

## Quantifying Chemical Composition and Reaction Kinetics of Individual Colloidally Dispersed Nanoparticles

Nathan D. Donahue<sup>1</sup>, Sandy Kanapilly<sup>2</sup>, Chady Stephan<sup>3</sup>, M. Caleb Marlin<sup>4</sup>, Emmy R. Francek<sup>1</sup>, Majood Haddad<sup>1</sup>, Joel Guthridge<sup>4,5</sup>, and Stefan Wilhelm<sup>\*1,6,7</sup>

<sup>1</sup> Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA

<sup>2</sup> PerkinElmer, Waltham, MA, 02451, USA

<sup>3</sup> PerkinElmer, Woodbridge, ON, L4L8H1, Canada

<sup>4</sup> Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA

<sup>5</sup> Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

<sup>6</sup> Institute for Biomedical Engineering, Science, and Technology (IBEST), Norman, Oklahoma, 73019, USA

<sup>7</sup> Stephenson Cancer Center, Oklahoma City, Oklahoma, 73104, USA

\* Corresponding author: Stefan Wilhelm, Ph.D.

Email: [stefan.wilhelm@ou.edu](mailto:stefan.wilhelm@ou.edu)

ORCIDs of authors:

Nathan D. Donahue 0000-0003-0251-0226

Sandy Kannapilly 0000-0003-3840-1910

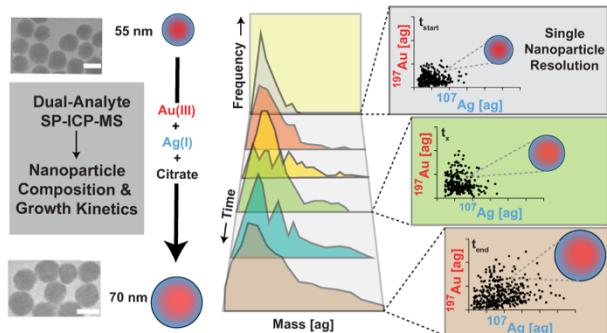
M. Caleb Marlin 0000-0003-0453-5355

Emmy Francek 0000-0001-8850-3582

Joel Guthridge 0000-0002-9308-237X

Stefan Wilhelm 0000-0003-2167-6221

1    **Abstract**


2    To control a nanoparticle's chemical composition and thus function, researchers require readily-  
3    accessible and economical characterization methods that provide quantitative *in situ* analysis of  
4    individual nanoparticles with high throughput. Here, we established dual analyte single particle  
5    inductively coupled plasma quadrupole mass spectrometry to quantify the chemical composition  
6    and reaction kinetics of individual colloidal nanoparticles. We determined the individual bimetallic  
7    nanoparticle mass and chemical composition changes during two different chemical reactions: (i)  
8    nanoparticle etching, and (ii) element deposition on nanoparticles at a rate of 300+  
9    nanoparticles/minute. Our results revealed the heterogeneity of chemical reactions at the single  
10   nanoparticle level. This proof-of-concept study serves as a framework to quantitatively understand  
11   the dynamic changes of physicochemical properties that individual nanoparticles undergo during  
12   chemical reactions using a commonly-available mass spectrometer. Such methods will broadly  
13   empower and inform the synthesis and development of safer, more effective, and more efficient  
14   nanotechnologies that use nanoparticles with defined functions.

## 1    **Keywords**

2    Dual analyte; Single particle ICPMS; Inductively coupled plasma mass spectrometry;  
3    Nanoparticles; Quadrupole Mass Spectrometry; Alloy Nanoparticles; Kinetics

1 **Table of Contents Graphic**

2



1       Chemical composition governs nanoparticles' optical, magnetic, catalytic, and  
2 toxicological characteristics.<sup>1-4</sup> To develop nanoparticles with controlled chemical composition,  
3 cost-effective characterization techniques are needed that provide high-throughput quantitative  
4 elemental analysis data with single nanoparticle resolution *in situ*. Single particle inductively  
5 coupled plasma mass spectrometry (SP-ICPMS) offers *in situ* mass quantification of individual  
6 colloidal nanoparticles.<sup>5,6</sup> Due to their affordability and cost-efficiency, most ICPMS instruments  
7 rely on quadrupole mass analyzers.<sup>7</sup> In single particle mode, quadrupoles permit the analysis of  
8 only one analyte (or isotope) per nanoparticle.<sup>8</sup> While quadrupole SP-ICPMS systems have  
9 obtained qualitative detection of multielement nanoparticle solutions, these approaches cannot  
10 efficiently detect two isotopes simultaneously and lack data on individual nanoparticle mass,  
11 chemical composition, and chemical kinetics.<sup>9-11</sup> Other ICPMS systems, like ICP-time-of-flight  
12 MS (ICP-TOF-MS) efficiently analyze 40+ isotopes of both engineered and naturally occurring  
13 nanoparticles.<sup>12-14</sup> However, ICP-TOF-MS instruments can be cost-prohibitive and are not as  
14 widely available as quadrupole ICPMS systems.

15       Other elemental analysis techniques like energy-dispersive X-ray spectroscopy (EDS)  
16 combined with scanning transmission electron microscopy (STEM) provides valuable elemental  
17 mapping of individual nanoparticles.<sup>15</sup> However, EDS/STEM analyses require dried samples and  
18 are limited by the number of nanoparticles within a field of view, which restricts sample size.<sup>16</sup>  
19       Although gaining traction, *in situ* electron microscopy analysis of nanoparticle composition  
20 remains technically challenging and may expose nanoparticle samples to free radicals, which may  
21 complicate the monitoring of chemical reactions at the single nanoparticle level.<sup>17,18</sup>

22       Here, we established *in situ* dual analyte quadrupole SP-ICPMS as a readily-accessible  
23 analytical tool for quantifying the chemical composition and reaction kinetics of individual

1 nanoparticles *in situ*. We used a commonly-available quadrupole-based ICPMS instrument to  
2 simultaneously quantify the mass of two different isotopes in single colloidal nanoparticles. We  
3 validated the quadrupole mass analyzer's capabilities with ICP-TOF-MS and EDS/STEM. Our  
4 work demonstrates the feasibility of dual analyte quadrupole SP-ICPMS to quantify chemical  
5 transformations and reaction kinetics at the single nanoparticle level *in situ* for hundreds of  
6 bimetallic nanoparticles within seconds.

7 Figure S1 depicts the steps of dual analyte SP-ICPMS. Briefly, a dispersion of individual  
8 intact particles enters an inductively coupled argon plasma where the particles are atomized and  
9 ionized, resulting in a discrete ion cluster for each particle termed the transient ion cloud.  
10 Depending on particle mass, transient ion clouds last hundreds of microseconds.<sup>19</sup> For quadrupole  
11 ICPMS, microsecond duration times of transient ion clouds impede efficient quantification of more  
12 than one isotope (or analyte) per particle. To enable simultaneous dual isotope quantification on  
13 single nanoparticles using quadrupole ICPMS, we optimized three ICPMS parameters: 1) collision  
14 cell parameters, 2) quadrupole mass analyzer settling time, and 3) detector dwell time. The detailed  
15 optimization procedure is described in Supporting Information.

16 To validate quadrupole ICPMS's dual analyte capabilities at the single particle level, we  
17 used ICP-TOF-MS, *i.e.*, CyTOF (Helios, Fluidigm) and commercially available lanthanide-doped  
18 polymer beads. We compared the simultaneous detection of two isotopes per bead for three  
19 different isotope pairs: (i) <sup>175</sup>Lu and <sup>140</sup>Ce; (ii) <sup>175</sup>Lu and <sup>153</sup>Eu; and (iii) <sup>175</sup>Lu and <sup>165</sup>Ho. Using  
20 optimized dual analyte SP-ICPMS conditions, ~97% of detected beads were positive for each  
21 isotope for all three pairs of isotopes (Figure S5, Table S4). Similarly, CyTOF determined ~99%  
22 of detected beads were positive for each isotope for the same three isotope pairs (Figure S6).  
23 Notably, both techniques provided nearly equivalent results, validating our newly established and

1 economical SP-ICPMS approach for the simultaneous detection of two different isotopes within  
2 single particles.

3 Upon validating quadrupole SP-ICPMS with CyTOF, we then quantified paired isotope  
4 events originating from single nanoparticles consisting of two different isotopes (Figure 1A). As  
5 model nanoparticles, we used in-house synthesized 100-nm silver nanoparticles (AgNPs) which  
6 naturally contain nearly equal amounts of  $^{107}\text{Ag}$  and  $^{109}\text{Ag}$ .<sup>20</sup> Table S5 and Figure S7 summarize  
7 the physicochemical characterization of 100-nm AgNPs. We observed that >95% of detected  
8 events were positive for both silver isotopes at nanoparticle concentrations of  $1\times 10^5$  AgNPs/mL  
9 (Figure 1C). Figure S8 shows the real-time signal of both silver isotopes for the corresponding  
10 transient AgNP ion clouds. We observed a decrease in paired isotope events with increasing AgNP  
11 concentration. This could be due to an increase in the ion background signal at high nanoparticle  
12 concentrations (i.e.  $>3\times 10^5$  nanoparticles/mL). As suggested by the Poisson model, the ion clouds  
13 from multiple individual nanoparticles may overlap at such concentrations resulting in an overall  
14 increased ion background.<sup>21</sup> The increased ion background may then impede the event pairing  
15 within the Syngistix™ software, which requires three consecutive pulse signals from each isotope  
16 to be  $3\sigma$  above the background.<sup>22</sup> Consequently, nanoparticle concentrations of  $\sim 1\times 10^5$   
17 nanoparticles/mL are optimal for quantifying two isotopes from the same nanoparticle (Figure 1C).

18 We then quantified the number of paired events from a 1:1 mixture of 100-nm gold  
19 nanoparticles (AuNPs) and AgNPs, *i.e.*, events positive for  $^{197}\text{Au}$  and  $^{107}\text{Ag}$ . We hypothesized that  
20 since these isotopes originated from different nanoparticles, the detected events would remain  
21 unpaired (Figure 1B). In Table S5, Figures S7, and S9, we provide characterization of the 100-nm  
22 AuNPs. The real-time SP-ICPMS signals in Figure S10 show non-overlapping transient ion clouds  
23 for both AuNPs and AgNPs. Our dual analyte SP-ICPMS results confirmed that the nanoparticle

1 mixture was indeed 1:1 for all nanoparticle concentrations (Figure 1D). We observed an increase  
2 in paired  $^{107}\text{Ag}$  and  $^{197}\text{Au}$  events with increasing nanoparticle concentrations indicating that ion  
3 signals from overlapping AgNPs and AuNPs were  $3\sigma$  above the background signal and therefore  
4 automatically paired by the Syngistix<sup>TM</sup> software (Figure 1E). Collectively, our data suggest that  
5 concentrations of  $\leq 1 \times 10^5$  nanoparticles/mL are optimal for accurate dual analyte SP-ICPMS, thus  
6 enabling an analysis rate of  $\sim 300$  individual nanoparticles/minute.

7 We then applied our dual analyte SP-ICPMS method to quantify AgNP mass. We first  
8 synthesized and characterized four differently sized AgNPs (30-, 50-, 70-, and 100-nm AgNPs)  
9 (Figure S7 and Table S5). Using SP-ICPMS, we observed increased transient nanoparticle ion  
10 cloud duration times and intensities for both silver isotopes as AgNP mass (i.e. size) increased  
11 (Figure S11). Interestingly, 30-nm AgNPs had 75% paired events for  $^{107}\text{Ag}$  and  $^{109}\text{Ag}$  indicating  
12 that  $\sim 25\%$  of both silver isotopes from 30-nm AgNPs fell below the  $3\sigma$  pairing criterion of the  
13 Syngistix<sup>TM</sup> software (Figure S12). The observed loss in these paired events could be due to the  
14 fast microsecond detector dwell time, which may not allow sufficient time for simultaneous ion  
15 sampling per event causing both isotopes from  $\leq 30$ -nm nanoparticles to become undetectable.<sup>8</sup>  
16 These results imply a nanoparticle mass limit of  $\sim 30$  nm for dual analyte SP-ICPMS. In single  
17 analyte SP-ICPMS, however, we and others have found that  $\sim 15$ -nm nanoparticles can be  
18 efficiently quantified.<sup>23,24</sup>

19 For 50-, 70-, and 100-nm AgNPs, our dual analyte SP-ICPMS results in Figure 2 show that  
20 95% of the detected events were positive for both  $^{107}\text{Ag}$  and  $^{109}\text{Ag}$ . To obtain nanoparticle size  
21 distributions based on the measured masses, we assumed AgNPs exhibited a spherical geometry  
22 and used Equation 1 to calculate the corresponding diameters.

$$23 \quad d[\text{nm}] = \sqrt[3]{\frac{6 \cdot \text{NPmass}}{\pi \cdot \rho}} \quad \text{Equation 1}$$

1 Where NPmass is the reported SP-ICPMS mass in [g] unit of a single AgNP for one

2 isotope, and  $\rho$  is the density of silver (10.49 g/cm<sup>3</sup>).

3 Using Equation 1 and the AgNP mass distributions, we obtained size distributions for the

4 three differently sized AgNPs (Figures 2D-F). Table S6 reports the median masses and calculated

5 sizes for all differently sized AgNPs. To confirm these results, we analyzed the same nanoparticles

6 using transmission electron microscopy (TEM) (Figures 2G-I) and found that the nanoparticle size

7 distributions obtained with TEM corroborated the dual analyte SP-ICPMS findings. We also

8 determined that surface modifications such as the addition of polyethylene glycol on the surfaces

9 of AgNPs did not affect dual analyte SP-ICPMS measurements (Figure S13). In summary, our

10 dual analyte SP-ICPMS method accurately quantified two isotopes per nanoparticle *in situ* at a rate

11 of over 300 particles/minute.

12 After simultaneously quantifying two different isotopes of the same element within single

13 nanoparticles, we used dual analyte SP-ICPMS to quantify masses of different elements within the

14 same nanoparticle. To accomplish this, we used in-house synthesized bimetallic gold/silver alloy

15 nanoparticles. EDS/STEM confirmed that the alloy nanoparticles were composed of both gold and

16 silver (Figures 3A-D) with a composition of ~60 % atomic gold and ~40% atomic silver (Table

17 S7). TEM analysis of the alloy nanoparticles revealed the average nanoparticle diameter was

18 77.1±10.2 nm (Figure 3E). Conventional ensemble measurements (*i.e.*, dynamic light scattering

19 and UV-Vis) were in line with previous reports and confirmed the successful synthesis of quasi

20 monodisperse gold/silver alloy nanoparticles (Table S5) (Figure S7).<sup>25,26</sup>

21 We then performed dual analyte SP-ICPMS on these gold/silver alloy nanoparticles (Figure

22 3F). Real-time SP-ICPMS signals of the transient ion clouds (Figure S14) and the high positivity

23 rate (>95%) for both <sup>197</sup>Au and <sup>107</sup>Ag confirmed the bimetallic nature of these alloy nanoparticles.

1 The mass distribution results in Figure 3F represent ~300 individual gold/silver alloy nanoparticles  
2 with absolute amounts of  $^{197}\text{Au}$  and  $^{107}\text{Ag}$  indicating a heterogeneous composition for individual  
3 gold/silver alloy nanoparticles.

4 We determined the median  $^{197}\text{Au}$  and  $^{107}\text{Ag}$  masses to be 3,261 ag and 1,925 ag,  
5 respectively. Based on these single nanoparticle mass distributions, we quantified the distribution  
6 of  $^{197}\text{Au}$  and  $^{107}\text{Ag}$  for each gold/silver alloy nanoparticle. Figure 3G shows the distribution of  
7 compositions using equations S2 and S3. At the single nanoparticle level, the average gold and  
8 silver element composition was 60% and 40%, respectively, (Figure 3G), which was previously  
9 confirmed by our quantitative EDS/STEM results.

10 To further explore the capabilities of our dual analyte SP-ICPMS method, we analyzed  
11 alloy nanoparticles of similar size made with two different compositions: (i) 70% Au / 30% Ag,  
12 and (ii) 30% Au / 70% Ag (Figure S15). Our dual analyte SP-ICPMS measurements revealed that  
13 these alloy nanoparticles had average compositions of 69% Au / 31% Ag and 25% Au / 75% Ag,  
14 respectively, which was also corroborated with quantitative EDS/STEM analysis (Table S7). Dual  
15 analyte SP-ICPMS provided accurate and robust mass and elemental distribution data for hundreds  
16 of individual bimetallic nanoparticles with varying compositions *in situ* within seconds.

17 Inspired by our dual analyte SP-ICPMS results, we sought to quantify compositional  
18 transformations in individual nanoparticles. As a model system, we exposed 80-nm gold/silver  
19 alloy nanoparticles to KI/I<sub>2</sub> solution, which efficiently dissolves AuNPs.<sup>2,27,28</sup> We started by  
20 evaluating the gold/silver alloy nanoparticle composition upon exposure to different KI/I<sub>2</sub> etchant  
21 concentrations with EDS/STEM (Figures 4A-D). EDS/STEM results showed a gradual decrease  
22 in gold signal (red) and a more pronounced silver signal (cyan) on the outer edges of the  
23 nanoparticles with increasing KI/I<sub>2</sub> etchant concentrations (Figure S16). Quantitative analysis of

1 the EDS/STEM images revealed that the atomic percentage of gold decreased by ~3%, ~15%, and  
2 ~33%, when we exposed the gold/silver alloy nanoparticles to 68- $\mu$ M, 102- $\mu$ M, and 136- $\mu$ M KI/I<sub>2</sub>  
3 etchant, respectively (Figures 4A-D, Table S7). These results demonstrated the concentration-  
4 dependent KI/I<sub>2</sub> etching of gold from the gold/silver alloy nanoparticles.

5 We then used dual analyte SP-ICPMS to obtain the mass distributions for <sup>197</sup>Au and <sup>107</sup>Ag  
6 isotopes from hundreds of individual colloidally dispersed gold/silver alloy nanoparticles exposed  
7 to different KI/I<sub>2</sub> etchant concentrations *in situ* (Figures 4E-H). Figures 4E-H showcase  
8 heterogenous removal of gold from individual alloy nanoparticles with increasing etchant  
9 concentration. We observed that gold was not completely removed from all of the alloy  
10 nanoparticles upon etchant exposure, which could indicate nanoparticle surface passivation.<sup>29</sup> At  
11 the highest etchant concentration, <sup>107</sup>Ag and <sup>197</sup>Au paired events decreased to ~68% (Figure 4H).  
12 The decrease in paired events may be due to an increased dissolved gold background at the highest  
13 etchant concentration. As both <sup>107</sup>Ag and <sup>197</sup>Au signals need to have consecutive pulses that are 3 $\sigma$   
14 above the background to be automatically paired by the Syngistix™ software, an increased gold  
15 ion background could interfere with the pairing process. Notably, the increased gold ion  
16 background did not appear to affect the detection of single <sup>197</sup>Au events.

17 Based on the mass distributions in Figures 4E-H, we provide the average <sup>107</sup>Ag and <sup>197</sup>Au  
18 masses of five independent dual analyte SP-ICPMS measurements of alloy nanoparticles exposed  
19 to KI/I<sub>2</sub> etchant in Figure 4I. Since the average mass of silver per alloy nanoparticle remained  
20 relatively constant, these results suggest a predominant etching of gold. To validate these results,  
21 we performed control experiments with a 1:1 mixture of similarly sized AuNPs and AgNPs  
22 exposed to etchant solution. We observed the near-complete dissolution of AuNPs and a slight

1 decrease in AgNPs mass upon KI/I<sub>2</sub> etchant exposure (Figure S17) validating that the etching  
2 reaction was predominantly toward gold.

3 To compare our dual analyte SP-ICPMS and EDS/STEM results, we calculated the  
4 composition of individual gold/silver alloy nanoparticles based on Figures 4E-H. The average  
5 <sup>197</sup>Au isotope mass decreases were 3%, 10%, and 26% for gold/silver alloy nanoparticles exposed  
6 to 68- $\mu$ M, 102- $\mu$ M, and 136- $\mu$ M etchant, respectively, which we corroborated by EDS/STEM  
7 analysis (Table S7). Figure 4J summarizes the obtained <sup>197</sup>Au mass distributions for hundreds of  
8 individual gold/silver alloy nanoparticles upon exposure to different KI/I<sub>2</sub> etchant concentrations.

9 As shown by our dual analyte SP-ICPMS data in Figure 4, individual gold/silver alloy  
10 nanoparticles underwent chemical etching reactions with various levels of efficiency.

11 We then sought to quantify the kinetics of metal deposition on individual colloidally  
12 dispersed nanoparticles with dual analyte SP-ICPMS *in situ*. As a model nanoparticle system, we  
13 selected gold/silver alloy nanoparticles and quantified the simultaneous deposition of gold and  
14 silver on these nanoparticles over time. Figure 5A, shows the process of adding Au(III) and Ag(I)  
15 ions to gold/silver alloy nanoparticles resulting in growth and thus a mass increase of individual  
16 nanoparticles over time.

17 We used 55-nm gold/silver alloy nanoparticles as the starting material for the seed-  
18 mediated nanoparticle growth (Figure 5A-B). TEM analysis confirmed that these gold/silver alloy  
19 nanoparticle seeds exhibited an average diameter of 56.3 $\pm$ 5.2 nm (Figures 5B and S18). Dual  
20 analyte SP-ICPMS reported that the average masses of <sup>197</sup>Au and <sup>107</sup>Ag in individual 55-nm  
21 gold/silver alloy nanoparticles were 1,882 ag and 1,070 ag, respectively, with an initial gold and  
22 silver composition of 61% and 39%, respectively (Figures S19 and S20).

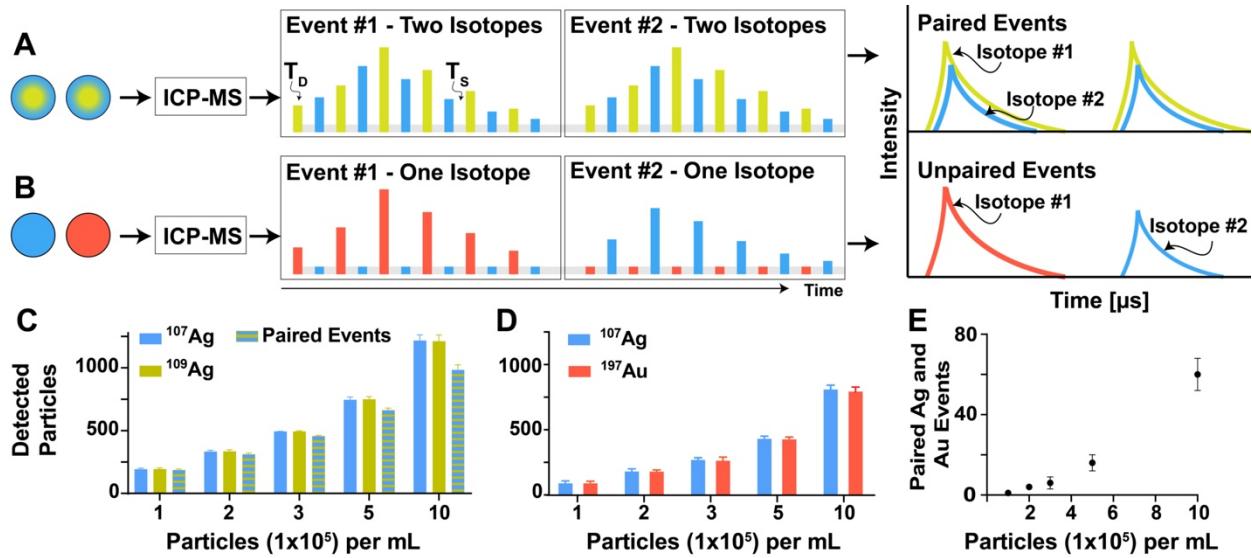
1 To increase the size of gold/silver alloy nanoparticles from 55 nm to 70 nm, we  
2 simultaneously added equal molar amounts of Au(III) and Ag(I) ions to a boiling aqueous  
3 dispersion containing 55-nm gold/silver alloy nanoparticles with the reducing agent sodium citrate  
4 (Figure 5A).<sup>30</sup> At specified time points during the chemical reaction, we analyzed the nanoparticle  
5 reaction mixture with dual analyte SP-ICPMS to simultaneously quantify the deposition of both  
6 gold and silver onto the 55-nm alloy nanoparticle seeds. Figure S20 shows the mass distribution  
7 plots for <sup>197</sup>Au and <sup>107</sup>Ag. In Figures 5C-D, we summarized our dual analyte SP-ICPMS results by  
8 showing <sup>197</sup>Au (Figure 5C) and <sup>107</sup>Ag (Figure 5D) mass distributions for individual nanoparticles  
9 over time. These data demonstrate the heterogeneity of gold and silver deposition at the single  
10 nanoparticle level over time.

11 Based on Figures 5C-D, we obtained the average alloy nanoparticle composition at  
12 specified time points. One minute after adding Au(III) and Ag(I) ions, the nanoparticle  
13 composition changed by 5% resulting in an average composition consisting of 66% gold and 34%  
14 silver (Figure 5E). We corroborated the relatively fast deposition of gold by UV-Vis  
15 spectrophotometry of the colloidal nanoparticle dispersion. The absorption maximum shifted from  
16 480 nm at  $t_{\text{zero}}$  to 512 nm one minute after the addition of Au(III) and Au(I) ions to the nanoparticle  
17 seeds, indicating gold deposition (Figure S21).

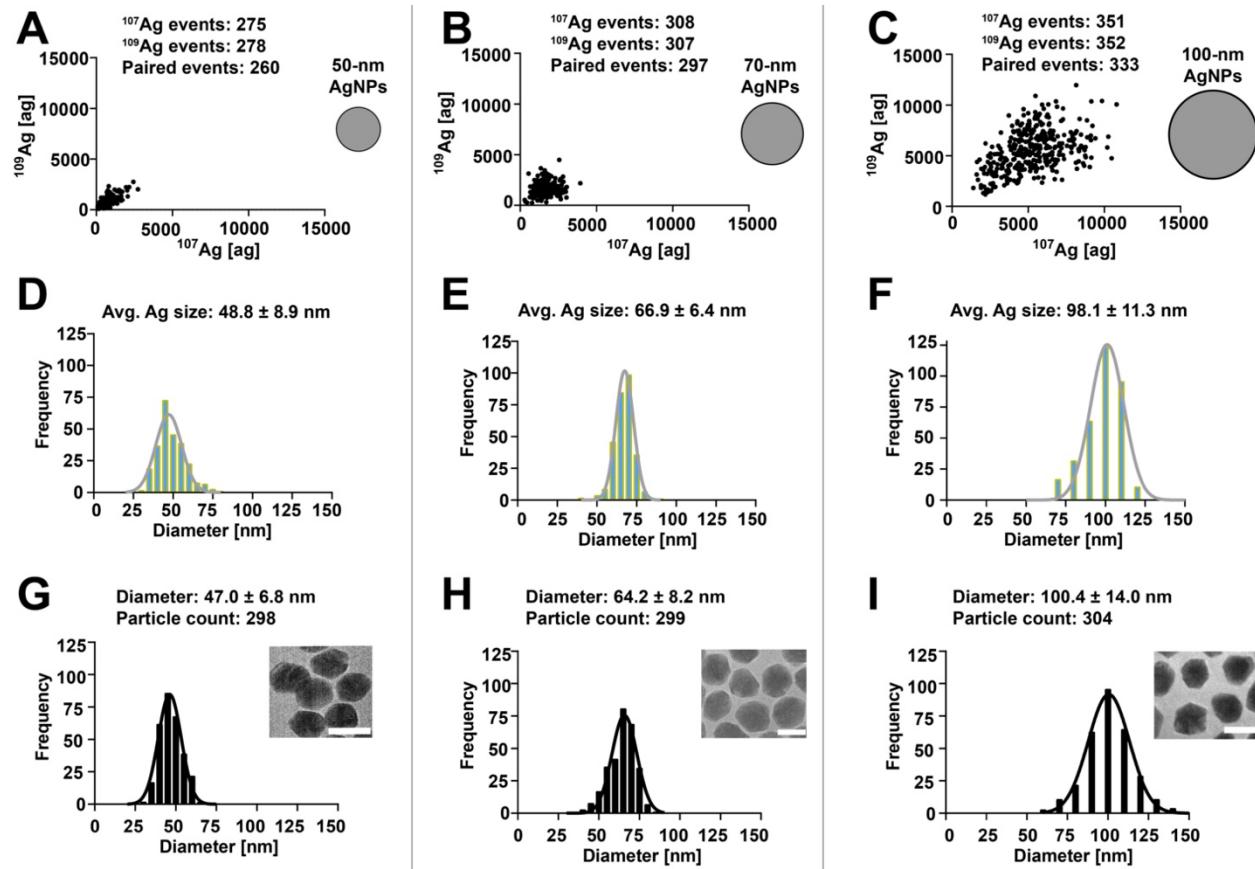
18 At  $t_{2\text{min}}$ , the average alloy nanoparticle composition decreased to ~30% for silver, whereas  
19 the average nanoparticle composition for gold increased to ~70% (Figure 5E). Five minutes into  
20 the reaction, an average composition of 65% gold and 35% silver (Figure 5E) was observed. The  
21 element compositions obtained from the isotope mass distributions showed that after 10 minutes  
22 the average gold composition remained at ~64%, whereas the average silver composition remained  
23 at ~36% (Figure 5E). These results were corroborated by the UV-Vis spectrophotometry

1 measurements, which stabilized at an absorption maximum of 500 nm after 15 minutes (Figure  
2 S21) suggesting the growth reaction was completed within ~15 minutes.

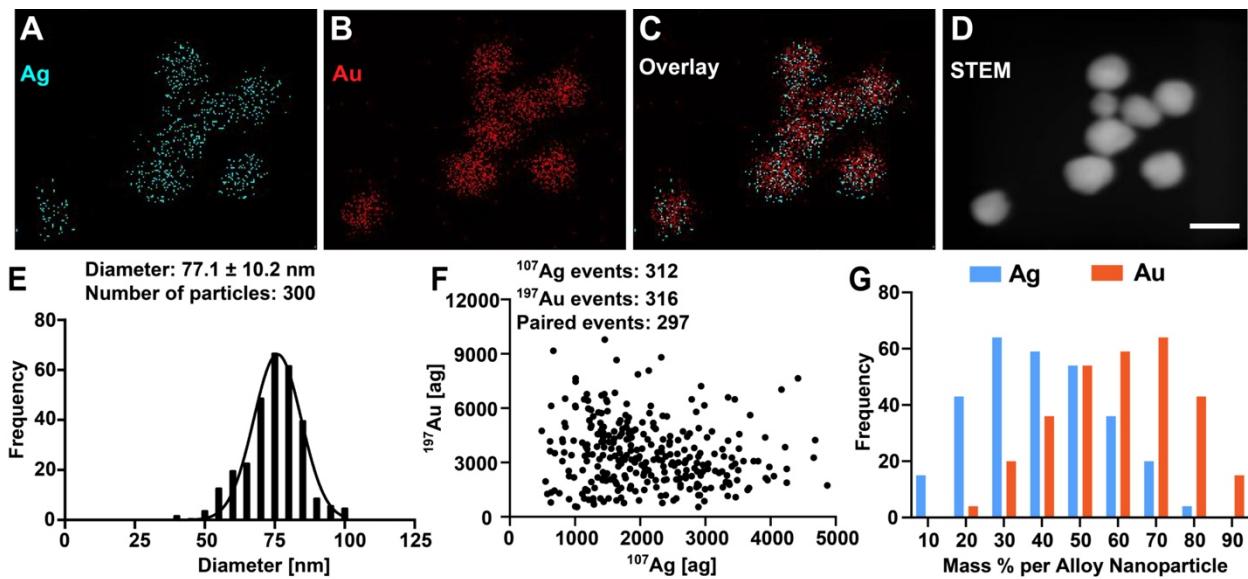
3 To obtain the reaction kinetics, we plotted the total detected mass of  $^{197}\text{Au}$  and  $^{107}\text{Ag}$  of the  
4 gold/silver alloy nanoparticles from Figures 5C-D as a function of time in Figure 5F. With these  
5 data, we calculated the rate constants for gold and silver depositing onto the alloy nanoparticles  
6 using Equation 2, which accounts for an exponential growth phase followed by a plateau in mass.


7 
$$\text{Mass}_{Tn} = \text{Mass}_{T60} - (\text{Mass}_{T60} - \text{Mass}_{T0}) * e^{-k*Tn} \quad \text{Equation 2}$$

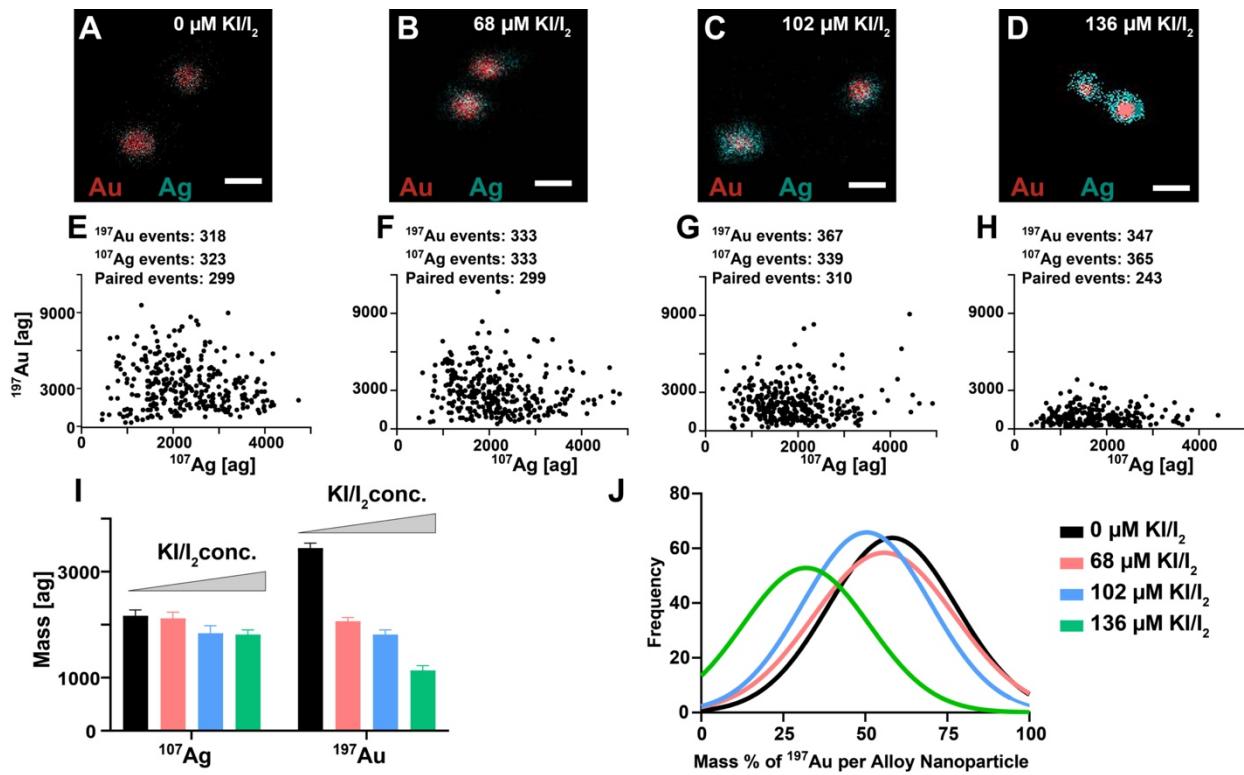
8 Where  $\text{Mass}_{Tn}$  is the total isotope mass of all detected nanoparticles at a specific time point;  
9  $\text{Mass}_{T60}$  is the total isotope mass of all detected nanoparticles at 60 minutes;  $\text{Mass}_{T0}$  is the total  
10 isotope mass of all detected nanoparticles before the reaction; K is the rate constant for a specific  
11 isotope;  $T_n$  is time in units of minutes.


12 Using Equation 2, we calculated that the deposition of gold was ~2 times faster than the  
13 deposition of silver with rate constants of 0.08 and  $0.13 \text{ min}^{-1}$ , respectively. The observed faster  
14 deposition of gold onto the alloy nanoparticles is likely due to the differences in reduction  
15 potentials of  $\text{Au}^{3+}/\text{Au}$  and  $\text{Ag}^+/\text{Ag}$ .<sup>31</sup> Our single particle analysis suggests that gold deposition was  
16 50% complete within 5 minutes, whereas silver deposition was 50% complete within 9 minutes  
17 indicating that the reaction would be virtually complete near the 15 minute mark as previously  
18 observed with our UV-Vis spectrophotometry characterization (Figure S21). Collectively, these  
19 results showcase the feasibility for simultaneously quantifying chemical reaction kinetics of two  
20 different metals on individual nanoparticles in a high-throughput manner with easily accessible  
21 quadrupole ICPMS technology.

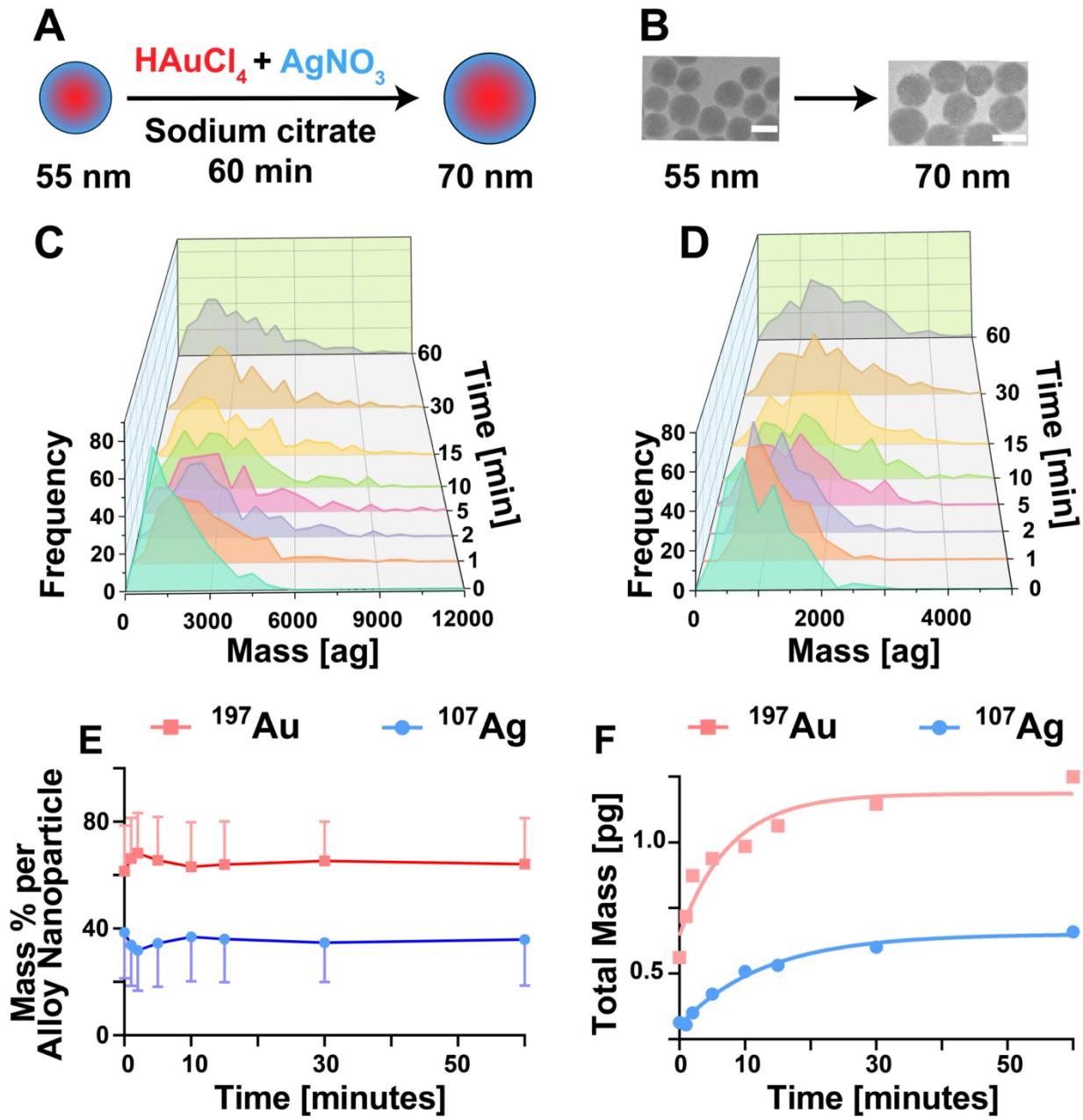
22 In summary, we established dual analyte SP-ICPMS as a quantitative high-throughput  
23 analytical technique that enables the simultaneous quantification of two analytes (or isotopes) per


1 nanoparticle *in situ*. Our dual analyte SP-ICPMS results were obtained using a commonly available  
2 quadrupole-based ICPMS system. The results were corroborated by time-of-flight mass  
3 spectrometry and EDS/STEM. With our SP-ICPMS approach, we quantified the masses of  
4 individual AgNPs and the heterogeneity of bimetallic nanoparticles undergoing chemical reactions  
5 with high throughput (300+ nanoparticles/minute) *in situ*. Our economical elemental analysis  
6 method has the potential to transform the understanding of nanoparticle compositional evolution  
7 and transformation in environmental and biological milieus to inform the design of safer, more  
8 effective, and more efficient nanotechnologies.




1      **Figure 1: Quantifying paired and unpaired isotope events in dual analyte quadrupole SP-  
2      ICPMS mode for individual nanoparticles. A. Schematic representation of paired events for two  
3      different isotopes (blue and green) in the same nanoparticle, where  $T_D$  is the detector dwell time  
4      and  $T_s$  is the quadrupole mass filter settling time. Gaussian fits were applied by the Syngistix™  
5      software to account for the missed sample points as the quadrupole mass analyzer alternated  
6      between the two isotopes. B. Schematic representation of unpaired events for two different  
7      isotopes (blue and red) in different nanoparticles (blue and red). C. Detection of paired isotope  
8      events ( $^{107}\text{Ag}$  and  $^{109}\text{Ag}$ ) using 100-nm silver nanoparticles (AgNPs) as a function of nanoparticle  
9      concentration; mean +/- StD, n=5. D. Detected particles of a 1:1 mixture of 100-nm AgNPs and  
10     100-nm gold nanoparticles (AuNPs) as a function of nanoparticle concentration; mean +/- StD,  
11     n=5. E. Detected paired isotope events from the 1:1 mixture of 100-nm AgNPs and AuNPs as a  
12     function of nanoparticle concentration; mean +/- StD, n=5. For all measurements, the scan time  
13     was 30 seconds.**




1  
2 **Figure 2: Single particle analysis of 50-nm, 70-nm, and 100-nm silver nanoparticles (AgNPs)**  
3 **using dual analyte SP-ICPMS mode.** **A-C.** Mass distributions of differently sized AgNPs based  
4 on both silver isotopes ( $^{107}\text{Ag}$  and  $^{109}\text{Ag}$ ). **D-F.** Size distribution histograms of differently sized  
5 AgNPs for both silver isotopes based on dual analyte SP-ICPMS mass distributions values  
6 represent averages and standard deviations. **G-I.** Nanoparticle size distribution histograms based  
7 on TEM with representative micrographs values represent averages and standard deviations. Scale  
8 bars represent 50 nm, 70 nm, and 100 nm, respectively. Gaussian curves were fitted to frequency  
9 distributions in GraphPad Prism.  
10



1  
2  
3 **Figure 3: Compositional analysis of individual 80-nm gold/silver alloy nanoparticles**  
4 (**Au/AgNPs**). **A-D**. EDS/STEM of 80-nm Au/AgNPs, where **A**. represents the EDS/STEM signal  
5 from silver in cyan; **B**. represents the EDS/STEM signal from gold in red; **C**. represents the overlay  
6 of gold and silver EDS/STEM signals. **D**. STEM image of 80-nm Au/AgNPs. Scale bar represents  
7 100 nm. **E**. Size distribution histogram of 80-nm Au/AgNPs obtained from TEM imaging values  
8 represent averages and standard deviation. **F**. Mass distribution of individual 80-nm Au/AgNPs  
9 obtained with dual analyte SP-ICPMS mode. **G**. Mass % distribution of silver and gold isotopes  
10 for individual 80-nm Au/AgNPs obtained with dual analyte SP-ICPMS.



1  
2 **Figure 4: Quantifying gold etching using  $\text{KI}/\text{I}_2$  in individual gold/silver alloy nanoparticles**  
3 **(Au/AgNPs) *in situ*.** Gold/silver alloy nanoparticles with an average diameter of 80 nm were  
4 exposed to various concentrations of  $\text{KI}/\text{I}_2$ . **A-D.** STEM/EDS of Au/Ag alloy nanoparticles  
5 exposed to 0- $\mu\text{M}$ , 68- $\mu\text{M}$ , 102- $\mu\text{M}$ , and 136- $\mu\text{M}$   $\text{KI}/\text{I}_2$ , respectively. Scale bars represent 100 nm.  
6 **E-H.** Mass distributions of individual 80-nm Au/Ag alloy nanoparticles exposed to 0- $\mu\text{M}$ , 68- $\mu\text{M}$ ,  
7 102- $\mu\text{M}$ , and 136- $\mu\text{M}$   $\text{KI}/\text{I}_2$ , respectively, as obtained using dual analyte SP-ICPMS mode. **I.**  
8 Average masses of individual Au/Ag alloy nanoparticles particles. Bars represent the mean values  
9 and standard deviations of five measurements. **J.** Mass % distribution of  $^{197}\text{Au}$  remaining in  
10 individual Au/Ag alloy nanoparticles based on dual analyte SP-ICPMS mass distributions from  
11 panels (E-H).  
12



1      **Figure 5: Quantifying metal deposition kinetics on individual gold-silver alloy nanoparticles**  
2      ***in situ***. A. Schematic representation of seed-mediated nanoparticle growth using 55-nm gold-silver  
3      alloy nanoparticles as seeds. B. TEM micrographs of (left) 55-nm gold-silver alloy nanoparticles (scale bar represents  
4      55 nm), and (right) 70-nm gold/silver alloy nanoparticles (scale bar represents 70 nm). C,D. Mass distributions of  $^{197}\text{Au}$  (C) and  $^{107}\text{Ag}$  (D) deposition on individual alloy  
5      nanoparticles as a function of time obtained with SP-ICPMS. E. Elemental composition of  
6      individual gold/silver alloy nanoparticles as a function of time during seed-mediated growth  
7      calculated from mass distributions in panels C and D where values represent averages and standard  
8      deviations ( $n=254-360$ , error bars were partially removed for clarity). F. Data points represent the  
9      sum of detected nanoparticle masses from panels C and D.  $^{197}\text{Au}$  (red;  $r^2 = 0.92$ ) and  $^{107}\text{Ag}$  (blue;  
10       $r^2 = 0.99$ ).

13

1    **Supporting Information**

2    Figures S1-S20, Tables S1-S7, and the methods and materials.

3

4    **Acknowledgments**

5    The authors acknowledge the assistance and fruitful discussions by Drs. S. Foster, R. Merrifield,  
6    R. Forester, J. Sabisch, and S. Liang. This work was supported in part by an NSF MRI grant  
7    (1828234), NSF CAREER award (2048130), an IBEST/OUHSC seed grant for interdisciplinary  
8    research, the OU VPRP Strategic Equipment Investment grant, the OU Faculty Investment  
9    Program, an OCAST Health Research grant (HR20-106), and the Oklahoma Tobacco Settlement  
10   Endowment Trust awarded to the University of Oklahoma - Stephenson Cancer Center. The  
11   content is solely the responsibility of the authors and does not necessarily represent the official  
12   views of the Oklahoma Tobacco Settlement Endowment Trust. This work was additionally  
13   supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases  
14   (P30AR073750) and the National Institute of General Medical Sciences (U54GM104938) through  
15   the National Institutes of Health. The Presbyterian Health Foundation and the Oklahoma Center  
16   for Adult Stem Cell Research provided funding for the CyTOF equipment.

1    **References**

2    (1)    Wilhelm, S. Perspectives for Upconverting Nanoparticles. *ACS Nano*. American Chemical  
3    Society November 28, 2017, pp 10644–10653. <https://doi.org/10.1021/acsnano.7b07120>.

4    (2)    Lazarovits, J.; Chen, Y. Y.; Song, F.; Ngo, W.; Tavares, A. J.; Zhang, Y. N.; Audet, J.;  
5    Tang, B.; Lin, Q.; Cruz Tleugabulova, M.; Wilhelm, S.; Krieger, J. R.; Mallevaey, T.;  
6    Chan, W. C. W. Synthesis of Patient-Specific Nanomaterials. *Nano Lett.* **2019**, *19* (1),  
7    116–123. <https://doi.org/10.1021/acs.nanolett.8b03434>.

8    (3)    Yang, W.; Wang, L.; Mettenbrink, E. M.; Deangelis, P. L.; Wilhelm, S. Nanoparticle  
9    Toxicology. *Annu. Rev. Pharmacol. Toxicol.* **2021**, *61*, 269–289.  
10    <https://doi.org/10.1146/annurev-pharmtox-032320-110338>.

11    (4)    del Barrio, M.; Cases, R.; Cebolla, V.; Hirsch, T.; de Marcos, S.; Wilhelm, S.; Galbán, J.  
12    A Reagentless Enzymatic Fluorescent Biosensor for Glucose Based on Upconverting  
13    Glasses, as Excitation Source, and Chemically Modified Glucose Oxidase. *Talanta* **2016**,  
14    *160*, 586–591. <https://doi.org/10.1016/j.talanta.2016.07.062>.

15    (5)    Merrifield, R. C.; Stephan, C.; Lead, J. Determining the Concentration Dependent  
16    Transformations of Ag Nanoparticles in Complex Media: Using SP-ICP-MS and Au@Ag  
17    Core-Shell Nanoparticles as Tracers. *Environ. Sci. Technol.* **2017**, *51* (6), 3206–3213.  
18    <https://doi.org/10.1021/acs.est.6b05178>.

19    (6)    Montaño, M. D.; Olesik, J. W.; Barber, A. G.; Challis, K.; Ranville, J. F. Single Particle  
20    ICP-MS: Advances toward Routine Analysis of Nanomaterials. *Anal. Bioanal. Chem.*  
21    **2016**, *408* (19), 5053–5074. <https://doi.org/10.1007/s00216-016-9676-8>.

22    (7)    Don Potter. A Commercial Perspective on the Growth and Development of the  
23    Quadrupole ICP-MS Market. *J. Anal. At. Spectrom.* **2008**, *23* (5), 690–693.

1 https://doi.org/10.1039/B717322A.

2 (8) Montaño, M. D.; Badiei, H. R.; Bazargan, S.; Ranville, J. F. Improvements in the  
3 Detection and Characterization of Engineered Nanoparticles Using SpICP-MS with  
4 Microsecond Dwell Times. *Environ. Sci. Nano* **2014**, *1* (4), 338–346.  
5 https://doi.org/10.1039/c4en00058g.

6 (9) Zhu, Y. L.; Lian, Y. M.; Wang, J. K.; Chen, Z. P.; Yu, R. Q. Highly Sensitive and Specific  
7 Mass Spectrometric Platform for MiRNA Detection Based on the Multiple-Metal-  
8 Nanoparticle Tagging Strategy. *Anal. Chem.* **2021**, *93* (14), 5839–5848.  
9 https://doi.org/10.1021/acs.analchem.1c00065.

10 (10) Zhang, X. W.; Liu, M. X.; He, M. Q.; Chen, S.; Yu, Y. L.; Wang, J. H. Integral  
11 Multielement Signals by DNA-Programmed UCNP-AuNP Nanosatellite Assemblies for  
12 Ultrasensitive ICP-MS Detection of Exosomal Proteins and Cancer Identification. *Anal.*  
13 *Chem.* **2021**, *93* (16), 6437–6445. https://doi.org/10.1021/acs.analchem.1c00152.

14 (11) Naasz, S.; Weigel, S.; Borovinskaya, O.; Serva, A.; Cascio, C.; Undas, A. K.; Simeone, F.  
15 C.; Marvin, H. J. P.; Peters, R. J. B. Multi-Element Analysis of Single Nanoparticles by  
16 ICP-MS Using Quadrupole and Time-of-Flight Technologies. *J. Anal. At. Spectrom.* **2018**,  
17 *33* (5), 835–845. https://doi.org/10.1039/c7ja00399d.

18 (12) Hendriks, L.; Gundlach-Graham, A.; Günther, D. Analysis of Inorganic Nanoparticles by  
19 Single-Particle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. *Chimia*  
20 (*Aarau*). **2018**, *72* (4), 221–226. https://doi.org/10.2533/chimia.2018.221.

21 (13) Mehrabi, K.; Gundlach-Graham, A.; Günther, D.; Gundlach-Graham, A. Single-Particle  
22 ICP-TOFMS with Online Microdroplet Calibration for the Simultaneous Quantification of  
23 Diverse Nanoparticles in Complex Matrices. *Environ. Sci. Nano* **2019**, *6* (11), 3349–3358.

1 https://doi.org/10.1039/c9en00620f.

2 (14) Praetorius, A.; Gundlach-Graham, A.; Goldberg, E.; Fabienke, W.; Navratilova, J.;  
3 Gondikas, A.; Kaegi, R.; Günther, D.; Hofmann, T.; Von Der Kammer, F. Single-Particle  
4 Multi-Element Fingerprinting (SpMEF) Using Inductively-Coupled Plasma Time-of-  
5 Flight Mass Spectrometry (ICP-TOFMS) to Identify Engineered Nanoparticles against the  
6 Elevated Natural Background in Soils. *Environ. Sci. Nano* **2017**, *4* (2), 307–314.  
7 https://doi.org/10.1039/c6en00455e.

8 (15) Jiang, Y.; Wang, L.; Meunier, M.; Mirsaidov, U. Formation Pathways of Porous Alloy  
9 Nanoparticles through Selective Chemical and Electrochemical Etching. *Small* **2021**,  
10 *2006953*, 6–11. https://doi.org/10.1002/smll.202006953.

11 (16) Al-Zubeidi, A.; Stein, F.; Flatebo, C.; Rehbock, C.; Hosseini Jebeli, S. A.; Landes, C. F.;  
12 Barcikowski, S.; Link, S. Single-Particle Hyperspectral Imaging Reveals Kinetics of  
13 Silver Ion Leaching from Alloy Nanoparticles. *ACS Nano* **2021**, *15* (5), 8363–8375.  
14 https://doi.org/10.1021/ACSNANO.0C10150/.

15 (17) Zheng, H.; Meng, Y. S.; Zhu, Y. Frontiers of in Situ Electron Microscopy. *MRS Bull.*  
16 **2015**, *40* (1), 12–18. https://doi.org/10.1557/mrs.2014.305.

17 (18) Sutter, E.; Jungjohann, K.; Bliznakov, S.; Courty, A.; Maisonhaute, E.; Tenney, S.; Sutter,  
18 P. In Situ Liquid-Cell Electron Microscopy of Silver-Palladium Galvanic Replacement  
19 Reactions on Silver Nanoparticles. *Nat. Commun.* **2014**, *5*.  
20 https://doi.org/10.1038/ncomms5946.

21 (19) Fuchs, J.; Aghaei, M.; Schachel, T. D.; Sperling, M.; Bogaerts, A.; Karst, U. Impact of the  
22 Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS. *Anal.  
23 Chem.* **2018**, *90* (17), 10271–10278. https://doi.org/10.1021/acs.analchem.8b02007.

1 (20) Lu, D.; Liu, Q.; Zhang, T.; Cai, Y.; Yin, Y.; Jiang, G. Stable Silver Isotope Fractionation  
2 in the Natural Transformation Process of Silver Nanoparticles. *Nat. Nanotechnol.* **2016**,  
3 *11* (8), 682–686. <https://doi.org/10.1038/nnano.2016.93>.

4 (21) Laborda, F.; Gimenez-Ingalaturre, A. C.; Bolea, E.; Castillo, J. R. About Detectability and  
5 Limits of Detection in Single Particle Inductively Coupled Plasma Mass Spectrometry.  
6 *Spectrochim. Acta Part B At. Spectrosc.* **2020**, *169*, 105883.  
7 <https://doi.org/10.1016/J.SAB.2020.105883>.

8 (22) Dan, Y.; Ma, X.; Zhang, W.; Liu, K.; Stephan, C.; Shi, H. Single Particle ICP-MS Method  
9 Development for the Determination of Plant Uptake and Accumulation of CeO<sub>2</sub>  
10 Nanoparticles. *Anal. Bioanal. Chem.* **2016**, *408* (19), 5157–5167.  
11 <https://doi.org/10.1007/s00216-016-9565-1>.

12 (23) Newman, K.; Metcalfe, C.; Martin, J.; Hintelmann, H.; Shaw, P.; Donard, A. Improved  
13 Single Particle ICP-MS Characterization of Silver Nanoparticles at Environmentally  
14 Relevant Concentrations. *J. Anal. At. Spectrom.* **2016**, *31* (10), 2069–2077.  
15 <https://doi.org/10.1039/C6JA00221H>.

16 (24) Donahue, N. D.; Francek, E. R.; Kiyotake, E.; Thomas, E. E.; Yang, W.; Wang, L.;  
17 Detamore, M. S.; Wilhelm, S. Assessing Nanoparticle Colloidal Stability with Single-  
18 Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS). *Anal. Bioanal.*  
19 *Chem.* **2020**, *412* (22), 5205–5216. <https://doi.org/10.1007/S00216-020-02783-6>.

20 (25) Wang, C.; Peng, S.; Chan, R.; Sun, S. Synthesis of AuAg Alloy Nanoparticles from  
21 Core/Shell-Structured Ag/Au. *Small* **2009**, *5* (5), 567–570.  
22 <https://doi.org/10.1002/smll.200801169>.

23 (26) Wang, C.; Yin, H.; Chan, R. Alloy NPs and Their Catalysis for CO Oxidation. *Chem.*

1 *Mater.* **2009**, *21* (3), 2007–2009.

2 (27) Cho, E. C.; Xie, J.; Wurm, P. A.; Xia, Y. Understanding the Role of Surface Charges in  
3 Cellular Adsorption versus Internalization by Selectively Removing Gold Nanoparticles  
4 on the Cell Surface with a I<sub>2</sub>/KI Etchant. *Nano Lett.* **2009**, *9* (3), 1080–1084.  
5 <https://doi.org/10.1021/nl803487r>.

6 (28) Sun, S.; Gao, M.; Lei, G.; Zou, H.; Ma, J.; Huang, C. Visually Monitoring the Etching  
7 Process of Gold Nanoparticles by KI/I<sub>2</sub> at Single-Nanoparticle Level Using Scattered-  
8 Light Dark-Field Microscopic Imaging. *Nano Res.* **2016**, *9* (4), 1125–1134.  
9 <https://doi.org/10.1007/s12274-016-1007-z>.

10 (29) Li, X.; Chen, Q.; McCue, I.; Snyder, J.; Crozier, P.; Erlebacher, J.; Sieradzki, K.  
11 Dealloying of Noble-Metal Alloy Nanoparticles. *Nano Lett.* **2014**, *14* (5), 2569–2577.  
12 <https://doi.org/10.1021/nl500377g>.

13 (30) Rioux, D.; Meunier, M. Seeded Growth Synthesis of Composition and Size-Controlled  
14 Gold-Silver Alloy Nanoparticles. *J. Phys. Chem. C* **2015**, *119* (23), 13160–13168.  
15 <https://doi.org/10.1021/acs.jpcc.5b02728>.

16 (31) Gilroy, K. D.; Ruditskiy, A.; Peng, H. C.; Qin, D.; Xia, Y. Bimetallic Nanocrystals:  
17 Syntheses, Properties, and Applications. *Chem. Rev.* **2016**, *116* (18), 10414–10472.  
18 <https://doi.org/10.1021/acs.chemrev.6b00211>.

19