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Abstract

Retrieval of exoplanetary atmospheric properties from their transmission spectra commonly assumes that the errors
in the data are Gaussian and independent. However, non-Gaussian noise can occur due to instrumental or stellar
systematics and the merging of discrete data sets. We investigate the effect of correlated noise and constrain the
potential biases incurred in the retrieved posteriors. We simulate multiple noise instances of synthetic data and
perform retrievals to obtain statistics of the goodness of retrieval for varying noise models. We find that correlated
noise allows for overfitting the spectrum, thereby yielding a better goodness of fit on average but degrading the
overall accuracy of retrievals. In particular, correlated noise can manifest as an apparent non-Rayleigh slope in the
optical range, leading to an incorrect estimate of cloud /haze parameters. We also find that higher precision causes
correlated results to be further off from the input values in terms of estimated errors. Finally, we show that while
correlated noise cannot be reliably distinguished with Hubble Space Telescope observations, inferring its presence
and strength may be possible with James Webb Space Telescope observations. As such, we emphasize that caution
must be taken in analyzing retrieved posteriors and that estimated parameter uncertainties are best understood as
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1. Introduction

Inverse modeling the transmission spectra of exoplanets
allows for the extraction of information about various proper-
ties and processes in the atmosphere. This is commonly done
by pairing a forward model, which generates a spectrum from
atmospheric parameters, and a parameter estimation scheme,
which samples the parameter space to compute the probability
distribution of the set of parameters. This method of analyzing
observed spectra, called atmospheric retrieval, originally
developed for remote sensing in solar system bodies, (e.g.,
Rodgers 2000) has become a standard tool in characterizing
exoplanetary atmospheres and has allowed for the measure-
ment of abundances of various species and the identification of
atmospheric phenomena such as the presence of clouds and
thermal inversions (e.g., Line et al. 2013; Waldmann et al.
2015; Madhusudhan 2018; Benneke et al. 2019; Zhang et al.
2019; Barstow & Heng 2020).

Recently, there has been a growing body of work that
addresses the potential to be misled by incomplete physics or
simplifying assumptions used in retrievals, often invoked to
speed up the computation and make the retrieval feasible (e.g.,
Pinhas et al. 2018; Caldas et al. 2019; Changeat et al. 2019;
Barstow et al. 2020; Lacy & Burrows 2020; Taylor et al. 2020).
These studies are especially germane in preparation for
interpreting James Webb Space Telescope (JWST) observa-
tions, the precision of which will now render the finer details of
the model consequential. Such details include three-dimen-
sional atmospheric structure, host star effects, aerosol models,
and disequilibrium chemistry. The general method used in the
aforementioned works is to retrieve on a synthetic spectrum
generated by a more complex and complete forward model and
then inspect the retrieval result to quantify what bias may be
incurred, with the aim of making judicious choices as to how
and which model complexity and compromises should be
introduced to the retrieval’s forward model.

Adopting a similar approach, we focus on a separate but
related issue in this work. A universal assumption made in
atmospheric retrieval is that the reported errors in the observed
spectrum are Gaussian and independent. This assumption is
encoded into the cost function one tries to minimize during the
parameter estimation, which is invariably a chi-squared statistic
that does not take the covariance between the residuals into
account (Andrae et al. 2010; Line et al. 2013; Zhang et al.
2019). While this assumption is a reasonable starting point for
analyzing observations, as data quality reaches unprecedented
precision and as retrievals incorporate increasingly sophisti-
cated forward models and more rigorous statistical methods, it
is necessary to understand the significance of the assumption of
independent errors.

As further motivation for this work, there have been
observations that hint at the extent to which errors may be
correlated with wavelength. To pull one such example from the
literature, we identify the observed spectrum of HD 97658b
with the Wide-Field Camera 3 (WFC3) instrument on the
Hubble Space Telescope (HST; Guo et al. 2020). The retrieval
on this data set strongly favors either high-metallicity or cloudy
atmospheres, corresponding with a nearly featureless transmis-
sion spectrum (a flat line). However, none of the forward
models considered by Guo et al. (2020) provide an excellent fit
to the data. For example, we show the best-fit PLATON (Zhang
et al. 2019) spectrum in Figure 1, which yields a reduced chi-
squared of 2.5 and is ruled out by the data at 4.90. (We note
that Guo et al. 2020 can find models that provide a high-quality
fit to their data by scaling their formal error bars by a factor >1
—a practice that we weigh in on later in this paper and that we
do not endorse.) As can be seen in Figure 1, the best-fit
spectrum produces residuals that are possibly correlated. One
rudimentary method of quantifying correlation is to count the
number of zero-crossings, which should follow a symmetric
binomial distribution if the noise were independent.
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Figure 1. The observed WFC3 data of HD 97658b (Guo et al. 2020) and the
best-fit PLATON spectrum in full-resolution and binned (solid line). The
residuals from the fit are also shown in the bottom panel. The best-fit x is 56,
and the reduced is Xf = 2.5. An unusual upward trend in the residuals is
present in the long wavelength limit, and the residuals appear to be correlated
with the wavelength.

(The complete figure set (5 images) is available.)

Additionally, an unusual upward slope is seen in the residual in
the red-most edge. A similar behavior was seen in the observed
spectrum of KELT-11b (see Colén et al. 2020, their Figure 20).
This could be attributed to either complicated physics
unaccounted for in the forward model or the presence of
correlated noise in the data.

Potential sources of correlated noise are numerous and
include faulty data reduction due to incorrect orbital parameters
or incomplete subtraction of stellar contributions (Rackham
et al. 2018; Bruno et al. 2020). Choices made during the data
reduction, such as the choice of a model to remove visit-long
trends, can potentially produce a wavelength-dependent
correlated effect in the spectrum (see Guo et al. 2020, their
Figure 7). More fundamentally, the removal of instrumental
systematics such as ramping or horizontal shifts in HST data
has intrinsic uncertainties and may potentially manifest
themselves in a wavelength-dependent manner (Tsiaras et al.
2016).

For space-based observation facilities, there are some
reasons from observer experience to suspect that correlated
noise is more likely in the case of a very bright host star, for
which the instrumental systematics either behave differently or
become more apparent due to lower photon noise. In Stevenson
& Fowler (2019, Figure 9), it can be seen that no observations
with bright host stars of J-band magnitude < 8.5 meet the ideal
precision per orbit, instead maxing out at ~35 ppm. (Interest-
ingly, our previously discussed example case of HD 97658b
fits into this category, with a J-band magnitude of 6.2.) This
effect has been attributed to unaccounted for wavelength-
dependent systematics, which have no guaranteed way of being
completely modeled out. In the case of ground-based
observations, the highly time-dependent telluric contamination
may also be a potential source of correlated systematics.

A separate, but related cause of wavelength-dependent
correlation in data errors arises when combining data from
various instruments to gain a wider wavelength coverage. Each
instrument has its own instrumental systematics and data
reduction pipeline, leading to distinct noise statistics among the
data sets. More fundamentally, these observations are not
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simultaneous and are hence subject to differing conditions with
respect to stellar and planet variability. An insufficient number
of observed transits may admit such variability in the data, even
if the desired signal-to-noise ratio (S/N) is formally achieved.
Some retrieval analyses have included ad hoc offset para-
meters, which vertically shift all measured transit depths from
one data set by a variable amount, to fit for the discrepancies
between data sets, but doing so can induce bias in the
estimation of other parameters (Hou Yip et al. 2020).

Another issue arises in how outliers in the observed data are
interpreted in a retrieval. After fitting a spectrum to data, the
presence of anomalous outliers in the residuals is certainly
within the expectation of what can happen, and statistical
methods such as bootstrapping, though rarely used in retrieval
studies, do offer objective criteria to exclude these outliers.
However, the fact that we rely on the best-fit spectrum to
determine the outliers raises the question if a statistically
equivalent datum could have been accommodated for as a
detected feature if it happened to have occurred where we
expect one. This problem is especially pertinent in the context
of retrievals with nonequilibrium models. It particularly affects
resolution-limited observations and species with single, narrow
features, e.g., atomic lines such as Na or K for which only one
or two data points dictate the retrieved abundance.

Given the number of potential issues raised above, in the
present work we aim to address the question: How reliable are
our atmospheric retrievals and what are the best practices in the
face of these idiosyncratic data systematics? We perform
atmospheric retrievals on simulated spectra, while varying the
noise properties, and conduct a detailed analysis of the
retrieved parameters. Such an analysis provides a statistical
context in which one can assess the credibility of a retrieval
beyond a raw retrieved posterior. In what follows, in Section 2
we describe our planet parameters and noise models used, in
Section 3 we present our findings in how retrievals are affected,
in Section 4, we test whether correlation can be estimated
during retrieval, in Section 5 we discuss how we might be able
to better understand the sources of these systematics and
implications for future telescopes, and in Section 6 we
summarize and conclude.

2. Methods
2.1. Framework for Statistics of Retrievals

To study how non-Gaussian errors can bias the retrieval
results, we perform retrievals on simulated data generated with
and without correlation in the noise. Here, by using the same
forward model to create the synthetic spectrum and to retrieve
it, we remove model dependencies as much as possible and are
able to examine the bias due to noise in isolation. To obtain the
statistics of retrievals, we use the following procedure (also
shown schematically in Figure 2).

1. Choose the input parameters of a planet, such as radius,
temperature, and metallicity.

2. Run the forward PLATON (Zhang et al. 2019) model to
produce the unpolluted spectrum of the atmosphere.

3. Bin the full-resolution unpolluted spectrum to the chosen
wavelength bins.

4. Choose a noise model (independent or correlated) and
noise parameters that simulate the noise of a real
observation.
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Figure 2. Schematic diagram of our method. We generate multiple (~500)
observational instances of a given planetary scenario and noise model, and
perform atmospheric retrieval on each spectrum using PLATON.

(The complete figure set (5 images) is available.)

5. Sample a noise realization of the binned spectrum using
the noise model.

6. Perform retrieval analysis on the simulated data.

7. Repeat steps 5 and 6 a sufficient number of times such
that the retrieved parameters can be combined to generate
reliable statistics.

We use PLATON (version 3.0; Zhang et al. 2019), an open-
source retrieval tool, as the forward and retrieval model for the
transmission spectra. PLATON has the advantage of being
extremely fast for a retrieval code (<30 minutes per run),
which is suitable for our application as we perform hundreds of
retrievals with randomly sampled noise realizations. We
perform this process only on transmission spectroscopy, as
the geometry allows for the assumption of an isothermal
atmosphere, greatly reducing the number of free parameters in
our model as well as the computation time per run.

We repeat the above procedure for five cases of observation:
a clear hot Jupiter, a clear hot Jupiter with offsets between data
sets, a cloudy hot Jupiter, a clear hot Jupiter at higher (James
Webb Telescope (JWST)-like) precision, and a warm Neptune.
In what follows, we describe the forward model parameters, the
noise model, and the retrieval setup. A summary of the input
parameters and the assumed priors for each set of retrievals is
provided in Table 1.

2.2. Forward Model Parameters

To best imitate retrievals on actual observations, we choose
input parameters and spectrum bins similar to HST and Spitzer
observations of the canonical hot Jupiter HD 209458b and exo-
Neptune GJ436b which have reliable data and have been
studied in the context of retrievals (Evans et al. 2015; Deming
et al. 2013; Knutson et al. 2007; Deming et al. 2011; Dittmann
et al. 2009; Lothringer et al. 2018). We adopt the measured
mass, radius, and temperature of each planet, and set the log-
metallicity to 0.3 and carbon-to-oxygen ratio to the solar value
of 0.53 (Asplund et al. 2009).

We also choose to include cloud and hazes in our model.
Such aerosols have been found to be ubiquitous in exoplanetary
atmospheres (e.g., Kreidberg et al. 2014; Sing et al. 2016) and
produce a spectral signature that can be degenerate with other
parameters (Deming & Seager 2017; Marley et al. 2014).
PLATON accounts for clouds and hazes using a parametric
model. The user can specify a gray cloud-top pressure, the
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atmosphere absorption below which is truncated, and an
amplitude and slope in the optical end of the spectrum to
account for a non-Rayleigh slope caused by Mie scattering. In
summary, the aerosol opacity ke iS given as

P > Rioud: Kaer = 00
P < Rioud: Kaer X aX 7,

where @ = 1 and = 4 corresponds to Rayleigh scattering from
the gaseous atmosphere.

For our cloud-free simulations, we choose a low-altitude cloud-
top pressure of 0.5 bar. For our cloudy simulations, we choose
0.1 mbar such that clouds obscure roughly half of the spectrum
while preserving some molecular features. Similarly, we adopt a
nearly Rayleigh slope of 4.3 and an amplitude of 1, indicating no
excess Rayleigh scattering from the aerosol particles. We stress
that since we use the same forward model in the retrieval to isolate
the effects of noise from model systematics, the specific choices in
parameters are not of great importance as long as they can be
correctly retrieved and as long as we select a set of forward
models that span a representative set of exoplanet atmospheres.

We choose a wavelength range that spans observations from
the HST spectrographs most commonly used for exoplanet
atmospheric investigations—specifically the Space Telescope
Imaging Spectrograph (STIS) and WFC3—as well as photo-
metric observations from the Spitzer Space Telescope. In the
STIS wavelength range we follow the bins of Knutson et al.
(2007), in the WFC3 wavelength we choose 33 equal sized bins
between 1.01 ym and 1.64 pum (Gennaro 2018), and for Spitzer
we include observations in the photometric bands of the IRAC
instrument at 3.6 um and 4.5 ym. The resulting wavelength
bins are comparable to a complete panchromatic data set from
current space-based observations. The resulting simulated
spectra are shown in Figures 3 and 4.

2.3. Noise Model

To simulate the observed data, we sample multiple noise
instances centered around the unpolluted spectrum, treating the
simulated unpolluted spectra as a multivariate Gaussian
distribution with the unpolluted depths as the mean and the
reported error at each bin as the width. In addition, we adopt a
nondiagonal covariance matrix with an exponential kernel to
simulate correlated noise, such that the matrix element that
correlates the wavelength bin at ); and ), is given by

K — 6..U4U.exp(_u) (1)
ij = €ijoi0; ] )

where o; is the reported error at wavelength ), and ¢;; is 1 for a pair
of points from the same data set and O otherwise. We choose the
scaling factor / to be the distance to the neighboring bin. We select
this covariance matrix in particular because it allows for the best-fit
spectrum to the WFC3 observations of HD 97658b in Guo et al.
(2020) to yield a reduced chi-squared of ~1, as opposed to 2.5
when the errors are construed to be independent and Gaussian. We
choose a random noise error of 75 ppm for all instruments, which
represents a moderate quality data for STIS and WFC3 but is better
than average for typical Spitzer observations (Sing et al. 2016;
Garhart et al. 2020). We also assume a uniform transmission across
the wavelength range of each Spitzer filter in both the forward and
retrieval models. In practice, we find that the two broadband
Spitzer points provide little constraint on the retrieved parameters,
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Table 1
Summary of Equilibrium Chemistry Retrievals and the Input Parameters and Priors Used

Clear HJ Clear HJ with Offset
Parameter Name Truth Value Prior Truth Value Prior
M, Planetary mass (Mj) 0.73 15% 0.73 15%
R, Planetary radius (Ry) 1.42 15% 1.42 15%
T Temperature (K) 1130 [300, 1500] 1130 [300, 1500]
C/O Carbon-to-oxygen ratio 0.53 [0.2, 2.0] 0.53 [0.2, 2.0]
loga Log-scattering factor 0 [-0.3, 0.3] 0 [-0.3, 0.3]
vy Scattering slope 4.3 [2.0, 5.5] 4.3 [2.0, 5.5]
logZ Log-metallicity 0.3 [—1, 3] 0.3 [—1, 3]
log Rioud Cloud-top pressure (log(Pa)) 4.7 [2.5, 6.5] 4.7 [2.5, 6.5]
Offset 1 STIS offset (ppm) —100 [—300, 300]
Offset 2 Spitzer offset (ppm) 150 [—300, 300]
Error multiple Unity [0.5, 2.0] Unity [0.5, 2.0]
Other parameters
R, Stellar radius (Rs) 1.19 1.19
T Stellar temperature (K) 6090 6090
Data error (ppm) 75 75
# of runs 440 660
Clear HJ, High-

Cloudy HJ precision Warm Neptune
Parameter Truth Value Prior Truth Value Prior Truth Value Prior
M, 0.73 15% 0.73 15% 0.0736 15%
R, 1.42 15% 1.42 15% 0.395 15%
T 1130 [300, 1500] 1130 [300, 1500] 700 [300, 1500]
C/O 0.53 [0.2, 2.0] 0.53 [0.2, 2.0] 0.53 [0.2, 2.0]
loga 0 [-3.0, 3.0] 0 [—0.3, 0.3] 0 [-2, 2]
v 4.3 [2.0, 5.5] 4.3 [2.0, 5.5] 4.3 L1
logZ 0.3 [—1, 3] 0.3 [—1, 3] 0.3 [—1, 3]
log Rioud 3.0 [0.0, 6.5] 4.7 [2.5, 6.5] 5.0 [2.5, 6.5]
Offsetl
Offset2
Error multiple Unity [0.5, 2.0] Unity [0.5, 2.0] Unity [0.5, 2.0]
Other parameters
R 1.19 1.19 0.683
T 6090 6090 4780
Data error 75 10 75
# of runs 660 400 400

Note. The stellar parameters shown are not retrieved for. For the mass and radius, the priors show the width of the Gaussian prior, relative to the input value. For other
parameters, the priors are uniform in the interval. For log values, the priors are log-uniform in the interval.

and using the same error for all instruments does not give undue
importance to the Spitzer points. For the high-precision hot Jupiter
case, we use 10 ppm errors to match the best current data quality
(Colén et al. 2020).

We show a few randomly selected noise realizations in
Figure 5 for the Gaussian and correlated noise models. It is
discernible from the bottom row of panels that the correlated
noise has slightly redder residuals compared to the Gaussian
noise; that is, there are less zero-crossings as the neighboring
points are correlated. We also stress that overall this is a rather
subtle effect; without knowing the unpolluted depths a priori to
produce the residuals, from the spectrum alone it is hardly
obvious that there is a distinction between the two.

Additionally, to examine the effects of including the offset
between data sets as a retrieved parameter, we create spectra
with and without a fixed offset between the data sets. Namely,
we add a vertical offset of —100 ppm to the STIS points and
+150 ppm to Spitzer points, holding the WFC3 points

constant. The specific amount of offset is a somewhat arbitrary
choice. The relevant heuristic is that the offset should be
exactly retrieved in the absence of degeneracy.

2.4. Retrieval Setup

Using PLATON, setting up the retrieval involves choosing the
priors and use of the statistical sampling method. We choose the
priors to be comparable to a real retrieval analysis. PLATON accepts
either a Gaussian prior or a uniform prior in a user-specified
interval. We set Gaussian priors for the planet radius and mass, as
these are often constrained via other methods such as radial
velocity and transit measurements prior to observing the
transmission spectrum. The Gaussian prior is centered around
the input value and with a standard error of 15%. This precision is
comparable to or slightly overestimates the typical uncertainty in
the measurement of mass via the radial velocity method and
provides sufficient tolerance for the retrieved value to deviate from
the input value, if necessary. For the instrumental offsets, to ensure
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Figure 3. Simulated unpolluted spectra of the hot Jupiter cases. Both full-
resolution and binned depths are plotted. The offset case is identical to the clear
case in the WFC3 band. The main effect of the clouds is the truncation of the
bottommost depths compared to the clear case.

that the prior is broad enough, we choose a uniform prior offset to
be two- and three-fold of the offsets. For all other parameters we
opt for uniform priors that are as wide and uninformative as
possible and adopt the full parameter range supported.

For now, we only choose to do retrievals with equilibrium
chemistry, where the composition of the atmosphere at a given
temperature and pressure is dictated by the the global elemental
abundances set by metallicity and the carbon-to-oxygen ratio.
While disequilibrium chemistry is indeed expected for planets
below T.q < 1200K, most of its effects take place below the
altitude that is typically probed by transmission spectroscopy and
have no easily discemible effect on the spectrum at the data
precision of current instruments. The actual discrepancy in the
relevant pressure range (~1 mbar) is smaller than the uncertainties
we can currently obtain (e.g., Line et al. 2011; Miller-Ricci
Kempton et al. 2012; Fortney et al. 2020).

PLATON supports either Markov chain Monte Carlo
(MCMC; Foreman-Mackey et al. 2013) or nested sampling
methods for the posterior estimation (Feroz & Hobson 2008).
We note that while both are statistically robust and widely
used, we observe a minor discrepancy in the resulting
posteriors between the two methods, in which the posteriors
estimated by MCMC tend to be slightly broader than those
estimated by nested sampling. This does not pose a major issue
for this work inasmuch as we are concerned with biases due to
data idiosyncrasies, and we consistently use one algorithm
across our analyses. Nevertheless, we draw attention to this
point as it requires extra scrutiny when comparing retrieval
results. We choose nested sampling as it is known to perform
better in estimating multimodal or oddly shaped distributions.

3. Results

In this section we first present the overall effects of
correlated systematics on our retrievals, using the clear hot
Jupiter case as a baseline. We then examine which parameters
in particular are affected. We finally show how the results for
the baseline case also extend to the other retrieval cases, and
point out additional effects that arise.

3.1. Overfitting Due to Correlated Noise

Here we present the effects of correlation in data on the
retrieval overall. To do this, we must reduce a retrieval result
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Figure 4. Same as Figure 3, but for the warm Neptune case.

into a simpler metric. In retrievals on actual data this is
commonly done by using the reduced chi-squared between the
observed data and the best-fit or median spectrum. Here, as we
begin from a known simulated ground truth, we can also
compare the retrieved posterior directly to the input values to
measure the accuracy of the retrieval by using a probability
integral transform (PIT), which is the cumulative distribution
function evaluated at the input value. To do this, in each
retrieved posterior distribution, we draw an isolikelihood
contour of the input parameters and sum the relative weights
contained within, producing a confidence interval between 0
(the input was the most likely sample) and 1 (the least likely).
The distribution of the PIT values should follow a uniform
U(0, 1) were the retrievals accurate.

Our main finding is that, on average, correlation in the data
allows for overfitting the spectrum, thereby weakening the
overall accuracy of the retrieval. In other words, the best-fit
spectrum is more likely to achieve a reduced chi-squared lower
than unity in the presence of correlated noise, while
simultaneously the retrieved posterior distribution rules out
the input with higher significance.

In Figure 6, we present the comparison between Gaussian
and correlated noise for the clear hot Jupiter case. For both
retrievals with Gaussian (black) and correlated noise (blue), we
show the distributions of: y* between the unpolluted spectrum
and the data instances, the reduced chi-squared between the
best-fit spectrum and the data instances, and the PIT values
showing the accuracy of retrieval, as described above. A few
observations can be made:

1. The fit Xf’ or the goodness of fit of the retrieval, on
synthetic data is on average skewed to better than unity in
the presence of correlated noise. In other words, it is more
likely that the retrieval will overfit the data with forward
models.

2. The accuracy of the retrieval, shown as the PIT value, on
the other hand, is worse in the presence of correlated
noise. We also show the cumulative distribution in
Figure 7 to demonstrate the worsening of the accuracy.
The Kolmogorov—Smirnov (K-S) statistic between the
two cases is 0.19.

3. For the normal noise case, even in the absence of the
correlated noise, the retrieval accuracy is close to but
slightly worse than the expected uniform distribution.
This minor discrepancy is likely due to the fact that the
retrieved posterior distribution is already non-Gaussian
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Figure 5. Comparison of Gaussian (left column) and correlated (right column) noise models for the clear hot Jupiter case. In the top row of the panels, five randomly
selected spectrum realizations are plotted in color and the unpolluted spectrum is plotted in black. The disconnection in the lines indicates discrete instruments. The
Spitzer data are shown separately in the inset plot. The assumed 75 ppm error bar is shown for scale. In the bottom row of panels, the residuals relative to the
unpolluted spectrum are shown. The effect of wavelength correlation is discernible in the slightly redder noise (i.e., the residuals appear subtly sparser due to less zero-
crossings as neighboring residuals are more likely to have the same sign) in the bottom right panel, but would not be discernible in the top right panel without prior
knowledge of the ground-truth spectrum.
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Figure 6. Two-dimensional distribution comparing the retrievals with Gaussian noise (black) and correlated noise (blue). The three parameters shown are: the chi-
squared between the unpolluted spectrum and the observation instance (true x2), the reduced chi-squared between the best-fit spectrum and the observation instance
(fit Xf), and the PIT values for the retrieved posterior. The correlated noise allows for overfitting the spectrum, while simultaneously degrading the accuracy of the
retrieval. We remind the reader that this corner plot is not showing a single retrieved posterior result, but a composite of multiple posteriors.
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shown.

for a few parameters (discussed in Section 3.2), as well as
due to degeneracy between certain parameters.

4. While the goodness of fit is on average better in the
presence of correlated noise, it is not the case that the
distributions of fit xf are so discrepant that one can
deduce the presence of correlated noise from the
goodness of fit alone. That is, a given overfit spectrum
can plausibly be construed as either a consequence of
correlated noise or as an unlucky instance of Gaussian
noise that happens to lie at the tail of the X? distribution.
As such, we stress that the effect of correlated noise is
manifested statistically, and no individual value of xf,
good or bad, is uniquely a diagnostic of correlated noise
in a single retrieval instance.

3.2. Which Parameters Are Affected?

Given that the correlated noise degrades the overall accuracy
of retrievals, it is necessary to then look at which parameters are
affected. We do this by marginalizing the posterior distribution
over each parameter, as is typically done in retrieval analyses.
The effect on each marginalized distribution can be twofold—
the mean can be biased, the estimated error can be affected, or
both. Either a shift in the mean away from the input parameter or
an underestimation of the error can worsen the accuracy of the
retrieval. As such, we examine the retrieved mean and the
retrieved error separately for each parameter.

The distribution of the retrieved means is shown in Figure 8. For
the case in which noise is independent (black), the retrieved means
form clean normal distributions around the input values (red) for
most parameters, as expected from the central limit theorem. The
two exceptions are the C/O ratio and the cloud-top pressure. This
is most likely due to the fact that the retrieved distributions for
these parameters are not Gaussian in the first place. For cloud-top
pressure, the retrieved distribution is at best a flat distribution with
a lower bound, ruling out a cloudy atmosphere as per the clear
atmosphere in the input used. For the C/O ratio, we suspect that
the distribution is skewed due to the increasing influence the
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parameter has over its range. That is, as one sweeps through the
C/O ratio, the spectrum changes more rapidly over the range
above the solar value of 0.53, and thus the means are naturally
skewed to values lower than the solar value where there is a greater
density of near-consistent solutions.

The presence of correlated noise has a few interesting effects
on the retrieved means. First off, the error multiple parameter is
biased to less than unity. This intuitively follows from the global
result that correlated noise allows for overfitting of the spectrum,
tricking the error multiple parameter to believe that the error bars
are overestimated. This means that the error multiple parameter
is more likely to behave pathologically in a situation where one
may expect it to be useful, such as if the reported error bars truly
were underestimated due to unknown and unaccounted
systematics. The retrieval instead selects a less-than-unity value
of the error multiple, incorrectly implying that the data precision
is better than initially reported. This is possible if the domain of
input parameters and the forward model can still reproduce the
spectrum polluted with systematics.

In the correlated noise case, the retrieved means generally show
a wider distribution to varying degrees for each parameter.
Specifically, the radius, mass, and temperature are the most
affected, while the effect is the least pronounced for metallicity
and the cloud-top pressure. This result may be explained by
considering the wavelength scale the former three parameters
have on the spectrum. Mass and temperature affect the scale
height of the atmosphere, which affects the overall vertical extent
of the transmission spectrum. The radius affects the baseline
transit depth as well as the scale height. These are global
parameters in the sense that the transit depths in all of the bins are
affected together. As such, a wavelength-dependent correlation
can bias these parameters. On the other hand, metallicity, while it
also affects the scale height (via the mean molecular weight),
directly controls the individual transit depths. This has a more
local effect in that it changes the actual shape of the spectrum.

The distribution of the retrieved errors is shown in Figure 9. The
effect of the correlated noise is clearly visible for all of the
parameters in that the retrieved error bars show a tendency to be
underestimated. For instance, the retrieved error on log-metallicity
is on average underestimated by ~0.2 dex. While this disparity is
smaller still than typical constraints, it is worth bearing in mind as
this is a statistical effect; the spread over the retrieved error is by
itself broad enough that the actual effect of a given instance can be
much larger than this value. Additionally, when JWST allows for
the precise measurement of metallicity, this level of uncertainty
may not be negligible when one considers analyzing archival data
simultaneously. The same consideration applies to other para-
meters. As such, in this context we suggest that the retrieved
constraints for parameters, in the face of the potential for correlated
noise, are best understood as lower limits.

3.3. Extensions to Other Planet Parameters

In this section, we present our results for planet scenarios other
than the baseline clear hot Jupiter case to understand the
sensitivities of our results to various system and data set
parameters. We show histograms of the retrieved mean and
retrieved standard error for each parameter in figure sets for the
remaining planetary scenarios (the hot Jupiter with offsets, cloudy
hot Jupiter, high-precision hot Jupiter, and warm Neptune). We
generally find that the main results stated so far hold true for all
cases: correlated noise causes both overfitting in Xf and
worsening of the accuracy of retrieval (i.e., larger PIT values).
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Figure 8. The distribution of retrieved means per each parameter, for independent noise (black) and for correlated noise (blue), for the baseline hot Jupiter case. The

input values used to generate the spectrum are shown in red.

This point is summarized in Figure 10, in which we show the
medians of the sz and PIT value distributions for each planet
realization, i.e., distilling down the results of Figure 6 and the like
to values quantifying the peak and the spread.

To further quantify this point, we perform a K-S test for the
goodness of fit and the accuracy-of-retrieval metrics to measure
the discrepancy between the results of Gaussian and correlated
noise. In Table 2, we show the K-S statistics, D, for the fit Xf
and the PIT value representing the accuracy of retrieval. We
find that the clear hot Jupiter happens to be the best case for the
smallest discrepancy of accuracy of retrieval between Gaussian
and correlated noise, and that other cases generally result in
further discrepancy between results with Gaussian and
correlated noise.

3.3.1. Bias in the Non-Rayleigh Scattering Slope

In the retrievals of the hot Jupiter with instrumental offsets
and the warm Neptune, we find that the retrieved haze
properties also show the potential to be biased. Correlated noise
can bias the scattering slope, v, away from the Rayleigh value
of 4, misleading the retrieval to infer the presence of aerosols.
This bias makes intuitive sense as, if a handful of points in the
optical wavelengths align due to correlated noise, those points
can mimic the behavior of a non-Rayleigh slope (May et al.
2020). As such, we caution that a spurious detection of haze

can be possible in interpreting data in which the presence of
correlated noise is either expected or suspected.

We suspect that this bias happens more readily for the warm
Neptune case compared to the hot Jupiter retrievals because the
overall signal is smaller while the data error used to scramble
the spectrum was held constant at 75 ppm, resulting in a larger
relative error. The warm Neptune spectra consequently have
greater potential for large (apparent) optical slopes to manifest.

3.3.2. Retrieving Offsets

We ran a set of retrievals that includes nonzero offset
parameters between data sets from different instruments. We
find that while the presence of correlated noise does cause
underestimation of the uncertainty in the offset in an identical
manner to other parameters, it does not worsen the retrieval of
the means. The offsets are accurately retrieved in both Gaussian
and correlated noise retrievals and do not pose any obvious
degeneracies.

This is somewhat surprising as, in our formulation of
correlated noise, offsets can be regarded as correlated noise
with high correlation and long wavelength order. For instance,
in Figure 5, the data instances with correlated noise in the
Spitzer band mimics the presence of an offset.

It should be obvious that the influence of offset data points
will strongly depend on the specific wavelength those points
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Figure 9. The distribution of retrieved standard errors per each parameter, for independent noise (black) and for correlated noise (blue), for the baseline hot

Jupiter case.

occupy, as well as the offset magnitude and sign. As such, we
present here only one possible manifestation of how real data
could behave. For instance, we have only considered offsets
between data sets disjointed in wavelength, but, say, merging
data from ground-based and space-based observations can
produce offset data with overlapping wavelength coverage.
Hou Yip et al. (2020) found that if there is overlapping data
with nonzero offsets and if free retrievals are used, such offsets
can be degenerate with the estimated abundances if equilibrium
chemistry is not assumed.

3.3.3. Effects of Clouds

The main effect of adding gray clouds to the model, from the
point of view of the retrieval, is washing out information
contained in the spectrum that originates from the high-
pressure portion of the atmosphere. In Figure 3, roughly half of
the HST points are covered by clouds, no longer constraining,
say, a baseline radius or metallicity. We find that the broad
effect of underestimating uncertainty and biasing means due to
correlated noise still holds for cloudy hot Jupiter retrievals.

For the retrieved cloud-top pressure parameter, the main
effect is a bias in the retrieved mean. Specifically, the presence
of correlated noise disrupts the distribution of retrieved means
of cloud-top pressure by extending the tail in the high-pressure
direction. In other words, the spectrum is more likely to be

understood as having a clear atmosphere. Upon examining the
spectra for the retrievals that populate this tail, we find that the
correlated noise happens to manifest as a number of data points
dipping under the opaque cloud top where the atmosphere is
normally optically thick, thereby mimicking the behavior of a
clear atmosphere.

3.3.4. Effects of Higher Precision

We find that in the hot Jupiter retrieval with high-precision
(10 ppm) data, the broad conclusions again still hold.
Correlated noise leads to an underestimation of retrieved
uncertainty for all parameters. Compared to other cases
however, correlated noise does not shift the retrieved means
as much, which is to be expected since every noise instance
only has a minor deviation from the unpolluted spectrum
(specifically a factor of 7.5 times smaller than in our baseline
case), even with correlation.

Comparing the high-precision case to the baseline case with
75 ppm errors, we find that, naturally, both the estimated means
are retrieved closer to the input values and the retrieved
parameter uncertainties are concurrently smaller. Interestingly,
the uncertainties shrink more than the means approach the input
values; consequently, in the high-precision case, the retrieval
more readily rules out the input. This is shown in Figure 11, in
which the retrieved means are normalized by their retrieved
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Figure 10. Summary of the goodness of fit and retrieval accuracy for the five
planetary cases; black is for Gaussian noise, and blue is for correlated noise.
The filled symbols mark the peak in both distributions, and the error bars
denote the 1o spread. Values of Xf closer to unity imply a better fit. Similarly,
lower PIT to a more accurate retrieval result. This plot shows the information in
bottom middle panel of Figure 6 for all five cases. For the clear hot Jupiter with
offset, the retrieval accuracy is measured as the error in an 1l-parameter
Gaussian distribution; the rest are quantified in 9 parameters. The correlated
retrievals clearly have distinct distributions of goodness of fit and accuracy of
retrieval, but have enough overlap such that one cannot discern whether a
single retrieval instance has correlated noise.

uncertainty to show the number of standard errors within which
the input value for each parameter is retrieved. The high-
precision case (dashed line) actually has more retrievals further
from the input value when normalized. We find an identical
trend for the retrievals with correlated noise.

Additionally, we find the PIT value distribution for the
retrievals with Gaussian noise much more successfully follows
the ideally expected uniform distribution, with a K-S statistic of
D =0.04 (see Table 2 and Figure 12). Given that the accuracy
of the retrievals for all other cases (with 75 ppm error bars
instead) are at least somewhat discrepant from the expected
distribution even for the Gaussian noise retrievals, this result
suggests that, even for hot Jupiters, 75 ppm error bars are too
large to assume a priori that the retrieved posterior will follow a
multivariate Gaussian. This has implications for parameter
estimation methods that need this assumption of a Gaussian
posterior, such as optimal estimation or some of recent machine
learning-based retrievals (Line et al. 2013; Cobb et al. 2019).
These methods require that the data uncertainty is small enough
such that the forward model behaves linearly over the
parameter uncertainties. Retrievals using these methods must
be trusted only when the data has an exceptional signal-to-
noise ratio.

4. Can We Tell If Systematics Are Present?

In the motivating example spectrum of HD 97658b in
Section 1, the presence of correlated noise was suspected based
on the fact that no forward model can produce a satisfactory fit
under the assumption of randomly scattered residuals. If we are
to presume that the retrieval is indeed correct, and the residuals
evidence correlated noise contaminating a genuine featureless
spectrum, then we should also consider how prevalent
unnoticed correlated noise can be in the observed data of other
planets. The natural question then is to ask whether there is a
more robust and comprehensive way of distinguishing
correlated noise within the framework of a retrieval. Especially,
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Table 2
K-S Statistic of Xf and PIT Values

2 PIT value
Case GC UG  uUC  GC
Clear hot Jupiter 0.28 0.19 0.60 0.47
Clear hot Jupiter w/offset 0.36 0.19 0.67 0.58
Cloudy hot Jupiter 0.27 0.12 0.54 0.48
Clear hot Jupiter, high precision 0.28 0.04 0.48 0.47
Warm Neptune 0.35 0.16 0.58 0.52

Note. The K-S statistic, D, measures the maximum vertical discrepancy
between the cumulative distributions (see Figure 7), of the goodness of fit, and
the retrieval accuracy for each planet scenario. The first column shows the two-
sample D between the distributions of fit Xf for the Gaussian and correlated
noise. The next two columns contain the D between the expected uniform
distribution and the PIT value distributions from retrievals with Gaussian and
correlated noise, respectively. The final column shows the D between the two
distributions. In all cases, the discrepancy is due to overfitting and worsening of
retrievals.

given that correlated noise can give rise to overfitting, it is of
special interest whether correlated noise can be distinguished
from merely overestimated error bars. A natural way to achieve
this is to modify the likelihood function such that it can reward
or penalize when the residuals are correlated.

To test this, we implement a parameterized covariance
matrix and let the retrieval estimate the hyperparameter that
measures the correlation strength. We use a nearest-neighbor
correlated noise model as in Sivia & Skilling (1996), where the
correlation strength is parameterized by ¢, such that the
covariance matrix element between points at i and j is given by

@

This differs slightly from the correlated noise model used in
Section 2 in that this model does not depend on the wavelength
difference between two points but depends instead on the
difference in indices. The two implementations would be
identical if the wavelength grid was regularly spaced, with
the exponential base giving a correlation strength of e=
e ' ~0.37. While an extension to accommodate wavelength-
dependent correlation is certainly possible, as a first test this
simplification provides a reasonable starting point for exploring
whether correlated noise can be retrieved.

This simplification allows one to write the likelihood
function as

K; = criaj6|”l|.

N
S In2ro} + Lz ,
i=1 I —e

Inl = —% (N — DIn(1 — €?) +

3

in which Q is the modified chi-squared-like term related to the
error-scaled residuals R; by
N-1
2(RP + RY) —2¢>_ RiRit1. (4
i=1

N
Q=(+e)Y R -
i=1
We perform a small grid of retrievals to study when the
correlated noise can be distinguished from overestimated error
bars and correctly retrieved. The input parameters for the planet
remain the same as Case 1 in Section 2, while we vary the noise
properties. Our grid consists of three values of error multiple:
n=0.8, 1, and 1.25; three values of correlation strength: ¢ =0,
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Figure 12. Same as Figure 7, but for the high-precision case. The smaller data
error results in a better agreement between the ideal uniform distribution and
the retrieval accuracy in the Gaussian noise retrievals.

0.25, and 0.5; and two wavelength grids modeling the HST
WEFC3 and JWST Near InfraRed Spectrograph (NIRSPEC)
prism grids. Our NIRSPEC grid consists of 133 linearly spaced
points between 0.6 and 5 microns. From a few initial tests we
find that varying the absolute size of the error bar does not
change the results, and hence we keep them fixed at 75 ppm.
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For each combination of noise parameters, we run three
retrievals: one in which both error multiple and correlation
strength were included as retrieved parameters, and two in
which either was removed. We set a uniform prior between 0
and 1 for the correlation strength, as we do not expect an
anticorrelation between neighboring points.

We show the marginalized posterior distribution for correla-
tion strength in Figures 13 and 14 for the WFC3 and NIRSPEC
grids, respectively. From the posterior distributions it is clear
that the correlation strength can be adequately retrieved, and
the posterior width is dependent on the number of points in the
data, as expected. It can also be seen that underestimated error
bars, when unaccounted for, can be mistaken for the presence
of correlated noise, and vice versa, as demonstrated in the
previous section. The main difference between the two
instruments from the point of view of the retrieval is simply
the number of points.

Additionally, we calculate the Bayes factor among the
retrievals to determine whether the inclusion of each parameter
is warranted. The results for WFC3- and JWST-like data are
shown in Figures 15 and 16. The case in which both parameters
were included is used as the baseline, and the log-ratio (in base
10) of the Bayesian evidence is shown for each case in the grid.
A positive value indicates that the model better fits the data
while spanning a smaller prior volume, indicating that the
parameter should be removed.
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Figure 13. Histograms showing marginalized posterior distribution for the correlation strength parameter for a hot Jupiter on a WFC3-like wavelength grid. The
relevant input values for error multiple and correlation strength for each run is shown in the legend. Two posteriors are shown for each: one where only the correlation
strength was retrieved (blue) and one where both the error multiple and correlation strength were retrieved (orange). The corresponding marginalized posteriors for the
error multiple are not shown. We note that our original model in Section 2 roughly corresponds to € ~ 0.37 (see the text).

For WFC3-like data (Figure 15), the inclusion of correlation
strength is supported with strong evidence only in the strong
correlation (e = 0.5) cases and is otherwise not easily ruled out
either way. Interestingly, the inclusion of the error multiple is
disfavored with substantial or stronger evidence not only when
the error bars are correct, but also even in the case of
underestimated error bars. This shows that, for WFC3-like data,
the error multiple parameter is not warranted in general.

For NIRSPEC-like data (Figure 16), the inclusion of the
correlation strength can be more robustly judged. Its inclusion
is supported with strong to decisive evidence when correlation
is present. Conversely, its removal is supported with substantial
to strong evidence when it is not present. This indicates that,
for JWST-like data, there is the possibility that we can
characterize the correlation during the retrieval. The inclusion
of the error multiple can be more robustly judged as well. Its
removal is supported when the error bars are correct, and its
inclusion is favored when the error bars are overestimated.
However, when the error bars are underestimated, its inclusion
is supported with substantial evidence only when there is no
correlation. This behavior matches with the results from the
previous section that correlation can be mistaken for under-
estimated error bars. This shows that the error multiple is
generally not effective at indicating accommodating under-
estimated error bars.

The above results show that while it is difficult to
conclusively infer the presence of correlated noise with HST
data, it is certainly within possibility that its presence and
strength can be measured with JWST data. A few caveats must
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be made. Our preliminary test presented here treats the data
over the entire NIRSPEC wavelength range as sharing
correlation, hence providing an abundant number of points
for the correlation strength to be measured; in reality, if its
discrete grisms are used, any correlation of instrumental origin
will be per each wavelength range. Additionally, as we will
discuss in Section 5.1, missing physics in the model acts as a
source of systematics, which we do not consider here.
Furthermore, we used the same noise model to generate the
observation instance as well as to retrieve its parameter. While
doing so is obviously a gross simplification, especially
considering that numerous sources of correlated noise can
operate simultaneously, this provides a reasonable starting
point toward using a more complex likelihood function to fit
for correlated noise. Additionally, adding hyperparameters to a
retrieval further dilutes the noise budget, broadening the
retrieved uncertainties of other parameters. Ascertaining what
degeneracy this incurs on the estimation of other parameters is
left for future work.

5. Discussion
5.1. Model Limitations

A major compounding issue is that, when retrieving on real
data, model assumptions and unknowns contribute to and act as
systematic errors in addition to the data systematics themselves.
In short, bad data are degenerate with bad models. In our study
we generated the synthetic observations using the identical
forward model as that used in the retrieval in order to minimize
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Figure 15. Bayes factors B of the retrieval models that exclude error multiple
(top) or correlation strength (bottom) for WFC3-like data. The model that
includes both hyperparameters is used as the baseline. A positive value
indicates that the model better fits the data while spanning a smaller prior
volume and hence supports the removal of the parameter. The interpretation of
the strength of the evidence is shown in the color bar. The Bayes factors are
calculated as the difference in estimated Bayesian log-evidence; the values in
the table have a resulting uncertainty of ~0.3.

any model-dependent effects and to isolate the effects of data
systematics. In interpreting real data, the fact that our forward
models are a simplified incomplete representation of complex
atmospheric phenomena will act as a source of systematic error
that will remain pervasive, even if the observed data were
perfect and free from their own systematics. We therefore

1
favored favored

Figure 16. Same as Figure 15, but for the NIRSPEC-like spectrum.

remain open to the possibility that the observed examples of
potential systematic noise in the data are in fact due to
unaccounted for obscure physics.

For the same reasons discussed above, this will adversely
affect high S/N observations in particular, in which the fine
(and the not-so-fine) details of the model become discernible.
There has recently been a growing body of work that studies
the biases incurred by model assumptions and parameteriza-
tion. To list a few examples for demonstration, MacDonald
et al. (2020) performed one-dimensional retrievals on three-
dimensional synthetic spectra to show that the retrieval biases
the limb temperature to few hundred Kelvins cooler than the
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Figure 17. Two observation instances (blue and orange) of the ground-truth

spectrum (black) for our baseline hot Jupiter case detailed in Table 1. The best-
fit spectra for each observation are also shown.

actual day—night mean temperature. Lacy & Burrows (2020)
extended this study to cloudy atmospheres, finding that the
presence of aerosols exacerbate the biases induced by three-
dimensional effects when not accounted for. Changeat et al.
(2019) found that using a vertically constant chemical
abundance profile may no longer be sufficient to fully capture
signatures of disequilibrium processes in the spectrum. Perhaps
most inconspicuously, Barstow et al. (2020) compared and
performed cross-retrieval between retrieval codes developed by
three groups and found that JWST-quality data is now sensitive
to rather rudimentary model unknowns such as the line lists
used to generate the opacities and the precision of fundamental
constants used.

In our framing of describing biases, these results generally
effect shifts in the estimated means of the retrieved parameters.
Incorporating our conclusion that correlated noise generally
leads to an underestimated error of the retrieved parameters
means that biases due to model limitation now strike with a
stronger statistical significance. Furthermore, the wavelength-
dependent effect of both missing physics and systematics now
leave the possibility for degenerate interpretations.

5.2. Instrumental Systematics

To better understand the significance of our results, it would
be useful to consider the different sources of how systematics
can arise and evaluate their prevalence especially in the context
of future space missions such as JWST. While other sources of
systematics are possible, such as starspots (Rackham et al.
2018; Bruno et al. 2020), inaccurate orbital parameters, or time-
dependent telluric contamination in ground-based observations,
the key source of systematics that we will discuss here is
instrumental. However, we remind the reader that our
formulation of correlated noise can be generalized to any
effect that results in wavelength-dependent correlation.

While instrumental systematics are expected to be ubiquitous
to some extent, the exact magnitude of their effect in generating
wavelength-correlated noise has not been fully understood. Yet
a handful of observations exist that hint at the existence of such
systematics. Colén et al. (2020) argued that, with current
facilities, these systematics are visible at the highest level of
precision (~15 ppm), inferred from an unusual behavior of the

14

Ih & Kempton

residuals in the H,O band. In the spectrum of HD 97658b in
Guo et al. (2020), our motivating example in Section 1, we
inferred from the inability to fit the data as well as the fact that
no obvious physics were missing that there must be some
systematics present, even at a lower precision (~25 ppm).
These examples indicate that some wavelength-correlated noise
must be present, unless there is unaccounted for physics in the
retrieval model.

There is some reason to surmise that these systematics are
more prevalent (or, at least, more noticeable) in the case of
bright host stars. A brighter host star allows for a better S/N
and higher precision and thereby naturally makes the presence
of these systematics more conspicuous compared to a lower
S/N data. Additionally, even at the same data quality, a
brighter host star requires fewer stackings of observations; for a
dimmer host star, by contrast, the number of stackings required
to achieve the same S/N naturally averages out any
nonrepeatable correlated noise. Finally, as alluded to in
Section 1, given that instrumental systematics can also behave
differently with bright sources, it is not out of the question that
there is a separate effect at play here beyond the S/N which
may persist through multiple observations in a repeatable
fashion.

Comparing the WFC3 spectra of GJ 1214b (Kreidberg et al.
2014) and of HD 97658b (Guo et al. 2020) illustrates this point.
While both planets are comparable sub-Neptunes with feature-
less spectra and have a similar level of precision, the spectrum
of the latter displays an unusual upward trend in transit depth in
the redder end and other wavelength-correlated residuals
throughout the WFC3 bandpass. The relevant difference here
may be the host star brightness (9.8 versus 6.2 in the J-band
magnitude, respectively). The spectrum of GJ 1214b is the
combination of stacking 15 ftransits, whereas that of
HD 97658b has 4. Further, the spectrum of HD 97685b
presented in Knutson et al. (2014), which only had the first
two visits, shows the most obvious possible example of
correlated noise due to systematics.

These types of systematics may be even more pernicious for
future high S/N observations from JWST for a few reasons.
First, as the noise floor is lower, correlated noise will be
relatively more prominent even if it actually manifests at
weaker levels. Then one can no longer reliably assume that the
observed noise is strictly photon-dominated. This requires an
additional step of modeling out now wavelength-dependent
systematics during the data reduction, which is necessarily
(although perhaps not practically) incomplete. Given that,
secondly, the high S/N per transit means that stacking will be
unnecessary for most targets. As such, nonrepeating systema-
tics do not get averaged out. Third, we have demonstrated that
higher precision leads to biases of stronger significance. This is
true even in the absence of systematics in the sense that a
retrieval will be more sensitive to the observational instance.
Fourthly, we can predict that our understanding of the
characteristics of JWST instruments and their appropriate data
reduction tools will be only partially correct, at least during the
initial few cycles of JWST before practical experience
accumulates. Finally, as planets around bright host stars allow
for achieving high S/N, they will make attractive targets for
JWST observation. However, if the above intuition that bright
host stars can exacerbate instrumental systematics is true, it
adds another dimension to consider when selecting targets for
observation, in addition to the S/N.
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Figure 18. The retrieved posterior from the two input data sets from Figure 17. We only show the relevant parameters. The colors corresponding to each data set are
the same as in Figure 17. Black crosshairs indicate the ground-truth input values.

Given that this is the case, it would be worthwhile to put the
above heuristic that bright stars bring about correlated noise to
a more formal test. This can be accomplished with JWST if the
correlation strength can actually be measured, and by margin-
alizing over the magnitude of the host star to obtain a trend.
While this would not comprise a main scientific objective of
any program, correlation strength is a parameter we can try to
measure for all observations, so this is a test we can perform at
no extra cost in observation time.

5.3. Data Outliers and Free Retrieval

PLATON originally supports equilibrium chemistry retrievals
only. Using this method the molecular abundance of each species
at a given temperature and pressure is set by the metallicity and
carbon-to-oxygen ratio. A popular alternative method to constrain
the chemistry is to use free retrievals, in which the abundances of
each species are allowed to vary independently. This accounts for
any nonequilibrium chemistry effects in the atmosphere, brought
on by vertical mixing or photochemical interactions. To establish
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how wavelength-dependent systematics or outliers can bias certain
species, we implement free retrievals in PLATON and perform
some basic tests in addition to the suite of retrievals already
presented that used equilibrium chemistry models.

PLATON already naively supports inputting custom chemical
profiles to its forward models, but only accepts equilibrium
chemistry parameters during retrievals. We extend its capability
by allowing it to accept custom chemical abundances during
retrievals as well. As such, all other details regarding how the
spectrum is calculated during the retrieval remain exactly the
same as the original implementation in PLATON. We assume
that each species has a vertically fixed mixing ratio. This is a
reasonable approximation over the pressure range probed by
transit spectroscopy at the present data quality, and most
current one-dimensional free retrieval codes parameterize the
composition using this assumption (Caldas et al. 2019). JWST-
quality data may merit a more complex prescription, such as a
two-part vertical abundance profile (Changeat et al. 2019), but
for now we do not consider these possibilities. Additionally, for
these tests we remove the simulated Spitzer data points from
our synthetic spectra to limit the wavelength range, thereby
reducing the choice of necessary species to be included. We
assume an H/He-dominated background atmosphere. We
include H,O, Na, K, TiO, and VO as they are the primary
detectable species in the remaining wavelength and temperature
range; we are mostly interested in how differently species with
broad absorption features (e.g., H,O) versus species with
narrow ones (e.g., Na) can be biased.

We show a free retrieval on two observational instances of
the same baseline hot Jupiter as described in Section 2, where
we did not add correlated noise or any instrumental offsets.
Figure 17 shows the two random input data realizations and the
best-fit spectra, and Figure 18 shows the retrieved posteriors.

The point of interest here is how the retrieved abundances
compare for species with broad spectral features (H,O,
1-2 ym) and with a narrow feature (Na, 0.58 ym). As one
may expect, for both of the two random spectra, the retrieved
posterior distribution for water shows a tighter constraint than
that for Na, which is dictated almost entirely by one data point.
Consequently, between the two posteriors as well, the retrieved
distributions for Na show little overlap, ruling out each other
by > 20. These are simply two randomly drawn samples, but it
demonstrates the point that measurements of water abundance
or metallicity are more robust compared to that of say Na or K
abundances, because of the impact the former parameters have
across a broader wavelength range.

6. Summary and Future Work

Atmospheric retrieval provides a robust framework to
interface theory and observations and is a key tool to furthering
our understanding of exoplanets. One major outstanding issue
is disentangling the effects of systematic biases that may be in
operation, and in response there is a growing body of work in
the literature that investigates the consequences of biases that
arise from forward model assumptions.

This paper instead presents an assessment of biases that arise
from systematic noise in data, while remaining agnostic as to
the source of such systematics. We stress that, although our
implementation of correlated noise (using a Gaussian process)
is just one mathematical option, the general results remain
robust. We find that the presence of correlated noise can
mislead us in various ways. We are more likely on average to
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obtain a better goodness of fit, but obtain worse retrieval
accuracy overall. This is due to both the parameter mean being
biased and the retrieved error being underestimated. Specifi-
cally, we observe that correlated noise can bias the retrieved
aerosol properties, mimicking non-Rayleigh slopes or mis-
representing the location of a cloud deck. Additionally, we find
that offsets between data sets can be correctly retrieved and are
not degenerate with the retrieved chemistry when equilibrium
chemistry is assumed, so long as the forward model is an
accurate depiction of the atmosphere. We also find that while
correlated noise cannot be characterized during retrieval for
HST data, there is potential (and perhaps necessity) for JWST
data, even though our tests reflect optimistic conditions.
Additionally, we validate the intuition that retrievals are
sensitive to individual noise instances, and, especially in the
context of free retrievals, that statistical outliers can have
significant effects on the retrieved chemistry.
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