Galley Proof 3/12/2021; 10:00 File: idt—1-idt210195.tex; BOKCTP/ljl p. 1

Intelligent Decision Technologies -1 (2021) 1-29 1

DOL10.3233/IDT-21019
10S Press

Differentially private synthetic mixed-type
data generation for unsupervised learning

Uthaipon Tao Tantipongpipat®, Chris Waites”, Digvijay Boob®, Amaresh Ankit Siva® and
Rachel Cummings®*

1

PStanford University, Stanford, CA, USA

“Southern Methodist University, Dallas, TX, USA

dAmazon

°Columbia University, New York, NY, USA

Abstract. We introduce the DP-auto-GAN framework for synthetic data generation, which combines the low dimensional
representation of autoencoders with the flexibility of Generative Adversarial Networks (GANs). This framework can be used to
take in raw sensitive data and privately train a model for generating synthetic data that will satisfy similar statistical properties as
the original data. This learned model can generate an arbitrary amount of synthetic data, which can then be freely shared due to the
post-processing guarantee of differential privacy. Our framework is applicable to unlabeled mixed-type data, that may include
binary, categorical, and real-valued data. We implement this framework on both binary data (MIMIC-III) and mixed-type data
(ADULT), and compare its performance with existing private algorithms on metrics in unsupervised settings. We also introduce a
new quantitative metric able to detect diversity, or lack thereof, of synthetic data.

Keywords: Differential privacy, synthetic data generation, generative adversarial networks, mixed-type data

1. Introduction where a new dataset is created that shares the same
statistical properties as the original data. These data

As data storage and analysis are becoming more may not be of a single type: all binary, all categorial,
cost effective, and data become more complex and un- or all real-valued; instead they may be of mixed-types,

containing data of multiple types in a single dataset.
These data may also be unlabeled, requiring techniques
for unsupervised learning, which is typically a more
challenging task than supervised learning when data are
labeled.

Privacy challenges naturally arise when sharing
highly sensitive datasets about individuals. Ad hoc
anonymization techniques have repeatedly led to severe|
privacy violations when sharing “anonymized” datasets.
Notable examples include the Netflix Challenge [1],
AOL Search Logs [2], and Massachusetts State Health
data [3], where linkage attacks to publicly available aux-
iliary datasets were used to reidentify individuals in the

*Corresponding author: Rachel Cummings, Columbia University, fiataset. Even deep 1e.arn1ng II.I(.)delS have be,en ShOWI.l to
500 W 120th St., New York, NY 10027, USA. Tel.: +1 212 854 2942; inadvertently memoize sensitive personal information

structured, there is a growing need for sharing large
datasets for research and learning purposes. This is in
stark contrast to the previous statistical model where
a data curator would hold datasets and answer spe-
cific queries from (potentially external) analysts. Shar-
ing entire datasets allows analysts the freedom to per-
form their analyses in-house with their own devices and
toolkits, without having to pre-specify the analyses they
wish to perform. However, datasets are often propri-
etary or sensitive, and they cannot be shared directly.
This motivates the need for synthetic data generation,

ISSN T872-49817535.00 (©) 2021 —1OS Press. All rights reserved.

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34



35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/1jl p. 2

Differential privacy (DP) [5] (formally defined in
Section 2) has become the de facto gold standard of
privacy in the computer science literature. Informally,
it bounds the extent to which an algorithm depends on
a single datapoint in its training set. The guarantee en-
sures that any differentially privately learned models do
not overfit to individuals in the database, and therefore
cannot reveal sensitive information about individuals. It
is an information theoretic notion that does not rely on
any assumptions of an adversary’s computational power
or auxiliary knowledge. Furthermore, it has been shown
empirically that training machine learning models with
differential privacy protects against membership infer-
ence and model inversion attacks [4,6]. Differentially
private algorithms have been deployed at large scale
in practice by organizations such as Apple, Google,
Microsoft, Uber, and the U.S. Census Bureau.

Much of the prior work on differentially private syn-
thetic data generation has been either theoretical algo-
rithms for highly structured classes of queries [7,8] or
based on deep generative models such as Generative
IAdversarial Networks (GANS) or autoencoders. These
architectures have been primarily designed for either
all-binary or all-real-valued datasets, and have focused
on the supervised setting.

In this work we introduce the DP-auto-GAN frame-
work, which combines the low dimensional representa-
tion of autoencoders with the flexibility of GANs. This
framework can be used to take in raw sensitive data, and
privately train a model for generating synthetic data that
satisfies similar statistical properties as the original data.
This learned model can be used to generate arbitrary
amounts of publicly available synthetic data, which can
then be freely shared due to the post-processing guar-
antees of differential privacy. We implement this frame-
work on both unlabeled binary data (for comparison
with previous work) and unlabeled mixed-type data. We
also introduce new metrics for evaluating the quality of
synthetic mixed-type data in unsupervised settings, and
empirically evaluate the performance of our algorithm
according to these metrics on two datasets.

1.1. Our contributions

In this work, we provide two main contributions:
a new algorithmic framework for privately generating
synthetic data, and empirical evaluations of our algo-
rithmic framework showing improvements over prior
work. Along the way, we also develop a novel privacy
composition method with tighter guarantees, and we
generalize previous metrics for evaluating the quality of

synthetic datasets to the unsupervised mixed-type data
setting. Both of these contributions may be of indepen-
dent interest.

Algorithmic framework. We propose a new data
generation architecture which combines the versatil-
ity of an autoencoder [9] with the recent success of
GANS on complex data. Our model extends previous
autoencoder-based DP data generation [10,11] by re-
moving an assumption that the distribution of the latent
space follows a Gaussian mixture distribution. Instead,
we incorporate GANS into the autoencoder framework
so that the generator must learn the true latent distribu-
tion against the discriminator. We describe the compo-
sition analysis of differential privacy when the training
consists of optimizing both autoencoders and GANS
(with different noise parameters).

Empirical results. We empirically evaluate the per-
formance of our algorithmic framework on the MIMIC-
III medical dataset [12] and UCI ADULT Census
dataset [13], and compare against previous approaches
in the literature [10,14—16]. Our experiments show that
our algorithms perform better and obtain substantially|
improved e values of € ~ 1, compared to € ~ 200 in|
prior work [15]. The performance of our algorithm re-
mains high along a variety of quantitative and quali-
tative metrics, even for small values of ¢, correspond-
ing to strong privacy guarantees. Our code is publicly|
available for future use and research.

1.2. Related work on differentially private data
generation

Early work on differentially private synthetic data
generation was focused primarily on theoretical algo-
rithms for solving the query release problem of privately
and accurately answering a large class of pre-specified
queries on a given database. It was discovered that gen-
erating synthetic data on which the queries could be
evaluated allowed for better privacy composition than|
simply answering all the queries directly [7,8,17,18].
Bayesian inference has also been used for differen-
tially private data generation [19,20] by estimating the
correlation between features. See [21] for a survey of
techniques used in private synthetic data generation.

More recently, [22] introduced a framework for train-
ing deep learning models with differential privacy,
which involved adding Gaussian noise to a clipped
(norm-bounded) gradient in each training step. [22] also
introduced the moment accountant privacy analysis,
which provided a tighter Gaussian-based privacy com-
position and allowed for significant improvements i

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

108

104

105

106

107

108

109

110

m

112

113

114

115

116

117

118

119

120

121

122

128

124

125

126

127

128

129

130

131

132



133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/ljl p. 3

the latent space

Algorithmic frameworks for differentially private synthetic data generation. Our new algorithmic framework (in bold) is
the first to combine both DP GANs and autoencoders into one framework by using GANs to learn a generative model in

Other models

Types Algorithmic framework
Architecture Variants
Deep generative models  DPGAN [22] PATEGAN [41]
DP Wasserstein GAN [36]
DP Conditional GAN [38]
Gumbel-softmax for categorical data [14]
Autoencoder DP-VAE (standard Gaussian as a generative model in latent space) [11,16]

RBM generative models in latent space [16]
Mixture of Gaussian model in latent space [10]
Autoencoder and DPGAN (ours)
SmallDB [7], PMW [8], MWEM [17], DualQuery [18], DataSynthesizer [20], PrivBayes [19]

accuracy. It was later defined in terms of Renyi Dif-
ferential Privacy (RDP) [23], which is a slight variant
of differential privacy designed for easy composition.
Much of the work that followed used deep generative
models, and can be broadly categorized into two types:
autoencoder-based and GAN-based. Our algorithmic
framework is the first to combine both DP GANs and
autoencoders.

Differentially private autoencoder-based models. A
variational autoencoder (VaE) [9] is a generative model
that compresses high-dimensional data to a smaller
space called latent space. The compression is com-
monly achieved through deep models and can be differ-
entially privately trained [11,16]. VaE makes the (often
unrealistic) assumption that the latent distribution is
Gaussian. Acs et al. [16] uses Restricted Boltzmann
machine (RBM) to learn the latent Gaussian distribu-
tion, and Abay et al. [10] uses expectation maximiza-
tion to learn a Gaussian mixture. Our work extends this
line of work by additionally incorporating the gener-
ative model GANs which have also been shown to be
successful in learning latent distributions.

Differentially private GANs. GANs are generative
models proposed by Goodfellow et al. [24] that have
been shown success in generating several different types
of data [25-33]. As with other deep models, GANs can
be trained privately using the aforementioned private
stochastic gradient descent (formally introduced in Sec-
tion 2.1). In this work, we focus on and compare to
previous works where DP have been applied.

Variants of DP GANs have been used for syn-
thetic data generation, including the Wasserstein GAN
(WGAN) [34,35] and DP-WGAN [6,36] that use
a Wasserstein-distance-based loss function in train-
ing [6,34-36]; the conditional GAN (CGAN) [37] and
DP-CGAN [38] that operate in a supervised (labeled)
setting and use labels as auxiliary information in train-
ing; and Private Aggregation of Teacher Ensembles

(PATE) [39,40] for the semi-supervised setting of multi-
label classification when some unlabelled public data
are available (or PATEGAN [41] when no public data
are available). Our work focuses on the unsupervised
setting where data are unlabeled, and no (relevant) la-
beled public data are available.

These existing works on differentially private syn-
thetic data generation are summarized in Table 1.

Differentially private generation of mixed-type data.
Next we describe the three most relevant recent works
on privately generating synthetic mixed-type data. [10]
considers the problem of generating mixed-type labeled
data with k possible labels. Their algorithm, DP-SYN,
partitions the dataset into k sets based on the labels
and trains a DP autoencoder on each partition. Then|
the DP expectation maximization (DP-EM) algorithm
of [42] is used to learn the distribution in the latent
space of encoded data of the given label-class. The|
main workhorse, DM-EM algorithm, is designed and
analyzed for Gaussian mixture models and more general
factor analysis models. [11] works in the same setting,
but replaces the DP autoencoder and DP-EM with a
DP variational autoencoder (DP-VAE). Their algorithm
assumes that the mapping from real data to the Gaussian|
distribution can be efficiently learned by the encoder.

Finally, [14] uses a Wasserstein GAN (WGAN)
to generate differentially private mixed-type synthetic
data, which uses a Wasserstein-distance-based loss
function in training. Their algorithmic framework pri-
vatizes the WGAN using DP-SGD, similar to previous
approaches for image datasets [15,43]. The methodol-
ogy of [14] for generating mixed-type synthetic data
involves two main ingredients: changing discrete (cate-
gorical) data to binary data using one-hot encoding, and
adding an output softmax layer to the WGAN generator
for every discrete variable.

Our framework is distinct from these three ap-
proaches. We use a differentially private autoencoder

7

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/1jl p. 4

such as Wasserstein distance or total variation distance

Table 2

Summary of evaluation metrics in DP synthetic data generation literature. We list applicability of each metric to each of the data type. Parts in
bold are our new contributions. Evaluation methods with asterisk * are predictive-model-specific, and their applicability therefore depends on|
types of data that the chosen predictive model is appropriate for. Methods with asterisks ** are equipped with any distributional distance of choice|

Types Evaluation methods Data types
Binary Categorical ~ Regression

Supervised Label prediction* [10,11,14] Yes Yes Yes

Predictive model ranking* [41] Yes Yes Yes
Unsupervised, Dimension-wise prediction plot* Yes ([47], ours) Yes Yes
prediction-based
Unsupervised, Dimension-wise probability plot [47] Yes No No
distribution- 2, 3-way feature marginal, total variation distance [10,44]** Yes Yes Yes
based 1-way feature marginal, diversity measure (;.-smooth KL diver- Yes Yes Yes

gence) **
Unsupervised, 1-way feature marginal (histogram) (e.g. in [53,54] and in the imple- Yes Yes Yes
qualitative mentation of [14])

2-way PCA marginal (data visualization) Yes Yes Yes

which, unlike DP-VAE of [11], does not require map-
ping data to a Gaussian distribution. This allows
us to reduce the dimension of the problem handled
by the WGAN, hence escaping the issues of high-
dimensionality from the one-hot encoding of [14]. We
also use DP-GAN, replacing DP-EM in [10], to learn
more complex distributions in the latent or encoded
space.

NIST differential privacy synthetic data challenge.
The National Institute of Standards and Technology
(NIST) recently hosted a challenge to find methods
for privately generating synthetic mixed-type data [44],
using excerpts from the Integrated Public Use Micro-
data Sample (IPUMS) of the 1940 U.S. Census Data
as training and test datasets. Four of the winning so-
lutions have been made publicly available with open-
source code [45]. However, all of these approaches are
highly tailored to the specific datasets and evaluation
metrics used in the challenge, including specialized data
pre-processing methods and hard-coding details of the
dataset in the algorithm. As a result, they do not provide
general-purpose methods for differentially private syn-
thetic data generation, and it would be inappropriate—if
not impossible — to use any of these algorithms as base-
line for other datasets such as ones we consider in this
paper.

Evaluation metrics for synthetic data. Various eval-
uation metrics have been considered in the litera-
ture to quantify the quality of the synthetic data (see
Charest [46] for a survey). The metrics can be broadly
categorized into two groups: supervised and unsuper-
vised. Supervised evaluation metrics are used when
there are clear distinctions between features and la-
bels of the dataset, e.g., for healthcare applications, a

tings, a predictive model is typically trained on the syn-
thetic data, and its accuracy is measured with respect to
the real (test) dataset. Unsupervised evaluation metrics
are used when no feature of the data can be decisively
termed as a label. Recently proposed metrics include
dimension-wise probability for binary data [47], which
compares the marginal distribution of real and synthetic
data on each individual feature, and dimension-wise|
prediction which measures how closely synthetic data
captures relationships between features in the real data.
This metric was proposed for binary data, and we ex-
tend it here to mixed-type data. Recently, NIST [44]
used a 3-way marginal evaluation metric which used
three random features of the real and synthetic datasets
to compute the total variation distance as a statistical
score. See Appendix 4 for more details on both cate-
gories of metrics, including Table 2 which summarizes
the metrics’ applicability to various data types.

2. Preliminaries on differential privacy

In the setting of differential privacy, a dataset X
consists of m individuals’ sensitive information, and
two datasets are neighbors if one can be obtained from
the other by the addition or deletion of one datapoint.
Differential privacy requires that an algorithm produce
similar outputs on neighboring datasets, thus ensuring
that the output does not overfit to its input dataset, and
that the algorithm learns from the population but not
from the individuals.

Definition 1 (Differential privacy [5]). Fore, § > 0, an
algorithm M is (¢, d)-differentially private if for any|

person’s disease status is a natural label. In these set-

pair of neighboring databases X, X’ and any subset S|

244

245

246

247

248

249

250

251

252

253

254

256

257

258

259

260

261

262

263

264

265

266

267

269

270

27

272

273

274

275



276

277

278

279

280

281

282

283

284

285

286

287

288

290

291

292

293

294

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/ljl p. 5

of possible outputs produced by M,
PriM(X) € S] < e - PrM(X') € S] + 4.

A smaller value of € implies stronger privacy guar-
antees (as the constraint above binds more tightly), but
usually corresponds with decreased accuracy, relative
to non-private algorithms or the same algorithm run
with a larger value of e. Differential privacy is typically
achieved by adding random noise that scales with the
sensitivity of the computation being performed, which
is the maximum change in the output value that can
be caused by changing a single entry. Differential pri-
vacy has strong composition guarantees, meaning that
the privacy parameters degrade gracefully as additional
algorithms are run on the same dataset. It also has a
post-processing guarantee, meaning that any function
of a differentially private output will retain the same
privacy guarantees.

2.1. Differentially private stochastic gradient descent
(DP-SGD)

Training deep learning models reduces to mini-
mizing some (empirical) loss function f(X;0) :=
LS f(x:;0) on a dataset X = {z; € R"}7,.
Typically f is a nonconvex function, and a common
method to minimize f is by iteratively performing
stochastic gradient descent (SGD) on a batch B of sam-
pled data points:

B < BATCHSAMPLE(X)

1

0+ 0—n- *Zieref(l‘z‘,@)
|B|

The size of B is typically fixed as a moderate number
to ensure quick computation of gradient, while main-
taining that |;ﬁ\ > icp Vf(xi,0) is a good estimate of
true gradient Vo f (X 6).

To make SGD private, Abadi et al. [22] proposed
to first clip the gradient of each sample to ensure the

o-norm is at most C":

Crip(z,C) := x -min (1,C/||z||2) .

(D

Then a multivariate Gaussian noise parametrized by
noise multiplier ¢ is added before taking an average
across the batch, leading to noisy-clipped-averaged gra-
dient estimate g:

g |—;| (3, CLIP(Vo £ (2:,6), C)

+AN(0 (’21)213)

The quantity g is now private and can be used for the
descent step 6 < 6 — 1 - g in place of Eq. (1).

Performance Improvements. In general, the descent
step can be performed using other optimization meth-
ods — such as Adam or RMSProp — in a private man-
ner, by replacing the gradient value with g in each step.
Also, one does not need to clip the individual gradients,
but can instead clip the gradient of a group of data-
points, called a microbatch [48]. Mathematically, the
batch B is partitioned into microbatches By, ..., By
each of size r, and the gradient clipping is performed
on the average of each microbatch:

g 3 (Th CLR(Vaf(X5,.0).C)

+N(0,C*¢°T)).

Standard DP-SGD corresponds to setting » = 1, but
setting higher values of  (while holding | B| fixed) sig-
nificantly decreases the runtime and reduces the accu-
racy, and does not impact privacy significantly for large
dataset. Other clipping strategies have also been sug-
gested. We refer the interested reader to [48] for more|
details of clipping and other optimization strategies.

The improved moment accountant privacy analysis
by [22] (which has been implemented in Google [49]
and is widely used in practice) obtains a tighter privacy|
bound when data are subsampled, as in SGD. This anal-
ysis requires independently sampling each datapoint
with a fixed probability ¢ in each step.

The DP-SGD framework (Algorithm 1) is generically
applicable to private non-convex optimization. In our
proposed model, we use this framework to train the
autoencoder and GAN.

Algorithm 1: DP-SGD (one iteration step)

1: parameter input: Dataset X = {z;}]" ,, deep learning mode]
parameter 6, learning rate 7, loss function f, optimization method
OPTIM, batch sampling rate ¢ (for the batch expectation size
b = gm), clipping norm C, noise multiplier v, microbatch size|
r

: goal: differentially privately train one step of the model
parametrized by 6 with OPTIM

(o]

3: procedure DP-SGD
4: procedure SAMPLEBATCH(X, q)
S B+ {}
6: fori=1...mdo
7 Add z; to B with probability ¢
8: Return B
9: Partition BB into By, . .., By each of size r (ignoring the
_ dividend)
10: k<« % > an estimate of k|
1 gt ( K CLIP(Vof(Xp,,0),C)+N (0, C22T)

12: 0 <+ OpTiM(0, g,7)

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340



341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/1jl p. 6

Autoencoder Loss

X1,X3, ., Xy € R®

Noise z ~ Z

Training

public to generate synthetic data.

2.2. Renyi differential privacy accountant

A variant notion of differential privacy, known as
Renyi Differential Privacy (RDP) [23], is often used to
analyze privacy for DP-SGD. A randomized mechanism
M is (v, €)-RDP if for all neighboring databases X, X’
that differ in at most one entry,

RDP(a) i= Do(M(X)[|M(X")) < €,

«@

where Dy (P||Q) = =L logE,x (ggjg is the
Renyi divergence or Renyi entropy of order o between
two distributions P and Q. Renyi divergence is bet-
ter tailored to tightly capture the privacy loss from the
Gaussian mechanism that is used in DG-SGD, and is a
common analysis tool for DP-SGD literature. To com-
pute the final (¢, §)-differential privacy parameters from
iterative runs of DP-SGD, one must first compute the
subsampled Renyi Divergence, then compose privacy
under RDP, and then convert the RDP guarantee into
DP.

Step 1: Subsampled renyi divergence. Given sam-
pling rate ¢ and noise multiplier ¢/, one can obtain RDP
privacy parameters as a function of o > 1 for one run of
IDP-SGD [23]. We denote this function by RDPy_ (),
which will depend on ¢ and .

Step 2: Composition of RDP. When DP-SGD is run
iteratively, we can compose the Renyi privacy parameter

Autoencoder

Encoder En(-) Decoder De(-)
Private ‘ Latent space R%
Preproces En(x;) € R4
Raw Data d 6,(2) € RY

Generator
Gw(')

Discriminator

Dy(‘)
Discriminator ,l, 4'

Wasserstein Loss

[Fig. 1. The summary of our DP-auto-GAN algorithmic framework. Pre- and post-processing (in black) are assumed to be public knowledge.
Generator (in green) is trained without noise, whereas encoder, decoder, and discriminator (in yellow) are trained with noise. The four red arrows|
indicate how data are forwarded for autoencoder, generator, and discriminator training. After training, the generator and decoder are released to the|

De(En(xl)), s
De(En(x,,)) € R*

Synthetic
Data

Postprocesi

Generator
Training

De(G,(2)) e R®

,I, Discriminator

Training

Proposition 1 ([23]). If M;, M5 respectively satisty|
(o, €1), (@, €2)-RDP for o« > 1, then the composition of]
two mechanisms (M3 (X), M (X)) satisfies (o, €1 +
62)-RDP.

Hence, we can compute RDP privacy parameters for|
T iterations of DP-SGD as RDP-ACCOUNT(T, ¢,¢) :
=T -RDPr_q(-).

Step 3: Conversion to (€,§)-DP. After obtaining an
expression for the overall RDP privacy parameter val-
ues, any («, €)-RDP guarantee can be converted into
(e, 6)-DP.

Proposition 2 ([23]). If M satisfies («, €)-RDP for]
a > 1, then for all § > 0, M satisfies (¢ + 105_1{6,5)—
DP.

Since the € privacy parameter of RDP is also a func-
tion of «, this last step involves optimizing for the « that
achieves smallest privacy parameter in Proposition 2.

3. Algorithmic framework

The overview of our algorithmic framework DP-auto-
GAN is shown in Fig. 1, and the full details are given|
in Algorithm 2.

The algorithm takes in m raw data points, and pre-

cross all runs using the following proposition

processes these points into m. vectors zy Ly, €

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388



389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/ljl p. 7

R™ to be read by DP-auto-GAN, where usually n is
very large. For example, categorical data may be pre-
processed using one-hot encoding, or text may be con-
verted into high-dimensional vectors. Similarly, the
output of DP-auto-GAN can be post-processed from
R™ back to the data’s original form. We assume that
this pre- and post-processing can done based on public
knowledge, such as possible categories for qualitative
features and reasonable bounds on quantitative features,
and therefore do not incur a privacy cost.

Within the DP-auto-GAN, there are two main compo-
nents: the autoencoder and the GAN. The autoencoder
serves to reduce the dimension of the datato d < n
before it is fed into the GAN. The GAN consists of a
generator that takes in noise z sampled from a distribu-
tion Z and produces G, (z) € R%, and a discriminator
D, (-) : R™ — {0, 1}. Because of the autoencoder, the
generator only needs to synthesize data based on the
latent distribution in R%, which is much easier than syn-
thesizing in R™. Both components of our architecture,
as well as our algorithm’s overall privacy guarantee, are
described in the remainder of this section.

3.1. Autoencoder framework and training

An autoencoder consists of an encoder Eng(-)
R™ — R? and a decoder Dey(-) : RY — R»
parametrized by weights ¢, 6 respectively. The architec-
ture of the autoencoder assumes that high-dimensional
data z; € R" can be represented compactly in a
low-dimensional latent space R%. The encoder Eng is
trained to find such low-dimensional representations,
and the decoder Dey maps Eng(z;) in the latent space
back to z;. A natural measure of the information pre-
served in this process is the error between the decoder’s
image and the original x;. A good autoencoder should
minimize the distance dist(Deg(Eng(x;)), x;) for each
point x; for an appropriate distance function dist. Our
autoencoder uses binary cross entropy loss: dist(x, y) =
= 21y log(x ) = 2T (L= y(h) log(1— (),
where ;) is the jth coordinate of the data = € [0, 1]"
after our preprocessing.

This motivates a definition of a (true) loss function
[E;~zy [dist(Deg(Eng(z)), x)] when data are drawn in-
dependently from an underlying distribution Zx. The
corresponding empirical loss function when we have an
access to sample {x;}, is

Lauo(9,0) := >_i" | dist(Deg(Eng(x;)), x;). (2)

Finding a good autoencoder requires optimizing ¢
nd f to yield small empirical loss in Eq. (2)

Algorithm 2: DPAUTOGAN (full procedure)

1: architecture input: Sensitive dataset D € X" where X is
the (raw) data universe, preprocessed data dimension n, latent
space dimension d, preprocessing function Pre : X — R™
post-processing function Post : R™ — X', encoder architecture
Eng : R™ — R9 parameterized by ¢, decoder architecture Deg
R? — R™ parameterized by 6, generator’s noise distribution Z|
on sample space {2(Z), generator architecture G, : Q(Z) —|
R? parameterized by w, discriminator architecture Dy : R™ —
{0, 1} parameterized by y.

2: autoencoder training parameters: Learning rate 71, number of]
iteration rounds (or optimization steps) 77, loss function Layto,
optimization method OPTIMayto batch sampling rate g1 (for batch|
expectation size by = g1m), clipping norm C', noise multiplier
1)1, microbatch size r1

3: generator training parameters: Learning rate 72, batch size
b2, loss function L, optimization method OPTIM ¢, number of|
generator iteration rounds (or optimization steps) 15

4: discriminator training parameters: Learning rate 73, number
of discriminator iterations per generator step tp, loss function|
L p, optimization method OPTIM p, batch sampling rate g3 (for
batch expectation size b3 = g3m), clipping norm C3, noise
multiplier 13, microbatch size r3

5: privacy parameter § > 0

6: procedure DPautoGAN

7. X < Pre(D)

8:  Initialize ¢, 0, w, y for Eng, Deg, G, Dy

9: > Phase 1: autoencoder training|
10: fort =1...71 do

11: DPTRAINsuto(X, En, De, autoencoder training parameters)

> Phase 2: GAN training
12: fort =1...7T5 do
13: forj=1...tpdo
> (privately) train Dy, for tp iterations
14: DPTRAINpscrivinator (X, Z, G, De, D, discriminator
training parameters)

15: TRAINGeneraTor (£, G, De, D, generator training parame-

ters) . )
> Privacy accounting|

16: RDPyuio(+) < RDP-ACCOUNT(TY, q1, 41, 71)
17: RDPp(-) < RDP-AcCcOUNT(T% - tp,q3,%3,73)
18: ¢ +~GET-EPS(RDPyyo(-) + RDP ()

19: return model (G, Deg), privacy (¢, )

We minimize Eq. (2) privately using DP-SGD (Sec-
tion 2.1). Our approach follows previous work on pri-
vate training of autoencoders [10,11,16] by adding
noise to both the encoder and decoder. In our DP-auto-
GAN framework, the autoencoder is trained first until
completion, and is then fixed while training the GAN.
As noted earlier, the decoder is trained privately by
clipping gradient norm and injecting Gaussian noise in
order to obtain the gradient of decoder gy, while the
gradient of encoder g, can be used directly as encoder
can be trained non-privately.

3.2. GAN framework and training

A GAN consists of a generator GG, and a discrim-
inator D,, : R™ — {0, 1}, parameterized respectively

436

437

438

439

440

441

442

443

444

445

446

447

448

449



450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/ljl p. 8

Algorithm 3: DPTRAINayto(X, Eng, Deg, training parameters)

1: training parameter input: Learning rate 71, number of itera-
tion rounds (or optimization steps) 77, loss function Layto, Opti-
mization method OPTIMauto batch sampling rate g1 (for the batch
expectation size by = g1 m), clipping norm C'1, noise multiplier
11, microbatch size r1

2: goal: train one step of autoencoder (Eng, Deg)
3: procedure DPTRAINuto
4. B < SAMPLEBATCH(X, q1)
5: Partition R into By, ..., By each of size r (ignoring the
_ dividend)
6: k« 4m > an estimate of k
7: forj=1...kdo
> Both gf#, gje can be computed in one backpropagation
8: 9;,7959 = Vg (Lawo(Deg (Eng (Bj)), Bj)),

Vo (Lauo(Deg (Eng (Bj)), By)
% o F L9
10 g 2((The cLr(ed, €1) +N (0, D))
11: (¢,0) < OPTIMauo(®, 0, 9o, 9o, M1)

by weights w and y. The aim of the generator G, is to
synthesize (fake) data similar to the real dataset, while
the discriminator aims to determine whether an input
; is from the generator’s synthesized data (and assign
label D, (x;) = 0) or is real data (and assign label
D, (z;) = 1). The generator is seeded with a random
noise z ~ Z that contains no information about the
real dataset, such as a multivariate Gaussian vector, and
aims to generate a distribution G, (z) that is hard for
D, to distinguish from the real data. Hence, the gener-
ator wants to minimize the probability that D, makes
a correct guess, E,.z[1 — D, (G,,(z))]. The discrim-
inator wants to maximize its probability of a correct
guess, whichis E, .. z[1 — D, (G, (z))] when the datum
is fake and E, 7, [Dy(x)] when it is real.

We extend the binary output of D, to a continuous
range [0, 1], with the value indicating the confidence
that a sample is real. We use the zero-sum objective
for the discriminator and generator [34], which is moti-
vated by the Wasserstein distance of two distributions.
/Although the proposed Wasserstein objective cannot be
computed exactly, it can be approximated by optimiz-
ing:

min, max,, Oy, w) = Egwz, [Dy(x)]
B z[Dy(Gu(2))]- 3)

We optimize Eq. (3) privately using the DP-SGD
framework described in Section 2.1. We differ from
prior work on DP-GAN:Ss in that our generator G, ()
outputs data G,(2) in the latent space R¢, which
needs to be decoded by the fixed (pre-trained) Dey to

eg (G (2)) before being fed into the discriminator

D,(z). The gradient V,,G,, is obtained by backpropa-
gation through this additional component Deg(-).

As suggested by [24], the discriminator trained
for several iterations per one iteration of generator|
training. While the discriminator is being trained, the
generator is fixed, and vice-versa. The discriminator|
and generator training are described in Algorithms 4|
(DPTRAINpscrimivator) and 5 (TRAINGengrator) e
spectively. Since the discriminator receives real data
samples as input for training, the training is made dif-
ferentially private by clipping the norm of the gradient
updates, and adding Gaussian noise to the gradient g.
The generator does not use any real data in training
(or any functions of the real data that were computed
without differential privacy), and hence it can be trained
without any need to clip the gradient norm or to inject
noise into the gradient.

Algorithm 4 : DPTRAINpscriminator(X, Z, Gw, Deg, Dy, train-
ing parameters)

1: training parameter input: Learning rate 773, number of discrim-
inator iterations per generator step ¢ p, loss function L p, opti-
mization method OPTIM p, batch sampling rate g3 (for the batch|
expectation size b3 = gzm), clipping norm C'3, noise multiplier
13, microbatch size r3

: goal: train one step of discriminator Dy,

: procedure DPTRAINpscrIMINATOR

B < SAMPLEBATCH(X, q3)

Partition R into Bi, ..., By each of size r (ignoring the

dividend)

b am

for j ="1... kdo

{zitioy ~ 27

Bf — {De(Guw(2:))}i_y

¢’ < Vy(Lp(Bj, B', Dy))
> In the case of WGAN,

1
Lp(Bj. B, Dy):=~ 3 Dy(b) -
'
bEB;

1
- > Dy
b'eB’
11: g+ % <<Zle CLIp(gLCg))
+N(0, C3u31)
12: y <+ oPTIMD(y,9,13)

> an estimate of ki

SPXID

After this two-phase training (of the autoencoder
and GAN), the noise distribution Z, trained generator|
G (+), and trained decoder Dey(-) are released to the
public. The public can sample z ~ Z to obtain a syn-
thesized datapoint Dey (G (2)) repeatedly to obtain a
synthetic dataset of any desired size.

3.3. Privacy accounting

We use Renyi Differential Privacy (RDP) of [23], to
account for privacy in each phase of training as in prion

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

496
497
498
499
500

501

502

503

504



505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/ljl p. 9

Algorithm 5: TRAINGenerator (2, Gw, Deg, Dy, generator training
parameters)

1: training parameter input: Learning rate 72, batch size bz, loss
function L, optimization method OPTIM ¢, number of generator
iteration rounds (or optimization steps) 7>

: goal: train one step of generator G,

: procedure TRAINGENERATOR

b b

{Zi}iil ~ Z°? ,

B {De(Gu ()12,

g < Vuw(La(B',Dy))

> In the case of WGAN,

1

Lg(B',Dy) = by Z Dy ()
2 ven

7 w 4 OPTIMg(w, g,7n2)

JARANIE A

works. Our autoencoder and GAN are trained privately
by clipping gradients and adding noise to the encoder,
decoder, and discriminator. Since the generator only
accesses data through the discriminator’s (privatized)
output and Dey is first trained privately and then fixed
during GAN training, the trained parameters of gen-
erator are also private by post-processing guarantees
of differential privacy. Privacy accounting is therefore
required for only two parts that access real data X:
training of the autoencoder and of the discriminator.
In each training procedure, we apply the RDP accoun-
tant described in Section 2.2, to analyze privacy of the
DP-SGD training algorithm.

The RDP accountant is a function r : [1,00) — Ry
and guarantees (e, 0)-DP for any given § > 0 with
€ = ming>q r(a) + % ( [23]; also used in Tensor-
flow Privacy [49]). Hence, at the end of two-phase train-
ing, we have two RDP accountants 7, 7. We compose
two RDP accountants before converting the combined
accountant into (e, §)-DP. Note that another method
used in DP-SYN [10] first converts 7; to (¢;, 6;)-DP
and then combines them into (€1 + €2, d1 + J2)-DP by
basic composition [5]. For completeness, we show that
composing RDP accountants first always results in a
better privacy analysis.

Lemma 1. Let M;, M5 be any mechanisms and
r1,72 @ [1,00) — R4 U {oo} be functions such that
My, My are (o, r1(e))- and (o, 72(x))-RDP, respec-
tively. Let § € (0, 1] and let

. log(2/9)
€1 =minrie) + ="
. log(2/0)
€ =minry(e) + =75,
and

e =minr (a) + r2(a) + M.

1
G — T

Then M is (€1, /2)-DP, M3 is (€2,0/2)-DP, and
the composition M = (M1, Ms) is (e, 6)-DP. If ¢;
and €5 are finite, then € < €1 + €o.

Proof. Let
log(2/6
aj € arg min,. 71 () Oj(_/l )
and
. log(2/9)
a5y € g1>11117"2(()é) + ﬁ

and let « = min{aj, a3 }. Then, we have

e<ri(a) +ro(a) + 105(%/15)

<rifaf) +rafaf) + 2
log(1/5) _ los(2/9)

Catet T T T a1

_log(2/9)
as—1

< €1 + €2

where the two inequalities use the definitions of €1, €2,
¢, and the second inequality uses the fact that r; is an
increasing function of « [50]. O

For most settings of training parameters, we found
that ¢ by RDP composition in Lemma 1 is ~ 30%
smaller than that of the standard composition (see Fig. 2
for this privacy saving in our DP-auto-GAN e = 0.51
ADULT setting). The observation can be support by
theoretical analysis as follows. It is observed in [51]
that r; (o) appears linear until a phase transition at some|
a, and is close to linear again. In our parameter settings,
the optimal order to achieve smallest € is before the
phase transition, and thus r;(a) “practically” behaves
linear as the privacy analysis never uses r;(«) at « be-
yond the phase transition. This is illustrated in Fig. 3
by an example of our DP-auto-GAN ¢ = 0.51 ADULT
setting.

Assuming linear r;(«) = ¢;«r, we can compute the
analytical solutions:

€1 =c1+ 21 10g 2/(5,
€2 =ca+ 2v/colog2/d,
e=c1+co+2v/(c1+c2)logl/d

In practice, J is small compared to ¢;’s and the term

\/¢;ilog 1/6 dominates. Hence, €? ~ €7 + €2, and for
many settings where we set €; close to €5 (such as in our]

setting or DP-SYN [10]), this implies € ~ 0.707(e; +
€2), an approximately 30% reduction of privacy cost

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562



563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/]jl p. 10

1.2 -
=== Autoencoder epsilon
GAN epsilon
1.0 1 —— RDP composition
—— Standard composition
0.8
w
5
Z 0.6 1
o
w
0.4 4
0.2 4
0.0 4

10000 15000 20000 25000 30000

Number of iterations

0 5000

[Fig. 2. Privacy e for different training phases of the algorithm in
e = 0.51 DP-auto-GAN parameter setting for ADULT data: the
sampling rate ¢ and noise multiplier ¢ for autoencoder and GAN are

q = o, =25and g = 128 ) = 7.5, respectively. We

target § = 102 overall and § = % - 107 for each training phase.
4. Evaluation metrics for synthetic data

In this section, we review the evaluation schemes for
measuring quality of synthetic data in existing literature.
'Various evaluation metrics have been considered in the
literature to quantify the quality of synthetic data [46].
Broadly, evaluation metrics can be divided into two
major categories: supervised and unsupervised. Super-
vised evaluation metrics are used when clear distinc-
tions exist between features and labels in the dataset,
e.g., for healthcare applications, whether a person has
a disease or not could be a natural label. Unsupervised
evaluation metrics are used when no feature of the data
can be decisively termed as a label. For example, a data
analyst who wants to learn a pattern from synthetic data
may not know what specific prediction tasks to perform,
but rather wants to explore the data using an unsuper-
vised algorithm such as Principle Component Analy-
sis (PCA). Unsupervised metrics can then be divided
into three broad types: prediction-based, distributional-
distance-based, and qualitative (or visualization-based).
'We describe supervised evaluation metrics and all three
types of unsupervised evaluation metrics below. Metrics
in previous work and our proposed metrics in this paper
are summarized in Table 2.

Various evaluation metrics have been considered in
the literature to evaluate the quality of the synthetic
data (see Charest [46] for a survey). The metrics can
be broadly categorized into two groups: supervised and
unsupervised. Supervised evaluation metrics are used
when there are clear distinctions between features and
labels of the dataset, e.g., for healthcare applications, a

tings, a predictive model is typically trained on the syn-
thetic data, and its accuracy is measured with respect to
the real (test) dataset. Unsupervised evaluation metrics
are used when no feature of the data can be decisively|
termed as a label. Recently proposed metrics include
dimension-wise probability for binary data [47], which
compares the marginal distribution of real and synthetic
data on each individual feature, and dimension-wise
prediction, which measures how closely synthetic data
captures relationships between features in the real data.
This metric was proposed for binary data, and we ex-
tend it here to mixed-type data. Recently, NIST [44]
used a 3-way marginal evaluation metric which used
three random features of the real and synthetic datasets
to compute the total variation distance as a statistical
score.

Supervised evaluation metrics. The main aim of]
generating synthetic data in a supervised setting is to
best understand the relationship between features and
labels. A popular metric for such cases is to train a ma-
chine learning model on the synthetic data and report
its accuracy on the real test data [15]. Zhang et al. [43]
used inception scores on the image data with classifica-
tion tasks. Inception scores were proposed in Salimans
et al. [27] for images which measure quality as well as
diversity of the generated samples. Another metric used
in Jordon et al. [41] reports whether the accuracy rank-
ing of different machine learning models trained on the
real data is preserved when the same machine learning
model is trained on the synthetic data. Although these
metrics are used for classification in the literature, they
can be easily generalized to the regression setting.

In the DP setting of synthetic data generation, su-
pervised metrics also differ from unsupervised in that
the label feature is sometimes treated as public (e.g.
in DP-SYN [10]), whereas in unsupervised setting, all
features are treated as private. We note it as this may
create a slight difference in privacy accounting.

Unsupervised evaluation metrics, prediction-
based. Rather than measuring accuracy by predicting
one particular feature as in supervised-setting, one can
predict every individual feature using the rest of fea-
tures. The prediction score is therefore created for each
single feature, creating a list of dimension- (or feature-)
wise prediction scores. Good synthetic data should have
similar dimension-wise prediction scores to that of the|
real data. Intuitively, similar dimension-wise predic-
tion shows that synthetic data correctly captures inter-
feature relationships in the real data.

One metric of this type is proposed by Choi et al. [47]

person’s disease status is a natural label. In these set-

for binary data. Although it was originally propose

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645



646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

Galley Proof 3/12/2021; 10:00 File: idt—1-idt210195.tex; BOKCTP/]jl p. 11

=== Autoencoder parameter ’,"
0.25 1 GAN parameter L5
0.20 A ,/”
g <
2 0.15 A .
g
o -
= Pk
< 0.10 - 7
0.05 i e
0.00{ °~
0 10 20 30 40 50 €0 70 B0
Order alpha
0.60 . —
1 === Autoencoder parameter __,--*
0554 \ H 10° - GAN parameter e
Y 1 -~
w \ Y 1 7
IE (L Y 4 !
2050 LY .: W !
5 \\\ : 2 107 o :
5 0.45 e |
= | 3 10 :
E 0.40 - BRI i 5 10t :
&= e i
5 i
Z 035 10 !
[=3 i |
& ~-- 1071 4 e
0301 === Autoencoder parameter i __,_-_—"'“
GAN parameter 107 4 =z==
0.25 T T T T T T T T T T T
30 40 50 60 70 80 90 100 10t 10? 10°
Analysis at order alpha Order alpha
[Fig. 3. RDP values over different order « for € = 0.51 DP-autho-GAN parameter setting for ADULT data: the sampling rate g, noise multiplier 1,
and 7" the number of training iterations for autoencoder and GAN are ¢ = %, Y =2.5,T = 10000 and g = %, Y =7.5,T = 15000,
respectively. The phase transitions (spikes of RDP value) for autoencoder and GAN appear at « = 79 and ov = 624. The optimal order for smallest
e for autoencoder and GAN analysis targeting § = %10*5 are 60 and 77, below the phase transitions.
for binary data, we extend this to mixed-type data by the whole dataset at once, rather than dimension-wise,
allowing varieties of predictive models appropriate for to obtain a score.
each data type present in the dataset. For each feature, Diversity metric. Inception score is one common|
we try predictive models on the real dataset in order metric for evaluating the quality of data generated by
of increasing complexity until a good accuracy score GAN [52]. Both inception and Jensen-Shannon scores
is achieved. For example, to predict a real-valued fea- aim to capture both the accuracy and diversity of gener-
ture, we first used a linear classifier and then a neural ated data through comparing the distributions of predic-|
network predictor. This ensures that a choice of pre- tions by a fixed classifier on original and synthetic data.
dictive model is appropriate to the feature. Synthetic Inception score is similar to pi-smoothed KL divergence
data is then evaluated by measuring the accuracy of we propose in Section 5, but we apply it to discrete
the same predictive model (trained on the real data) on distribution and use a smoothing to avoid divergence
the synthetic data. Similarly high accuracy scores on being undefined. Our metric also differs from inception
synthetic data and real data indicates that the synthetic scores in that it is based on the distributions of syn-
data closely approximates the real data. thetic and original data, and not on predictions on those
Zhang et al. [43] provides an unsupervised Jensen- datasets by any classifier. We observed that introducing
Shannon score metric which measures the Jensen- a classifer can itself be a reason for lack of diversity, and
Shannon divergence between the output of a discrimi- concern that a predictive model in general can intro-
nating neural network on the real and synthetic datasets, duce bias and unfairness in other forms. For example,
and a Bernoulli random variable with 0.5 probability. we found that in a categorical feature with one strong
This metric differs from dimension-wise prediction in majority class, the classifier predicts only the major-
that the predictive model (discriminator) is trained over ity to maximize a standard notion of "accuracy," hencel

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687



688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

706

707

708

709

710

71

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/]jl p. 12

making a synthetic data that ignore minority classes
represent the original data perfectly well, as predictions
on synthetic and original data are identical. Therefore,
for diversity applications, we prefer distribution-based
metric to a distribution-based metric.

Moreover, we aim our metric to be appropriate in
differential privacy setting. A natural metric to penalize
missing a minority class is KL divergence, as used in
the definitions of inception and Jensen-Shannon scores.
However, it is impossible for a private model to recog-
nize if a minority exists if the class is really small, sim-
ply due to the definition of differential privacy (unless
the algorithm assumes existence of all possible classes
in the dataset, but this would greatly impact accuracy as
the number of classes increase). Bagdasaryan et al. [53]
observed a phenomena that differentially private train-
ing indeed impacts minority classes more than majority
class, as we also observed in our work. Missing a mi-
nority class, therefore, is sometimes unavoidable with
DP guarantees. Since missing any class makes KL di-
vergence undefined, we added a smoothing term to KL
divergence so that the penality of missing a minority
class is finite, yet significant.

Unsupervised evaluation metrics, distributional-
based. One way to evaluate the quality of synthetic data
is computing a dimension-wise probability distribution,
which was also proposed in Choi et al. [47] for binary
data. This metric compares the marginal distribution
of real and synthetic data on each individual feature.
Below we survey other metrics in this class that can
extend to mixed-type data.

3-Way Marginal: Recently, the NIST [44] challenge
used a 3-way marginal evaluation metric in which three
random features of the real and synthetic data R, S are
used to compute the total variation distance as a statis-
tical score. This process is repeated a few times and fi-
nally, average score is returned. In particular, values for
each of the three features are partitioned in 100 disjoint
bins as follows:

By, = {

(R;C - Rk,min) x 100
Rk,max - Rk,min

and

i (8§ — Ry min) * 100

e I T R
k,max k,min

where R}, S} is the value of i-th datapoint’s k-th fea-

ture in datasets R and .S, and Ry min, Rk max are re-

spectively the minimum and maximum value of the k-th

feature in R. For example, if &k = 1, 2, 3 are the se-

into bins identified by a 3-tuple, (B} ,, By 5, By 3)
and (B% , B% 5, B 3), respectively. '

Let Br, Bs be the set of all 3-tuple bins in datasets
R and S, and let | B| denote number of datapoints in 3
tuple bin B, normalized by total number of data points.
Then, the 3-way marginal metric reports the ¢;-norm off
the bin-wise difference of Br and Bg as follows:

> > penalip—5,lIBil — Bl

Bi1€BRr B2€Bs

+ Y (1-Iipens)Bil
B1eBr

+ 3 (1 =) Bl
B2€eBs

Both aforementioned metrics (dimension-wise prob-
ability from [47] and 3-way marginal from [44]) involve
two steps. First, a projection (or a selection of features)
of data is specified, and second some statistical distance
or visualization of synthetic and real data in the pro-
jected space is computed. Dimension-wise probability|
for binary data corresponds to projecting data into each
single dimension, and visualizing synthetic and real
distributions in projected space by histograms (for bi-
nary data, the histogram can be specified by one single
number: probability of the feature being 1). The 3-way
marginal metric first selects a three-dimensional space
specified by three features as a space into which data
projected, discretizes the synthetic and real distributions
on that space, then computes a total variation distance
between discretized distributions. We can generalize
these two steps process and conceptually design a new,
metric as follows.

Generalization of data projection: One can general-
ize selection of 3 features (3-way marginal) to any k
features (k-way marginal). However, one can also select
k principle components instead of k features. We distin-
guish these as k-way feature marginal (projection onto
a space spanned by feature dimensions) and k-way PCA
marginal (projection onto a space spanned by principle
components of the original dataset). Intuitively, k-way|
PCA marginal best compresses the information of the
real data into a small k-dimensional space, and hence is
a better candidate for comparing projected distributions.

Generalization of distributional distance: Total vari-
ation distance can be misleading as it does not encode|
any information on the distance between the supports of|
two distributions. In general, one can define any metric
of choice (optionally with discretization) on two pro-
jected distributions, such as Wasserstein distance which
also depends on the distance between the supports off
the two distributions

lected features then i-th data points of R and S are put

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

77

772

773

774

775

776



777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

Galley Proof 3/12/2021; 10:00

File: idt-1-1dt210195.tex; BOKCTP/1jl p. 13

Computing distributional distance: The distance be-
tween two distributions can also be computed with-
out any data projections. Computing an exact statistical
score on high-dimensional datasets is likely computa-
tionally hard. However, one can, for example, subsam-
ple uniformly at random points from two distributions
to compute the score more efficiently, then average this
distance over many iterations.

Unsupervised evaluation metrics, qualitative. As
described above, dimension-wise probability is a spe-
cific application of comparing histograms under binary
data. One can plot histograms of each feature (1-way
feature marginal) for inspection. In practice, histogram
visualization is particularly helpful when a feature is
strongly skewed, sparse (majority zero), and/or hard to
predict well by predictive models. An example of this
occurred when predictive models do not have mean-
ingful predictive accuracy on certain features of the
ADULT dataset, making prediction-based metric in-
appropriate. Instead, inspection of histograms of those
features on synthetic and real data (as in Fig. 12) indi-
cate that synthetic data replicates those features well.

In addition, 2-way PCA marginal is a visual repre-
sentation of data that explains as much variance as pos-
sible in a plane, providing a good trade-off between
information and ease of visualization on two datasets.
This visualization can be augmented with a distribu-
tional distance of choice over the two distributions on
these two spaces to get a quantitative metric.

4.1. Background on evaluation metrics used in
experiments

Here, we discuss in more technical details the evalua-
tion metrics that we use in the experiments in Section 5
and in our paper to empirically measure the quality of
the synthetic data. Some of these metrics have been
used in the literature, while 2-way PCA is novel in this
work. Another novel metric y-smooth KL divergence
is described in Section 5.

For the following two metrics, the dataset should be
partitioned into a training set R € R™ %" and testing
set T € R™2*" where m = m; + mgy is the total
number of samples the real data, and n is the number of
features in the data. After training, the generative model
creates a synthetic dataset S € R™3*" for sufficiently
large ms.

Dimension-wise probability. When the feature is
binary, we compares the proportion of 1’s (which can
be thought of as estimators of Bernoulli success proba-

dataset S, i.e. the marginal distribution of each feature.
For each feature, the closer the proportion of 1’s in the
original dataset is to that of synthetic dataset, the better.

Dimension-wise prediction. This metric evaluates
whether synthetic data maintain relationships between
features. For the k-th feature of training set R and syn-
thetic dataset S, we choose yr, € R and ys, € R"?
as labels of a classification or regression task based on|
the type of that feature, and the remaining features R_y
and S_, are used for prediction. We train either a clas-
sification or regression model on R_; and S_g, and
measure goodness of fit based on the model’s accuracy|
by testing on 7'. That is, we “train on synthetic, test on
original” to evaluate the quality of synthetic data. The
closer of accuracy scores obtained from original and
synthetic data, the better.

Model accuracy can be reported using AUROC, F1,
or R? scores, as appropriate. We describe the model’s
accuracy as follows:

1. Area under the ROC curve (AUROC) score and
I score for classification: The F} score of a clas-
sifier is defined as F} := %‘m, where|
precision is ratio of true positives to true and false|
positives, and recall is ratio of true positives to
total true positives (i.e., true positives plus false|
negatives). Fy score on multi-class features are
averaged using micro-averaging. AUROC score
is a graphical measure capturing the area under
ROC (receiver operating characteristic) curve, and
is only intended for binary data. Both metrics take|
values in interval [0, 1] with larger values imply-
ing good fit. The ROC curve are pairs of true and
false positive rates obtained from setting different
thresholds at the classifier’s predicted probability.
Note that when the classifier is trained on the data
with one class and predicts always with proba-
bility 0 (or 1), ROC curve is a single pair, and
AUROC is thus undefined.

2. R? scorei“z)r regrs;gion: The R? score is defined

Yi —Yi

as 1 — —/~, where y; is the true label,

7; 1s the pre%llicteg label, and ¥ is the mean of the
true labels. This is a popular metric used to mea-
sure goodness of fit as well as future prediction
accuracy for regression.

1-Way feature marginal (histogram). We compute|
probability distribution of the feature of interest of both
real and synthetic data. For continuous features, we par-
tition the range into intervals. This can be extended to k-
way feature marginals by considering joint distribution
over k features and made into a quantitative measure|

bility) in each feature of the training set R and synthetic

by adding a distance measure between the histograms

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876



877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/]jl p. 14

We also propose the following novel qualitative eval-
uation metric.

2-Way PCA marginal. This metric generalizes the
3-way marginal score used in NIST [44]. In particular,
we compute principle components of the original data
and evaluate a projection operator for first two principle
components. Denote P € R™*? the projection matrix
such that R = RP is the projection on first two principle
components of R. After we fix P, we project synthetic
data S = SP and scatterplot 2-D points in R and S
for visual evaluation. That is, we train PCA from the
original dataset, and use the same projection from this
IPCA on (possibly many) synthetic datasets.

S. Experiments

In this section, we empirically evaluate the perfor-
mance of our DP-auto-GAN framework on the MIMIC-
I [12] and ADULT [13] datasets, which have been
used in prior works on differentially private synthetic
data generation. We compare against these prior ap-
proaches using a variety of qualitative and quanti-
tative evaluation metrics, including some from prior
work and some novel metrics we introduce. We tar-
get & = 1077 in all settings, and all € values reported
that are rounded are rounded up to guarantee the valid-
ity of privacy guarantee. All experimental details and
additional experimental results can be found in Ap-
pendices A and B, and our code is available at https://
github.com/DPautoGAN/DPautoGAN.

5.1. Binary data

MIMIC-III [12] is a binary dataset consisting of med-
ical records of 46,520 intensive care unit (ICU) patients
over 11 years old with 1071 features. For the experi-
ments, the data was partitioned in into train, validation,
and test data sets of sizes 60%, 20%, 20%, respectively.

Even though DP-auto-GAN can handle mixed-type
data, we evaluate it first on MIMIC-III since this dataset
has been used in similar non-private [47] and pri-
vate [15] GAN frameworks. We apply the same evalua-
tion metrics used in these papers, namely dimension-
wise probability and dimension-wise prediction. Predic-
tion is defined by AUROC score of a logistic regression
classifier.

Dimension-wise probability. Figure 4 shows the
dimension-wise probability of DP-auto-GAN for dif-
ferent e. Each point in the figure corresponds to a fea-
ture in the dataset, and the = and y coordinates respec-

tively show the proportion of 1s in the real and synthetic
datasets. Points closer to the y = x line correspond to
better performance, because this indicates the distri-
bution is similar in the real and synthetic datasets. As
shown in Fig. 4, the proportion of 1’s in the marginall
distribution for is similar on the real and synthetic
datasets in the non-private (¢ = co) and private settings.
The marginal distributions of the privately generated
data from DP-auto-GAN remain a close approxima-
tion of the real dataset, even for small values of ¢, be-
cause nearly all points fall close to the line y = x. We
note that our results are significantly stronger than the
ones obtained in [15] with € € [96.5, 231] because we
obtain dramatically better performance with e values
that are two orders of magnitude smaller. For visual
performance comparison, see Fig. 4 of [15].

Dimension-wise prediction. Figure 5 shows
dimension-wise prediction using DP-auto-GAN for dif-
ferent values of e. Each point in the figure corresponds
to a feature in the dataset, and the x and y coordinates
respectively show the AUROC score of a logistic regres-
sion classifier trained on the real and synthetic datasets,
and points closer to the y = « line still correspond to
better performance. As shown in the figure, for € = oo,
many points are concentrated along the lower side of]
line y = x, which indicates that the AUROC score of
the real dataset is only marginally higher than that of]
the synthetic dataset. When privacy is added, there is a
gradual shift downwards relative to the line y = x, with
larger variance in the plotted points, indicating that AU-
ROC scores of real and synthetic data show more dif-
ference when privacy is introduced. Surprisingly, there
is little degradation in performance for smaller € values,
including € = 0.81. For sparse features with few 1’s in
the data, the generative model will output all 0’s for that
feature, making AUROC ill-defined. We follow [15] by
excluding those features from dimension-wise predic-
tion plots.

Our results for DP-auto-GAN under this metric are
also significantly stronger than the ones obtained in [15]
with much larger € values of € € [96.5,231]; for visual
performance comparison, see Fig. 5 of [15]. Our proba-
bility and prediction plots of DP-auto-GAN are either|
comparable to or better than [15], with our prediction
plots detecting many more sparse features. The per-
formance of DP-auto-GAN degrades only slightly as ¢
decreases and is achieved at much smaller € values, giv-
ing a roughly 100x improvement in privacy compared
to [15].

Dimension-wise prediction for sparse features.
MIMIC-IIT dataset contains several sparse features, i.e

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973



974

975

976

977

978

979

980

981

982

983

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/1jl p. 15

Generated Data

Generated Data

0 0e
Real Data Real Data

(a) e= o0 (b) e=2.70

s 10 00 02 04 [ o8 10

08 10 0o 02 04 [
Real Data

(d) € =0.81

0a 06
Real Data

(c) e=1.33

ig. 4. Dimension-wise probability scatterplots for different values of €. Each point represents one of the 1071 features in the MIMIC-III dataset,
he = and y coordinates of each point are the proportion of 1s in real and synthetic datasets of a feature, respectively. The line y = x, whic

epresents ideal performance, is shown in each plot. Note that even for small € values, performance is not degraded much relative to the non-privat
ethod. Compare with Fig. 4 in [15], which provides worse performance for e € [96, 231].

04 08 o4 08
Real Data Real Data

(a) €= o0 (b) € = 2.70

0a Y] 04 X
Real Data Real Data

(¢) e=1.33 (d) e=0.81

ig. 5. Dimension-wise prediction scatterplots for different values of e. Each point represents one of the 1071 features in the MIMIC-III dataset|

he x and y coordinates of each point represent the AUROC score of a logistic regression classifier trained on real and synthetic datasets,
espectively. The line y = x corresponds to the ideal performance. Again we note that even for small e values, performance is not degraded muc
relative to the non-private method. Compare with Fig. 5 in [15], which provides worse performance for € € [96, 231].

Generated Data

04 06 08
Real Data

(b) € = 2.70

features with small number of 1’s. In fact, we found
that 146 features do not have any 1’s, and 706 more
features have proportion of 1’s less than 1% in the orig-
inal dataset. The presence of sparse features is a chal-
lenge for prediction-based evaluation since the classi-
fier accuracy is unstable on sparse features. Moreover,
the prediction score is unmeaningful when the train or
test dataset has only one class present, such as AUROC
being undefined when one class is presented in the test

ata. Even when AURQC is defined, the sparsity of 1’s

[Fig. 6. Dimension-wise prediction scatterplots of 925 of 1071 features which AUROC prediction scores are defined on the original dataset. AUROC
is not defined when the test set of the original data has only one class on that feature. Prediction scores are by a logistic regression classifier trained|
n the original binary dataset MIMIC-III and on synthetic datasets generated by DP-auto-GAN at different privacy parameters e.

04 06 08 10
Real Data

(d) e =0.81

04 06
Real Data

(c) e=1.33

in dataset makes a classifier unable to learn anything
and give a score of 0.5, or perform worse than a random|
classifer and give a score below 0.5, which is arguably
unmeaningful.

In our experiment, after an 80%/20% split into the
training and testing datasets, AUROC scores are not
defined on those 146 features with no 1’s in the original
dataset. Of the rest 925 features, 35 and 69 of those
have AUROC prediction scores exactly at and below
0.5, respectively, on the original dataset. All 104 of

984

985

986

987

988

989

990

991

992

993



994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/ljl p. 16

E

03 04 05 06 07 08 09 10
Real Data

03 04 05 07 08 09 10

06
Real Data

(a) Features with > 1.0% of

1 &5 (b) € = 2.70

03 o4 05 07 08 0o 10

06
Real Data

(e) Features with > 2.5% of
1’s, e =00

03 o4 05 07 08 09 10

06
Real Data

(f) € = 2.70

nerated Data

Ger

03 04 05 06 07 08 09 10
Real Data

03 04 05 06 07 08 09 10
Real Data

(i) Features with > 5.0% of

Us. € — 00 (j) e=2.70

those with unmeaningful AUROC have less than 0.2%
proportion of 1’s in the original dataset. Figure 6 shows
dimension-wise prediction scatterplots of full 925 of
1071 features where AUROC is defined.

When € = oo, DP-auto-GAN generates all 0’s in
many of the sparse features in the synthetic dataset,
including all 146 features with no 1’s in the original
datasets. Those features obtain scores of 0.5, giving
the horizontal line y = 0.5 in Fig. 6a. When noise is
injected, DP-auto-GAN generates few but enough of
1’s in all features that AUROC is not 0.5, and thus the
horizontal line is no longer present in Fig. 6b—d. The
vertical line x = 0.5 represents 69 features that the
classifier is unable to learn in the orignal dataset due to
the sparsity and learn from random noise injected in the
synthetic data generator.

Xie et al. [15] presented dimension-wise prediction
by deleting features which synthetic dataset contain
no 1’s. While this conveniently deletes points on the
horizontal and vertical lines, the features being deleted

[Fig. 7. Dimension-wise prediction scatterplots of 219 of 1071 features with at least 1% of 1’s, 127 features with at least 2.5% of 1’s, and 64
features with at least 5% of 1’s in the original dataset. Prediction scores are by a logistic regression classifier trained on the original binary dataset
IMIMIC-III and on synthetic datasets generated by DP-auto-GAN at different privacy parameters e.

erated Data

03 04 05 06 07 08 09 10 03 04 05 06 07 08 09 10

Real Data Real Data

(c) e=1.33 (d) e=0.81

rated Data

Gener

05 06 07 08 09 10 03 o0s 05 06 07 08 09 10
Real Data Real Data

(g) e=1.33 (h) e=0.81

03 o4

nerated Data

Ger

03 04 05 06 07 08 09 10 03 o4

05 06 07 08 09 10
Real Data Real Data

(k) e=1.33 (1) € = 0.81

scure the presentation of its quality. For example, ifi
the generator performs poorly on non-sparse features
by outputting only one class, that feature is not on the
plot rather than being presented as far away from the
line y = z. Since we observe that prediction scores on
sparse features are unstable, thus necessarily showing
large variances in the context of differential privacy,
we propose to delete features whose proportions of 1’s
in the original dataset are below a threshold. The set
of deleted feature is therefore fixed and independent
of synthetic data to be evaluated. In Fig. 7, we show
dimension-wise prediction scatterplots of MIMIC-II]
dataset with the thresholds set at 1%, 2.5%, and 5%.
We are able to more clearly see the performance of]
DP-auto-GAN than plotting all 925 features and better]
observe a slight change of performance as e decreases
across three € values.

5.2. Mixed-type data

ADULT dataset [13] is an extract of the U.S. Census

re dependent on the synthetic dataset, which can ob-

of 48K working adults, consisting of mixed-type data:

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030

1031

1032

1033

1034



1035

1036

1037

1038

1039

1040

Galley Proof

3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/ljl p. 17

Synthetic data

Synthetic data

Synthetic data

Synthetic data

0.8

0.6

°
=

=

°
=

|
°
o

|
s
=

0.8

0.6

0.4

0.2

0.0

-02

0.4

-04 -02 00 02 0.4 0.6 0.8 1.0
Real data

(a) DPautoGAN € = 1.01

-04 -02 00 02 0.4 0.6 0.8 1.0
Real data

(d) DP-WGAN ¢ = 1.01

-04 -02 00 02 0.4 0.6 0.8 1.0
Real data

(g) DP-VAE ¢ = 1.01

-04 -02 00 02 0.4 0.6 0.8 1.0
Real data

(j) DP-SYN € = 1.40

Synthetic data

Synthetic data

Synthetic data

Synthetic data

nine categorical features (one of which is a binary la-
bel) and four continuous. This dataset has been used to
evaluate DP-WGAN [14] and DP-SYN [10]. We com-
pare DP-auto-GAN against these methods, as well as
DP-VAE [16]. We target ¢ = 1.01, 0.51, 0.36. For DP-
SYN, we allow € = 1.4 ,0.8, 0.5 because their imple-

-04 -02 00 0.4 0.6 0.8 1.0

0.2
Real data

(b) DPautoGAN € = 0.51

-04 -02 00 0.2 0.4 06 08 1.0
Real data

(e) DP-WGAN € = 0.51

-04 -02 00 0.2 0.4 0.6 08 1.0
Real data

(h) DP-VAE ¢ = 0.51

-04 -02 00 0.2 0.4 06 08 1.0
Real data

(k) DP-SYN € = 0.80

Synthetic data

Synthetic data

Synthetic data

Synthetic data

[Fig. 8. Dimension-wise prediction scatterplot of all (applicable) features of ADULT dataset for different e values and algorithms. The line y = x|
represents ideal performance. Blue, green, and red points respectively correspond to unlabeled categorical, labeled binary, and continuous features,
Brown points indicate the synthetic data exhibit no diversity (i.e., all data points have the same category). Note that DP-SYN has several features|
without diversity. Red points with R2 scores close to zero in the original data have unstable (and unmeaningful) synthetic R? scores due to
the sparse nature of those features in the original data, and some of these R? scores fall outside of the plotted range. The implementation of
IDP-WGAN in [14] did not allow continuous features, and the implementation of DP-SYN in [10] converted two continuous features to categorical;
see Appendix B for more details.

mentation uses standard privacy composition, which is
looser than than RDP composition (Lemma 1). These
larger € values provide comparable privacy guarantees
to the smaller e values achieved by RDP composition,
and allow for a fair comparison of architectures without
modifying the implementation in [10]. For more details

-04 -02 00 0.4 06 0.8 1.0

0.2
Real data

(c) DPautoGAN ¢ = 0.36

-04 -02 00 0.2 0.4 06 0.8 1.0
Real data

(f) DP-WGAN € = 0.36

-04 -02 00 0.2 0.4 06 0.8 1.0
Real data

(i) DP-VAE € = 0.36

-04 -02 00 0.2 0.4 06 0.8 1.0
Real data

(1) DP-SYN € = 0.50

1041

1042

1043

1044

1045

1046



1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/]jl p. 18

see Appendix B.4.

Dimension-wise prediction. Figure 8 compares the
performance of DP-auto-GAN with these three prior
algorithms for the task of dimension-wise prediction.
For categorical features (represented by blue points and
a single green point), we use a random forest classifier
for prediction as in [14], and we measure performance
using F} score, which is more appropriate than AU-
ROC for multi-class prediction. For continuous features
(represented by red points), we used Lasso regression
and report R? scores. The green point corresponds to
the salary feature of the data, which is real-valued but
treated as binary based on the condition > $50 k, which
was similarly used as a binary label in [14]. We use
brown points to indicate the categorical features for
which the synthetic data exhibit no diversity, where
all synthetic data points have the same category. We
explore metrics for measuring diversity later in this
section.

Note that in Fig. 8, there are not four red points in
each plot (corresponding to the four continuous features
of the dataset). While AUROC for the binary features is
always supported on [0, 1], the R? score for real-valued
features can be negative if the predictive model is poor,
and these values for these missing points fell outside
the range of Fig. 8. These features are explored later in
Fig. 11, using 1-way marginals as a qualitative metric.

Each point in Fig. 8 corresponds to one feature, and
the = and y coordinates respectively show the accu-
racy score on the real data and the synthetic data. Fig-
ure 8 shows that DP-auto-GAN achieves considerable
performance for all e values tested. As expected, its
performance degrades as € decreases, but not substan-
tially. DP-WGAN [14] performs well at e = 1.01, but
its performance degrades rapidly with smaller e. This
is consistent with [14], which uses higher ¢ = 3, 7.
IDP-auto-GAN outperforms DP-VAE [16] across all €
values. DP-SYN [10] is able to capture relationships
between features well even for small € using this metric.

1-Way marginal and diversity divergence. While
DP-SYN has good dimension-wise prediction, this does
not capture diversity, a concern of bias known for DP-
SGD ( [53]). For features with a large majority class
and many minority classes, the classifier often predicts
the majority class with probability one. We found that
for four features, DP-SYN generates data from only
one class, whereas all other algorithms do not behave
this way for any feature. Lack of diversity in synthetic
data can raise fairness concerns, as societal decisions
based on the private synthetic data will inevitably ignore
minority groups

We start by turning to 1-way marginal as a method of
evaluation, which is able to detect such issues and give
another perspective of synthetic data. Figure 9 shows
histograms of synthetic data from the four algorithms
on two categorical features: marital-status and race.
Marital-status distributes more evenly across categories,
and DP-VAE, DP-SYN and DP-auto-GAN are able to
learn this distribution well. Race, on the other hand, has
an 85.5% majority; DP-SYN only generated data from|
the majority class, whereas DP-auto-GAN and DP-VAE
were able to detect the existence of minority classes.
DP-WGAN suffered similar issues on the marital status
feature.

Figure 10 shows similar histograms for the native-
country feature of the ADULT dataset, where the ma-
jority class constitutes > 85% of the population. Each
of the 41 minority classes in native-country constitute|
less than 2% in the original dataset, with most of them
weighing less than 0.2% of the population. DP-auto-
GAN and DP-WGAN are able to capture some minor-
ity classes. DP-VAE was unable to accurately learn the
majority structure and significantly overestimates the
weight on all minority classes, which greatly impacts
the estimate of the majority class. DP-SYN did not
capture an existence of any minority classes.

A standard measure for diversity between the origi-
nal distribution P and synthetic distribution () includes
Kullback-Leibler (KL) divergence Dx(P||@). Under
differential privacy the support of P is a private infor-
mation, so the private synthetic data inherently cannot
ensure its support to align with the original data. This
makes Dk (P||Q) and Dk (Q||P) (and related met-
rics such as Inception score [27]) undefined. One al-
ternative is Jensen—Shannon divergence (JSD) [24,54]:
ISD(P||Q) := 1D (PIIQ) + 1Dy (QI|P) which i
always defined and nonnegative. We use this metric to
evaluate the diversity of the synthetic data.

In addition, we propose another diversity measure,
pu-smoothed Kullback-Leibler (KL) divergence between
the original distribution P and synthetic distribution Q:

DI%L(PHQ) ‘= ZmEsupp(P)(P(‘x) + /J/)

s (g s)

for small > 0. D%, maintains the desirable property|
that D%; > 0 and is zero if and only if P = Q. Smaller
w implies stronger penalties for missing minority cate-
gories in the synthetic data, and the penalty approaches
oo as i — 0. This allows p as a knob to adjust the|
penalty necessary in private setting

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

141

1142

1143



1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/]jl p. 19

Original
DP-Auto-GAN,eps=1.01
DP-WGAN, eps=1.01
DP-VAE,eps=1.01
DP-SYN,eps=1.40

) II
o M ll max «d _a I
d d

use arme’ jree ated L owed ysent
OVETE oo cepa" Wido e
are - e0-5P arr

waré

(a) Marital-status

0.025 -

0.020 -

0.015 -

0.010 -

0.005 -

[
——
——
e

0.000 - ¥

-

India -
China
South -
Italy
Japan

Cuba

Probability mass (United-States)
o ° o
o S By
Probability mass
MEXICO - Mm———————————

Canada
L —

El-Salvador -
England
Jamaica

ps:
ps
bs
Philippines -
Puerto-Rico -

DP-SYN,eps=1.
Dominican-Republic

DP-Auto-GAN, e
DP-WGAN e
DP-VAE e

(a) US

In our settings, we are concerned with one category
dominating in the original distribution P (e.g., as in
Fig. 9), say P = (p1, . .., px) with high p; = max; p;,
and when the synthetic distribution Q = (g1, ...,qx) =
(1,0, ...,0) supports only one single category. Then,
we have Di, (P||Q) = Y7, (pi + p) log(pi + ) —
(p1+ 1) log(B2) = (3i_s (pi + 1)) log p. For small

w > 0, log u dominates log(p; + p) and log(pllj,f),

so the dominating term is (Zf:g(?i + ,u)) log =
1

(1 — p1)log 1. Hence, we use u = e =71 so that
this term is a constant, thus normalizing scores across
features.

Table 3 reports the diversity divergences of all four
algorithms for marital-status, race, and the sum across
eight categorical features. One out of the nine categor-
ical features are not used due to a difference in pre-
processing of DP-SYN; see Appendix B for details.
Both measures are able to detect the lost of diversity in
DP-SYN in race, and identify DP-auto-GAN as gener-

¢ e
W

Guatemala -}

Fig. 9. Histograms of synthetic data generated by different algorithms.

g —————

Poland

Fig. 10. Histogram of native-country features of the original data and synthetic data generated by different algorithms.

10- . Original

W DP-Auto-GAN,eps=1.01

W DP-WGAN,eps=1.01

s DP-VAE,eps=1.01
DP-SYN,eps=1.40

02 -

0.0 - ; .‘I

ke

tack gande’ gam® tner
® U \sie e gonES o
a A

(b) Race

=== Original
Emm DP-Auto-GAN,eps=1.01
s DP-WGAN,eps=1.01
WSS DP-VAE,eps=1.01
DP-SYN,eps=1.40

e

——
France -
112N~ e

Hong -
—

Haiti -
Iran -

Peru -
Laos -

B
Portugal -Pe——
Taiwan - BB
HONAUFAS - e
Hungary - S e—

SCOHANM - M

Vietnam
Columbia -
Greece -
Nicaragua -

Ecuador

Thailand
Cambodia -
\erlands -

Trinadad&Tobago -Bmmrm—____
Yugoslavia - S

Outlying-US(Guam-USVI-etc) -&

(b) Minority classes

ating more diverse data than the prior methods for most
features and € values.

We note that predictive scores may also not be appro-
priate for continuous features when no good classifier]
exists to predict the feature, even in the original dataset.
In our setting, we found three continuous features with
R? scores close to zero even with more complex regres-
sion models, and with negative R? scores on synthetic
data, which is not meaningful. For those features, 1-way|
marginals (histograms, explored next) are preferred to
prediction scores.

In general, we suggest that an evaluation of synthetic
data should be based on probability measures (distri-
butions of data) and not predictive scores of models.
Models may be a source of not only unpredictability|
and instability, but also of bias and unfairness.

Histograms for continuous features with small 2
scores. For three continuous features in the ADULT]
dataset (capital gain, capital loss, and hours worked per|

week), we were not able to find a regression model wit

1163

1164

1165

1166

1167

1168

1169

1170

"7

172

173

1174

1175

1176

177

1178

1179

1180

1181

1182



1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

Galley Proof

3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/1j1 p. 20

Table 3
Diversity measures JSD and DY, on different features of ADULT data and the sum of divergences across all eight
applicable categorical features (All). Recall that p; is the maximum probability across all categories of that feature in the
original data. Smaller values for the diversity measures imply more diverse synthetic data. For each row (feature), the
smallest value for each setting of € is highlighted in bold
DP-auto-GAN DP-WGAN DP-VAE DP-SYN
evalues  0.36 0.51 1.01 0.36 0.51 1.01 0.36 0.51 1.01 0.50 0.80 1.40
JSD diversity measure
Marital 0.025 0.043 0.014 0.119 0.624 0.136 0.139 0.043 0.021 0.017 0.013 0.017
Race 0.021 0.014 0.016 0.081 0.053 0.040 0.095 0.031 0.011 0.053 0.053 0.053
All 0.33 0.23 0.19 1.29 241 0.73 0.80 0.44 0.23 0.25 0.27 0.28
1
Dk, Diversity Measure, with p = e T=P1
Marital 0.019 0.053  0.005 0.165 1.16 ~ 0.290 0207 0.044 0.017 0.017 0.011 0.012
Race 0.125 0.064 0.089 0262 0465 0277 0315 0.102 0.038 0465 0.465 0.465
All 0.81 0.48 0.53 5.26 6.39 1.53 2.52 1.17 0.58 0.99 1.00 1.02
(a) Capital gain, € = co (b) € = 1.01 (c) e=0.51 (d) € =0.36
(e) Capital loss, € = oo (f) e=1.01 (g) e =0.51 (h) e=0.36
(1) Hours/week, e = oo (j) e =1.01 (k) e =0.51 (1) e = 0.36
[Fig. 11. 1-way histogram for different values of e. Each pair of consecutive rows correspond to capital gain, capital loss and weekly work-hours,
respectively. Blue corresponds to the histogram of the real dataset, and red corresponds to the histogram of the synthetic dataset generated byj
IDP-auto-GAN with the indicated e. The overlap of both histograms is purple.
good fit (as measured by R? score) for the latter three Since the R? scores did not prove to be a good metric
features (capital gain, capital loss, and hours worked for these features, we instead plotted 1-way feature
per week) in terms of the other features even on the marginal histograms for each of these three remaining
real data. We attempted several different approaches, features to check whether the marginal distribution was
ranging from simple regression models such as lasso to learned correctly. These 1-way histograms for DP-auto-
complex models such as neural networks, and all had a GAN are shown in Fig. 11. The figure shows that DP-
low R? score on both the real and synthetic data. The auto-GAN identifies the marginal distribution of capitall
capital gain and capital loss attributes are inherently gain and capital loss quite well, and it does reasonably|
hard to predict because the data are sparse (mostly zero) well on the hours-per-week feature.
in these attributes Random forest prediction scores. Following [14])

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202



1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/1jl p. 21

-a

(j) DP-SYN, ¢ = c©

(k) € =1.40

datasets are generated from several algorithms at different e values.

we also evaluate the quality of synthetic data by the
accuracy of a random forest classifier to predict the
label “salary” feature. In particular, we train a random
forest classifier on synthetic data and test on the holdout
original data, and report the F accuracy score. The
aim is that a classifier trained on synthetic data should
report a similar accuracy score as the one trained on the
original data.

In Table 3, we report the accuracy of synthetic data-
sets generated by DP-auto-GAN and DP-WGAN [14].
The results reported in [14] use € = 3, 7, oo, whereas
our algorithms used parameter values € = 0.36, 0.51,
1.01, oo, a significant improvement in privacy. We
see that our accuracy guarantees are higher than those
of [14] with smaller ¢ values, and DP-auto-GAN

chieved higher accuracy in the non-private setting. We

[Fig. 12. Scatterplots of projection of ADULT original and synthetic datasets on first two principle components of the original dataset. Synthetic|

(1) e =0.80 (m) € = 0.50

note that part of the accuracy discrepancy because DP-
auto-GAN can handle mixed-typed features, whereas
DP-WGAN only handles categorical features.

2-Way PCA. In order to understand combined qual-
itative performance of all features, we show 2-way PCA|
marginal in Fig. 12. We fix the same projection from
the original data, and require the synthetic data to be of]
the same format and go through the same preprocess-
ing. For this reason, we do not compare to DP-WGAN|
since the original implementation [14] does not handle|
continuous columns, and we apply our preprocessing
rather than the original preprocessing for DP-SYN. A
qualitative inspection of the plots clearly shows the sim-
ilarities of trends between the plots for real dataset and
synthetic data generated by DP-auto-GAN for different
values of €, as low as e = (.51

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234



1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

Galley Proof 3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/1j1 p. 22

Figure 12 is able to depict a qualitative description of
the synthetic datasets that dimension-wise probability
and predictive scores may not capture. DP-auto-GAN
is able to capture the overall structure of 2-dimension
PCA, with more points collapsing into a cluster as pri-
vacy budget € decreases. The algorithm’s internal GAN
structure, however, is able to generate points on differ-
ent clusters even at smaller e, which better matches the
projection of the original dataset. DP-VAE has a clear 1-
cluster Gaussian-like distribution of 2-way PCA, which
is consistent with this method’s assumption that the
underlying distribution in the latent space is Gaussian.
The autoencoder transforms some datapoints near the
edge of the cluster to shapes similar to the original 2-
way PCA, but most datapoints remain at the center of
the cluster. DP-SYN is able to capture the large single
cluster in the original data, but is not diverse enough
to capture small clusters. This is consistent with our
previous observations on diversity under DP-SYN and
the fact that DP-SYN assumes a mixture of Gaussian
distributions in latent space, which may not be diverse
or complex enough to capture smaller clusters of the
original distribution.

DP-SYN and DP-VAE do not improve 2-way PCA
plots as € increases, suggesting that the underlying as-
sumptions in latent space are likely a bottleneck. Inter-
estingly, for e = oo, DP-SYN synthetic data collapse
to a single flat cluster (it is possible that many clus-
ters are generated, but only one appears due to PCA),
suggesting that DP-SYN overfits to the majority, and
that adding noise for privacy splits the cluster. DP-auto-
GAN 2-way PCA does not show structural limitations,
but rather a promising result that it is possible to gen-
erate more detailed distributions that are closer to the
original data.

6. Conclusion

We propose DP-auto-GAN — a combination of DP-
autoencoder and DP-GAN - for differentially private
data generation of mixed-type data. The inclusion of the
autoencoder improves the efficacy of GANs, especially
for high-dimensional data. Our method enjoys a 5x
privacy improvement compared to [14] on the ADULT
dataset in 14 dimensions and greater 100x improvement
compared to [15] on a higher 1071-dimensional dataset,
and achieves a meaningful privacy ¢ < 1 for practical
use. This approach is more complex than assuming a
standard Gaussian distribution as in DP-VAE [16], and
is better able to learn relationships among features

Acknowledgments

Uthaipon Tantipongpipat was supported in part
by NSF grants AF-1910423 and AF-1717947. Chris
Waites was supported in part by a President’s Un-
dergraduate Research Award from the Georgia Insti-
tute of Technology. Digvijay Boob was supported in|
part by NSF grant CCF-1909298. Rachel Cummings
was supported in part by a Mozilla Research Grant, a
Google Research Fellowship, a JPMorgan Chase Fac-
ulty Award, and NSF grants CNS-1850187 and CNS-
1942772. Part of this work was completed while Rachel
Cummings was visiting the Simons Institute for the
Theory of Computing. Most of this work was com-
pleted while all authors were affiliated with the Georgia
Institute of Technology.

References

[1] Narayanan A, Shmatikov V. Robust De-anonymization of|
Large Sparse Datasets. In: Proceedings of the 2008 IEEE Sym-
posium on Security and Privacy. Oakland S&P ’08; 2008,
pp- 111-125.

[2] Barbaro M, Zeller T. A Face is Exposed for AOL Searche
No. 4417749. New York Times; 2006. [Online, Retrieved
9/25/2019]. New York Times. Available from: https//www.
nytimes.com/2006/08/09/technology/09aol.html.

[3] Ohm P. Broken promises of privacy: Responding to the sur-
prising failure of anonymization. UCLA Law Review. 2010
57: 1701-1777.

[4] Carlini N, Liu C, Erlingsson U, Kos J, Song D. The Secret
Sharer: Evaluating and testing unintended memorization in|
neural networks. In: Proceedings of the 28th USENIX Security|
Symposium. USENIX Security *19; 2019. pp. 267-284.

[S] Dwork C, McSherry F, Nissim K, Smith A. Calibrating noise|
to sensitivity in private data analysis. In: Proceedings of the|
3rd Conference on Theory of Cryptography. TCC *06; 2006,
pp. 265-284.

[6] Triastcyn A, Faltings B. Generating artificial data for private|
deep learning. In: Proceedings of the PAL: Privacy-Enhancing
Artificial Intelligence and Language Technologies. PAL 18}
2018. pp. 33-40.

[7]1 Blum A, Ligett K, Roth A. A learning theory approach t
non-interactive database privacy. In: Proceedings of the 40th|
Annual ACM Symposium on Theory of Computing. STOC
*08; 2008. pp. 609-618.

[8] Hardt M, Rothblum GN. A multiplicative weights mechanism
for privacy-preserving data analysis. In: Proceedings of the|
51st Annual IEEE Symposium on Foundations of Computer
Science. FOCS *10; 2010. pp. 61-70.

[9] Kingma DP, Welling M. Auto-encoding variational bayes;
2013. ArXiv preprint 1312.6114.

[10] Abay NC, Zhou Y, Kantarcioglu M, Thuraisingham B,
Sweeney L. Privacy preserving synthetic data release using|
deep learning. In: Machine Learning and Knowledge Discov-
ery in Databases (ECML PKDD ’18). vol. 11051 of Lecture
Notes in Computer Science. Springer; 2018. pp. 510-526

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336



1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400

Galley Proof

3/12/2021; 10:00

File: idt-1-1dt210195.tex; BOKCTP/1jl p. 23

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Chen Q, Xiang C, Xue M, Li B, Borisov N, Kaarfar D, et al.
Differentially Private Data Generative Models; 2018. ArXiv
preprint 1812.02274.

Johnson AEW, Pollard TJ, Shen L, Li-wei HL, Feng M, Ghas-
semi M, et al. MIMIC-III, a freely accessible critical care
database. Scientific Data. 2016; 3: 160035.

Dua D, Graff C. UCI Machine Learning Repository; 2017.
Available from: http://archive.ics.uci.edu/ml.

Frigerio L, de Oliveira AS, Gomez L, Duverger P. Differen-
tially private generative adversarial networks for time series,
continuous, and discrete open data. In: International Confer-
ence on ICT Systems Security and Privacy Protection. IFIP
SEC 19 2019. pp. 151-164.

Xie L, Lin K, Wang S, Wang F, Zhou J. Differentially pri-
vate generative adversarial network; 2018. ArXiv preprint
1802.06739.

Acs G, Melis L, Castelluccia C, De Cristofaro E. Differentially
private mixture of generative neural networks. IEEE Trans-
actions on Knowledge and Data Engineering. 2018; 31(6):
1109-1121.

Hardt M, Ligett K, McSherry F. A simple and practical algo-
rithm for differentially private data release. In: Advances in
Neural Information Processing Systems 25, NIPS *12; 2012.
pp. 2339-2347.

Gaboardi M, Arias EJG, Hsu J, Roth A, Wu ZS. Dual query:
Practical private query release for high dimensional data. In:
Proceedings of the 31st International Conference on Machine
Learning. ICML ’14; 2014. pp. 1170-1178.

Zhang J, Cormode G, Procopiuc CM, Srivastava D, Xiao X.
PrivBayes: Private data release via Bayesian networks. ACM
Transactions on Database Systems (TODS). 2017; 42(4): 25.
Ping H, Stoyanovich J, Howe B. DataSynthesizer: Privacy-
preserving synthetic datasets. In: Proceedings of the 29th In-
ternational Conference on Scientific and Statistical Database
Management. SSDBM ’17; 2017. pp. 421-42:5.

Surendra H, Mohan HS. A review of synthetic data generation
methods for privacy preserving data publishing. International
Journal of Scientific and Technology. 2017; 6: 95-101.

Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I,
Talwar K, et al. Deep learning with differential privacy. In:
Proceedings of the 2016 ACM Conference on Computer and
Communications Security. CCS *16; 2016. pp. 308-318.
Mironov I. Rényi differential privacy. In: Proceedings of the
2017 IEEE 30th Computer Security Foundations Symposium.
CSF ’17; 2017. pp. 263-275.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, et al. Generative Adversarial Nets. In: Advances in
Neural Information Processing Systems 27, NIPS * 14, 2014.
pp. 2672-2680.

Mogren O. C-RNN-GAN: Continuous recurrent neural net-
works with adversarial training. Constructive Machine Learn-
ing Workshop (CML) at NeurIPS 2016, 2016.

Saito M, Matsumoto E, Saito S. Temporal generative adver-
sarial nets with singular value clipping. In: Proceedings of the
IEEE International Conference on Computer Vision. ICCV
’17, 2017. pp. 2830-2839.

Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford
A, Chen X. Improved Techniques for Training GANs. In:
Advances in Neural Information Processing Systems 29, NIPS
’16, 2016. pp. 2234-2242.

Jang E, Gu S, Poole B. Categorical reparameterization with
Gumbel-softmax. In: Proceedings of the 5th International Con-
ference on Learning Representations. ICLR *17; 2017. Avail-
able from: https//openreview.net/forum?id=rkE3y85ee.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Kusner MJ, Hernandez-Lobato JM. GANs for sequences of]
discrete elements with the Gumbel-softmax distribution; 2016
ArXiv preprint 1611.04051.

Wang H, Wang J, Wang J, Zhao M, Zhang W, Zhang F, et
al. GraphGAN: Graph representation learning with generative|
adversarial nets. In: Proceedings of the 32nd AAAI Conferencel
on Artificial Intelligence. AAAI ’18; 2018. pp. 2508-2515.
Xu L, Skoularidou M, Cuesta-Infante A, Veeramachaneni K|
Modeling tabular data using Conditional GAN. In: Advances
in Neural Information Processing Systems 32, NeurIPS "19;
2019. pp. 7333-7343.

Lim SK, Loo Y, Tran NT, Cheung NM, Roig G, Elovici
Y. DOPING: Generative data augmentation for unsupervised|
anomaly detection with GAN. In: Proceedings of the 2018
IEEE International Conference on Data Mining. ICDM ’18;
2018. pp. 1122-1127.

Park N, Mohammadi M, Gorde K, Jajodia S, Park H, Kim|
Y. Data synthesis based on generative adversarial networks,
Proceedings of the VLDB Endowment. 2018; 11(10): 1071+
1083.

Arjovsky M, Chintala S, Bottou L. Wasserstein GAN, 2017,
ArXiv preprint 1701.07875.

Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville|
AC. Improved Training of Wasserstein GANs. In: Advances in
Neural Information Processing Systems 30, NIPS *17; 2017,
pp. 5767-57717.

Alzantot M, Srivastava M. Differential Privacy Synthetic Data
Generation using WGANSs, 2019. Available from: https:/
github.com/nesl/nist_differential_privacy_synthetic_data_
challenge/.

Mirza M, Osindero S. Conditional generative adversarial nets,
2014. ArXiv preprint 1411.1784.

Torkzadehmahani R, Kairouz P, Paten B. DP-CGAN: Dif-
ferentially Private Synthetic Data and Label Generation. In;
Proceedings of the IEEE Conference on Computer Vision and|
Pattern Recognition (CVPR) Workshops, 2019.

Papernot N, Abadi M, Erlingsson U, Goodfellow I, Talwar|
K. Semi-supervised knowledge transfer for deep learning
from private training data. In: International Conference on
Learning Representations. ICLR 17, 2017. Available from:
https//openreview.net/forum?id=HkwoSDPgg.

Papernot N, Song S, Mironov I, Raghunathan A, Talwar K,
Erlingsson U. Scalable private learning with PATE. In: In-
ternational Conference on Learning Representations. ICLR|
’18, 2018. Available from: https//openreview.net/forum?id=
rkZB1XbRZ.

Jordon J, Yoon J, van der Schaar M. PATE-GAN: generating
synthetic data with differential privacy guarantees. In: Proceed-
ings of the 7th International Conference on Learning Repre-
sentations. ICLR *19; 2019. Available from: https//openreview.,
net/forum?id=S1zk9iRqF7.

Park M, Foulds J, Choudhary K, Welling M. DP-EM: Differ-
entially Private Expectation Maximization. In: Proceedings of
the 20th International Conference on Artificial Intelligence and
Statistics. AISTATS ’17; 2017. pp. 896-904.

Zhang X, Ji S, Wang T. Differentially Private Releasing via
Deep Generative Model (Technical Report); 2018. ArXiv
preprint1801.01594.

NIST. Contest: NIST DIfferential Privacy #3; 2019. National
Institute of Standards and Technology, Public Safety Commu-
nications Research. TopCoder. Available from: https//comm|
unity.topcoder.com/longcontest/?module=ViewProblemState
ment&rd=17421&pm=15315.

NIST. Differential Privacy Synthetic Data Challenge Algo-

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464



1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483

Galley Proof

3/12/2021; 10:00

File: idt—1-idt210195.tex; BOKCTP/1jl p. 24

[46]

[47]

[48]

[49]

rithms; 2019. National Institute of Standards and Technology,
Privacy Engineering Program. NIST Information Technology
Laboratory/Applied Cybersecurity Division. Available from:
https://www.nist.gov/itl/applied-cybersecurity/privacy-
engineering/collaboration-space/browse/de-identification-
tools#dpchallenge.

Charest AS. How can we analyze differentially-private syn-
thetic datasets? Journal of Privacy and Confidentiality. 2011;
2(2): 21-33.

Choi E, Biswal S, Malin B, Duke J, Stewart WF, Sun J. Gen-
erating multi-label discrete patient records using generative
adversarial networks. In: Proceedings of Machine Learning for
Healthcare, 2017, pp. 286-305.

McMahan HB, Andrew G. A general approach to adding dif-
ferential privacy to iterative training procedures. PPML18: Pri-
vacy Preserving Machine Learning — NeurIPS 2018 Workshop.
2018.

Google. TensorFlow Privacy; 2018. Available from: https://
github.com/tensorflow/privacy.

[52]

[53]

[54]

Van Erven T, Harremos P. Rényi divergence and Kullback-
Leibler divergence. IEEE Transactions on Information Theory,
2014; 60(7): 3797-3820.

Wang YX, Balle B, Kasiviswanathan S. Subsampled Rényi
Differential Privacy and Analytical Moments Accountant. In:
Proceedings of the 22th International Conference on Artificial
Intelligence and Statistics. AISTATS "19; 2019. pp. 1226-1235,
Borji A. Pros and cons of GAN evaluation measures. Computer
Vision and Image Understanding. 2019; 179: 41-65.
Bagdasaryan E, Poursaeed O, Shmatikov V. Differential pri-
vacy has disparate impact on model accuracy. In: Advances
in Neural Information Processing Systems 32, NeurIPS "19;
2019. pp. 15479-15488.

Jeffreys H. An invariant form for the prior probability in
estimation problems. Proceedings of the Royal Society of]
London Series A Mathematical and Physical Sciences. 1946;
186(1007): 453-461.

1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500



Galley Proof 3/12/2021; 10:00 File: idt-1-1dt210195.tex; BOKCTP/1jl p. 25

A. Training details for experiments on MIMIC-III data

MIMIC-III data set contains 46,520 data points in total, and is partitioned into train, validation, and test
data sets of sizes 27912, 9304, 9304 (60%, 20%, 20%), respectively. Privacy analysis is calculated using the
training size. Data are stored in 0/1 format. DP-auto-GAN pre-trained models in this paper are available at
https://github.com/DPautoGAN/DPautoGAN/tree/master/results/pre-trained %20models.

DP-auto-GAN Computing Infrastructure. DP-auto-GAN are run on GCP: nl-highmem-2 (2 vCPUs, 13 GB
memory) with 1 x NVIDIA Tesla K80. The training of autoencoder (for 15,000 iterations) and of GAN (for 20,000
iterations) each takes about 1.5 hours. The combined training together with performance evaluations (probability and
prediction plots) are done in less than 4 hours for each setting of parameter.

DP-auto-GAN Training. The autoencoder was trained via Adam with Beta 1 = 0.9, Beta 2 = 0.999, and a
learning rate of 0.001. It was trained on minibatches of size 100 and microbatches of size 1. L2 clipping norm was
selected to be the median L2 norm observed in a non-private training loop, set to 0.8157. The noise multiplier was
then calibrated to achieve the desired privacy guarantee.

The GAN was composed of two neural networks, the generator and the discriminator. The generator was a simple|
feed-forward neural network, trained via RMSProp with alpha = 0.99 with a learning rate of 0.001. The discriminator
was also a simple feed-forward neural network, also trained via RMSProp with the same parameters, with minibatches
of size 128. The L2 clipping norm of the discriminator was set to 0.35. The pair was trained on minibatches of size
1,000 and a microbatch size of 1, with 2 updates to the discriminator per 1 update to the generator. Again, the noise
multiplier was then calibrated to achieve desired privacy guarantees.

Selecting the Noise Multipliers and the Numbers of Iterations. Noise multipliers are finally set at ¢ = 3.5,
2.3, 1.3 simultaneously to both autoencoder and GAN to achieve ¢ = 0.81, 1.33, 2.70 respectively. Training is first
done for 20000 iterations, and the generated data every 1000 iterations are saved. We then inspect whether an earlier
trained model may be used as follows. For ¢ = 2.3, 1.3, the number of features where the model outputs all zero
converges to 181 out of 1071 features and stabilize at 181 for the remaining of training. We picked the second saved
model which has 181 such features. For ¢» = 3.5the number of such features quickly drops to 181-182 and then
fluctuates between 181-182 in the remaining of the training. We pick the third saved model which has the number of
such features being 181 or 182. The final iterations picked is 7" = 6000, 7000, 7000 for ¢y = 3.5, 2.3, 1.3 respectively,
and these numbers of iterations are then used to calculate the privacy parameters.

Model Architecture. A serialization of the (non-private, i.e. ¢ = co) model architectures used in the experiment
can be found below. For the private version, we change the latent dimension from 128 to 64.

(encoder): Sequential(

(0): Linear(in-feature=1071, out-feature=128, bias=True)

(1): Tanh()

)
(decoder): Sequential(

(0): Linear(in-feature=128, out-feature=1071, bias=True)
(1): Sigmoid()

)

Generator(
(model): Sequential(
(0): Linear(in-feature=128, out-feature=128)
(1): LeakyReLU(negative-slope=0.2)
(2): Linear(in-feature=128, out-feature=128)
(3): Tanh()
)
)

Discriminator(
(model): Sequential(
(0): Linear(in-feature=1071, out-feature=256, bias=True)

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550



1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

Galley Proof 3/12/2021; 10:00 File: idt—1-idt210195.tex; BOKCTP/1jl p. 26

(1): LeakyReLU(negative-slope=0.2)
(2): Linear(in-feature=256, out-feature=1, bias=True) )

)

B. Training details for experiments on ADULT data

In this section, we describe experimental details of DP-auto-GAN, DP-WGAN, DP-VAE, and DP-SYN for
reproducibility.

For DP-auto-GAN and in original implementation of existing algorithms, data are preprocessed by one-hot
encoding categorical features, and by max-min scalar on continuous features, i.e. mapping maximum to 1 and
minimum to 0. While maximum and minimum are technically leaking privacy, and hence not public as assumed in|
our framework, they are sometimes treated as publicly available such as in synthetic data challenge [44] and assumed
in implementation of existing works. In other usage, reasonable cap can be assumed on features, or a standard
differentially private query on minimum and maximum of a feature on a bounded range can be used.

Synthetic data are generated from each trained generative model to a size of 32561, the training size (which is two
thirds) of ADULT data. (Results of dimension-wise prediction we observed are similar with synthetic data of full
IADULT size 48842).

In parameter tuning of pre-existing methods from original authors, we keep the whole framework including
preprocessing of ADULT data, architecture, optimizer, and other hyper-parameters, except the noise multiplier. We|
attempted to keep original architectures as they are likely optimized in original work for generating synthetic ADULT]
data. We tune the noise multiplier on several higher values to achieve a smaller € values needed, and pick the est
performing model across noise multiplier values used. Details for each algorithm can be found in the remainder ofi
this section.

Computing infrastructure and runtime. DP-auto-GAN are run on GCP: nl-highmem-2 (2 vCPUs, 13 GB
memory) with 1 x NVIDIA Tesla K80. The combined training on autoencoder and GAN are done in approximately|
2-3 hours for each setting of parameter. DP-WGAN, DP-VAE, DP-SYN are run on a personal computer with
processor Intel(R) Core(TM) i7-6600U CPU @ 2.60 GHz 2.81 GHz and RAM 16.0 GB. Training of DP-WGAN,
DP-VAE, DP-SYN for each parameter setting finishes in between approximately 15 minutes to 2 hours. Any of all
evaluation metrics to an ADULT synthetic dataset finishes in less than 1-2 minutes.

B.1. DP-auto-GAN training

Preprocessing. Original ADULT dataset contains 15 features, one of which is a positive integer feature named
“fnlwgt” (final weight). This feature is discarded as unrelated to each individual person in the census, but rather the
additional feature US census created by mapping a person to an estimated weight of another demographic dataset.
Two features “education” and “education-num’” are the same feature representing in a different format — string or a
positive integer. In particular, education consists of 16 levels of education, and education-num represents them as
numbers 1, 2, . ..,16. Hence, we remove one of these two features and treat this column as one categorical feature. In|
the end, we have 9 categorical features, one of which is a binary label named “salary”, and four continuous features.

ADULT data consists of 48842 datapoints, partitioned into 32561 (two-thirds) for training and 16281 (one-third)
for testing. We follow the same partitioning by training our DP-auto-GAN on 32561 samples and holding the rest
only for synthetic data evaluation.

Training. The autoencoder was trained via Adam with Beta 1 = 0.9, Beta 2 = 0.999, and a learning rate of 0.005
for 10,000 minibatches of size 64 and a microbatch size of 1. The L2 clipping norm was selected to be the median L2,
norm observed in a non-private training loop, equal to 0.012. The noise multiplier was then calibrated to achieve the|
desired privacy guarantee. The final noise multiplier used for e = 0.36, 0.51, 1.01 are b =5, 2.5, 1.5, respectively.

The GAN was composed of two neural networks, the generator and the discriminator. The generator used a ResNet
architecture, adding the output of each block to the output of the following block. It was trained via RMSProp
with alpha = 0.99 with a learning rate of 0.005. The discriminator was a simple feed-forward neural network with
LeakyRel.U hidden activation functions, also trained via RMSProp with alpha = 0.99. The L2 clipping norm of the)




Galley Proof 3/12/2021; 10:00 File: idt—1-idt210195.tex; BOKCTP/1j1 p. 27

discriminator was set to 0.022. The pair was trained on 15,000 minibatches of size 128 and a microbatch size of 1,
with 15 updates to the discriminator per 1 update to the generator. Again, the noise multiplier was then calibrated to
achieve the desired privacy guarantee. The final noise multiplier used for ¢ = 0.36, 0.51, 1.01 are vb = 8, 7.5, 3.5,
respectively.

Model architecture. A serialization of the model architectures used in the experiment can be found below. Note
that the number of latent dimension, 64, is the same as in the implementation of DP-SYN.

Autoencoder(
(encoder): Sequential(
0: Linear(in-features=106, out-feature=60, bias=True)
(1): LeakyReLU(negative-slope=0.2)
(2): Linear(in-feature=60, out-feature=15, bias=True)
(3): LeakyReLU(negative-slope=0.2)
)
(decoder): Sequential(
(0): Linear(in-feature=15, out-feature=60, bias=True)
(1): LeakyReLU(negative-slope=0.2)
(2): Linear(in-feature=60, out-feature=106, bias=True)
(3): Sigmoid()
)
)

Generator(
(block-0): Sequential(
(0): Linear(in-feature=64, out-feature=64, bias=False)
(1): BatchNorm1d()
(2): LeakyReLU(negative-slope=0.2)
)
(block-1): Sequential(
(0): Linear(in-feature=64, out-feature=64, bias=False)
(1): BatchNorm1d()
(2): LeakyReLU(negative-slope=0.2)
)
(block-2): Sequential(
(0): Linear(in-feature=64, out-feature=15, bias=False)
(1): BatchNorm1d()
(2): LeakyReLU(negative-slope=0.2)
)
)

Discriminator(
(model): Sequential(
(0): Linear(in-feature=106, out-feature=70, bias=True)
(1): LeakyReLU(negative-slope=0.2)
(2): Linear(in-feature=70, out-feature=35, bias=True)
(3): LeakyReLU(negative-slope=0.2)
(4): Linear(in-feature=35, out-feature=1, bias=True) )

)
B.2. DP-WGAN training
Preprocessing. The algorithm of WGAN [14] (their implementation can be found at https://github.com/SAP-

samples/security-research-differentially-private-generative-models) is used and implemented only for discrete data.
The preprocessing automatically delete continuous columns. Hence, DP-WGAN preprocesses ADULT data into 9

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645



1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

Galley Proof 3/12/2021; 10:00 File: idt—1-idt210195.tex; BOKCTP/]jl p. 28

categorical features, one of which is the binary “salary” label. Each categorical feature is then one-hot encoded before|
feeding into DP-WGAN training.

Parameter tuning. The original implementation uses noise multiplier ¢/ = 7, originally for a higher values off
epsilons as mentioned in [14]. We found that the training cannot achieve ¢ = 0.51 just after one epoch, while the|
typical training requires multiple (tens to almost a hundred) epochs. Hence, we train with higher noise parameters
Ww="1,9,11,13, 15, 19, 23, 27.5, 35. For ¢ = 0.36, we also attempted ¢ = 40, 45, 50, 60, 70, 80, 100 which still
gives € > 0.36 only after one epoch. However, if we relax to e = 0.37, we are able to train a few epochs at high noise
level to achieve the privacy guarantee, so we allow € = 0.37.

For each of the noise parameter, we select the generated data from the epoch before privacy busget is exhausted.
The synthetic data is evaluated by dimension-wise prediction. We exclude a few cases where prediction score ofi
the salary feature is zero, indicating possibly a mode collapse. Then, we pick the model for each e setting across
different noise multiplier with highest total prediction score. We note that overall performance of DP-WGAN are
comparable across ¥ € {7, 9, 11, 13} for ¢ > 0.8 and less predictable for smaller e¢. The final ¢/ we use for ¢ =

.36, 0.51, 1.01 are v = 27.5, 19,9, respectively. Dimension-wise prediction across different e and 1) are available at
https://github.com/DPautoGAN/DPautoGAN/tree/master/results/prediction-plots/DP-WGAN.

B.3. DP-VAE training

Preprocessing. An implementation of DP-VAE (not by the author of original work [16]) can be found at
https://github.com/S AP-samples/security-research-differentially-private-generative-models/blob/master/Tutorial_dp-
'VAE.ipynb for training on ADULT data. We slightly modify the size of the training set to 32561 sample points, as
used in original dataset and our DP-auto-GAN training. Though the original implementation uses all 15 features, we|
preprocess the data exactly the same way as DP-auto-GAN preprocessing for a fairer reporting.

We, however, observed that dimension-wise prediction is either of similar overall quality when using original 15
dimensions instead of what is reported. Dimension-wise predictions of 13 and 15 features on several values of € is
available at https://github.com/DPautoGAN/DPautoGAN/tree/master/results/prediction-plots/DP-VAE/vae-13-vs-
15-features.

Parameter tuning. The tutorial defaults noise multiplier at v = 1. To get smaller €, we test ¢y = 1, 1.5, 2, 2.5, 3,
3.5,4,4.5,5 and additionally ¢ = 5.5, 6, 6.5, 7, 7.5, 8 for ¢ = 0.36. Standard validation accuracy score of VAE in the
training process from the keras package are used. We observed an expected pattern that accuracy increases from very
small ¢ until it drops again at some high 1/ value, where the peak of v is larger for smaller €. As a result, we extended
1y as mentioned for smaller € to be certain that we have reached such peak. Then, the model from noise multiplier
which gives highest accuracy score is used. The final ¢ used for ¢ = 0.36, 0.51, 1.01 are ¥ =5, 4,2, respectively.

B.4. DP-SYN training

Preprocessing. The original implementation of DP-SYN deletes “fnlwgt” and a redundant “education-num” as
in our preprocessing. However, it group some similar educational levels into one category, resulting in 8 categories
rather than 16. It preprocesses capital-gain and capital-loss into categorical features with 3 classes: “low”, “medium”,
and “high.” Hence, the final preprocessed data has 2 continuous and 11 categorical features. Because one categorical
feature, education, is preprocessed differently from other algorithms, it is excluded from reporting the sum of diversity|
divergence scores in Table ??.

When using the original preprocessing, we update the test set for dimension-wise prediction score to the same
preprocessed format. We observed, however, that despite the architecture likely tuned for the original preprocessing,
we ran DP-SYN using preprocessing and obtained a similar result. As we aim to report the optimized and most
original version of previous work, we choose the original preprocessing in reporting results in this work. We suspect,
however, that the empirical results and conclusions would be similar under our preprocessing.

Parameter tuning. Original ¢ and noise multiplier ¢ used are 1) = 2, 4 for e = 2.4, 3.2 and ¢ = 4 for ¢ = 1.6 and
1 =4, 8 fore =1.2. We tested on 1) = 2, 4, 6, 8 for e = 0.5, 0.8, 1.4. yp = 2 was not possible at ¢ = 0.5 due to large
e incurred even within the first epoch of training. The implementation includes its own accuracy metric [10], which is

n SVM classifier on the synthetic data. The model is trained 10 times for each noise and e setting, and the noise)




Galley Proof 3/12/2021; 10:00 File: idt—1-idt210195.tex; BOKCTP/1j1 p. 29

which gives the highest average accuracy score for each e setting is used. We saw a pattern of accuracy score either
stay the same or increase from smallest ¢ then later degrades, so we extended the range of v (up to 8 as mentioned)
until we were certain that we have found a peak of accuracy score. We note that dimension-wise prediction performs
similarly for ¢ = 2, 4, 6 and slightly better at these ¢/ than the higher 1) = 8. Final ¢ used for ¢ = 0.5, 0.8, 1.4 is ¢ =
4 for all three settings (and 6, 4, 4 if using our preprocessing). The results across all noise multiplier values can be|
found at https://github.com/DPautoGAN/DPautoGAN/tree/master/results/prediction-plots/DP-SYN.

DP-SYN first partitions the data into groups based on number of unique labels, which is 2 in “salary” label off
the ADULT data. DP-EM then chooses the number of clusters in a mixture of Gaussian in each group by Calinski-
Harabasz criterion. The range of numbers of clusters tested (which is also from the original implementation) is K =
1,2,...,7.

Privacy accounting. We keep the original privacy accounting, which is to split €, J into halves, each for autoencoder
and DP-EM, in the original implementation of DP-SYN. We allow higher € which is computed by using standard
composition instead of RDP composition on two phases of our DP-auto-GAN training. We also note that DP-SYN|
treats the label column as public, which is used in partitioning the original data into groups based on the label,
whereas DP-auto-GAN, DP-WGAN, and DP-VAE treat all features as private.

The original implementation of DP-SYN was not able to finish a single epoch even for a large noise multiplier
1) = 16,32 to achieve € = 0.5 by a standard composition. We found that this is due to a loose analysis of RDP in the
original implementation. We increase the moment order of 32 in the original implementation to 96 to obtain a tighter
IDP analysis, which allows the € = 0.5 (standard composition) results reported in this work.

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711



