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Abstract

Regression plays a central role in the discipline of Statistics and
is the primary analytic technique in many research areas. Variable
selection is a classic and major problem for regression. This study
emphasizes the economic aspect of variable selection. The problem
is formulated in terms of the cost of predictors to be purchased for
future use: only the subset of covariates used in the model will need
to be purchased. This leads to a decision-theoretic formulation of
the variable selection problems that includes the cost of predictors as
well as their effect. We adopt a Bayesian perspective and propose two
approaches to address uncertainty about model and model parameters.
These approaches, termed the restricted and extended approaches,
lead us to rethink model averaging. From objective or robust Bayes
point of view, the former is preferred. The proposed method is applied
to three popular datasets for illustration.

Keywords: Decision-theoretic approach; Model averaging; Objec-
tive Bayes.

1 Introduction

Model selection with subsequent prediction is a classic and major problem

in statistics. In the context of regression analysis, model selection is often
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equated with variable selection, to be accomplished in one of many ways,

including classical hypothesis test of full and reduced models (e.g., Vuong

(1989)), use of an information criterion such as AIC, BIC, or DIC (Akaike

(1998) for a reprint of the original paper published in 1973 for AIC, Schwarz

(1978) for BIC, and Spiegelhalter et al. (2002) for DIC), evaluation through

some form of cross-validation (e.g., Gelfand et al. (1992) and Gelfand and

Dey (1994)), or Bayesian versions of tests based on the Bayes factor (Kass

and Raftery (1995)). Subsequent prediction follows from either a separate

re-fit of the data as with model selection followed by a least squares fit, or

is integrated into a cohesive framework involving selection and prediction as

with many of the recently-developed penalized likelihood methods.

Bayesian methods provide a distinct approach to model selection and

prediction, as they are based on a cohesive modelling framework that al-

lows one to simultaneously describe and work with their uncertainty across

models and over parameters within a model. Its main applications in model

selection are the hierarchical approach (Mitchell and Beauchamp (1988) and

George and McCulloch (1993)) or the stochastic search approach (Hans et al.

(2007) and Fouskakis and Draper (2008)). These methods follow the usual

route from prior distribution through data to posterior distribution, with

inference to follow. Model selection follows from inference designed to mini-

mize incorrect model selection while prediction follows inference to minimize

forecasting loss. This approach separates modelling from inference, facilitat-

ing for example, Barbieri and Berger (2004) to distinguish model selection

from variable selection. It has also led to an explosion of literature on model

averaging, such as Min and Zellner (1993), Madigan et al. (1995), Raftery

et al. (1997), Draper (1995), Brown et al. (2002), and Yu et al. (2011), whose
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benefits are now well-documented.

The split between modelling and inference has generated a novel approach

to parsimony within Bayesian circles which may be characterized as “fit in

a large model space, make inference in a small model space (Walker and

Gutiérrez-Peña (1999), MacEachern (2001), and Hahn and Carvalho (2015)).

This approach moves parsimony from modelling to inference. It seeks to

construct a model that reflects the full complexity of the problem and, if

little benefit is shown for some variables (aspects of the model), to move

to a simpler form as part of inference. In this work, we explicitly bring an

economic question into the mix—namely the cost of predictors—and pursue

a path suggested by the decision-theoretic formulation of the model/variable

selection and prediction problem in regression. This version places our focus

on two main questions:

1. Prediction, accounting for the cost of predictors. In a typical setting,

predictors have costs associated with them. They cost money, take

time to collect, take effort to model, or consume computational effort.

These costs are real, and obtaining a slightly better prediction rule at

a much higher cost or much more slowly may not be worthwhile.

2. Model uncertainty. The goal of model selection is often taken to be con-

sistent model selection, or identification of the set of predictors with

nonzero coefficients in the regression model. The economic formula-

tion of the prediction problem suggests that a slightly inferior (in the

traditional sense) model may provide a better model for practical use.

This suggests a re-examination of the role of consistency in model selec-

tion. See also Clyde and George (2004) for recent approaches to model
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uncertainty.

Consideration of the cost of predictors and formulation of model selec-

tion as a decision problem has appeared in the literature. Lindley (1968)

argues forcefully for Bayesian methods and for a full decision-theoretic for-

mulation of the problem. Further authors have mentioned this issue (see,

for example, Brown et al. (1999) and Hahn and Carvalho (2015)). Fouskakis

et al. (2009a) and Fouskakis et al. (2009b) also take the cost into account in

different directions.

In this work, we seek to reconcile economic considerations with current

practice in Bayesian model selection and model averaging. We find that

this perspective provides strong commentary on current practice, we present

several reasons to believe that current practice is generally reasonable, and

we identify settings where improvements can be made. In all, we find that

Bayesian model averaging (BMA) is a valuable technique but that care should

be taken to its implementation.

This paper is organized as follows. The next section laid out our method-

ology, including choice of two approaches (Subsections 2.4 and 2.5). Three

data sets are used to illustrate our method in Section 3. Section 4 points to

future directions and concludes the paper.

2 Economic variable selection

2.1 Normal linear model with g prior

Suppose we have the response Yi and p potential predictors xi for each i =

1, . . . , n observation (p < n − 1). All predictors are standardized. A subset
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of p predictors is indexed by γ and is denoted by xi,γ , where γ = (γ1, . . . , γp)
′

is a vector of ones and zeros to indicate which predictors are in the model.

When the j-th predictor is in the model γ, the j-th element γj is set to one,

and it is zero otherwise (j = 1, . . . , p). Let pγ be the dimension of xi,γ and

Γ be the set of all possible γs.

This paper focuses on the model, details of which are given below. For

γ ∈ Γ and i = 1, . . . , n,

Yi = β0 + x′i,γβ1,γ + εi,

where the error term εi independently and identically follows the normal

distribution with mean 0 and variance σ2, i.e., εi ∼ N (0, σ2). Because the

model is indexed by γ and γ is associated with xi, every model includes the

intercept. The design matrix Xγ = (x1,γ, . . . ,xn,γ)
′ is assumed to be of full

column rank, which is satisfied in all examples in Section 3.

Model parameters are φγ = (β0,β1,γ, σ
2). The subscript for β0 and σ2

is suppressed because they are commonly used in all models. In particular,

because predictors are standardized, β0 is interpreted as mean of the response

variable. Thus, it is reasonable to assume its prior knowledge to be same

and noninformative across all models. While the error variance does not

have such interpretation, we assume in a similar manner because it is a

nuisance parameter. For other parameters, proper prior distributions are

assumed. There are 2p possible models (|Γ| = 2p). Prior distribution on this

model space is assumed as noninformative because we have little information

on which models are better in general. In summary, the following prior
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distributions are assumed:

π (β0) ∝ 1, β1,γ ∼ Npγ

0, gσ2

(
n∑
i=1

xi,γx
′
i,γ

)−1
 ,

π
(
σ2
)
∝ σ−2, π (γ) =

k∏
j=1

sγj (1− s)1−γj ,

where g and s are known constants, Nk(µ,Σ) is the k-dimensional multivari-

ate normal distribution with mean vector µ and variance covariance matrix

Σ.

The prior for slope coefficients (β1,γ) is called the g prior (see Zellner

(1986) and Zellner and Siow (1980)). The constant g is set equal to the

number of observations n, which is recommended by Fernández et al. (2001)

when the number of observations is greater than the squared number of

predictors. This prior specification is often called a class of benchmark priors.

We choose it for operational simplicity, but other choices are applicable.

When g = n, the resulting g-prior has the unit information, where in-

formation in the prior is equal to information from one observation with

respect to the Fisher information matrix. Such a prior is proposed by Kass

and Wasserman (1995) to show the relationship between the Bayes factor

and BIC. When g is equal to the squared number of predictors, the result-

ing g-prior satisfies the risk inflated criterion (RIC), proposed by Foster and

George (1994) in relation to the minimaxity.

It is possible to assume a hyperprior on g. Popular choices are the hyper-

g and hyper-g/n priors proposed by Liang et al. (2008) and the robust prior

proposed by Bayarri et al. (2012). In Subsection 2.7, we examine the prior

sensitivity under the restricted approach (see Subsection 2.4) and empirically

show it is robust to the prior choice between the above specification and other
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choices mentioned above.

The benchmark Beta prior by Ley and Steel (2012) and the block hyper-g

prior by Som et al. (2015) would be other choices. See also Ley and Steel

(2012) for other hyperpriors including Maruyama and George (2011) as well

as their performances on the numerical and empirical dataset. Priors from

the objective perspective are extensively reviewed in Consonni et al. (2018).

Due to the lack of knowledge about models, we set s = 0.5, leading to the

uniform prior over models. Other specifications of the prior model probability

are found in, e.g., Steel (2019).

Under above specifications, the (marginal) posterior of (β0,β1,γ) is a gen-

eralized multivariate t distribution and the posterior model probability is

proportional to the marginal likelihood, m(y | Xγ), details of which are

given in Appendix A.

2.2 Predictive loss

Predictive regression modelling is often formulated as a decision problem, and

it can be argued that this formulation underlies BMA. The traditional formu-

lation of the problem is driven by a predictive loss of the form L(y, ŷ(x)) =

(y − ŷ(x))2, where y is a response to be predicted and ŷ(x) is the predicted

value associated with predictors x. Using standard models and integrating

over the conditional distribution of the future y, this loss becomes a loss

taking parameter and action as arguments, namely

L
(
E[Y | x], ŷ(x)

)
=
(
ŷ(x)− E[Y | x]

)2

= E
[
L
(
Y, ŷ(x)

)
| x
]
− V [Y | x].

(1)
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The variance term in equation (1) does not depend on the decision rule and

hence can be ignored in determination of the optimal rule. Under the normal

linear regression model described in the previous subsection, this predictive

loss is estimated by equation (4) in Appendix A.

Our focus is on Bayesian procedures, and the Bayes rule is the Bayesian’s

optimal decision rule. It is typically constructed from the Bayesian posterior

conditional viewpoint (Berger (1985)), by moving from prior distribution to

posterior distribution and then choosing the action to minimize posterior

expected (against the posterior distribution) loss.

BMA focuses on the setting where the prior distribution cuts across slices

of the parameter space that are naturally described as models. In the case

of linear regression with a set of p potential predictors, across the entirety of

Rp for the predictors’ regression coefficients. A model is defined by the set of

non-zero regression coefficients, and the set of 2p potential models partition

Rp. The prior distribution on these coefficients is of mixed form. It typically

assigns positive probability to each element of the partition—that is, to each

subset of Rp that corresponds to a model. The support of the prior is the

entirety of each element, leading to an overall support of all of Rp. The prior

distributions that underlie BMA are thus seen to be of slightly non-standard

form, but they are prior distributions.

From this perspective, BMA follows directly as a standard Bayesian pro-

cedure. Pass from prior distribution to posterior distribution via Bayes Theo-

rem. Once arriving at the posterior distribution, find the optimal (posterior)

action. In this case, the action happens to be expressed as a summary of the

model-averaged posterior distribution, or, for squared-error loss, as model-

averaged posterior predictive means. BMA is nothing more (nor less) than
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sound application of Bayes Theorem and choice of an appropriate action. As

such, it inherits all of the optimality properties of Bayesian inference.

2.3 Decision with cost

In the variable selection problem, the basic decision involves two sets of

possibly overlapping and possibly null sets of predictors. The analyst must

decide which to purchase, knowing the state of nature. For this decision, it

is important to consider their costs as well as their predictive adequacies.

To this end, following Lindley (1968), we modify the original predictive

loss to include the cost of data acquisition, modelling and processing, includ-

ing the cost to purchase information (as in credit history for a customer), a

cost of time (as in the delay in obtaining results from a medical lab test),

cost in processing time (as in variables that are computationally expensive

in conjunction with their use in a model), or other.

More specifically, suppose we have (Y,x), a single future case. Let c(γ)

be the nonnegative cost function for the model γ that uses the single future

case. The cost depends on the set of predictors, but it does not depend on

the values of those predictors. Without knowledge of predictors, a typical

choice is a function of the number of predictors. Section 3 provides specific

forms of the cost function.

The total cost, or the negative utility, from purchasing predictors x is

expressed as the sum of E[L(Y, ŷ(x)) | x] and c(γ). It is better to purchase

x1 than x2 if

E
[
L
(
Y, ̂y(x1)

)
| x1

]
+ c (γ1) < E

[
L
(
Y, ̂y(x2)

)
| x2

]
+ c (γ2) ,

where γ1 and γ2 are models associated with x1 and x2, respectively. In
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general, the best predictor to purchase is chosen by solving the minimization

problem:

min
γ∈Γ

E
[
L
(
Y, ̂y(xγ)

)
| xγ

]
+ c (γ) .

If all predictors are free of charge, it is clear that the best combination of

predictors is the one that minimizes the loss.

The idea of model selection (or variable selection in the normal linear

regression model) as above goes back to Lindley (1968). A recent study is

Gelfand and Ghosh (1998). They propose the model selection criterion by

using the weighted sum of losses based on the future and current data, and

discuss its properties and generalizations. The cost function in our case can

be interpreted as a specific form of the loss based on the current data. More

general discussion on this utility-based approach is found in Bernardo and

Smith (2000) for example.

2.4 Two approaches

In reality, the state of nature is unknown. Its uncertainty is specified as the

form of distribution about model parameters and about models. Let x be the

k purchased predictors, and let w denote the p− k unpurchased predictors.

The predictors may or may not be relevant to predict the response, and we

expect future data of the form (Y,x) to reveal the relationship between the

response and the purchased predictors. There are two main approaches to

provide forecasts for future Y as a function of the future covariate x.

The restricted approach. The restricted approach confines us to the small

world of predictors x and response Y . BMA applied to this world results in

model averaging across 2k potential models, with individual predictors in x
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either active or not.

The extended approach. The extended approach considers the large world

of models determined by predictors x and w for the response Y . BMA

applied to this world results in model averaging across 2p potential models,

with individual predictors in x and w either active or not.

The first approach makes use of information only on purchased predic-

tors. The second approach makes use of information on both purchased and

unpurchased predictors. Information on the unpurchased predictors is avail-

able through the conditional distribution of the unpurchased predictors given

the purchased (and maybe less expensive) predictors. It can be considered

as an extreme of imputation in the missing value problem, where all cases

are missing for some predictors (see also Boone et al. (2011)). The measure-

ment error model also has the similar structure, in that the true value is

unobserved (see also Zhang et al. (2019) and Doppelhofer et al. (2016)).

The predictive loss for both approaches is

E
[
{Y − h (x,w)}2 | x

]
,

where h(·) is the action as a function of potential predictors. When the

normal linear regression model is used, this loss corresponds to a Bayesian

version of the Mallows Cp (see Mallows (1973)).

The restricted approach removes w from the problem, restricting h to be

a function of x alone, and it averages over a reduced set of models. This

approach leads to the following expression of the loss,

E

{Y −∑
γ∈Γ

h (xγ) π (γ)

}2

| x

 ,
where xγ is a subset of purchased predictors.
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The extended approach marginalizes the loss over w by its conditional

distribution g(w | x), leading to

E

{Y − ∑
γ∈Γ,λ∈Λ

(∫
h (xγ,wλ) g (wλ | xγ) dwλ

)
π (γ, λ)

}2

| x

 ,
where wλ is a subset of unpurchased predictors indexed by λ which is defined

in a similar manner to γ and Λ is a set of all possible λs. In either approach,

the optimal action minimizes the sum of predictive loss and cost of predictors.

Both of these approaches can be implemented with standard computa-

tional methods. The restricted approach is standard BMA based on the

purchased predictors. The extended approach is easiest to follow if we as-

sume to know the joint distribution of potential predictors. In this case,

the unpurchased predictors are merely missing data, to be imputed (distri-

butionally) as we fit our model. When BMA is accomplished by means of

Markov chain Monte Carlo (MCMC), standard methods allow us to draw the

missing values in each iterate of the algorithm. If the conditional distribution

of w | x is not fully determined, it follows a probability model governed by

hyperparameters, it is merely part of the larger Bayesian model, and MCMC

or other techniques can be used to perform model averaging over the full set

of 2p models.

2.5 Choice of approach

One central question is whether the restricted approach or the extended

approach is to be preferred. Our first take on this question is motivated by

the subjective Bayesian viewpoint expressed, for example, in Savage (1972).

He constructs Bayesian methods from the principles of rational behavior.
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This leads him to the notion of personal probability, and along with it, the

ability to specify a prior distribution on unknown parameters (tied to Y | φ).

The same argument allows one to specify a prior on on models and a prior on

the distribution of w | x. This provides a complete description of uncertainty

over models, parameters within a model, and missing predictors. Coupling

this with standard results from decision theory which state that the Bayes risk

is the minimum possible risk when the parameter follows a given distribution

and that the Bayes rule achieves the Bayes risk (Result 1, p. 159 of Berger

(1985)), we arrive at the usual Bayesian destination. In other words, the

extended approach is preferred from the subjective view.

The implications of this choice run contrary to mainstream Bayesian prac-

tice. Consider a standard BMA problem where one has a set of k predictors,

say x and a response Y . The usual practice is to apply BMA to the set of all

2k models. While this may appear to agree with the preceding paragraph,

we can certainly envision further unobserved predictors w that may well be

connected to the response at a low cost. The extended approach averages

over these predictors as well, with the analyst’s prior beliefs governing the

relationship between x and w and the extended set of model probabilities.

This leads us to ask why BMA is practiced in its current form. Objective

Bayesian methods provide a counterpoint to the subjective Bayesian perspec-

tive. The typical BMA implementation is far from subjective. Rather than

using elicitation procedures to carefully specify a prior distribution across

models and, for each model, a prior distribution over the parameters within

the model, one resorts to a rule to determine the prior distribution. The

rule may assign a set probability to each model of a given size, and it may

routinely specify the distribution on the parameters given the model. Pop-
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ular rules include the conjugate priors on model parameters along with the

uniform prior model probability (Raftery et al. (1997)), the benchmark prior

(Fernández et al. (2001)), and the mixture of g priors (Ley and Steel (2012)).

See Steel (2019) for other choices.

Many of these prior distributions are improper, negating the subjective

Bayesian argument. These prior distributions are not constructed in the

careful fashion appropriate for smaller scale problems, and they are not ac-

companied by the claim that all can be modelled, including unseen w. A

typical attempt at such a specification of the distribution of w | x would

lead to an improper distribution for w. To see this, replace w with Y and

note that the marginal distribution on Y is improper for many objective

specifications—in particular, for those in which a regression makes use of a

uniform improper prior distribution on the intercept or an improper prior

distribution on the error variance. For unseen w, we may be left without a

distribution, and this precludes use of the extended approach.

In addition to the question of whether the extended approach can be

applied under a chosen version of the Bayesian paradigm, there is a question

of whether it should be used. The major concerns surround our inability to

check aspects of the model for future data—our inability to check the form

of Y | (x,w) when w is unavailable and our inability to check the form of

w | x—and our inability to consistently estimate the distribution of w | x

as future data accrue. This last implies that, even as the future data set

size tends to ∞, there will always be some uncertainty about the value of

observing w.

The robustness to priors is also an issue when comparing approaches.

The conditional distribution w | x is an additional (subjective) prior. This
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specification may or may not be correct, bringing additional sensitivity to

the analysis. If it is based on scientific theory, it helps us to obtain accurate

prediction at a lower cost. However, especially in the area of social science,

it is unstable due to, for example, the advance of technology or the change

of laws. Such a misspecification may contaminate the inference, as shown

by examples provided in Section 2.1 of Liu et al. (2009) and Hahn (2019).

They compares two models with and without biased samples, and discusses

that the benefit from the former is smaller than its cost, which in turn sug-

gests the restricted approach over the extended approach from an objective

perspective.

At the end of this section, we compare these two approaches by the empir-

ical dataset. Figure 1 shows the empirical difference of these two approaches

by using the ozone dataset (see Subsection 3.1). We use the normal linear
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d 
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Figure 1: Loss plot of two approaches.
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model with g-prior described in Subsection 2.1 and draw a pair of losses

estimated by taking two approaches (see the next subsection for the loss

estimation). The prior distribution of w | x for the extended approach is

constructed by using the normal approximation: use the entire dataset to

construct the multivariate normal distribution for (x,w) and derive condi-

tional distributions of unpurchased predictors given purchased ones. This

figure shows these two approaches result in similar losses because they are

gathering around the 45 degree line. Thus, in addition to points listed above

as well as the computational aspect, we recommend the restrictive approach,

and the paper focuses on it hereafter.

2.6 Cross-Validated loss

When the data are observed, we are able to estimate the loss. Let (yi,xi)

be the response to be predicted and the purchased predictors for case i (i =

1, . . . , n), respectively. Let Dγ = {yi,xi,γ}ni=1 denotes the data for each model

γ.

The uncertainties about models and parameters are estimated by the

posterior distributions of models and parameters. Then, the loss is estimated

as {
ỹ −

∑
γ∈Γ

h (x̃γ) π (γ | Dγ)

}2

,

where (ỹ, x̃γ) is the new response and predictors for the subset γ, π (γ | Dγ)

is the posterior model probability, and h(·) is an action to be chosen. Under

the squared-error loss, the best action is the posterior conditional expectation

E(Ỹ | x̃γ, Dγ).
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When the new data are not available, the cross-validated loss is an al-

ternative. The data are split into two parts: the training and validation

data. Then, the conditional expectation and the posterior distributions are

estimated based on the training data, and by using the validation data in

place of the new data, we have the estimated loss. When the data are di-

vided into several groups, this process is repeated by treating one of them

as the validation and remainings as the training. The cross-validated loss is

the average of these losses. The remaining of this paper applies the 10-fold

cross validation to estimate the predictive loss. Equation (4) in Appendix

A provides the analytical form of loss under the normal linear model with

g-prior.

2.7 Prior sensitivity

The next section will illustrate our methodology by using the real datasets.

The results may depend on the prior specification we choose. This subsection

examines the sensitivity from this possibility by using the ozone data to be

used in Subsection 3.1.

Taking the restrictive approach, the normal linear models with four prior

specifications are considered: (i) g = k2, (ii) the hyper-g prior

π (g) =
1

2
(1 + g)−3/2 , (g > 0),

(iii) the hyper-g/n prior

π (g) =
1

2n

(
1 +

g

n

)−3/2

, (g > 0),

and (iv) the robust prior

π (g) =
1

2

√
1 + n

1 + k

(
1 +

g

n

)−3/2

, (g > (1 + k)−1(1 + n)− 1),
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in addition to the g prior for the last three specifications.

Figure 2 draws a pair of losses based on different prior specifications, along

with the 45 degree line. For losses under the hyper-g/n prior, the standard
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(b) Hyper-g prior.
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(c) Hyper-g/n prior.
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Figure 2: Loss plots of four different prior specifications.

Laplace approximation is used as suggested by Liang et al. (2008). All panels
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show these five specifications do not have any substantial difference in terms

of the squared predictive loss. Thus, we use the g prior with g = max{n, k2}

as recommended by Fernández et al. (2001) for operational simplicity in the

following illustrative examples.

3 Illustrative examples

This section illustrates the economic variable selection with three real datasets.

All predictors are standardized and the loss is estimated by using the 10-fold

cross validation.

3.1 Ozone dataset

The first dataset is originally analyzed by Breiman and Friedman (1985) to

develop a model between the daily ozone concentration level and meteoro-

logical variables in Los Angeles. We use the data provided by the R package

‘bfp’. The number of observations is 330.

The response is the log daily ozone concentration level in 1976 measured

at Upland, California. There are 10 possible predictors: (1) 500-millibar-

pressure height, (2) wind speed, (3) relative humidity, (4) temperature at

Sandberg, (5) inversion base height, (6) binary variable that is set one if

the inversion base height is 5,000, (7) pressure gradient from Los Angeles

International Airport to Daggett, (8) inversion base temperature, (9) square

root of visibility, and (10) day of year.

Figure 3 summarizes results. Both panels consist of two parts: the up-

per part is the (estimated) squared predictive loss plot in ascending order

and each column of the lower part represents a corresponding combination of
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Figure 3: Ozone data: selection map with loss plot. F and N denote combinations

that purchase all predictors and no predictor, respectively.

predictors purchased. When a cell of a column in the lower part is filled by

black, the predictor labeled on the y-axis is purchased. When, on the other

hand, it is white, the corresponding predictor is not purchased, which is de-

noted by NP in the legend provided under the panel. The marginal posterior

probability that the coefficient is nonzero is discretized by the four intervals:

[0, 0.25], (0.25, 0.5], (0.5, 0.75], (0.75, 1], and is expressed by the brightness of

the cell as shown in the legend. See Clyde (2003) for the marginal posterior

nonzero probability.

The least-loss combination is (x3, x4, x5, x6, x9, x10). Among them, x6 and

x9 are less relevant in terms of their marginal posterior nonzero probability

(less than 0.6). Thus, cells corresponding to these predictors are colored to

be light gray. Compared with the selection by Breiman and Friedman (1985),
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we choose x3 (and x6) instead of x7.

This difference is partly due to the transformation of variables. The re-

sponse is logged in our example, while it is not in Breiman and Friedman

(1985) (see their Figure 5(a) on page 588). Among predictors, x7 is trans-

formed by a highly nonlinear function in Breiman and Friedman (1985) (see

their Figure 5(d) on page 588), while we do not transform it. These trans-

formation would be a source of such a difference between their result and

ours.

To focus on combinations that yield smaller predictive losses, the left

panel is magnified to the right by picking up the top 128 combinations of

predictors purchased. In this panel, (x4, x10) are always included in them in

terms of its nonzero probability. Among others, x3 is in the combinations

with smaller predictive losses.

Two special combinations are considered: the intercept-only combination

and the combination that purchases all predictors. Their respective position

is denoted by the vertical solid lines labeled by N and F in Figure 3. The

former yields the high predictive loss, although it is not the worst (the fourth

from the worst). On the other hand, the latter performs much better. This

loss is achieved when we use the usual BMA. Its predictive performance is

closer to the best (see the predictive loss plot of the left panel). However,

there are combinations that yield low predictive losses and purchase less

predictors.

Next, two cost structures are considered. The first one is the uniform

cost structure, where all predictors are set at the same price. That is, when

k predictors are purchased, the total cost is c · k, where c is the price. This

structure is used when a decision maker has no information about the cost
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of predictors.

When the uniform cost structure is applied, predictors purchased are

shown by the left panel of Figure 4. Each column is the least-loss combination
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(a) Uniform cost structure.
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(b) Cost per predictor.

Figure 4: Ozone data: least-loss purchases with cost.

for a fixed c, which is indicated by the x-axis. Similar to the previous plots,

the brightness represents the discretized marginal posterior probability that

the corresponding coefficient is nonzero. As c increases, less predictors are

purchased. When c is sufficiently high, the optimal purchase is the one with

no predictors.

It is reasonable to consider that a decision is made with some knowledge

about the cost of predictors. A possible decision maker for this dataset is

a researcher who is interested in the global warming. As a part of his or

her interest, the researcher would like to predict the ozone level. He or she

probably knows the cost of predictors. One reasonable cost structure for the
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researcher is cost per predictor. Because (x2, x3, x4, x9, x10) are often reported

on regular weather news, it is natural to assume their costs are zero, while

remaining predictors require positive prices. To simplify the structure, we

assume each of them requires the constant price c. The results are shown in

the right panel of Figure 4. As c increases, the optimal purchase is the one

without x5 and x6 because of their higher cost.

3.2 Diabetes dataset

Next dataset is the diabetes data, which are used in Efron et al. (2004) and

are provided through Professor Trevor Hastie’s webpage. The data are used

to predict the progression of the disease one year ahead of the baseline when

predictors related to patients are collected. In this dataset, 442 observations

are included.

The response is the log of diabetes progression measure. Ten possible

predictors are included: (1) age, (2) sex, (3) body mass index, (4) blood

pressure, and 6 blood serum measures.

Results without cost are summarized by Figure 5. The least-loss combi-

nation is (x2, x3, x4, x5, x6, x9). From the top 128 combinations of predictors

purchased, (x3, x9) are useful to predict the disease progression because it is

always included in the combinations. In addition, x2 and x4 perform well

because they are in low-loss combinations. Among 6 blood serum measures,

x7 is useful as well because it is almost always included in the combinations.

Efron et al. (2004) applied the least angle regression and they find that vari-

ables enter into the active set in the order of x3, x9, x4, x7, where they are

selected in combinations with higher predictive losses in our results.

The performance of two special combinations are examined. The intercept-
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(a) All combinations.
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(b) Top 128.

Figure 5: Diabetes data: selection map with loss plot. F and N denote combina-

tions that purchase all predictors and no predictor, respectively.

only combination is the second from the worst. The combination that pur-

chases all predictors does not perform well in this dataset, suggesting pur-

chases that include less predictors would be better to predict the disease

progression.

Two specific cost structures are examined. The first one is the uniform

cost structure and its results are on the left panel of Figure 6. As c (the

uniform price) increases, the number of predictors in the optimal purchase

decreases. The optimal purchase with sufficiently high price is the one only

with the intercept.

A possible decision maker for this dataset is a person who is at the risk

of diabetes. If he or she considers it low, the cost of blood test is expensive.

On the other hand, if he or she considers it high, it becomes cheap. To
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(b) Cost per model.

Figure 6: Diabetes data: least-loss purchases with cost.

simplify this decision problem, the constant cost c is introduced if either of 6

blood serum measures is included in the combination. Other predictors are

assumed to be free of charge.

The results are shown on the right panel of Figure 6. As the price for

the blood test increases, (x5, x6, x9) are excluded in the optimal purchase

because they become more expensive. When it is sufficiently high, (x3, x4)

are selected to predict the progression of the diabetes. For a person who is

at the low risk of diabetes, these predictors are enough for the purpose.

3.3 Wage dataset

The last dataset focuses on how wage is determined by attributes of workers,

such as the education level and the ability.

The dataset to be used in the analysis is the one taken from the National
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Longitudinal Survey of Youth and is the panel data from 1979 to 1993. This

is analyzed by Koop and Tobias (2004) and is provided from the Journal of

Applied Econometrics data archive. The response is the log of hourly wage

for white males. Koop and Tobias (2004) excluded observations who are

at the age of less than 16 years or who report small wages, short working

hours, or inappropriate education years. There are 7 possible predictors: (1)

education in years, (2) potential experience in years (age − years of education

− 5), (3) the ability measure ranging from about −4 to about 2, constructed

on 10 component tests of the Armed Services Vocational Aptitude Battery,

(4) mother’s education in years, (5) father’s education in years, (6) binary

variable for broken home until the age of 14, and (7) number of siblings. The

response and the first two variables are time variant, while the remaining

five are time invariant. More details of this dataset are given in Section 4 of

Koop and Tobias (2004).

The least-loss combination of predictors purchased for each wave is aligned

in Figure 7. The ability measure (x3) comes into the set of predictors pur-

chased after the fifth wave in terms of its marginal posterior nonzero proba-

bility more than 0.75. A possible reason is as follows. For the first four years,

companies mainly set wages by the education level (x1) and the experience

(x2) because the ability is unobservable at this moment. It will be turned

out as working together. After about four years, companies start to use its

information to set wages more accurately.

A decision problem in this dataset is when to purchase the ability measure

as a manager of a company. When it is free of charge, purchasing at the

beginning of t-th wave yields the prediction loss as
∑t−1

s=1 ls +
∑15

s=t l
∗
s , where

l∗s and ls are the least losses with and without purchasing the ability measure,
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Figure 7: Wage data: least-loss combinations by waves.

respectively.

The left panel of Figure 8 plots this loss changing when to purchase. The

minimum loss is reached at the beginning of the first wave (represented by

the black dot), although losses at the beginning of the second through fifth

waves are comparable.

The decision changes when cost is introduced. There are two kinds of cost

in this problem: the discount factor (δ) and the price of the ability measure

(c). Because the present and future utilities/costs are not equivalent, the

discount factor is introduced to evaluate the future in terms of the present

value. If the ability measure was purchased at the beginning of the t-th wave,

the prediction loss with cost adjusted by the discount factor would be

t−1∑
s=1

ls

(1 + δ)s−1 +
15∑
s=t

l∗s
(1 + δ)s−1 +

c

(1 + δ)t−1 .
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As the discount factor becomes larger, the loss plot becomes downward

because the decision maker values the present more than the future. Then,

the optimal decision tends to purchase the measure at a later wave even if it

improves the loss. When the discount factor and price are sufficiently large,

the optimal decision is no purchase. It is reasonable that the manager of

a company purchases the ability measure later or decides no purchase of it

when it is expensive and/or the discount factor is large.

4 Discussion

The variable selection problem depends on the person who chooses predictors.

This aspect is formulated as a decision problem, and the optimal decision is

the BMA with purchased predictors. In a broader view, it is considered to be

the restricted approach. The extended approach is another methodology to

select predictors when the subjective prior information about the distribution

of unpurchased predictors conditional on purchased ones is available. As

discussed in Subsection 2.5, the restricted approach is our recommendation.

Empirical results that employ the restricted approach show that the pre-

dictive loss is improved with a subset of predictors, compared with the one

with all predictors. Cost structures specific to the dataset is also considered.

We find that the optimal decision (the optimal set of predictors to be pur-

chased in this case) changes according to the structure or the level of the

price for predictors.

Finally, a computational issue is noted. The method is computationally

feasible when the number of predictors is moderate. However, for example,

the growth model usually includes more than fifty predictors (sixty seven
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in Sala-i-Martin et al. (2004)). In this case, a simple method such as the

stepwise selection would be useful to remove less relevant predictors before

proceeding to apply our method (see, e.g., James et al. (2013) for the stepwise

selection). However, a decision-theoretic variable selection in high dimensions

is an interesting research question and will be left as a future work.

A Posterior, marginal likelihood, and loss

This section derives the posterior, the marginal likelihood, and the loss under

the normal linear regression model specified in Subsection 2.1. The subscript

γ is suppressed in this section to simplify notation, except for the number of

predictors. We use k instead of pγ.

Suppose we have the training data D = {yi,xi}ni=1. The matrix represen-

tation gives y = (y1, . . . , yn)′ and X = (x1, . . . ,xn)′. Consider the following

normal linear regression and prior distribution:

Yi = β0 + x′iβ1 + εi, εi
i.i.d.∼ N(0, σ2), i = 1, . . . , n,

π (β0) ∝ 1, β1 ∼ Nk

{
0, gσ2 (X ′X)

−1
}
, π

(
σ2
)
∝ σ−2,

Then, we have an analytical form for the (marginal) posterior distribution of

the regression coefficients, β = (β0,β
′
1)′. The posterior is the Arellano-Valle

and Bolfarine’s generalized t distribution, which is given by

β | D ∼ t (b,B;S, n− 1) , (2)
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where ȳ = 1
n

∑n
i=1 yi, d

2
y = y′y − nȳ2,

b =

 ȳ

g
1+g

(X ′X)−1X ′y

 , B =

 1
n

0′

0 g
1+g

(X ′X)−1

 ,

R2 =
y′X (X ′X)−1X ′y

d2
y

, S =
d2
y

1 + g

{
1 + g

(
1−R2

)}
.

The probability density function is given in Arellano-Valle and Bolfarine

(1995). The posterior expectation and variance matrix of β are b and S
n−3
B,

respectively.

The marginal likelihood is derived as

m (y |X) =
Γ ((n− 1)/2)
√
π
n−1√

n
(1 + g)(n−k−1)/2 d−(n−1)

y

{
1 + g

(
1−R2

)}−(n−1)/2
,

(3)

where Γ(x) is the gamma function (see also Steel (2019) for this expression).

Finally, the squared predictive loss given the model is estimated by

1

m

m∑
i=1

{
ỹi − ȳ −

g

1 + g
x̃′i (X

′X)
−1
X ′y

}2

, (4)

where (ỹ1, . . . , ỹm)′ and (x̃1, . . . , x̃m)′ are the response and predictors in the

validation set with m observations.
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