
Optimal design of vascular stents using a

network of 1D slender curved rods
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Abstract

In this manuscript we present a mathematical theory and a computational algorithm to
study optimal design of mesh-like structures such as metallic stents by changing the stent
strut thickness and width to optimize the overall stent compliance. The mathematical con-
strained optimization problem is to minimize the “compliance functional” over a closed and
bounded set of constraints. The compliance functional is the stent’s overall elastic energy.
The constraints are the minimal and maximal strut thickness, and a given fixed volume of the
stent material. We prove the existence of a minimizer, thereby proving that the constrained
optimization problem has a solution. A numerical scheme based on an iteration procedure is
introduced, and implemented within a Finite Element Method framework. Optimal design
of three different stent prototypes is considered: (1) a single zig-zag ring, which can be found
in many complex stent designs on the US market as a basic cell in the modular stent design,
(2) a Palmaz-Schatz type stent consisting of 6 zig-zag rings, and (3) a Cypher(TM) type
stent consisting of zig-zag rings with sinusoidal connectors. Several interesting optimization
solutions are found, some of which have already been implemented in the design of the cur-
rently available stents on the US market. The resulting computational algorithm is compared
to a Genetic Algorithm, and it is shown that our computational approach outperforms the
Genetic Algorithm in the following three key aspects: (1) computation time, (2) accuracy,
and (3) maintaining the symmetry of the solution.

1 Introduction

A stent is a metallic mesh tube that acts like a scaffold to help keep arteries open. See Fig. 1.
Stents have first been introduced in the late 1980’s with the goal to help reduce the resteno-

Figure 1: Photographs of Palmaz stent (left) and Cypher stent (right).

sis rates (re-narrowing of coronary arteries) associated with the angioplasty procedure in the
treatment of coronary artery disease. First-generation stents were bare metal stents (BMS)
made of 316L stainless steel. BMS are still in use, although with various improved features,
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including the introduction of materials such as, e.g., cobalt-chromium. BMS reduce the resteno-
sis rates when compared to coronary angioplasty alone, but have been known to cause severe
intravascular injuries, often times leading to complications such as in-stent restenosis. In-stent
restenosis is associated with damaged and dysfunctional endothelium (the inner-most layer of
vascular walls) [42, 10], with vascular inflammation, and with the stretch of the medial layer
causing vascular smooth muscle cell injury [23]. The damaged endothelium becomes deficient of
antithrombic and antiatherogenic properties, and becomes unable to suppress vascular smooth
muscle cell proliferation. Smooth muscle cells start growing inward the blood vessel, causing
in-stent restenosis and loss of vessel patency. To further improve the restenosis rates, next gen-
eration stents were born with the introduction of drug-eluting stents (DES). DES are stents
coated with a polymer which incorporates anti-proliferative drugs (e.g, sirolimus, paclitaxel).
The drugs are released slowly over a few weeks after stent deployment. Research has shown that
improved geometric and mechanical characteristics of stents can further reduce the restenosis
rates [28, 34, 30] both in BMS and in DES, and this remains to be an active area of research
[41, 43, 24, 13, 32, 5, 14, 3, 38, 44, 35].

Stents are comprised of struts, distributed on the surface of a cylinder of a certain radius.
Balloon expandable stents, which populate the market, are cut out of a slotted tube using a high
precision laser. The thickness of the tube and the width of the stent struts affect deliverability,
ability to scaffold, radial strength, and disruption of normal flow in the treated coronary artery
[37]. In this manuscript we present a mathematical theory and a computational algorithm to
study optimal design of mesh-like structures such as metallic stents by changing the stent strut
thickness and width to optimize a certain cost function. The goal of the optimization algorithm
presented in this manuscript is to find a stent with overall minimal compliance. Different cost
functions can be accommodated by this algorithm, such as, e.g., maximal or minimal radial
strength, maximal or minimal longitudinal strength, minimal deviation in the L2-norm from a
given expanded stent shape, etc.

Despite the widespread use of vascular stents, optimal design of their geometric and mechani-
cal properties using a well-defined, rigorous mathematical approach is lacking. The main reason
for this is the fact that stents are three-dimensional solids which have been computationally
modeled using 3D approaches, see [6, 17, 18, 31, 33, 30, 7, 27, 35] and the references therein.
Designing an optimization algorithm based on 3D stent simulations is exceedingly complicated,
and often times leads to an algorithm that is computationally very expensive and requires a large
memory. Of particular importance in optimal 3D stent design is a very recent work by Russ
et al. [35] in which a surrogate-based multi-objective optimization procedure was introduced to
study optimal design of a stent that would help anchor a pediatric balloon-expandable heart
valve. The approach in [35] relies on 3D simulations of each stent configuration, which is used to
generate a surrogate model. While the algorithm is extremely useful, it is also computationally
rather expensive (see Section 8 for more information). This is one of the reasons why in [39]
the authors of this work introduced a reduced, one-dimensional model to study mesh-like struc-
tures such as stents. This model has been rigorously mathematically justified to approximate
well the 3D curved rods that comprise a 3D stent, see [39, 20, 12]. The 1D model provides
a 3D description of displacements of stent struts using simplified, reduced 1D equations. The
reduced model is based on the assumption that stent struts have a small aspect ratio (the ratio
of thickness vs. length is small), and can therefore be modeled by the Antman-Cosserat type
curved rod model, see [25, 26] for the formal derivation. The curved rods are connected at stent’s
joints (nodes or vertices) via coupling conditions, such as the continuity of displacement and
infinitesimal rotation, and balance of forces and moments, see [40, 20] for the formal derivation.
The resulting model is a one-dimensional stent net problem , described in Sec. 2 below. This
one-dimensional stent net model is a backbone of the optimization algorithm presented in this
manuscript.

The ultimate goal of our research is to design a hybrid algorithm that would identify the
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extrema of the cost function using the efficient 1D-based model presented in this manuscript, and
then use 3D approaches, such as those presented in Russ et al. [35], to explore a neighborhood
around the minumum in order to capture the full 3D information of the optimizer that may not
be available from the 1D reduced model approach.

The mathematical constrained optimization problem presented in this manuscript addresses
minimization of the “compliance functional” over a closed and bounded set containing the con-
straints such as the minimal and maximal strut thickness and the total volume of the stent
material. Overall, “global” stent compliance is measured by the stent’s overall elastic energy.
This is presented in Sec. 3. In Sec. 3 we also prove the existence of a minimizer for this problem,
thereby proving that the constrained optimization problem has a solution.

To find solutions to the constrained optimization problem we introduce an iteration proce-
dure, described in Sec. 3.1.2 and apply it to different scenarios in terms of optimization param-
eters, and types of stents. We consider three stent prototypes:

1. The Zig-Zag stent, shown in Fig. 2 left, which consists of a single zig-zag ring, which can
be found in many complex stent designs as a basic cell in the modular stent design;

2. Palmaz-Schatz type stent shown in Fig. 2 middle, which we call Palmaz6 stent due to the
six zig-zag rings that comprize the stent;

3. Cypher type stent, also known as Bx Velocity(TM), shown in Fig. 2 right, which consists
of a sequence of zig-zag rings connected by sinusoidal struts.

The optimization problems for these three stents are solved numerically using a Finite El-
ement Method (FEM) based algorithm, which utilizes a numerical method developed in [21]
to study a single one-dimensional stent net problem, formulated in mixed formulation. This
algorithm is adapted to the iterative optimization method introduced in this manuscript. It was
proved in [22] that the algorithm introduced in [21] converges to the solution of the stent net
problem. Details about the numerical method introduced in this manuscript are presented in
Sec. 4.

In Sec. 5 we present our numerical results in nine different examples. The results show a
number of useful information regarding optimal stent design. In particular, we provide optimal
designs with respect to radial stiffness of the three stents considered in this study, which are
shown in Fig. 2.

Figure 2: Our numerical results: The three stents considered in this study, optimized with respect
to the slotted tube thickness h and struts’ thickness w to achieve maximal radial strength. From
left to right: the Zig-Zag stent, the Palmaz6 stent, and a Cypher type stent. See Sec. 5 for
details.

In Section 6 we compare our algorithm to a genetic algorithm, implemented in Matlab2010a,
and show that the algorithm proposed in this manuscript outperforms the genetic algorithm in
three key aspects: (1) computational time, (2) accuracy, and (3) maintaining the symmetry of
the solution.

To gain an insight into the strain distribution in the non-optimized and optimized stent
configurations, in Sec. 7 we present the strain results for the three stents shown above. We show

3



that the maximum strain for the optimized Palmaz6 and Cypher stents is significantly lower
than that of the non-optimized configuration, while the maximal strain does not change in a
significant way for the optimized single zig-zag ring.

We conclude this manuscript with a summary of the results and a few remarks comparing
the method discussed in this manuscript with the 3D surrogate-based modeling, presented in
the work by Russ et al. in [35].

2 The stent model

2.1 Differential formulation

A stent is a three-dimensional elastic body defined to be a union of three-dimensional struts. To
formulate an algorithm for optimal stent design, we adopt the approach proposed in [39] where
stents are modeled as one-dimensional nets/networks. The slender stent struts are modeled as
one-dimensional curved rods, satisfying certain contact conditions at the locations where the
stent struts meet. Details of the one-dimensional stent net model are presented next.

2.1.1 The geometry

The reduced, one-dimensional stent net model is defined on a graph domain, where the edges
of the graph correspond to the middle lines of the curved rods (stent struts), and the vertices
of the graph correspond to the points where the curved rods (stent struts) meet. The following
notation will be used in the definition of the one-dimensional, reduced stent model:

• V denotes the set of nV vertices in a stent (points where stent struts’ middle lines meet);

• E denotes the set of nE edges (pairing of vertices) corresponding to the middle lines;

• Φi : [0, `i] → R3 denotes the natural parametrization of the middle line of the ith strut,
i.e., edge ei ∈ E , i = 1, . . . , nE ;

• ni, bi denotes the orthonormal basis in the normal plane of Φi, see Fig. 3; together with
the tangential vector ti = (Φi)′ they form the Frenet basis of the ith strut;

• µi, λi, Ei= µi(3λi + 2µi)/(λi + µi) are the material parameters (Lamé constants, and Young’s
modulus, respectively) associated with the ith strut, i = 1, . . . , nE ;

• Iiα,β (where α, β = 1, 2) and Ki are moments of inertia and torsional rigidity, respectively,
of cross-sections of the ith strut, i = 1, . . . , nE .

The ordered pair N = (V, E) defines a stent graph and sets the topology of the stent. The stent
geometry is made precise by the parameterizations Φi for each i = 1, . . . , nE , which introduce
orientation on the graph. Since the mechanical behavior of stents is independent of orientation,
it is reasonable to expect that the resulting problem will be independent of graph’s orientation.
Indeed, we will see below that this is the case. Since this is different from classical network
problems in which orientation is important (e.g., channel flow), the stent problem is called the
stent net problem [39, 11].

2.1.2 The elasticity equations

The one-dimensional stent net model describing the mechanical behavior of a given three-
dimensional stent is defined by a family of 1D curved rod equations given in terms of the
parameterization parameter s ∈ [0, li] for each edge ei, supplemented by a set of coupling condi-
tions holding at each stent vertex where the edges meet. The 1D curved rod equations for the
curved rod (edge) ei are given in terms of the following unknown functions:
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• ui : [0, `i]→ R3, the displacement of the middle curve of the rod ei;

• ωi : [0, `i]→ R3, infinitesimal rotation of the cross-section of the rod ei;

• qi : [0, `i]→ R3, contact moment associated with ei;

• pi : [0, `i]→ R3, contact force associated with ei.

For a given stent loading, given by the line force density f i, the equations read [39]:

0 = ∂sp
i + f i, (2.1)

0 = ∂sq
i + ti × pi, (2.2)

0 = ∂sω
i −Qi(Hi)−1(Qi)Tqi, (2.3)

0 = ∂su
i + ti × ωi, (2.4)

for each ei ∈ E , i = 1, . . . , nE . Here, Hi and Qi are matrices given by

Hi =

 µiKi 0 0
0 EiIi33 EiIi23
0 EiIi23 EiIi22

 , Qi =
[
ti ni bi

]
, (2.5)

see e.g. [9]. For a given cross-section S, Iαα are moments of inertia, I23 is the product of inertia,
and K is torsional rigidity of the cross–section S, i.e.,

Iαβ = (−1)αβ
∫
S
zαzβdz2dz3, α, β ∈ {2, 3}, K =

∫
S

(∂2w−z3)2+(∂3w+z2)
2dz2dz3. (2.6)

Here, we denoted by z2 and z3 the local normal and bi-normal variables, see Fig. 3, and w is
called the warping function, which is defined as the unique solution of the Neumann problem:
find w ∈ H1(S) such that∫

S
(∂2w − z3)∂2r + (∂3w + z2)∂3r = 0, r ∈ H1(S),

∫
S
w = 0.

Matrix Hi describes the elastic properties of the i-th rod and the geometry of its cross-section,
and matrix Qi describes the local geometry of the i-th rod parametried by Φi, up to translations;
ti = (Φi)′ is the unit tangent vector to the curve parametrized by Φi, while ni and bi constitute
one orthonormal basis in the normal plane to the middle curve of the ith rod. See Fig. 3.

Figure 3: One stent strut with the tangential, normal and binormal vectors to the middle line.

2.1.3 The coupling conditions

.
To complete the problem, we need to prescribe the physics of the coupling between the stent

struts at the points where they meet, namely, the coupling conditions corresponding to (2.1)-
(2.4) at each vertex of the stent net. Two sets of coupling conditions, known as the kinematic
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and dynamic coupling conditions, give rise to a well-defined problem. They are defined in terms
of the set J−j of all the outgoing edges for the vertex j where the local variable s is equal to 0,

and the set J+
j of all the incoming edges where the local variable s is equal to `. The conditions

read:

(KC) The kinematic conditions which state that (u,ω) are continuous at each vertex:

ωi(0) = ωk(`k), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV ,

ui(0) = uk(`k), i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV .

(2.7)

(DC) The dynamic conditions which require balance of contact forces p and contact moments
q at each vertex: ∑

i∈J+
j

pi(`i)−
∑
i∈J−j

pi(0) = 0, j = 1, . . . , nV ,

∑
i∈J+

j

qi(`i)−
∑
i∈J−j

qi(0) = 0, j = 1, . . . , nV .
(2.8)

Since the problem is a pure traction problem, solutions are unique up to a translation and
rotation. To fix the unique solution, zero total translation and zero total rotation are prescribed:

nE∑
i=1

∫ `i

0
uids =

nE∑
i=1

∫ `i

0
ωids = 0. (2.9)

2.2 Weak formulation: the classical and mixed forms

We start by introducing a mixed weak formulation, which will be used in the numerical sim-
ulations. The mixed formulation is necessary to account for the conditions of inextensibility
and unshearbility of each rod. For this purpose, we introduce a vector function uS , where the
subscript S stands for “stent”, to denote the state variables (ui,ωi) defined on all the edges
ei, i = 1, ..., nE of a given stent, so that

uS = ((u1,ω1), ..., (unE ,ωnE )) =: (y1, ...,ynE ).

The kinematic coupling condition requires that the displacements ui of the middle lines, and
the infinitesimal rotations ωi of the cross-sections, are continuous at every vertex V ∈ V . We
include this condition in the solutions space:

H1(N ;R6) =

{
uS =(y1, . . . ,ynE ) ∈

nE∏
i=1

H1(0, `i;R6) :

yi(0) = yk(`k), ∀i ∈ J−j , k ∈ J
+
j , j = 1, . . . , nV

}
.

Thus, the kinematic coupling conditions will be satisfied in the strong sense. In contrast, the
dynamic coupling conditions will be imposed weakly, in the weak formulation of the problem,
through integration by parts.

To get to the weak formulation of the stent problem, we recall that a stent is a union of
stent struts. Thus, the (mixed) weak formulation of the entire stent is obtained by adding up
the (mixed) weak formulations of each stent strut. We will do this for the functions uS ∈ Vs
and pS := (p1, . . . ,pnE ,α,β) ∈ QS , where

VS = H1(N ;R6), QS = L2(N ;R3)× R3 × R3 =

nE∏
i=1

L2(0, `i;R3)× R3 × R3.
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These functions are defined on the entire stent, and the state variables uS are continuous at
vertices (globally continuous). The functions pS play the role of Lagrange multipliers, enforcing
the inextensibility and unshearability condition (2.4), and zero total translation and rotation
(see below).

After multiplying the differential equations (2.1)-(2.2) by the components of the test functions
ũS , and integrating them by parts, and after using the dynamic coupling conditions into account
at stent’s vertices, the resulting mixed weak formulation can be written in terms of the bilinear
forms kS : VS × VS → R and bS : QS × VS → R, where:

kS(uS , ũS) =

nE∑
i=1

∫ `i

0
QiHi(Qi)T∂sω

i · ∂sω̃ids,

bS(pS , ũS) =

nE∑
i=1

∫ `i

0
pi · (∂sũi + ti × ω̃i)ds+α ·

nE∑
i=1

∫ `i

0
ũids+ β ·

nE∑
i=1

∫ `i

0
ω̃ids.

(2.10)

To deal with the source term, the following linear functional is introduced:

lS : VS → R, lS(ũS) =

nE∑
i=1

∫ `i

0
f i · ũids. (2.11)

The mixed formulation of our problem is then given by: find (uS ,pS) ∈ VS ×QS such that

kS(uS , ũS) + bS(pS , ũS) = lS(ũS), ∀ũS ∈ VS ,
bS(p̃S ,uS) = 0, ∀p̃S ∈ QS .

(2.12)

The existence of a unique solution to this problem was proved in [21].
To get to the classical weak formulation, we introduce the space:

V Ker
S = {ũS ∈ VS : bS(p̃S , ũS) = 0, p̃S ∈ QS}.

The classical weak formulation then reads: find uS ∈ V Ker
S such that

kS(uS , ũS) = lS(ũS), ∀ũS ∈ V Ker
S , (2.13)

where the left-hand side corresponds to the elastic energy of the stent. It was shown in [21] that
the weak formulation and the mixed formulation above are equivalent. This is because the form
kS is coercive on V Ker

S , and b satisfies the inf-sup condition from Brezzi and Fortin [8].
In this work we will consider optimal design of stents with respect to the change in the

slotted tube thickness h, and the stent strut’s width w, by considering the following scenarios:

1. Square cross-sections: We assume that h = w and optimize the overall, global stent stiffness
by simultaneously changing h and w so that h = w;

2. Rectangular cross-sections: We optimize the overall, global stent stiffness in the following
two sub-cases:

(A) We keep the thickness h of the slotted tube fixed, and only optimize with respect to
the width w of the stent struts;

(B) We vary both h and w, but keep the thickness h constant along the entire stent .

For some topology optimization problems of lattice structures, see e.g. [15, 16].
The mathematical constrained optimization problem is presented next.
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3 The constrained optimization problem

To define a constrained optimization problem in terms of h and w, we need to understand the
dependence of the problem on those parameters. We will be working with the mixed formulation
given in (2.12), where h and w appear in the matrices Hi, defined in (2.5).

To see how the coefficients of Hi (the ith strut) depend on the parameters h (thickness of
the tube) and w (width of stent struts), we recall the definitions (2.6) of the moments of inertia
Iα,β and of torsional rigidity K. For a rectangular cross-section S =

[
−1

2h,
1
2h
]
×
[
−1

2w,
1
2w
]

we get:

I23 = 0, I22 =

∫
S

(z2)
2dz2dz3 =

1

12
wh3, I33 =

∫
S

(z3)
2dz2dz3 =

1

12
w3h,

and

K =
1

3
hw

(
h2

4
+
w2

4

)
+ 32

∞∑
k=1

1

(2k − 1)5π5

(
(2k − 1)πhw

(
h2

4
+
w2

4

)
−w4tanh

(2k − 1)πh

2w
− h4tanh

(2k − 1)πw

2h

)
.

(3.1)

In the case of a square cross section, w is set equal to h, in which case the cross-section can
be scaled by h with respect to its center of mass, i.e., Si(h) = hS̃i, and the matrix Hi(h) then
scales like h4, i.e.,

Hi(h) = h4H̃i,

where H̃i is the matrix defined as in (2.5) and (2.6), but for S̃i instead of Si.
In the following three subsections we present the three optimization algorithms, correspond-

ing to the scenarios (1), (2A) and (2B) above.

3.1 Square cross-sections: perturbations with respect to the square side h

Here, we assume that the struts’ cross-sections are squares with a constant hi along the entire
i-th strut, for each i = 1, . . . , nE . This implies that

Hi = (hi)4H̃i, i = 1, . . . , nE ,

for matrices H̃i that do not depend on strut thickness.
We will be assuming that the stent loading, given by f i, i = 1 . . . , nE , is independent of

the stent strut thickness. This is a natural assumption in applications, since the stent loading
comes from the forces exerted by the blood vessel walls onto the stent, which is independent of
the stent strut thickness.

Therefore for a given thickness function h = (h1, . . . , hnE ), the mixed formulation for the
stent model, written explicitly in terms of h, is given by: find (uS(h),pS(h)) ∈ VS ×QS , such
that

kS(h)(uS , ũS) + bS(pS , ũS) = lS(ũS), ũS ∈ VS ,
bS(p̃S ,uS) = 0, p̃S ∈ QS ,

(3.2)

where kS(h) is given in (2.10) with Hi replaced by (hi)4H̃i.
We consider an optimization problem in which the cost function is the stent’s overall

compliance. Compliance is measured by the stent’s overall elastic energy. See (2.13). For
example, to find a stent with minimal compliance, we seek to minimize the elastic energy of the
stent in such a way that the resulting displacement, for a given outside forcing, satisfies the stent
problem (3.2). Since the elastic energy for a given forcing must be equal

∫
N f ·uSds, see (2.13),
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we introduce the following cost function J : VS × QS → R for the problem of optimizing the
overall stent’s compliance:

J(uS ,pS) =

∫
N
f · uSds =

nE∑
i=1

∫ `i

0
f i · uids, (3.3)

where (uS ,pS) is the solution of (3.2). For a given value h : N → R, which is constant for
each stent strut, we denote by (uS(h),pS(h)) the solution of (3.2). The optimal stent design
problem now reads as follows:

Find h∗ ∈ RnE such that{
J(uS(h∗),pS(h∗)) = min

h∈W
J(uS(h),pS(h)),

where (uS(h),pS(h)) is the unique solution of (3.2),
(3.4)

where J(uS(h),pS(h)) is given by (3.3).

The set W ⊂ RnE contains constraints, such as, e.g., the minimal and maximal stent strut
thickness, 0 < hmin ≤ hi ≤ hmax, and a constraint on the total volume V0 of the material the
stent is made of. Indeed, we take the set of constraints W to be:

W = {h ∈ RnE : hmin ≤ hi ≤ hmax, i = 1, . . . , nE ,

nE∑
i=1

(hi)2`i = V0}. (3.5)

Since the set W ⊂ RnE is bounded and closed we will be able to prove the existence of a solution
to (3.4).

3.1.1 Existence of a minimizer defined by (3.4)

The existence of a minimizer is based on the properties of the set W , and on the continuity
properties of the function J as a function of h. To analyze the properties of J in terms of h, we
introduce the following notation denoting explicit dependence of J on h:

J̃(h) := J(uS(h),pS(h)) =

nE∑
i=1

∫ `i

0
f i · ui(h)ds, (3.6)

where (uS(h),pS(h)) is the solution of (3.2). Thus, to show continuity of h 7→ J̃(h), it is
enough to prove that h 7→ u(h) is continuous. To show that u depends continuously on h, we
consider the family (hλ)λ and functions (uS(hλ),pS(hλ))λ, where (uS(hλ),pS(hλ)) is a unique
solution of (3.2), and we show that when hλ → h, the family (uS(hλ),pS(hλ))λ converges to
the solution (uS(h),pS(h)). More precisely, we have the following theorem.

Theorem 3.1 (Continuity). Let (uS(h),pS(h)) be a family (parameterized by h) of unique
solutions of (3.2). Then, for each fixed h, the family of solutions (uS(hλ),pS(hλ))λ converges
strongly in H1(N ;R6)× L2(N ;R3) to the solution (uS(h),pS(h)) as hλ → h.

Proof. To prove this theorem we first recall that (uS(hλ),pS(hλ))λ satisfy the mixed formulation
(3.2). To emphasize the dependence on λ, we introduce the notation 〈F λ, ũS〉 instead of lS(ũS),
and write (3.2) in terms of this new notation as

kS(hλ)(uS(hλ), ũS) + bS(pS(hλ), ũS) = 〈F λ, ũS〉, ũS ∈ VS ,
bS(p̃S ,uS(hλ)) = 0, p̃S ∈ QS .

(3.7)

We now show that solutions (uS(hλ),pS(hλ))λ of this mixed formulation, are uniformly bounded
(uniformly in λ), which will be used to prove (uS(hλ)−u(h),pS(hλ)−p(h))→ 0 in H1(N ;R6)×
L2(N ;R3), as hλ → h. In fact, we prove the following more general result.
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Lemma 3.2. Let (f (1,λ),f (2,λ),f (3,λ),f (4,λ))λ be a family of source terms in L2(N ;R3)4 and
(hλ)λ ⊂W . For each ũS ∈ VS denote

〈F λ, ũS〉 =

nE∑
i=1

∫ `i

0

(
f i(1,λ) · ũ

i + f i(2,λ) · ∂sũ
i + f i(3,λ) · ω̃

i + f i(4,λ) · ∂sω̃
i
)
ds.

Let (uhλ
S ,phλS )λ ⊂ VS ×QS be the solutions of problems

kS(hλ)(uhλ
S , ũS) + bS(phλS , ũS) = 〈F λ, ũS〉, ũS ∈ VS ,

bS(p̃S ,u
hλ
S ) = 0, p̃S ∈ QS .

(3.8)

1. If there exists C > 0 such that ‖f(i,λ)‖L2(N ;R3) ≤ C (independent of λ), for i = 1, 2, 3, 4,
then there exists C ′ > 0 such that

‖uhλ
S ‖H1(N ;R6), ‖p

hλ
S ‖L2(N ;R3) ≤ C ′.

2. If f (i,λ) → 0 in L2(N ;R3) as hλ → h, for i = 1, 2, 3, 4, then

uhλ
S → 0 in H1(N ;R6), phλS → 0 in L2(N ;R3).

We will prove this lemma after we finish the proof of Theorem 3.1.
From the first part of this lemma, applied to the case f (2,λ) = f (3,λ) = f (4,λ) = 0 and for

f (1,λ) independent of λ, we obtain that the family (uS(hλ),pS(hλ)λ is uniformly bounded in

H1(N ;R6)× L2(N ;R3) by a constant M > 0.
We now use this to show that (uS(hλ) − u(h),pS(hλ) − p(h)) → 0. For this purpose, we

derive a system of equations that is satisfied by the difference (uS(hλ)− u(h),pS(hλ)− p(h)),
and show that the system is of the form (3.8). Indeed, by recalling the left hand-side of (3.2),
we obtain:

kS(h)(uS(hλ)− uS(h), ũS) + bS(pS(hλ)− pS(h), ũS)

= kS(h)(uS(hλ), ũS) + bS(pS(hλ), ũS)− lS(ũS),

where we have used the fact that uS(h) is a solution to (3.2). The last two terms on the right
hand-side can be further rewritten as −kS(hλ)(uS(hλ), ũS) by recalling that uS(hλ) is also a
solution to (3.2). Thus, we obtain:

kS(h)(uS(hλ)− uS(h), ũS) + bS(pS(hλ)− pS(h), ũS)

= kS(h)(uS(hλ), ũS)− kS(hλ)(uS(hλ), ũS)

=

nE∑
i=1

((hi)4 − (hiλ)4)

∫ `i

0
QiH̃i(Qi)T∂sω

i(hλ) · ∂sω̃ids.

Therefore, (uS(hλ)− u(h),pS(hλ)− p(h)) satisfies the following system of two equations:

kS(h)(uS(hλ)− uS(h), ũS) + bS(pS(hλ)− pS(h), ũS)

=

nE∑
i=1

((hi)4 − (hiλ)4)

∫ `i

0
QiH̃i(Qi)T∂sω

i(hλ) · ∂sω̃ids

bS(p̃S ,uS(hλ)− uS(h)) = 0.

(3.9)

This is exactly of the form (3.8) with the right-hand side equal to

〈F λ, ũS〉 =

nE∑
i=1

((hiλ)4 − (hi)4)

∫ `i

0
QiH̃i(Qi)T∂sω

i(hλ) · ∂sω̃ids.
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By the Cauchy–Schwarz inequality, and by the upper bound on the matrix H, we have

|〈F λ, ũS〉| ≤
nE∑
i=1

∣∣(hiλ)4 − (hi)4
∣∣ ‖H̃i‖‖∂sωi(hλ)‖L2(0,`i;R3)‖∂sω̃i‖L2(0,`i;R3)

≤ C max
i=1,...,nE

∣∣(hiλ)4 − (hi)4
∣∣ ‖ũS‖H1(N ;R6),

where, in the last inequality, we have used the uniform boundedness ‖uS(hλ)‖H1(N ;R6) < M

discussed above, to estimate the term ‖∂sωi(hλ)‖L2(0,`i;R3). As hλ → h, we see that the right-
hand side of the inequality goes to zero, and so by the second part of Lemma 3.2, we obtain that
(uhλ

S ,phλS ) =(uS(hλ)− u(h),pS(hλ)− p(h))→ 0 in H1(N ;R6)× L2(N ;R3), as hλ → h.

Proof of Lemma 3.2. The proof of Lemma 3.2 relies on the following result from [8].

Theorem 3.3 (Brezzi, Fortin, TM 1.1. [8]). Let V and Q be Hilbert spaces with associated
norms ‖ · ‖V and ‖ · ‖Q. Let the continuous bilinear forms k : V × V → R and b : V × Q → R
satisfy

|k(u, ũ)| ≤ A0‖u‖V ‖ũ‖V , ∀u, ũ ∈ V,
|b(u, p)| ≤ B0‖u‖V ‖p‖Q, ∀u ∈ V, p ∈ Q,

k(u, u) ≥ α0‖u‖2V , ∀u such that b(u, p) = 0 ∀p ∈ Q,

inf
p∈Q

sup
u∈V

b(u, p)

‖u‖V ‖p‖Q
≥ β0,

(3.10)

for some positive constants A0, B0, α0, β0. Let f ∈ V ′, g ∈ Q′. Then there exists a unique
solution (u, p) ∈ V ×Q of

k(u, ũ) + b(ũ, p) = 〈f, ũ〉V ′,V , ∀ũ ∈ V,
b(u, p̃) = 〈g, p̃〉Q′,Q, ∀p̃ ∈ Q.

(3.11)

Moreover, the solution (u, p) satisfies the bounds

‖u‖V ≤
1

α0
‖f‖′V +

1

β0

(
A0

α0
+ 1

)
‖g‖′Q,

‖p‖Q ≤
1

β0

(
A0

α0
+ 1

)
‖f‖′V +

A0

β20

(
A0

α0
+ 1

)
‖g‖′Q.

(3.12)

This theorem, as stated above, is in fact a special case of Theorem 1.1. [8] in the sense
that the last inequality in (3.10) is more restrictive than the corresponding condition in the
original statement of Theorem 1.1. [8]. As a result, the original Theorem 1.1. [8] guarantees
uniqueness of the second component p of the solution (u, p) up to a function from the function
space {p ∈ Q : b(ũ, p) = 0 ∀ũ ∈ V }. The last inequality from (3.10) as stated in Theorem 3.3
above, implies that this function space is trivial, and so uniqueness is guaranteed in Theorem 3.3.

From this theorem, we see that if we can show that there exist uniform constants A0, B0,
α0, β0 such that problems (3.8) satisfy the estimates (3.10) uniformly for all λ, then both claims
of Lemma 3.2 follow directly from the estimates (3.12).

We start by noting that the bilinear form bS does not depend on λ. Then, Lemma 3.5 in
[21] implies the existence of constants B0 > 0 and β0 > 0 such that the estimates involving bS
in (3.10) hold.

What is left is to show the continuity and coercivity estimates on kS . For this purpose, we
recall the definition of the form kS :

kS(hλ)(uS , ũS) =

nE∑
i=1

(hiλ)4
∫ `i

0
QiH̃i(Qi)T∂sω

i · ∂sω̃ids.
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The continuity estimate now follows directly from the boundedness of the matrix H̃i. More
precisely, if we denote by C > 0 the constant that bounds the matrix norm of H̃i, and by
recalling that for all hλ ∈W we have hmin ≤ hiλ ≤ hmax, the Cauchy–Schwarz inequality implies

kS(hλ)(uS , ũS) ≤ h4maxC

(
nE∑
i=1

‖∂sωi‖2L2(0,`i;R3)

)1/2( nE∑
i=1

‖∂sω̃i‖2L2(0,`i;R3)

)1/2

≤ h4maxC‖uS‖H1(N ;R6)‖ũS‖H1(N ;R6).

(3.13)

By choosing the uniform constant A0 = h4maxC, we have shown continuity of kS .
The uniform coercitivity of kS follows from the coercivity associated with the matrix H̃i,

and a Poincaré type inequality. More precisely, from Lemma 3.2. [21], we see that there exists
a constant CP > 0, independent of λ, such that

‖uS‖2H1(N ;R6) =

nE∑
i=1

(
‖ui‖2H1(0,`i;R3) + ‖ωi‖2H1(0,`i;R3)

)
≤ CP

(
nE∑
i=1

‖∂sui‖2L2(0,`i;R3) +

nE∑
i=1

‖∂sωi‖2L2(0,`i;R3)

)
+

∣∣∣∣∣
nE∑
i=1

∫ `i

0
uids

∣∣∣∣∣+

∣∣∣∣∣
nE∑
i=1

∫ `i

0
ωids

∣∣∣∣∣
This is a Poincaré type estimate for the stent problem, obtained in [21]. We further estimate the
right-hand side by recalling that this coercivity estimate is done over the space of constraints
V , namely for all u such that b(u, p) = 0, ∀p ∈ Q, see (3.10), which includes the conditions that
make the last two terms on the right-hand side above equal to zero. Therefore, the right-hand
side can be further estimated by

≤ 2CP

nE∑
i=1

(
‖∂sui + ti × ωi‖2L2(0,`i;R3) + ‖ti × ωi‖2L2(0,`i;R3) + ‖∂sωi‖2L2(0,`i;R3)

)
≤ C̃

nE∑
i=1

‖∂sωi‖2L2(0,`i;R3),

where we again used that the space V includes the constraint ∂su
i + ti × ωi = 0 via b(u, p) =

0, ∀p ∈ Q. If we now denote by a0 the coercivity constant associated with H̃i, we can further
estimate the above inequality as

C̃

nE∑
i=1

‖∂sωi‖2L2(0,`i;R3) ≤ C̃
a0
h4min

nE∑
i=1

(hiλ)4
∫ `i

0
QiH̃i(Qi)T∂sω

i · ∂sω̃ids ≤
C̃a0
h4min

kS(hλ)(uS , ũS),

which completes the proof of coercivity of k.
The statements of Lemma 3.2 then follow directly from Theorem 3.3.

We have now completed the proof of continuity of h 7→ J̃(h) and are ready to state the main
result of this subsection.

Theorem 3.4. The constrained minimization problem (3.4) has a solution.

Proof. The set W is a closed and bounded subset of RnE , and is therefore compact. From
Theorem 3.1 we obtained that J̃ is continuous on W . Therefore, J̃ possesses extrema on W .
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3.1.2 The iteration algorithm

We present an iteration algorithm for solving the optimization problem (3.4). We begin with a
given h, and look for a g ∈ RnE such that

J̃(h+ g) ≤ J̃(h).

Assuming that J̃ admits the Taylor series expansion around h, we obtain:

J̃(h) + dhJ̃(h)g + o(g) ≤ J̃(h).

Here dhJ̃(h)g is the Gateaux derivative of the functional J̃ in the direction of g. Thus, in order
to decrease the value of the cost function in each step, we look for a g such that

dhJ̃(h)g ≤ 0. (3.14)

This leads to a gradient based method.
More precisely, from the definition of the Gateaux derivative, we calculate dhJ̃(h)g as follows:

dhJ̃(h)g = lim
λ→0

J̃(h+ λg)− J̃(h)

λ
= lim

λ→0

∑nE
i=1

∫ `i
0 f

i · ui(h+ λg)ds−
∑nE

i=1

∫ `i
0 f

i · ui(h)ds

λ

= lim
λ→0

nE∑
i=1

∫ `i

0
f i · u

i(h+ λg)− ui(h)

λ
ds =

nE∑
i=1

∫ `i

0
f i · dhui(h)gds.

Therefore,

dhJ̃(h)g =

nE∑
i=1

∫ `i

0
f i · dhui(h)gds. (3.15)

What is left is to “calculate” dhu
i(h)g. More precisely, we will derive a system of equations

satisfied by dhu
i(h)g. This system is obtained directly from the system (3.9) for hλ = h+ λg

after dividing the first equation in (3.9) by λ and after taking the limit λ→ 0, to obtain

kS(h)(dhuS(h)g, ũS) + bS(dhpS(h)g, ũS)

= −(dhkS(h)g)(uS(h), ũS) := −
nE∑
i=1

4(hi)3gi
∫ `i

0
QiH̃i(Qi)T∂sω

i(h) · ∂sω̃ids.

From the definition of the bilinear form kS , we see that the right-hand side can be expressed as
kS(hg)(uS(h), ũS), where (hg)i = −4(hi)3gi, i = 1, . . . , nE . Therefore,

−(dhkS(h)g)(uS(h), ũS) = kS(hg)(uS(h), ũS),where (hg)i = −4(hi)3gi, i = 1, . . . , nE .

Thus, the first equation satisfied by dhuS(h)g is

kS(h)(dhuS(h)g, ũS) + bS(dhpS(h)g, ũS) = kS(hg)(uS(h), ũS), ũS ∈ VS .

The second equation satisfied by dhuS(h)g follows directly from the second equation in (3.9)
with hλ = h+ λg. Namely, since bS does not depend on h, we easily obtain

bS

(
p̃S ,

uS(h+ λg)− uS(h)

λ

)
= 0 =⇒ bS(p̃S , dhuS(h)g) = 0.

Therefore, (dhuS(h)g, dhpS(h)g) ∈ VS ×QS satisfy the following system of equations:

kS(h)(dhuS(h)g, ũS) + bS(dhpS(h)g, ũS) = kS(hg)(uS(h), ũS), ∀ũS ∈ VS ,
bS(p̃S , dhuS(h)) = 0, ∀p̃S ∈ QS .

(3.16)

This formal derivation is now rigorously justified by the following result.
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Theorem 3.5. Let (uS(h),pS(h)) be a family (parameterized by h) of unique solutions of (3.2).
Then, the following limits exist:

dhuS(h)g := lim
λ→0

1

λ
(uS(h+ λg)− uS(h)), dhpS(h)g := lim

λ→0

1

λ
(pS(h+ λg)− pS(h)).

Furthermore, the limits above are unique solutions of (3.16).

Proof. For each fixed h, consider the system (3.16), and denote by (dhuS(h)g, dhpS(h)g) its
unique solution. Notice that system (3.16) is of the form discussed in Theorem 3.3, which
guarantees the existence of a unique solution. We now show that this solution is, in fact, the
limit as λ→ 0 of ( 1

λ(uS(h+ λg)− uS(h)), 1λ(pS(h+ λg)− pS(h))). For this purpose, for each
λ define

(uλS ,p
λ
S) :=

1

λ
(uS(h+ λg)− uS(h),pS(h+ λg)− pS(h)).

We first see that functions (uλS ,p
λ
S) are solutions of system (3.8), with

〈F λ, ũS〉 =

nE∑
i=1

1

λ
((hi + λgi)4 − (hi)4)

∫ `i

0
QiH̃i(Qi)T∂sω

i(h+ λg) · ∂sω̃ids.

Now we focus on the factor multiplying the integral in the source term 〈F λ, ũS〉, and introduce
the functions

φλ(t) :=
1

λ
((t+ λc)4 − t4) = 4t3c+ 6t2λc2 + 4tλ2c3 + λ3c4,

where c > 0 is arbitrary. We see that φλ(t) are uniformly (in λ) bounded on t ∈ [hmin, hmax]
for small λ, and the functions φλ converge uniformly to φ0(t) = 4t3c, as λ → 0. Thus the
family F λ is uniformly bounded, since we showed in the proof of Lemma 3.2 that (uS(h +
λg) − u(h),pS(h + λg) − p(h)) → 0 in H1(N ;R6) × L2(N ;R3), as λ → 0, which implies that
the integrand is uniformly bounded as well. Therefore, by the first statement of Lemma 3.2,
functions (uλS ,p

λ
S) are uniformly bounded in H1(N ;R6)× L2(N ;R3).

Finally, we consider the functions

(uλS − dhuS(h)g,pλS − dhpS(h)g)

and notice that they are also solutions of (3.8), with

〈F λ, ũS〉 =

nE∑
i=1

(
(hi + λgi)4)− (hi)4

λ
− 4(hi)3gi

)∫ `i

0
QiH̃i(Qi)T∂sω

i(h+ λg) · ∂sω̃ids,

which converges to zero by a similar argument as above. The second statement of Lemma 3.2 now
implies that the sequence (uλS − dhuS(h)g,pλS − dhpS(h)g)→ (0, 0) in H1(N ;R6)×L2(N ;R3),
which completes the proof.

Remark 3.1. Since dhuS(h)g is the solution of (3.16) which is of the form (3.7) we can apply
similar arguments from the proof of Theorem 3.1 to conclude that dhuS(h)g is continuous with
respect to h. This also implies the Fréchet differentiability of J̃ and that J̃ is of class C1.

Now that we have determined dhu
i(h)g, we return to the expression (3.15) which specified

the relationship between dhu
i(h)g and dhJ̃(h)g to further simplify the calculation of dhJ̃(h)g.

More precisely, using (3.16) we get:

dhJ̃(h)g =

nE∑
i=1

∫ `i

0
f i · dhui(h)gds = lS(dhuS(h)g)

= kS(h)(uS(h), dhuS(h)g) + bS(pS(h), dhuS(h)g)

= kS(h)(uS(h), dhuS(h)g) = kS(hg)(uS(h),uS(h)).

(3.17)

14



From this equation we conclude that the minimization problem for the functional J̃ , described
by the inequality (3.14), reduces to finding a g such that −

nE∑
i=1

4(hi)3gi
∫ `i

0
QiH̃i(Qi)T∂sω

i(h) · ∂sωi(h)ds = kS(hg)(uS(h),uS(h)) ≤ 0,

where uS(h) solves (3.2) for a given h.

(3.18)

Since the form
∫ `i
0 QiH̃i(Qi)T∂sω

i(h) · ∂sωi(h)ds is positive definite, this implies that any g

consisting of nonnegative components gi, will decrease the value of the functional J̃ . However,
the gradient descent method is obtained for the choice

gi := (hi)3
∫ `i

0
QiH̃i(Qi)T∂sω

i(h) · ∂sωi(h)ds, (3.19)

for i = 1, . . . , nE .
Finally, one has to take into account the conditions on the minimal and maximal thickness

and the total volume constraint. This can be done as in [1, 2] by constructing a projection
operator PW onto the set of constraints W , defined in (3.5), and using an iteration procedure

hn+1 = PW (hn+αg), n > 0

until convergence. Here α > 0 is the descent step, PW is the projection operator onto the closed
convex set W , and the derivative dhJ̃(h)g is calculated in (3.17).

The following is the resulting stent constrained optimization algorithm:

Initialization

prescribe initial h0

compute the solution (uS(h0),pS(h0)) of (3.2)

compute J̃(h0)

Iterations

compute g using (3.19)

update h = h+ αg for appropriate α

calculate the projection PW onto the constraints set W

compute the solution (uS(h),pS(h)) of (3.2)

compute J̃(h)

(3.20)

3.2 Rectangular cross-sections: Perturbations with respect to wi.

In this case the cross–sections are rectangles with sides h and wi corresponding to the thickness
and width, respectively, of the ith strut. Numerically, each strut will be subdivided into n sub-
struts, in which case wi will be associated with each sub-strut. This effectively means that the
width of each strut at the continuous level will be a function of s. See, e.g., Fig. 6 right, where
the width of a single stent strut is shown versus axis of symmetry of the stent. Since stents are
often cut out of a metallic tube of a certain fixed thickness, we are assuming that the thickness h
of all the stent struts is constant. The rectangles are positioned in such a way that the thickness
is aligned with the direction of the normal vector ni to the middle line of the curved rod, while
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the width is aligned with the binormal vector bi, see Fig. 3. The normal vector to the middle
line is also normal to the cylinder describing the arterial wall. In this case we have:

I23i = 0, I i33 =

∫ h/2

−h/2

∫ wi/2

−wi/2
x23dx2dx3 =

hw3
i

12
, I i22 =

∫ h/2

−h/2

∫ wi/2

−wi/2
x22dx2dx3 =

h3wi
12

.

For torsional rigidity we use the series (3.1), where w is replaced by wi, and denote the resulting
function of tube thickness h and strut width wi by K(h,wi). In the numerical simulations, we
use the first seven terms in the series for K(h,wi) as an approximation. With this notation, we
have:

Hi(w) =

 µiK(h,wi) 0 0

0 Ei
hw3

i
12 0

0 0 Ei h
3wi
12

 , where K(h,wi) is given by (3.1).

After using the same arguments as in the previous section, we conclude that:

dwJ̃(w)g = kS(w)(uS(w), dwuS(w)g) = −dwkS(w)g(uS(w),uS(w)),

where dwkS(w)g is given by

(dwkS(w)g)(ωi, ω̃i) =

nE∑
i=1

∫ `i

0
Qi(dwHi(w)g)(Qi)T∂sω

i · ∂sω̃ids.

It is easy to compute

dwHi(w)g =
d

dλ
Hi(w + λg)|λ=0 =

 µi ∂K(h,wi)
∂wi

gi 0 0

0 Ei
3hw2

i gi
12 0

0 0 Ei h
3gi
12



=

 µi ∂K(h,wi)
∂wi

0 0

0 Ei
3hw2

i
12 0

0 0 Ei h
3

12

 gi =: Ĥi(w)gi.

Thus

dwJ̃(w)g = −
nE∑
i=1

gi

∫ `i

0
QiĤi(w)(Qi)T∂sω

i · ∂sω̃ids. (3.21)

Therefore, the gradient descent direction is given by the vector g with components

gi =

∫ `i

0
QiĤi(w)(Qi)T∂sω

i(w) · ∂sωi(w)ds, i = 1, . . . , nE , (3.22)

where (uS(w),pS(w)) is the unique solution of (3.2), and uS(w) = (y1(w), . . . ,ynE (w)), where
yi(w) = (ui(w),ωi(w)).

The constrained stent optimization algorithm looks the same as the boxed algorithm at the
end of Section 3.1, except that g now is calculated using (3.22). Furthermore the existence of
the minima of the cost functional also follows in the same way, now using the fact that matrices
Ĥi depend smoothly on w.

3.3 Rectangular cross-sections: perturbations with respect to both wi and h.

In this subsection the optimization is performed with respect to two parameters, the width and
the thickness of each stent strut, where the thickness h is the same for all stent struts. This is
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motivated by the fact that balloon expandable stents are typically cut out of a single slotted tube
of thickness h. As a result, the steepest descent vector g now has two components: g : = (g0, g),
and the matrix Hi describing the elastic properties of the ith strut is now denoted by:

Hi(h,w) =

 µiK(h,wi) 0 0

0 Ei
hw3

i
12 0

0 0 Ei h
3wi
12

 , where K(h,wi) is given by (3.1).

To shorten the notation we also introduce the notation w := (h,w). By repeating the arguments
from the previous sections, we obtain the following expression for dwJ̃(w)g:= (dhJ̃(w)g, dwJ̃(w)g0):

dwJ̃(w)g = kS(w)(uS(w), dwuS(w)g) = −dwkS(w)g(uS(w),uS(w)),

where dwkS(w)g is given by

(dwkS(w)g)(ωi, ω̃i) =

nE∑
i=1

∫ `i

0
Qi(dhH

i(w)g0)(Q
i)T∂sω

i · ∂sω̃ids

+

nE∑
i=1

∫ `i

0
Qi(dwHi(w)g)(Qi)T∂sω

i · ∂sω̃ids.

As before

dwHi(w)g =

 µi ∂K(h,wi)
∂wi

0 0

0 Ei
3hw2

i
12 0

0 0 Ei h
3

12

 gi =: Ĥi(w)gi,

while

dhH
i(w)g0 =

 µi ∂K(h,wi)
∂h 0 0

0 Ei
w3
i

12 0

0 0 Ei 3h
2wi
12

 g0 =: Ĥ0(w)g0.

Therefore the gradient descent direction is given by the vector g = (g0, g) = (g0, g1, . . . , gnE )
with components

g0 =

nE∑
i=1

∫ `i

0
QiĤ0(w)(Qi)T∂sω

i(w) · ∂sω̃i(w)ds,

gi =

∫ `i

0
QiĤi(w)(Qi)T∂sω

i(w) · ∂sωi(w)ds, i = 1, . . . , nE ,

where (uS(w),pS(w)) is the unique solution of (3.2) and uS(w) = (y1(w), . . . ,ynE (w)), where
yi(w) = (ui(w),ωi(w)).

4 The Numerical Method

The stent optimization problems considered in this work are all solved iteratively, with the
iteration procedures described in Section 3. A summary of the optimization algorithms is given
in (3.20). An important feature of this algorithm is that it is very fast, since in each iteration only
one solution of the stent problem has to be solved. One does not need to find the derivative of the
cost function, nor the derivatives of the solutions with respect to the optimization parameters,
but rather only solve a problem like (3.18), which requires one solution of the stent problem itself.
In fact, we performed a comparison with a genetic algorithm implemented in Matlab, see Sec. 6,
and showed that not only is our algorithm faster, but the optimal solution of our algorithm has
the value of its minimum smaller than that obtained by the genetic algorithm, indicating higher
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accuracy of the solution. The stent problem is solved by a FEM method applied to the mixed
formulation (2.12). The approach is to first subdivide each edge (stent strut) into subintervals
along the middle line of each stent strut. Each subinterval is then treated as a “strut” itself in
the sense that the finite elements at the nodes, corresponding to each subinterval, have to satisfy
the coupling conditions at each node (continuity of displacement and infinitesimal rotation, and
balance of forces and moments). Namely, they belong to the space VS = H1(N ,R6) for (uS ,ωS)
defined on this “new” stent with an increased number of stent struts. This way we keep the
discretized structure unchanged at the expense of changing its description, i.e., the number of
vertices, the number of edges, and the split parameterizations. The problem remains given
by the equations of the same form (2.12), defined on the associated function space. For the
finite dimensional approximations of displacement u and of infinitesimal rotation ω, we use
piecewise polynomials of order 2, while for the finite dimensional approximation of the contact
force pS , which is the Lagrange multiplier in the problem, we use piecewise polynomials of order
1. In order for the piecewise polynomials of order 2, approximating (uS ,ωS), to belong to the
space VS = H1(N ,R6), we additionally assume that they are globally continuous (continuous at
vertices), while for the first order polynomials approximating pS this is not required since they
belong to L2(N ,R3). It was proved in [22] that this particular approach leads to a convergent
approximation of the solution (uS ,ωS) ∈ VS .

In the simulations below, the size of the spatial discretization is n = 40 for all the stents
except for Cypher for which we used n = 10 discretization points for non-sinusoidal stent struts
in the finest mesh.

5 Numerical Results

We show numerical result of optimal design of the following three stents: the Zig-Zag stent
(see Fig. 5), the Palmaz6 stent (see Fig. 19), and the Cypher stent (see Fig. 21). We design
stents with minimal compliance by changing their struts’ width w, and slotted tube thickness
h. To avoid having solutions which have infinite strut thickness, we optimize the stents under
the constraint that the total volume of struts is kept constant, i.e., the total material used to
produce an optimal stent is fixed. We start the optimization process by an initial configuration
in which the thickness and width of the stent struts is uniform for all struts in one stent, and it
is equal to h0 = 10−4m, which is a typical thickness in stent manufacturing. The total volume
is then calculated by multiplying h20 by the total length of stent struts. We also fix the minimal
and maximal possible thickness to be hmin = 10−5m,hmax = 10−3m. The boundary conditions
used in the simulations correspond to the pressure loading applied to the interior stent surface.
See Fig. 4. The remaining boundary (stent surface) is force free. This gives rise to a pure

Figure 4: Pure traction boundary conditions: uniform pressure load is applied on the interior
stent surface shown in red, and stress free on the rest. Additionally, zero total translation and
zero total rotation are prescribed.

traction problem for which the solutions are unique up to translation and rotation. To ensure
uniqueness of the solution, zero total translation and zero total rotation are prescribed. See
(2.9) in Sec. 2.1.3. The results are shown next.

18



5.1 Square cross–sections and radial forcing

In this subsection we assume that the cross-sections are squares, and optimize the stent width
w and thickness h so that the resulting stent has minimal compliance, under the assumption
that h = w. We apply an interior radial pressure force, uniform in magnitude along the entire
stent, and study stent’s response to this loading.

Example 1. We start by considering the simplest example of a stent consisting of a single zig-zag
ring, as show in Fig. 5 left. The stent’s length in this example is 0.0168022m, and the struts lie

Figure 5: Zig-Zag stent. Left: The middle lines of the Zig-Zag stent. Right: Mesh points (struts
discretization) with n = 40.

on a cylinder of radius 0.0015m. The total volume of this stent is equal to V0 = 2.0185 ·10−9m3.
Each stent strut is split into n = 40 smaller struts, as shown in Fig. 5 right. The optimization
algorithm is run with the initial configuration in which all the struts are of the same thickness.
Fig. 6 left shows the expanded configuration of the reference stent in gray, and the expanded

Figure 6: Left: Expanded configurations of a Zig-Zag stent with uniform strut thickness (gray),
superimposed over the optimized stent with nonuniform strut thickness (black). Right: A graph
showing strut thickness for the optimized stent, versus cylindrical axis of symmetry.

Stent Init Compl. Opt. Compl. Min Thickness Max Thickness Fixed Vol.

Zig-Zag 3.04 · 10−5Nm 2.21 · 10−5Nm 6.72 · 10−5m 1.28 · 10−4m 2.01 · 10−9m3

Table 1: Optimization of Zig-Zag stent, radial loading. The table shows initial compliance, opti-
mal compliance for the stiffest stent, minimal and maximal stent strut thickness in the optimal
stent, and the fixed volume used in the optimization algorithm.

optimal solution in black. One can observe that (1) the optimized stent indeed deforms less than
the stent with uniform stent struts’ thickness, and (2) the stent struts’ thickness is larger at the
joints of the stent. Detailed information about the strut’s thickness is shown in Fig. 6 right and
in Table 1. We can see that in the optimal configuration the minimal thickness of the struts is
6.7219 · 10−5m, while the maximal is 1.2856 · 10−4m. Compliance of the initial configuration of
the stent with all struts of the same thickness is 3.0411 · 10−5Nm, while the compliance for the
optimized stent is 2.21068 · 10−5Nm. This is a 45% increase in stent stiffness for the optimized
stent.
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Conclusion. This example shows that the stent’s stiffness increases by the increase in the
thickness of stent struts at the joints. This is to be expected since the radial pressure loading
applied to the stent tends to increase the radius of the stents, which occurs due to bending of
the struts in the plane tangential to the stent’s cylinder. In Example 8 below, however, we will
see that this fails to be true for the struts of very small thickness, see Fig. 14.

Example 2. Here we consider a more realistic stent of Palmaz-Schatz type, Palmaz6, which
consist of six zig-zag rings in which all the struts are of the same length, see Fig. 7. The grey
color in the left panel shows the expanded initial stent with stent struts of equal thickness, while
the black color shows the optimized stents with the corresponding stent strut thickness leading
to a stent with minimal compliance, expanded under the same loading density of f = 5000N/m.
Fig. 7 right shows strut thickness versus axis of symmetry of the stents’ cylinder. The simulations
were performed with n = 40 discretization points along each stent strut.

Figure 7: Palmaz6: Palmaz type stent under radial loading. The panel on the left shows the
expanded initial configuration in grey and the optimal stent configuration in black. The panel on
the right shows strut thickness versus axis of symmetry.

Stent Init Compl. Opt. Compl. Min Thickness Max Thickness Fixed Vol.

Palmaz6 0.21771Nm 0.15287Nm 5.3401 · 10−5m 1.7152 · 10−4m 7.7350 · 10−10m3

Table 2: Optimization of Palmaz like stent. The table shows initial compliance, optimal compli-
ance for the stiffest stent, minimal and maximal stent strut thickness in the optimal stent, and
the fixed volume used in the optimization algorithm.

Conclusions. We again see that the stiffest stents have struts with the thickness that is
largest at the joints, and smallest at the mid-points of each strut. The precise data is shown
in Table 2. Additionally, we also observe that the overall stiffness of the struts near the left
and right edges of the stent is higher than everywhere else. This can be attributed to the
compensation by the optimization algorithm of the so called dogboning effect, associated with
the flaring-out of the stents’ edges during uniform pressure loads during ballon angioplasty.

Example 3. Here we consider the geometry of a Cypher type stent. Cypher(TM) sirolimus-
eluting coronary stent is indicated for improving coronary luminal diameter in patients with
symptomatic ischemic disease due to discrete de novo lesions of length ≤ 30mm in native coro-
nary arteries with reference vessel diameter between 2.2mm and 3.5mm. Cypher stent platform
is made of 316L stainless steel material, with stent strut thickness of 1.4 · 10−1 mm [45]. The
reference length of the stent considered in this study is 16.7mm and reference diameter 3mm.
The stent consists of 8 zig-zag rings, connected via sinusoidal struts, see Fig. 8, forming seven
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circumferential cells.
We optimize the thickness of Cypher struts to maximize the stent’s stiffness. We used n = 10

discretization points for each strut. Fig. 8 shows the reference configuration (see Panel 1), the
expanded initial configuration with struts of equal thickness (see Panel 2), the optimized Cypher
stent with the corresponding struts’ thickness (see Panel 3), and the graph of struts’ thickness
versus axis of symmetry (see Panel 4). Details of the optimization results are shown in Table 3.

Stent Init Compl. Opt. Compl. Min Thickness Max Thickness Fixed Vol.

Cypher 0.8159Nm 0.4101Nm 6.8486 · 10−5m 2.6230 · 10−4m. 4.3535 · 10−9m3

Table 3: Optimization of Cypher stent, radial loading. The table shows initial compliance, opti-
mal compliance for the stiffest stent, minimal and maximal stent strut thickness in the optimal
stent, and the fixed volume used in the optimization algorithm.

Figure 8: Cypher stent, radial loading. Panel 1: Reference configuration. Panel 2: Expanded
Cypher stent with uniform strut thickness. Panel 3: Expanded Cypher stent with optimized
strut thickness for maximal stiffness. Panel 4: Thickness versus axis of symmetry of the stent
cylinder.

Conclusions. We see that the stiffest Cypher stent geometry is the geometry for which the
zig-zag rings have thickness which is considerably higher than the thickness of the sinusoidal
struts. See Fig. 8, Panel 4. The optimized expanded stent has a smaller maximal diameter
(4.5mm) than the stent with uniform strut thickness (4.9mm). Additionally, the length of the
expanded optimized stent is larger (15.9mm) and closer to the length of the original, reference
stent (16.7mm) when compared to the length of the expanded stent with uniform strut thickness
(14.5mm). The change in the length of the expanded stent is known as “foreshortening” and
is an important piece of information when determining the size of the stent used to treat a
lesion of a certain length. The smaller the foreshortening the better. We see that in terms of
foreshortening, the optimized stent has preferred behavior over the non-optimized stent.

5.2 Square cross–sections and longitudinal forcing

In this section we consider stent optimization with respect to longitudinal forcing. The longi-
tudinal loading is applied in a symmetric way stretching the stent in opposite directions with
respect to its center line. The load is applied at every point of the stent.

Example 4. We start by considering the Palmaz type stent described in Example 2, above.
Each stent strut is subdivided into n = 40 sub-segments, and a uniform longitudinal force density
f = 5000N/m is applied in a symmetric way. The stent struts thickness is optimized to obtain
the stiffest stents. Fig. 9 shows the results. Table 4 shows the initial and optimized values of
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Figure 9: Palmaz6: Palmaz type stent, longitudinal loading. Left: expanded stent (initial con-
figuration is in grey; optimal stent configuration is in black). Right: Strut thickness versus axis
of symmetry.

the stent’s compliance, and the minimal and maximal thickness of stent struts in the optimized
stent. The fixed volume kept during the optimization procedure is the same as in Example 2.

Stent Init Compl. Opt. Compl. Min Thickness Max Thickness Fixed Vol.

Palmaz6 0.17181Nm 0.094959Nm 4.8647 · 10−5m 2.1345 · 10−4m 7.7350 · 10−10m3

Table 4: Optimization of Palmaz type stent. The table shows initial compliance, optimal compli-
ance for the stiffest stent, minimal and maximal stent strut thickness in the optimal stent, and
the fixed volume used in the optimization algorithm.

Conclusions. We see that under the symmetric longitudinal loading in opposite directions,
the stiffest stent, namely the stent that resist the longitudinal stretching the most, is the stent
with the thicker struts in the middle of the stent, and thinner struts at the edges of the stent,
as shown in Fig. 9. This is exactly the opposite from the results shown in Example 2.

Example 5. Here we consider the same Cypher stent as discussed in Example 3, except that the
stent is now subject to longitudinal loading. We used n = 10 discretization points for each strut,
and the force density of f = 5000N/m was applied in opposite directions with respect to the
central line of the stent. Fig. 10 shows the reference configuration (see Panel 1), the expanded
initial configuration with struts of equal thickness (see Panel 2), the optimized Cypher stent
with the corresponding struts’ thickness (see Panel 3), and the graph of struts’ thickness versus
axis of symmetry (see Panel 4). Details of the optimization results are shown in Table 5.

Figure 10: Cypher stent, longitudinal loading. Panel 1: Reference configuration. Panel 2:
Expanded Cypher stent with uniform strut thickness. Panel 3: Expanded Cypher stent with
optimized strut thickness for maximal stiffness. Panel 4: Thickness versus axis of symmetry of
the stent cylinder.

Conclusions. We see that, as in Example 4, the stiffest stent is a stent with thick stent
struts in the middle, and thinner struts at the end points. See Panel 4 in Fig. 10. Notice the
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Stent Init Compl. Opt. Compl. Min Thickness Max Thickness Fixed Vol.

Cypher 1.7979Nm 0.9614Nm 6.7753 · 10−5m 2.7635 · 10−4m 4.3535 · 10−9m3

Table 5: Optimization of Cypher stent, longitudinal loading. The table shows initial compli-
ance, optimal compliance for the stiffest stent, minimal and maximal stent strut thickness in the
optimal stent, and the fixed volume used in the optimization algorithm.

dramatically different behaviors of the optimized stent, shown in Panel 3 of Fig. 10, and the
non-optimized stent, with uniform stent struts’ thickness, shown in Panel 2 of Fig. 10. When
compared with the results in Table 3 one can see that the maximal stiffness of the struts under
the longitudinal loading is higher than the maximal stiffness of the struts in the optimized stent
under radial loading.

5.3 Combined forcing and square cross–sections

In this section we apply different combinations of radial and longitudinal forcing on a single
reference stent configuration corresponding to Palmaz type stent, and compare different optimal
designs with respect to strut thickness for three different combinations of radial and longitudinal
forcing. In each of the three cases we use n = 40 discretization points for each stent strut.

Example 6. We consider the following three cases of forcing applied to the Palmaz6 geometry:

f = αfr + βfl, where


α = 1, β = 0.5; (Palmaz6A),

α = 1/
√

2, β = 1/
√

2; (Palmaz6B),
α = 1, β = 2; (Palmaz6C),

(5.23)

where fr is radial forcing of density 5000N/m, and fl is longitudinal forcing of density 5000N/m,
applied longitudinally in opposite directions with respect to the axial center point of the stent,
stretching the stent in the left and right directions. The three different cases give rise to three
substantially different stent configurations. See Figs. 11 and 12.

Figure 11: Left panel: Expanded Palmaz6A (left) and strut thickness versus symmetry axis
(right). Right panel: Expanded Palmaz6B (left) and strut thickness versus symmetry axis (right).

Data associated with optimization of the three stents is shown in Table 6.
Conclusions. This example shows how different types of loading imply different optimal

stent designs. Of particular interest is stent Palmaz6C . The expanded structure, featuring flaring
out of the end points with a rigid interior can be observed in stents designed to anchor bioartificial
aortic valves, see Fig. 13. This shows that our optimization algorithm has the features necessary
to produce optimal stent designs for different applications, including Transcatheter Aortic Valve
Replacement (TAVR).
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Figure 12: Left: Expanded Palmaz6C shown in black, superimposed over the expanded non-
optimized Palmaz6 stent, under the loading with α = 1 and β = 2 shown in (5.23). Right: Strut
thickness for optimized stent Palmaz6C versus symmetry axis (right).

Stent Init Compl. Opt. Compl. Min Thickness Max Thickness Fixed Vol.

Palmaz6A 0.087336Nm 0.053493Nm 4.6118 · 10−5m 2.0478 · 10−4m 7.7350 · 10−10m3

Palmaz6B 0.021432Nm 0.009966Nm 5.7611 · 10−5m 2.1358 · 10−4m 7.7350 · 10−10m3

Palmaz6C 0.021164Nm 0.0101Nm 6.057 · 10−5m 2.3489 · 10−4m 7.7350 · 10−10m3

Table 6: Optimization of Palmaz6A, Palmaz6B, and Palmaz6C stents. The table shows initial
compliance, optimal compliance for the stiffest stent, minimal and maximal stent strut thickness
in the optimal stent, and the fixed volume used in the optimization algorithm.

Figure 13: Left: Expanded Palmaz6C . Middle: Expanded aortic valve bioprosthesis Symetis
Acurate TATM. Right: St. Jude Medical PorticoTM Transcatheter aortic heart valve.

5.4 Radial forcing and rectangular cross–sections, optimization of struts’
width over a series of tube thicknesses

Since balloon expandable stents are typically cut out of a metallic tube of a given thickness,
in this section we optimize the stent struts’ width, for a given tube thickness using methods
explained in Sections 3.2 and 3.3. Thus, we allow that the cross-sections of stent struts be
rectangles. This is different from the previous examples where the cross-sections of all struts
were squares. In the end we perform optimization with respect to both the thickness of the tube
and the width of stent struts and compare the optimal solution with the solutions obtained by
fixing the tube thickness and optimizing only with respect to the strut width. Tables 7, 8, and
9 show the results for the three stents considered: the Zig-Zag stent, the Palmaz6 stent, and
Cypher stent. The rows in red show the solutions for the optimization performed with respect
to both the tube thickness and the strut width simultaneously. The rows in black show the
solutions for the optimization performed only with respect to the strut width, for several tube
thickness values.

Example 7. For the Zig-Zag stent we fix the total volume to be 2.0185·10−9m3, and run
our optimization algorithm for four different tube thickness values between 20µm and 100µm.
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Table 7 reports the results of those simulations, with an additional line, colored in red, showing
optimal result for the optimization performed with respect to both thickness h of the tube and
the width w of the stent struts. Fig. 14 shows the optimization results for the four different tube
thickness values shown in Table 7 in black. Fig. 15 shows the optimal stent for the optimization
with respect to both h and w, shown in red in Table 7. The corresponding 3D optimal stent,
together with the initial configuration, are shown in Fig. 16. This optimal stent, which is

Zig-Zag Thickness Optimal Compliance Min Width Max Width Total Volume

0.2 · 10−4m 2.0972 · 10−5Nm 3.8065 · 10−4m 5.9645 · 10−4m 2.0185·10−9m3

0.4 · 10−4m 9.2795 · 10−6Nm 2.0131 · 10−4m 3.1750 · 10−4m 2.0185·10−9m3

0.4738 · 10−4m 8.8700 · 10−6Nm 1.3531 · 10−4m 2.7907 · 10−4m 2.0185·10−9m3

0.5 · 10−4m 8.9492 · 10−6Nm 1.3066 · 10−4m 2.5520 · 10−4m 2.0185·10−9m3

10−4m 1.9396 · 10−5Nm 4.2475 · 10−5m 1.3810 · 10−4m 2.0185·10−9m3

Table 7: Zig-Zag stent data for minimal compliance optimization. The numbers in black show the
optimal results for the optimization with respect to the strut width w, for a given tube thickness
h. The numbers in red show the optimal solution for the optimization with respect to both w and
h.

the stiffest Zig-Zag stent made of a 316L stainless steel tube, occurs for the tube of thickness
47.38µm. This optimal result corresponds to the red dot in Fig. 22 left, which shows the cost
functional (compliance) vs. tube thickness for the Zig-Zag stent, optimized with respect to both
h and w.

Figure 14: Zig-Zag stent. Left: Optimal stent; Middle: Starting configuration; Right: Strut
width vs. axis of symmetry. The optimization is performed only with respect to the strut width
w for four different values of h. See Table 7. Notice the stent for h = 20µm, which has struts
whose width is largest in the middle, not at the junctions.

Conclusions. Two interesting observations can be drawn:
1. From Fig. 14 we see that for very thin tubes, e.g., h = 20µm, the stiffest stent has the struts
that are widest in the middle than at the junctions. This is opposite from the stents that are
cut out of a thicker tube with thickness h = 40µm and higher, shown in Fig. 14, for which the
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Figure 15: Zig-Zag stent optimized for both stent strut thickness and width, where the stent
strut thickness is kept constant for the entire stent, motivated by the fact that balloon expandable
stents are cut out of a metallic tube of constant thickness. Left: Initial configuration. Middle:
Optimized stent. Right: Strut width vs. axis of symmetry. The minimal and maximal strut
width and stent compliance are shown in red in Table 7.

Figure 16: Zig-Zag stent: A comparison between the initial, non-optimal configuration with
uniform thickness and struts’ width (left), and optimized configuration (right). Both have the
same material volume. The stent on the right has optimized tube thickness h and struts’ width
w giving the highest radial strength.

width of the struts is larger at the junction points than at the middle. Also, it is interesting to
notice how the distribution of the widths of the struts changes as we increase the thickness of
the tube, shown in the graphs on the right in Fig. 14.
2. When compared to the optimal stent from Example 1 for which h = w (square cross-sections),
we see from Table 7 that optimal tube thickness in this example is smaller than the smallest
thickness of the stent struts in Example 1: 4.738 · 10−5m < 6.72 · 10−5m. However, this is
compensated by the increase in the width of the stent struts in this example, when compared
to Example 1. Namely, the width of the stent struts in this example is between 1.3531 · 10−4m
and 2.7907 · 10−4m, while in Example 1 the width of the stent struts is between 6.72 · 10−5m
and 1.28 · 10−4m. This is consistent with the constraint on the total volume of stent material.
The resulting optimized compliance in this example is smaller than the optimized compliance
in Example 1, 8.8700 · 10−6Nm vs. 2.21 · 10−5Nm. Therefore, we conclude that optimizing the
Zig-Zag stent with respect to compliance by keeping the thickness of the metallic tube uniform
along each stent, gives better solutions.

Example 8. Here we consider Palmaz6 stent. We optimize the struts’ width for several thick-
nesses of the 316L stainless steel tubes to find the tube thickness and struts widths that corre-
spond to the stiffest Palmaz6 stent. For all the stents in the optimization algorithm the total
volume is kept at 7.7350−10m3. Table 8 shows the data for seven different metallic tube thick-
nesses, with the row in red showing the optimal solution obtained, as in the previous example, by
optimizing with respect to both the thickness h of the tube, and the width w of the struts. We
see that the stiffest stent is obtained for the tube thickness of 0.2854 · 10−4m, with the minimal
and maximal width of stent struts between 2.0138 ·10−4m and 6.0470 ·10−4m. Fig. 17 shows the
optimal stent in 2D, while Fig. 19 right shows its 3D image. This optimal result corresponds to
the red dot in Fig. 22 middle, which shows the cost functional (compliance) vs. tube thickness
for the Palmaz6 stent, optimized with respect to both h and w.
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Palmaz6 Thickness Optimal Compliance Min Width Max Width Total Volume

0.1 · 10−4m 0.062135Nm 4.4886 · 10−4m 2.0369 · 10−3m 7.7350−10m3

0.2 · 10−4m 0.029266Nm 3.0741 · 10−4m 9.4024 · 10−4m 7.7350−10m3

0.2854 · 10−4m 0.0244269Nm 2.0138 · 10−4m 6.0470 · 10−4m 7.7350−10m3

0.3 · 10−4m 0.024632Nm 1.5760 · 10−4m 5.5991 · 10−4m 7.7350−10m3

0.4 · 10−4m 0.029452Nm 8.5846 · 10−5m 4.0752 · 10−4m 7.7350−10m3

0.6 · 10−4m 0.052715Nm 3.5213 · 10−5m 2.6637 · 10−4m 7.7350−10m3

10−4m 0.13360Nm 1.3587 · 10−5m 1.6096 · 10−4m 7.7350−10m3

Table 8: Palmaz6 stent data for minimal compliance optimization with respect to stent strut
thickness and stent strut width, where the thickness is kept constant along each stent.

Figure 17: Palmaz6 stent optimized for both stent strut thickness and width, where the stent
strut thickness is kept constant for the entire stent, motivated by the fact that balloon expandable
stents are cut out of a metallic tube of constant thickness. Left: initial configuration. Middle:
Optimized stent. Right: Strut width vs. axis of symmetry.

Similarly as in the previous example, in the case of a very thin tube, namely for h = 10µm,
see Fig. 18, the optimal stent has struts that are wider in the middle than at the joints. This is
opposite to all the other stents for which h ≥ 20µm. Fig. 18 shows a comparison between the
thin stent for which h = 10µm and the optimal stent, shown in Fig. 17, fully expanded. Notice
how the deformation under uniform pressure loading is different for the two stents: significant
radial deformation can be seen for the stent with h = 10µm.

Figure 18: Comparison between the fully expanded Palmaz6 stent cut out of a very thin tube
(h = 10µm) shown on the left, and the optimal stent from Fig. 17 shown on the right. Notice
that for the h = 10µm stent, the struts are thicker in the middle, they become thinner near the
joints, and then thick again at the joints. Additionally, significant radial deformation of the
stent with h = 10µm can be observed, which is not visible in the optimal stent shown on the
right.
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Figure 19: Palmaz6 stents: A comparison between the initial, non-optimal configuration with
uniform thickness and width of stent struts, shown on the left, and the optimized configuration
corresponding to the red line in Table 8, shown on the right. Both have the same material
volume. The stent on the right has optimized tube thickness h and strut width w giving the
highest radial strength.

Conclusions. Two interesting observations can be drawn:
1. From Fig. 18 left we see that for very thin tubes, e.g., h = 10µm, the stiffest stent has the
struts that are widest in the middle, they become thinner near the joints, and then thick again at
the joints. As a result the deformation under uniform pressure loading is significantly different
from the deformation of the optimal stent, shown in Fig. 18 right. Notice how the centers of the
struts have smaller radial displacement than the joints of the stent. This is very different from
the deformed stent shown on the right.
2. When compared to the optimal Palmaz6 stent from Example 2, we draw similar conclusions
as for the Zig-Zag stent above. The optimal tube thickness in this example is smaller than the
smallest thickness of stent struts in Example 2, however, this is compensated by the increase in
the width of stent struts in this example, when compared to Example 2. The resulting optimized
compliance in this example is significantly smaller than the optimized compliance in Example 2,
0.0244269Nm vs. 0.94959Nm, which is a reduction of 38 times in compliance achieved by the
stent in Fig. 17. We conclude that optimizing the Palmaz6 stent with respect to compliance by
keeping the width of the metallic tube uniform along each stent, provides significantly better
results, as was the case with the Zig-Zag stents in the previous example.

Example 9. Here we consider Cypher stent. We optimize the struts’ width for several thick-
nesses of the 316L stainless steel tubes to find the tube thickness and struts widths that cor-
respond to the stiffest Cypher stent. For all the stents in the optimization algorithm the total
volume is kept at 4.3535 · 10−9m3. The initial thickness was taken to be 1.4 · 10−4m. Table 9

Cypher Thickness Optimal Compliance Min Width Max Width Total Volume

0.4 · 10−4m 0.69161Nm 1.9212 · 10−5m 8.3330 · 10−4m 4.3535 · 10−9m3

0.6 · 10−4m 0.37138Nm 1.4607 · 10−5m 5.1185 · 10−4m 4.3535 · 10−9m3

0.8 · 10−4m 0.27389Nm 1.0635 · 10−4m 4.3553 · 10−4m 4.3535 · 10−9m3

1.0 · 10−4m 0.24717Nm 6.6646 · 10−5m 3.8404 · 10−4m 4.3535 · 10−9m3

1.0282 · 10−4m 0.24628Nm 5.7496 · 10−5m 3.6928 · 10−4m 4.3535 · 10−9m3

1.2 · 10−4m 0.25031Nm 4.8512 · 10−5m 3.2200 · 10−4m 4.3535 · 10−9m3

1.4 · 10−4m 0.27048Nm 2.8829 · 10−5m 2.8067 · 10−4m 4.3535 · 10−9m3

Table 9: Cypher stent data for minimal compliance optimization with respect to stent strut
thickness and stent strut width, where the thickness is kept constant along each stent.

shows the optimization results, with the line in red showing the optimal solution obtained by
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changing both h and w, where h is kept fixed over the entire stent. The optimal stent data is
shown in Fig. 20, and a 3D image of the optimal stent is shown in Fig. 21. Fig. 21 also shows a
comparison with the initial, non-optimal configuration.

Figure 20: Cypher stent optimized for both stent strut thickness and width, where the stent strut
thickness is kept constant for the entire stent, motivated by the fact that balloon expandable
stents are cut out of a metallic tube of constant thickness. Left: Initial configuration. Middle:
Optimized stent. Right: Strut width vs. axis of symmetry.

Figure 21: Cypher: A comparison between the initial, non-optimal configuration with uniform
thickness and width of stent struts (left), and optimized stent (right). Both have the same
material volume. The stent on the right is optimized with respect to the tube thickness h and
stent struts’ width w. In this stent, the thickness of the sinusoidal connecting struts is roughly
1/3 of the thickness of the zig-zag rings.

Conclusions. By comparing the results from Example 3 and this example, we conclude
that optimizing Cypher stent with respect to compliance by keeping the width of the metallic
tube uniform along each stent, provides significantly better results, as was the case with the
previous two examples. Namely, Table 9 shows that optimal compliance of the Cypher stent in
this example is 0.24628Nm, which is 50% smaller than optimal compliance of the Cypher stent
in Example 3. As in Example 3, the zig-zag rings in Cypher stent are responsible for bearing
most of the load in uniform pressure loading, with the ratio between the average thickness of the
thin sinusoidal struts and the average thickness of the zig-zag struts in the optimal configuration
being roughly equal to 1 : 3, see Table 9. This is similar to what is used in the production of
certain Cyphers stents, see [29].

We conclude this section by the graphs shown in Fig. 22, which depict compliance vs. tube
thickness for the three stents. We observe that the cost function (compliance) appears to be a
convex function of the tube thickness, and that the minimum, which is denoted by the red dot
in each of the three graphs, is significantly lower for the Palmaz6 stent than for the other two
stents, showing a well-accepted opinion that Palmaz-like stents are the stiffest stents on the US
stent market.

6 Comparison with a Genetic Algorithm

We compared the results and efficiency of our optimization algorithm with the genetic algorithm
implemented in Matlab 2010a, run on the same personal computer as the optimization algorithm
used above, with 2.4 GHz Quad-Core Intel Core i5 and 16 GB 2133 MHz LPDDR3 memory.
The comparison was performed for the Zig-Zag stent problem presented in Example 1.
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Figure 22: Cost functional (compliance) versus tube thickness for Examples 7, 8, and 9, with
the optimum denoted by the red dot. The plots indicate that in all three examples compliance is
a convex function of tube thickness. By comparing the stiffness values for the optimal configu-
rations, we see that of the three stents, the stiffest one is Palmaz6.

For the Zig-Zag stent, each strut was divided into six subintervals. Each subinterval carried
information about the thickness of that subinterval. This defines six degrees of freedom in the
optimization algorithm for each strut. Since the entire Zig-Zag stent consists of twelve struts, the
optimization problem we considered had 72 degrees of freedom. To lower the computational cost
of the entire stent optimization procedure, we used the fact the the pressure loading is symmetric,
and identified one strut with all the remaining eleven struts forming the Zig-Zag stent shown in
Fig. 5. More precisely, the substruts (subintervals) with the same {x1}start and {x1}end (axial)
coordinates were identified among different struts. This way the number of degrees of freedom
for the entire stent was kept at only six (corresponding to one strut), providing a symmetric
solution. In fact, we noticed that the genetic algorithm was having difficulties keeping the
solution symmetric without the approach described above. This is a well-known downside of
genetic algorithms. However, it is important to notice that this is different from the algorithm
studied in the present paper. We never needed to impose a symmetric solution in any of the
examples presented above. The symmetries in our algorithm are embedded in the formulation
of the optimization problem.

We ran the genetic algorithm with no initial data prescribed, using 200 generations and a
population size of 100. Optimization was performed by changing the width of the stent struts
with the tube thickness of h = 10−4m = 100µm. We obtained an optimized stent with the
minimal compliance equal to 2.13417 · 10−5Nm, and stent strut thickness for each of the six
intervals along each strut given by:

Stent w1 (µm) w2 (µm) w3 (µm) w4 (µm) w5 (µm) w6 (µm)

Zig-Zag 142.9711 101.2637 67.1848 61.9685 100.3653 126.8807

The graphs shown in Fig. 23 show optimal strut width v.s. strut length obtained using the
genetic algorithm (left) and our algorithm (right).

One can notice three things:

1. The symmetry of the strut width along each strut in the genetic algorithm is not kept as
well as it is in our algorithm (compare w1 with w6, w2 with w5, and w3 with w4).

2. The minimal compliance obtained using the genetic algorithm, which was equal to 2.13417·
10−5Nm, is higher than the minimal compliance obtained using our algorithm, which was
2.120925 · 10−5Nm, which indicates that the results of our algorithm are closer to the true
minimum.

3. The time it took the genetic algorithm to generate the optimal solution was 280 seconds,
which is 60 times longer than 4.5 seconds it took our optimization algorithm to run on the
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Figure 23: Comparison between the genetic algorithm and our algorithm: strut width v.s. strut
length.

same machine. In fact, the 4.5 seconds is the time it took our algorithm to optimize the
stent without any assumptions on the symmetry of the problem, thereby computing with
72 degrees of freedom (72 = 2 (ends of each subinterval) ∗6 (subintervals) ∗6 (struts)),
instead of the 6 degrees of freedom used in the genetic algorithm to enforce symmetry.

In conclusion, we argue that for the class of optimization problems considered here, where
the stent is modeled using the one-dimensional stent net model [39], the algorithm proposed
in this manuscript outperforms the genetic algorithm in three key features: (1) computational
time, (2) accuracy, and (3) symmetry.

For longer stents, and more degrees of freedom, the genetic algorithm may not be an option
due to the prohibitively large computational time and asymmetries that contaminate the solution
landscape.

7 Strain information for optimized configurations

Finally, we present strain information for the optimized configurations shown in Figures 15, 19,
and 21. The strain magnitude in this 1D model is proportional to ‖∂sω‖, see [26]. A simple
argument which relates strain to ∂sω can be explained as follows. Following the derivation of the
Antman-Cosserat 1D curved rod model from 3D elasticity presented in Antman [4] and Scardia
[36], one can see that the following quantity: [∂sR]RT , plays the main role in the calculation
of strain, where R is a rotation matrix that describes the behavior of the cross–section of the
rod. The quantity [∂sR]RT measures flexure and torsion of the middle curve of the curved rod.
Since R is a rotation matrix function, there exists a vector function ω such that R = eAω ,
and Aω denotes the skew-symmetric matrix with axial vector ω (Aωx = ω × x). A simple
calculation then shows that [∂sR]RT = A∂sω, where this ω is exactly the same as the ω we
use in the stent model. The typical remaining strains are zero in the model (2.12) we use, as
was rigorously justified in [36], since we have inextensibility and unshearability assumed in the
model. Therefore, to capture the strain magnitude in this reduced 1D model, it is sufficient
to plot ‖∂sω‖. The pictures presented in this section show ‖∂sω‖ for the non-optimized and
optimized configurations of the stents shown in Figures 15, 19, and 21. The strains are presented
on deformed configurations.

We start with the strain associated with the Zig-Zag stent shown in Figure 15. We see that
for the Zig-Zag stent, the optimization procedure minimizing compliance gives rise to a stent
for which the maximal strain is comparable to the non-optimized configuration, however, the
distribution of strain is “the opposite” to the non-optimized stent. While the non-optimized
stent has maximal strain concentrated at the joints of the stent, the optimized stent’s maximal
strain occurs in the middle of the stent struts. This is because the centers of the struts in the
optimized stent are thinner then in the non-optimized stent.

In Figure 25 we show strain distribution for the Palmaz6 stent. One can see that the
expanded optimized stent has maximal strain that is 24% smaller than the non-optimized stent.
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Figure 24: Zig-zag stent from Figure 15. Left: Strain for the non-optimized stent, with maximum
strain 15.4m−1. Right: Strain for the optimized stent, with maximum strain 15.6m−1. While
the max strain for the two configurations has not changed in a significant way, the concentration
of high strain has moved from the joints in the non-optimized stent, to the middle of the struts
in the optimized configuration. This is because centers of the struts in the optimized stent are
thinner then in the non-optimized stent.

Figure 25: Palmaz stent from Figure 19. Left: Strain for the non-optimized stent, with maximum
strain 2367m−1. Right: Strain for the optimized stent, with maximum strain 1787m−1, which is
a reduction in maximal strain of 24%. While the maximal strain is located at the joints for both
configurations, the strain distribution along the stent struts is different for the nonoptimal and
optimal stent configurations.
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We also observe that the maximal strain is concentrated at the joints of the stent for both
configurations.

Finally, we present the strain distribution for Cypher stent. We observe that the optimized

Figure 26: Cypher stent from Figure 21. Left: Strain for the non-optimized stent, with maximum
strain 1489m−1. Right: Strain for the optimized stent, with maximum strain 754m−1, which is
a reduction in maximal strain of 49%. In contrast with the non-optimized configuration where
the maximum strain is located at the stents joints, the maximal strain in the optimized stent is
distributed along the struts.

Cypher stent has maximal strain that is 49% smaller than the maximal strain of the non-
optimized configuration. Additionally, we see that the maximal strain concentration has shifted
from the joints of the stent to the centers of the stent struts, making this stent a desirable choice
for the lesions in which stent stiffness and low strain at stent joints is preferred.

8 Conclusions

We conclude this manuscript with a summary of the main results of the paper (see subsec-
tion 8.1), and a comparison of the proposed optimization approach based on the 1D reduced
model discussed here, with a full 3D approach recently published by Russ et al. in [35] (see
subsection 8.2.

8.1 Summary

In Section 2 we introduced the differential and integral (weak) formulations of the 1D stent
model. Based on this 1D stent model, we formulated a constrained optimization problem in
Section 3. The constrained optimization problem is based on minimizing compliance for the
three stents considered in this study: the Zig-Zag stent, the Palmaz6 stent, and a Cypher-like
stent. We presented three sets of minimization procedures: the first one assumes that the cross-
sections of the stent struts are squares, and optimizes the squares’ sides h (see Section 3.1),
the second one assumes that the cross-sections of the stent struts are rectangles, with constant
thickness h, and optimizes the widths wi of each stent strut (see Section 3.2), and the third
assumes that the cross-sections of the stent struts are rectangles, and optimizes with respect to
both the stent thickness h and the width wi of each stent strut (see Section 3.3). In the first case
a proof of the existence of a unique minimizer was obtained in Section 3.4. For all three cases
a numerical optimization algorithm was developed, with the main steps of the algorithm shown
in (3.20). A Finite Element Method-based numerical method was developed and described in
Section 4, where a series of numerical results, providing insightful information about optimal
stent design, were presented. The following is a snapshot of those results:

1. Minimal compliance under radial force for the stents manufactured from stainless steel
tubes of thickness 40µm and higher, is achieved by increasing the width of stent struts
near the struts’ joints. For the thin struts whose thickness is between 10µm and 20µm,
which appears to be a popular choice currently, the stiffest stent has the struts that are
wider in the middle than at the joints. For very thin struts, whose thickness is 10µm or
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smaller, the stiffest stent has the struts that are widest in the middle, then become thinner
as we approach the junction, and are again thick at the joints.

2. Minimal compliance under a symmetric longitudinal force (stretching) is achieved with the
stents that have thicker struts near the center of the stent, and thinner struts at the edges
of the stent.

3. For Palmaz-Schatz-like stents, which are stents with a uniform geometry, the stent com-
pliance is minimal for the stents with thicker struts near the left and right edges of the
stents. This is directly related to the dogboning effect associated with the flaring-out of
the stents edges under uniform pressure loading during balloon angioplasty.

4. The stiffest Cypher-like stent geometry is the geometry for which the zig-zag rings have
thickness which is considerably higher than the thickness of the sinusoidal struts. This is
in line with the most recent designs of Cypher-like stents that are currently available on
the US market, see [29]. Our analysis suggests that the optimal thickness ratio between
the zig-zag struts and the sinusoidal struts is 3 : 1.

5. For both Palmaz6 and Cypher stents, the optimal configurations presented in this work
have maximal strain that is significantly lower than the strain of the non-optimized con-
figuration. See Section 7. Lower strain could be associated with lower fatigue in those
stents (not analysed in this work).

6. Based on these findings, the optimized Cypher-like stent presented in Figure 21, could, in
fact, be a realistic choice for stent implantation in lesions where radial strength, flexibility
to bending, and low junction fatigue are preferred.

8.2 Comparison with 3D surrogate-based optimization approaches

Finally, we compare our approach with 3D surrogate-based approaches, such as those used in
[35]. The work presented in [35] discusses optimization of a stent used to anchor a pediatric
balloon-expandable prosthetic heart valve. The optimization is performed with respect to three
parameters: uniform stent strut thickness, uniform stent strut width, and the number of cir-
cumferential patterns. The goal in [35] is to obtain a stent that is stiff enough to counteract the
retraction of a polymeric glue that holds a prosthetic heart valve, under a constraint on the stent
diameter to be as uniform as possible, and as close to the diameter of the remaining conduit
as possible. Additionally, a criterion for ductile failure was incorporated in the computational
model. Optimization was performed on a 3D stent model , which was approximated by a high
quality hexahedral mesh. The optimization algorithm was a surrogate-based multi-objective
optimization procedure.

Because of the high computational costs typically associated with 3D approaches the run
time is typically hours for each model evaluation without a high quality preconditioner, see [35].
This can be compared to 1-2 seconds that it takes for the reduced 1D model evaluation using a
serial code on a laptop with a 2.4 GHz Quad-Core Intel Core i5 and 16 GB 2133 MHz LPDDR3
memory. The entire optimization algorithm presented in this manuscript takes 3-5 minutes on
this laptop.

The significantly shorter simulation time of the 1D model allows the use of a large number
of optimization parameters. In the present paper, since the strut thickness and width are not
uniform, the number of optimization parameters is, in fact, 2880. It would be computationally
prohibitive to take into account 3000 parameters in the 3D approaches using surrogate-based
optimization.

Another significant difference between the two approaches is the way how the optimization
procedure accounts for the dependence of the cost function on the optimization parameters.
While a surrogate-based model alla Russ et al. [35] contains information about the model
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parameters implicitely , the model presented in this manuscript provides an explicit dependence
of the cost function on the parameters in the problem. This reduces the computational costs
significantly. At most 100 iterations are needed to complete the optimization procedure based
on a gradient descent method, which translates into the total computational time of only a
few minutes per stent optimization with high accuracy. Furthermore, rigorous mathematical
analysis presented in this manuscript guarantees that the problem is well-posed, which implies
that the problem we are solving actually has a minimum, thereby justifying the development of
a computational algorithm to solve it.

Because of the simplicity of the 1D model, which can be viewed as a rigorously justified
“surrogat” model for the 3D problem, we are also not restricted by the size of the optimization
step in the gradient descent-based algorithm to find the minimum. Due to the rigorous derivation
of the 1D “surrogat” model in [20, 39], our approach contains the information that allows us to
deal with even local oscillatory behavior of the cost function near a minimum.

In summary, the advantages of the proposed algorithm are its computational efficiency, a
capability to handle a large number of optimization parameters, high accuracy, and confidence
based on mathematical rigor implying that the minimum we are looking for actually exists.
Drawbacks include the lack of detailed 3D information within each stent strut that is provided
by full 3D simulations.

The ultimate goal of this research would be to design a hybrid algorithm based on both ap-
proached. First, one would identify the extrema of the cost function using the efficient 1D-based
model that captures explicitly the parameter landscape and the dependence of the cost function
on the parameters, presented in this manuscript. Once a minimum is found, 3D approaches,
such as those presented in Russ et al. [35] would be used to explore a neighborhood around the
minimum in order to capture the full 3D information of the optimizer that may not be available
from the 1D reduced model approach.
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