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Rationale and Objectives: Computed tomography (CT) is preferred for evaluating solitary pulmonary nodules (SPNs) but access or avail-
ability may be lacking, in addition, overlapping anatomy can hinder detection of SPNs on chest radiographs. We developed and evaluated
the clinical feasibility of a deep learning algorithm to generate digitally reconstructed tomography (DRT) images of the chest from digitally
reconstructed frontal and lateral radiographs (DRRs) and use them to detect SPNs.

Methods: This single-institution retrospective study included 637 patients with noncontrast helical CT of the chest (mean age 68 years,
median age 69 years, standard deviation 11.7 years; 355 women) between 11/2012 and 12/2020, with SPNs measuring 10�30 mm. A
deep learning model was trained on 562 patients, validated on 60 patients, and tested on the remaining 15 patients. Diagnostic perfor-
mance (SPN detection) from planar radiography (DRRs and CT scanograms, PR) alone or with DRT was evaluated by two radiologists in
an independent blinded fashion. The quality of the DRT SPN image in terms of nodule size and location, morphology, and opacity was
also evaluated, and compared to the ground-truth CT images

Results: Diagnostic performance was higher from DRT plus PR than from PR alone (area under the receiver operating characteristic curve
0.95�0.98 versus 0.80�0.85; p < 0.05). DRT plus PR enabled diagnosis of SPNs in 11 more patients than PR alone. Interobserver agree-
ment was 0.82 for DRT plus PR and 0.89 for PR alone; and interobserver agreement for size and location, morphology, and opacity of the
DRT SPN was 0.94, 0.68, and 0.38, respectively.

Conclusion: For SPN detection, DRT plus PR showed better diagnostic performance than PR alone. Deep learning can be used to gener-
ate DRT images and improve detection of SPNs.

Key Words:Machine learning; synthetic imaging; chest radiographs; computed tomography; digital reconstruction; solitary pulmonary nodule.

© 2022 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Abbreviation: AUC Area under the curve, BMI Body mass index, CI C
Computed tomography, CXR Chest radiograph, DRR Digitally recons
onfidence interval, COPD Chronic obstructive pulmonary disease, CT
tructed radiograph, DRT Digitally reconstructed tomogram, LSTM

Long short-term memory,MSEMean squared error, PIL Python image library, PR Planar radiography, SD Standard deviation, SPN Solitary
pulmonary nodule
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INTRODUCTION
T he two-view chest radiograph (CXR) remains one of
the most common radiological examinations globally
(1,2), encoding complex three-dimensional thoracic

anatomy in an overlapping two-dimensional representation.
The overall reported incidence of solitary pulmonary nodules
(SPNs) is 8�51% (3,4). In the general population, SPNs are
found incidentally on 0.1�0.2% of CXRs and 13% of com-
puted tomography (CT) scans (5). Overall, lung cancer is the
leading cause of cancer death worldwide, comprising 18.4%
of all cancer deaths (6,7).

Although SPNs are detected by conventional CXRs, CT
imaging is preferred for further evaluation and clinical man-
agement. SPNs can be difficult to detect and characterize on
routine CXRs, because of overlapping anatomy, and there is
1
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significant interobserver variation (8). Moreover, as many as
40% of SPNs are missed on CXRs (8�10). However, CT
scans come with additional expense and increased patient
radiation exposure and may not be readily available in devel-
oping countries (6). Two-thirds of the world population has
no access to diagnostic imaging (11), and CT scanners require
significant infrastructure and maintenance, which creates
multiple logistic issues (6). For instance, replacement parts in
many developing countries are not readily available, with a
large percentage of radiology equipment rendered nonfunc-
tional (12). In developing countries, CXRs remain a primary
diagnostic tool, given their relative lower cost (11).

Techniques that enhance CXRs by removing overlapping
anatomy can potentially increase their sensitivity as a screen-
ing tool for detecting SPNs (13). Computer-aided detection
of lung nodules has a reported sensitivity of 63�74% (6,13).
Deep learning�based image reconstruction has been increas-
ingly used to improve the performance of CT and magnetic
resonance imaging, by reducing image noise, increasing sig-
nal-to-noise ratio, and decreasing image acquisition times
(14,15). Applications of deep learning to conventional CXRs
have included lowering dose and removing overlapping
structures such as the ribs (13,16). Despite work on three-
dimensional reconstruction from planar CXR images
(17�19), its potential use in the study of SPNs remains
unknown.

A rapid coronal localizing projection � the scanogram �
begins a CT scan, typically after a CXR. However, consider
cases in which CXR is the only available follow-up modality
to CT. A radiologist’s experience is necessary to compare the
CT to the CXR, and the scanogram is available for assistance
as well. But scanograms are not generally considered equiva-
lent to CXRs (20). How could we improve this comparison?

In this study, we considered how to generate something
more useful than the scanogram to facilitate comparison
between CT data and follow-up CXRs. We developed and
Figure 1. Flowchart of patient inclusion process and image analysis.
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assessed the diagnostic performance of a re-encoding deep
learning algorithm producing digitally reconstructed tomo-
gram (DRT) images of the chest from digitally reconstructed
frontal and lateral CXRs (DRRs) for the detection and char-
acterization of SPNs. We provide a novel approach for the
generation of DRT images from DRR projections and dem-
onstrate the benefit and feasibility of synthetic images in aug-
menting the interpretation and assessment of SPNs.
METHODS

Patient Characteristics

This retrospective study was approved by the Institutional
Review Board of our institution. The requirement for
informed consent was waived due to the anonymous and ret-
rospective nature of the study. Electronic health records were
searched for all non-contrast CT chest radiology reports from
November 13, 2012 to October 12, 2021 using the regular
expression “nodule.” Regular expressions were then used to
identify reported nodules measuring between 10 and 30 mm.
Of the 11,290 non-contrast studies that had the stem key-
word “nodule” in the radiology report, only 694 consecutive
studies had reported nodules >10 mm, and 637 of those had
complete reconstructed coronal and sagittal images (Fig 1).
For exams without lung nodules, 40 consecutive patients
were selected from the database, taking care not to overlap
with other training, validation, and test images. Images were
all obtained from multislice CT scanners across multiple sites
with the following models: GE Revolution EVO, GE Light-
Speed VCT, GE Discovery CT750 HD, GE Optima CT660
(GE Healthcare, Waukesha, Wis). For this retrospective
study, no specific imaging protocol was used, and all CT
studies were acquired helically with 120 Kv and variable
mAs. Studies were extracted and anonymized from the
PACS system using a scripted method (SikuliX) (21).
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Data Preprocessing

The dataset was first preprocessed to create image uniformity,
because CTs typically have a variable number of slices depen-
dent on body habitus and CT slice thickness. We used three-
dimensional spline interpolation with all CTs with a lower
limit of 128 (slices) to avoid generating potential inaccuracies
from intermediate slices. All input DRRs and output CT sli-
ces were resized to be 256 £ 256 pixels, using a Lanczos filter
for downsampling from the python imaging library (PIL). To
allow radiologists direct comparison and to mitigate issues of
malalignment of the planar radiographic projections and the
DRT images, we generated frontal and lateral DRRs by tak-
ing the mean of the set of preprocessed coronal and sagittal
CT slices. We did not use conventional CXRs in this feasibil-
ity study, because we found in most cases a recent corre-
sponding radiograph was not available to directly compare to
the CT study. By generating this planar projection, we
ensured that the DRRs were registered properly with the
CT study. We used this projection to create the coronal and
sagittal DRRs. All programs were run in Python (Python
3.6; Python Software Foundation, Wilmington, Del.).
Model

The model was inspired by the 3D-R2N2 (22) autoencoder
architecture with long short-term memory (LSTM) cells
between the encoder and decoder stages. Here we made a
variation of U-Net (23), a popular image segmentation net-
work for medical images, to generate images. The modified
version of U-Net takes in two input DRRs (frontal and lat-
eral views) and encodes them separately, as seen in Figure 2.
The encoder extracts the features from each input DRR.
The encoder consists of two convolutional blocks, which
contain a convolutional layer, rectified linear unit (ReLU),
batch normalization (BatchNorm), and a max pooling layer.
Batch normalization is used to reduce the covariance shift of
hidden layer distributions to improve training conditions of
deep neural networks (24). The max pooling layer is used to
halve the size of the image. The convolutional LSTM layer
in the bottleneck stage learns the extracted features from the
frontal DRR at time 0 and the lateral DRR at time 1. The
LSTM is designed to use features from the first radiograph
passed in to perform generation and then take the second set
of features to fine-tune the generated output. At time 0, the
LSTM gates and memory cells are initialized and updated for
the first time. Then, at time 1, the memory cells from the first
hidden stage are updated according to the new features from
the second input. After the convolutional LSTM layer, the
features are passed into a dilated residual bottleneck convolu-
tional network. That network takes advantage of the sparse
nature of radiographs through the dilated convolutions. The
dilations are of size 2, 4, 6, and 8. A sum of the results of the
different dilations allows us to capture the various features in
the space of the radiograph. Then, the output of the bottle-
neck is passed into the decoder stage, which creates the DRT
image. We use a transposed convolution to learn each upsam-
ple until the image is the desired size. The output is passed
into two convolutional blocks, which decreases the number
of channels. Each stage in the decoder takes in the residual
from the encoder stage to ensure the previously captured fea-
tures are used to further improve the output.

The model was trained using the acquired dataset which
contained the generated coronal and sagittal radiographic
projections and the preprocessed coronal CT slices. No data
transformations were used (i.e., rotation) as CXRs and CT
studies needed to be registered and maintain orientation. The
input DRRs are 256 £ 256 pixels and the coronal DRT sli-
ces are 128 £ 256 £ 256 pixels, where 128 is the number of
slices. We used the Adam optimizer and the above loss func-
tions (25). The network was trained for 1000 epochs on two
NVIDIA Titan X GPUs (NVIDIA Corporation, Santa Clara,
Calif.) with a training batch size of 8 for approximately 20
hours; each epoch took 30 seconds. A superlinear learning
rate decay was started on epoch 100. The quantitative metrics
were used to measure the pixel-wise error between each
DRT and the ground-truth CT.
Deep Learning Loss Function

To capture the important features of SPNs, such as size, mor-
phology and opacity, pixel-wise error was used. The error
was calculated using two metrics: L1 loss and weighted mean
squared error (MSE). L1 loss is defined as:

LossL1 ¼
Xn

i¼1

Xm

j¼1

����Yij � Ŷ ij

���� ð1Þ

where Yij is the ground-truth value and Ŷ ij is the predicted
value. In this model, we use the L1 loss to compare the input
DRR with the DRT. Weighted MSE was used to evaluate
the DRT.

The MSE metric is defined as:

LossMSE ¼ 1
mn

Xn

i¼1

Xm

j¼1
Yi;j � Ŷ i;j
� �2 ð2Þ

where Yij is the ground-truth pixel value and Ŷ l;j is the pre-
dicted pixel value. Since CT studies contain more important
information towards the center of the study, we decided to
give more weight to the center slices. To assign the weights,
we used the following formula:

Wk ¼ exp
�
���� s
2 � k

����
s

� 1:5

0
BB@

1
CCA ð3Þ

where s is the number of CT slices and Wk 2 R. This gives a
higher penalty for incorrectly predicting the intermediate sli-
ces, which contain more information than the first and last
few slices. The weighted MSE loss function, with weight Wk

defined in Equation 3, is as follows:
3



Figure 2. Top, DLUNet architecture at time t with an input chest radiograph. Middle, Downsample convolutional block. Bottom, Upsample
convolutional block.
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LossweightedMSE ¼ 1
mns

Xs

k¼1

Xn

i¼1

Xm

j¼1
Wk ¢ Yi;j � Ŷ l;j

� �2

ð4Þ
Reference Standards

Reference standards for the presence of SPNs were estab-
lished by radiologic report and review of the images (AP with
13 years of experience). The time for DRT image generation
was recorded.
Image Analysis: Diagnostic Performance

Images were evaluated independently by two radiologists (LZ
and NS with 4 and 10 years of experience, respectively, both
with board certification and body fellowship training), who
were blinded to the imaging report and patient information.
The readers underwent a training session with a radiologist
(AP with 13 years of experience). During training, the two
readers were asked to review 15 sets of images that first
included frontal and lateral DRRs and CT scanograms (the
combination hereafter referred to planar radiography, PR), fol-
lowed by DRT images from the test dataset. The readers
received feedback on their performance. The 15 image sets
used for reader training were not included in the final analysis.
The readers were then instructed to review the 60 valida-

tion sets of images from 60 unique patients (20 were positive
for SPNs), starting with the frontal and lateral DRR images,
followed by the frontal and lateral CT scanogram images, and
finally the DRT (Fig 3). Scanogram image sizes ranged from
512*512 to 864*679, 512*512 being the most frequent. The
Figure 3. Study readers were first asked to review frontal and lateral D
then frontal and lateral CT scanograms (B), the combination of which we
(0 = absent, 1 = indeterminate, 2 = present). Then readers were then as
assign a score for lung nodules (0 = absent, 1 = indeterminate, 2 = presen
readers were asked to diagnose SPN on a three-point scale
(0 = absent, 1 = indeterminate, 2 = present) without and
then with DRT images. Afterwards, in those 20 cases where
SPNs were present, the readers evaluated nodule size and
location, morphology, and opacity in the DRT on a five-
point scale relative to ground-truth CT images. Scoring crite-
ria are shown in Table 2. Evaluations were performed for
each patient based on a complete set of reconstructed coronal
chest images. The monitor specification used for image analy-
sis was identical among reviewers with a resolution of
2560 £ 3200 pixels. The computer used for image analysis
was Intel(R) Xeon Silver 4214 @ 2.20 GHz with 32 GB of
RAM. Freely available MicroDicom (version 3.1.4, Micro-
Dicom, Sofia, Bulgaria) was utilized for image review, and
the readers were allowed to adjust image size, contrast, and
opacity.
Statistical Analysis

Demographic characteristics and clinical findings were com-
pared across cohorts using two-sided x2 tests and t-tests.
Interobserver agreements for identifying SPNs were assessed
by using k statistics as follows: �0.2, slight agreement;
0.21�0.40, fair agreement; 0.41�0.60, moderate agreement;
0.61�0.80, substantial agreement; and 0.81�1.00, excellent
agreement. To evaluate the diagnostic performance of PR
alone and with DRT, the area under the receiver operating
characteristic curve (AUC), sensitivity, specificity, positive
predictive value, and negative predictive value were calcu-
lated. The AUCs of DRT plus PR versus PR alone were
compared using the method of Delong (26). In addition, the
number of cases initially misdiagnosed or scored as
RRs (A), which were derived from the ground-truth CT images, and
refer to as a PR. The readers then scored the PRs for lung nodules
ked to assess the PRT image (C) in conjunction with PR and again
t).
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indeterminate with DRRs alone and then corrected with
DRT was calculated for both readers. R (version 4, R Core
Team, Vienna, Austria) was used for statistical software analy-
sis, with statistical significance defined at p < 0.05.
RESULTS

Cohort Characteristics

Subject characteristics are shown in Table 1. The training
cohort was comprised of 562 patients (age [mean +/- stan-
dard deviation {SD}] = 69 +/- 12 years; 323 women [57%]),
while the test cohort had 15 patients (age 63 +/- 16 years; 5
women [33%]). Participants in the training cohort were
slightly older (68.7 years) compared to the validation and test-
ing cohorts (65.6 and 63.3 years, p < 0.005). Also, there were
more females in the training cohort compared to the valida-
tion and testing cohorts (57% vs 33% vs 45%, p < 0.05). The
average body mass index (BMI) of subjects in the validation
cohort was higher, classified as obese, while in the testing and
training cohorts, average BMIs were slightly lower and over-
weight (p < 0.01). In the validation cohort, 12 (20%) patients
had chronic obstructive pulmonary disease (COPD) and 9
patients had lung cancer (15%), while in the training cohort,
80 (14%) had COPD and 100 (18%) had lung cancer, and in
TABLE 1. Clinical Characteristics of Patients

Characteristic* Training Cohort (N = 562)

Age, mean (SD) 68.7 (16.2)
Sex
Male 239 (43%)
Female 323 (57%)

BMI, mean (SD) 28.7 (6.6)
COPD 80 (14)
Lung cancer (primary or metastatic) 100 (18)

* Data are given as number (percentage) for each group, unless specifie

TABLE 2. Diagnostic Performance of PR Alone and DRT Plus PR in

Parameter* AUC (CI) p value Sensitivity (CI)
(Ratio)

Reader 1
PR 0.85 (0.75, 0.95) 70% (46, 88) (14/20

PR+DRT 0.95 (0.88, 1) 0.02 90% (71, 99) (18/20

Reader 2
PR 0.80 (0.69, 0.91) 60% (36, 81) (12/20

PR+DRT 0.98 (0.93, 1) 0.001 95% (75, 100)
(19/20)

PR, planar radiography (digitally reconstructed radiographs and CT sc
Interval
* Data are given as number (confidence interval) and (ratio) for each para
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the test cohort, 1 (6%) had COPD and 2 (13%) had lung can-
cer. There were no statistical differences in the distribution of
patients with COPD and lung cancer in the three cohorts.
Diagnostic Performance of PR alone and DRT Plus PR

The diagnostic performance of PR (DRRs and CT scano-
grams alone) and DRT plus PR is presented in Table 2. Rep-
resentative paired DRR and DRT images are seen in
Figure 4 and Figure 5. There was a statistically significant
improvement (p < 0.05) in diagnostic performance using
DRT plus PR (AUC, 0.95; 95% CI: 0.88, 1, for reader 1;
AUC, 0.98; 95% CI: 0.93, 1 for reader 2) compared to PR
alone (AUC, 0.85; 95% CI: 0.75, 0.95 for reader 1; AUC,
0.80; 95% CI: 0.69, 0.91 for reader 2). Sensitivity and nega-
tive predictive values were also improved with the use of
DRT, without a difference in the specificity and positive pre-
dictive value. In the identification of SPN, imaging data sets
from 4 of the 60 patients (7%) for reader 1 and from 7 of the
60 patients (12%) for reader 2 were misdiagnosed or indeter-
minate with PR alone but correctly classified with DRT plus
PR.

The DRT generation time was 1.1 seconds (+/- 0.1 SD)
on an Intel Core i5-6267U CPU at 2.90GHz for the 128
images.
Validation Cohort (N = 60) Testing Cohort (N = 15) p value

65.6 (6) 63.3 (16.2) <0.005
<0.05

33 (55%) 10 (67%)
27 (45%) 5 (33%)
31.1 (5.9) 28.5 (5.2) <0.01
12 (20) 1 (6.7) 0.419
9 (15) 2 (13) 0.891

d.

Identifying SPNs

Specificity (CI)
(Ratio)

Positive Predictive
Value (CI) (Ratio)

Negative Predictive
Value (CI) (Ratio)

) 100% (91,100)
(40/40)

100% (77,100)
(14/14)

87% (74, 95) (40/46)

) 100% (91, 100)
(40/40)

100% (81, 100)
(18/18)

95% (91, 100)
(40/42)

) 100% (91, 100)
(40/40)

100% (74, 100)
(12/12)

83% (70, 93) (40/48)

100% (91, 100)
(40/40)

100% (82, 100)
(19/19)

98% (87, 100)
(40/41)

anogram); DRT, digitally reconstructed tomography; CI, Confidence

meter.



Figure 4. Input frontal DRR (left column) with comparison to select ground-truth CT (middle column) and DRT coronal slices (right column).
(A) A 58-year-old obese, female patient with a right lower lobe superior segment spiculated nodule. (B) A 63-year-old male patient with a his-
tory of cardiomyopathy and COPD and a left upper lobe spiculated nodule.

Figure 5. Input frontal DRR (left column) with comparison to ground-truth CT (middle column) and DRT coronal slices (right column). A 78-
year-old male patient with right upper lobe nodule demonstrating similar morphology, but suboptimal opacity on DRT images relative to the
ground-truth CT image.
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Bar graphs of the image assessment scores are presented in
Figure 6 with scoring criteria used in Table 3. For PR alone
and DRT plus PR, the interobserver agreement by k statistic
between the two readers was excellent (0.82 and 0.89,
respectively) for detecting SPNs. The interobserver agree-
ment was excellent for size and position (0.94), with substan-
tial agreement for morphology (0.68) and fair agreement for
nodule opacity (0.38), relative to the ground-truth CT
images.
DISCUSSION

We developed a deep learning algorithm that generated
DRT images from frontal and lateral DRRs for the
evaluation of SPNs. Our study demonstrated that DRT in
combination with PR improved the diagnostic performance
of detecting SPNs compared to PR alone (AUC for DRT
plus PR: 0.95 for reader 1 and 0.98 for reader 2; AUC for
PR alone: 0.85 for reader 1 and 0.80 for reader 2; p = 0.02
for reader 1, p = 0.001 for reader 2). As in conventional CT
imaging, DRT can increase the detection of SPNs by remov-
ing overlapping anatomy, facilitating comparison between
CT and follow-up CXRs.

The deep learning algorithm was a modified Autoencoder
U-Net with an attention mechanism provided through
LSTM at the bottleneck layer. Autoencoders are a
dimensionality reduction technique, whereby high-dimen-
sional data (like an imaging study, which is by nature high
7



Figure 6. Image assessments in percentage for DRT reconstruction of SNPs, when evaluated independently by two blinded readers in terms
of nodule size, morphology and opacity relative to ground-truth CT image. Each color bar represents the percentage of cases with the same
score.
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dimensional) is passed through an algorithm which distills the
representation of such an image, ignoring unimportant or
noisy features. An autoencoder allows for automatic feature
selection and input data encoding, distilled into a relevant
lower-dimensional representation, then re-expanded and
decoded into a resultant image: the DRT. Because of the
known bottleneck problem with an autoencoder, we selected
instead a U-Net, which adds skip connections and convolu-
tion/deconvolutional layers to form the DRT. To enhance
the U-Net’s function, a LSTM attention layer was added at
the bottleneck layer. Conceptually, we felt this could provide
us with a “better” scanogram, the DRT, to compare with a
radiograph/CXR. One issue we encountered was the
“greediness” of the model, likely caused by the LSTM com-
ponent, which required increasing the number of training
examples for the model to converge. This impacted the
model training as there were no more cases at our institution
to be retrieved to increase the N of the study over the sample
of 637.

The primary goal of our study was to demonstrate that
DRT images are a useful intervention in the detection of
SPNs measuring 10�30 mm. In the DRT images, interob-
server agreement for size and location of SPNs was compara-
ble to that in ground-truth images. Nodule opacity
demonstrated fair interobserver agreement, with some of the
nodules showing decreased “ground-glass” attenuation on
DRT images relative to the ground truth (Fig 4). We believe
that normalization techniques used in the preprocessing of
the DRR images with differences in patient body habitus
contributed to the variable opacity of the pulmonary nodules,
which could be addressed with a larger and more diverse data
cohort.
8

In this feasibility study, our radiographic views of the
chest were derived from CT images to mitigate misalign-
ment and allow for side-by-side comparison of the result-
ing images. Other techniques have been described for
coregistration of radiographic images and normalization
and for suppression of osseous structures [27,28]. Addition-
ally, improvements in DRT image output resolution could
be achieved with the ever-increasing memory capacity of
graphical processing units, allowing for larger model inputs
in training. Alternatively, dedicated low-cost two-view
coregistered radiography devices could be developed in
conjunction with deep learning reconstruction techniques,
utilizing pre-existing equipment. Once trained, deep learn-
ing models can perform inference rapidly; in our study, it
took 1.1 seconds to generate 128 images, on relatively
inexpensive hardware.

This study was limited by its retrospective design and the
small number of patients. The next step would be to validate
this approach with conventionally acquired radiographs, with
preprocessing coregistration and normalization techniques.
Additional applications would include evaluating other
pathologies, such as pneumonia. Our model generated a fixed
number of slices per study at a limited resolution of
256 £ 256 pixels. Additionally, the ambulatory nature of this
study did not include patients with support devices such as
endotracheal tubes or more complicated pathologies such as
pleural effusions. Although our study used an algorithm with
an aim to explore its clinical feasibility at a single institution,
it did not include external validation from geographically dif-
ferent healthcare systems. A prospective study with a larger
sample size is needed to validate its diagnostic value and the
impact on outcomes.



TABLE 3. Scoring Criteria for Evaluation of DRT Relative to Ground-Truth CT Images

Size and Location Morphology Opacity

1 Nondiagnostic Nodule size and location are
not visualized.

Nodule morphology is not simi-
lar on most images.

Nodule opacity is not similar on
most images.

2 Limited Nodule size and location
mostly does not correlate
with ground truth.

Nodule morphology is the same
on some images.

Nodule opacity is the same on
some images.

3 Diagnostic Nodule size and location is
mostly identical to ground
truth.

Nodule morphology is the same
on most images.

Nodule opacity is the same on
most images.

4 Good Nodule size and location is
nearly identical to ground
truth.

Nodule morphology is the same
on nearly all images.

Nodule opacity is the same on
nearly all images.

5 Excellent Nodule size and location is
identical to ground truth.

Nodule morphology is the same
on all images.

Nodule opacity is the same on
all images.
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CONCLUSION

In conclusion, we provide feasibility information on a novel
technique in generating a potentially improved scanogram
for the detection of SPNs, which we call the DRT. The sen-
sitivity of DRT plus PR was higher than that of PR alone in
the identification of SPN. The resultant images are of no less
utility than the original scanograms, and the combination of
the two images is better than one alone. DRT may be a use-
ful adjunct for routine CXRs, although its diagnostic value
and impact on outcomes must be validated in a prospective
multicenter study with a larger cohort.
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