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ABSTRACT: Potential intensity (PI) has been shown to have a linear sensitivity to sea surface temperature (SST) of about
8ms~ K !, which s close to the sensitivity of PI in simulations subject to a weak temperature gradient (WTG) approximation.
This suggests that most of the PI variance is associated with local rather than global SST variations. We verify that PI per-
turbations are approximately linear in SST, with slopes of 1.8 + 0.2ms ™' K™ ! in radiative—convective equilibrium (RCE) and
91 + 0.9ms 'K~ ! in WTG. To do so, we simulate the sensitivity of both RCE and WTG states in a single-column model
(SCM) perturbed by changing in turn CO, concentration, aerosol concentrations, prescribed SST, and surface winds speeds.
While PI is much more sensitive to SST in WTG than in RCE simulations, the SST itself is much less sensitive to radiative
forcing in WTG than in RCE because of the absence of strong atmospheric response. Using these results, we develop a linear
model, based on SST and midlevel saturation MSE perturbations, to partition SST and PI perturbations between local
components occurring under a WTG constraint and global components that are representative of an RCE state. This model
explains up to 95% of the variability of PI in reanalysis. The SCM-derived linear model coefficients are statistically indistin-
guishable from coefficients from a linear fit of reanalysis PI to SST and midlevel saturation MSE in most ocean basins. Our
model shows that North Atlantic PI variations are explained almost entirely by local forcings in recent decades.
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1. Introduction temperature of the storm, /) is the saturation moist static en-
ergy (MSE) at sea surface temperature, and /" is the tropo-
spheric saturation MSE. Here we have made use of the fact
that, within the assumption of quasi equilibrium (Arakawa and
Schubert 1974) with a coupled boundary layer, &, = A, where
hy, is the boundary layer MSE.

PI and SST changes result from global (e.g., Sobel et al.
2019) or from local (e.g., Mann and Emanuel 2006) forcing.
Global forcing is generally understood as influencing the whole
tropical region as if it were, on average, in a state of radiative—
convective equilibrium (RCE). In RCE, a positive forcing
causes an increase in sea surface temperature and 4, which
tends to increase PI, and an increase in h:;, which mitigates the
increase in PI. However, the tropical atmosphere has large
Rossby radii of deformation, especially at low latitudes.
According to the weak temperature gradient approximation
(WTG; Sobel and Bretherton 2000), this means that h: is al-
most horizontally uniform and can only change globally, not
regionally. The implication is that a local forcing that increases
SST also increases /. but does not increase h since the ad-
ditional energy supplied to the atmosphere is exported in the
form of gravity waves. In the absence of a change in h:,kl, Pl is
much more sensitive to SST changes in a column constrained

CT.-T, .+« by WTG than to changes in RCE (Ramsay and Sobel 2011,
= C*D? (hy = hy,), (1) Emanuel and Sobel 2013). Ramsay and Sobel (2011) show that

¢ the sensitivity of PI to SST in an RCE system with imposed SST
(Bister and Emanuel 1998; Wing et al. 2015) where C, and Cp,  is around 1 m s 'K™!, whereas in a WTG-constrained column
are the surface exchange coefficients of enthalpy and mo- it is near 8ms™ 'K, which is much larger. The PI-SST re-
mentum, 7T, is the sea surface temperature, T, is the outflow  gression coefficient found by Vecchi and Soden (2007) in re-
analysis datasets is also close to 8ms™'K™!, which suggests

that local forcings and their effects on SST dominate PI vari-
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Potential intensity (PI; Emanuel 1986, 1988; Bister and
Emanuel 1998; Bryan and Rotunno 2009) is a theoretical
bound on the maximum achievable wind speed in tropical
cyclones (TCs). PI has been shown to provide fairly accurate
bounds on the maximum wind speed in TCs both in obser-
vations (Emanuel 2000) and in models (Rousseau-Rizzi and
Emanuel 2019) and can be seen as an indication of how fa-
vorable the thermodynamic environment is to the maintenance
of strong TCs. It is one of the main predictors of TC activity as
represented by the power dissipation index (PDI; Emanuel
2007), an indication of the total amount of energy dissipated by
all TCs over a given basin and a given TC season. In other words,
PI is an important predictor of the amount of power dissipated
by TCs and thus, of their destructive potential. For that reason,
understanding the causes of past PI variability is useful to help
predict future variability in TC activity.

TC intensity variability is often attributed to sea surface
temperature (SST) variability, and Vecchi and Soden (2007)
showed that PI correlates well with SST spatial anomalies and
that the slope of the linear regression is near 8ms~ ' K™'. PI
can be expressed as

PP’
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For this reason there is particular interest in understanding
the forcings responsible for local SST variability. Here, we
will be focusing on SST as a proxy for PI variability because
SST variability is well measured and studied. In the tropical
North Atlantic (TNA), SST multidecadal variability and the
concurrent effects on PI have been attributed to a variety of
causes such as the Atlantic multidecadal oscillation (AMO;
Zhang and Delworth 2006), sulfate aerosol forcing (Mann
and Emanuel 2006; Booth et al. 2012; Dunstone et al. 2013),
Saharan dust forcing (Strong et al. 2015, 2018), and surface
wind and cloud feedbacks (e.g., Evan et al. 2011, 2016). Some
of these explanations such as dust and cloud feedbacks are
complementary and some, like the AMO and anthropogenic
aerosols, are competing. Hence there exist multiple possible
mechanisms that can act to set the SST in the TNA and that
could help explain hurricane activity variability. Notably, the
“hurricane drought” (decreased hurricane activity) of the
1970s and 1980s has resisted a single explanation (e.g., Villarini
and Vecchi 2013). In this paper, we attempt to introduce a linear
framework that can be used to compare and contrast these in-
fluences on SST and PI, using a well-known strong constraint on
tropical thermodynamics, WTG.

Objectives
In this paper, we aim to

1) show that PI perturbations are approximately linear in SST,
with different slopes in WTG and RCE;

2) show that SST perturbations can be partitioned between
local and global components, which allows one to partition
PI variations as well; and

3) evaluate the local and global contributions to PI variability
in the North Atlantic MDR and in other basins.

First, section 2 discusses the theoretical sensitivity of PI to
SST in RCE and WTG, then section 3 describes the SCM setup
and the data and reanalyses used in the study and section 4
describes and explains the results of the sensitivity experi-
ments. Next, section 5 introduces the linear model for PI and
obtains its coefficients, and section 6 applies the model to re-
analysis products. Finally, section 7 discusses the results and
section 8 summarizes and concludes.

2. Analytical estimates

Analytical estimates for PI sensitivity can be obtained fairly
easily for WT'G-constrained columns. In such a system, the free
troposphere is constrained to a constant value of #*, a ther-
modynamic variable, but it is not an energetically closed sys-
tem. In RCE, the main constraint in the free troposphere is that
of energy balance, which is much more complex as it relates to
equilibrium climate sensitivity (ECS). For that reason, it is
easiest to approach PI sensitivity in WT'G from thermody-
namic forms of the PI equation, and PI sensitivity in RCE from
energy balance forms of the PI equation (e.g., Emanuel 2007).

a. WTG PI sensitivity

We start by taking the derivative of the log of PI Eq. (1) with
respect to Ty, along with the assumption that the outflow
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temperature is independent of the sea surface temperature
(dT,/dT, = 0). In practice, outflow temperatures can vary up to
10°C degrees on a seasonal time scale (Gilford et al. 2017) and
could influence long-term PI trends. However, statistically
significant influences on PI have not yet been found in re-
analysis data (Wing et al. 2015). We write

2 dPl 1 1 dn*  dn*
_ (@) o

— = + —_m

PI dTv Tx - To (hj - h:‘:r) de dTv
where subscript s denotes the surface and m denotes any point
in the free troposphere. In the dilute limit, when the water
vapor mixing ratio is much smaller than one, we can write
saturation MSE as

h=c, T+Ls"+®, 3)

where c,41s the heat capacity of dry air at constant pressure, L,
is the latent heat of evaporation, r* is the water vapor satura-
tion mixing ratio, and & is the geopotential. Since r* is a
function of 7 and dry-air pressure p,, h* is a function of 7, p,
and ®, and we have

dh* _oh* dT ah*%Jrah*dfb

kit & Sty 4
dT,  aT dT, op,dT, o dT, @)

Neglecting the sensitivity of latent heat to temperature and
using the equation of Clausius—Clapeyron, we have, within a
few percent,

on*

oh* _ . L2r*
oT M

RT”

®)

where R, is the ideal gas constant for water vapor. At the
surface, dT,/dT; = 1, and the geopotential is constant. We also
neglect the contribution of surface p, changes to saturation
MSE changes so that

an*dp, (6)
apd dTv '

In addition, if we neglect virtual effects, the WTG approxi-
mation implies that h:l does not change in response to local
SST changes. Hence, we can write

an’ on*|  an}
dT, oT|’ dT, =0 @
and finally
dPI_PI| 1 1 o oL @®
ar, 2 |T,—T, (h;k —h:}) pd R T2

This allows one to estimate the sensitivity of PI to SST in a
column in quasi equilibrium (QE) and under a WTG constraint.
Typical values such as T, = 200K, T, = 303K, and PI = 75ms "
yield =27 gkg™ Ll =3.75 X 10° T kg, b} =3.56 X 105 T kg™,
and a sensitivity of about 10.1 ms~ ' K™!, which is somewhat
higher than reported in the literature. Since the derivation



1 NOVEMBER 2021

relies only on QE and WTG assumptions, and the result de-
pends only on thermodynamic variables, a departure between
the PI sensitivity estimated from the thermodynamic state
using Eq. (8) and observed or modeled sensitivity must arise
from a violation of either QE or WTG assumptions. For ex-
ample, an environmental profile set by an entraining parcel
could result in a smaller-than-theoretical sensitivity. Next, we
consider the RCE problem, which is a bit more complicated.

b. RCE PI sensitivity

In RCE, PI sensitivity will again be assessed starting from
Eq. (2), but this time, contrarily to the WTG case, dhf:l/d T, #0,
so that the sensitivity of PI cannot be deduced simply from
thermodynamics. In RCE, and under the assumption of boundary
layer quasi equilibrium, the value of dhfn/d T arises from the
radiative properties of the atmosphere and the surface, so the
sensitivity of PI relates to the climate sensitivity of the tropics.
Hence, no simple analytical solution is available and progress
can only be made by writing the surface thermodynamic dis-
equilibrium in terms of the energy balance at the surface.
Following Emanuel (2007), we write

F 40, =p,CV,I(h —h). ©9)

where F; is the net radiative flux at the surface, Q. is the
vertically integrated ocean heat flux convergence, and |V| is
the magnitude of the environmental surface wind speed. The
RHS of the equation is a bulk formulation for the latent and
sensible heat fluxes from the surface in equilibrium. In a cli-
mate change scenario, the response of all of the terms in this
equation needs to be considered, as a change in global radiative
forcing might affect the surface wind speed and the ocean heat
flux convergence as well as the net surface radiative flux. In
equilibrium, we can write

Fatm + Qalm = Ex + ro’ (10)

where F,, is the net radiative heat flux integrated over the
whole atmosphere and Q. is the net dynamical heat flux
convergence integrated over the atmosphere. Any study at-
tempting to assess the full impact of a global forcing on PI
would need to take into account changes in the large-scale
circulation. Here, we focus on the narrower topic of single
column RCE where the wind speed is imposed and there is no
atmospheric heat export. Then, when SST is determined by
energy balance, Q,. = 0, and when SST is imposed, Q. is
implied. Equivalently, one could specify O, to a nonzero value
and compute SST, again by energy balance. In single-column
RCE, with Q,. = 0, we can think about the sensitivity of net
surface radiative flux in terms of net atmospheric cooling,
which is a function of the atmosphere radiative properties.
Hence, if we substitute Egs. (9) and (10) into Eq. (2) and we
neglect changes in near-surface density, we have

2 dPl 1 1 dF, 1|V
e 4 Zam_ - 1l (11)
PldT, T,-T, F,, dI, [V]dI,

Neglecting wind speed changes for now, we see that the
temperature sensitivity of the turbulent enthalpy (or MSE)
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flux, at the surface is equal to that of the net column-integrated
radiative cooling of the atmosphere, F,,. Obtaining an ana-
lytical estimate for dFym/dT; is beyond the scope of this paper
but, using a combination of theory and modeling and ac-
counting for water vapor changes only (no CO, changes),
Jeevanjee and Romps (2018) show that, in RCE,

1 dFatm o, -1
atm s
If we then take surface wind speed, exchange coefficients,
and density to be fixed and we substitute this in the formula for
Pl along with 7,, = 200K, 7, = 303K, and PI = 75 m sfl, we get

dP1_ I
ﬁ""lsms K N

s

(13)

which is very close to the simulation estimate of Ramsay and
Sobel (2011). Interestingly, 1/4 of the total PI sensitivity comes
from that of the thermodynamic efficiency. This indicates that,
in the global atmosphere, hypothetical changes of outflow
temperature of the same order of magnitude as changes in
surface temperature could strongly enhance or mitigate the PI
sensitivity.

Now if the wind speeds are allowed to vary and we take the
mean wind to be 5ms ™!, and the associated sensitivity of SST
to wind speed to be approximately —1Ksm™' [based on
Emanuel and Sobel (2013)], we get a contribution to PI sen-
sitivity of approximately 10% K™!, or 7.5ms 'K™!, due to
wind speed changes alone. This sensitivity is much larger than
that due to surface temperature changes at fixed wind speeds
because the fractional variation of wind speed is much larger
than that of net surface radiative heating, for a given temper-
ature change. This sensitivity is similar to that of PI under a
WTG constraint, which we will discuss in section 4. Since
tropical SST changes on the large scale are attributed mostly to
changes in radiative forcing, and not to large-scale changes in
wind speed, we can expect the observed large-scale PI sensi-
tivity to be closer to 1.5 than to 7.5ms 'K~ 1.

3. Methodology

Next we obtain the sensitivity of PI to SST in simulations. We
use the Massachusetts Institute of Technology (MIT) single-
column model (Bony and Emanuel 2001), which uses the con-
vection parameterization of Emanuel and Zivkovié-Rothman
(1999) and the radiation parameterizations of Fouquart et al.
(1980) and Morcrette (1991). The simulations use vertical pro-
files of cloud fraction that are fixed in pressure because allowing
the cloud fraction to evolve adds a lot of noise to the sensitivity
experiment results. That choice means that the altitude of the
cloud profile increases slightly when the air column warms.
Water vapor and its effects on radiation are allowed to evolve.
The ocean is a 2-m-deep slab ocean, to allow for sea surface
temperature to vary and to maintain energy balance in RCE,
except for the prescribed SST simulations. The small depth of
the ocean allows the system to reach equilibrium faster. In this
study we are not concerned with the time scales of the evolution
toward equilibrium, hence this choice does not affect the results.
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We run four series of experiments in RCE and three series
under a WTG constraint. To enforce the WTG constraint, a
large-scale vertical velocity profile is computed at each time
step above 850 hPa, such that the associated temperature and
moisture tendencies maintain the initial virtual temperature
profile exactly. Under the 850-hPa level, the virtual tempera-
ture is allowed to evolve freely. We test the sensitivity of the
RCE state to CO, concentration, and we test both the sensi-
tivity of RCE columns and of WTG-constrained columns to
dust aerosol direct effect, to prescribed SST variations, and
to near-surface wind variations. CO, is varied from 200 to
800 ppm, dust aerosol optical depth (AOD) is varied from 0 to
1, imposed SST is varied from 28.6 to 32.6 K, and surface wind
speed is varied from 3 to 14ms ™', The effect of imposing SST
can be likened to imposing some value of column-integrated
ocean heat flux convergence. The variety of sensitivity exper-
iments aims to confirm that the choice of dynamical constraint
(either RCE or WTG) has a more important influence on the
PI-SST relation than does the precise cause of the system
perturbation. These experiments are very similar to those of
Emanuel and Sobel (2013), who perturbed CO,, SST, surface
winds, and the solar constant in RCE and WTG simulations.
The main difference between our choice of experiments and
theirs is that where they modified the solar constant, we per-
turbed dust aerosol concentrations. Since dust is a fairly ab-
sorptive aerosol, it acts to heat the atmosphere as it cools the
surface.

All simulations are perturbed with respect to a control case
which we try to choose as representative of the mean state
over the TNA main development region (MDR) during the
August— October hurricane season (ASO). In RCE sensitiv-
ity experiments, the chosen control case broadly defines
the center of the parameter space to be explored and all
simulations are independent from one another. In the WTG-
constrained column however, the control case also deter-
mines the virtual temperature profile above the 850-hPa level
based upon which the WTG vertical velocities will be com-
puted. In reanalysis (NOAA 20CR), the mean near-surface
wind speed during ASO in the MDR is 4.8 ms ™', so we take
our control case to have a near-surface wind speed of Sms ™.
We will use a dust optical thickness of 0.3 as the ASO MDR-
averaged baseline based on Evan and Mukhopadhyay (2010).
The control case has 360 ppm CO,, which is representative of
the near past.

In our simulations and in reanalysis data, PI is computed
using a nonlinear iterative algorithm developed by Bister and
Emanuel (2002), which takes as an input sea surface temper-
ature and vertical profiles of pressure, temperature, and mixing
ratio. The algorithm is used instead of Eq. (1) because it ac-
counts for cases where the atmosphere is stable to boundary
layer parcels [which Eq. (1) does not] and also accounts for the
pressure feedback within the TC. When the atmosphere is not
stable, the values and climate sensitivities of PI computed using
the algorithm of Bister and Emanuel (2002) are fairly similar to
those resulting from Eq. (1). Merlis et al. (2021) found the
relative departure of the PI values from both methods to be
just a few percent in Earth-like conditions, while the PI sen-
sitivities departed by about 17%. In any case, these differences
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should not matter too much for us since the coefficients of the
linear model will be determined based on algorithm PI com-
putations and will be compared to data computed similarly. In
cases where the boundary layer decouples from the free tro-
posphere, PI can be multivalued. For example, an existing
storm translating into such an environment could be sustained
and strong (upper PI value), but a new storm could likely not
develop (lower PI value) in this environment. This decoupling
occurs when the outflow temperature (similar to the level of
neutral buoyancy) is very different for a boundary layer parcel
and for a parcel saturated at sea surface temperature and
eyewall pressure. When computing PI in simulations, we pur-
posely select the lowest of the possible PI values in the few
cases where the BL is decoupled because the sensitivity of the
high PI value is nonmonotonic across a decoupling of the
boundary layer and hence the low PI value is more appropriate
to the development of a linear model. A consequence of this
choice is that our model will be more appropriate for evalu-
ating PI for the purpose of weak or developing storms when
decoupling occurs. Situations where decoupling affects the
results will be discussed. In reanalysis data, we use the im-
plementation of the algorithm transcribed for Python by
Gilford (2020).

4. Sensitivity experiment results

Figure 1 introduces the results of the sensitivity experiments.
Each point in the figure represents either PI or T at equilib-
rium in one simulation, plotted against the corresponding
perturbed parameter.

a. CO; sensitivity

In the CO, panels, we can see PI leveling off as temperature
increases. This is partly due to the effect of high CO, concen-
trations where the net infrared flux to the surface stops in-
creasing with temperature which causes the PI profile to flatten
even though SST keeps increasing (e.g., O’Gorman and
Schneider 2008). In addition, the fixed cloud profile used in the
simulations increases stability near the outflow of the TCs,
which prevents PI from increasing further. In our simulations, a
doubling of CO, is associated with an SST change of 1.5-2 K,
which is on the low end of the response expected from Earth’s
climate.

b. Imposed SST sensitivity

In the next experiment, SST is imposed, which is why the
SST plot has a unique slope of 1. The values are the same for
both RCE and WTG. The PI-SST relationship conforms
reasonably well with the literature, with a slope of about
1.6ms "K' in the RCE experiment, and a slope of about
9ms 'K !in the WIG experiment. The RCE slope is very
similar to the 1.4ms™' K~ ' slope of Ramsay and Sobel (2011)
and small modeling differences, such as control simulation
background wind, can easily account for the difference. The
WTG slope is somewhat higher than the 7.6ms "K' in-
troduced by Ramsay and Sobel (2011), which may be due to
the fact that in our simulations, the boundary layer decou-
ples from the free troposphere at low temperatures, which
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FI1G. 1. Sensitivity of (top) PI and (bottom) SST to changes in (left to right) CO, concentration (black), aerosol optical depth (blue),
imposed SST (red), and near-surface wind speed (gray). All plots superimpose the RCE experiments (circle) to the WTG experiment
(squares), except for the CO, experiment, which is only performed in RCE.

causes a slightly sharper decrease in PI. These plots do not
provide much new insight, but confirm that the simulations
are not very different from results from the literature.

c. Aerosol sensitivity

Now looking at the sensitivity of SST to aerosol optical
thickness variations, we notice that the slope of SST in WTG is
much smaller than that in RCE (—1K per unit AOD by
comparison to —8K). We surmise that this is due to the at-
mospheric heat transport by gravity waves implied by the
WTG parameterization, which prevents any strong feedback
between the atmosphere and the ocean and makes SST less
sensitive to aerosol forcing. An interesting consequence of this
difference in SST sensitivities to aerosol forcing is that the PI
sensitivity to aerosol forcing in RCE is larger than that in
WTG, even though the PI-SST slope is much steeper in WTG
(as will be seen in Fig. 2). Interestingly, this suggests that the
reason why PI variability is dominated by local variability is
that the local variability of forcings (like ocean heat flux con-
vergence or aerosol forcing) is much larger than the global
variability, and not because PI is intrinsically more sensitive
to a given forcing in WTG than in RCE (if anything, it is less
sensitive).

d. Wind sensitivity

The wind sensitivity experiments test wind speed variations
from 3 to 14ms™ ! in unit increments. In contrast to other pa-
rameters, which produce very different responses in RCE and
in WTG, the results of the wind sensitivity experiments are
similar in both cases. Not only are both SST-|V| relations
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similar, the PI-| V| relations are as well, and both cases have PI-
SST slopes close to 9ms~'K™!. One way to understand this
similarity is that, in RCE, if we neglect the change in longwave
radiation emitted by the surface and assume a constant Bowen
ratio, then the atmospheric properties remain identical as
surface wind speeds change, and the ocean temperature adjusts
to keep the turbulent heat flux constant. This lack of tropo-
spheric temperature change is very similar to what would
happen in a WTG scenario, and correspondingly, surface wind
perturbations in WTG do not cause large compensating ver-
tical velocities. In other words, under the assumptions men-
tioned above, both cases are equivalent.

5. Linear PI model

The idea we are pursuing here is to partition annual to
multidecadal potential intensity variations between global
perturbations to the state of the tropical atmosphere, approx-
imated to be in RCE, and local perturbations to that RCE
state, approximated to occur under a WTG constraint. To
achieve this goal, we start by showing that changes of PIin both
RCE and WTG can reasonably be assumed to vary linearly
with SST within the domain of observed SST variation.
Hereafter, we write PI = PIy + 8Pland T = T, + 6T, where Pl
and T are climatological mean values in a given basin, and 6PI
and 67 are departures from that mean.

Figure 2 shows the change of PI for a given change in SST,
with respect to a reference state and for all sensitivity experi-
ments. The domain of the simulations plotted is restricted to
+2K to outline realistic variations with respect to the control
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FI1G. 2. Plot of 8PI against 67 for CO, (black), fixed SST (red),
dust aerosol (blue), and surface wind (gray) sensitivity experiments
in RCE (circles) and in WTG (squares). Linear fit for the SPI-8T
relations in RCE (black) and in WTG (gray).

case. As one can see, all the experiments fall more or less along
two distinct linear slopes (especially near the origin). The
shallower slope (1.8 ms ! K1) is a regression of 8PI on 8T for
all RCE experiments plotted in this figure, except the wind.
The steeper slope (9.0m s~ ' K™') is a similar regression for the
aerosol, SST, and wind experiments in WTG that are plotted in
this figure. The wind experiment was excluded from the RCE
case because it behaves similarly to the WTG case, and that
remote wind changes should not impact PI much, by compar-
ison to remote SST or radiative forcing changes. The relation
between 6PI and 8T for imposed SST in WTG does not look
as linear, because a decrease in SST from the control case
leads to the uncoupling of the boundary layer from the tro-
posphere. Those regression slopes are similar to, if somewhat
larger than, the reanalysis PI sensitivity (Vecchi and Soden
2007) or other modeled relations (Ramsay and Sobel 2011).
To plot this figure and compute the regression, we have
selected a similar number of simulations for each sensitivity
experiment included, roughly equally spaced to span the 6T
domain. More precisely, in RCE we have used CO, values
ranging from 200 to 760 ppm in 40 ppm increments, SST
values ranging from 28.6 to 32.6K in 0.5-K increments,
aerosol AOD values ranging from 0 to 0.5 in 0.05 increments,
and the wind experiment has not been included in the re-
gression. In WTG, we have used the same SST values as in
RCE, aerosol AOD values ranging from 0 to 2 in 0.3 incre-
ments and wind values ranging from 3 to 12ms ™' in 1ms™'
increments. The experiments are selected to span realistic
temperature variations without using simulations with im-
plausibly large environmental perturbations. For example,
even though the WTG aerosol experiment does not span the
full £2-K range, an AOD of less than 0 is impossible and an
AOD of more than 2 is implausible, hence we selected
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FIG. 3. As in Fig. 1, but in §SST-8A space.

simulations within the 0 to 2 range. We note that, as reported
in the literature (e.g., Sobel et al. 2019), there are differences
in the PI-SST relations between experiments in RCE. For
example, RCE PI is more sensitive to SST under an aerosol
forcing than under a CO, forcing. However, this is not a
problem for our model since the difference between the RCE
and WTG cases is much larger.

This suggests that we can express PI as two linear functions:
one for WTG and the other for RCE perturbations. To achieve
this, we need to partition observed SST perturbations between
their RCE and WTG components. To do so, we consider the
fact that, in theory, under the WTG constraint, changes to the
midtropospheric saturation MSE (847) should be due to
changes in the RCE state. To simplify the problem, we seek a
unique function relating 8h;; to 6Tg, the SST change in RCE.

Figure 3 shows the RCE sensitivity experiments introduced
earlier, plotted in 6 T-84" space. The WTG simulations are
omitted as /2, does not change with SST in WTG. Second, we
note that most RCE simulations fall on a single profile that is
quite linear over the plotted domain. That profile does not vary
much between sensitivity experiments. The regression coeffi-
cient for 6PI and 6T for all RCE experiments but the wind is
about 2.28 X 10 *kg K J~'. Finally, we note that &’ changes
nonmonotonically with SST in the RCE-wind sensitivity ex-
periment. This is due to the model transitioning between two
stable configurations and is a consequence of using a single
column model. Both configurations exhibit negative correla-
tions between 6 T and Shf:,, which may be due to the fact that, in
the simulations, a wind increase leads to a decrease of SST
while increasing the moisture (and hence greenhouse gas)
content of the atmosphere. This in turn seems to lead to a
warmer atmosphere despite the colder surface. We circumvent
those considerations by noticing that local changes in winds are
much larger than tropics-wide changes (which is supported by
reanalysis) and by neglecting the wind contribution to RCE
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changes altogether. This leaves us with two linear slopes for the
8PI-8T relation in RCE and WTG and one for the 6 T-8h
relation in RCE.

a. A linear model informed by theory and a single-
column model

To develop a linear model for 6PI as a function of 67 and
Bh,*n, we first partition 67, the total SST change, between SST
changes in RCE, and a perturbation with respect to the RCE
state. We pose

8T =8T, +8T,, 14)
where 6 T is the SST change in RCE, and 6 Ty is the remainder
of the total SST change. Then, 6T, can be related to Sh:, by
posing

8T, =C,5h,. 15)
where m refers to the midtroposphere and, from Fig. 3, we have
C,, =228x10"* kgKJfl as a constant. Defined in that way,
the PI sensitivity to 6T should be the PI sensitivity to SST in
RCE. The remainder 6 Ty, which is given by
8T, =8T—C,8h, (16)
is not associated with any change in /4, and will control PI as if
in WTG, hence the subscript W. Adding in the linear coeffi-
cients for PI sensitivity in RCE and WTG from Fig. 2, we in-
troduce the fundamental partition we want to make:
OPI=C.oT, + C,8T,,, 17
where Cx = 1.8ms 'K ! and Cy = 9.0ms 'K, corre-
sponding in theory to the sensitivities given by Egs. (8) and
(12). The quantity 87 can be readily retrieved from models or
observations. The quantity 847 is a function of temperature
and geopotential on a given pressure level, and can also be
retrieved from reanalysis products. Combining the equations,
we obtain
8P1=C,C, 8 + C,, (8T — C, 8h), (18)
where the first term on the RHS is the contribution to PI
changes from changes to the RCE state, and the second term is
the contribution from changes in the WTG state. Rearranging
to combine the predictors we get
8PI=C, (C,— C,)0h, + C,,0T. (19)
Here the physical interpretation of the two terms changes to
provide further insight. Since Cy, > Cg and C,,, > 0, we can see
that the coefficient of the first term is negative, which reflects
the fact that a positive Bh;, in the absence of a compensating
increase in SST, will cause a decrease in PI. Conversely, the
second coefficient is the large positive increase in PI that occurs
when SST increases locally, while the midtroposphere remains
fixed. The coefficients for this form of the equation can be
obtained from both the SCM and from a linear fit based on
reanalysis data, and compared to verify the model.
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FIG. 4. Evolution of PI toward RCE in a fixed SST single-column
simulation, when SST is perturbed by —2 K. Time series of algo-
rithm PI (black) and linear model PI (gray) and the equilibrium
(red) and transient (blue) components of linear model PI. The red
and the blue lines correspond respectively to the first and second
terms on the RHS of Eq. (17), respectively.

b. Unsteadiness

We note that the component of SST or PI we called “WTG”
is for now just a component that departs from the RCE state
and does not entail that the SST perturbation is local in space.
This will have to be verified using reanalysis data. Consider the
application of the linear model to the time-dependent evolution
of single-column simulation toward RCE. If our linear model is
correct, we should be able to reproduce PI variations based only
on the departure of 8T and 8/ from the initial conditions. For
example, let us consider the evolution of the fixed SST simula-
tion where SST is perturbed by —2K. Initially, as shown by
Fig. 4, we have 6P1 = Cy6Ty and the PI perturbation does not
reflect any RCE change. For this plot, we have arbitrarily taken
Cw = 82ms 'K for best results. This is slightly smaller than
the value of the PI sensitivity Cy, obtained by regression over all
WTG simulations, but it is still within the confidence interval.
Our only goal here is to show that PI can be represented at each
point in the evolution by a linear model. As time goes on, the
RCE component increases and the transient component de-
creases. At the end, as the system has reached RCE, §PI =
Cgr6Tg, and there is no more departure from RCE.

In between the initial time and equilibrium, 67; increases
and 86Ty decreases, and if we substitute both time-dependent
values in Eq. (17), we can reproduce the evolution of PI as
captured by the Bister and Emanuel (2002) algorithm.

This means that a linear model cannot, on its own, distin-
guish between WTG perturbations and transience, but it can
identify the part of SST variations that is coherent with an RCE
state. To show that the remainder of SST variations corre-
sponds to a state in WTG, we need to apply the linear model to
reanalysis data, and show that the use of a tropical average
value of 84 is sufficient to capture PI variations.

6. Application to reanalysis products

To verity that the linear model captures PI variations, we
apply it to ERAS (Hersbach et al. 2020) monthly averaged data.
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FI1G. 5. Tropical ocean basins for PI analysis plotted over a map of average PI in ERAS from 1979 to 2018. SST is
averaged seasonally and over each basin: North Atlantic (NA; blue), east Pacific (EP; green), west Pacific (WP;
red), Indian Ocean (IO; yellow), and a large basin for the Southern Hemisphere (SH; magenta). The seasons are
defined as follows: the NA TC season is August—October, the EP TC season is June-September, the WP TC season
is July-November, the IO TC season is April-November, and the SH TC season is January—May. Midlevel satu-
ration MSE is averaged over the area enclosed by the two black dashed lines and is averaged over the TC seasons of

each basin separately.

The resulting linear model PI (LPI) variations are then compared
to a reference PI dataset computed using ERAS data and pyPl
(Gilford 2020), a Python package for the nonlinear iterative al-
gorithm developed by Bister and Emanuel (2002). The PI dataset
was graciously provided by Daniel Gilford. In this dataset, which
is most appropriate for the study of the maintenance of TCs, the
highest value of PI is selected when a decoupled BL results in a
multivalued PI. As we will show, this causes linear PI variability to
be underestimated in ocean basins where decoupling occurs
frequently. To compute LPI for each basin, the saturation
MSE predictor 8/, which is assumed to be uniform over the
tropics, is averaged over the 600-hPa pressure level from 20°N
to 20°S and at all latitudes, and the sea surface temperature
predictor 87 is averaged over each tropical ocean basin sep-
arately. The averaging of PI and SST excludes land in all
basins. As shown in Fig. 5, we define five ocean basins in total,;
the North Atlantic (NA), eastern North Pacific (EP), western
North Pacific (WP), northern Indian Ocean (I0), and a single
large basin for the Southern Hemisphere (SH), in the Pacific.
To make sure that the quantities computed are relevant to TC
activity, PI variations are computed from predictors averaged
over the tropical storm season of each basin respectively.
We then apply the linear model to the spatially and sea-
sonally averaged predictors to compute one value of PI per
basin per year. In the reference PI dataset provided by Daniel
Gilford, pyPlI is applied to ERAS monthly averaged SST and
vertical profiles of p, T, and r at each latitude-longitude point.
The PI dataset is also averaged over each basin and over the
corresponding tropical storm season. A comparison between
LPI and the algorithm PI allows one to evaluate the linear
model, but to ensure that our SCM-derived coefficients are
valid, we also compute a linear fit of the algorithm PI to our two
LPI predictors, 87 and Sh:‘;. This is equivalent to employing
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Eq. (19), with the coefficients of both predictors determined
statistically rather than numerically. To sum up we are left with
three ways to compute potential intensity: LPI, algorithm PI,
and linear fit PL.

Figure 6a shows that, in the tropical North Atlantic main
development region (MDR), LPI captures very well the
variations of the algorithm PI (R = 0.97) and is almost in-
distinguishable from the linear fit PI. This shows that 87
and 6h: are a good choice of predictors, and also that the
SCM-derived coefficients are very close to the linear fit
coefficients (as we will see later). This suggests that we can
interpret past PI variations in light of the SCM-derived
coefficients, which provide physical meaning. In addition,
the excellent performance of the linear model in capturing
the interannual algorithm PI variations suggests that the
nonlinearities and the iterative process involved in the al-
gorithmic computation have a fairly small impact on PI
sensitivity (or cancel out), at least over the range of con-
ditions tested in this paper.

In Fig. 6b, we have used Egs. (15) and (16) to partition the
variations of SST into WTG and RCE contributions in the
MDR. We can see that while the variations of §T, have been
smaller than those of 8 Ty over the last 40 years, the magnitudes
are comparable. 6Tk exhibits a positive trend in time that is
likely due to global warming. The detrended variability in 67
correlates well with the Nifio-3.4 index (R = 0.67 with a 3-month
lag and R = 0.5 without any lag, not shown) because large-scale
ocean heat flux has an important influence on the tropical at-
mosphere. Determining the causes of 6 Ty, or 6Plyy, variability
exceeds the scope of the present study and will be the topic of a
subsequent paper. Causes can include aerosol radiative forcings,
wind-induced surface heat exchange, and ocean circulations like
the Atlantic meridional overturning circulation.
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FIG. 6. (a) Time series computed over the North Atlantic MDR
and ASO of “true” algorithm SPI (black), of §PI estimated using
the SCM-derived linear model (blue), and of SPI estimated using
an in-sample linear fit on 67 and 8" (gray). (b) Time series of SST
change (8T) over the MDR and averaged over hurricane season
partitioned between its RCE (red) and WTG (blue) components.
(c) Partition of 6PI averaged over the MDR and ASO, between its
RCE (red) and WTG (blue) components.

Finally, in Fig. 6¢ we look at the partition of PI variations
into global (§PIz) and local (6PIyy) contributions. Clearly, in
the MDR, the global contribution to PI variations is negligi-
ble compared to the local contribution, in the last 40 years.
However, even though 8PIg is small, we still need to know 6 7x
in order to be able to estimate 8Ty, and have an accurate es-
timate of 6PIy, which dominates the variability. Note that the
fact that global effects on PI are small in the Atlantic MDR
does not mean that they are small poleward of the tropics.

a. Other basins

Figure 7 shows the coefficient of determination (R?) of the
linear model in all ocean basins; as we can see, LPI reproduces
algorithm PI well in all basins. The basin with the smallest R? is
the eastern North Pacific with 80% of the interannual PI var-
iance captured by LPI. The maximum variance explained
by the model is 95%, in the North Atlantic. It is not surprising
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that the linear model works best in the North Atlantic MDR
since the simulations from which the model coefficients are
derived vary around a control simulation designed to resemble
the conditions over that basin. Figure 7 also shows the fraction
of variance that can be explained by a statistical fit of PI to SST
and hf;. As we can see, the statistical fit improves little upon the
SCM-derived linear model, ranging from no improvement in
the NA to a 3% improvement in the WNP. This suggests that
the SCM-derived coefficients are close to the statistical fit co-
efficients, which will be verified in the next section.

To illustrate the relative roles of global and local influences,
Fig. 8 shows the partition of SST between local and global
contributions, in the four additional basins. Since the global
contribution to SST depends only on 84, which is averaged
over the whole tropics and is common to all basins, the only
difference between the 8T time series across different basins
is the averaging season. If two basins had the same TC season,
they would have the same 6T every year. In basins that have
much smaller SST variability than the NA, like the IO or the
SH, the local contribution to SST changes 6Ty is smaller than
8Tx. In the SH basin 6T very clearly shows El Nifio events,
notably in 1983, 1998, 2010, and 2016, because the averaging
includes the months of January and February, during which the
events tend to reach peak magnitude. We have not included a
figure showing the partition between 6Pl and 6PIy, for all
basins because the information can be retrieved by multiplying
8Trby Cr = 1.8ms 'K ' and 6Ty by Cyy = 9.0ms 'K ™',
The time series of 8PIy is similar across all basins and is
everywhere smaller than 6PIy, with the difference being largest
in basins with large SST variability like the ENP.

b. Reanalysis coefficients

So far we have shown that LPI correlates well with algorithm
PI across all basins. Next, we want to show that the coefficients
derived from the SCM simulations have a physical meaning
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FI1G. 8. Time series of SST change (87) averaged over each basin and the corresponding TC season partitioned
between their RCE (red) and WTG (blue) components for (a) the eastern North Pacific, (b) the western North
Pacific, (c) the northern Indian Ocean, and (d) the Southern Hemisphere basin.

that can be used to interpret PI variations in reanalysis data.
To do so, we obtain linear fit coefficients by regressing PI on
8T and 8k} in ERAS. This yields a formula of the form
6P1=C86T + Czéhj:,. This linear fit PI is plotted in gray in
Fig. 6a and unsurprisingly also captures PI variation very well.
Comparison of the linear fit with Eq. (19) yields that, if the SCM
model assumptions are valid, then C; = Cy and C, = C,,,(Cgr —
Cy). Figure 9a shows coefficient Cy, derived from SCM simu-
lations (same as in Fig. 2) along with coefficient C; = Cy, for
each ocean basin, in black. The regression coefficients are
plotted with 95% confidence intervals where intervals are
computed using the Wald method. For example, our 95% con-
fidence interval on the WTG coefficient is given by Cy, + o(Cyy)
t1-0.0s2.n—2) Where o(Cy) is the standard error of the estimate
of the coefficient, and ;¢ .0s/2,,—2) is the 97.5th percentile of the
t distribution with n — 2 degrees of freedom (where n is the
number of points). This shows that, except for EP, the coeffi-
cients from all ocean basins are indistinguishable from the
SCM-derived coefficient. The reason why EP has a different
coefficient will be explained below. The red X markers denote
analytical estimates for coefficient Cyy, obtained from the con-
trol simulation and each basin, by applying Eq. (8). For both the
SCM simulation and the NA basin, the empirical estimates are
just slightly lower than the theoretical estimates, while for the
EP it is much lower. For the WP, 10 and SH basins, both the
empirical and theoretical estimates are statistically indistin-
guishable. The analytical estimates are similar for all basins and
for the SCM simulation, with less than a 1 ms™ ' K~ ! difference
between the highest and the lowest value. The good agreement
between the SCM coefficient and the empirical and theoretical
coefficients over each basin suggests that, in both the SCM and
reanalysis data, the QE assumption is satisfied, or at least that
the departure from QE is not very climate sensitive. Figure 9b
shows the combination of coefficients C,,(Cg — Cy) derived
from SCM simulations along with coefficient C, = C,,,(Cr — Cw)
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for each ocean basin. Although there is a lot of uncertainty on the
coefficients in some basins, like in the EP, all uncertainty bounds
overlap so that all coefficients are indistinguishable from a value
of about —1.5mkgs™'J~'. The negative value implies that,
for an unchanged SST, if A increases, potential intensity must
decrease.

In Fig. 9a, we have also plotted a coefficient of linear re-
gression of PI on SST alone such that 6PI ~ C38T. Since 67 is
positively correlated with 84, (not shown), the coefficient Cs
must be smaller than Cyy. If the correlation was perfect we
should have C; =~ Cg, so Cg and Cyy are essentially lower and
upper bounds on Cs. In our Fig. 9a, the SH basin, which has the
largest correlation between 5hf:, and 67 has the largest differ-
ence between C; and Cg, and conversely for the EP basin, which
has the smallest correlation. This is worth pointing out because it
contextualizes the use of SST alone as a predictor of tropical
cyclone intensity: it only works well if that SST is independent of
midtropospheric conditions. To support this, we look at the co-
efficients of determination for SST alone in Fig. 7 and notice
they are always smaller than the R? of the SCM-derived model,
which also includes Bh,’i. The difference is again largest in the SH
basin, where the correlation between 8/, and 8T is strongest.

7. Discussion

Our results outline the importance of coefficient Cy in de-
termining the magnitude of PI variations associated with a
given SST perturbation. In addition, C,,, allows one to define
that perturbation based on the mean tropical state and is also
important. On the other hand, in the Atlantic, Cy is not very
important up to multidecadal time scales because RCE PI
changes account only for a small fraction of the total. We want
to emphasize that this may not hold at longer time scales. The
local coefficients Cy found here are larger than those pre-
sented in Vecchi and Soden (2007), which relied on fitting
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FIG. 9. (a) Linear model coefficients Cy derived from the SCM
simulations (blue; SCM label) and derived from ERAS PI regres-
sion on both 8T and 84 (black; basin labels), analytical estimates
of Cyy using Eq. (8) (red X), and coefficient of ERAS PI regression
on 87 only (gray). (b) Combination of linear coefficients C,,(Cg —
Cw) derived from the SCM simulations (blue; SCM label) and
derived from ERAS PI regression (black; basin labels). The error
bars denote 95% confidence interval on the regression coefficients.

algorithm PI to a temperature anomaly computed with respect
to the tropical average at each time step. This method is the
equivalent to setting 8Ty =6T — 8T, where 8T are tropical
mean SST changes. In addition, it assumes 8PIz = Cz8T ~0,
and we indeed have found 8PI to be small. So the main dif-
ference lies in the assumption that 87 is representative of 6/,
which depends not only on SST, but on the degree of coupling
of the sea surface to the atmosphere. We illustrate this as-
sumption in Fig. 10, where we show a time series 8T averaged
over the tropical North Atlantic hurricane season, along with
Cm‘dh:; averaged over the same season. As we can see, in
general, 8T « 5h:, with a correlation coefficient R = 0.81. The
linear regression coefficient between both variables over the
last 40 years is (2.69 = 0.64) X 10 *kgKJ~!, which is indis-
tinguishable from the value of the coefficient C,, obtained from
the SCM simulations. This is interesting because the value of
C,., and by extension that of Cg, are expected to depend not
only on the atmospheric cooling rate, but also sensitively on the
level of coupling between the sea surface and the boundary
layer. We assumed this coupling to be fixed in the derivation of
Eq. (11) and in the computation of C,, and Cg from simulation
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F1G. 10. Comparison between tropical mean SST (black) and an
estimate of SST representative of global changes by our linear
model (red). Both quantities are averaged over the North Atlantic
hurricane season.

results, where we left the wind experiment out of the regres-
sion. Hence this result suggests that large-scale changes in
coupling, for example due to global trade wind changes, were
not very important on multidecadal time scales in the last 40
years. It also suggests that the a priori assumption we made,
namely that changes in surface winds could be excluded from
the computation of C,, and Cfg, is valid, at least for the period
considered. However, we notice that fairly large departures
between 67 and C,,8h occur during El Nifio years, where
large changes in the pattern of SST are associated with changes
in the level of coupling between the ocean and the atmosphere,
on a large scale. Hence, on multidecadal time scales, the as-
sumption 87 « 8k, seems a good one, but it seems less robust
when aiming to capture the effects of interannual variabil-
ity on PIL.

Next, we compare methods based on tropical average and
perturbation to the method introduced here. In Fig. 7, we show
the fraction of PI variance that can be explained by a statistical
fit of PI to both mean SST (§7) and SST anomaly (87 — 8T).
As we can see, the linear model introduced here explains sys-
tematically more variance than the simple fit based on SST
mean and anomaly. However, we also note that the fit based on
SST mean and anomaly explains more variance than the fit
based on basin SST alone, which does not account for large-
scale changes. As expected, the difference is most important in
the SH basin, where basin SST is most correlated with tropical
mean SST.

a. The eastern Pacific

The EP basin stands against an oceanic boundary with lots of
cold water upwelling, which causes the BL to decouple from
the free troposphere much more frequently than occurs in
other basins. This decoupling causes PI to be multivalued and
causes the high PI value to vary nonmonotonically in tem-
perature, increasing for a while as temperature decreases and
the boundary layer decouples, before decreasing again. This
nonmonotonicity results in a lower PI variability than pre-
dicted by the SCM linear model over the same range of
temperatures. In other words, this is the reason why the EP
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FIG. 11. Correlation coefficients between PI and the square root of
thermodynamic disequilibrium for each basin.

linear fit Cy coefficient is considerably lower than the linear
model Cy in Fig. 9a.

To show that this is the case, we consider that the PI
computation algorithm (e.g., Gilford 2020) is based on the
equivalence between thermodynamic disequilibrium and the
difference between environmental CAPE and saturation CAPE.
The algorithm also includes a nonlinear operation that specifies
that the environmental CAPE cannot be less than zero for the
purpose of the PI computation. This condition is usually applied
when the boundary layer decouples; when applied, it breaks the
equivalence between thermodynamic disequilibrium and the
difference of CAPEs. Hence, when the boundary layer decou-
ples, the square root of the thermodynamic disequilibrium be-
comes less correlated with PI computed with the algorithm. This
tells us that frequent boundary layer decoupling should decrease
the correlation between algorithm PI and the square root of the
thermodynamic disequilibrium, which we can test. Figure 11
shows this correlation for all basins and outlines that that the BL
decouples far more often in the EP than in other basins. Indeed,
the correlations are about 0.95 for all basins except the EP, where
it is 0.65.

b. Applications

The goal of this study is to provide a framework for quan-
tifying the causes of PI variability in the tropics. So far, we have
shown that PI variations are well captured by a novel linear
model based on two simple and intuitive predictors. This
linearity of PI, along with the fact that the model coefficients
have a clear physical meaning, constitutes the basis of our
framework. First, the linearity of PI will allow us to study the
different local influences on SST perturbations independently
from one another and then convert the SST perturbations
corresponding to each influence on PI perturbations. For
example, if it is known that dust aerosol forcing accounts for
twice as much TNA SST variability as ocean heat flux con-
vergence, then it also accounts for twice as much PI vari-
ability. Then, the physical meaning of the model coefficients
allows us to obtain information on the cause of PI changes
since SST and PI can be partitioned between an RCE com-
ponent, corresponding to large-scale changes to the tropical
atmosphere, and a WTG departure from those large-scale
changes.
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The coefficient Cy derives from Clausius—Clapeyron and
could apply to any departure from RCE, but the fact that the
tropical average h:: predictor greatly improves the linear model
confirms that these departures occur in WTG. Throughout all
basins, PI variations are dominated by WTG variations, at least
over the last 40 years, which suggests that changes in SST pat-
terns due to global change might be more important for PI and
TC activity than the changes in global mean temperature
themselves. This highlights that any small domain simulation or
idealized model that attempts to capture the response of SST
and PI to local parameter changes should be constrained by
WTG. The coefficient C,,, however, is a fundamental property
of Earth’s atmosphere that can be related to atmospheric cooling
and indicates the slope of the relation between midlevel satu-
ration entropy and SST. This coefficient outlines why PI is rel-
atively insensitive to global warming over the period considered
in the study. Because the changes of surface coupling and
poleward energy transport were not large enough to greatly
influence C,, over the last 40 years, an SCM was sufficient to
estimate its value. However, to capture the response of PI to
global change over a much longer period a global climate model
is probably more appropriate, since the SCM can provide no
insight on surface coupling or poleward energy transport.

We note that those coefficients were derived from equilib-
rium simulations but do not actually require a steady state to be
applicable. For example, if large-scale oceanic fluxes like those
due to ENSO increase rapidly and heat up the atmosphere,
small remote basins like TN A will see a drop in PI before their
temperature adjusts, and an increase afterward. Conversely,
rapid changes in large coupled basin SST will result in large
basin PI changes before the atmosphere has time to adjust, and
more modest ones afterward. For example, the 2015/16 El Nifio
event is clearly visible in Fig. 8, where there is a large increase
in WTG-like perturbation temperature in the EP basin, and a
correspondingly large decrease in the WP basin. In those plots,
the fraction of SST that correlates with h;kl is not very large,
outlining that the atmosphere has not adjusted yet to these
perturbed SSTs during the boreal summer. Early the next year,
during the averaging season of the SH in the austral summer,
we can see that the RCE temperature component is much
larger while the absolute anomalous component is much
smaller than in the two other basins, earlier in the year. This
suggests that the SSTs are closer to equilibrium with the at-
mosphere then, in the SH basin.

8. Conclusions

In this study, we introduced a new linear model for potential
intensity, based on SCM simulations and on the sensitivities of
PI to SST in atmospheres in RCE and under the WTG con-
straint. The model coefficients are derived from a control
simulation designed to be similar to Atlantic conditions, and
from a set of sensitivity experiments to CO, in RCE and to dust
optical depth, imposed SST changes, and surface winds, in
RCE and under WTG constraints. The resulting linear model
allows us to partition SST and PI changes into local and global
components, and explains up to 95% of the interannual to
multidecadal basin-averaged seasonal PI variance. The basin
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where the model works best is the NA, which may be due to the
fact that the control simulation was designed to have similar
conditions as the NA. The basin where the model captures the
least variance is the EP, which may be due to cold water up-
welling intermittently decoupling the boundary layer from the
midlevels, and decreasing PI sensitivity. Apart from the EP,
the linear model coefficients derived from SCM simulations
are indistinguishable in all basins from linear fit coefficients
derived using ERAS.

Future work will demonstrate applications of this frame-
work, including estimating the relative contributions of various
mechanisms to the historical PI variations, and quantifying the
thermodynamic effect of ENSO on Atlantic hurricane activity.
In addition, the results suggest that it would be interesting to
evaluate the sensitivity of P1 and SST to direct and indirect dust
aerosol effects, and the associated cloud feedbacks, in WTG-
constrained cloud-resolving model simulations.
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