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This studyanalyzes the observed monthly deseasonalized and detrended variability of the tropical radiation 

budget and suggests that variationsof the lower-troposphericstability and of the spatial organization of deep 

convection both strongly contribute to this variability. Satellite observations show that on average over the 

tropical belt, when deep convection is more aggregated, the free troposphere is drier, the deep convective 

cloud coverage is less extensive, and the emission of heat to space is increased; an enhanced aggregation of 

deep convection is thus associated with a radiative cooling of the tropics. An increase of the tropical-mean 

lower-tropospheric stability is also coincident with a radiative cooling of the tropics, primarilybecause it is 

associated with more marine low clouds and an enhanced reflection of solar radiation, although the 

free-tropospheric drying also contributes to the cooling. The contributions of convective aggregation and 

lower-tropospheric stability to the modulation of the radiation budget are complementary, largely 

independent of each other, and equally strong.Together, they account for more than sixty percent of the 

variance of the tropical radiation budget. Satellite observations are thusconsistent with thesuggestion from 

modeling studies that thespatial organization of deep convection substantially influences the radiative 

balance of the Earth. This emphasizes the importance of understanding the factors that control convective 

organization and lower-troposphericstability variations, and the need to monitor their changes as the 

climate warms. 

Plain Language Summary Anomalies of the tropically averaged radiative balancedetermine the 

time variations of the tropical climate. The stability of the lower atmosphere has been shown to influence 

this balance because increased stability favors the formation oflow-level clouds and the reflection of solar 

radiation to space. Modeling studies have suggested that the spatial distribution of deep convection, 

especially the degree of clustering of deep clouds, could also impact humidity and cloud coverage, and thus 

the radiative balance of the Earth system. However, the relationships between cloud clustering, humidity, 

and the radiation budget have never beenobserved at the scaleof the tropics.By analyzing long timeseriesof 

satellite observations, we show that monthly variations of lower-atmospheric stability and convective 

clustering are both strongly correlated with variations of the radiative cooling of the tropics and that their 

contributions to the modulation of the radiation budget are complementary and equally important. These 

observational results thus confirm modeling inferences and emphasize that to predict the future of our 

climate, it will be necessary to determine how the stability and the clustering of deep convection willchange 

with warming. 
 

 
1. Introduction 

Howwell do we understand the factors that modulate the tropical radiation budget? This understanding has 

long been recognized as a path toward interpreting the long-term stability of tropical temperatures over the 

past million years (Herbert et al., 2010) and estimating the sensitivity of the climate system to current and 

future increases of greenhouse gases in the atmosphere (Pierrehurnbert, 1995). Observations and 

climate models suggest that the Earth's radiation budget is significantly influenced by changes in 

lower-tropospheric stability (Andrews & Webb, 2018; Ceppi & Gregory, 2017, 2019). An enhanced stability 

is associated with a strengthening of the inversion at the top of the marine boundary layer (Klein & 

http://publications.agu.org/journals/
http://publications.agu.org/journals/
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Hartmann, 1993; Wood & Bretherton, 2006), which reduces the mixing across the inversion and helps trap 

moisture at low levels. Thisfavors the formation of low-level clouds, and thus the cooling of climate through 

the enhanced reflection of solar radiation. 

More recently, modeling studies have hypothesized that variations in the spatial organization of deep con­ 

vection could also influence the radiation balance of the Earth (Khairoutdinov & Emanuel, 2010; 

Mauritsen &Stevens, 2015): Idealized experiments have shown thatwhen a randomly organized convection 

spontaneously organizes into dry and moist patches, on average the atmosphere becomes drier, clearer, and 

more efficient at emitting heat tospace (Bretherton et al., 2005;Emanuel et al., 2014;Wing & Emanuel, 2014; 

Winget al., 2017). The analysis of satellite observations has confirmed that forgiven conditions of large-scale 

circulation and surface temperature at the regional scale, situations associated with an enhanced convective 

aggregation are associated with decreased humidity, decreased upper-level cloudiness, increased outgoing 

longwave radiation (OLR), and decreased planetary albedo (Holloway et al., 2017;Stein et al., 2017; Tobin 

et al., 2012, 2013). However, these relationships might be affected byvariations of sea surface temperatures 

(SSTs) and large-scale atmospheric circulations (Fueglistaler, 2019; Zhang & Fueglistaler, 2019). It also 

remains an open issue as to whether the radiative influence of changes in convective aggregation is signifi­ 

cant compared to that of other well-established controlling factors such as the lower tropospheric stability. 

In thisstudy, we address these questions by analyzing observed variations of convective organization, tropo­ 

spheric stability, and top-of-atmosphere (TOA) radiation budget over the tropical belt (30°S to 30°N) at the 

monthly time scale (once deseasonalized, the monthly tropical-mean radiation budget varies by ±1 Wm2
). 

First, we characterize the variability of the spatial organization of deep convection across the tropics, and 

we show that anomalies of convective organization strongly correlate with anomalies of tropospheric 

humidity and TOA radiation. We then show that convective organization and lower-troposphericstability 

both exhibit strong anticorrelations to net radiation, through complementary influences. The relative influ­ 

ences of convective organization and stability on the tropical-mean radiation budget are further quantified 

and analyzed through radiative computations, and the implications of these results for climate change are 

discussed. 

 

2. Data and Method 

2.1. Convective Organization Index 

To characterize the spatial organization of deep convection across the tropics, we use 3-hourly, intercali­ 

brated and gridded infrared brightness temperature data Tb derived from geostationary satellites, a data 

set known as the GridSat-Bl data set (Knapp et al., 2011). Tb data are mapped on an equal-angle grid of 

0.07°. The GridSat infrared calibration uncertainty is less than 0.5K for each satellite, and the temporal 

uncertainty is less than 0.1 K per decade. We use data over the 30°S to 30°N latitude belt during the 

January 1990 to December 2017 period. 

First, we detect the areasof the tropics covered by deep convection. To each 3-hourlysnapshot distribution of 

Tb data we apply a smoothing of the Tb field using an exponential-distance decay over10 x 10 GridSat pixels 

(i.e., over a scale of about 80 km) to remove isolated convective pixels. Then, using the smoothed field, all 

local minima pixels are identified where the value of Tb is lower than that of the surrounding 3 x 3 

GridSat pixels. All local minima with Tb<240 Kare considered to be deep convective centroids. The deep 

convective pointsdetected through this"local minimum" method effectively detectorganized convective fea­ 

turessuch assquall lines inferred from ground-based radar observations(see supporting information Figure 

Sl or Semie & Bony, 2020). 

A close examination of the data reveals that some 3-hourly GridSat images exhibit an anomalously high 

numberof undefined data (due, for instance, to the absence of a geostationary satellite), some anomalously 

lowTb values, or somespatial discontinuity near theedge of the satellitefield ofviewdue to the alternate use 

of nadirmost and second nadirmostsatellite observations.To ensure agood homogeneity of the data over the 

whole tropical beltat anygiven time, we exclude the 3-hourly data forwhich more than1%of the tropics are 

covered by undefined data, or for which the total number of deepconvective centroids exceeds the long-term 

mean by more than twostandard deviations.This represents 6%of all images over the 1990-2017 period, and 

less than 5% over the 2001-2017 period. 
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Figure 1. Time series of monthly deseasonalized and detrended anomalies of(a) the deep convective organiz.ation index 

l0rg(M0rg) and (b) the tropical-mean lower-tropospheric stability EIS (!!,EIS). Gray lines show monthly anomalies, 

and green lines show12-month running mean anomalies. The correlation coefficient between the monthly series 

of I0rg and EIS is 0.4. 

 

 

Then, we characterize the spatial organization of the deepest convective entities across the tropical belt(30°S 

to 30°N). For this purpose we use the Iorg index, which has been originally introduced to characterize the 

degree of convective aggregation in cloud-resolving simulations (Tompkins & Semie, 2017) and has the 

advantage of characterizing the spatial organization relative to the reference of random organization at all 

spatial scales. This index compares the cumulative density function of the nearest-neighbor distances 

between deepconvective centroids (NNCDF) to thatexpected for a random distribution of the same number 

ofconvective centroids. In the case of a random distribution associated with a Poisson process, the NNCDF is 

given by a Weibull distribution (Weger et al., 1992). Valuesof10,gsignificantlylarger than 0.5correspond to a 

clustered distribution, and the higher the value of I0rg, the more aggregated the deep convective entities.The 

monthly anomalies of deep convective aggregation (610,g) are given from the monthly averages of 3-hourly 

10,g values, deseasonalized, and with the linear trend removed (Figure S3 in the supporting information). 

Their time evolution is shown in Figure la. 

To test the robustness of our characterization of the convective clustering, we alternatively calculated 10,g 

using a different definition of convective centroids. Instead of defining them as the local minima of the 

smoothed Tb field within a 3 x 3 pixels (0.21 x 0.21°) domain, we apply a recursive clustering algorithm 

to the rawTbfield to identify convective "clusters" of adjoining pixels withTb< 240-K.l0rg is then calculated 

from the nearest-neighbor distance between the centers of mass (centroid) of the deep convective clusters. 

The main difference with the local minima method is that only one centroid corresponds to each cluster 

of deep convection irrespective of the cluster size, significantly reducing the number of deep convective 

entities in areas where deep convective clusters are large. Although the method of local minima is 
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thought to better characterize the aggregation of deep convection than this clustering method, the interann­ 

ual timeseries ofl0rg computed with the twomethods are highly correlated (R =20.9) and the main conclu­ 

sions of this study are similar for both methods (Table SI and FigureS6 in the supporting information). 

 
2.2. Lower-Tropospheric Stability 

Previousstudies (e.g., Ceppi & Gregory, 2017) have shown that the Earth's radiation budget is correlated to 

changes in lower-tropospheric stability and estimated inversion strength (EIS). These are defined as 

LTS = 2e.,00-01000, where e.,00 and 01000 are potential temperatures at 700- and 1,000-hPa levels (Klein & 

Hartmann,1993), and EIS= LTS - r8,,;(°z100- LCL) wherer8,,;°is the moist-adiabatic potential temperature 

gradient at 850 hPa, z700 is the height of the 700-hPa level, and LCL is the height of the lifting condensation 

level assuming a surface relative humidity of 80% (Wood & Bretherton, 2006). 

To estimate these quantities, we use ERA-interim reanalyses at a spatial resolution of0.75° in longitude and 

latitude (Dee et al., 2011).We compute EIS over eachocean region and compute the tropical-mean EIS as the 

spatial average over all tropical oceans (30°S to 30°). The time evolution of deseasonalized and detrended 

anomalies of EIS (t:.EIS) is shown in Figure lb. 

 

2.3. Radiative Kernels 

We use the radiative kernel technique to decompose the TOA radiative flux anomalies into contributions 

from changes in temperature, water vapor, surface albedo, and clouds (Soden & Held, 2006). To do so, we 

use anomalies of monthly-mean temperature and water vapor profiles from 2003 to 2014 from the 

Atmospheric InfraredSounder (Aumann et al., 2003) Version 6 Level 3 product.Anomalies in surface albedo 

and cloud radiative effects are calculated using Clouds and Earth's Radiant EnergySystems Energy Balanced 

and Filled (CERES-EBAF) radiative fluxes for the same period of record. All anomalies are calculated 

relative to the mean over the whole period and the time series are deseasonalized and detrended. 

To convert changes in the noncloudvariables to a radiative response, we multiply each timeseries of anoma­ 

lies by radiative kernels derived from CloudSat/CALIPSO observations (Kramer et al., 2019). Following 

common practice, we separately diagnose radiative responses due to uniform temperature change (Planck 

effect) and due to departures from the uniform temperature change (lapse rate response). Furthermore, 

since convective aggregation is associated with variability in middle- and upper-troposphericrelative humid­ 

ity (e.g., Holloway et al., 2017), it is appropriate to decompose the water vapor radiative response into con­ 

tributions from fixed and changing relative humidity. Following similar decompositions by Soden et al. 

(2008) and Held and Shell (2012), the fixed relative humidity radiative response is calculated by multiplying 

the water vapor radiative kernel by the planck and lapse rate components of total temperature change. We 

add these terms to the traditional planck and lapse rate radiative responses, respectively. The radiative 

response due to relative humidity changes is calculated by differencing the total water vapor and fixed rela­ 

tive humidity radiative responses. Due to nonlinear radiative responses to overlapping clouds, there is no 

radiative kernel specific to cloud perturbations in this methodology. Cloud radiative responses are therefore 

diagnosed from changes in cloud radiative effects corrected for cloud masking using the kernel-derived, 

noncloud radiative responses. Soden et al. (2008) outlines this approach in greater detail. 

 

3. Variability of Deep Convective Organization 

The computation of the 10,g index for each3-hourly imageof the GridSat datasetshows that, at the scale of the 

whole tropics (30°S to 30°N) and on average overthe period 1990-2017, the distribution ofdeep convection is 

highly"clustered"(the mean 10,g value is 0.82); that is, the deep convective centroids are closer to each other 

than would be predicted for a random distribution of the same number of centroids (Figures 2a and 2b). 

The organization index computed over the 30°S to 30°N, 20°s to 20°N, or 1s0s to 15°N latitude bands 

(referred to as 10,g, I g, and I ;g, respectively) are highly correlated to each other (R = 20.92 between I0rg 

and , anR=d20.85 between 10,g and I ). Therefore, although deep convection can sometimes happen 

at subtropical latitudes as a result of tropical wave activity or extratropical intrusions, the time variations 

of 10,g computed over 30°S to 30°N are dominated by the variations of convective organization that occur 

at equatorial latitudes. 
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Figure 2. (a) Observed NNCDF (nearest-neighbor distances cumulative distribution function) of deep convective centroids across the tropical belt (solid line) 

compared to the NNCDF that would be theoretically expected for a random distribution of the same number of convective centroids (dashed line). 

(b) Relationship between the observed and Poisson NNCDFs (the convective organization index lorg corresponds to the area under the solid curve). 

(c) Probability distribution function of the nearest-neighbor distances among the observed deep convective centroids over the tropical belt. 

The distributions shown here are averaged over the 2001-2017 period, but qualitatively similar distributions are obtained when considering 

individual 3-hourly images(examples of instantaneous distributions are given in supporting information FigureS2). 

 

 

Across the tropical belt, deep convection exhibits multiple spatial scales of organization, ranging from the 

planetary scale to the mesoscale. As 10,g is a metric of spatial organization integrated across these multiple 

scales, one may wonder whether its variations are dominated by particular spatial scales. The 10,g index is 

based on the distribution of nearest-neighbor distances across the tropics. The probability distribution func· 

tion of nearest-neighbor distances shows that 98% of these distances are shorter than 200km (Figure 2c). 

Therefore, although l0rg characterizes the spatial organization of deep convection over a large range of 

scales, in practice, most of the variability of the deep convective organization captured by 10,g arises from 

the mesoscale or, to be precise, from what Orlanski (1975) calls the meso-/3(20 to 200 km) scale. 

The spatial organization of deep convection observed during 1990-2017 varies on a range of timescales. A 

spectral analysis of 3-hourly data shows that diurnal and semiannual variations constitute the dominant 

modes of variability (not shown). Those modes of variability forced by the variations of the insolation are 

removed when 10,g is averaged over the day and the mean seasonal cycle of the daily-mean values is sub· 

tracted. The time series of the diurnally averaged and deseasonalized 10,g then exhibits prominent modes 

of variability at intraseasonal and interannual time scales (Figure 3). Part of the intraseasonal variability 

relates to Madden-Julian Oscillations (Madden & Julian, 1994), whose timescale is around 30-60 days, 
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and part of the interannual variability relates to the El Niii.o­ 

Southern Oscillation (ENSO), which is dominated by the 3- to 

7-year timescale (Radel et al., 2016; Rasmusson & Carpenter, 1982) 

(supporting information Figure SIO). These tropical phenomena are 

known to modulate the spatial distribution of deep convection at 

the planetary scale. The fact that 10,g is based on nearest-neighbor 

distances smaller than 200 km (Figure 2c) suggests therefore that 

10,g reflects these planetary-scale modes of variability primarily 

through their impact on the mesoscale organization of convection 

that is embedded within the large-scale envelopes of deep convection 

(in the case of the MJO, this observation is at odds with Dias et al., 

2017). Note that 10,g anomalies are poorly correlated to anomalies 
of the tropical-mean SST, and they are only moderately correlated 

-2   
to the Southern Oscillation Index defined as the sea level pressure 

-1.0 -0.5 0.0 

10,9 [x100] 

0.5 1.0 difference between Tahiti and Darwin (supporting information 

TableSl). 

In the rest of this paper, we will focus on monthly deseasonalized and 

Figure 4. Relationship between monthly deseasonalized and detrended 

anomalies of the tropically averaged midtropospheric relative humidity 

(MTH) derived from microwave satellite observations and anomalies 

of the deepconvective organization index Io,g· Each marker 

corresponds to 1 month of the 2001-2014 period. Also 

reported is the linear regression line across all points. 

detrended anomalies of 10,g computed within 30°S to 30°N, and of 

several atmospheric and radiative properties averaged over the same 

tropical belt. These monthly anomalies include interannual varia­ 

tions as well as some intraseasonal variations (a significant part of 

the 10,g variance occurs around the SO-day timescale; Figure 3). 

4. Convective Organization, Water Vapor, and Radiation 

How does convective organization relate to tropospheric humidity? Figure 4 shows that monthly anomalies 

of the tropical-mean midtropospheric relative humidity inferred from microwave satellite observations over 

the 1999-2014 period(Chung et al., 2013) are strongly anticorrelated (R =2 -0.63) with10,g anomalies: As 

convective aggregation is stronger, the midtroposphere (300-700 hPa) is drier on average over the tropics. 

Several factors can contribute to this anticorrelation. Cloud-resolving models suggesting that drier atmo­ 

spheres can inhibit the development of deep convection (Tompkins, 2001), mean drying could be associated 

with a contraction of the convective areas, and depending on how the drying is manifested spatially, could 

influence the organization of deep convection. Dry anomalies in the free troposphere can also help trigger 

convective self-aggregation (Emanuel et al., 2014). In tum, theclustering of convection enhances the preci­ 

pitation efficiency of convective systems (Bao&Sherwood, 2019;Tobin et al., 2012), promoting the dryingof 

the atmosphere. While causal relationships are difficult to unravel from observations, the anticorrelation 

between convective aggregation and large-scale tropospheric humidity found in modeling studies 

(Bretherton et al., 2005; Wing & Cronin, 2016; Wing & Emanuel, 2014) is confirmed by observations when 

considering monthly variations at the scale of the tropics. 

The regional pattern of humidity changes associated withaggregation variations is investigated by regressing 

the local anomalies ofmidtropospheric relative humidity onto10,g anomalies (Figure Sa): An increase of the 

organization of deep convection is associated with large areas of drying in equatorial regions and in the sub­ 

tropics. An exception is the western Pacific warm pool which, on the contrary, is associated with an 

enhanced convective activity and a moistening of the troposphere when 10,g increases. Upper-tropospheric 

relative humidity data show similar results (not shown). 

The CERES-EBAF, Edition 4.0, observations(Loeb et al., 2018) make it possible to investigate the impact of 

this drying on monthly radiative fluxes at TOA. The drying associated with the enhanced organization of 

convection is associated with an enhanced emission of clear-sky longwave (LW) radiation to space (due to 

the lower effective emission height of infrared radiation), a reduced absorption of clear-sky shortwave 

(SW) radiation by water vapor molecules, and then an enhanced net clear-sky cooling at TOA This is true 

on average over the tropics(R =2 -0.54; Table 1), and locally over most of the tropics when clear-sky net 

radiation anomalies are regressed onto 10,g anomalies (Figure Sb). 

0 
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Figure 5. Linear regression onto I0,g anomalies of regional monthly deseasonalized and detrended anomalies of 

(a) midtropospheric relative humidity (MTH) and (b) clear-sky net radiation Ncs (aMTH/aI0,g and aNcs/aI0rg, 

respectively). MTH units are %, Ncs is in Wm2
, and I rg is dimensionless. Results are reported where the 

regional relationship is statistically significant (p value lower than 0.05). 

 

 

The radiative cooling associated with positiveanomalies ofdeepconvective organization doesnot only occur 

in clear-sky but also in all-sky conditions (Table 1). The tropically averaged net radiation budget Nis antic­ 

orrelated with10,g variations(R = 2 --0.65; Figure 6a), mostly through its LW component This partly results 

from the dryingof the atmosphere and its impact on clear-sky radiation and alsofrom the reduced LW cloud 

radiative effects (CRE1..,, the difference between TOA clear-sky and all-sky outgoing radiative fluxes). It is 

explained by the fact that an increase of convective organization is associated with a reduced area of deep 

convection and, as shown by cloud observations from the spaceborne lidar CALIPSO (Chepfer et al., 

2010), with a reduced high-level cloud amount (supporting information Figure S4 and Table S2). 

 

 
5. Convective Organization Versus Lower-Tropospheric Stability 

As 10,g, EIS exhibits variability over the 1990-2017 period (Figure lb), and monthly anomalies of EIS are 

strongly anticorrelated with N anomalies (R = 2 --0.66; Figure 6b and Table 1). Cloud observations show 

that this occurs mostly through the cloudy component of N, and morespecifically through the albedo effect 

of clouds(CRE.sw) whichstrengthens when EIS, and thus low-level clouds, increase (supporting information 

Table S2). However, as will be discussed later, we also note a negative correlation between anomalies of Ne,;, 

1.., and EIS, as strong as that between Ncs,lw and 10rg- 

In contrast to EIS or 10,g, the tropical-mean SST is only weakly correlated withN variations (R = 2 -0.16), 

and it does not exhibit any significant correlation to 10,g and EIS variations. The occurrence of El Nino/La 

Nina eventsis also found to havea minor effect on the relationships described here (supporting information 

Table S3).Therefore, although these events modulate l0rg and EIS, they do not seem to affect the relation­ 

ships between 10,g (or EIS) and clouds or humidity in a specific way. 
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Table 1 

Linear Correlation Coefficients of the Different Components of the Net Radiation Budget(N, with N = 2Ncs+CRE, Where Ncs= 2Ncs,tw+Nc.s,1"',; Nc.s,tw = 2-0LRcs 

and CRE = 2 CRE1w+CREs,..,.CS Referring to as "Clear-Sky" and CRE "Cloud Radiative Effect") and of the Midtropospheric Relative Humidity (MTH)with the 

Deep Convective Organization Index Iarg and the Lower-Tropospheric Stability EIS 
 

la,g -0.65 -0.54 -0.43 -0.53 -0.22 --0.47 -0.33 -0.39 (-0.13) -0.63 

EIS -0.66 -0.44 -0.55 -0.36 -0.41 --0.47 (-0.10) (-0.09) -0.41 -0.56 

Note. Allquantities are tropical monthly means(note that EIS is averaged over ocean only), and correlations are calculated on the basisof monthly deseasona­ 

lized and detrended anomalies over 2001-2017 (1999-2014 for correlations with MTH). Coefficients in brackets are not statistically significant (p value larger 
than 0.05). 

 

 

The tropical-mean radiation budget thus exhibits stronganticorrelationswith both EIS and the organization 

of deep convection (R = 2 -0.66 and-0.65, respectively), each explaining about 40%of its variance. la,g and 

EIS are positively correlated to each other(R = 2 0.37 during 2001-2017), but they correlate to the radiation 

budget through different ways, withla,g primarily affecting the clear-sky component and EIS primarily the 

cloudy component (Table 1). This suggests that Iargand EIS exert complementary influences on N. This is 

confirmed by Figure 6c, which shows how N anomalies (W) relate to la,g and EIS anomalies (Margand 

l::.EIS, respectively). Negative 11N tend to be associated with both positive Margand positive 11EIS, but the 

anticorrelation between Marg and 11N remains for a given 11EIS, and the anticorrelation between l::.EIS 

and 11N remains for a given Marg· This is consistent with the partial correlations R(N,la,g)EIS and R(N,EIS) 

10,., which are equal to -0.58 and-0.60, respectively. 

Note that the anticorrelation of11Nwith 11la,g and 11EIS is not only found at the monthly timescalebut also, 

to a lesser extent, at the daily timescale (FigureS7 in the supporting information), showing the robustness of 

the relationships between N, Iarg, and EIS. 

Given the complementary influences of la,g and EIS on N, we assess the ability of Margand l::.EIS to predict 

11N. A linear multiple regression calculation shows that thesimple model 11N = 2al1la,g+/3l::.EIS with (a, {3) 

= 2 (-111.41 Wm2
, -3.14Wm2K-1

) explains more than 60% of the variance of monthly N anomalies 

(Figure 7a; R =2 0.79, R2 =2 0.62), that is, much more than that explained (about 40%) by either Marg 

or l::.EIS individually. When considering low-pass-filtered anomalies (6-month running mean), the simple 

model explains almost 75% of the variance (R = 2 0.86, R2 = 2 0.74). The multiplication of a and f3by the 

variances of 11largand 11EIS over the 2001-2017 period (a1.,. = 4.3 x 10-3 and aETS = 2 0.16 K) reveals the 

relative influence of Ia,g and  EIS variations on N variations. As  aa10,.  =2 -0.48Wm2 and 

f3aErs =2 -0.50Wm2, the influences of la,g and EIS on N variations appear to be of similar order of 

magnitude. 
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Figure 6. Monthly anomalies of the observed tropically averaged Earth radiation budget versus anomalies of (a) the organization index of deep convection 

Marg or (b) lower-tropospheric stability (EIS) averaged over tropical ocean !!.EIS. (c) 11N anomalies (in color) stratified by Marg and !!.EIS. Each point 

corresponds to 1 month of the 2001-2017 period (all anomalies are deseasonalized and detrended). 
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Figure 7.(a) Time series of monthly deseasonalized and detrended anomalies of the tropically averaged Earth radiation budget l!.N derived from CERFS 

satellite observations (thick solid line) and reconstituted (dashed line) from 1110,g and ilEIS through linear multiple regression (!!.N = 2 alil0,g+/31lEIS). 

(b) Time series of the tropical-mean l!.N observed from CERFS (thick solid line) and reconstructed from kernel radiatiw calculations (thin solid line; 

Equation 1). Also reported are the radiative contributions due to I0,g anomalies (in red) and to EIS anomalies (in blue) inferred from kernel calculations 

(Kramer et al., 2019). Note that the two reconstitutions of l!.N reported on panels (a) and (b) correspond to two distinct approximations: 1n (a) it is 

assumed that N depends only on I0,g and EIS, while in (b) it is assumed that N can be reconstructed from the variations in temperature, humidity, etc., 

which are congruent with I0,g and EIS variations. On both time series, a 6-month running mean has 

been applied (for the plotting only). 

 

 
6. Decomposition of Radiative Anomalies 

Byusing radiative kernels(Kramer et al., 2019; section 2.3), the totalTOA flux anomalies can be decomposed 

into contributions from changes in temperature, water vapor, surface albedo, and clouds: 
 

Ml= L Kxtu:+Mlc= L Mlx. 
x=T, RH, A x=T, RH, A, C 

 

(1) 

 

In this expression, Kx is the radiative kernel associated with temperature (T), relative humidity(RH), or sur­ 

face albedo (A) variations, and t:J,.Nc is the contribution of cloud changes to Ml, computed as the change in 

cloud radiative effect corrected for cloud masking. This decomposition is applied regionally for each month, 

and each component of the decomposition is then regressed against the monthly time series of10,g and EIS 

anomalies (Table 2), so that Equation 1 can be rewritten as follows: 

 

       (2) 

where t:J,.Nr.,. and t:J,.NEis represent the 10,g and EIS contributions to t:J,.N, respectively. 
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Table 2 

Contributions of Changes in Temperature(Uniformand Lapse RateVariations),Surface Albedo, Relative Humidity, and aouds(±the1-99%Confidence Interval)to 

the Tropiazl-Mean Radiative Responses to10,g and EIS 

aB"N"x"°,.,.(W m-2) 

 

BNx 

 

 

 

 

 

 

Note.To facilitate the comparison between the different sensitivities, the sensitivities to10,g and EIS have been multiplied by the interannual standarddeviation 
of 1 ,g or EIS (G .,.  = 2 4.3 x 10-

3 
andGEIS = 2 0.16K, respectively). The values in bold are statistically significant (p value lower than 0.01). Also reported are 

0 1 

correlation coefficients (R) between monthly deseasonalized and detrended anomalies of Nx and 10,g or EIS. 

 

 

The N anomalies reconstructed from kernel calculations( using Equation 2) are shown in Figure 7b together 

with the l::..N actually observed and the radiative contributions of convective organization and 

lower-tropospheric static stability to these anomalies. The observed and reconstructed l::..N exhibit the same 

good agreement (R =2 0. 79) as seen in Figure 7a. Although the EIS contribution dominates l::..N during 

ENSO years, most of the time, 10,g and EIS contributions are of same order of magnitude. 

The radiative responses to l0rg and EIS are mainly driven by variations in relative humidity and cloudiness 

(Table 2). t::..N1"" arises as much from changes in relative humidity as from changes in LW cloud radiative 

effects, with an additional contribution from lapse rate variations, while l::..NEis arises primarily from SW 

cloud radiative effects, with an additional contribution from relative humidity and lapse rate variations. 

More surprisingly, relative humidity changes appear to contribute to l::..N as much through l0rg variations 

(-0.20W-m2)asthrough EIS variations (-0.15 W m-2
). Similarities are also found when considering the 

zonally averaged vertical distribution of l::..NRH regressed onto10,g or EIS variations(Figure 8). As discussed 

earlier, an increase in convective organization or in EIS is associated with a drying of the free troposphere 

over most of the tropical belt (Table 1) and leads to a net radiative cooling at TOA Figure 8 shows that this 

 

 
(a) lo, Induced LIRH Flux Contribution 

(b) EIS Induced LIRH Flux Contribution 
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Figure 8. Sensitivity to (a) 10,g and (b) EIS variations of the radiative response to changes in relative humidity at each atmospheric level calculated through the 

kernel approach, multiplied by the interannual standard deviation of 1 ,g or EIS (G1.,. = 2 4.3 x 10-
3 

and GEIS = 2 0.16K, respectively). Units: W m-
2

 

(lO0hPa)-1
. The tropically averaged, vertical integrals of each panel correspond to the relative humiditycontributionsBNRnGr  and EIS 

Biorg "" BE 

(in Wm-
2
, reported in Table 2), respectively. 

 X Iorg BEISGEJs (Wm-2) R(Nxlo,g) R(N,fiIS)  

ti.temperature (uniform, constant RH) -0.02 ± 0.07 -0.06 ±0.06 -0.06 -0.21 
 

ti.temperature (lapse rate, constant RH) -0.11 ± 0.05 -0.13 ±0.04 -0.44 -0.54  

ti.surface albedo 0 ± 0.02 0 ±0.02 0 0  

ti.relative humidity -0.20 ± 0.07 -0.15 ± 0.06 -0.56 -0.47  

.O.cloud(LW) -0.18 ± 0.10 -0.03 ±0.09 -0.37 -0.Q7  

 .O.cloud(SW) -0.15 ± 0.16 -0.32 ± 0.13 -0.20 -0.47  
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Figure 9. Regional monthly EIS anomalies (deseasonaliz.ed and detrended) regressed onto 10,g anomalies during 

2001-2017. Results are reported where the relationship is significant (p value lower than 0.05). 

 

 
radiative cooling stems from the drying of the free troposphere over its whole depth, mostly in equatorial 

regions in the case of 10,g variations, and mostly in subtropical regions in the case of EIS variations. 

 
7. Summary and Discussion 

Thisstudysuggests that monthly variations of the tropical radiation budget can be explained to a large extent 

by the radiative influences ofvariations in the lower-troposphericstability and in the spatial organization of 

deep convection. Both influences are equally strong, and despite a modest correlation between convective 

organization and lower-troposphericstability, largely independent of each other. Observations also suggest 

thatthey are complementary because they operate on different components of the radiation budget; the clus­ 

teringof deep convection affects TOA radiation mostly through its influence on clear-sky radiation and LW 

CRE, which relate to variationsof free-tropospheric relative humidity and high-level clouds, respectively. On 

the other hand, lower-tropospheric stability affects TOA radiation primarily through its influence on SW 

CRE, which relates to variations oflow-level clouds. 

Given the anticorrelation between convective organization and the deep convective area fraction (Figure 

S4), the question arises as to whether the relationship between convective organization and radiation might 

be simply explained by the relationship between the convective area fraction (f) and radiation. However, the 

relationship between!and N is much weaker than that between Iorg and N (correlations of 0.36 and -0.65, 

respectively), and the strong anticorrelation between 10,g and N holds even in the absence off variations 

(supporting information Figure S6). The relationship between l0rg and N is thus not primarily explained by 

variations of the fractional area of the tropics covered by deep convection, but rather by variations in how 

deep convection is spatially distributed across the tropics. 

Given the strong potential influence of convective organization and stability on the tropical radiation bud­ 

get, it will be important to understand what drives their variations in present and future climates. One pos­ 

sibleinfluencing factor in variations of10,g and/or EIS is the tropical large-scale overturning circulation.l0rg 

and EIS anomalies are poorly correlated to basic metrics of this circulation, such as the mean subsidence 

fraction (the fractional area of the tropics covered by large-scale downward motions), the mean 

large-scale subsiding motion or the mean circulation strength, as diagnosed by Bony et al. (2013) using 

large-scale vertical velocity data from ERA-interim reanalyses. Nevertheless, compared to the lowest quar­ 

tile, the highest quartile of the 10,g distribution is associated with a larger subsidence fraction (by about 

4%) and a strengthening of the overturning circulation (by about 8%), suggesting some relationship between 

convective organization and the large-scale tropical circulation (supporting information Figure S9). 

Previous research has shown that on interannual, decadal, and longer timescales, EIS dependson the spatial 

pattern of surface temperatures, especially on the temperature difference between warm convective areas 

and the rest of the tropics (Ceppi & Gregory, 2017; Fueglistaler, 2019; Qu et al., 2015; Zhou et al., 2016). 

Monthly EIS anomalies are positively correlated (R =2 0.54) with anomalies of the SST# index proposed 

by Fueglistaler (2019) (defined as the surface temperature difference between the 30% warmest waters 
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minus the tropical average SST), thus suggesting that EIS variations are partly controlled by the spatial pat­ 

tern of surface temperature. We also note a strong anticorrelationbetween EIS and relative humidity in the 

free troposphere (Table 1). This magnitude ofanticorrelation does not exist between EIS and the area and/or 

strength of large-scale subsidence in the tropics. Therefore, we suggest that it arises rather from a radiative 

coupling: Dry anomalies in the freetroposphere enhance the radiative cooling at the top of the moist bound­ 

ary layer of subtropical regions, which strengthens the inversion at the top of the boundary layer and thus 

EIS. By inhibiting the vertical development of convective clouds, a stronger EIS prevents the free tropo­ 

sphere from being moistened by the detrainment of shallow or deeper congestus clouds, thus reinforcing 

the anticorrelation between MTH and EIS. 

Since periods of enhanced convective organization are associated with dry anomalies in the mid and upper 

troposphere (Figure 5), they are likely to induce a positive correlation between convective organization and 

EIS anomalies. Indeed, the regression of regional EIS anomalies onto10,g anomalies showsa clear enhance­ 

ment of EIS on both sides of equatorial regions when convective organization is stronger (Figure 9). This is 

consistent with the positive correlation between Iarg and the tropical-mean EIS (R = 2 0.37). This is also 

consistent with idealized modeling studies showing the interplay between deep convective organization 

and lower-troposphericstability (Chen & Wu, 2019; Coppin & Bony, 2018). 

The factors that control the spatial organization of deep convection across the tropics constitute an area of 

active research. Modelingstudiessuggest that the aggregation of deepconvection stronglydepends on atmo­ 

spheric radiative processes (Holloway & Woolnough, 2016; Muller & Bony, 2015; Muller& Held, 2012; Wing 

& Emanuel, 2014), and on the spatial distribution of surface temperatures (Coppin & Bony, 2018). It may 

also be sensitive to the mean surface temperature (see Wing et al., 2017, for a review), although idealized 

simulations of the tropical atmosphere do not provide consistent results on that matter.Some modeling stu­ 

diessuggest that convective aggregation increases underglobal warming (Coppin & Bony, 2015; Pendergrass 

et al., 2016), but others suggest that conclusions regarding the sensitivity of convective organization to 

warming depend on the metric used to quantify the organization, and on the range of warming considered 

(Cronin & Wing, 2017). The present observational analysis is not more conclusive in that regard, as 10,g does 

not exhibit any significant trend during 2001-2017, and indeed, the correlation between convective organi­ 

zation and the tropical-mean surface temperature is insignificant (supporting information Table SI). Onthe 

other hand, convective organization might be more sensitive to changes in regional ssr patterns(Coppin & 

Bony, 2018; Zhang& Fueglistaler, 2019). Preliminary investigationssuggest that10,g and EIS correlate to dif­ 

ferent ssr patterns (supporting information Figure S8). Future investigations should thus determine how 

much the radiative influence of ssr patterns, which partly results from the influence of the ssrdistribution 

on EIS(Zhou et al., 2016), also stems from the influence ofSSf patterns on the organization of deep convec­ 

tion. Future investigations should also determine how changes in convective organization at the tropical 

scale relate to changes in weather and convective organization at the regional scale, including their impact 

on extreme precipitation (Semie & Bony, 2020). 

However, in addition to being potentially affected by slowly varying boundary conditions such as ssr 
changes, the spatial organization of deep convection may also be affected by purely internal atmospheric 

variability. For instance, 10,g exhibits some variability at timescales characteristic of the Madden-Julian 

Oscillation (Figure 3), which has been suggested to be a manifestation of an instability driven bycloud radia­ 

tion feedbacks (Arnold & Randall, 2015; Emanuel et al., 2014; Khairoutdinov & Emanuel, 2018). This is in 

contrast with the lower-tropospheric stability, which does also exhibit variability at interannual timescales 

but not at the intraseasonal timescale (supporting information Figure SlO). Therefore, while Iarg and EIS 

might both be sensitive to slow changes in the ocean-atmosphere system, 10,g presumably results as well 

from short-term processes and interactions within the atmosphere. 

All the relationships discussed in this paper have been established on the basis of detrended time series. 

During the period 2001-2017, Iarg exhibits a weak positive trend which is not statistically significant On 

the other hand, EIS exhibits a clear positive trend (+0.17 K per decade), consistent with the larger warming 

of the atmosphere at altitude than near the surface (Qu et al., 2015). One may expect this increase of EIS to 

produce a negative trend of the tropical radiation budget, but we actually observe the opposite(N increases 

by 0.35W m-2 per decade). The positive trend of N being dominated by its clear-sky component, it likely 

arises from the increase of greenhouse gas concentrations in the atmosphere, which increases the 
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absorption of clear-sky solar radiation and reduces the emission of clear-sky infrared radiation to space. 

Indeed, considering both 10,g, EIS and the CO2 atmospheric concentration explains 63% of the variance 

and improves the reproduction of the trend 

How does the tropical radiation budget N relate to the global-mean radiation budget Na? Monthly deseaso­ 

nalized variations of N and Na are of same order of magnitude (±1 W m-2 and ±0.7W m-2
, respectively), 

are highly correlated to each other (R = 2 0.86), and are both anticorrelated with the tropical 10,g and EIS 

variations(R = 2 -0.54 and -0.56, respectively).Variations in 10,g and EIS explain together 44% of the var­ 

iance of the detrended Na signal, and when considering the CO2 concentration as an additional predictor, 

nearly half (47%) of the variance of the trended signal can be explained (note that considering the 

global-mean near-surface temperature does not increase the percentage of variance explained because the 

surface temperature is poorly correlated with Na). Therefore, variations of deep convective organization 

and lower-troposphericstability in the tropics are relevant not onlyfor the tropical radiation budget but also 

for the global radiation balance. 

Although the issue of whether and how convective organization and EIS will change in the future remains 

unsettled, this observational study suggests that their changesat decadal or longer time scales might matter 

for the radiation balance of the Earth, water vapor and cloud feedbacks, and thus climate sensitivity.It stres­ 

ses the importance of testing the abilityof numerical modelsof the climate system to reproduce the observed 

relationships analyzed in thisstudy. A recent comparison of CERES observations with simulations from the 

latest generation of general circulation models with parameterized convection (Loeb et al., 2020) shows that 

when forced by observed ssrs, climate models reproduce the observed evolution of TOA LW or NET radia­ 

tive fluxeslesswell than theevolution of TOASWfluxes (when considering monthly deseasonalized anoma­ 

lies, the correlation between simulations and observations ranges across models from 0.096 to 0.32 for N1w, 

and from 0.25 to 0.38 for N). Since in observations the variability of deep convective organization arises 

mostly from the mesoscale (section 3) and influences the radiation budget mostly in the LW (Table 1), the 

poor ability of climate models to reproduce observed monthly anomalies of N1w might partly arise from their 

absence of representationof mesoscale convective organization. 

Climate models might better reproduce low-frequency variations of Nbecause of the reduced influence of 

stochastic atmospheric variability and the enhanced influence of surface boundary conditions 

(Proistosescu et al., 2018). However, in the event that long-term changes in surface boundary conditions 

or atmospheric composition would affect the mesoscale variability of deep convection, one would expect a 

biased prediction of climatesensitivity by models that donot predict the mesoscale organization of deepcon­ 

vection. It emphasizes therefore the need to better understand physically the factors thatcontrol convective 

organization, and the need to monitor their changes as the climate warms. 
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