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Observed Modulation of the Tropical Radiation Budget
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This studyanalyzes the observed monthly deseasonalized and detrended variability of the tropical radiation
budget and suggests that variationsof the lower-troposphericstability and of the spatial organization of deep
convection both strongly contribute to this variability. Satellite observations show that on average over the
tropical belt, when deep convection is more aggregated, the free troposphere is drier, the deep convective
cloud coverage is less extensive, and the emission of heat to spaceis increased; an enhanced aggregation of
deep convection is thus associated with a radiative cooling of the tropics. An increase of the tropical-mean
lower-tropospheric stability is also coincident with a radiative cooling of the tropics, primarilybecause it is
associated with more marine low clouds and an enhanced reflection of solar radiation, although the
free-tropospheric drying also contributes to the cooling. The contributions of convective aggregation and
lower-tropospheric stability to the modulation of the radiation budget are complementary, largely
independent of each other, and equally strong.Together, they account for more than sixty percent of the
variance of the tropical radiation budget. Satellite observations are thusconsistent with thesuggestion from
modeling studies that thespatial organization of deep convection substantially influences the radiative
balance of the Earth. This emphasizes the importance of understanding the factors that control convective
organization and lower-troposphericstability variations, and the need to monitor their changes as the
climate warms.

Plain Language Summary Anomalies of the tropically averaged radiative balancedetermine the
time variations of the tropical climate. The stability of the lower atmosphere has been shown to influence
this balance because increased stability favors the formation oflow-level clouds and the reflection of solar
radiation to space. Modeling studies have suggested that the spatial distribution of deep convection,
especially the degree of clustering of deep clouds, could also impact humidity and cloud coverage, and thus
the radiative balance of the Earth system. However, the relationships between cloud clustering, humidity,
and the radiation budget have never beenobserved at the scaleof the tropics.By analyzing long timeseriesof
satellite observations, we show that monthly variations of lower-atmospheric stability and convective
clustering are both strongly correlated with variations of the radiative cooling of the tropics and that their
contributions to the modulation of the radiation budget are complementary and equally important. These
observational results thus confirm modeling inferences and emphasize that to predict the future of our
climate, it will be necessary to determine how the stability and the clustering of deep convection willchange
with warming.

1. Introduction

Howwell do we understand the factors that modulate the tropical radiation budget? This understanding has
long been recognized as a path toward interpreting the long-term stability of tropical temperatures over the
past million years (Herbert et al., 2010) and estimating the sensitivity of the climate system to current and
future increases of greenhouse gases in the atmosphere (Pierrehurnbert, 1995). Observations and
climate models suggest that the Earth's radiation budget is significantly influenced by changes in
lower-tropospheric stability (Andrews & Webb, 2018; Ceppi & Gregory, 2017, 2019). An enhanced stability
is associated with a strengthening of the inversion at the top of the marine boundary layer (Klein &
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Hartmann, 1993; Wood & Bretherton, 2006), which reduces the mixing across the inversion and helps trap
moisture at low levels. Thisfavors the formation of low-level clouds, and thus the cooling of climate through
the enhanced reflection of solar radiation.

More recently, modeling studies have hypothesized that variations in the spatial organization of deep con-
vection could also influence the radiation balance of the Earth (Khairoutdinov & Emanuel, 2010;
Mauritsen &Stevens, 2015): Idealized experiments have shown thatwhen a randomly organized convection
spontaneously organizes into dry and moist patches, on average the atmosphere becomes drier, clearer, and
more efficient at emitting heat tospace (Bretherton et al., 2005;Emanuel et al., 2014;Wing & Emanuel, 2014;
Winget al., 2017). The analysis of satellite observations has confirmed that forgiven conditions of large-scale
circulation and surface temperature at the regional scale, situations associated with an enhanced convective
aggregation are associated with decreased humidity, decreased upper-level cloudiness, increased outgoing
longwave radiation (OLR), and decreased planetary albedo (Holloway et al., 2017;Stein et al., 2017; Tobin
etal., 2012, 2013). However, these relationships might be affected byvariations of sea surface temperatures
(SSTs) and large-scale atmospheric circulations (Fueglistaler, 2019; Zhang & Fueglistaler, 2019). It also
remains an open issue as to whether the radiative influence of changes in convective aggregation is signifi-
cant compared to that of other well-established controlling factors such as the lower tropospheric stability.

In thisstudy, we address these questions by analyzing observed variations of convective organization, tropo-
spheric stability, and top-of-atmosphere (TOA) radiation budget over the tropical belt (30°S to 30°N) at the
monthly time scale (once deseasonalized, the monthly tropical-mean radiation budget varies by £1 Wm?).
First, we characterize the variability of the spatial organization of deep convection across the tropics, and
we show that anomalies of convective organization strongly correlate with anomalies of tropospheric
humidity and TOA radiation. We then show that convective organization and lower-troposphericstability
both exhibit strong anticorrelations to net radiation, through complementary influences. The relative influ-
ences of convective organization and stability on the tropical-mean radiation budget are further quantified
and analyzed through radiative computations, and the implications of these results for climate change are
discussed.

2. Data and Method

2.1. Convective Organization Index

To characterize the spatial organization of deep convection across the tropics, we use 3-hourly, intercali-
brated and gridded infrared brightness temperature data 7h derived from geostationary satellites, a data
set known as the GridSat-Bl data set (Knapp et al., 2011). 7h data are mapped on an equal-angle grid of
0.07°. The GridSat infrared calibration uncertainty is less than 0.5K for each satellite, and the temporal
uncertainty is less than 0.1 K per decade. We use data over the 30°S to 30°N latitude belt during the
January 1990 to December 2017 period.

First, we detect the areasof the tropics covered by deep convection. To each 3-hourlysnapshot distribution of
Th data we apply a smoothing of the 75 field using an exponential-distance decay over10 x 10 GridSat pixels
(i.e., over a scale of about 80 km) to remove isolated convective pixels. Then, using the smoothed field, all
local minima pixels are identified where the value of 7h is lower than that of the surrounding 3 x 3
GridSat pixels. All local minima with 7h<240 Kare considered to be deep convective centroids. The deep
convective pointsdetected through this"local minimum" method effectively detectorganized convective fea-
turessuch assquall lines inferred from ground-based radar observations(see supporting information Figure
Sl or Semie & Bony, 2020).

A close examination of the data reveals that some 3-hourly GridSat images exhibit an anomalously high
numberof undefined data (due, for instance, to the absence of a geostationary satellite), some anomalously
lowTb values, or somespatial discontinuity near theedge of the satellitefield ofviewdue to the alternate use
of nadirmost and second nadirmostsatellite observations.To ensure agood homogeneity of the data over the
whole tropical beltat anygiven time, we exclude the 3-hourly data forwhich more than1%of the tropics are
covered by undefined data, or for which the total number of deepconvective centroids exceeds the long-term
mean by more than twostandard deviations.This represents 6%of all images over the 1990-2017 period, and
less than 5% over the 2001-2017 period.
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Figure 1. Time series of monthly deseasonalized and detrended anomalies of(a) the deep convective organiz.ation index
lyrg(Myrg) and (b) the tropical-mean lower-tropospheric stability EIS (//,EIS). Gray lines show monthly anomalies,

and green lines show12-month running mean anomalies. The correlation coefficient between the monthly series

of Jorgand EISis 0.4.

Then, we characterize the spatial organization of the deepest convective entities across the tropical belt(30°S
to 30°N). For this purpose we use the /org index, which has been originally introduced to characterize the
degree of convective aggregation in cloud-resolving simulations (Tompkins & Semie, 2017) and has the
advantage of characterizing the spatial organization relative to the reference of random organization at all
spatial scales. This index compares the cumulative density function of the nearest-neighbor distances
between deepconvective centroids (NNCDF) to thatexpected for a random distribution of the same number
ofconvective centroids. In the case of a random distribution associated with a Poisson process, the NNCDF is
given by a Weibull distribution (Weger et al., 1992). Valuesofl,,gsignificantlylarger than 0.5correspond to a
clustered distribution, and the higher the value of /org, the more aggregated the deep convective entities.The
monthly anomalies of deep convective aggregation (61,,g) are given from the monthly averages of 3-hourly
1,9 values, deseasonalized, and with the linear trend removed (Figure S3 in the supporting information).

Their time evolution is shown in Figure la.

To test the robustness of our characterization of the convective clustering, we alternatively calculated /,¢
using a different definition of convective centroids. Instead of defining them as the local minima of the
smoothed 75 field within a 3 X 3 pixels (0.21 X 0.21°) domain, we apply a recursive clustering algorithm
to the raw 7bfield to identify convective "clusters" of adjoining pixels with7h< 240-K./qg is then calculated
from the nearest-neighbor distance between the centers of mass (centroid) of the deep convective clusters.
The main difference with the local minima method is that only one centroid corresponds to each cluster

of deep convection irrespective of the cluster size, significantly reducing the number of deep convective
entities in areas where deep convective clusters are large. Although the method of local minima is
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thought to better characterize the aggregation of deep convection than this clustering method, the interann-
ual timeseries of/org computed with the twomethods are highly correlated (R =—20.9) and the main conclu-
sions of thisstudy are similar for both methods (Table SI and FigureS6 in the supporting information).

2.2. Lower-Tropospheric Stability

Previousstudies (e.g., Ceppi & Gregory, 2017) have shown that the Earth's radiation budget is correlated to
changes in lower-tropospheric stability and estimated inversion strength (EIS). These are defined as
LTS = 2e.,00-01000, where e.,g9 and Q1000 are potential temperatures at 700- and 1,000-hPa levels (Klein &
Hartmann,1993), and EIS= LTS - 18,,;(°z100- LCL) wherel'8,,;is the moist-adiabatic potential temperature
gradient at 850 hPa, z7o is the height of the 700-hPa level, and LCL is the height of the lifting condensation
level assuming a surface relative humidity of 80% (Wood & Bretherton, 2006).

To estimate these quantities, we use ERA-interim reanalyses at a spatial resolution 0f0.75° in longitude and
latitude (Dee et al., 2011).We compute EIS over eachocean region and compute the tropical-mean EIS as the
spatial average over all tropical oceans (30°S to 30°). The time evolution of deseasonalized and detrended
anomalies of EIS (z:.EIS) is shown in Figure 1b.

2.3. Radiative Kernels

We use the radiative kernel technique to decompose the TOA radiative flux anomalies into contributions
from changes in temperature, water vapor, surface albedo, and clouds (Soden & Held, 2006). To do so, we
use anomalies of monthly-mean temperature and water vapor profiles from 2003 to 2014 from the
Atmospheric InfraredSounder (Aumann et al., 2003) Version 6 Level 3 product. Anomalies in surface albedo
and cloud radiative effects are calculated using Clouds and Earth's Radiant EnergySystems Energy Balanced
and Filled (CERES-EBAF) radiative fluxes for the same period of record. All anomalies are calculated
relative to the mean over the whole period and the time series are deseasonalized and detrended.

To convert changes in the noncloudvariables to a radiative response, we multiply each timeseries of anoma-
lies by radiative kernels derived from CloudSat/CALIPSO observations (Kramer et al., 2019). Following
common practice, we separately diagnose radiative responses due to uniform temperature change (Planck
effect) and due to departures from the uniform temperature change (lapse rate response). Furthermore,
since convective aggregation is associated with variability in middle- and upper-troposphericrelative humid-
ity (e.g., Holloway et al., 2017), it is appropriate to decompose the water vapor radiative response into con-
tributions from fixed and changing relative humidity. Following similar decompositions by Soden et al.
(2008) and Held and Shell (2012), the fixed relative humidity radiative response is calculated by multiplying
the water vapor radiative kernel by the planck and lapse rate components of total temperature change. We
add these terms to the traditional planck and lapse rate radiative responses, respectively. The radiative
response due to relative humidity changes is calculated by differencing the total water vapor and fixed rela-
tive humidity radiative responses. Due to nonlinear radiative responses to overlapping clouds, there is no
radiative kernel specific to cloud perturbations in this methodology. Cloud radiative responses are therefore
diagnosed from changes in cloud radiative effects corrected for cloud masking using the kernel-derived,
noncloud radiative responses. Soden et al. (2008) outlines this approach in greater detail.

3. Variability of Deep Convective Organization

The computation of the /49 index for each3-hourly imageof the GridSat datasetshows that, at the scale of the
whole tropics (30°S to 30°N) and on average overthe period 1990-2017, the distribution ofdeep convection is
highly"clustered"(the mean /,¢ value is 0.82); that is, the deep convective centroids are closer to each other
than would be predicted for a random distribution of the same number of centroids (Figures 2aand 2b).

The organization index computed over the 30°S to 30°N, 20°s to 20°N, or 1s°s to 15°N latitude bands
(referred to as /og 1 g, and /g, respectively) are highly correlated to each other (R = 20.92 between log
and , =2 x#0B5 between /,gand / ). Therefore, although deep convection can sometimes happen

at subtropical latitudes as a result of tropical wave activity or extratropical intrusions, the time variations
of 1,9 computed over 30°S to 30°N are dominated by the variations of convective organization that occur

at equatorial latitudes.
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Figure 2. (a) Observed NNCDF (nearest-neighbor distances cumulative distribution function) of deep convective centroids across the tropical belt (solid line)
compared to the NNCDF that would be theoretically expected for a random distribution of the same number of convective centroids (dashed line).

(b) Relationship between the observed and Poisson NNCDFs (the convective organization index lorg corresponds to the areaunder the solid curve).

(c) Probability distribution function of the nearest-neighbor distances among the observed deep convective centroids over the tropical belt.

The distributions shown here are averaged over the 2001-2017 period, but qualitatively similar distributions are obtained when considering

individual 3-hourly images(examples of instantaneous distributions are given in supporting information FigureS2).

Across the tropical belt, deep convection exhibits multiple spatial scales of organization, ranging from the
planetary scale to the mesoscale. As /,¢ is a metric of spatial organization integrated across these multiple
scales, one may wonder whether its variations are dominated by particular spatial scales. The /,¢ index is
based on the distribution of nearest-neighbor distances across the tropics. The probability distribution func-
tion of nearest-neighbor distances shows that 98% of these distances are shorter than 200km (Figure 2c).
Therefore, although Iyg characterizes the spatial organization of deep convection over a large range of
scales, in practice, most of the variability of the deep convective organization captured by /,¢ arises from
the mesoscale or, to be precise, from what Orlanski (1975) calls the meso-/3(20 to 200 km) scale.

The spatial organization of deep convection observed during 1990-2017 varies on a range of timescales. A
spectral analysis of 3-hourly data shows that diurnal and semiannual variations constitute the dominant
modes of variability (not shown). Those modes of variability forced by the variations of the insolation are
removed when /,g is averaged over the day and the mean seasonal cycle of the daily-mean values is sub-
tracted. The time series of the diurnally averaged and deseasonalized /,g¢ then exhibits prominent modes
of variability at intraseasonal and interannual time scales (Figure 3). Part of the intraseasonal variability
relates to Madden-Julian Oscillations (Madden & Julian, 1994), whose timescale is around 30-60 days,
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Figure 3. Power spectrum of daily-mean, deseasonalized and detrended data of the deep convective organization index /o,¢ computed within 30°S to 30°N over
the 1990-2017 period.
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Figure 4. Relationship between monthly deseasonalized and detrended
anomalies of the tropically averaged midtropospheric relative humidity
(MTH)derived from microwave satellite observations and anomalies

of the deepconvective organization index /o,g- Each marker

corresponds to 1 month of the 2001-2014 period. Also

reported is the linear regression line across all points.

and part of the interannual variability relates to the El Niii.o-
Southern Oscillation (ENSO), which is dominated by the 3- to
7-year timescale (Radel et al., 2016; Rasmusson & Carpenter, 1982)
(supporting information Figure SI10O). These tropical phenomena are
known to modulate the spatial distribution of deep convection at
the planetary scale. The fact that /,g is based on nearest-neighbor
distances smaller than 200 km (Figure 2c) suggests therefore that
1og reflects these planetary-scale modes of variability primarily
through their impact on the mesoscale organization of convection
that is embedded within the large-scale envelopes of deep convection
(in the case of the MJO, this observation is at odds with Dias et al.,
2017). Note that /,¢ anomalies are poorly correlated to anomalies
of the tropical-mean SST, and they are only moderately correlated
to the Southern Oscillation Index defined as the sea level pressure
difference between Tahiti and Darwin (supporting information
TableSl).

In the rest of this paper, we will focus on monthly deseasonalized and
detrended anomalies of /,g computed within 30°S to 30°N, and of
several atmospheric and radiative properties averaged over the same
tropical belt. These monthly anomalies include interannual varia-
tions as well as some intraseasonal variations (a significant part of
the 1,9 variance occurs around the SO-day timescale; Figure 3).

4. Convective Organization, Water Vapor, and Radiation

How does convective organization relate to tropospheric humidity? Figure 4 shows that monthly anomalies

of the tropical-mean midtropospheric relative humidity inferred from microwave satellite observations over
the 1999-2014 period(Chung et al., 2013) are strongly anticorrelated (R =2 -0.63) with/,g anomalies: As
convective aggregation is stronger, the midtroposphere (300-700 hPa) is drier on average over the tropics.

Several factors can contribute to this anticorrelation. Cloud-resolving models suggesting that drier atmo-

spheres can inhibit the development of deep convection (Tompkins, 2001), mean drying could be associated

with a contraction of the convective areas, and depending on how the drying is manifested spatially, could

influence the organization of deep convection. Dry anomalies in the free troposphere can also help trigger

convective self-aggregation (Emanuel et al., 2014). In tum, theclustering of convection enhances the preci-
pitation efficiency of convective systems (Bao&Sherwood, 2019;Tobin et al., 2012), promoting the dryingof
the atmosphere. While causal relationships are difficult to unravel from observations, the anticorrelation

between convective aggregation and large-scale tropospheric humidity found in modeling studies
(Bretherton et al., 2005; Wing & Cronin, 2016; Wing & Emanuel, 2014) is confirmed by observations when
considering monthly variations at the scale of the tropics.

The regional pattern of humidity changes associated withaggregation variations is investigated by regressing

the local anomalies ofmidtropospheric relative humidity onto/,¢ anomalies (Figure Sa): An increase of the

organization of deep convection is associated with large areas of drying in equatorial regions and in the sub-

tropics. An exception is the western Pacific warm pool which, on the contrary, is associated with an

enhanced convective activity and a moistening of the troposphere when /,¢ increases. Upper-tropospheric

relative humidity data show similar results (not shown).

The CERES-EBAF, Edition 4.0, observations(Loeb et al., 2018) make it possible to investigate the impact of
this drying on monthly radiative fluxes at TOA. The drying associated with the enhanced organization of

convection is associated with an enhanced emission of clear-sky longwave (L W) radiation to space (due to

the lower effective emission height of infrared radiation), a reduced absorption of clear-sky shortwave

(SW) radiation by water vapor molecules, and then an enhanced net clear-sky cooling at TOA This is true

on average over the tropics(R —2 -0.54; Table 1), and locally over most of the tropics when clear-sky net

radiation anomalies are regressed onto /¢ anomalies (Figure Sb).
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(a) a(MTH)/alorg

Figure 5. Linear regression onto /o,g anomalies of regional monthly deseasonalized and detrended anomalies of
(a) midtropospheric relative humidity (MTH) and (b) clear-sky net radiation Ncs (aMTH/al,¢ and aNcs/alyrg,
respectively). MTH units are %, Ncs is in Wm?, and }, rg is dimensionless. Results are reported where the

regional relationship is statistically significant (p value lower than 0.05).

The radiative cooling associated with positiveanomalies ofdeepconvective organization doesnot only occur
in clear-sky but also in all-sky conditions (Table 1). The tropically averaged net radiation budget Nis antic-
orrelated with /¢ variations(R = 2 --0.65; Figure 6a), mostly through its LW component This partly results
from the dryingof the atmosphere and its impact on clear-sky radiation and alsofrom the reduced LW cloud
radiative effects (CRE;..,, the difference between TOA clear-sky and all-sky outgoing radiative fluxes). It is
explained by the fact that an increase of convective organization is associated with a reduced area of deep
convection and, as shown by cloud observations from the spaceborne lidar CALIPSO (Chepfer et al.,
2010), with a reduced high-level cloud amount (supporting information Figure S4 and Table S2).

5. Convective Organization Versus Lower-Tropospheric Stability

As 1,g, EIS exhibits variability over the 1990-2017 period (Figure 1b), and monthly anomalies of EIS are
strongly anticorrelated with N anomalies (R =2 --0.66; Figure 6b and Table 1). Cloud observations show

that this occurs mostly through the cloudy component of N, and morespecifically through the albedo effect
of clouds(CRE.sw) whichstrengthens when EIS, and thus low-level clouds, increase (supporting information
Table S2). However, as will be discussed later, we also note a negative correlation between anomalies of Ne,,,

1..and EIS, as strong as that between Nes,/w and 1org-

In contrast to EISor 7,¢ the tropical-mean SST is only weakly correlated with/N variations (R = 2 -0.16),
and it does not exhibit any significant correlation to /g and EIS variations. The occurrence of El Nino/La
Nina eventsis also found to havea minor effect on the relationships described here (supporting information
Table S3).Therefore, although these events modulate /,-¢ and EIS, they do not seem to affect the relation-
ships between /,¢ (or EIS) and clouds or humidity in a specific way.
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Table 1
Linear Correlation Coefficients of the Different Components of the Net Radiation Budget(N, with N = 2Ncs+CRE, Where Ncs= 2Ncs,tw+Nc.s, ;" Ne.s,tw = 2-0LRcs

and CRE = 2 CREw+CREs,..,.CS Referring to as "Clear-Sky" and CRE "Cloud Radiative Effect") and of the Midtropospheric Relative Humidity (MTH)with the
Deep Convective Organization Index larg and the Lower-Tropospheric Stability EIS

N N, CRE Ny, Nao Nesw Neg. CRE,, CRE,,, MTH
la,g -0.65 -0.54 -0.43 -0.53 -0.22 -0.47 -0.33 -0.39 (-0.13) -0.63
EIS -0.66 -0.44 -0.55 -0.36 -0.41 --0.47 (-0.10) (-0.09) -0.41 -0.56

Note. Allquantities are tropical monthly means(note that EIS is averaged over ocean only), and correlations are calculated on the basisof monthly deseasona-
lized and detrended anomalies over 2001-2017 (1999-2014 for correlations with MTH). Coefficients in brackets are not statistically significant (p value larger
than 0.05).

The tropical-mean radiation budget thus exhibits stronganticorrelationswith both EIS and the organization
of' deep convection (R — 2 -0.66 and-0.65, respectively), each explaining about 40%of its variance. /a,g and
EIS are positively correlated to each other(R = 2 0.37 during 2001-2017), but they correlate to the radiation
budget through different ways, with/a,g primarily affecting the clear-sky component and EIS primarily the
cloudy component (Table 1). This suggests that /argand EIS exert complementary influences on N. This is
confirmed by Figure 6¢, which shows how N anomalies (W) relate to /a,g and EIS anomalies (Margand
[:: EIS, respectively). Negative / /N tend to be associated with both positive Margand positive //EILS, but the
anticorrelation between Marg and 1/N remains for a given //EIS, and the anticorrelation between /::.EIS
and / /N remains for a given Marg- This is consistent with the partial correlations R(N,la,g) ELS and R(N,EIS)
10~ Which are equal to -0.58 and-0.60, respectively.

Note that the anticorrelation of1 INwith ///a,g and 71EIS is not only found at the monthly timescalebut also,
to a lesser extent, at the daily timescale (FigureS7 in the supporting information), showing the robustness of
the relationships between N, /arg, and EIS.

Given the complementary influences of /a,gand EIS on N, we assess the ability of Margand [::.ELS to predict
11IN. A linear multiple regression calculation shows that thesimple model 7/N= 2allla,g+/31::.EIS with (a, {3)
= 2 (-111.41 Wm?, -3.14Wm?K-) explains more than 60% of the variance of monthly N anomalies
(Figure 7a; R =2 0.79,R2 =2 0.62), that is, much more than that explained (about 40%) by either Marg
or /::.EIS individually. When considering low-pass-filtered anomalies (6-month running mean), the simple
model explains almost 75% of the variance (R = 2 0.86, R? = 2 0.74). The multiplication of a and f3by the
variances of //largand 11EIS over the 2001-2017 period (a;. = 4.3 x 10-3 and aETS = 2 0.16 K) reveals the

relative influence of Jla,g and EIS variations on N variations. As aan. —2 -0.48Wm? and
f3aErs =2 -0.50Wm>, the influences of /a,g and EIS on N variations appear to be of similar order of
magnitude.
(a) (b) © 11N: s-2-1 3
% . = % 1.0 J ..
o; A ° . ° e
- = L] P
P ‘. L] .. 5 ',"" 0.5 eeoe — _—
m S 0 ’ o
E et o ' £ - . LRI ° ° ! :
z 0 > . ° b ‘e . r 00 i .
<I :ﬁ . .' e m m - ] (X \. . .. ° <I_0.5 - .- .
o m m L] . N .- J )
-n '1 .0
3 . 5 . m —
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Al,,, (x100) IEIS(K] IEIS(K]
Figure 6. Monthly anomalies of the observed tropically averaged Earth radiation budget versus anomalies of (a) the organization index of deep convection

Margor (b) lower-tropospheric stability (EIS) averaged over tropical ocean //.EIS. (¢) 1IN anomalies (in color) stratified by Marg and !/.EIS. Each point
corresponds to 1 month of the 2001-2017 period (all anomalies are deseasonalized and detrended).
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Figure 7.(a) Time series of monthly deseasonalized and detrended anomalies of the tropically averaged Earth radiation budget //.N derived from CERFS
satellite observations (thick solid line) and reconstituted (dashed line) from /7/)g and ilEIS through linear multiple regression (!.N = 2 alil),g+/31IEIS).
(b) Time series of the tropical-mean /!.N observed from CERFS (thick solid line) and reconstructed from kernel radiatiw calculations (thin solid line;
Equation 1). Also reported are the radiative contributions due to /o,g anomalies (in red) and to EIS anomalies (in blue) inferred from kernel calculations
(Kramer et al., 2019). Note that the two reconstitutions of /.N reported on panels (a) and (b) correspond to two distinct approximations: 1n (a) it is
assumed that N depends only on /o,g and EIS, while in (b) it is assumed that N can be reconstructed from the variations in temperature, humidity, etc.,
which are congruent with /p,g and EIS variations. On both time series, a 6-month running mean has

been applied (for the plotting only).

6. Decomposition of Radiative Anomalies

Byusingradiative kernels(Kramer et al., 2019; section 2.3), the totalTOA flux anomalies can be decomposed
into contributions from changes in temperature, water vapor, surface albedo, and clouds:

Mi= L kxw+Mic= L Mix. )
x=T, RH, A x=T,RH, A, C

In this expression, Kx is the radiative kernel associated with temperature (T), relative humidity(RH), or sur-
face albedo (A) variations, and #:J,.Nc is the contribution of cloud changes to M/, computed as the change in
cloud radiative effect corrected for cloud masking. This decomposition is applied regionally for each month,
and each component of the decomposition is then regressed against the monthly time series of/,g and EIS

anomalies (Table 2), so that Equation 1 can be rewritten as follows:

aN. aN.
AN = 2 =X Al +——=AEIS | =AN;_+ AN 2
x=T,RH, A, C (ara,g oz + 3ETs ) Ty + ANEIS, @

where ¢.J,.Nr.,. and t:J,.NEis represent the /o,gand EIS contributions to ¢.J,. N, respectively.
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Table 2
Contributions of Changes in Temperature(Uniformand Lapse RateVariations),Surface Albedo, Relative Humidity, and aouds(£the1-99% Confidence Interval)to
the Tropiazl-Mean Radiative Responses tolo,g and EIS

11110 BNx
¥ gfg 5o W M) BEISGEJs (Wm-2) R(Nxlo,g) R(NfiIS)
ti.temperature (uniform, constant RH) -0.02+0.07 -0.06 +£0.06 -0.06 -0.21
ti.temperature (lapse rate, constant RH) -0.11 + 0.05 -0.13 +0.04 -0.44 -0.54
ti.surface albedo 0=+ 0.02 0 +0.02 0 0
ti.relative humidity -0.20 + 0.07 -0.15 + 0.06 -0.56 -0.47
.O.cloud(LW) -0.18 + 0.10 -0.03 +0.09 -0.37 -0.Q7
.0.cloud(SW) -0.15+0.16 -0.32 +0.13 -0.20 -0.47

Note.To facilitate the comparison befween the different sensitivities, the sensitivitiesto/o,¢ and EIS have been multiplied by the interannual standarddeviation
of/ ,g or EIS(G ... =243 x 10-" andGEIS = 2 0.16K, respectively). The values in bolﬁ are statistically significant (p value lower than0.01). Also reported are
0 1

correlation coefficients (R) between monthly deseasonalized and detrended anomalies of Nx and /o,g or EIS.

The N anomalies reconstructed from kernel calculations( using Equation 2) are shown in Figure 7b together
with the /:#.N actually observed and the radiative contributions of convective organization and
lower-tropospheric static stability to these anomalies. The observed and reconstructed /::..N exhibit the same
good agreement (R =2 0.79) as seen in Figure 7a. Although the EIS contribution dominates /::..N during
ENSO years, most of the time, /,g and EIS contributions are of same order of magnitude.

The radiative responses to /g and EIS are mainly driven by variations in relative humidity and cloudiness
(Table 2). t::..N; arises as much from changes in relative humidity as from changes in LW cloud radiative
effects, with an additional contribution from lapse rate variations, while /:...NEis arises primarily from SW
cloud radiative effects, with an additional contribution from relative humidity and lapse rate variations.

More surprisingly, relative humidity changes appear to contribute to /::..N as much through /,rg variations
(-0.20 W m2)asthrough EIS variations (-0.15 W m-2). Similarities are also found when considering the
zonally averaged vertical distribution of /:... NRH regressed onto7,gor EIS variations(Figure 8). As discussed
earlier, an increase in convective organization or in EIS is associated with a drying of the free troposphere
over mostof the tropical belt (Table 1) and leads to a net radiative cooling at TOA Figure 8 shows that this

(a) lo. Induced LIRH Flux Contribution (b)Y EISInduced LIRH Flux Contribution.
0.1 0.1
100 0.08 100 0.08
200 0.06 200 0.06
300 0.04 300 0.04
- 400 0-02 400 0-02
5
I 500 0 500
600 -0.02 600 -0.02
700 -0.04 700! -0.04
800 -0.06 800 -0.06
900 -0.08 900 -0.08
1000 -0.1 1000 -0.1
-60 -30 0 30 60 -60 -30 0 30 60
L titude Latitude

Figure 8. Sensitivity to (a) /o,g and (b) EISvariations of the radiative response to changes in relative humidity at each atmospheric level calculated thro&gh the
kernel approach, multiplied by the interannual standard deviation of 7 ,gor EIS (G1.,., =2 4.3 x 10-> andGEIs =2 0.16K, respectively). Units: W m-
(I00hPa)-'. The tropically averaged, vertical integrals of each panel correspond to the relative humiditycontributionsBNRnGr annglS

org
(in Wm—z, reported in Table 2), respectively.
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a(ElS)/alorg

Figure 9. Regional monthly EIS anomalies (deseasonaliz.ed and detrended) regressed onto /o,g anomalies during
2001-2017. Results are reported where the relationship is significant (p value lower than 0.05).

radiative cooling stems from the drying of the free troposphere over its whole depth, mostly in equatorial
regions in the case of /,¢ variations, and mostly in subtropical regions in the case of EIS variations.

7. Summary and Discussion

Thisstudysuggests that monthly variations of the tropical radiation budget can be explained to a large extent
by the radiative influences ofvariations in the lower-troposphericstability and in the spatial organization of
deep convection. Both influences are equally strong, and despite a modest correlation between convective
organization and lower-troposphericstability, largely independent of each other. Observations also suggest
thatthey are complementary because they operate on different components of the radiation budget; the clus-
teringof deep convection affects TOA radiation mostly through its influence on clear-sky radiation and LW
CRE, which relate to variationsof free-tropospheric relative humidity and high-level clouds, respectively. On
the other hand, lower-tropospheric stability affects TOA radiation primarily through its influence on SW
CRE, which relates to variations oflow-level clouds.

Given the anticorrelation between convective organization and the deep convective area fraction (Figure
S4), the question arises as to whether the relationship between convective organization and radiation might
be simply explained by the relationship between the convective area fraction (f) and radiation. However, the
relationship between!and /N is much weaker than that between /org and N (correlations of 0.36 and -0.65,
respectively), and the strong anticorrelation between /,gand N holds even in the absence off variations
(supporting information Figure S6). The relationship between /g and N is thus not primarily explained by
variations of the fractional area of the tropics covered by deep convection, but rather by variations in how
deep convection is spatially distributed across the tropics.

Given the strong potential influence of convective organization and stability on the tropical radiation bud-
get, it will be important to understand what drives their variations in present and future climates. One pos-
sibleinfluencing factor in variations of74,g and/or EIS is the tropical large-scale overturning circulation./org
and EIS anomalies are poorly correlated to basic metrics of this circulation, such as the mean subsidence
fraction (the fractional area of the tropics covered by large-scale downward motions), the mean
large-scale subsiding motion or the mean circulation strength, as diagnosed by Bony et al. (2013) using
large-scale vertical velocity data from ERA-interim reanalyses. Nevertheless, compared to the lowest quar-
tile, the highest quartile of the /,g distribution is associated with a larger subsidence fraction (by about
4%) and a strengthening of the overturning circulation (by about 8%), suggesting some relationship between
convective organization and the large-scale tropical circulation (supporting information Figure S9).

Previous research has shown that on interannual, decadal, and longer timescales, EIS dependson the spatial
pattern of surface temperatures, especially on the temperature difference between warm convective areas
and the rest of the tropics (Ceppi & Gregory, 2017; Fueglistaler, 2019; Qu et al., 2015; Zhou et al., 2016).
Monthly EIS anomalies are positively correlated (R —2 0.54) with anomalies of the SST# index proposed
by Fueglistaler (2019) (defined as the surface temperature difference between the 30% warmest waters
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minus the tropical average SST), thus suggesting that EIS variations are partly controlled by the spatial pat-
tern of surface temperature. We also note a strong anticorrelationbetween EIS and relative humidity in the
free troposphere (Table 1). This magnitude ofanticorrelation does not exist between EIS and the area and/or
strength of large-scale subsidence in the tropics. Therefore, we suggest that it arises rather from a radiative
coupling: Dry anomalies in the freetroposphere enhance the radiative cooling at the top of the moist bound-
ary layer of subtropical regions, which strengthens the inversion at the top of the boundary layer and thus
EIS. By inhibiting the vertical development of convective clouds, a stronger EIS prevents the free tropo-
sphere from being moistened by the detrainment of shallow or deeper congestus clouds, thus reinforcing
the anticorrelation between MTH and EIS.

Since periods of enhanced convective organization are associated with dry anomalies in the mid and upper
troposphere (Figure 5), they are likely to induce a positive correlation between convective organization and
EIS anomalies. Indeed, the regression of regional EIS anomalies ontol,,g anomalies showsa clear enhance-
ment of EIS on both sides of equatorial regions when convective organization is stronger (Figure 9). This is
consistent with the positive correlation between /arg and the tropical-mean EIS (R =2 0.37). This is also
consistent with idealized modeling studies showing the interplay between deep convective organization
and lower-troposphericstability (Chen & Wu, 2019; Coppin & Bony, 2018).

The factors that control the spatial organization of deep convection across the tropics constitute an area of
active research. Modelingstudiessuggest that the aggregation of deepconvection stronglydepends on atmo-
spheric radiative processes (Holloway & Woolnough, 2016; Muller & Bony, 2015; Muller& Held, 2012; Wing
& Emanuel, 2014), and on the spatial distribution of surface temperatures (Coppin & Bony, 2018). It may
also be sensitive to the mean surface temperature (see Wing et al., 2017, for a review), although idealized
simulations of the tropical atmosphere do not provide consistent results on that matter.Some modeling stu-
diessuggest that convective aggregation increases underglobal warming (Coppin & Bony, 2015; Pendergrass
et al., 2016), but others suggest that conclusions regarding the sensitivity of convective organization to
warming depend on the metric used to quantify the organization, and on the range of warming considered
(Cronin & Wing, 2017). The present observational analysis is not more conclusive in that regard, as 1,,¢ does
not exhibit any significant trend during 2001-2017, and indeed, the correlation between convective organi-
zation and the tropical-mean surface temperature is insignificant (supporting information Table SI). Onthe
other hand, convective organization might be more sensitive to changes in regional SS7° patterns(Coppin &
Bony, 2018; Zhang& Fueglistaler, 2019). Preliminary investigationssuggest that1,,¢ and EIS correlate to dif-
ferent SS7° patterns (supporting information Figure S8). Future investigations should thus determine how
much the radiative influence of $\S7 patterns, which partly results from the influence of the SS7'distribution
on EIS(Zhou et al., 2016), also stems from the influence of SSf patterns on the organization of deep convec-
tion. Future investigations should also determine how changes in convective organization at the tropical
scale relate to changes in weather and convective organization at the regional scale, including their impact
on extreme precipitation (Semie & Bony, 2020).

However, in addition to being potentially affected by slowly varying boundary conditions such as SS7°
changes, the spatial organization of deep convection may also be affected by purely internal atmospheric
variability. For instance, 1o¢ exhibits some variability at timescales characteristic of the Madden-Julian
Oscillation (Figure 3), which has been suggested to be a manifestation of an instability driven bycloud radia-
tion feedbacks (Arnold & Randall, 2015; Emanuel et al., 2014; Khairoutdinov & Emanuel, 2018). This is in
contrast with the lower-tropospheric stability, which does also exhibit variability at interannual timescales
but not at the intraseasonal timescale (supporting information Figure S10). Therefore, while /arg and EIS
might both be sensitive to slow changes in the ocean-atmosphere system, 1og presumably results as well
from short-term processes and interactions within the atmosphere.

All the relationships discussed in this paper have been established on the basis of detrended time series.
During the period 2001-2017, Iarg exhibits a weak positive trend which is not statistically significant On
the other hand, EIS exhibits a clear positive trend (+0.17 K per decade), consistent with the larger warming
of the atmosphere at altitude than near the surface (Qu et al., 2015). One may expect this increase of EIS to
produce a negative trend of the tropical radiation budget, but we actually observe the opposite(N increases
by 0.35W m-? per decade). The positive trend of N being dominated by its clear-sky component, it likely
arises from the increase of greenhouse gas concentrations in the atmosphere, which increases the
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absorption of clear-sky solar radiation and reduces the emission of clear-sky infrared radiation to space.
Indeed, considering both /,¢ EIS and the CO2 atmospheric concentration explains 63% of the variance
and improves the reproduction of the trend

How does the tropical radiation budget N relate to the global-mean radiation budget Na? Monthly deseaso-
nalized variations of N and Na are of same order of magnitude (=1 W m-? and £0.7W m-2, respectively),
are highly correlated to each other (R = 2 0.86), and are both anticorrelated with the tropical /,gand EIS
variations(R — 2 -0.54 and -0.56, respectively). Variations in /¢ and EIS explain together 44% of the var-
iance of the detrended Na signal, and when considering the CO2 concentration as an additional predictor,
nearly half (47%) of the variance of the trended signal can be explained (note that considering the
global-mean near-surface temperature does not increase the percentage of variance explained because the
surface temperature is poorly correlated with Na). Therefore, variations of deep convective organization
and lower-troposphericstability in the tropics are relevant not onlyfor the tropical radiation budget but also
for the global radiation balance.

Although the issue of whether and how convective organization and EIS will change in the future remains
unsettled, this observational study suggests that their changesat decadal or longer time scales might matter
for the radiation balance of the Earth, water vapor and cloud feedbacks, and thus climate sensitivity.It stres-
ses the importance of testing the abilityof numerical modelsof the climate system to reproduce the observed
relationships analyzed in thisstudy. A recent comparison of CERES observations with simulations from the
latest generation of general circulation models with parameterized convection (Loeb et al., 2020) shows that
when forced by observed ssrs, climate models reproduce the observed evolution of TOA LW or NET radia-
tive fluxeslesswell than theevolution of TOASWfluxes (when considering monthly deseasonalized anoma-
lies, the correlation between simulations and observations ranges across models from 0.096 to 0.32 for N1w,
and from 0.25 to 0.38 for N). Since in observations the variability of deep convective organization arises
mostly from the mesoscale (section 3) and influences the radiation budget mostly in the LW (Table 1), the
poor ability of climate models to reproduce observed monthly anomalies of N1w might partly arise from their
absence of representationof mesoscale convective organization.

Climate models might better reproduce low-frequency variations of Nbecause of the reduced influence of
stochastic atmospheric variability and the enhanced influence of surface boundary conditions
(Proistosescu et al., 2018). However, in the event that long-term changes in surface boundary conditions
or atmospheric composition would affect the mesoscale variability of deep convection, one would expect a
biased prediction of climatesensitivity by models that donot predict the mesoscale organization of deepcon-
vection. It emphasizes therefore the need to better understand physically the factors thatcontrol convective
organization, and the need to monitor their changes as the climate warms.
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