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Abstract

We consider the interaction between an incompressible, viscous fluid modeled by the dynamic
Stokes equation and a multilayered poroelastic structure which consists of a thin, linear, poroelastic
plate layer (in direct contact with the free Stokes flow) and a thick Biot layer. The fluid flow and
the elastodynamics of the multilayered poroelastic structure are fully coupled across a fixed inter-
face through physical coupling conditions (including the Beavers-Joseph-Saffman condition), which
present mathematical challenges related to the regularity of associated velocity traces. We prove ex-
istence of weak solutions to this fluid-structure interaction problem with either (i) a linear, dynamic
Biot model, or (ii) a nonlinear quasi-static Biot component, where the permeability is a nonlinear
function of the fluid content (as motivated by biological applications). The proof is based on con-
structing approximate solutions through Rothe’s method, and using energy methods and a version
of Aubin-Lions compactness lemma (in the nonlinear case) to recover the weak solution as the limit
of approximate subsequences. We also provide uniqueness criteria and show that constructed weak
solutions are indeed strong solutions to the coupled problem if one assumes additional regularity.

1 Introduction and Literature Review

Poroelasticity refers to fluid flow, as described by Darcy’s law, within deformable, porous media.
Historically, studies of the fluid flow through porous media were motivated by applications in geo-
sciences, see e.g. [27]. The classic partial differential equation (PDE) model for such flows, based on
consolidation theory, was originally introduced by Biot [10-12] and predicated upon phenomenologi-
cal modeling. An alternative approach considers the fluid-structure interaction system at the level of
the pores, with a derivation of an effective model based on homogenization techniques, see [3,30,39]
and the references therein. Derivation of poroelastic models based on a continuum mechanics ap-
proach can be found in the monograph of Coussy [25]. Recently, Mikeli¢ et al. presented a mathe-
matically rigorous derivation of lower dimensional poroelastic models, such as poroelastic plates and
shells, which can be found in [36,38]. From the point of view of PDE well-posedness, the classical Biot
system has been extensively studied by many authors, see, e.g., [8,9,44,48,50,52,55]. Since poroelastic
structures are ubiquitous in biological systems, recently there has been a growing interest in the anal-
ysis of poroelasticity in the context of biomedical applications, see, e.g. [6,7,14,15,17,20,23,26,32,54]
and the references and discussions therein.

In a variety of biomedical applications, the poroelastic structure is often in contact with a free
fluid flow, such as, e.g., the blood flow through an artery with poroelastic walls. Mathematically,
such problems are described mathematically by a coupled system of partial differential equations:
the fluid equations (e.g. the Navier-Stokes or Stokes system) on one side, and the equations of
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poroelasticity on the other. These coupled problems are referred to as fluid-poroelastic structure
interaction (FPSI) problems, and have been analyzed, for instance, in [1,24,46,47,49]. However,
many biological tissues (such as arterial walls) have a multilayered structure. In bioengineering, a
multilayered poroelastic structure arises in the design of a bioartificial pancreas [51]. In bioartificial
pancreas, healthy pancreatic cells are seeded in a poroelastic agarose or alginate gel, and the gel is
encapsulated between two poroelastic plates, which are designed to exclude the patients own immune
cells from attacking the organ while allowing passage of oxygen and nutrients to the pancreatic
cells [51]. This multilayered poroelastic medium is connected to the blood flow via a tube (an
anastomosis graft). The blood flows over the poroelastic plate and it passes into the poroelastic
medium containing the transplanted cells, bringing oxygen and nutrient supply to the cells. Thus,
the poroelastic plate in this design separates the poroelastic region containing the pancreatic cells
on one side, from the region containing free blood flow on the other. One of the problems in this
bioartificial pancreas design is to understand fluid (blood) flow through the poroelastic plate and
poroelastic gel containing the cells, and simulate oxygen and nutrients supply to the cells.

Motivated by these types of applications, in the present paper we are interested
in the mathematical aspects of the interaction between the flow of an incompressible,
viscous fluid and a multilayered poroelastic structure. The multilayered poroelastic structure
under consideration consists of two layers: a thin poroelastic layer in direct contact with the free
fluid flow, and a thick poroelastic layer sitting atop the thin layer (see Fig. 1). The fluid flow
is described by the time-dependent Stokes equations, while the thin and thick poroelastic layers
are described by a poroelastic plate model, and a Biot model, respectively. The three different
physical models (the fluid model, the thin poroelastic structure model, and the thick Biot system)
are fully coupled across a fixed interface by physically-motivated interface conditions. We mention
that interface conditions between porous media (Biot model(s)) and adjacent free fluid flow were
rigorously analyzed in [34,35]. Although slightly different from [34], our interface conditions involve
a jump in the pressure between the free fluid and the Biot pressure at the interface. However, in
contrast with the pressure jump derived in [34] through boundary layer considerations, the pressure
jump in the present paper is a consequence of the presence of a thin poroelastic plate, which serves
as the fluid-structure interface.

In the multilayered poroelastic structure, we consider two distinct scenarios: (i) a
linear, dynamic Biot model, or (ii) a nonlinear quasi-static Biot component where the permeability
is a nonlinear function of the fluid content. The second case is motivated by biological applications
[21, 23,27, 33]. In particular, our main motivation comes from the recent work [21] on vascular
prostheses called drug-eluting stents. Based on mathematical and computational results, together
with experiments cited in [21], it was found that the implantation of a vascular stent within the
arterial wall, induces a change in vascular tissue permeability, which is affected by the change in
porosity near the end points (edges) of vascular stents. As a consequence, this can influence drug
advection, reaction and diffusion into the vascular tissue, and lower the efficacy of anti-inflammatory
drugs in lowering restenosis (or re-closure) of coronary arteries near the edges of a stent. Thus, in
the present paper we accommodate the case when permeability is not constant, but depends on
porosity, and, in turn, on the so called Biot fluid content. We note that the nonlinear permeability
(dependent on fluid content) introduces significant complications in the analysis of the system.
Such a nonlinear model was first considered—from a mathematical point—in [22], and later in
[14]. The reference [22] focuses on the compressible Biot model, with a permeability that depends
on the Biot dilation, and constructs weak solutions through a full spatio-temporal discretization
in the mathematically simplified framework of homogeneous boundary conditions for both fluid
pressure and solid displacement. The later reference [14] focuses on Biot models with incompressible
constituents and constructs weak solutions following the approach of [55] for both poroelastic and
poro-visco-elastic systems. Another main contribution of [14] is the treatment of non-homogeneous,
mixed boundary conditions that are physically relevant to ophthalmological applications.



The mathematical literature dealing with FPSI problems is scarce. We mention the semigroup ap-
proach based on the variational formulation of a linear compressible Stokes system coupled to a Biot
dynamics developed in [49]. The incompressible Stokes case, considered in the present manuscript,
does not seem to be covered by this analysis. Later, in [24], the problem of linear coupling (across a
fixed interface) of the incompressible Navier-Stokes equations and linear Biot equations was consid-
ered, and the existence of strong solutions was proved under a small data assumption. And finally,
we mention a well-posedness result for the stationary non-Newtonian fluid flow coupled with the
Biot equation via fixed interface, reported in [1]. To the best of our knowledge there are no results
related to the well-possednes of the FPSI problems in cases where the poroelastic model is nonlinear,
and additionally, consists of multiple layers.

In the present paper we prove the existence of a weak solution to a fluid-structure interaction
problem between the flow of an incompressible, viscous fluid, and a multilayered poroelastic struc-
ture, where the Biot model in the thick poroelastic layer may be nonlinear through the dependence
of permeability on the porosity. We consider two cases: the linear case in which the permeabil-
ity in the Biot model may be a given function of space and time, and the nonlinear, quasi-static
case in which the permeability in the Biot model may generally depend on porosity. The proof is
based on the construction of approximate solutions via Rothe’s method, introduced in [41] to study
fluid-structure interaction problems between the flows of incompressible, viscous fluids and elastic
structures. The method is extended in the present paper to the poroelastic case, where the thin
poroelastic plate serves as a fluid-structure interface, and plays the role of a regularizing mechanism
in the existence proof, similar to the results in [4,40,42]. The proof is based on a construction of
approximate solutions by semi-discretizing the coupled problem in time, and “solving” a sequence
of elliptic problems for each fixed time step At. Using energy methods, we show that as At — 0,
approximate solutions converge to a weak solution of the underlying coupled problem. In the non-
linear case, a compactness argument, based on a version of the Aubin-Lions lemma, is used to show
strong convergence of subsequences to a weak solution. Finally, for the linear problem we demon-
strate uniqueness in a class of solutions with slightly improved regularity than weak solutions. For
the nonlinear problem, we show a weak-strong type uniqueness result for the same class. This weak-
strong uniqueness result for the FPSI with the nonlinear, quasi-static Biot model considered here
is new, since even for the nonlinear Biot model alone, a full uniqueness result seems to be lacking.

We finish this introduction by mentioning that the development of numerical methods for FPSI
problems has been a very active research area in the last decade, see e.g. [2,5,18] and the references
therein. Many problems remain open in this field, especially related to the design of partitioned
schemes for FPSI problems. In particular, one of the approaches currently under investigation is
the design of a partitioned scheme that would be based on the main steps in the constructive proof
presented in this manuscript.

We conclude this section by noting that extensions of this work to the moving interface case, in
which the fluid domain is not fixed but moving with the interface itself, requires careful considera-
tions. Such an analysis would be similar, but more complicated than those presented by the authors
in [13,41,42], where FSI with multi-layered structures and elasticity were considered, but without
poroelasticity. This is one of the goals of our future research.

2 Mathematical Formulation

2.1 Spatial Domain

We consider the domain  C R? with the simplest geometry describing the coupling between the
flow of an incompressible, viscous fluid and a thick poroelastic medium, where the coupling occurs
through a thin poroelastic plate, serving as a fluid-structure interface with mass. Namely, our domain
is a rectangular prism: Q = (0,1) x (0,1) x (—1,1), with three distinct subregions, see Fig. 1: Qf



which is occupied by a viscous, incompressible fluid, €, which contains a (thick) poroelastic medium
modeled by the Biot’s model, and €, corresponding to a thin poroelastic plate of thickness h, whose
middle surface, denoted by w,, separates the regions Q¢ and :

Qf = (0,1)% x (—1,0), Q= (0,1)2 x (0,1),
wp = (0,1)% x {0}, Q, = (0,1)* x (—h/2,h/2).

In Cartesian coordinates (x1,x2,x3), the physical domain § is the union Q = Q7 Uw, U Q. The
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Figure 1: Left: 3D domain Q. Right: 2D vertical cross-section through domain €.

variable x3 will be referred to as the “transverse” variable z3 € [—1,1], and 21 € [0, 1] and z2 € [0,1]
will be called the “longitudinal” and “lateral” variables, respectively.

To study filtration through the thin, poroelastic plate of thickness h, we will consider a “2.5-
dimensional model”, derived and rigorously justified by Marciniak-Caochra and Mikeli¢ in [37],
obtained via asymptotic reduction from the full Biot model. In the poroelastic plate model, the
elastodynamics of the thin plate is described in terms of the x; and x5 variables, as usual, namely,
it is given in terms of the plate displacement of the middle surface, which is a function of only z;
and zo. Filtration, however, needs to be described in terms of an additional variable s € [-h/2,h/2],
since it was shown in [37] that filtration through a thin poroelastic isotropic structure is dominant
in the thin/transverse direction. Therefore, we denoted by w, the location of the middle surface of
the elastic plate, and by (2, the “inflated” mathematical domain on which the filtration velocity
and pore fluid pressure will be defined. In Sec. 2.2 we present the model, and provide more details
about the approach.

The fluid contained in region {1y will be modeled by the time-dependent Stokes equations, with
periodic boundary conditions at 1 = 0,27 = 1,22 = 0, and x5 = 1, and with the no-slip boundary
condition at the bottom boundary x3 = —1, which is considered fixed. The boundary conditions at
the top fluid domain boundary, where the bulk fluid flow in € is coupled to the filtration flow in
through the poroelastic membrane 2, will be described in Sec. 2.2.

Finally, €, represents a thick poroelastic region relative to the thin poroelastic plate, with filtra-
tion flow and structure displacement satisfying Biot’s equations. The thick structure displacement
in €, as well as the flitrate flow, will satisfy periodic boundary conditions at 1 = 0,x1 = 1,25 = 0,
and o = 1. At the top boundary of €, with the reference configuration described by x3 = 1, we
prescribe zero elastic stress, and no filtration through the wall. At the bottom boundary, both the
elastodynamics of the thick poroelastic medium, as well as filtration flow in €2, are fully coupled
to the elastodynamics and filtration flow in the thin poroelastic plate €2,, which is, in turn, fully
coupled to the fluid flow in €2;. The filtration flow in €2y is driven by the pressure gradient between
the bottom boundary z3 = 0, and the top boundary z3 = 1, and by the time-dependent change in
structure displacement.

In summary, the boundary of Q consists of the periodic boundary at 1 = 0,27 = 1,29 = 0, and
ro = 1, a fixed bottom boundary x3 = —1, and the top boundary with the reference configuration



described by z3 = 1. Detailed boundary conditions, and the coupling between different subdomains
of ©, will be described in the next section.

2.2 Mathematical Models

In this section we describe the mathematical models, holding in each of the sub-domains specified
above, and specify the coupling between them. We will be using x to denote points in Cartesian
coordinates x = (x1,x2,3), the subscript b will be used to denote quantities in the Biot domain
)y, and subscript p will be used to denote the quantities corresponding to the poroelastic plate.

2.2.1 Biot Model in

Domain €, denotes a poroelastic medium, modeled by the following Biot model, given in terms of
the unknown functions n = n(x,t), describing displacement of the solid matrix from its reference
configuration €y, and py = py(x,t) denoting the pore fluid pressure:

poet — AN — (1 + M) V(V - 1) + Vi = Fy, in  x (0,7),

) (2.1)
levpy + V-l =V - (ks Vipy) = S, in Q, x (0,7).

On the right hand-side, F, = Fy(x,t) denotes a body force per unit volume, and S = S(x,t) is a
net volumetric fluid production rate. The first equation describes the balance of linear momentum
for the fluid-solid mixture, and the second equation describes conservation of mass for the fluid
component. The parameter coefficients in this model are the following:

Coefficients Name

b Density of poroelastic matrix;

Ab, L Lamé constants;

o Biot-Willis coefficient [50]; (2.2)
Cp Constrained storage coefficient;

ky Permeability of the poroelastic matrix.

In our work, we will allow the permeability k; of the poroelastic matrix to be a nonlinear function
of one variable, which we specify below in Assumption (2.1). We will also consider the case when
the permeability k; is a given function of x and t. All other coefficients listed above will be taken
constant in this analysis.

System (2.1) is obtained from the following system describing the balance of linear momentum
for the fluid-solid mixture, and conservation of mass for the fluid content, denoted by ¢ (see (2.9)
below to recall the definition of fluid content):

oot — V - op = Fy(x, 1), in Q x (0,7),
(2.3)
G+ Veu, = 8(x,t), in Q x (0,7),

where u, denotes the discharge/filtration velocity associated with the pore pressure p,, and oy
denotes the poroelastic stress tensor, which is given by:

o, = —ayppI, in Qp x (0,7,

where o denotes a given elasticity stress tensor, and I represents the identity tensor. To close the
system, two constitutive laws need to be prescribed, plus Darcy’s law:



1. The constitutive law o = o¥(n), describing the elastic material properties: we assume the

Saint Venant-Kichhoff material:
o =2, D(n) + \ptrD(n)I = 2p,D(n) + NV - 1, (2.4)

where Ay, 1, denote the Lamé constants, and D(n) = 3(Vn + (Vn)T) represents the sym-
metrized gradient.

2. The constitutive law ¢ = {(py, 1), defining the fluid content in terms of the fluid pore pressure,
and the “compressibility of the solid matrix”, i.e., the change in the pore volume:

¢ =cppp + V-1, (2.5)

where ¢, > 0 and a; > 0 were introduced in (2.2). Note that the case ¢, = 0 is permitted
below, and this corresponds to incompressible constituents in the poroelastic material.

3. Darcy’s law:
u, = —KVp,, with K =kl (2.6)

where K is the permeability tensor.

By using these constitutive laws in system (2.3), one recovers (2.1). Notice that system (2.1) is
obtained under the assumption of small deformations.

Assumption 2.1. When considering the case of nonlinear permeability, we assume that the per-
meability tensor K is a nonlinear function of porosity ¢:

K= ka, with kb = kreffk(¢)a (27)

where ke s a reference value for the permeability of the mizture given in terms of the volumetric
fraction ¢ of the fluid component, called porosity. The particular form of the relationship between
the permeability ky and the porosity ¢ is represented by the function fi(¢), and it depends on the
geometrical architecture of the pores inside the matriz and the physical properties of the fluid [23,33].

For completeness, we recall the definitions of porosity ¢ and fluid content (. Porosity ¢ is defined

as the volumetric fraction
_ Vi (X, t)

Vi(x,t)

of the volume Vy(x,t) occupied by the fluid within the poroelastic medium, and the representative
elementary volume of the poroelastic medium V' (x,t), centered at x € £ at time ¢.

Similarly, if we denote by V;(x,t) the volume occupied by the solid, then under the assumption
of fully saturated mixture, the volumetric fraction Vs(x,t)/V(x,t) =1 — ¢(x,1).

Fluid content ( is the increment in the volumetric fraction of the fluid component ¢ with respect
to its baseline value ¢q:

¢

(2.8)

((x,1) = o(x,t) — ¢o(x). (2.9)
Notice that the constitutive law for the fluid content (2.5) implies that porosity is given by

¢ = d(py,m) = ¢o + copp + V- M.

Thus, under the nonlinearity assumption, specified in Assumption 2.1, we have:

ky = ky(¢) = kp((pp, V - 1)) = kp(copy + V- 1). (2.10)

For analysis purposes, we will be assuming the following properties of the permeability function kp:



Assumption 2.2. We assume that the permeability function ky : R — R is continuous and that
there exist constants kyin > 0 and kmnax > 0 s.t.

0< kmin é kb(C) S kmaxa VC eR.

In considerations of the linear dynamics below, we will consider k, = ky(x,t) to be a given
space and time dependent function. In the nonlinear considerations, we will denote by k(¥ (x))
the Nemytskii operator associated with kj. In that situation, our assumptions on the function k&,
and the theory of superposition operators [45,53], will yield that the operator k3 is bounded and
continuous from L2(2 x (0,T)) into L*(Q x (0,T)). In our considerations of uniqueness for the
nonlinear problem below, we will consider the hypotheses that k;, is a globally Lipschitz function on
R.

Remark 2.1. As in [14], we could also consider a poroviscoelastic material, for which the stress
tensor o, would include a viscoelastic component, for example:

o, =07 +ov —apl, oV = 2uy D(n) + AvtrD ()1, (2.11)

where Ay and py are independent Lamé parameters for viscoelasticity. All the results from this
manuscript would hold for the viscoporoelastic case as well.

2.2.2 Poroelastic Plate Model in (2,

Domain €2, denotes a thin, poroelastic plate, separating the fluid flow region Q¢, from the thick,
poroelastic structure in 2. A plate is a thin, 3D region, bounded by two surfaces of small curvature,
whose distance defines the thickness of the plate. In our case, the plate will be assumed to be flat
and of uniform thickness h, with the two surfaces located at h/2 distance on either side of the middle
surface of the plate, denoted by w,. The reference configuration of the middle surface wy, is 23 = 0.

We will be assuming that the elastic plate is porous, isotropic, and saturated by a viscous
fluid. To capture the elastic deformation of the poroelastic skeleton, as well as fluid flow through
the skeleton pores, we will be using a model which is a dynamic version of the quasi-static Biot
poroelastic plate model, studied by Biot in [11], and rigorously justified by Marciniak-Czochra and
Mikeli¢ in [37]. This model was obtained under the following hypotheses.

Assumption 2.3. Poroelastic plate hypotheses:

1. The Kirchhoff hypothesis: Every straight line in the plate that was originally perpendicular to
the plate’s middle surface, remains straight and perpendicular to the deflected middle surface
after deformation;

2. The fluid velocity derivatives in the longitudinal and lateral directions are small compared to
the transverse one.

Therefore, the dominant flow is in the transverse direction.

The resulting equations age given in terms of displacement w = w(x1,x2) of the plate’s middle
surface from its reference configuration w,, where (z1,22) € wp, and the fluid pore pressure p,,
where p, is a function of three variables: two corresponding to the coordinates along the middle
surface wy,, and the third one, denoted by s € (—h/2,h/2) corresponding to the local transverse
coordinate, so that p, = p,(z1, 22, s), where (z1,z2,s) € .

According to [37], for small deflections and s-driven pressure gradients, the in-plane and trans-
verse plate dynamics fully decouple. Since in our problem the stress in the transverse direction
is larger than the stress in the longitudinal and lateral directions, we consider only the trans-
verse plate displacement, which we denote by w(z1,x2,t), where (x1,22) € wy. For each s slice in
(—h/2,h/2), the w dynamics is constant. However, the fluid pore pressure p,(z1,z2,s) can vary
for s € (—h/2,h/2). The resulting reduced Biot model for poroelastic plate is then given by two



equations, one describing poroelastodynamics, which will be defined in w,, and one describing con-
servation of mass of the fluid phase, given in terms of the evolution of p,, defined in ,, [11,26,31,37]:

h/2
ppwit + DAL w +yw + oA, / spp ds = Fp(x1,22,t) in wy x (0,7,
. e (2.12)

Otlcppp — apsAy,, w] — 0s(kyOspp) =0 in Q, x (0,T).

All Laplacians above refer to the in-plane Laplacian, i.e., A, = 0? L+ 8%2. The constant D > 0 is
the elastic stiffness coefficient for the plate, and v > 0 is an [elastic] coefficient that we added for
technical reasons to provide coercivity, since coercivity is not automatically satisfied in the periodic
framework. The constants pp, o, ¢, and k), are the same as those in (2.2), taken for the poroelastic
plate. One distinction for the poroelastic plate is that our results below will require ¢, > 0. The
source term Fj, corresponds to the loading of the poroelastic plate, which will come from the jump
in the normal components of the normal stress (traction) between the fluid on one side, at the
thick Biot poroelastic structure on the other: F,(z1,x2,t) = opes - e3|wp —oyes - es|,,. This will
be specified below in the coupling conditions (2.20). As before, Darcy’s law, relating the filtration
velocity to the pressure gradient, holds here:

up = —kp0spp, in Qp x (0,T), (2.13)

where u,, denotes the transverse (dominant) component of filtration velocity, relative to the motion
of the poroelastic matrix.

2.2.3 Time-dependent Stokes Model in

In the lower half space, denoted by €2y, we consider the flow of a viscous, incompressible fluid
modeled by the time-dependent Stokes equations:

ou
Prgr =V-ortf }in Q% (0,7), (2.14)
V-u=0

where u is the fluid velocity, oy = 2uyD(u)—pyI is the Cauchy stress tensor, py is the fluid pressure,
py is the fluid density, and p¢ is the fluid viscosity with D(u) denoting the fluid strain-rate tensor
(symmetrized gradient of velocity).

The fluid interacts with the multilayered poroelastic structure by exerting stress onto the poroe-
lastic structure that causes deformation of the poroelastic skeleton, while at the same time generating
the pressure difference, or more generally, the normal stress difference across the poroelastic plate,
causing filtration flow through the poroelastic plate and on to the Biot poroelastic medium. The
poroelastic plate serves as a fluid-structure interface with mass, which will provide a regularizing
mechanism in the analysis of this fluid-structure interaction problem.



In summary, the following are the three models holding in the three different subdomains of Q:

potiee — A0 = (py + Ao)V(V 1) + ayVpy = Fy, (€1, 22, 23) € (b,
(2.15)

[copy + aV -m)y = V- (ks Vpy) = S, (21,2, 23) € D,

h/2
ppwtt-l-DAipw-l-Vw—&-OépAwp spp ds = Fp, (21,72) € wp,

o (2.16)
[Cppp - OépSApr}t - as(kpaspp) =0, (l‘1,l‘2, 5) € Oy,
prug — ppAu+ Vpy = f, (21,22, 23) € Qy, (2.17)
V-u=0, (w1, 22, 3) € Q. |

Remark 2.2. The notation for k; here (and below) in the problem description is general, so that it
can accommodate the linear and nonlinear cases simultaneously.

2.2.4 Coupling Conditions

The coupling between the fluid and multilayered poroelastic structure is assumed at the poroelastic
plate, which serves as a fluid-structure interface with mass. The coupling conditions describe the
relationship between the kinematic quantities, such as velocitites (and consequently displacements),
and the balance of forces. One set of coupling conditions will be prescribed across the middle surface
of the plate wp, and the other set of coupling conditions will be prescribed across the top and bottom
surfaces on the plate, which we denoted by w; and w, . The top and bottom surfaces are defined
in terms of the “inflation variable” s as follows:

w; =(0,1)? x {h/2} = {(x1, 22, 8)|(x1,22) € R* s =1/2}, and w, = (0, 1?2 x {—h/2}. (2.18)

The coupling conditions along the middle surface of the plate w, are in line with the Kirchhoff
hypothesis for plates, see Assumption 2.3, in the sense that those conditions are given in terms of
displacement w of the middle surface of the plate, which is only a function of x; and x5, therefore
the coupling is along wy,. Across w,, we prescribe the behavior of the structure velocity 0w (the
kinematic coupling condition), and the forces that drive the motion of the middle surface of the plate
(the dynamic coupling condition). Across w;r and w,,” we prescribe continuity of vertical components
of fluid velocity (the kinematic coupling condition) and balance of normal component of normal
stress (the dynamic coupling condition).

One novelty of the proposed model is the coupling in the pressure. See Remark 2.3. As we shall
see below, the coupling of the plate filtration pressure at the top interface w;r and at the bottom
interface w,, with the surrounding fluid pressure, will give rise to a pressure jump between the top
and bottom interface, which is what drives the filtration flow through the plate.

1. Coupling across the plate’s middle surface wy,: We have two sets of coupling conditions, the
kinematic and dynamic. For the kinematic coupling condition, we assume continuity between the
plate displacement and the Biot displacement evaluated at the interface wy, while on the fluid side
we assume the Beavers-Joseph-Saffman coupling condition, stating that the tangential components
of the fluid velocity evaluated at w, are proportional to the corresponding tangential components
of the fluid normal stress evaluated at w,. The constant of proportionality, denoted by /3, denotes
the slip length. For the dynamic coupling, see (2.20) below, we state that the elastodynamics of the
poroelastic plate is driven by the jump in the normal components of normal stress between the fluid
and Biot poroelastic medium, where the jump is evaluated at the two-dimensional fluid-structure



interface w,. Here F), is the forcing from the plate equation (2.16):

07 07w = ,r' )
< > L . (2.19)
/8 |wp "€ = 7[0.f’wpe3] "€, 1= 1727
F, =opes - e3|wp —oyes-esl,,. (2.20)

We remark here that the first condition in (2.19) in the continuity of vertical components of
structure velocities (assuming equal structure displacements initially), and the second condition in
(2.19) in fact reads:

(Bu‘wp —Jw) - e; = —[O'f’wpeg] e, 1=1,2,

where the left hand-side is the tangential velocity slip. However, since the full Lagrangian plate
displacement w = (0,0, w), the tangential components (i = 1,2) of d;w are both equal to zero.

2. Coupling across the Biot-plate interface (w; ): Here we specify the coupling that involves the
quantities that are defined on the “inflated” plate domain €2, such as filtration velocity and pore
pressure, and couple them to the corresponding quantities in the Biot model. For this purpose, we
evaluate the plate quantities at the inflated surface wz‘f , defined in (2.18), and the Biot quantities at
the interface portion of the boundary of the Biot domain, namely on w,. In particular, we assume
continuity of filtration velocities, which are defined relative to the motion of the poroelastic matrix:
uy - €3 = u,, and continuity of pore pressures. Using Darcy’s laws (2.6) and (2.13), the two coupling
conditions read:

kpaspp|w;- = kbaxgpb{wp (221)

Pp\w; = Pb\wp- (2.22)

We remark here that condition (2.21) describes continuity of vertical components of filtration
velocities (relative to the elastic structure motion), after accounting for Darcy’s law.

3. Coupling across the Stokes-plate interface (wp_ ): Similarly to the coupling presented above,
here we specify the coupling of the quantities defined on the “inflated” plate domain €2,, namely the
plate filtration velocity and pressure, with the Stokes flow. Again, we evaluate the plate quantities
at the inflated surface w, adjacent to the fluid domain, and the Stokes quantities at the interface
boundary of the fluid domain, namely on w,. In particular, we assume continuity of filtration ve-
locities relative to the motion of the poroelastic matrix: w; — (u - e3) !wp = u,, and continuity of the
normal component of the normal fluid stress. Using Darcy’s law (2.13), the two coupling conditions
read:

w — (u- e3)|wp = kp6'5pp|w;7 (2.23)

—ojes- e3|wp = pP‘wg' (2.24)
We remark that condition (2.23) describes continuity of vertical components of velocities (relative
to the structure motion), where the fluid velocity on the left hand-side is corrected by the velocity

of the structure wy.

Remark 2.3. By combining the coupling conditions for the fluid pressure given in (2.22) and (2.24),
we see that across the FPSI interface, the pressure (the normal component of normal stress, in fact)
jumps from —ores-es3 |w on the fluid side to pb|w on the Biot side. In between, a pressure gradient-
p p
driven vertical/transverse flow through the poroelastic plate takes place from pp‘w, to pp’w+. Thus,
P p

the jump in the pressure at the interface w, (namely, the jump in the normal components of normal
stress), given by [py—oses - e3] on wy, drives the filtration flow through the interface, i.e., through

10



the poroelastic plate.

2.2.5 Boundary and Initial Conditions

Boundary Conditions on 99: We take periodic boundary conditions for all quantities of interest
in the longitudinal and lateral directions, and identify x; = 0 with x; =1, for i = 1, 2.

For z3 = —1, we consider the standard no-slip boundary conditions for the Stokes fluid, i.e.,
u= 0|I3:_1. For x5 = 1, we take Neumann-type (homogeneous) boundary conditions for the Biot
system.

We summarize the boundary conditions in the following table:

Region Functions Boundary Condition (2.25)

;=0 z;,=1,1=1,2 7, W, Pp, U periodic (2.26)
r3=—1 u ul, =0 (2.27)

r3 =1 1, Db o(n,py)es =0, Op,pp =0 (2.28)

Remark 2.4. Note that we do not prescribe boundary conditions for p, on the lateral boundaries,
owing the the structure of the pressure equation for the poro-plate. This is to say, there is no
differential operator acting on p, in the tangential directions, and thus no boundary conditions to
be prescribed. We will see this also in the functions spaces prescribed below in Section 3.2.

Initial Conditions at t = 0:

Fluid : u(.,0) = u°, (2.29)
Poroelastic plate : w(.,0) = w°, dw(.,0) = w°, p,(.,0) = pg, (2.30)
0 0m(,.0) =n°, py(.,0) = p. (2.31)

Biot equations : 7(.,0)

Here, we used @w° and 71° to denote the initial data for the time derivative of w and m, respectively.

2.3 Quasi-static Problem

The quasi-static version of problem (2.15)-(2.31) refers to the problem in which the inertial effects
in the Biot model (2.1) are neglected:

Assumption 2.4. The quasi-static model refers to setting p, = 0 in (2.15), and allowing p, > 0
in (2.16).

This quasi-static assumption arises naturally in the classical Biot model of consolidation for a
linearly elastic and porous solid which is saturated by a slightly compressible viscous fluid. See,
e.g., [50]. The quasi-static assumption requires modifying the initial conditions, but leaves the
coupling conditions the same. As we shall see in Sec. 6, we can extend our linear existence result
to the nonlinear case when Assumption 2.4 is taken. On the other hand, it has been noted by
many authors that the elliptic-parabolic nature of the quasi-static Biot problem presents its own
challenges [16, 50].

The new initial conditions, owing to loss of acceleration terms, are given by:

o If p, = 0, initial conditions (2.31) are replaced with initial condition for the fluid content:

(-, 0) = (eopp + apV - 1)(.,0) = . (2.32)
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o If p, = 0, initial conditions (2.30) are replaced with initial condition for the poroelastic plate
fluid content:

Cp(+,0) = (cppp — apsA,, w)(.,0) = Cg. (2.33)

In the analysis of such quasi-static Biot models (see [14, 16, 22, 44, 50, 55]), the structure of the
initial condition is a non-trivial issue. In this treatment, we only consider ¢ for which there exist
n° = n(0) and pY = p,(0) s.t. cpp) + V- n° = (. Such a hypothesis is common [14,22,55].
Remark 2.5. For a very weak notion of solution in the linear case, the work in [48,50] only requires
initial conditions as specified above, which is to say, for the respective fluid contents alone. However,
in nearly every other construction, additional regularity of the initial condition is required. This is
a by-product of using a priori estimates to construct solutions. See [55, Remark 2] and [50, p.327]
where this is explicitly discussed.

Details of the existence result are given in Section 6.

3 Energy, Function Spaces, and Weak Formulation

In this section we derive a formal energy estimate, present functions spaces for the solution, and
define weak solution. For this purpose, we recall the principal solutions variables in each sub-region:

o (u,ps)—Stokes fluid velocity and pressure defined on ;

o (w,wy, pp)—transverse displacement and velocity of the poroelastic plate and poroelastic plate
pressure, defined on w, and €2, respectively;

e (m, M, py)—poroelastic displacement, velocity and pressure defined on Q; (thick Biot region).
The quantity u, = —KVp, = —kp(copy + @V - 1)Vpy is the discharge velocity in thick
poroelastic material.

3.1 A Formal Energy Inequality

By testing equations (2.15)-(2.17) by the solution variables, specified above, and by using coupling
conditions (2.19)-(2.24), and periodic boundary conditions, we obtain the following formal energy
identity:

1d
2 dt
1d

+ 52 (collpplFaqa,) + IlE + collpol3a,) + DIAwl3ae,) + i)

1/2
+ 2NfHD(u)||2L2(Qf) + Blu- "'||2L2(wp) + ||k;17/28517p||%2(9p) + Hkb/ vPbH%Q(Qh) < Cdata;

(psllalaqay) + pollwela,) + o0l0ml3aq,)) (3.1)

where
Inll% = /Q [0 : Vnldx = 2up(D(n), D) 120, + A2(V -1,V 1) L2(0,),
b

and

- t]fFe,) = D -t
i=1,2

where t; are the tangent vectors, given by e;, e; on w, in this case. Note that the formal energy
identity for the quasi-static dynamics can be obtained by letting p, = 0, and this is valid for
pp = ¢, = 0 as well. Our results will include all these cases. See Section 3.3 and Remark 3.5.
Remark 3.1. We shall see later that this energy inequality will hold for constructed solutions, but
need not hold in the general case for weak solutions, even in the case of linear dynamics.
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3.2 Function Spaces for Weak Solutions

For any function space X, let us introduce the notation that X is the space of all functions from
X that are 1-periodic in directions x; and xo:

X# = {f €eX: f|x1:0 = f‘wlzl’ f|$2:0 = f|w2:1}'
Stokes equation:
H={ue LQ(Qf) :V.u=0, (u- 93)’£3:_1
V={ue H(Q):V-u=0, u’ms:_l =0},
Vy =L>(0,T; H) N L*(0,T; Vy).

=0},

Poroelastic plate:
HO% ={p e L*(Qy) : 9sp € L* ()}
Vp ={w € L(0,T5 Hj(wp)) : pyw € W2 (0, T; L (wy)) },
Q, ={p e L*(0,T; H**") : ¢,p € L=(0,T; L*()) }.
Biot equations:
Vy ={n € L=(0, T; HL(Q)) : pym € WH>(0,T;L2())},
Qp ={p € L*(0,T; Hy(Q)) : cop € L(0,T; L* () }-
Weak solution space:
Vol = { (W, w0, pp, 1, p5) € Vi x V) x Qp XV X Qp pp|s:h/2 :pb’z3:o’ 77|m3:0 = wes}.

Remark 3.2. We included the “inertial” and “compressibility” constants in the definition of the
solution spaces in order to unify the exposition and, at the same time, point to the different regularity
of solution for the different scenarios.

In conjunction with Vo1 we define the test space as follows:
Vtcst = {(V,Zaqp717[);Qb) S Ccl([O,T), V# X H;/:(wp) X H0,0,l x H#(Qb) % H#(Qb)) (32)
: ‘Jp|S:h/2 = Qb|w3:0, 1,b|w3:0 = ze3}

where we use the standard notation C! for continuously differentiable functions with compact
support.

3.3 General Weak Formulation

We aim to construct a function (u,w,pp,n,ps) € Vsol, call a weak solution, such that for every
smooth test function (v, z,qp, ¥, @) € Viest, the weak formulation specified below in Definition 1
holds. To formulate the weak formulation we introduce the following notation:

e ((-,))e denotes an inner-product on L?(0,T, L*(0)), for a domain &;
e (-,-) denotes a particular “duality” pairing whose precise interpretation will be specified below.

To obtain the weak formulation for the coupled system, we proceed by formally multiplying the
equations in (2.15)-(2.17) by test functions and integrating by parts as described below.
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We begin by using the test function 9 € C2([0,T); H, (Q)), with 1/J|r3:0 = zey for the balance
of linear momentum equation in the Biot model (2.15), to obtain

T
*Pb((m,¢t))9b+((0b(n7pb)vv¢))m*/O /asz ou (1, o)1 = pp(n, )|, _o+ ((Fo, %)), (3.3)

For the balance of mass equation, we use the test function ¢, € C? ([O7 T); H#(Qb)), and obtain

—((copy + V-1, 0:qp)) 02, + (ks VDy, Vi) ) / / kyVpy - g (3.4)
121918
=(copp + V-, qp |75 o T ((S:a))a,

For the equation describing the poroelastic plate dynamics (2.16), we use test function z € C([0,T); Hi (wp))
to obtain

h/2

—pp((wt, 0:2))w, + D((Aw,A2))u, + ap((/h/z(spp)ds, Az))w, +7((w;2))w, (3.5)

T
= pp(wt,z)|t=0 —|—/ Fpz.
0 wp

In the conservation of mass of the fluid phase for the poroelastic plate we use the test function
ap € CH([0,7); Hggo’l) to obtain

—((eppp — apsAw, atqp))ﬂp + ((kpOspp, Osqp)) / / kpOsppnsqy (3.6)
= (cppp — ApsAw, g, Qp|t:0.

Finally, we use test function v € C}([0,T); Vi) in the Stokes equation (2.17), which provides

T
—pi((w,vi))a, + (D), D(v)))a, +/0 /m omev=pu V)| +(£v))a, (37

Note that when we combine (3.3) - (3.7), the collection of boundary terms is represented by

Lyary = / / oy(n,pp)n - 1P — / / oves - 93| (3.8)
oy
—/ kyVpy -n gy — / / kp0sppnsqy
0o Joo,
+/ / ores - e3| z+/ / ofm-Vv.
0 wp oy

After using the boundary condition o (n, py)es = 0 and the fact that 1p|m3:0 = zes, the first term
n (3.8) becomes

T T
—/ / O'b(777pb)n"‘/’:_/ Ub63'¢+/ O'beg'wz/ / opes -3l 2, (3.9)
0 121918 x3=1 wp 0 wp P

and therefore the first two terms cancel each other. The next two terms in (3.8) can be rewritten

14



as follows

T T
_/ kyVpy -1 gy — / kpasppn?)Qp (310)
o Joq, o Joq,

= —/ kb8x3prb+/
r3=1 w

By using the boundary condition 0,,p, = 0 at 3 = 1, the coupling across the Biot-plate inter-

ky Oz, Dot +/ kpaspqu _/ kpasprp
=—h/2 s=h/2

» s

face k‘p(?spp‘w;r = k‘b(‘)spb‘wp, and the coupling across the Stokes-plate interface w; — (u - eg)’wp =

k:pagpp|w_, equation (3.10) simplifies to

T T
— / / kyVpy -m gy — / / kpOsppnagqy = / (wy — (- 83)}“}’ )dp- (3.11)
0o Joo, 0o Jog, s=—h/2 P

Using the second coupling at the Stokes-plate interface —o res - 93|w = pp|w_, we get
p P

T T
/ / ores ~e3|w z = —/ / pp|w_z. (3.12)
0 wp P 0 wp P

Lastly, using again the coupling at the Stokes-plate interface —o res - e3|w = pp|w_, the boundary
P P
condition v =0 on {z3 = —1}, and the coupling across the plate’s middle surface wp, Bu|w -e; =
P

—lo | es]-e;, ¢ =1,2, we can simplify the boundary term associated with the fluid as follows:
flo,

T
/ / om-v= / oyes -v—/ ores -V (3.13)
0 oy r3=—1 wp

= 7/ [ores-ei(v-e1) +ores-ex(v-er)+ ores-ez(v-es)]
w.

p

~ [ v+

pp|w_ (v -e3).
Wp Wp

p

Combining (3.8) with (3.9), (3.11), (3.12), and (3.13), we obtain that the sum of the boundary terms
in the variational form simplifies to

Ibdry = _((pp’sth/? Z—=V: e3))wp + (<wt —u- e3>Qp|8:,h/2>)wp + 6((“ tv- t))wp'

We can now introduce the definition of weak solution for the fully coupled system. The following
weak form applies to all cases of admissible values of py, pp, cp, cp. Namely, the solution and test
spaces are built to accommodate subsets of these parameters vanishing.

Definition 1. We say that (u,w,pp, 1, Pp) € Vsol is a weak solution to (2.15)—(2.31), if for every
test function (v, z,qp, ¥, qp) € Viest the following identity holds:

= (e, Y1), + ((au(n,00), V), — ((cops + sV -1, 0cqp) ), + (ke Vi, Vau))a,

- ((Cppp — apsAw, atq;ﬂ))ﬂp + ((kpasp;m as‘]p))ﬂp

h/2
= ol 02))a, + DB, A, + ([ [spylds, A2, + (w2,
—h/2
- ((pP’s=—h/2’ z—v-e3))w, + ((wy—u- eg,qp|s=_h/2>)wp (3.14)
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= pr((0,ve))o, + pp((D(a), D(v)))e, + B((u-t,v 1)),
= oM, ¥)|,_o + (copo + sV - m,00) |, + (copp — apsBw, gp)a, |,y + pp(we, 2)|,_y + pr(w,v)|,_,

+ ((Fb’ ‘P))Qb + ((57 Qb))Qb + ((f7v))Qf7

where

pen(+,0) = ppn°, peme(-,0) = pymfs ppw(-,0) = ppu®, ppwi(-,0) = ppw?,

cpp(5,0) + V- m(-,0) = ¢ cppp(+,0) — apAw(-,0) = C,?-

The interpretation of the dual mapping in term (w; — u - es, qP’s is the following:

:—h/2>""p

e If p, > 0, the dual mapping is just L?(0,7; L?(w,)) scalar product, which is well defined since
by wy € L?(0,T; L*(wp)) (see definition of the solution space);

o If p, = 0 the term is to be interpreted in the following way:

((wi—u-es, qP|s:—h/2>)wp = —((w, 8th|s:—h/2))wp —((u-es, qP}s:—h/Q))‘*’er(w’ qP|s:—h/2)|t:0'
(3.15)

Remark 3.3. We work in the periodic settings to avoid unnecessary technical difficulties. However,
there are some coercivity issues related to this setting. Namely, to ensure coercivity, we require
¢p > 0. This is because in the degenerate case ¢, = ¢; = 0, the L? norm of pp is not bounded by the
energy inequality. More precisely, in the degenerate case the energy estimate provides the bounds
for [|0sppllz2(q,) and pr’S:7h/2HH*I(((LT)XWPX{_}L/Q})’ where the latter bound is a consequence of
the coupling condition (2.24), and can be proved by taking (v,0,0,0,0) as a test function in the
weak formulation (3.14). However, this is not enough to control high oscillations in the z; and s
direction. For example, we can take p, = sin(mnz1) to see that its L? norm is not controlled by the
energy.

Remark 3.4. Note that conditions of continuity of the elastic displacement and Biot pressure across
the Biot-plate interface are included in the definitions of the solution and test spaces. However,
design of finite elements satisfying these constraints can indeed be challenging. One way to address
this difficulty is to impose the equality of the traces weakly through Nitsche’s method—see for
instance, the original paper [43] and [19] in the context of fluid-structure interactions.

Remark 3.5. We note that the formal energy inequality in (3.1) can be obtained by testing with
the solution variable in Definition 1 and considering the subsequent cancellations, presented above.

3.4 Differential Formulation from Weak Form

We note that strong solution is recovered from weak solution with sufficient regularity. Indeed, if a
weak solution (as in Definition 1) (u, w, pp, M, pp) € Vsl is sufficiently smooth in space and time, then
(w,w, pp, N, Pp) € Vsol satisfies the PDEs (2.15)-(2.17) in a pointwise sense, as well as the coupling
conditions (2.19)—(2.24). Reconstruction of the differential formulation proceeds in the following
way:

1. Take v, @y, z, g, identically zero on their respective domains in the variational form of
Definition 1. Invoke the formal integration by parts with Cg°- test function v to observe that
the Stokes equation is satisfied point-wise a.e. in ;. Then using “standard” test functions v
from the test space Viest, the following integral over w, remains:

[ fostupnen v a0yl avees] 0

p
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Since v is arbitrary, we obtain:
(a) The Beavers-Joseph-Saffman condition oyn-t+ fu-t = 0 on wy, by taking v to be
purely tangential;
(b) The pressure condition py|s—_p/2 = —0re3 - e3 on wy, by taking v = es.
2. Now take all test function components zero, except z and 1. This gives the coupled dynamic
equations for the poroelastic plate displacement w and the Biot displacement 7:

= po((e, 1)), + ((06(n,06), V), — pp((wt, 012))w, + D((Aw, Az))y,

h/2
=apl([ | ombds, 52y (@l D+ 0D 00002+ (Bt

Similarly as above, to obtain the interior differential equations holding almost everywhere,
we use the Cg° test functions, and integrate back by parts. Then, by using the standard test
functions z and 1 from Vi, after integrating back by parts in the 1 equation, we obtain the
boundary terms on the right hand-side given by

+o es3 - es.
Po|,__yyp T O0(MPr)es " 08
Next, we return to the full weak formulation, including the Stokes equation, and take only
Z, pp, Vv to be different from zero. Undoing the integration by parts in the u equation gives
the trace terms

—os(u,pyles - ez + op(n,py)es - es.

Finally, with the interior equations satisfied a.e., we obtain the following identity holding for
the interface terms, since the appropriate integral equality holds true for all test functions:

Pp h/2 + Ub(napb)eg €3 = —O’f(u7pf)e3 -es + Ub('r],pb)eg “es.
s=—h

This is exactly the dynamic coupling condition, i.e. the balance of forces acting across the
poroelastic plate.

3. Lastly, let us take g, # 0 such that qP‘s:h/z
parts and taking into account that the interior equations are satisfied point-wise, the following

= 0, and g, = 0. Again, after integrating by

boundary terms remain:

—kp amSpP’s:—h/ZqP|s=—h/2 +/ [wy — - 93]‘1?‘3:_;1/2 =0.
Wp

Wp

Therefore we obtain d,w = ug + k,03p, = ug — (u,)s, where (u,)s is the third component of
the discharge velocity u, = —k,0spp, and us is the third component of the Stokes field u =
(u1,ug,us). This is exactly the kinematic coupling condition at the fluid-poroplate interface.

Note that the remaining “essential” type boundary coupling conditions are built in the compatibility
requirements on Vo and Viegt-

4 Statement of Main Results and Proof Strategy

In this section we informally state the following two main results of the paper:

1. The existence of a weak solution to the linear evolution problem: in particular, the Biot coeffi-
cient (diagonal tensor) ky is a given function of ¢ and x. In this case the following parameters
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are allowed to be non-negative: py, pp, ¢y > 0, with only the poroelastic plate’s compressibility
parameter c, > 0.

2. The existence of a weak solution to the nonlinear quasi-static problem: the coefficient k;
depends on the solution, in particular on the fluid content {, = cyp + @V - 1. In this case
we consider the quasi-static Biot model, namely p, = 0, with the coefficients p,,c;, > 0 and
cp > 0.

For the main results, we adopt the semi-discretization approach, also known as Rothe’s method,
e.g., [65]. In the context of FSI problems, it was developed and used to study moving boundary
problems involving linear and nonlinear elastic structures [41,42]. In the present paper, we extend
this approach to deal with FPSI problems, showing that this approach is quite robust and applicable
to a large class FSI problems. Nevertheless, we emphasize that in the present paper, the presence
of the thin poroelastic plate is of particular importance, since it serves as a regularizing mechanism
[4,40] in the existence proof, while also allowing perfusion/filtration through the interface.
The proof relies on the following main steps:

1. Construction of approximate solutions.

(a) Derive a semi-discrete in time and linearized version of the weak formulation, with the time
discretization parameter [At] = L. In the semi-discretized formulation, the linearization
is performed by evaluating the nonlinear coeflicient functions at the previous time step.
This defines a sequence of linear elliptic problems for solutions at time t"™ = n[At], with
data given at "1 = (n — 1)[At].

(b) Prove existence of a unique solution to the elliptic problem defined for every n = 1,..., N
by using the Lax-Millgram Lemma.

(c) Define approximate solutions

(u[N]; w[N] ) pLN] ) T][N] >p([7N])
as functions that are piece-wise constant in time, extrapolating the values obtained from
the time discretization, and satisfying the approximate weak formulation.

2. Derive uniform estimates in [A¢] through appropriate discretized test functions.

3. Obtain weak solution by letting N — oo, i.e., At — 0, utilizing compactness criteria to push
limits on the nonlinear term involving k.

Since in Steps 1 and 2 we use the linearized problem, these steps are the same for both the linear
evolution problem and non-linear quasi-static problem. However, the Step 3 deviates, because in
the non-linear case we need to prove additional strong convergence properties. In Step 3 we will
utilize piecewise constant approximations and an elegant compactness result for piecewise constant
approximate solutions [29], which greatly simplifies the construction from past work on nonlinear
Biot problems [14,22,55].

We begin with construction of the approximate solutions that covers both cases. Namely, for the
linear problem, simply take k, = ky(x,t) as a given function.

Finally, we address uniqueness criteria for solutions that exhibit more regularity than our weak
solutions. In particular, the result is of weak-strong uniqueness type, wherein weak solutions from
a certain class (see Assumption 5.1) are unique if there is a single solution in that class exhibiting
additional regularity (see Proposition 6.6).

5 Main Result I: Linear Existence

In this section we consider ky = ky(x,t) € L>(0,T; L>(R)) as a given function of space and time.
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The proof of the existence of a weak solution is based on temporal semi-discretization along with
formal energy estimates. It is a direct application of Rothe’s method to the coupled linear Stokes-
Biot-poroelastic plate problem. We begin by the construction of approximate solutions, given a
discretization of the time interval based on a time step At.

5.1 Construction of the approximate solutions

Let [At] > 0 =T/N, N € N. For every fixed N, we inductively define a sequence of approximate
solutions (u}, wi, (pp) R ¥, (Po) %), n=0,..., N. For this purpose, we use implicit Euler method
to discretize the time derivatives, making use of the following notation:

n+1 n n+1 n
antl M TN e W0 W 1
L At Y At (5-1)

¢

Thus, at every fixed time ¢", we have to “solve” a semi-discretized problem (specified below in
(5.6)), with the solution (depending only on the spatial variables) belonging to the following weak
solution space:

Vea = {(u,w,pp,'r],pb) € Vi x H2(wp) x HOO x HY () x Hy () - (5.2)
Polocr sy = Polpygr Mayeo = wes},
equipped with the following norm:

([ (w,w, pp, 1, 0) |74 : = ||u||§11(ﬂf) + HAw“QL?(wP) + ||w||2L2(wp) + ||pp||2L2(Q,,) + HasppHQL?(Qp) (5.3)
+lnllE + IVpsllie o),
where we recall that the norm || - ||z was defined in (3.1).

Lemma 5.1. (Vuq, ||.||sa) is a Hilbert space. In particular, the norm || - ||v., defined in (5.3) is
equivalent to the usual norm in the space Vy X Hi (wp) x HOOL x H;E(Qb) X H#(Qb).

Proof.  We first notice that [|Aw|z2(,) + [|w[|12(w,) is a norm equivalent to the H? norm on
Hi (wp). This follows by applying elliptic regularity to the case of periodic boundary conditions
associated with the operator —Aw + yw € L?(), giving full control of the H?(w,) norm.

Next, we observe that the L? norms of  and p;, (Biot components) are not included in the
definition of ||.||sq, and so we need to show the following Poincare-type inequalities:

0172, < Cl(w,w,pp,m,00) 20 1 € Hyp (), (5.4)
Ipoll720,) < Cll(asw, pp,m,p6) 120 Po € Hy (). (5.5)

In contrast with the homogeneous Dirichlet case, the proof of the Poincaré inequalities will follow
by employing the interface conditions incorporated in the definition of Vs;. We will prove the
inequalities for smooth functions since general case follows by density argument in the standard
way. To prove the first inequality in (5.4) we notice

x3
‘7](1’1,1’2,%3,t)|2 = |77($17$2,07t) +/ 8137](1'171'2,Z,t)d2|2
0

T3
SC(|’7(I17$2,0J\2+/ |613n(z13x27zvt)‘2dz)‘
0
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Integrate the above inequality over €, and invoke the interface coupling n[,, = (0,0, w) to obtain:

11720,y < C (M2, + ||8z377||2L2(Qb)) < C(lwlzzu,) + IlE) < Cll(w,w, pp,m,p)lI2a-

This proves the first inequality.
To prove the second inequality, we first need to estimate the trace of py on x3 = 0:

) ) 9 [h/2 2
Py(T1,2,0,t) = p,(z1, 22, h/2,) = (E/ 33(8pp(w1,xz,z,t))dZ) :
0

We continue, as before, by integrating the above equality over w, to obtain:

||pb||2L2(wp) < C(pr||2L2(Q,,) + ||8spp”%2(ﬂp))-

Thus, we get:

126]Z2(0) < ClIPoll72 () + 1VDBlIT2(0,)) < Cll(w,w, Dy 1, 00)[[24-
O

Remark 5.1. If there were homogeneous Dirichlet boundary conditions on any subportion of the
boundary for n and py, the classical Poincaré and Korn inequalities would yield norm equivalences
for those variables. In the present configuration, the L? control in (5.4) for 7 and pj is obtained
through interface conditions, which gives equivalence of the full norms, as stated in Lemma 5.1.

We now define weak formulation for the semi-discrete linear problem at time ¢" = n[A¢] for each
n=1,...,N. The weak formulation defines semi-discretized approximations of the solution.

Definition 2. Weak formulation for the semi-discrete problem. The following is the semi-
discretized weak formulation of the linear version of problem (2.15)-(2.31) where k) = ky(x,t"):
Find (u™,w™, (pp)™,n"™, (pp)™) € Vsa such that for every (v,z, gy, ¥, @) € Vsa the following holds:

o =" )q, + [At(es(n" T pp ), Vib)a, + [A(cpp T + anV 0T @),
+ (AL (ky VPt Van)a, + (At (cppy T — aps D™, qp)q, + [At(ky0spp T 0sgp)a,
h/2

+ pp(0" T — ™, 2)o, 4 [AD(AW" T Az),, + [At}ap(/ [sp;l""l}ds, Az)y,,
—h/2

+ A (W, 2)., — [A](pp PR e3)w, + [A](" T —u" e, q, g:_h/Q)

T o =" V), + [Atlup (D), D))a, + (AR -ty ¢,
= [At}(FlT)LHa w)Qb + [At](sn-‘rl’ qb>Qb + [Athn—H’V)Qf’ (5'6)

with the initial data specified in (2.31), and the discretized time derivative ™ defined in (5.1).

Notice that in the linear case, kj' is the value of ky(z,t) at the previous time step t". In the
nonlinear case, we will take k' = (cppp + 'V - ™).
To write this weak formulation entirely in terms of the unknown functions (u”™, w™, (pp)"™, n", (ps)")

belonging to the function space Vyq, we express the terms 7" and 7! in terms of 5 using (5.1) to
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obtain:

oy )a, + (AL (o ("L pp ), Vap)a, + (AL (copp ™ ab)ay, + [AH (V" g,
+ (AP (kP VDT, Vay)a, + (A (eppi ™ — apsAw™ ™ g,)q, + [AL (k0502 T, Dsap)a,

h/2
+ pp(w™, 2)0, + A D(Aw™ T, Az),, + [At]204p(/ [spy s, Az), + (AL (", 2),,
—h/2
_IA 2/ n+1 A 2/ n+1 . A n+1
APOR| o, +IATPOE L veeohs, H A | )

— [At}z(u”+1 - es, QpL )+ [At}pf(u’”rl,v)gf + [At]Quf(D(u"“), D(v))a,

=—h/2
+[AP BTt v - ), (5.7)

= [AP(FFL )o, + [ADP(S™ T, g)a, + [AL7(E, V),

[At (,’:’n7 "p)Qb + [At}(wn7 z)wp + [At}pf(una V)Qf + pb(nna 1/))917 + [At](cbpg + abvn"7 qb)Qb

[At (Cppz - O‘p‘SAwnv qp)Qp + pp(wn> Z)wp + [At](w"7qp s:—h/2)

+ [At]
+ [At]
We note that the above problem, although equivalent to the discrete weak form in (5.6), does
not have a coercive structure. This is a consequence of the particular coupling in our multilayer
problem, and the use of mixed-velocity/solution test functions in obtaining the energy estimates.

To circumvent this issue, we modify the test functions (i.e., the variational problem we are trying
to solve) in the following way:

@ — [Atlgy; g — [At]gy; v = [At]v. (5.8)

This re-scaling can be undone, of course. This is because the re-scaling of test functions does not
affect admissability in the space Vyq, and, after the use of the Lax-Milgram Lemma to obtain
existence, as described below, the variational problem in (5.7) is recovered through the “for all”
quantifier in the definition of a weak solution. As a consequence, the solution to (5.7) recovers the
solution to the original semi-discretized problem (5.6).

With the re-scaled test functions (5.8), the weak formulation of the semi-discretized linear prob-
lem is given by the following:

Definition 3. Weak formulation with rescaled test functions. We say that a function
(u™, w™, (pp)™,M", (Pp)™) € Vsa is a weak solution to the semi-discretized linear problem (2.15)-
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(2.31) if for every test function ([At]v, z, [Atlqp, ¥, [At]gy) € Vsa the following holds:

oo™ )q, + [AL (ap (" pi ), Vab)g, + (Al (copp T [Atlgy)a, + [Al(p V™, [Atgs)g,
+ (AP (ke VT [A Vo, + [At(cppp T — apsAw™™ [At]g,)q, + [AH (k,0.p0 T [AH0ugp)e,

h/

+pp(w" T 2)u, + [APD (AW, Az), + [At]zap(/ 2 [spy " 1ds, Az), + A0 (W, 2),,
—h/2

SR e PG (A e, + A Ay )
AP (" e, [At]qu:ih/Q)
+ (A [[Atlps (0, V), + [A g (D), DV))a, + [AJP B -1, v - ),

= [A(EFH ), + (AL (S, [Algs)a, + AL (E"H, [At)v)q, (5.9)
+[A@" P)o, + [At(0", 2)w, + [Atlpp (0", [At]V)a, + po(n", P)a, + pp(w"; 2)w,
+ (Dt + vV’ (Ao, + [Ateyp) — aysdu” [Adlg)a, + (A", [Alg,| ).

with the initial data specified in (2.31).

We aim at using the Lax-Milgram lemma to prove existence of a weak solution specified in
Definition 3. More precisely, we will prove the following result.

Theorem 5.2. There exists a unique weak solution to (5.9).

To prove this result using a Lax-Milgram approach we introduce a bilinear form on Vsq, associated
with the left hand-side of (5.9), defining our elliptic operator, and a functional on Vsq associated
with the right hand-side of (5.9) given in terms of n™ 7", w", W™, u", py,p, and the source terms
Fptt Sntl £7+1 treated as given data.

More precisely, given kj’, we introduce a bilinear form an () on Vsg X Vyq as:

an (1, Dby W, Ppy ), (W, @b, 2, Gpy V) i= ("L, 20) 0y, + [AL (0 (0", ppTY), Viab)a,
+ [A (eopp T )a, + (A (V" gy)a, + (AL (kYD Vas)a,
+ [A (eppi ™ — apsAw™™ qp)q, + (AP (k000 0sap)e, + pp(wt, 2).,
h/2

+ [APD(Aw™, Az), + YA (w2, , HAap( / [sprtt]ds, Az).,
—h/2

— [AtP (pyt! 2w, + (A (pi V- es)., + [A (Wt g, )

s=—h/2’ s=—h/2 s=—h/2
AP e ) A0 (0 V), + Ay (D), D)),

s=—h/2
+ AP B v b, (5.10)

Notice again that the dependence of the bilinear form a,(-,-) on n comes specifically through the
linear coeflicient k;' in the case when this function exhibits any temporal dependence.
Similarly, we introduce the functional .#,, by:

T (U, @b, 2, qp, V) 1= [At]Q(FZLHaﬂJ)Qb + [AP(S™ ), + [At]g(fnﬂ,v)nf
+ (A (0" p)q, + [A(W", 2)w, + [AtPpr (0", V)a, + pp(0™,P)a, + (AL (cop] + VN, ab)a,
+ (A (cpplt — psAW™, gp)a, + pp(w", 2)u, + (AL (W™, qp ! (5.11)

—h/2
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which depends on [At], the source terms Fy, S, f at t"T! and solution evaluated at the previous
time step t".
We have the following lemma:

Lemma 5.3. Suppose that ¢, > 0 and py, pp,cy > 0. Consider a, : Vsqa X Veg = R and %, €
£ (Vsa,R), as defined in (5.10) and (5.11) above. Then, as a bilinear form, ay(-,-) is continuous

and coercive, and Fyp, € [Vsa]'

Notice that in using Lax-Milgram with our particular rescaling, the setup is robust in that it
allows ¢y, pp, pp to vanish.

Proof. First we demonstrate coercivity of a,(-,+) on Viq x Vsq. We choose ¥ = n" !, q, = p”Jrl

g =pp, and v = u™*! and calculate:

2
T e L i B (T e i T K A D a1 e - S Vol e 13

— [AtPay(py ™, V" g, + [A (VT pi e, + [At 6| lpp TR,
+ ALk 2Vpp 1R, + (A e lpp IR, — [A ey (sAw™ ™ pit g, + (AL ||k 2] 0sp) I

P

h/2
+ ppl w2+ (AP D Aw™ 2+ A w2+ [Atay, </ [sp™*]ds, Aw”“)
—h/2 wp
At n+41 n+1 o At n+1 n+1 " At 2 n+1 n+1
AR P e, )

— (At (u es,pp !

)

s=—h/2
Ao 0 g, + (A g (D), D™ ))a, + (A B £ um b,

Now, because of the correct scalings in terms of [At], we can cancel out both Biot type mixed terms,
as well as boundary coupling terms, to obtain:

2
an (W T prtt gt pr ) (T et gt Rty = py I (G, + (A7 I |

+ (A e [y I, + (AR 2VR I, + (A epl Iy IR, + (A [k) 20 IR,
+ ppllw™ |2, + A DI Aw™HZ A [ (A [0 1E, + (A gl [ D",
+ A Bl ]]2,.

We can now estimate the right hand-side to obtain coercivity on Vyq:

n+1 n+ n+1 n+ n+1 n+1 n+ n+1 n+1
an(u 7w 7pp 7,’7 7]91, )7(11 ’lU 7pp 777 7pb ))

2 n n 2 n 3
2 (AP 0™ e ) + AL I05 0,y + AP D 5 0y + (A [0 1, + (AT 0l
2 min([Af?, [AG) [ w T ppt g pr R,

Vsa*

Here, we have implicitly used the lower bound kp(x,t) > kmin > 0, and the notation 2 which
represents a bound by a generic constant depending on py¢, py, ¢y, s, Cp, Otp, pp, as well as the Korn’s
and Poincaré constants, and possibly [At].

This estimate shows coercivity for the variable (u"*!, w™*!, prtt gntt py ) in the Vg norm.
The quantities 77" "1 and @™ are recovered from the formulae in (5.1), recalling that n™ € L2(£2,)
and w" € L?(w,) are given as data.

To see that the functional .%,, belongs to [Vsq]' we derive a straightforward estimate in terms of

n+1
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L? norms:

1 way S A (ISl + [AG1S™ I, + [ALIE+ o, ]
+ (A0 ][0l + 10", + (A0l |

2 T, n T n
+ [At [lIpp e, + 10" l1E + IPpllo, + [[Aw" ], ]
+1m"le, + [lw"]|w,-

The proof of Theorem 5.2 now follows by applying the Lax-Milgram lemma to the problem

Qn ((un+17 n 7pg+17nn+1’p2+1)7 (qumZannV)) = yﬂ (wavazanaV) ) V(¢’Qb727Qp,V) € Vsda

defined on the Hilbert space Vg .
We emphasize that the approximate solution lies in the test space, as is necessary for obtaining
estimates later on.

Remark 5.2. We note that in the above construction, the continuity and coercivity constants may
depend on [At] in a singular way. However, we utilize the Lax-Milgram lemma only for existence
of an approximate solution to the re-scaled problem (5.9). After obtaining the solution at the time
t"*T1 from the data at t", we recover the solution to the original problem (5.6) Once we have the
solution to (5.6), we obtain a priori estimates for problem (5.6). We note that the approximate
solution lies in the test space, which will be important for the choice of appropriate multiplies in
the derivation of a priori estimates. The resulting bounds will be uniform in [A¢]. This feature is
present in the related considerations [14, 16, 55].

Theorem 5.2 provides a sequence of approximate functions, which are functions of the spatial
variable only, defined for every t",n = 0,..., N. To define approximate solutions we extend these
functions to the entire time interval [0, T] by extrapolation as piecewise constant functions in time,
to obtain the following approximate solutions:

(™, N pINL N pi (1) = (uf, wi, (0p) R M ()R, EE€ (78", n=1,...,N. (5.12)
Since we will have to work with derivatives of approximate functions, we introduce the following
definition.

Definition 4. For a piecewise constant function fINL the time derivative of fINl is a function
denoted by IV (t), defined via backward difference quotients:

N @) = fN[Ag . te (", (5.13)

With this notion of the time derivative, one can easily see that the approximate solutions satisfy
the following weak formulation:

Proposition 5.4. The approzimate solutions (u[N},w[N],p[p ],n[N] pb ) defined by (5.12), satisfy
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the following weak formulation for all test functions (v, z, qp, ¥, qp) € Viest:

pb((ﬁ[N]a’(/)))Qb + ((o-b(n[N]vpl[;N])v v¢))ﬂb + ((cbpéN] + abv . ﬁ[N]aqb»Qb
+ ((ko(raclcopy + V-0V Va))a, + (epp — apsAid™ q,))q, + (kp0sp), 0sap)) e,

h/2
(@M, 2)), + DD, Az)), + a(( / [splM)ds, Az)),,,
—h/2

((pLN] /2’ z2—vV-e3)),, + ((w[N} —ulM. e3,Qp‘ :—h/2))
+ (AN, V))g, + up(D@M), D))o, + BN - t,v 1)),
= (FM, 9)a, + (M, @)a, + (EV,v))q,, (5.14)

where Tat is the translation operator defined by Tarf = f(t — At).

To see that this is true, we first focus on the time interval (¢*,#"*1) and the weak formulation
(5.6). Let (v,2,Gp, ¥, qp) € Viest, where Vieq is defined by (3.2). Notice that (v, z,qp, ¥, gp)(t) for
t € (t",t"*1), is an admissible test function for the weak formulation (5.6). Thus, take it as a test
function in (5.6), integrate the resulting formulation in time from " to t"*! and then sum with

respect to n = 1,..., N, to obtain that the approximate solutions satisfy the approximate weak
form (5.14).

5.2 Uniform a prior: estimates for the approximate solutions

We show here that the following estimates, uniform in [At], or equivalently, independent of N, hold
for approximate solutions.

Lemma 5.5. There exists a constant C > 0, independent of N, such that approximate solutions
ulM, N p[N] (V] p[ ], satisfy the following estimates:
el 7o 2 + ppll ™7 12 + pall ™M |70 12 < €
cpllphY ||L°CL2 + ™| + CbHPb HLOOL2 + D[ Aw N]”LOOL2 <C,
ps| D™ )||L$L§ + Bl 't”Lng(wp) + (|02 P ||L2L2 + Vo, ]HL2L2 <C.

The shorthand notation LZL2, for instance, indicates the space L?(0,T; L?(12)).

Proof. To simplify notation, in this proof we will be assuming that all the physical constants are
equal to 1, except for the constants ¢y, ¢y, pp, pp, Which can vanish (in the quasistatic case).

We start by obtaining an a priori estimate on the functions u™, w™, (p,)"™, 1", (p»)", satisfying
the semi- discretized problem (5.6). For this purpose, we use the following test functions in (5.6):

=0t g =it g, = pptt, 2z =w"t! and v = u™*!. Using Young’s inequality and absorbing

all constants that do not depend on [At] we get:

poll " TH [, + (AP (™), Vi e, + e[ A pp e, + (ALK 2V G,
+ e[ APy e, + (Al 20 I, + ol HE, + [A(Aw™H Aw T,
+ [ G, + [AD@ G, + (A7

S ool 18, + ppll" (1%, + 10”8, + [AIEGH[, + [A][S™ R, + (A£G,

By invoking the definition of difference quotients, as well as Young’s inequality, we obtain the
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following a priori estimate:

pull™ G, + 11" 1% + eollpy ™l + (AL KE) 2V IR, + cpllop IG, + [Adllk, 200, 13,
+ppll @™ HIE, + 1AW I, + ™IS, + [A[ID G, + (A 2]f2,

< ool |18, + (10" 11T + collpp 118, + cpllpplld, + ppllw 12, + [lAw™|IZ,
+ [AYIFFH[, + AGIS™ IS, + [AIE -

This estimate can be rearranged and expressed as follows:

pull™ I, + 11" 1% + eollop ™l + enllop I, + pplle™ HIE, + 1AW HIE, + a3,
S ool 16, + (10" ||% + eollpp 116, + cnllpplld, + ppllw™ 12, + [l Aw™|IZ,

+ TG, + [AGIS" G, + [AIIE T,

— [Adllky 2 Vrp R, — (Al 205 IR, — [AGIID@™ R, — [AdaH -2 .

Inductively, after rearrangement, we obtain:

NG, + ™% + collpy e, + cpllpy ™I, + ppllo™ I, + [[AwNFHE, + (™IS,

N
1/2 n n n n
3 (IR 2 R R, + k20 R, + D IR, + 6], 1A

n=0

S MG, + 1" lE + ellppllS, + eollpplld, + 10°l1Z, + ppll Aw®[[Z,

N
+ 30 [IEE IR, + 1S, + 161, [1Ad. (5.15)

n=0

Noting the lower bound on kj, > ki, > 0 again, we obtain the uniform estimates for the approximate
solutions.

O

We will need two more estimates to be able to pass to the limit as N — oo (or, equivalently, as
At — 0) in the evolution case when we have to deal with the terms 9N and w!M. In this case we
require bounds on V!, @] in the associated dual, H~!-like spaces. Additionally, we will need an
estimate for the time derivative of the fluid content in the associated dual space.

Having established the solution, such estimates will follow immediately from (5.6). More pre-
cisely, since some test functions are coupled, we need to consider duals of product spaces to establish
these estimates. In particular, consider first taking all test functions in (5.6) zero except for the “in-
ertial test functions” (4, 2) € Hy(Q) x HZ(wp) such that t|,,—0 = ze3. Then, dividing (5.6) by
[At], we obtain the following equality for the solution at any "1

pb(ﬁn+17 ¢)Qb + pp(wn_‘—l’ Z)wp = (o'b(nn_‘—l’pg-i_l)a V'lp))ﬂb + (F;)H_la 'l/))ﬂb
h/2

— D(Aw™! Az),, — ap(/ [sppt)ds, Az)y, — (ppt 2 2)wy-
—h/2 s=—h/2

Similar calculation can be done for the fluid content by taking all test functions zero except for the
“fluid content test functions” (g,,q) € H;E(Qb) X H;;,o,l such that gp|s—pn/2 = ¢p. After integrating
the obtained equalities with respect to time from ™ = n[At] to t"*! = (n + 1)[At], and taking the
sum over n, for n =0,..., N — 1, the estimates in Lemma 5.5 give the following result:

Lemma 5.6. Let Viy = {(¥,2) € HL(Q) x Hi(wp) @ Ploy=0 = ze3} and Vie = {(¢p, @) €
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Hy, () x HYOV 2 qyle—pj2 = qp}. Then there exists constant C independent of N such that:

[t i), <.
H (cbpz[;N] + oV - ﬁ[Nchp;N] _ apAu';[N])‘ y <C.
fc

5.3 Limit N — oo and Recovery of Linear Weak Solution

5.3.1 Existence

To prove the existence of a weak solution to the linear Stokes-Biot-poroplate fluid-structure in-
teraction problem (2.15)—(2.31), we would like to show that there exist subsequences of approxi-
mate solutions {(u[m,w[N],pLN],n[N],pgN])}NGN, which converge, as N — oo (or equivalently, as
At — 0), to a function which satisfies the weak formulation of the continuous problem specified
in Definition 1. Since the problem is linear, weak convergence of subsequences of approximate so-
lutions {(u[N],w[N],pI[,N], n[N],pI[)N])}NGN is sufficient to pass to the limit in the weak formulations
(5.14) satisfied by the approximate functions, and recover the weak formulation of the continuous
problem, satisfied by the limiting function. Indeed, the uniform bounds presented in Lemmas 5.5
and 5.6 imply existence of subsequences of {(u[N],w[]\]],pgv],77[N],p,[)N])}]\;eN7 denoted again with
{(u[N],w[N],pLN],n[N],pLN])}NGN (with a slight abuse of notation), such that the following weak
convergence is true for those subsequences:

(N, N pINT VT pINT s (w0, pyom, ) weakly in Vs, (5.16)

and
(puiit™), ppit™N) = (pyii, ppid)  weakly * in Vi,

(cb]iLN] + oV - ﬁ[N],cppl[,N] — apAu')[N]), X (cbp;abv -1, CpPp — apAw) weakly * in V.
This is sufficient to pass to the limit in (5.14), and obtain that the limiting function satisfies the
continuous weak formulation (3.14). This calculation is straight forward. Therefore, the uniform
estimates from Lemmas 5.5 and 5.6 imply the following existence result:

Theorem 5.7. Let ¢, > 0 and py, pp, Cp, pf > 0, ap, 0, g, A, D, pi, kp > 0, and T > 0. Moreover,
let the initial data belong to the following spaces: w € L*(Qf),w € Hi(wy),w; € L*(wp),n €
H%&(Wp)ﬂ?t € L2*(N),pp € L*(N),pp € L2(Qy), and let ky, € L>®(0,T;L>(Q)) such that 0 <
Emin < kp < kmax- Then there exists a weak solution on (0,T) in the sense of Definition 1.

5.3.2 Uniqueness

We conclude this section with a brief discussion of the issue of (linear) uniqueness. First, we note that
even in the linear case, uniqueness of solutions is a non-trivial issue—see [16,48]. This primarily
stems from the fact that the energy estimates obtained for the constructed solution above need
not apply to a general weak solution. Hence, given two weak solutions, an a priori estimate on the
difference is not immediately obtainable via formal estimation as was done on approximate solutions
in the construction of our particular weak solution. This issue is two-pronged: first, the hyperbolic
nature of the inertial problem (when p, and/or p, non-zero) has challenges associated to justifying
velocity multipliers (test functions) 7; and w;, owing to the higher order terms appearing from the
Biot structure of the solid dynamics. Secondly, Biot models with time dependent coefficients (even
in the quasi-static case) have issues associated to multiplier analysis in obtaining a priori estimates.
The effect of this can be noted, for instance, in [48, pp.110-117] where abstract implicit evolutions
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“

are discussed and “much non-uniqueness” is possible, since
hold for some solution, not every solution....”

We provide a lemma that yields uniqueness, assuming that formal test functions n; and w; are
admissible in the sense of the following hypothesis:

...the stability estimate...was shown to

Assumption 5.1. Assume that the function (u,w,pp,n,pp) € Vsol has the additional property that

1d

(powir + DA*w, wy),, = 5%{01)”%”%2(%) + DHAUJH%%%)} (5.17)
1d

(opet + 0% i), = 52 { ool il + IImllE: }- (5.18)

Then, the following uniqueness result holds.

Lemma 5.8 (Uniqueness of Weak Solutions). Let ¢, > 0 and py, pp, ¢y, ps > 0, a, ap, o, A, D, o, kp >
0, and T > 0. Moreover, let k, € L>=(Qp x (0,T)) such that 0 < k1 < ky < ko. Suppose further
that a weak solution (u,w,pp,n,py) € Vsol has the additional property specified in Assumption 5.1.
Then, for the given data, such a solution is unique.

Proof. The above lemma follows immediately from the formal energy estimates presented in the
preceding section applied to the difference of two solutions to the linear problem. O

Remark 5.3. Note that Assumption 5.1 holds, for instance, for strong solutions (for instance if
w e C?([0,T); L*(wp)) N CH([0,T]; H*(w,)) N C([0,T]; H*(w,)), with analogous assumptions for 7).
However, it is not at all obvious when, for instance, p, or p, are zero. In full generality, whether or
not w; and m; are valid to test with for a weak solution is certainly a subtle issue.

6 Main Result II: Quasistatic Nonlinear Problem

In this section we consider the nonlinear case where:
e the permeability function k; depends explicitly on (, = cppy + @V - ), as specified in (2.10);
e the Biot model (2.15) is quasi-static, as specified in Assumption 2.4, namely, p, = 0 in (2.15);
o we allow p, > 0 in the poroelastic plate equations (2.16).

The main nonlinear existence result is the following:

Theorem 6.1 (Nonlinear existence of weak solutions). Let p, = 0, ¢, > 0, and pp,cp,py > 0,
O, Qp, LB A, D, 1, kp > 0, and T > 0. Moreover, let the initial data belong to the following spaces:
u e L2(Qy),w € Hi(wp),we € L*,m € Hy(Q),m € L*(),po € L*(Q),pp € L*(), and let
ky(-) € L®(R) such that 0 < kmin < kp < kmax- Then, there exists a weak solution to the nonlinear
quasi-static problem on (0,T) in the sense of Definition 1, with p, = 0.

To prove this result, we first notice that all the steps in the existence proof performed for the
linear case still hold, except the last step involving passage to the limit. To pass to the limit in the
nonlinear problem we will use a version of Aubin-Lions lemma obtained in [29], which is particularly
suitable for piece-wise constant approximations in time of the approximate solutions constructed
using Rothe’s method. Here we state the special case of [29, Theorem 1] adapted to our notation:

Theorem 6.2 (Compactness Lemma [29]). Let V. — H — W be Hilbert spaces with the first
inclusion compact and the second continuous. Consider the sequence of piece-wise constant in time
functions ulNV (indexed by N — oo, or equivalently, [At] — 0), and !N defined in (5.13).

If the following inequality holds

||a[N] | ’L?([At],T;W) + ||“[N]||L2(0,T;V) <0,
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with C independent of N, then ulN! is pre-compact in L*(0,T; H).

We will apply this theorem on the sequence [cbpl[)N] + V- n[N]], with W = L?(0,T; H (%)),
V =L? (O,T; He(Qb)), and H = L? (O,T; L2(Qb)).
We start by showing the following uniform estimate on [cbp'b[N I+, V- N ]]:

Lemma 6.3. There exists a constant C' independent of N such that
leops ™ + ap ¥ - ;Y] 220,701 (0)) < C-

Proof. Let q, € C1((0,T); H3()). Then (0,0,0,0, g,) belongs to the space of test functions Vies;.
Therefore we can use this test function in the weak formulation (5.14) for approximate solutions to
obtain (due to the second equation in (2.15)):

(esp + anV - N go))e, = —((ko(rac(espl) + anV -0 VPN, Vas))a, + (SN, @), -

By using uniform estimates presented in Lemma 5.5, we obtain the following estimate:

AN . N
(e + sV 0™, ), | < ke V0L 22z sl 2 s + CUS™ N oz lasllcem < Cllasllzem

Now the conclusion of the lemma follows by density arguments and from the converse of Holder’s
inequality. O
In order to prove the compactness result, we need the regularity result for the Biot displacement.

Theorem 6.4. In the quasistatic case (p, = 0), the Biot displacement satisfies the following addi-
tional regularity property: the sequence N1 is uniformly bounded in L?(0,T; H?()).

Proof. We use the arguments and notation similar to [14, Section 3.3]. We denote by &€ : D(E) C
L2(2) — L?(Q) the Lamé operator:

&) ===V - 2uwD(n) + MV -nl)
defined on the domain
D(€) ={n € Hy(D) | V- (2uD(n) + MV - nl) € L?(2)}.
Then n!M! satisfies the following equation:
EntM = —vpM in (0,7) x D,
with the following mixed boundary conditions:

1. Periodic at z; = 0,2z; = 1, for i = 1,2 (see (2.26));
2. Zero traction condition at x3 = 1 (see (2.28));

3. Dirichlet condition on zg =0, i.e. on wp : MV = wNeg (see (2.19)).

From Lemma 5.5 we see that:
e The right hand-side Vp in uniformly bounded in L?(0,T; L?(Q));
e The sequence w!N in the Dirichlet boundary condition is uniformly bounded in L> (0, T'; H> (wp))-

Now the conclusion of the Lemma follows directly from standard elliptic regularity on a rectangular
prism, as in [14, Lemma 2]. O
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Remark 6.1. First, it is important to note here that due to the way how the problem is set up,
our domain is smooth without corners. Secondly, the full elliptic regularity recovered in Theorem
6.4 is more than is needed in the construction of solutions; indeed, if 5™ is uniformly bounded in
L2(0,T; H¢(Q)), € > 0, then the convergence properties stated below follow as in [14].

Corollary 6.5. The following convergence properties hold:

cbpb[N] + oV - n[N] — cppp + V- m  strongly in L*(0,T; L* (%))
kpy (TAt(Cbpl[)N] +apV - n[N])) — ki (copy + oV - ) strongly in L*(0,T; L* ()
Proof. Uniform energy estimates from Lemma 5.5 imply that sequence pl[jN] is uniformly bounded
in L2(0,T; H'(Q)). Therefore, by Theorem 6.4, sequence c;pp ! + o, V - 9N is uniformly bounded
in L2(0,T; H(Q)). Moreover, by Lemma 6.3 sequence (cbpb[N] +apV- n[N]) is uniformly bounded
in L2(0,T; H=1(Q)).

The strong convergence of [cbpb[N I+ Vgl ]] then follows by direct application of Theorem
6.2.

The second convergence result follows by noticing that k() : L?(€%) — L?(Qp) represents a
Nemytskii operator [48]. This follows from the bounds 0 < kpin < kp(s) < Kmax for all s € R, as
well as the continuity of kp(-). Thus

ky (TAt(Cbpz[)N] +apV - n[N])) — ki (copy + oV - 1),
as desired. O

To complete the proof of the existence of weak solutions, what remains to show is how to pass
to the limit in the nonlinear term in (5.14). For this purpose, we recall the following convergence
properties of the sequences appearing in the nonlinear term:

ks (TAt(Cbpz[,N] +apV - ) = Ky (copp + apV - 1) in L2(0, T L*()),

VpV = Vp,  weakly in L2(0, T; L*(2)).

Now, by the convergence of weak-strong products we get:

ko (ras (eopi™ + apV - NN VPN Ky (upy + apV 1) Vi in L0, T; LY ().

To see that this sequence converges weakly in L2(0,T; L?(£2)), we recall that kp (TAt(Cbpl[)N] +apV -

N ]))Vpl[)N] is a bounded sequence in L?(0,7T; L?(Q%)), and therefore it has a subsequence which
converges weakly in L?(0,T; L?(€)). Because of the uniqueness of the limit in D’, its limit is exactly
Ky (copy + wV - 1) V.

O

6.1 Uniqueness

Lastly, we consider the issue of uniqueness for nonlinear solutions. At present, even for the nonlinear
Biot system alone, a full uniqueness result does not exist in the literature. In [22], a central hypothesis
for the entire well-posedness analysis is that ¢, > 0; for uniqueness, the permeability function kj, is
assumed to be Lipschitz continuous, and a smallness hypothesis is also imposed on the Biot pressure.

Along these lines, we present here a strong-weak uniqueness result for mild solutions. More
precisely, in addition to assuming that our weak solutions satisfy an energy-type equality, specified
in Assumption 5.1, which is related to allowing 7, to serve as a test function (multiplier), we also
require some additional regularity on the Biot pressure, as specified below in Lemma 6.6.
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More precisely, we introduce the space
W C Vo1 such that Assumption 5.1 is satisfied,

and consider solutions in W with the additional regularity for p; as follows:

Proposition 6.6 (Uniqueness of Weak Solutions). Let ¢, > 0 with pp = 0, and pp,cp, ps > 0,
On, Op, LE, AE, D, 1, kp > 0. Moreover, let ky € L>(R) N Lip(R) such that 0 < kmin < kp < kmax-
Suppose there is a weak solution (w,w,py,n,pp) € W and a time T* > 0 so that the following holds:

Vpy € L*(0,T%; L ().
Then, all weak solutions in W are equal to (u,w,pp,n,pp) on any interval t € [0,T] with T < T*.

Proof. Assume that there are two solutions s’ = (uﬂwﬁpé,nﬂpé) € W for i = 1,2. Under the
hypotheses that solutions belong to W, each solution satisfies the formal energy inequality (3.1).
Consider the difference s = s! — s? (with the “bar” notation for each coordinate as well) as a weak
solution to the difference equation with the same data Fy,S, F,,f, utilizing (in the appropriate
sense) S as a test function. Then, for any T' < T, § satisfies the inequality:

T
SN+ [ 2D 0y + BT - e, + 11200, B o,

< &(s(0)) — /0 ([ks (V3 (1) = ki () VDR (1)], Vs (8) — i (1)]) g, it (6.1)

where we denoted

£(s') = 5(pfllu’lliz(gfﬁppllw%IIiz(wp)+Cp||p;||%2<np>+llnzII%+0bIIPZII%z(gbﬁDllszIIiZ(wpﬁvllw’HZm(wp))

and
ki(t) =k (Cbpi (t) + V- T]i (t))

We focus on the nonlinear term with the aim to obtain an estimate on § through the functional
E. We can rewrite the nonlinear term as

/O (kL (OVPL(E) = K (VPR VFy) o, dt = / (K (1) — ROV DH(0. VBy(1)) 1oyt (6:2)

T
+/0 (kf(t)vﬁb(t)aVﬁb(t))w(ﬂb)dt’

where we used p = p} — p?. Using the lower bound on the permeability function 0 < kuyin < kb, and
discarding the additional dissipation terms, we obtain the inequality

T T
5(§(T))+kmin/0 VB[22, dt < E(5(0)) — /0 (ks (1) = K5 (1) Vpy (1), VD, (2)) .
The nonlinear term on the right hand-side can be estimated in two ways, yielding the two cases
in this theorem. In both cases we will use the Lipschitz hypothesis on the function k. Namely, let

Lj, > 0 be the global Lipschitz constant so that

|y (t) — ki (8)] = [ko (copy (t) + oV -0 (8)) — ko (copp (t) + 'V - 07 (1)) | < Lig|cuPy(t) + V- 1(t)].
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By the Cauchy-Schwarz inequality, we get

T T
/0([ki(t)—kz?(t)]Vpé(t%Vﬁb(t))dtSLk/O VP31 L ) levBo () +06V 710 22(0) [ VP 2202, -

Now we estimate the right hand side by using regularity hypothesis, i.e. Vpi € L(0,7%;L>°(£)).
Namely, from Young’s and triangle inequalities we have the following:

T T
/O (kL) — K21V (1), Ty () dt < / LellV Pl o6 + €6V - T8 |2 o Vol 2y

L2 T . T o € T _
< 2§|vp;||%oo(0,T;Loo(Qb)){/O HCbeH%z(Qb)dt‘F/O ||O‘bv"’7(t)||ZL2(Qb)dt +§/0 ||vPbH%2(Qb)dt'

Choosing € = ki, to absorb the pressure term into the left hand-side, and by bounding the elasticity
term from above by the full || - ||z norm, we have the following estimate:

T T
/O ([ks (1) = kE (D] VD, (1), VB, (2))dt < /O Li||Vpy || o ) lcoBy + awV - T(8)]] 22 ()| VBl 20t

T 2 T
Liles + o] = 7 Fonin P
< /O o IVR @)1=y {Cprb(t)H%?(Qb) + ||77(t)\|2E} dt + = /0 VP22t

After discarding the dissipation term, we get another Gronwall-type estimate:

L% [ep + ag]

E((T)) < CE(5(0) + C T

T
JRLC O (63)
Uniqueness follows by applying the L2-version of Gronwall’s inequality [28].

O

We conclude this section by mentioning that in 3D, hypothesis of Proposition 6.6 would be
satisfied for instance, if p; € L%(0,T; H?57¢()).
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