)7 2~ = 43'4(i17'3)m.e.<i2‘4)25(i8'6)al‘ (J—r(())fg)x keV, (38)
Dy10753)-r28)00 - = 2-75(11-10)m.e4(i0-15)zg(i0-55)a5(f8.‘113)x keV, (39)
¢.(£0.05), (£0.19),, (£0.03), eV, (40)

Iy(11020) = (18)7t 2~ = 99'1(i39'6)m.e.(iS'S)ZB(i19‘7)a5(f2216§)1< keV, (41)
Cy(11020) - v 28)rt = = 3-96(i1-58)m.e4(io-22)23(i0-70)a.\.(1%1112)x keV, (42)
(11020 138)7 = = 1.33(£0.53),, 0 (£0.07), (£0.27), (£0.02), keV, (43)
Cr(10753)-r(1s)k k- = 3.98(£1.59),, ¢ (£0.22), (£0.79),, (7529)« keV, (44)
e (£0.33)7, (£1.18), (F:3), keV. (45)

Tr(1020)-1(18)k k- = 5:93(£2.37),,,

We have used the renormalization group improved ex-
pression of cp(1 GeV) =0.879 up to next-to-leading
logarithmic order, with the values a,(1 GeV) = 0.4798
and a;(m;) = 0.214820 and m;, = 4.885 GeV [45]. The
values of a; were computed using the RUNDEC Mathema-
tica package [46].

The uncertainties are labeled by their source of origin.
The subscript m.e. denotes the uncertainty stemming
from the use of the multipole expansion. As in the
previous section these are estimated as corrections of
O(Agepr?) ~ v ~0.4. The uncertainty labeled as Zj is
just the standard propagation of the uncertainty in Eq. (22).
The uncertainty of the dispersive parametrization of the
form factors is dominated by the uncertainties in the chiral
representation in Eq. (B11) to which it is matched to in
order to determine the subtraction polynomials. There are
two of these sources of uncertainty: the first one from

1dr
T dx
8
6, Y(10753)->Y(18)K*K-
i Y(11020)->Y(1S)K*K-
4+
2,
0 . Kh,‘ X
0.0 0.2 0.4 0.6 0.8 1.0
FIG. 3. Normalized differential width for the transitions

H(n'P)) - Y(1'S,)KTK~. The variable x is defined as
x = (s —4mg)/(myp) — my(s) — 4mg).

|
neglecting the anomalous dimension y; and truncating
Blay)/a, at LO in Eq. (B5) which we label with the
subscript o, and are of order a,(m,.)/(4x) [47]. The second
one is associated to the value of the parameter x in
Eq. (B10) which affects the form factors asymmetrically.
Other sources of uncertainty for the form factors, such as
the parametrization of 7z — zx and 7z — KK phase shifts
are negligible in front of the other sources.

Experimental values for some of the transition widths in
Egs. (38)—(45) are available. In Ref. [28] the widths for the
transitions Y(11020) — Y (nS)z"z~, n = 1, 2, 3 are given
normalized to I',+,- /T- The latter can be obtained from
the PDG average of Refs. [48,49]. The values, summing the
uncertainties quadratically, are as follows:

X 33
Fe’I‘(ﬁlOZO)—»T(lS);z*n‘ = 85155 keV, (46)
| oo = 120105 keV (47)
T(11020)=T(28)7" 7~ ~107 ,
X _ eq1+37
L (1020 o138y - = 01035 keV. (48)

It is remarkable the agreement between our theoretical
value for the width of Y(11020) — Y(1S)z "z~ in Eq. (41)
with the experimental value in Eq. (46). Nevertheless, one
should be cautious considering the significant uncertainties
on both theoretical and experimental values. On the
other hand, the values for the widths of the Y (11020) —
Y(nS)z"x~, n =2, 3 transitions are not compatible with
our theoretical values in Eqs. (42) and (43). However, it
should be noted that the values in Eqs. (46)—(48) corre-
spond to the range of solutions from different fits and not
lo intervals. Therefore, it is still possible that future
experimental studies produce a closer result to our
predictions.
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V. RATIOS

Our results for the Y(10753) and Y(11020) transition
widths into standard quarkonium have overall large uncer-
tainties as discussed in Secs. III and I'V. We can obtain more
precise predictions if we consider various ratios of tran-
sition widths where some uncertainties cancel out.

Let us consider the following ratios of the LO transitions
with the same initial and final heavy-quark states:

Dy (10753) =1, (1P)

T 891(+64),, (49)
Dr(10753)~ 1y (1P)2°
r -
_TMR0=1(Pn. _ 1001(£72), . (50)
Ly (11020)= 1y (1P)a0
r - '
_YWR0=hUPW _ g 55(40.05),,  (S1)
Ly (11020) = 1y (1P)
I -
_TM020)=1 P _ 786(157). . (52)

Dy (11020)= 1, (2P)20

These depend only on phase space factors and the values
of the gluonic matrix elements wp. Therefore, these ratios
are free of the uncertainties associated to the multipole
expansion or the value of Zz. On the other hand, the value
of these ratios is mainly a test of the 7° — 5 — ' mixing
scheme of Ref. [32]. Nevertheless, these ratios rely on the
factorization of the gluonic matrix elements from the
heavy-quark physics, which in our approach is the result
of the multipole expansion. Hence one can test this
factorization from experimental values of the ratios in
Egs. (49)—(52). One can test more directly the validity of
the multipole expansion for Y(10753) and Y(11020) by
considering the ratios with the same final state light-quark
meson but different final standard quarkonium,

F —Nn T

_YQOIR=h (P _ 45 5(48.1), (53)
FT(10753)—>I1,7(2P)7r0

r (1P

_TUO0=mOPE _ 49 6(£11.1),,.  (54)
FT(I 1020)—hy, (2P)2°

Dy (11020) =1, (1P)

_Y20=h(UP0 _ 4 9(+14.1),, (55)

y(11020)= 1, 2P)y

since in this case the factors wp and Zz cancel out.

Next we consider ratios of the NLO transitions in
Eqgs. (38)—(45). Any ratio of these transition widths is
independent of the value of Zp. Furthermore, the uncer-
tainty due to the truncation of the f function in Eq. (B5)
also cancels out and the only remaining uncertainty of order
a,(m.)/(4x) comes from neglecting the anomalous dimen-
sion y;. As we have seen for the LO transitions, the ratios of

transitions with the same initial and final heavy-quark states
are independent of the heavy-quark matrix elements and
therefore the uncertainties related to the multipole expan-
sion are not present. We obtain:

r - b

LI 10.9(£2.2),, (H),. (56)
Uy(10753) (1)K k- T

r - k-

TR0 16,7(+3.3), (4, (57)

Dy (11020) -1 (18)k k-

The values of the ratios in Egs. (56) and (57) depend mainly
on the dispersive representation of the form factors and
therefore can be considered a test of it. However, this is
dependent on the factorization of the gluonic matrix
elements in an analogous manner to our discussion for
the ratios of the LO transitions in Egs. (49)—(52). One can
consider 26 additional ratios among the widths in
Eqgs. (38)—(45) with similar cancellation of uncertainties.
We are going to focus on the ones with the same final state
and different initial one, since those are most interesting in
order to learn about the nature of Y(10753) and Y'(11020).
These ratios are as follows:

Uy (11020) =7 (18)7+ 7~

=2.28(£0.91),,. (£0.46), (1937),,
Uy (10753) 51 (18)4 2~ T

(58)

FT(I]OZO)—»T(ZS)J[*/T’

= 1.44(£0.57),,. (£0.29),, (759¢)

K?
FT(10753)—>T(25)II+7E_

(59)

FT(I 1020)->Y(38)z" 7~

= 1.36(+£0.54), , (+0.27), (F 0.02),

s

Iy (10753) =Y (38)7t 2~
x 102, (60)

Uy (11020) -1 (18) K k-

= 1.49(i0.59)m.c'(j:0.30)as(fg;}%)

Uy (10753) -1 (18) kK- *

(61)

The uncertainty related to the value of « is reduced in the
ratios in Egs. (59) and (60) but enhanced in the ratios in
Eqgs. (57) and (61). This behavior can be traced to the
similarity and difference, respectively, of the normalized
spectra in Figs. 2 and 3.

Finally, one could consider the ratios of LO and NLO
transition widths. These are independent of the value Z,
however one needs to add the uncertainties of the two
gluonic operator matrix elements and the multipole expan-
sion uncertainties of the heavy-quark matrix elements,
which together make the relative uncertainty of these ratios
larger than the ones of the transition widths themselves.
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VI. COMPARISON WITH SEMI-INCLUSIVE
TRANSITION WIDTHS

When the energy gap between a hybrid and a standard
quarkonium state is large, the gluon emitted by the heavy
quarks in the transition from an octet to a singlet state can
be considered perturbative and semi-inclusive decay widths
can be computed [9]. These semi-inclusive decay widths
correspond to the expected value of the hybrid states of the
imaginary part of the diagram in Fig. 4. The vertices in the
diagram can be either of the operators in the Lagrangian in
Eq. (4). This computation was carried out in Ref. [9] for the
LO term of Eq. (4); here we reproduce it and extend it to the
NLO operator. We are going to consider only transitions for
which a,(E, — E,,) < 0.5 with E,, — E,, the energy differ-
ence between the hybrid and standard quarkonium. We will
compare the semi-inclusive transition width values to our
results in Secs. III and IV.

For the LO operator the semi-inclusive width is

N 4as TF

b(,,)l—n?,l - 3 E(En _Em)3<1//m|(i‘j)kri|¢n><¢n|rji‘]}f|l//m>'

(62)
The expected value for transitions from n'P; to m'P,,
(n'Py[(7) 7! m' Py ) (m'Py P70 Py )

n,0)2 + 2v2(m|r

n,0)(m|r

1
:§(B(m|r n,+1)

+ 4(m|r

n,+1)2). (63)
Using Eq. (63) in Eq. (62) and taking a; at the scale E, —
E,, using the RUNDEC Mathematica package [46] we
compute the values for the semi-inclusive widths corre-
sponding to the transitions in Table I. Only one transition
has a large enough energy gap:
LO
Iy

(11020) =y (17) = 20(£9)4, MeV.

(64)

FIG. 4. The single and double lines represent quarkonia in
singlet and octet states respectively. The curly line stands for a
gluon. The imaginary part of this self-energy diagram, which can
be obtained by cutting the diagram by the dashed line, produces
the semi-inclusive width associated to the transition from H, to
S,, states with any other light-quark hadrons in the final state.
Note that the spectator gluons forming the H, state are not
displayed.

The sum of Egs. (29)—-(31), with the uncertainties added in
quadrature, is I' = 11 &= 4 MeV. This value is compatible
with the result in Eq. (64), albeit with smaller central value,
which might indicate that other final states, such as Ortr
and nz 2™, can have transition widths of similar size to the
ones we computed.

The semi-inclusive decay width mediated by the NLO
operator in the Lagrangian in Eq. (4) is

4cza, T
NLO  _ F%s L F 3
= “L(E,-E
H,—S, 3m2Q Nc( n m)
X <l//m|(i‘3)k(sl _SZ)i|¢n><¢n|(sl _S2)li‘l}f|l//m>

(65)
The matrix element for transitions from n'P; to m3S, reads
(n'Py[(7)5(S1 = $2)'|mS1) (m*S 1 |(S) = 8,)'F) |n'Py)

= (Zi<m|l|n,/1>>2.

In this case three transitions from Table II have large
enough energy gaps:

(66)

D753yt = 9-7(£3.8),, MeV, (67)
M o20)r(is) = 7-3(£2.5),, MeV, (68)
020y ors) = 1-1(£0.5),, MeV. (69)

All of these three widths are much larger than the sum of
the channels that we have computed for these transitions;
the first two, Egs. (67) and (68), by 2 orders of magnitude
and the last one, Eq. (69), by 3 orders of magnitude.
Therefore, for the transitions in Egs. (67)-(69) we expect
large contributions from light-quark final states different
from the ones considered here, such as 4z, nn and f,
resonances.

Finally it is interesting to notice that the sum of semi-

inclusive widths for F%?Hg%? =284 +9.4 MeV is com-

patible with the experimental value of the total width

r ?51020) = 24f§ MeV. This is a strong indication that

the transitions to Y(1S), Y(2S) and &, (1P) are the main
decay channels for T(11020).

VII. CONCLUSIONS

We have computed the transition widths of Y(10753)
and Y(11020) into standard quarkonium states and light-
quark mesons using nonrelativistic EFT. We have worked
under the assumption that these two states are the first two
lowest laying 17~ hybrid bottomonium states. The hybrid
quarkonium states are heavy-quark—antiquark bound states
around the minima of the static energies computed in the
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quenched approximation in lattice QCD [6,7]. Although
the spectrum of quark-antiquark static energies is not
known with dynamical light quarks, the results from
Ref. [19] for the two lowest static energies show negligible
difference to the quenched approximation ones. Therefore,
it is plausible that the hybrid bottomonium states used in
our approach are a good approximation of a more general
isospin I = 0 exotic quarkonium state mixing a nontrivial
gluonic component with a light-quark—antiquark pair
component.

Hybrid quarkonium states can be described in an EFT
setting that incorporates the heavy-quark mass expansion
and an adiabatic expansion between the heavy quark and
light degrees of freedom [5,9]. Since the EFT coincides
with the Born-Oppenheimer approximation at LO it is
sometimes referred to as Born-Oppenheimer EFT [8]. In
this EFT framework the two lowest laying 17~ hybrid states
correspond to the ground state and the first radial excitation
of the coupled X, —TII, static energies, with £ =1,
negative parity and singlet heavy-quark spin [5].
Nevertheless, in this paper we do not formally perform
the adiabatic expansion at the Lagrangian level since we are
interested in the transitions to standard quarkonium. The
standard quarkonium states are the bound states over the
ground state static energy X;. We have used the lattice data
for the static energies from Ref. [6].

To study the transitions we work in weakly coupled
pNRQCD [23,24] an EFT incorporating the heavy-quark
mass and multipole expansions. Since it is doubtful that the
multipole expansion can be employed in the hybrid
charmonium sector, we have restricted ourselves to the
bottomonium one. In the multipole expansion, the tran-
sition amplitudes factorize into a heavy-quark matrix
element and a gluonic matrix element that creates the final
light-quark states. We have studied the transitions gener-
ated by the singlet-octet field couplings at NLO in the
multipole or heavy-quark mass expansions that can be
found in the Lagrangian in Eq. (4). We have found that the
LO transition operator generates transitions from Y (10753)
and Y(11020) to hj,(mP) quarkonium with emission of
light-quark mesons in a 0" state. The NLO transition
operator, suppressed by the heavy-quark mass, generates
transitions from Y (10753) and Y (11020) to Y (mS) with
0™ light-quark meson states.

In the case of the LO transitions we have computed the
widths for transitions with z°, %, #' in the final state. The
gluonic production matrix elements are obtained employ-
ing the U(1), anomaly and the mixing scheme from
Ref. [32]. The values of the transition widths can be found
in Egs. (27)—(34). Our estimate for the uncertainties of
these widths are large and dominated by the multipole
expansion corrections. The gluonic matrix elements have
small uncertainties except for z° production due to this
matrix element being proportional to the difference of the u
and d quark masses.

For the NLO transitions we consider the light-quark final

states 77z~ and K*K~. The corresponding production
matrix elements are obtained through a dispersive repre-
sentation similar to the one in Refs. [33-35]. This consists
of two coupled Muskhelishvili-Omnes integral equations
for the #t7z~ and K"K~ channels. The T-matrix inputs
are taken from Refs. [42,43], which as a whole provide
accurate results up to /s = 1.42 GeV, with s the squared
sum of the momenta of ztz~ or K*K~. The numerical
solution of the integral equations is obtained using the
techniques of Refs. [34,44]. Since the gluonic operator
contains both an S- and D-wave pieces we have solved the
coupled Muskhelishvili-Omnes equations for both waves.
For the S-wave case we reproduce the results in the
literature.
The results for the D wave are presented here for the
first time. Our results are plotted in Figs. 5 and 6. The
subtraction polynomials are obtained by matching to a
chiral representation with the low-energy constants parti-
ally determined with the scale anomaly and the Feymann-
Hellmann theorem. The final free parameter left is obtained
from quarkonium hadronic transitions [30]. In Figs. 2 and 3
we plot the normalized differential widths for the transi-
tions we have computed. The total widths can be found in
Egs. (38)—(45). As in the LO transitions the uncertainty is
dominated by multipole expansion corrections, however,
unlike the LO case, the gluonic matrix elements have
important uncertainties stemming from the determination
of the low-energy constants of the chiral representation.

For  the  transitions Y (11020) —» Y (nS)z"z~,
n=1,2,3, we can compare to the experimental results
from Ref. [28]. We find remarkable agreement for n = 1,
however the experimental values are larger for n = 2, 3.
Nevertheless, the experimental determinations are yet not
very precise and future determinations might be closer to
our values. We note that the width for n = 1 is the one with
the most precise experimental determination.

In Sec. V we provide several ratios of transition
widths in which some of the uncertainties cancel out.
These can be used to test the different approximations
made in this paper in an independent way. For instance,
the ratios in Eqgs. (49)—(52), (56) and (57) are indepen-
dent of the heavy-quark matrix elements but still relying
on the factorization of the gluonic matrix elements.
Hence, these rations can be used to test for this
factorization. Finally, in Sec. VII, we have computed
the semi-inclusive widths, generated by the same oper-
ators in the Lagrangian in Eq. (4) we have considered so
far, for the transitions with large enough energy gaps to
allow it [9]. The comparison with our results in Secs. III
and IV allows us to evaluate the relative importance of
the specific light-quark final states for which we have
computed transition widths.

Another remarkable result is that the sum of the LO and
NLO semi-inclusive widths of Y(11020) is compatible
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FIG. 5. Plot of the solutions Q(© of the two-pion and two-kaon coupled Muskhelishvili-Omnés equations for the S partial wave.

with the experimental total width. This, combined with the
good agreement in the T(11020) — Y(1S)z*z~ transition
width and the earlier prediction in Ref. [5] of the mass of a

hybrid bottomonium state within 20 MeV of the current
average for the Y'(11020) mass form, in our opinion, strong
evidence for the hybrid bottomonium nature of this state.
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FIG. 6. Plot of the solutions Q2 of the two-pion and two-kaon coupled Muskhelishvili-Omnés equations for the D partial wave.
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APPENDIX A: PSEUDOSCALAR PRODUCTION
VIA THE AXTAL ANOMALY

We need the matrix elements of E-B between the
vacuum and 7°, 7 and . First we note that

2

g Uy
“E-B=a,G,G", (A1)

with the dual field-strength tensor defined as G* =
Lemab G,y and €g1p3 = 1. The matrix elements of G,,G"
can then be related to the divergence of the axial current and
the pseudoscalar current through the axial anomaly
G”Jg# = 2myaiysa + Z—;GWG"”, a=u,d,s, (A2)
with J5, = ay,rsa. This leaves us with 18 nonperturbative
parameters corresponding to the matrix elements of the
axial and pseudoscalar currents a = u, d, s and final states
7°, n, . This amount of free parameters can be greatly
reduced by the implementation of a mixing scheme
between z° — 7 — /. In the following we review the mixing
scheme from Refs. [31,32] that we have used in our
computation.

First, let us introduce the notation |;,) = |aa), then our
primary nonperturbative parameters are f, and m2, defined
as follows:

<O|Jgﬂ|77a’(p)> = ip;tfa&m’! (A3)

/

2ma<0|éiy5a|i7a/(p)> :famga6aa’7 a,a =u,d,s.
(Ad)

We also define the short-hand notation

a -
0= 0152 GuG n(p)),  c=anr. (AS)

Since the mixing of z° with 5 and 7/ is weak while the
n — 1’ mixing is strong, it is convenient to use isoscalar and

isovector combinations of #,, and 5, that is a change in the
basis of states given by

n, = Mn,, a=u,d,s, b=—,+,s, (A06)
| 1 -1 0

M=—|1 1 0o |, A7

7 (A7)
0 0 V2

where M is an orthogonal matrix. We will consider the
physical 7° #, 5/ states as different mixes of the 7,,
b = —,+,s. The unitary matrix that transforms between
these two bases is given by

ne = Uepnps b=—,+,s ¢ = ﬂov , ’7/’ (AS)
1 p+wcos¢p —ysing
U= | —w—pcos¢ cos ¢ —sing¢ (A9)
—psing sin ¢ cos ¢

Since the mixing of z° with 5 and # is weak, the mixing
parameters f and y are small. Neglecting quadratic terms in
these one finds UUT = 1. Therefore, we can write

<O|Jg/4|7]c(p)> = Mbaipufaéaa/(MT)a’b’(UT)b’c

= ip/,tfbb'(UT)b’m (AIO)

with

1 z O
F=|z 1 0 |. ZZ;”;];d, y=§—+,

0 0 l/y u d K

Sutf

[+ :Td- (All)
Therefore

<0|8ﬂ.]é7”|1’]c([))> = ‘be’(UT)b’c’Mc’c = Mcc’ Uc’b’]:b’b7

(A12)
with the mass matrix
mio 0
M = 0 m% 0 1. (A13)
0o 0 m?

n

On the other hand using the axial anomaly from Eq. (A2)
we obtain
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<0|6ﬂ1157/4|’70(p>> = Mba(famaaéaa’ + wa’)(MT)a’b’<UT)b’c = Abb’(UT)b’c’

with
fumuu +fdmd(1

2
A bh —

w_

Putting together Egs. (A12) and (A14),

AU = FU'M, (A16)
we arrive at a system of eight independent equations that
we choose to use to determine the mixing parameters f, v,
sin ¢, the matrix elements w_, w,, @, and f; as well as
my,, + myy. We obtain

1
myy = 5 (i +mZy), (A17)
y=v22, (A18)
@4
===, (A19)
@4
m2 —m?%)(m2 — m>
W +( 7 ﬂoz)( ! > 0), (A20)
\/E(mss mﬂﬂ)
(mi/ - m%s)(m% - m20)
i = T A21
N gy, —my A2
(m2/ - m?s)(mgs - m%)
= |21 , A22
Y (mf;, —m2,) (my — m?,) (A22)
2 2
Mg — My
p— 3 A23
p=z+ 2(m2 — m?,) ( )
"
1 (méd - miu)(mﬂ’ - m%)
— A24
ll/ 2COS¢ ( 2/ _mio)(m’%_mio ( )

Furthermore, f, is fixed to the pion decay constant
F,=92419 MeV,
fio=fr.=V2F,. (A25)
The remaining free parameters are z, m§ = m2, and m, or
fs- As far as we know, the value of z is unknown, however
we will not need it as we will see below. The value of

2 2 -
m3,; — My, can be estimated as

Suuu—=f ama Sfumutfam,
2/¢1+\/§w_ 2411&1_,_\/260+

(A14)
fu’nuu;fdmdd O
Vo, (A15)
w+ fsmss + Wy
I
mtzid - mgu = 2[’”5(0 - m%(+ - Am%(e.m.]
= 0.01248(76) GeV? (A26)

with the kaon mass difference in QCD taken from Eq. (9.5)
of Ref. [50]. The last parameter remaining is m2, which is
obtained through

ml, = 2m%, — m?, = 0.477019(26) GeV2.  (A27)

0

’

Finally we can obtain the matrix elements @w., ¢ = &
n,n’ using the matrix in Eq. (A8), and the relations in
Eqgs. (A17)-(A24):

W, = Ucba)b. (A28)
We obtain
2 _ 0
w0 = F, dd . iy (A29)
(my — m2)(m3, — my)
w, = F,(m; —m%,) ! i . (A30)
n n T Moo (my = my) (m3s = m?)
(m% —m 0)(m2’ - ss)
wy =F,(m, —m d A31
[ A N

Using the meson mass values from the PDG we obtain
the following numerical values:

o = 0.574(£0.035) x 1073 GeV3,  (A32)
w, = 19.5(£0.7) x 107 GeV?, (A33)
w, =55(£2) x 107 GeV?. (A34)

The uncertainty of @, is dominated by the uncertainty of
the m2, — m3, mass difference in Eq. (A26). The error in
not taking into account quadratic terms in f and y is
proportional to (m2, — m2,)?* and negligible in front of the
uncertainty of m2, — m3, itself. In the case of , and w,
the parametric uncertainty is small. Nevertheless, it does
not account for the difference between the theoretical
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mixing angle obtained from Eq. (A21) ¢ = 41.462(4) and
the phenomenological determination ¢ = 39.3 [31]. This is
likely the result of the model depended approximations of
the mixing scheme, as for instance the truncation of the
Fock space expansion of |5,) to just the quark-antiquark
component. Therefore, we find it more adequate to assign
as uncertainty of ,, @, the propagation of the error in the
determination of the mixing angle ¢.

APPENDIX B: DISPERSIVE REPRESENTATION
FOR TWO MESON PRODUCTION
MATRIX ELEMENTS

We want to determine the matrix elements for two pion
and two kaon production by B?:

-)|g*B|0).

First, we note that B2 contains both an S and D-wave terms.
This is more apparent rewriting it as follows:

P=nK.

(PT(ps)P (B1)

1
B = 1 GGl v O (B2)
with v, = (1,0) and
g 1 apaa a (aa
B = 59 G7" Gl — Gl G, (B3)

(P*(p)P~(p-)|0ul0) = 2(p, - p-

(PT(py)P

1
(P (p. )P (p)10410) = =2l (pﬂ,p_y N ]

One can write a chiral representation of the matrix elements
in Eq. (B1) which will depend on a set of unknown low-
energy constants. In order to partially determine these it is
useful to rewrite B2 as the sum of several terms and write a
chiral representation of the matrix elements of each one.
The first term in Eq. (B2) can be written in terms of the
trace of QCD energy-momentum tensor,

s (er- S

1) ql> + v"0*65,.  (B4)

with y; the anomalous dimension of the g;g; operator, /5 the
QCD / function and

lﬂas va o
9/4” ( G* Gm/a + Z miqiq;. (BS)

Now, one can write chiral representations for the matrix
elements of each one of the terms in Eq. (B4). At LO in the
chiral expansion each one of these matrix elements depends
on only one low-energy constant (the normalization of the
matrix element). Furthermore, for the ¢, and m,g,q; these
can be determined by the scale anomaly [47,51,52] and the
Feymann-Hellmann theorem, respectively. At LO these
matrix elements read as

)+ 4m3 + P=rK, (B6)
IZm 4:4:10) = m} + (B7)
(B8)

Adding up all the contributions and neglecting the anomalous dimension and contributions to the  function beyond the LO

we arrive at

ﬁOas

(PT(py)P~(Po)|—— o

3k
~ - B*0) = [(2 - 7) Py po+6xpOpt + 3m4 :

(B9)

where we have used the definition k = a,f,V,(u)/(6x) as in Ref. [52]. The parameter x cannot be determined from first
principles, however it can be extracted from the spectrum of the transitions y(2S) — J/yz*z~ and T(2S) —» Y (1S)z 7~

[30,52]. We use the value from Ref. [30],

x = 0.247(20).

(B10)

Using Eqgs. (C2), (C7) and (C8) we can write Eq. (B9) in terms of the Mandelstam variables:

i {12 (3 (o ()

—m,, and m, and m,, are the masses of the initial hybrid and the final standard quarkonium states,

where A = m,,
respectively.

(B11)
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The chiral representation we have just built is only valid
at low energies /s < A,. For the computation of the
transitions we need these matrix elements up to
V/s~1.6 GeV. To do so we will build a dispersive
representation of the matrix elements. Let us define the
form factors,

ﬁoav

Fp=(Pt(p )P~ (p)|5 ~B0),  P=mK.

(B12)

We can write a general decomposition of these form
factors, in the spirit of the reconstruction theorem [53],
considering their analytic properties. In our case this is
greatly simplified since only the cuts in the right-hand side
of the complex s-plane corresponding to two-pion and two-
kaon rescattering need to be considered. Furthermore, we
know that the form factors only contain S and D waves.
Hence, a general decomposition of the form factors is as
follows:

Fp(s.tou) =FY(s)+ | (u—1) —gmnap(S)pp( )| (s).
(B13)

with op and pp defined in Egs. (C3) and (C5), respectively.
From Watson’s theorem [54] the discontinuity along the cut
of the form factors F g) generated by the two-pion or kaon
rescattering has the following form:

ImnpFy (s)]
= Y TV () ppop()npFyl(s)0(s —4m3),  (B14)

where 1, = /3/2 and ng = /2 are factors resulting from
the projection of the pion and kaon states into isospin

[ = 0. The T-matrix 79(s) is given by

(s)e™ -1 0
e )]
B (s) Ty

2iok(s)

T9(s) = (BIS)

iy (s
FAGIEOS

The three inputs of the T-matrix are: the /[-wave isoscalar zz
phase shift §?(s) and the modulus, |¢¥|, and phase, y¥(s), of
the I-wave isoscalar 7z — KK amplitude. The inelasticity
nY(s) is related to |g?| by

0(s) = \/1 - 4Ig0(s)

We want to find a functional form of the form factors that
fulfills Eq. (B14), is analytic in the complex s-plane, except
on the cuts, and is real on the real s axis below the cuts. This

26,(5)ok(s)0(s — 4m%). (B16)

is the two-channel Muskhelishvili-Omnes problem [55,56].
There are two independent canonical solutions [33,55]
which we arrange as columns of the following matrix:

(0 0
C D
Q(s) = ( (1[>(S) (11)(S)>. (B17)
Cy'(s) Dy(s)
A general solution can be written as
! l 1
npFy (s) = Qup(5)Qp) (), (B18)

where QU)(s) = (Q1 ,Q2 ) are the so-called subtraction
polynomials. The Q-matrix satisfies a set of coupled
Muskhelishvili-Omnes singular integral equations,

o - [~

/
m2S — S

() E(sHQ(s).  (B19)
with  X(s) = diag(c,(s)0(s — 4m2), o (5)0(s — 4m%)).
The two independent solutions are generated choosing
the normalization Q(0) = 1.

In the limit s — co we expect the form factors to go to
zero as 1/s, therefore QU )Q() should also Vanish in the
same way. If in this limit Q) ~ 1/s”, then Q'Y should be a
degree (r — 1) polynomial. If we take the determinant of
both sides of Eq. (B19) the matrix equation reduces to a
one-dimensional equation for which an analytical solution
is available [55,56]. The asymptotic behavior can then be
obtained [34]:

det(g(l))S‘;”S—Arg(det(s?))/fr (B20)
with SY the S-matrix associated to the T-matrix in
Eq. (B15). Assuming that the off-diagonal terms of SV
vanish in the asymptotic limit, then Arg(det(SY)) is just the
sum of the asymptotic behaviors of the eigen phase shifts.
Since each component of Q must vanish at least as 1/s,
Eq. (B20) establishes a constraint on the asymptotic
behavior of the 7T-matrix in order for solutions of the
Muskhelishvili-Omnes integral equations to exist,

lim Arg(det(S(s))) > nx,

§—00

(B21)

with n the number of open channels considered. In the
present work we only consider the two-pion and two-kaon
channels (i.e., n = 2), which is an approximation valid only
up to a certain value of s, therefore any given asymptotic
behavior of the T-matrix can only be considered as a model,
which we choose to ensure the existence of solutions
of Eq. (B19).

The inputs of the 7-matrix are taken as follows: &7 (s) is
taken from the parametrization of Ref. [42] with the
CFD parameter set; |¢7| and yY(s) are taken as the
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parametrizations from Ref. [43] with the CFD_. and CFD
parameter sets for S and D waves, respectively. These
parametrizations are given up to /s = 1.42 GeV for 89 (s)
and /s =2 GeV for |¢9] and y¥(s), then they are
continued smoothly, up to first derivatives, to the following
asymptotic values &Y — 27, w9 — 2z and |¢}| — 0.

The solution of Eq. (B19) is obtained numerically using
the procedure described in Refs. [34,44]. A very brief
summary is as follows.” First, one rewrites Eq. (B19) in
terms of Re(€2) only. Then the dispersive integral is split in
j=1,...,M subintervals and the numerator of the inte-
grand is expanded in Legendre polynomials up to degree N.
This allows the exact evaluation of the principal value
integration in terms of Legendre functions of the second
kind. The coefficients of the Legendre expansions for each
subinterval j are integrated using z,( ), i=1,...N Gauss-
Legendre points. This determines Re[Q(s)] in terms of

Re[Q(zl(j))]. Evaluating Re[Q(s)] precisely at the same

determination of the Q()(s) polynomials. We do so by
requiring that the expansion of Eq. (B18) for small s
matches the chiral representation of Eq. (B11). In principle,
given the asymptotic behavior of the 7-matrix we have
constructed, one would expect that these polynomials are
just constants. However, this does not produce appropriate
results [33] as the LO chiral representation in Eq. (B11)
depends on s and cannot be reproduced by the dispersive
representation unless one allows for Q! (s) polynomials of
order one. Doing so spoils the asymptotic behavior of the
dispersive representation of the form factors. However,
since we are only interested in these form factors up to
\/E ~ 1.6 GeV the issue can be ignored. Furthermore, due
to the presence of a D wave, the partial wave projected
chiral amplitude in Eq. (B11) contains a singular 1/s term.
To accommodate it an analogous 1/s needs to be added to
the Q(°) polynomials [57]. The resulting Q) are as follows:

Gauss-Legendre points generates a system of equations Qi()) = ai?)s‘l + a(l(? + agg) s, (B22)
with Re [Q(zgj ) )] as variables. Adding the normalization, an
overdetermined system (NM + 2) x NM is created. Using 0 _ (0) 1 (0) (0) B2
a singular value decomposition one can obtain a pseu- Q" =aysT +ay +ays, (B23)
doinverse of the matrix and the variables are obtained in a
least squares fit. The imaginary parts can then be obtained Q<12) = a(l >, (B24)
from the unitarity condition in Eq. (B14). We use N = 25,
eight subintervals for the S-wave case and six for the D- @) @)
wave one. We plot our results in Figs. 5 and 6. For the S- 0y’ =a;, (B25)
wave case we have checked that our results agree with )
Refs. [34,35]. The D-wave results are presented here forthe ~ and the coefficients
first time.
The final step in the construction of the dispersive aﬁ) = _\/Em}[KA{ (B26)
representation of the matrix elements in Eq. (B1) is the
|
al) = —\ﬁ 2 (1=5) 4 a2 (1= 2m2¢,(0) =~ 25, (0) (B27)
12 2 3 2 T \/§ K ’
3 . 2 4 . . 2 .
(153) = —\/;{1 - m,2,C1 (0) - \/_ |: 2m2C1 \/gm%(Dl(O)} - KAZ |:C1 (0) + %Dl (0)
. . 2 . .
£ 1(E0) = 2EH0) + C0)D10) + Tk (D1 (0) 2D, O/ (0) + Da(0))] . (B2s)
‘121 = —2V2m}kA?, (B29)
a) = -2 [m%( (1 - g) + kAX(1 = V3m2C,(0) — 2m%(D2(O))] : (B30)
ay) = —ﬂ{l - %m%cz (0) = m3D(0) = {1 ~V3m2C,(0) - 2m%02(0>] — kA2 [% 5(0) + D, (0)
NI Lo . ) Lo .
+ =5 mz(C5(0) = 2G5(0)(C1(0) + D2(0))) + my (D(0) = 2(C,(0)D4(0) + D3(0))) | ¢ (B31)

’A detailed explanation can be found in Ref. [44].
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(2) - 3 3k

a,” = \/;—8m3,’ (B32)
3

a? = \68;;2 . (B33)

APPENDIX C: MANDELSTAM VARIABLES AND
WIDTH FORMULAS

The Mandelstam variables for the transition H,(k,) —
Su(ky)PT(py )P~ (p_) with P =z, K are as follows:

u= (kn - p_)2_
(C1)

s=(ps+ P—)27 t=(k,— P+)2v

In the reference frame of the decaying exotic quarkonia,
one finds

1
Pl = 5 (A £ p(s)op(s)cosb), (C2)
with
op = /1 —4m3 /s, (C3)
m:—m2 + s
A==t 4
2m, ’ (4
p=+A2_5, (C5)

where m, and m,, are the masses of initial and final
quarkonium respectively. In the nonrelativistic approxima-
tion of the final quarkonium momentum, the above
expressions for A reduce to
A =m, —m,. (Co)

In all our numerical computations we have used this
nonrelativistic approximation of A to be consistent with
the nonrelativistic nature of our EFT approach. It should be
noted that the specific form of Eqs. (B26)—-(B33) depends
on this choice.

Continuing in the reference frame of the decaying exotic
quarkonia and using Eq. (C2) one finds

t=—(m—m2 +2m%—s)—m,p(s)op(s)cosd, (C7)

N[ =

(m2 = m2, + 203 — 5) + myp(s)ap(s) cos 6, (C8)

NSRR

u =

and consequently

u—t

cos = ————.
2mnp(s)6P(s)

(C9)

We are interested in finding the transition width of
amplitudes with an S and D wave as in Eq. (B13):

Aop = AO(s) + (=1 = Sm2ch(5)b(5) | A (5)

(C10)

Using Eq. (C9) into Eq. (C10) we can write A,p =
Asp(s,cos8).
The differential decay width is

Top

_ p(s)op(s) 5
dsdeosd ~ 8(an) IarlscosOF(CID)
Integrating € we arrive at
o _ p5)or(s) 0) (4|2
ds  8(2xn)° 2| A (s)]
8
+ 75 (2maop(s)p(s))?| AP (S)d . (€12

To obtain the total decay width we integrate numerically

(mn_mm>2
L, — / s (drzp)
4m%, ds

In the transition with one light-quark meson in the final
state, the momenta are fixed by momentum conservation.
The final light-quark meson momentum is |pp| = p(mp),
and the decay width is given by

(C13)

2
p(m
rp =202 14,

(C14)

with p(s) given in Eq. (C5).
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