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Abstract: Analysis of EDGES data shows an absorption signal of the redshifted 21-cm
line of atomic hydrogen at z ∼ 17 which is stronger than expected from the standard
ΛCDM model. The absorption signal interpreted as brightness temperature T21 of the
21-cm line gives an amplitude of −500+200

−500 mK at 99% C.L. which is a 3.8σ deviation
from what the standard ΛCDM cosmology gives. We present a particle physics model
for the baryon cooling where a fraction of the dark matter resides in the hidden sector
with a U(1) gauge symmetry and a Stueckelberg mechanism operates mixing the visible
and the hidden sectors with the hidden sector consisting of dark Dirac fermions and dark
photons. The Stueckelberg mass mixing mechanism automatically generates a millicharge
for the hidden sector dark fermions providing a theoretical basis for using millicharged
dark matter to produce the desired cooling of baryons seen by EDGES by scattering from
millicharged dark matter. We compute the relic density of the millicharged dark matter
by solving a set of coupled equations for the dark fermion and dark photon yields and
for the temperature ratio of the hidden sector and the visible sector heat baths. For the
analysis of baryon cooling, we analyze the evolution equations for the temperatures of
baryons and millicharged dark matter as a function of the redshift. We exhibit regions
of the parameter space which allow consistency with the EDGES data. We note that the
Stueckelberg mechanism arises naturally in strings and the existence of a millicharge would
point to its string origin.
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1 Introduction

The 21-cm line plays an important role in analysis of physics during the dark ages and the
cosmic dawn in the evolution of the early universe [1–8]. That line arises from the spin
transition from the triplet state to the singlet state and vice-versa in the ground state of
neutral hydrogen. The relative abundance of the triplet and the singlet states defines the
spin temperature of the hydrogen gas and is given by [9]

n1
n0

= 3e−T∗
Ts , (1.1)

where 3 is the ratio of the spin degrees of freedom for the triplet versus the singlet state, T∗
is defined by ∆E = kT∗, where ∆E = 1420 MHz is the energy difference at rest between
the two spin states, T∗ = 0.068K, and Ts is the spin temperature of the hydrogen gas.
The difference Ts − Tγ between the spin temperature and the background temperature
is an important avenue for the exploration of the dark period in the early history of the
universe. In an expanding universe, the 21-cm line is redshifted according to the formula
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ν = 1420/(1 + z) MHz, where z is the redshift. Cohen et al. [10] analyzed the 21-cm
global signal as a function of the redshift and found that in the standard cosmology the
temperature of that line, T21, can be maximally T21 # −250 mK for redshifts in the
range z = (6−40). The Experiment to Detect the Global Epoch of Reionization Signature
(EDGES) reported an absorption profile centered at the frequency ν = 78 MHz in the
sky-averaged spectrum [11]. Bowman et al. [11] parameterize the intensity of the observed
21-cm signal by T21(z) defined as

T21(z) # 0.023xHI(z)
[0.15

Ωm

(1 + z)
10

] 1
2
(

ΩBh2

0.02

)[
1− Tγ(z)

Ts(z)

]
K. (1.2)

Here xHI is the fraction of neutral hydrogen, Ωm and ΩB are fractions of the critical density
for matter and for baryons, h is the Hubble parameter in units of 100 km/s/Mpc, and Tγ(z)
is the photon temperature at redshift z. The analysis of ref. [11] finds T21 = −500+200

−500 mK
at 99% C.L. as compared to the ΛCDM model of −230 mK, which shows that the EDGES
result is a 3.8σ deviation from that of the standard cosmological paradigm. As noted
above, the signal is important in that it can provide information about the early phase of
cosmic structure formation. Subsequently, Barkana [12] (based on [9]) pointed out quite
generally that the observed effect could arise from a smaller than expected temperature
difference between baryon and photons. The work of [12] further showed that cooling down
the baryons by roughly 3 K would explain the observation. In fact, several mechanisms
have been proposed to explain the 3.8σ anomaly [4, 12–27]. These include the possibility, as
noted above, that the baryons are cooler than what ΛCDM predicts but also the possibility
that the CMB background radiation temperature was hotter than expected. Additionally,
possible causes could be astrophysical phenomena such as radiation from stars and star
remnants [11, 12] though these are deemed less likely. Regarding the first possibility, i.e.,
the cooling of baryons, one specific proposal is the existence of a small percentage of dark
matter which is millicharged and can generate the desired absorption amplitude seen by
EDGES [4, 13–16]. Some issues regarding the millicharge solution were raised in [16, 18]
which, however, can be overcome [15].

We note here that some concerns have been raised [28] regarding the conclusion of [11]
that the appearance of the 21-cm absorption line on the microwave background is arising
due to the effect of light from the first stars on the hydrogen atom. Thus, the analysis
of [28] indicates that the evidence does not necessarily rise to the level for invoking new
physics, although their work does not prove that the 21-cm signal is absent. In the analysis
below we assume the existence of the EDGES signal. However, we believe more data is
certainly needed to confirm the signal at the level needed to claim discovery of new physics.

In this work we will focus on the further exploration of cooling of the baryons by mil-
licharged dark matter. Of course the use of millicharged dark matter begs the question:
how did the millicharged dark matter originate in the first place? We address this question
in this work. Specifically we wish to investigate the EDGES effect within a well defined
particle physics model which automatically generates a millicharge through mass mixing,
where we compute the relic density of such millicharged dark matter along with the evolu-
tion of the dark matter and baryon temperatures. Specifically we consider a hidden sector
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with an extra U(1) gauge symmetry beyond the gauge group of the Standard Model, where
the hidden sector contains a dark fermion D which has normal strength interaction with a
dark photon γ′ and feeble interactions with the visible sector. The analysis is done within
the framework of the Stueckelberg mechanism which generates a millicharge for the dark
fermion which constitutes the millicharged DM in our model. We analyze the millicharged
DM-baryon interactions which affect the thermal history after recombination and cools
the baryon fluid enough to produce the EDGES signal. The millicharged DM model is
subject to stringent constraints from big-bang nucleosynthesis (BBN) [29], stellar cooling,
Supernova 1987A (SN1987A) [30], and SLAC [31] millicharge experiment as well as CMB
limits from the Planck 2015 data [32]. We show that within these constraints as well as
the constraint on ∆Neff the proposed model produces the desired absorption amplitude of
the 21-cm line observed by EDGES.

The organization of the rest of the paper as follows: in section 2 we give the particle
physics model used to discuss the EDGES effect. In section 3 we discuss the evolution
equations for the yields of the dark fermion and the dark photon as a function of the hidden
sector temperature. Here we also give the evolution equation for the ratio of temperatures
of the visible sector and the hidden sector, and discuss the computation of the relic density
of millicharged dark fermions which constitute a small fraction of dark matter. In section 4
an analysis of the coupling of millicharged dark matter and baryons responsible for baryon
cooling is given. In section 5 we discuss the brightness temperature of the 21-cm line
measured by EDGES. A numerical analysis of the millicharged DM relic density and fit to
EDGES data consistent with all constraints is given in section 6, and conclusions are given
in section 7. Further details related to the analysis are given in appendices A, B and C.

2 A particle physics model for EDGES

We extend the Standard Model (SM) gauge group by an extra U(1)X under which the SM
is neutral. The extra gauge field Cµ mixes with the SM U(1)Y hypercharge Bµ via kinetic
mixing [33]. We further introduce a Stueckelberg mass mixing [34] between those groups
and the total Lagrangian is given by

L = LSM + Lhid + LSM−hid, (2.1)

where LSM is the Standard Model Lagrangian, Lhid is the Lagrangian for the hidden sector
and LSM−hid is the overlap Lagrangian connecting the visible sector to the hidden sector.
The latter and the former are given by

Lhid = −1
4CµνC

µν + iD̄γµ∂µD −mDD̄D − 1
2(∂µφ∂

µφ) + Lint
hid, (2.2)

LSM−hid = −δ2CµνB
µν − 1

2(∂µσ +M1Cµ +M2Bµ)2, (2.3)

where
Lint
hid = gXQXD̄γµDCµ + λDD̄φ. (2.4)

In eq. (2.2), D is the dark fermion in the hidden sector, φ is a scalar field whose role will be
discussed later and in eq. (2.3), Cµ is the Stueckelberg gauge field of U(1)X of the hidden
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sector and Lint
hid is the interaction in the hidden sector between the gauge field Cµ and the

dark fermion where in eq. (2.4) gX is the gauge coupling constant of the field Cµ and QX is
the U(1)X charge ofD. The last term in eq. (2.4) is the Yukawa coupling λ of the scalar field
with the dark fermion which plays a role in the evolution of the temperature ratio of the hid-
den to the visible sector in the very low temperature regime. Eq. (2.3) describes the overlap
between the visible sector and the hidden sector where the first term on the right-hand-side
gives the kinetic mixing of the U(1)Y hypercharge field Bµ of the Standard Model and the
gauge field Cµ of the hidden sector, while the second term on the right-hand-side gives the
Stueckelberg mass mixing between the two U(1) fields, where M1 and M2 are two mass
parameters. The setup of eq. (2.1)–(2.3) guarantees the existence of a massless mode (the
photon) when canonical diagonalization of the full Lagrangian of eq. (2.1) is carried out.

In this analysis we are interested in millicharge couplings Lm arising from the inclusion
of the kinetic and Stueckelberg mass mixing between the visible sector and the hidden
sector. These couplings have two sources so that

Lm = Lm
SM + Lm

hid, (2.5)

where the first term on the right-hand-side contains the millicharge couplings arising from
the Standard Model and the second term gives the millicharge couplings arising from the
hidden sector. Both of these enter in the analysis of this work. After canonical diagonal-
ization of eq. (2.1), one finds that the three fields Cµ, Bµ and Aµ

3 , where Aµ
3 is the third

component of the SM SU(2)L left field Aµ
a (a =1−3), mix and become a linear combination

of the mass eigenstates Zµ, Aγ′
µ , Aγ

µ, where Zµ is the Z-boson field with mass mZ , Aγ′
µ is

the dark photon field with mass mγ′ and Aγ
µ is the photon field. The effect of canonical

diagonalization of the kinetic and mass square terms of the gauge fields is to generate
millicharge couplings of two types:

1. The dark fermions of the hidden sector develop millicharge coupling to the photon
field and to the Z-boson (see eq. (2.7)), while they have normal strength coupling to
the dark photon field proportional to gXQX (see eq. (2.10)).

2. The quarks and leptons of the Standard Model develop millicharge size couplings to
the dark photon (see eq. (A.3)).

The couplings Lm
SM will be discussed in appendix A and here we discuss Lm

hid which arise
from the couplings of the dark fermion with the field Cµ so that

Lgauge
D = gXQXD̄γµDCµ. (2.6)

In the canonically diagonalized frame, Lm
hid is given by

Lm
hid = D̄γµ

[
εDZZµ + εDγ Aγ

µ

]
D. (2.7)

The full expressions for εDZ and εDγ are given in appendix A. Here we show results in the
limit when the kinetic mixing parameter δ and the Stueckelberg mass mixing parameter
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ε = M2/M1 are small such that ε$ 1, δ $ 1, which give

εDZ # eεQXgX sin θW ,

εDγ # −eεQX
gX
gY

, (2.8)

where sin θW is the weak angle of the Standard Model and the millicharge is defined as
εD = −εDγ /e so that

εD = gXQX

gY
ε . (2.9)

Thus to lowest order in ε, δ, the photon and the Z-boson have millicharge couplings to
the dark fermions which are independent of δ and depend only on ε which arises from the
Stueckelberg mass mixing, while the dark photon has normal strength coupling to the dark
fermions which is given by

LD
γ′ = gDγ′D̄γµDAγ′

µ , (2.10)

where gDγ′ # gXQX . Further details are given in appendix A and in [35–37] where Lm
SM is

also discussed.
We discuss now the reason the Stueckelberg extension of the Standard Model is critical

in our analysis of the EDGES signal. As seen above, the Stueckelberg extension contains
couplings of the D fermion with Aγ

µ and Z (eq. (2.7)), couplings of the D fermion with
Aγ′

µ (eq. (2.10)), couplings of Standard Model quark and leptons with Aγ′
µ (eq. (A.3)).

All of these couplings enter in our analysis of the EDGES signal. In the absence of the
Stueckelberg couplings only the Aγ

µ term in eq. (2.7) will exist, and the Z boson coupling in
eq. (2.7) will be absent, and all of the couplings of eq. (2.10) and of eq. (A.3) will disappear.
In this case it would not be possible to carry out a two-temperature evolution of the visible
and hidden sectors nor obtain a consistent cosmology discussed in the following sections.
Further, we note that if millicharged particles exist, a natural setting for their existence
points to strings and we are not aware of any alternative mechanism that does that. This
is so because the Stueckelberg mechanism is intimately tied [38] to the Green-Schwarz
anomaly cancellation in string theory [39, 40]. The existence of millicharged particles was
predicted in the Stueckelberg extension of the standard model with mass mixing in [34].

3 Temperature evolution at early times

Typically the cosmological analyses often bifurcate into the early times or the large redshift
era defined by z % 3000 and late times of the small redshift era defined by its compliment
z $ 3000. Here we will discuss the relevant dynamical equations for early times and in the
subsequent section we will discuss analyses at late times and specially for z in the vicinity
of where the effect observed by EDGES occurs. As noted in the section above we are
dealing with two sectors one visible and the other hidden. As pointed out in several recent
works [35, 37, 41–43], in such a situation, an accurate analysis requires that one deals
with the visible and the hidden sectors baths being at different temperatures, with the
visible sector at temperature T and the hidden sector at temperature Th. The temperature
difference between the two sectors has a very significant effect on the analysis as is easy to
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see since the quantities which enter in the cosmological analyses such as the entropy density
s, energy density ρ and pressure density p have direct dependence on temperature, i.e,
s ∼ T 3, (ρ, p) ∼ T 4. In the analysis here we will take account of the visible and the hidden
sectors in different heat baths. Thus the Boltzmann equations for the number densities
nD for the dark fermion, nγ′ for the dark photon and nφ for the scalar depend on the two
temperatures T and Th because of coupling between the hidden sector and the visible sector.

The above implies that a determination of the relic density of dark fermions, which
we assume to have feeble interactions with the visible sector, will involve three coupled
equations for dnD/dt, dnγ′/dt, dnφ/dt and dη/dt, where η = T/Th. In the analysis we will
use the constraint that the entropies of the hidden sector and of the visible sector are not
individually conserved but it is only the total entropy that is conserved, i.e., S = sR3 is
conserved where S is the sum of the visible and the hidden sector entropies. This leads to
the evolution equation for the entropy density s so that ds/dt + 3Hs = 0, where H is the
Hubble parameter and s = sv + sh, where sv depends on T and sh on Th so that

s = 2π2
45

(
hheffT

3
h + hveffT

3
)
. (3.1)

Here hveff(hheff) is the visible(hidden) effective entropy degrees of freedom.
The Hubble parameter also depends on both T and Th as can be seen from the Friedman

equation
H2 = 8πGN

3 (ρv(T ) + ρh(Th)), (3.2)

where ρv(T )(ρh(Th)) is the energy density in the visible (hidden) sector at temperature
T (Th) and given by

ρv = π2

30g
v
effT

4, ρh = π2

30g
h
effT

4
h . (3.3)

The visible effective entropy degrees of freedom hveff in eq. (3.1), and the visible effective
energy degrees of freedom gveff in eq. (3.3) are standard and we use tabulated results from
lattice QCD [44]. Here we focus on hheff in eq. (3.1) and on gheff in eq. (3.3) which are the en-
tropy and energy density degrees of freedom for the hidden sector. They include degrees of
freedom for the dark photon, the dark fermion and the massless scalar (gφ = hφ = 1) so that

gheff = gγ′

eff + 7
8g

D
eff + gφ, and hheff = hγ′

eff + 7
8h

D
eff + hφ, (3.4)

where at temperature Th, geff and heff for the particles γ′ and D are given by [45]

gγ′

eff = 45
π4

∫ ∞

xγ′

√
x2 − x2γ′

ex − 1 x2dx, and hγ′

eff = 45
4π4

∫ ∞

xγ′

√
x2 − x2γ′

ex − 1 (4x2 − x2γ′)dx,

gDeff = 60
π4

∫ ∞

xD

√
x2 − x2D
ex + 1 x2dx, and hDeff = 15

π4

∫ ∞

xD

√
x2 − x2D
ex + 1 (4x2 − x2D)dx.

(3.5)

Here xγ′ and xD are defined so that xγ′ = mγ′/Th and xD = mD/Th. The limit xγ′ → 0
gives gγ′

eff = hγ′

eff → 3 and the limit xD → 0 gives gDeff = hDeff → 4.
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The time evolution of ρh is given by

dρh
dt

+ 3H(ρh + ph) = jh, (3.6)

where ph is the pressure density for the hidden sector and jh is the source in the hidden
sector and is given below in eq. (3.11).

We will use Th as the reference temperature and replace t by Th and analyze the
evolution of nD, nγ′ , nφ and η as a function of Th. For the computation of the relic
densities, it is more convenient to deal directly with yields defined by Ya = na/s for a
particle species a with number density na. We assume that the dark particles D, γ′ and φ
are feeble and there is no initial abundance and that D, γ′ are initially produced only via
freeze-in processes such as i ī→ DD̄, i ī→ γ′, where i refers to Standard Model particles.
However, D and γ′ have interactions such as DD̄ → γ′γ′ within the hidden sector which,
in our case, are not feeble. Furthermore, φ will be produced by hidden sector processes
such as DD̄ → φφ and DD̄ → φγ′ since it does not have a coupling with the SM. The
Boltzmann equations for the yields YD, Yγ′ and Yφ and the differential equation for η then
take the form

dYD
dTh

= − s
H

( dρh/dTh

4ζρh − jh/H

)[

〈σv〉DD̄→īi(T )Y
eq
D (T )2

− 1
2〈σv〉DD̄→γ′γ′(Th)

(

Y 2
D − Y eq

D (Th)2
Y 2

γ′

Y eq
γ′ (Th)2

)

− 1
2〈σv〉DD̄→φγ(Th)

(

Y 2
D − Y eq

D (Th)2
Yφ

Y eq
φ (Th)

)

− 1
2〈σv〉DD̄→φγ′(Th)

(

Y 2
D − Y eq

D (Th)2
YφYγ′

Y eq
φ (Th)Y eq

γ′ (Th)

)

− 1
2〈σv〉DD̄→γ′(Th)Y 2

D + 1
s
〈Γγ′→DD̄〉(Th)Yγ′

]

, (3.7)

dYγ′

dTh
= − s

H

(
dρh/dTh

4ζρh − jh/H

)[

− 〈σv〉γ′γ′→DD̄(Th)
(

Y 2
γ′ − Y eq

γ′ (Th)2
Y 2
D

Y eq
D (Th)2

)

+ 1
2〈σv〉DD̄→φγ′(Th)

(

Y 2
D − Y eq

D (Th)2
YφYγ′

Y eq
φ (Th)Y eq

γ′ (Th)

)

− 〈σv〉γ′D→γD(Th)
(
Yγ′ − Y eq

γ′ (Th)
)
YD

− 1
s
〈Γγ′→īi〉(Th)Yγ′ + 〈σv〉īi→γ′(T )Y eq

i (T )2

− 1
s
〈Γγ′→DD̄〉(Th)

(

Yγ′ − Y eq
γ′ (Th)

Y 2
D

Y eq
D (Th)2

)]

, (3.8)
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dYφ

dTh
= − s

H

(
dρh/dTh

4ζρh − jh/H

)[1
2〈σv〉DD̄→φγ(Th)

(

Y 2
D − Y eq

D (Th)2
Yφ

Y eq
φ (Th)

)

+ 1
2〈σv〉DD̄→φγ′(Th)

(

Y 2
D − Y eq

D (Th)2
YφYγ′

Y eq
φ (Th)Y eq

γ′ (Th)

)

− 〈σv〉φD→γD(Th)(Yφ − Y eq
φ (Th))YD

+ 1
2〈σv〉DD̄→φφ(Th)

(

Y 2
D − Y eq

D (Th)2
Y 2

φ

Y eq
φ (Th)2

)]

, (3.9)

dη

dTh
= − η

Th
+
[
ζρv + ρh(ζ − ζh) + jh/(4H)

ζhρh − jh/(4H)

]
dρh/dTh

Th(dρv/dT )
, (3.10)

where the source term is

jh=
∑

i

[
2Y eq

i (T )2J(i ī→DD̄)(T )+Y eq
i (T )2J(i ī→ γ′)(T )

]
s2−Yγ′J(γ′→ ff̄)(Th)s

−
[1
2Y

2
D J(DD̄→φγ)(Th)+YDYγ′J(γ′D→ γD)(Th)+YφYD J(φD→ γD)(Th)

]
s2, (3.11)

and the equilibrium yield is given by

Y eq
i = neq

i

s
= gi

2π2sm
2
iTK2(mi/T ). (3.12)

Here gi is the number of degrees of freedom of particle i and mass mi, K2 is the modified
Bessel function of the second kind and degree two and the J functions in eq. (3.11) are
given by

neq
i (T )2J(i ī→ DD̄)(T ) = T

32π4
∫ ∞

s0
ds σDD̄→īis(s− s0)K2(

√
s/T ), (3.13)

neq
i (T )2J(i ī→ γ′)(T ) = T

32π4
∫ ∞

s0
ds σīi→γ′s(s− s0)K2(

√
s/T ), (3.14)

nγ′J(γ′ → ff̄)(Th) = nγ′mγ′Γγ′→ff̄ , (3.15)

J(ab→ cd)(Th) =
1

8Thm2
am

2
bK2(ma/Th)K2(mb/Th)

×
∫ ∞

(ma+mb)2
ds σab→cd(s)s[s− (ma +mb)2]K2(

√
s/Th). (3.16)

In eq. (3.10), ζ and ζh are defined so that ζ = 3
4(1 + p/ρ) and ζh = 3

4(1 + ph/ρh) and
interpolate between 1 and 3/4 as one transitions from radiation dominance to matter
dominance. In eq. (3.8) there are contributions one can add on the right-hand-side which
involve processes i ī → γ′γ, γ′Z, γ′γ′. However, their contributions are relatively small
compared to i ī → γ′. The thermally averaged cross sections appearing in eqs. (3.7)
and (3.8) are given by

〈σv〉aā→bc(T ) =
1

8m4
aTK

2
2 (ma/T )

∫ ∞

4m2
a

ds σ(s)
√
s (s− 4m2

a)K1(
√
s/T ), (3.17)

and
neq
i (T )2〈σv〉īi→γ′(T ) =

T

32π4
∫ ∞

s0
ds σ(s)

√
s (s− s0)K1(

√
s/T ), (3.18)
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where K1 is the modified Bessel functions of the second kind and degree one and s0 is the
minimum of the Mandelstam variable s.

The relic density of D is related to YD by

Ωh2 = mDY ∞
D s0h2

ρc
, (3.19)

where ρc is the critical density, s0 is today’s entropy density, Y ∞
D is today’s DM comoving

number density and h = 0.674 [46].
The millicharged dark matter relic density is < 0.4% of the total relic density of dark

matter as given by the Planck Collaboration [47] so that (Ωh2)PLANCK = 0.1198± 0.0012.
This is due to the CMB constraints as discussed in several works [9, 25, 48, 49].

4 Millicharged dark matter and baryon coupling: temperature evolution
at late times

We now focus on the temperature evolution of the baryons and of dark matter at late times.
It has been known for some time that the temperature evolution can be affected by Ruther-
ford scattering of baryons and dark matter and if the dark matter is at a lower temperature
than the baryons, the scattering will lead to cooling of baryons. This situation arises if
the dark matter is millicharged in which case the baryons and dark matter can scatter
via Coulomb interactions. Further, the difference in their evolution history will produce a
relative velocity between them [9] which has a significant effect in the cooling of baryons.
In this work we focus precisely on this possibility, i.e., that a fraction of dark matter is
millicharged which couples to baryons with a cross section parameterized as σ = σ0v−4

where v stands for the relative velocity between DM and baryons and σ0 has the form [4]

σ0 =
2πα2ε2D
µ2
D,t

log
(

9T 3
B

4πε2Dα3xenH

)

. (4.1)

In eq. (4.1), TB stands for the temperature of the baryons and TD stands for the tempera-
ture of DM which, at late times, becomes different from the temperature of the thermal bath
maintained by φ and so TD += Th (we will discuss it further in section 6), where Th appears
in the Boltzmann equations, eqs. (3.7)–(3.10). Further, in eq. (4.1), α = 1/137, εD is the
millicharge of the DM particle defined by eq. (2.9), and the quantity µD,t is the DM-target
reduced mass (the target t of mass mt where t is either an electron or a proton) so that

µD,t =
mDmt

mD +mt
. (4.2)
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Finally, xe is the ionization rate which is determined via the solution of the coupled equa-
tions, eqs. (4.6)–(4.11), and nH is the number density of hydrogen nuclei.1

The relative velocity VDB between DM and baryons can produce a drag force D(VDB)
defined as D(VDB) ≡ dVDB/dt [9]. The full expression for D(VDB) is

D(VDB) =
∑

t=e,p

σ0
fdmρD + ρB
mt +mD

ρt
ρB

1
V 2
DB

F (rt). (4.3)

Here fdm is the fraction of millicharged DM, ρB = ΩB(1 + z)3ρcrit is the energy density
of baryons, and ρD = Ωc(1 + z)3ρcrit is the energy density of cold dark matter (CDM). In
the analysis we take ΩB = 0.0456, Ωc = 0.227, and ρcrit = 3H3

0/(8πGN ), where H0 = 67.8
km/s/Mpc (the Hubble parameter today), GN = 6.67× 10−11N kg−2m2 (the gravitational
constant) and ρt = xemtnH . The function F (rt) in eq. (4.3) is given by

F (rt) ≡ Erf
(

rt√
2

)
−
√

2
π
rt e

−r2t /2. (4.4)

Here rt ≡ VDB/ūt, where ūt is the average velocity due the thermal motion defined by

ūt =
√
TB/mt + TD/mD . (4.5)

The EDGES signal is more prominent during the epoch where DM and baryons are tightly
coupled together which means that the target particle includes both electrons and protons.
The coupling between baryons and DM induces heat transfer between the baryon fluid
and DM which affects the evolution of the dark matter and baryon temperatures. The
quantities that couple the evolution of TB and TD are [4]

Q̇B = fdm
ρD
mD

xe
1 + fHe

∑

t=e,p

mDmt

(mD +mt)2
σ0
ūt

[√
2
π

e−r2t /2

ū2t
(TD − TB) +mD

F (rt)
rt

]

, (4.6)

Q̇D = nHxe
∑

t=e,p

mDmt

(mD +mt)2
σ0
ūt

[√
2
π

e−r2t /2

ū2t
(TB − TD) +mt

F (rt)
rt

]

, (4.7)

where fHe ≡ nHe/nH ≈ 0.08 is the ratio of the helium to hydrogen number densities.
1More general expressions for σ0 exist in the literature, see ref. [15]. After correcting typos, we can write

this equation as σbm = σ0v
−4
rel so that

σ0 = 2πQ2α2
EM

µ2m
log
(

TBµ
2
mv4rel

4πQ2α3
EMne

)
,

where Q is the millicharge, µm is the DM-baryon reduced mass, vrel is the DM-baryon relative velocity and
ne ≡ xenH . A further approximation µmv2rel → 3TB [15] leads to eq. (4.1). However, this approximation
leaves out two effects: first the DM temperature is different from the baryon temperature, and second it
does not include the bulk relative velocity. An improved analysis should take both of these into account.
The numerical size of these corrections is yet unknown. In the analysis here, we use eq. (4.1). We thank
Hongwan Liu for communications and for pointing out the typos in eq. (10) of [15] and the connection
between eq. (4.1) and eq. (10) of their paper and the caveats regarding the approximation mentioned above.
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The evolution equations of baryon and DM temperatures, TB and TD, of the relative
velocity VDB and of the ionization rate xe are given by [4, 25]

(1 + z)dTD

dz = 2TD+
Γφ

H(z)(TD − Tφ)−
2

3H(z)Q̇D, (4.8)

(1 + z)dTB

dz = 2TB + Γc

H(z)(TB − Tγ)−
2

3H(z)Q̇B, (4.9)

H(z)(1 + z)dxedz = C
[
nHαBx

2
e − 4(1− xe)βBe−3E0/4Tγ

]
, (4.10)

(1 + z)dVDB

dz = VDB + D(VDB)
H(z) , (4.11)

where H(z) is the Hubble parameter as a function of the redshift z,

H(z) = H0
√

Ωm(1 + z)3 + ΩΛ + Ωk(1 + z)2. (4.12)

Here Ωm = ΩB + Ωc is the matter energy density parameter (which includes dark matter,
baryons and other non-baryonic matter of the visible sector), ΩΛ = 0.685 is the dark
energy density parameter and Ωk = 0.001 is the curvature parameter [46]. In eq. (4.9), Γc

represents the Compton interaction rate [50, 51]2

Γc =
64π3α2T 4

γ

135m3
e

xe
1 + xe + fHe

, (4.13)

where Tγ is the CMB photon temperature which evolves as Tγ = 2.726(1 + z), xe is the
free electron fraction which evolves according to eq. (4.10) and me is the electron mass.
Analogously, one can define the interaction rate Γφ which is proportional to λ2. Since
λ ∼ 10−3 or smaller, this term in eq. (4.8) makes a negligible contribution. In eq. (4.10),
E0 = 13.6 eV is the ionization energy of hydrogen and En ≡ E0n−2 is the nth energy level.
The quantity C is the Peebles factor [52],

C =
3
4RLyα + 1

4Λ2s,1s
βB + 3

4RLyα + 1
4Λ2s,1s

, (4.14)

where RLyα is the rate of escape of Lyα photons and is given by [53]

RLyα = 8πH(z)
3nHx1sλ3Lyα

, (4.15)

and Λ2s,1s = 8.22 s−1 being the total 2s→ 1s two-photon decay rate. In the recombination
epoch, the ground state population x1s ≈ 1 − xe. λLyα is the transition wavelength of
a photon moving from the n = 2 energy level to 1s state and can be calculated using
λLyα = 2π/En1, where En1 = E2 − E0 = 3/4E0. The quantity αB in eq. (4.10) is the
case-B recombination coefficient3 which is described by the fitting function [54]

αB(TB) = 10−13 a(10−4TB)b
1 + c(10−4TB)d

, (4.16)

2We use natural units kB = ! = c = 1.
3The method used to estimate this coefficient is based on a simple assumption that the photons produced

during recombination directly to the n = 1 state are excluded since they are immediately reabsorbed by
the gas. This is known as case-B recombination.
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where a = 4.309, b = −0.6166, c = 0.6703, and d = 0.5300. Further, βB in eq. (4.10) is
the corresponding photoionization rate which can be obtained from αB by the principle of
detailed balance [53]

βB(Tγ) =
ge
4 eE2/TγnHαB(TB = Tγ), (4.17)

where ge is defined by

ge =
(
µeTγ

2π

)3/2 1
nH

, (4.18)

and µe = memp/(me +mp).

5 The brightness temperature of the 21-cm line

The quantity of interest in explaining the EDGES result is the brightness temperature T21
of the 21-cm line defined by [25]

T21(z) =
Ts − Tγ

1 + z
(1− e−τ ), (5.1)

where τ is the optical depth for the transition given by

τ = 3T∗A10λ321nHI
32πTsH(z) . (5.2)

Here nHI is given by
nHI = nH(1− xe), (5.3)

where A10 = 2.869× 10−15 s−1 is the Einstein coefficient of the hyperfine transition, T∗ =
0.068 K, the energy difference between the two hyperfine levels and λ21 = 21.1 cm, the
transition wavelength. We assume full Lyα coupling (i.e. Ts = TB) to obtain T21 [55]. Note
that T21 as defined in eq. (1.2) can be obtained starting from eq. (5.1). See refs. [1, 56] for
a derivation.

The sky-averaged 21-cm temperature is [10, 57]

T 21 ≡
∫

dVDBP(VDB)T21[TB(VDB)]. (5.4)

The initial velocity probability distribution function is

P(v) = 4πv2e−3v2/(2v2rms)

(2πv2rms/3)3/2
, (5.5)

where the root-mean-square velocity vrms = 29 km/s is taken from ref. [4]. For a more
detailed discussion on vrms, the reader is referred to ref. [32]. The onset of drag between
the dark matter and baryonic fluids could have been considerable much earlier in the
cosmological history causing a much smaller vrms by the time z ∼ 1100. We have checked
the effect of this on T 21 by varying vrms from 29 km/s to 1 km/s. We notice, for example,
a ∼ 1.2% change in T 21 for benchmark (c), i.e., from ∼ −495 mK to ∼ −489 mK and up
to 4% for other benchmarks.
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6 Numerical analysis: millicharged DM relic density, temperature evo-
lution and fit to EDGES data

The general assumption made when solving the baryon and dark matter temperature evo-
lution equations, i.e., eqs. (4.8)–(4.11), is that TD = 0 at z ∼ 1000. In this section we show
that this comes about naturally from a particle physics model after taking into account all
possible scattering processes that DM undergoes.

In our model, the dark sector which contains the dark fermions, dark photons and
the massless scalar is heated differently than the visible sector by the inflaton in the early
universe. Thus the Boltzmann equations, eqs. (3.7)–(3.9), depend on the evolution of the
temperature ratio η given by eq. (3.10). To take account of the assumption that the hidden
sector is initially cooler than the visible sector, the coupled equations, eqs. (3.7)–(3.10),
are solved numerically with the initial conditions η0 = 1000 and Y 0

D = Y 0
γ′ = Y 0

φ = 0. The
hidden sector is then slowly heated by energy injection from the visible sector owing to
the weak coupling between the two sectors. The energy exchange between the sectors is
represented by the source term, eq. (3.11), and by the different thermally averaged cross
sections of eqs. (3.7)–(3.10). Thermal averaging can only be used if the particle species
have formed a thermal bath at some point which is always true for the visible sector but
it may not be the case for the dark sector. We will come back to this point later.

As noted in earlier works, the constraints derived from analyzing the Planck 2015
CMB data [25] imply that the fraction of millicharged dark matter relevant to resolving
the EDGES effect cannot be more than fdm ∼ 0.4% which greatly reduces the allowed pa-
rameter space of the model. There is also a mass-dependent lower bound below which a DM
fraction can no longer be distinguished from the baryonic fluid [25, 32]. Further constraints
on millicharged DM come from SLAC [31], SN1987A [30] and CMB (Planck 2015 data) [32].
A dark photon which couples via mass mixing to the visible sector is also constrained by
several experiments such as the electron and muon g−2 [58], BaBar [59], CHARM [60–62],
NA48 [63], E137 [64, 65], NA64 [66, 67], E141 [68], ν-CAL [61, 69, 70] and LHCb [71, 72].
In table 1 we display three representative benchmarks which satisfy all constraints and can
explain the EDGES result. A DM fraction of 0.3% makes any constraints from DM direct
detection experiments very weak as well as those from indirect detection in the dominant
DD̄ → γ′γ′ → 4e channel [73]. Note that in table 1, ε = M2/M1 and since the mixing is
small one has mγ′ ∼M1. We note that in the analysis of table 1, we set the kinetic mixing
parameter δ = 0. Inclusion of δ affects the analysis only to order δ3 and since kinetic mixing
is typically in the range 10−10 − 10−9, it makes negligible contribution to the analysis.

Even though the couplings between the dark sector and SM particles is weak, the
coupling among the dark sector particles is large enough to establish a thermal bath.
Chemical equilibrium is established when the interaction rate of number changing processes,
such as DD̄ → γ′γ′, becomes larger than the Hubble parameter. Even after the particle
species fall out of chemical equilibrium, kinetic equilibrium can still be maintained in the
dark sector via scattering with massless degrees of freedom, i.e. Dφ → Dφ. We show
in the left panel of figure 1 the yield of D, γ′ and φ as a function of the hidden sector
temperature Th for benchmark (b). The yield starts increasing at high temperatures as
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Model mD mγ′ εD (×10−5) ε (×10−5) gX QX Ωh2 (×10−4)
(a) 16 46.0 1.94 3.50 0.20 1.0 3.38
(b) 12 34.2 2.22 8.00 0.10 1.0 3.49
(c) 7 20.5 1.86 4.00 0.25 2/3 3.41

Table 1. The benchmarks used in this analysis where the fraction of the relic density is fdm =
Ωh2/(Ωh2)Planck ∼ 0.3%, δ = 0 and λ = 10−5. All masses are in MeV.

the SM injects energy into the hidden sector. The rise in the yield of φ is delayed since
the scalar particle is produced only through interactions with D as indicated in eq. (3.9).
Shortly after, the dark sector particles D and γ′ enter in chemical equilibrium as indicated
in the figure while φ joins the thermal bath later depending on the size of λ. After that,
the particle yields start tracing their equilibrium distribution shown by the green dashed
line. The yields of D, γ′ and φ reach a maximum and plateau for a period of time.
Annihilations of DD̄ to γ′γ′ and to SM particles deplete the DM relic density before it
eventually departs from its equilibrium number density and freezes out at Th ∼ 0.4MeV.
This corresponds to x = mD/Th ∼ 30, a typical value around which freeze-out occurs in
standard scenarios. Thus the freeze-out mechanism completely determines the DM relic
density as it erases all memory pertaining to the specifics of the production mode prior to
equilibrium. The yield of φ increases slightly above its equilibrium value due to processes
such as DD̄ → φφ, φγ, φγ′ after which it remains constant following freeze-out. The yield
of φ is shown for two values of λ (solid and dotted black lines) where a value three orders
of magnitude higher results in a larger yield but has a moderate effect on the relic density
where we observe a decrease of less than 5%. The dark photon’s yield shows a dramatic
drop as it is eliminated from the bath via the decays γ′ → i ī, DD̄. The cyan dashed line
shows the equilibrium yield of D as a function of the visible sector temperature, Y eq

D (T ).
Notice that YD and Yγ′ come close to Y eq

D (T ) and so the hidden sector and the visible
sector never fully thermalize. This can be seen in the right panel of figure 1 where we plot
ξ ≡ 1/η = Th/T as a function of the visible temperature T . It is clear that the hidden
sector is heated by the visible sector and reaches a maximum of ξ ∼ 0.8 followed by some
oscillations before leveling off at ξ = 0.5. Let us explain the origin of the oscillations in ξ
which we divide into three regions I, II and III.

As the temperature drops, the source term jh in eq. (3.11) becomes subdominant in
comparison to the energy density and can be dropped. In this case, eq. (3.10) can be
further simplified and written in terms of ξ as

d ln ξ
d lnTh

= 1−
1 + 1

4
d ln gheff
d lnTh

1 + 1
4
d ln gveff
d lnT

. (6.1)

Thus, the temperature evolution after this point depends entirely on the available degrees of
freedom and the manner in which they decouple as the universe cools down. We present in
figure 2 the energy density effective degrees of freedom, geff , (left panel) and d ln geff/d lnT
(right panel) in the visible (blue line) and hidden (red line) sectors. The most dramatic
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Figure 1. Left panel: the yields of the dark fermion, dark photon and the scalar φ as a function
of the hidden sector temperature Th for benchmark (b). Right panel: evolution of ξ as a function
of the visible sector temperature T for benchmark (b). The ratio levels off at ξ = 0.5.

changes in the visible sector degrees of freedom occur during the QCD phase transition,
neutrino decoupling and electron-positron annihilation as shown by three different regions
indicated in the left panel of figure 2 (they correspond to the regions I, II and III in the
right panel of figure 1). The situation is simpler for the hidden sector where we show the
specific example of benchmark (c). The drop in geff occurs between 1MeV and ∼ 40MeV
which is reasonable given that mD = 7MeV and mγ′ = 20MeV in this example. After D,
γ′ decoupling, the massless scalar φ is now the only remaining degree of freedom. The right
panel of figure 2 shows d ln geff/d lnT with the three main regions indicated as in the left
panel. In region I, we notice a sharp rise in d ln gveff/d lnT due to the QCD phase transition
and so the second term on the right hand side of eq. (6.1) becomes small compared to one,
therefore d ln ξ/d lnTh > 0 which causes the drop in ξ to the left side of region I in figure 1
(right panel). Note that region I is not entirely dominated by the QCD phase transition
since jh can still be efficient there and so eq. (6.1) is only valid towards the end of region I.

Region II is dominated by the changes in geff of the hidden sector as one can see from
the right panel of figure 2 that d ln gheff/d lnT > d ln gveff/d lnT . In this case d ln ξ/d lnTh

turn negative which explain the rise in ξ in region II. Finally, in region III we see a similar
behavior as in region I since the visible degrees of freedom undergo a sudden change due to
neutrino decoupling followed by electron-positron annihilation. This causes d ln ξ/d lnTh

to turn positive resulting in a drop in ξ. Eventually ξ levels off since d ln gheff/d lnT =
d ln gveff/d lnT = 0, hence d ln ξ/d lnTh = 0.

One needs to make sure that the remaining relativistic degree of freedom in the hidden
sector due to φ does not contribute excessively to ∆Neff . Thus one can write ∆Neff in
terms of ξ such that

∆Neff #
4∆nb

7

(11
4

)4/3
ξ4, (6.2)

where ∆nb = 1 in our case of a massless real scalar in the hidden sector. From figure 1
(right panel), we have ξ = 0.5 and so this gives us ∆Neff = 0.138 which is consistent with
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Figure 2. Left panel: a plot of geff as a function of the visible temperature T for the visible
(blue line) and hidden (red line) sectors. The different regions bounded by the dashed vertical lines
represent regions with the largest changes in geff . Those changes are exhibited in the right panel as
d ln geff/d lnT where the same regions bounded by the vertical dashed lines are shown. The hidden
sector degrees of freedom correspond to benchmark (c).

the experimental limits on ∆Neff ∼ 0.2. Thus the extra relativistic degree of freedom can be
easily diluted away owing to the temperature difference between the sectors. We note that
our analysis of ∆Neff differs from previous analyses such as of ref. [29] because it depends
sensitively on the ratio of the hidden sector temperature to the visible sector temperature.

This temperature difference is maintained through the processes i D ↔ i D after
chemical decoupling and remain active much later than BBN. As the universe cools, the
dark fermions undergo kinetic decoupling which, using the recipe in ref. [74], is illustrated
in figure 3 for benchmark (b). For small x, the temperature difference between D (blue
line) and the visible sector (green dashed line) is clear while D is in the thermal bath
created by φ in the hidden sector. Elastic scatterings between D and the SM particles
decouple at x ∼ 200 and the two sectors appear to become in thermal contact. This is
due to entropy redistribution among available degrees of freedom as the more massive ones
decouple. Thermal equilibrium between the sectors remains until D kinetically decouples
from the dark sector thermal bath as φD ↔ φD becomes weak at a temperature ∼ 1.2 keV.
Afterwards, TD drops as 1/a2, where a is the scale factor. Note that the hidden sector no
longer has a unified temperature Th and so after kinetic decoupling Th += TD += Tφ.

Having established a temperature difference between the dark matter and the visible
sector after solving eqs. (3.7)–(3.10), we now turn our attention to the temperature evolu-
tion at much later times, i.e. at redshifts down to z ! 1700. For this purpose, we solve the
coupled equations, eqs. (4.8)–(4.11), with the initial condition TD → 0 and TB = TCMB at
z = 1700. The results are shown in figure 4.

The three panels figure 4 show the temperature evolution of baryons and the DM
for three values of mD while εD and fdm are fixed and consistent with the constraints of
figure 6. Notice that the CMB and the baryons were initially in thermal contact before they
begin diverging as the universe cools. As the baryons fall out of equilibrium with the CMB,
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Figure 3. Evolution of the dark fermion temperature (blue line) as a function of x = mD/T showing
the kinetic decoupling happening after the dark freeze-out. The green dashed line represents the
visible sector temperature and the red dashed line is the hidden sector temperature.

Figure 4. The temperature evolution of the CMB (black line), baryons (orange line), and DM
(blue line) as a function of the redshift. The pink dashed line is the TB evolution in the ΛCDM
model. The three panels correspond to three different values of mD and fixed εD = 3 × 10−5 and
fdm = 0.3%. It is seen that for mD small, baryons and DM have a faster heat exchange so they
thermalize early on and DM cools baryons more efficiently [75]. The red point with vertical error
bars in each of the three panels represents the EDGES measurement.

they begin to thermalize with the DM and move away from their predicted value in ΛCDM
(dashed line) owing to the baryon-DM interaction which further cools down the baryons.

Next, we exhibit in figure 5, the dependence of T 21 on εD (left panel), on fdm (middle
panel) and on mD (right panel). The upper and the lower hatched regions are excluded by
virtue of the value of T 21 given by eq. (5.1).

Finally in figure 6 we give the exclusion plots which display the region of the parameter
of the Stueckelberg model where the EDGES signal can reside consistent with all the
constraints. The left panel of figure 6 exhibits the relevant constraints in the εD-mD plane
on millicharged dark matter along with the allowed region consistent with EDGES result of
T 21 = −500+200

−500 mK. We also show contours for fixed T 21 values in the allowed region. Note
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Figure 5. Exhibition of the dependence of T 21 at z = 17.2 on εD (left panel), on fdm (middle panel)
and onmD (right panel). Left panel: the three curves correspond to mD = 1MeV (blue line), 5 MeV
(orange line) and 10 MeV (green line) with a fixed fdm = 0.3%. Middle panel: the three curves cor-
respond to the same three values of mD as in the left panel except that here εD is fixed at εD = 10−5.
Right panel: here the three curves correspond to values of εD to be 3× 10−6 (blue line), 1× 10−5

(orange line) and 3×10−5 (green line) with a fixed fdm = 0.3%. In all panels, the red hatched region
is excluded by T 21 > −300 mK while the blue hatched region is excluded by T 21 < −1000 mK.

Figure 6. Left panel: constraints on millicharged dark matter from SLAC [31] (purple region),
SN1987A [30] (grey region) and CMB limit derived from Planck 2015 data [32] (pink region). The
constraint from EDGES [11] is shown where the excluded red and blue regions correspond to values
inconsistent with T 21 = 500+200

−500 mK. Also shown are contours for fixed T 21 in the allowed region.
Right panel: plot of the mass mixing parameter ε versus the dark photon mass where the constraints
shown from various experiments are discussed in the text. The region in blue corresponds to the
parameter space giving fdm ∼ 0.3% and is consistent with the allowed region in the εD-mD plane
(shown in the left panel) only within the region not excluded by T 21 bounded by the hatched red
curve. Here we set QX = 1 and gX = 0.2.

that the Planck constraint has been satisfied since we fixed fdm = 0.3% consistent with
fdm ! 0.4% [25]. The right panel of figure 6 shows the constraints and the allowed regions
in the ε-mγ′ plane. Note that here the plot is in the mass mixing ε and not the millicharge
εD. The two are related via eq. (2.9). The blue region corresponds to the parameter space
giving fdm ∼ 0.3% and consistent with the allowed DM millicharges in the left panel only
within the region bounded by the hashed red line which corresponds to T 21 > −300 mK.
Here we find thatmγ′ ∼ 3mD is able to deplete the DM relic density to the required fraction.

– 18 –



J
H
E
P
1
2
(
2
0
2
1
)
1
4
8

7 Conclusion

In this work we have presented a particle physics model using the Stueckelberg mechanism
which can generate millicharged dark matter and can provide the necessary baryon cooling
to explain the EDGES data. The model we consider is one where the hidden sector pos-
sesses a U(1) gauge symmetry and the gauge field of the hidden sector has a Stueckelberg
mass mixing with the hypercharge gauge field of the standard model. In this case a dark
fermion in the hidden sector develops a millicharge due to the Stueckelberg mass mixing
mechanism and interacts with the baryons via electromagnetic interactions. We solve a
coupled set of equations for the yields of the dark fermion and the dark photon, and for
the temperatures of millicharged dark matter and of the baryons as a function of redshift.
This allows us to compute the millicharged DM relic density as well as the baryon cooling
as a function of the redshift. We give a set of benchmarks which simultaneously satisfy the
required fraction of the millicharged dark matter relic density and of baryon cooling and
thus satisfy the EDGES data and lie in the region of the parameter space consistent with
all other experimental constraints.
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8 Further details of the analysis

In this appendix we give further details of the analysis presented in the main body of the
paper. Thus in appendix A we briefly describe the underlying canonical normalization
of the Lagrangian of eq. (2.1) and display the full neutral current which contains the
millicharge coupling. In appendix B, we discuss the cross-sections that enter in the analysis
of the relic density of the millicharged dark matter which is constituted of D fermions. The
relevant cross sections consist of: (1) DD̄ → Z/γ/γ′ → qq̄, (2) DD̄ → Z/γ/γ′ → 22̄, (3)
DD̄ → Z/γ/γ′ → νν̄, (4) DD̄ → γ′γ′, (5) qq̄ → γ′, (6) 22̄→ γ′, (7) νν̄ → γ′, (8) DD̄ → γ′,
(9) DD̄ → φγ, (10) DD̄ → φγ′, (11) γ′D → γD, (12) φD → γD and (13) DD̄ → φφ. In
appendix C we discuss the decay of the dark photon which allows the satisfaction of the
constraint that it decays before BBN.

A Model details

As discussed in section 2, in the Standard Model the neutral gauge boson sector comprises
of the hypercharge gauge boson Bµ and the component Aµ

3 of the SU(2)L gauge field Aµ
a

(a = 1−3) which leads to a 2 × 2 mass square matrix after spontaneous breaking which
contains one massless mode, the photon, and a massive mode, the Z-boson. Inclusion of

– 19 –



J
H
E
P
1
2
(
2
0
2
1
)
1
4
8

the Stueckelberg gauge field Cµ, enlarges the 2×2 mass square matrix of the neutral gauge
boson sector of the Standard Model to a 3 × 3 mass square matrix in the Stueckelberg
extended model. Including the kinetic mixing of the U(1)X and U(1)Y and after the trans-
formation to diagonalize the kinetic and mass matrices one has the mass eigenstates which
are Zµ, Aγ′

µ , Aγ
µ which are the Z-boson, the dark photon γ′ and the photon γ. The couplings

of Zµ and Aγ
µ to the dark fermion were given in eq. (2.7)–(2.8) under the approximation

ε $ 1, δ $ 1. Here we display the full form of the couplings that enter in Lm
hid and Lγ′

D .
Thus the full forms of the couplings εDZ , εDγ and gDγ′ are given by

εDZ = gXQX(R12 − sδR22),
εDγ = gXQX(R13 − sδR23),
gDγ′ = gXQX(R11 − sδR21), (A.1)

where sδ = sinh δ and where the matrix R is given by eq. (23) of [76]. It involves three
Euler angles (θ, φ, ψ) which diagonalize the Stueckerberg mass matrix such that RTM2R =
diag(m2

γ′ ,m2
Z , 0), where M2 is defined by eq. (21) of [76]. The angles φ, θ, ψ are defined as

tanφ = ε̄, tan θ = gY
g2

cδ cosφ, tan 2ψ = 2ε̄m2
Z sin θ

m2
γ′ −m2

Z + (m2
γ′ +m2

Z −m2
W )ε̄2 , (A.2)

and ε̄ = εcδ−sδ, where cδ = cosh δ. Under the approximation ε$ 1, δ $ 1, eq. (A.2) gives
the result of eq. (2.7) and eq. (2.8).

As noted earlier, the Standard Model fermions develop millicharge couplings with the
dark photon after canonical diagonalization and we get [76]

Lm
SM = g2

2 cos θ ψ̄fγ
µ
[
(v′

f − γ5a′
f )Aγ′

µ

]
ψf , (A.3)

where f runs over all SM fermions and the vector and axial couplings are given by

v′
f = − cosψ[(tanψ + ε̄ sin θ)T3f − 2 sin2 θ(ε̄ csc θ + tanψ)Qf ],

a′
f = − cosψ(tanψ + ε̄ sin θ)T3f ,

(A.4)

where T3f is the third component of isospin and Qf is the electric charge for the fermion.
We also record here the couplings of the Zµ and Aγ

µ in the canonically diagonalized basis
which are given by [76]

LSM = g2
2 cos θ ψ̄fγ

µ
[
(vf − γ5af )Zµ

]
ψf + eψ̄fγ

µQfAµψf , (A.5)

where f runs over all SM fermions and the vector and axial couplings are given by

vf = cosψ[(1− ε̄ tanψ sin θ)T3f − 2 sin2 θ(1− ε̄ csc θ tanψ)Qf ],
af = cosψ(1− ε̄ tanψ sin θ)T3f .

(A.6)

In summary, the full set of millicharge couplings arise from eqs. (2.5), (2.7), and (A.3).
Further, the coupling of the dark fermion with the dark photon is normal strength and is
given by eq. (2.10).

– 20 –



J
H
E
P
1
2
(
2
0
2
1
)
1
4
8

B Cross-sections for dark matter relic density calculation

We present here the relevant cross-sections needed for the computation of the millicharged
dark matter relic density. The analysis involves all the couplings discussed in section 2 and
in appendix A, specifically eqs. (2.5), (2.7), (A.3) and (2.10). These cross sections enter in
eqs. (3.7)–(3.11).

1. DD̄ → Z/γ/γ′ → qq̄:
The total cross-section for the process DD̄ → Z/γ/γ′ → qq̄ is given by

σDD̄→qq̄(s)= g2Xg22
8πscos2θ

√
s−4m2

q

s−4m2
D

[
(R12−sδR22)2(α2ηqT 2

3q−2αβκqQqT3q+2β2Q2
qκq)

(s−m2
Z)2+m2

ZΓ2
Z

+
(R11−sδR21)2(α′2ηqT 2

3q−2α′β′κqQqT3q+2β′2Q2
qκq))

(s−m2
γ′)2+m2

γ′Γ2
γ′

−2(R11−sδR21)(R12−sδR22)
{
Qqβ(2β′Qq−α′T3q)κq

+αT3q(α′T3qηq−β′Qqκq)
}
×

(s−m2
Z)(s−m2

γ′)+ΓZΓγ′mZmγ′

[(s−m2
Z)2+m2

ZΓ2
Z ][(s−m2

γ′)2+m2
γ′Γ2

γ′ ]

]

+ g2X
4πs

√
s−4m2

q

s−4m2
D

[
e2Q2

qκq
s2

(R13−sδR23)2−
eg2Qqκq
cosθ ×

×
{

s−m2
Z

s[(s−m2
Z)2+m2

ZΓ2
Z ]

(2βQq−αT3q)(R12−sδR22)(R13−sδR23) (B.1)

−
s−m2

γ′

s[(s−m2
γ′)2+m2

γ′Γ2
γ′ ]

(2β′Qq−α′T3q)(R11−sδR21)(R13−sδR23)
}]

,

where e = γ cos θ, mq, mZ and mγ′ are the quark, Z and γ′ masses, respectively, and
T3q = 1/2(−1/2) and Qq = 2/3(−1/3) for up-(down)-type quarks, and with

κq = (s+ 2m2
D)(s+ 2m2

q), ηq = (s+ 2m2
D)(s−m2

q),
α = cosψ − ε̄ sin θ sinψ, β = sin2 θ cosψ − ε̄ sin θ sinψ,
α′ = sinψ + ε̄ sin θ cosψ, β′ = sin2 θ sinψ + ε̄ sin θ cosψ.

(B.2)

2. DD̄ → Z/γ/γ′ → 22̄:
The total cross-section for the process DD̄ → Z/γ/γ′ → 22̄ is given by

σDD̄→''̄(s)= g2Xg22
96πscos2θ

√
s−4m2

'

s−4m2
D

[
(R12−sδR22)2(α2η'−4αβκ'+8β2κ')

(s−m2
Z)2+m2

ZΓ2
Z

+(R11−sδR21)2(α′2η'−4α′β′κ'+8β′2κ')
(s−m2

γ′)2+m2
γ′Γ2

γ′

+2(R11−sδR21)(R12−sδR22)
{
2β(α′−4β′)κ'

−α(α′η'−2β′κ')
}
× (s−m2

Z)(s−m2
Z′)+ΓZΓγ′mZmγ′

[(s−m2
Z)2+m2

ZΓ2
Z ][(s−m2

γ′)2+m2
γ′Γ2

γ′ ]

]
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+ g2X
24πs

√
s−4m2

'

s−4m2
D

[
2e2κ'

s2
(R13−sδR23)2+

eg2κ'

cosθ ×

×
{

s−m2
Z

s[(s−m2
Z)2+m2

ZΓ2
Z ]

(α−4β)(R12−sδR22)(R13−sδR23) (B.3)

−
s−m2

γ′

s[(s−m2
γ′)2+m2

γ′Γ2
γ′ ]

(α′−4β′)(R11−sδR21)(R13−sδR23)
}]

,

where
κ' = (s+ 2m2

D)(s+ 2m2
'), η' = (s+ 2m2

D)(s−m2
'). (B.4)

3. DD̄ → Z/γ′ → νν̄:
The total cross-section for the process DD̄ → Z/γ′ → νν̄ is given by

σDD̄→νν̄(s) = g2Xg22
32π cos2 θ

(s+ 2m2
D)s1/2√

s− 4m2
D

{
α′2(R11 − sδR21)2
(s−m2

γ′)2 +m2
γ′Γ2

γ′
+ α2(R12 − sδR22)2

(s−m2
Z)2 +m2

ZΓ2
Z

− 2αα′(R11 − sδR21)(R12 − sδR22)

×
(s−m2

Z)(s−m2
γ′) + ΓZΓγ′mZmγ′

[(s−m2
Z)2 +m2

ZΓ2
Z ][(s−m2

γ′)2 +m2
γ′Γ2

γ′ ]

}

. (B.5)

4. DD̄ ←→ γ′γ′:
The total cross-section for the process DD̄ → γ′γ′ is

σDD̄→γ′γ′(s)= g4X(R11−sδR21)4
8πs(s−4m2

D)

{

−

√
(s−4m2

γ′)(s−4m2
D)

m4
γ′ +m2

D(s−4m2
γ′)

[2m4
γ′ +m2

D(s+4m2
D)]

+ logA
s−2m2

γ′
(s2+4m2

Ds+4m4
γ′−8m4

D−8m2
Dm

2
γ′)
}

, (B.6)

where

A =
s− 2m2

γ′ +
√
(s− 4m2

γ′)(s− 4m2
D)

s− 2m2
γ′ −

√
(s− 4m2

γ′)(s− 4m2
D)

, (B.7)

The reverse processes are given by

9(s− 4m2
γ′)σγ′γ′→DD̄(s) = 8(s− 4m2

D)σDD̄→γ′γ′(s). (B.8)

5. qq̄ → γ′:

The cross-section for the process qq̄ → γ′ is

σqq̄→γ′(s) = π(g22 + γ2)
6s(s− 4m2

q)1/2
[
2Q2

qβ
′2(m2

γ′ + 2m2
q)− 2QqT3qα

′β′(m2
γ′ + 2m2

q)

+ α′2T 2
3q(m2

γ′ −m2
q)
]
δ(
√
s−mγ′). (B.9)
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6. 22̄→ γ′:

The cross-section for the process 22̄→ γ′ is

σ''̄→γ′(s) = π(g22 + γ2)
2s(s− 4m2

')1/2
[
2β′2(m2

γ′ + 2m2
')− α′β′(m2

γ′ + 2m2
')

+ 1
4α

′2(m2
γ′ −m2

' )
]
δ(
√
s−mγ′). (B.10)

7. νν̄ → γ′:

The cross-section for the process νν̄ → γ′ is

σνν̄→γ′(s) =
3π(g22 + γ2)α′2m2

γ′

4s3/2 δ(
√
s−mγ′). (B.11)

8. DD̄ → γ′:

The cross-section for the process DD̄ → γ′ is

σDD̄→γ′(s) = πg2X
2s3/2 (R11 − sδR21)2(2m2

D +m2
γ′)δ(
√
s−mγ′). (B.12)

9. DD̄ → φγ:

The cross-section for the process DD̄ → φγ is

σDD̄→φγ(s) = g2Xλ
2(R13 − sδR23)2

8πs2(s− 4m2
D)



8m2
Ds

√

1− 4m2
D

s
+ (s− 4m2

D)2 logB



 ,

(B.13)
where

B =
s− 2m2

D +
√
s(s− 4m2

D)
2m2

D

. (B.14)

10. DD̄ → φγ′:

The cross-section for the process DD̄ → φγ′ is

σDD̄→φγ′(s) = g2Xλ
2(R11 − sδR21)2

8πs(s− 4m2
D)(s−m2

γ′)

{

4(2m2
D +m2

γ′)
√
s(s− 4m2

D)

+ [16m4
D + (s−m2

γ′)2 − 8m2
D(s− 2m2

γ)] logB
}

. (B.15)
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11. γ′D → γD:

The cross-section for the process γ′D → γD is

σγ′D→γD(s) = g4X
24πs2(s−m2

D)
(R11 − sδR21)2(R13 − sδR23)2

m4
D + (s−m2

γ′)2 − 2m2
D(s+m2

γ)

×
{√

m4
D + (s−m2

γ′)2 − 2m2
D(s+m2

γ) [m6
D −m4

D(s+m2
γ′)

+ s2(s+ 7m2
γ′) +m2

Ds(15s+ 2m2
γ′)] + 2[3m4

D − 2m4
γ′

+ 2m2
D(3s−m2

γ′) + 2s(m2
γ′ − s)] logC

}

, (B.16)

where

C =
m2

D(m2
D −m2

γ′) + s(m2
γ′ − s) + (s−m2

D)
√
m4

D + (s−m2
γ′)2 − 2m2

D(s+m2
γ)

m2
D(m2

D −m2
γ′) + s(m2

γ′ − s)− (s−m2
D)
√
m4

D + (s−m2
γ′)2 − 2m2

D(s+m2
γ)
.

(B.17)

12. φD → γD:

The cross-section for the process φD → γD is

σφD→γD(s) = g2Xλ
2(R13 − sδR23)2

16πs2(s−m2
D)2

[

(3s+m2
D)(m4

D − 8sm2
D − s2)

− 2s2 (s+ 3m2
D)2

s−m2
D

log
(
m2

D

s

)]

. (B.18)

13. DD̄ → φφ:

The cross-section for the process DD̄ → φφ is

σDD̄→φφ(s) = λ4

32πs2(s− 4m2
D)

[
2(s−m2

D)2(m6
D − 4m4

Ds− 26m2
Ds

2 − 4s3)
(2s−m2

D)(m4
D − 2m2

Ds+ 2s2)

+ (32m4
D − 16m2

Ds− s2) log
(

2m2
Ds−m4

D

2s2 − 2m2
Ds+m4

D

)]

. (B.19)

C Dark photon decay

1. The decay width of γ′ to leptons is given by

Γγ′→''̄ =
g22

24πmγ′ cos2 θ

√√√√1−
(
2m'

mγ′

)2[1
4α

′2(m2
γ′ −m2

')− α′β′(m2
γ′ + 2m2

')

+ 2β′2(m2
γ′ + 2m2

')
]

. (C.1)
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2. The decay width of γ′ to quarks is given by

Γγ′→qq̄ =
g22

8πmγ′ cos2 θ

√√√√1−
(
2mq

mγ′

)2[

α′2(m2
γ′ −m2

q)T 2
3q − 2α′β′(m2

γ′ + 2m2
q)QqT3q

+ 2β′2(m2
γ′ + 2m2

q)Q2
q

]

. (C.2)

3. The decay width of γ′ to neutrinos is given by

Γγ′→νν̄ = g22
32π cos2 θmγ′α′2. (C.3)

4. The decay width of γ′ to dark fermions is given by

Γγ′→DD̄ = g2X
12π (R11 − sδR21)2mγ′

(

1 + 2m2
D

m2
γ′

)

. (C.4)
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