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Abstract. We introduce the DP-auto-GAN framework for synthetic data generation, which combines the low dimensional
representation of autoencoders with the flexibility of Generative Adversarial Networks (GANs). This framework can be used to
take in raw sensitive data and privately train a model for generating synthetic data that will satisfy similar statistical properties as
the original data. This learned model can generate an arbitrary amount of synthetic data, which can then be freely shared due to the
post-processing guarantee of differential privacy. Our framework is applicable to unlabeled mixed-type data, that may include
binary, categorical, and real-valued data. We implement this framework on both binary data (MIMIC-III) and mixed-type data
(ADULT), and compare its performance with existing private algorithms on metrics in unsupervised settings. We also introduce a
new quantitative metric able to detect diversity, or lack thereof, of synthetic data.
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1. Introduction1

As data storage and analysis are becoming more2

cost effective, and data become more complex and un-3

structured, there is a growing need for sharing large4

datasets for research and learning purposes. This is in5

stark contrast to the previous statistical model where6

a data curator would hold datasets and answer spe-7

cific queries from (potentially external) analysts. Shar-8

ing entire datasets allows analysts the freedom to per-9

form their analyses in-house with their own devices and10

toolkits, without having to pre-specify the analyses they11

wish to perform. However, datasets are often propri-12

etary or sensitive, and they cannot be shared directly.13

This motivates the need for synthetic data generation,14
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where a new dataset is created that shares the same 15

statistical properties as the original data. These data 16

may not be of a single type: all binary, all categorial, 17

or all real-valued; instead they may be of mixed-types, 18

containing data of multiple types in a single dataset. 19

These data may also be unlabeled, requiring techniques 20

for unsupervised learning, which is typically a more 21

challenging task than supervised learning when data are 22

labeled. 23

Privacy challenges naturally arise when sharing 24

highly sensitive datasets about individuals. Ad hoc 25

anonymization techniques have repeatedly led to severe 26

privacy violations when sharing “anonymized” datasets. 27

Notable examples include the Netflix Challenge [1], 28

AOL Search Logs [2], and Massachusetts State Health 29

data [3], where linkage attacks to publicly available aux- 30

iliary datasets were used to reidentify individuals in the 31

dataset. Even deep learning models have been shown to 32

inadvertently memoize sensitive personal information 33

such as Social Security Numbers during training [4]. 34
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Differential privacy (DP) [5] (formally defined in35

Section 2) has become the de facto gold standard of36

privacy in the computer science literature. Informally,37

it bounds the extent to which an algorithm depends on38

a single datapoint in its training set. The guarantee en-39

sures that any differentially privately learned models do40

not overfit to individuals in the database, and therefore41

cannot reveal sensitive information about individuals. It42

is an information theoretic notion that does not rely on43

any assumptions of an adversary’s computational power44

or auxiliary knowledge. Furthermore, it has been shown45

empirically that training machine learning models with46

differential privacy protects against membership infer-47

ence and model inversion attacks [4,6]. Differentially48

private algorithms have been deployed at large scale49

in practice by organizations such as Apple, Google,50

Microsoft, Uber, and the U.S. Census Bureau.51

Much of the prior work on differentially private syn-52

thetic data generation has been either theoretical algo-53

rithms for highly structured classes of queries [7,8] or54

based on deep generative models such as Generative55

Adversarial Networks (GANs) or autoencoders. These56

architectures have been primarily designed for either57

all-binary or all-real-valued datasets, and have focused58

on the supervised setting.59

In this work we introduce the DP-auto-GAN frame-60

work, which combines the low dimensional representa-61

tion of autoencoders with the flexibility of GANs. This62

framework can be used to take in raw sensitive data, and63

privately train a model for generating synthetic data that64

satisfies similar statistical properties as the original data.65

This learned model can be used to generate arbitrary66

amounts of publicly available synthetic data, which can67

then be freely shared due to the post-processing guar-68

antees of differential privacy. We implement this frame-69

work on both unlabeled binary data (for comparison70

with previous work) and unlabeled mixed-type data. We71

also introduce new metrics for evaluating the quality of72

synthetic mixed-type data in unsupervised settings, and73

empirically evaluate the performance of our algorithm74

according to these metrics on two datasets.75

1.1. Our contributions76

In this work, we provide two main contributions:77

a new algorithmic framework for privately generating78

synthetic data, and empirical evaluations of our algo-79

rithmic framework showing improvements over prior80

work. Along the way, we also develop a novel privacy81

composition method with tighter guarantees, and we82

generalize previous metrics for evaluating the quality of83

synthetic datasets to the unsupervised mixed-type data 84

setting. Both of these contributions may be of indepen- 85

dent interest. 86

Algorithmic framework. We propose a new data 87

generation architecture which combines the versatil- 88

ity of an autoencoder [9] with the recent success of 89

GANs on complex data. Our model extends previous 90

autoencoder-based DP data generation [10,11] by re- 91

moving an assumption that the distribution of the latent 92

space follows a Gaussian mixture distribution. Instead, 93

we incorporate GANs into the autoencoder framework 94

so that the generator must learn the true latent distribu- 95

tion against the discriminator. We describe the compo- 96

sition analysis of differential privacy when the training 97

consists of optimizing both autoencoders and GANs 98

(with different noise parameters). 99

Empirical results. We empirically evaluate the per- 100

formance of our algorithmic framework on the MIMIC- 101

III medical dataset [12] and UCI ADULT Census 102

dataset [13], and compare against previous approaches 103

in the literature [10,14–16]. Our experiments show that 104

our algorithms perform better and obtain substantially 105

improved ε values of ε ≈ 1, compared to ε ≈ 200 in 106

prior work [15]. The performance of our algorithm re- 107

mains high along a variety of quantitative and quali- 108

tative metrics, even for small values of ε, correspond- 109

ing to strong privacy guarantees. Our code is publicly 110

available for future use and research. 111

1.2. Related work on differentially private data 112

generation 113

Early work on differentially private synthetic data 114

generation was focused primarily on theoretical algo- 115

rithms for solving the query release problem of privately 116

and accurately answering a large class of pre-specified 117

queries on a given database. It was discovered that gen- 118

erating synthetic data on which the queries could be 119

evaluated allowed for better privacy composition than 120

simply answering all the queries directly [7,8,17,18]. 121

Bayesian inference has also been used for differen- 122

tially private data generation [19,20] by estimating the 123

correlation between features. See [21] for a survey of 124

techniques used in private synthetic data generation. 125

More recently, [22] introduced a framework for train- 126

ing deep learning models with differential privacy, 127

which involved adding Gaussian noise to a clipped 128

(norm-bounded) gradient in each training step. [22] also 129

introduced the moment accountant privacy analysis, 130

which provided a tighter Gaussian-based privacy com- 131

position and allowed for significant improvements in 132
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Table 1
Algorithmic frameworks for differentially private synthetic data generation. Our new algorithmic framework (in bold) is
the first to combine both DP GANs and autoencoders into one framework by using GANs to learn a generative model in
the latent space

Types Algorithmic framework
Architecture Variants

Deep generative models DPGAN [22] PATEGAN [41]
DP Wasserstein GAN [36]
DP Conditional GAN [38]
Gumbel-softmax for categorical data [14]

Autoencoder DP-VAE (standard Gaussian as a generative model in latent space) [11,16]
RBM generative models in latent space [16]
Mixture of Gaussian model in latent space [10]

Autoencoder and DPGAN (ours)
Other models SmallDB [7], PMW [8], MWEM [17], DualQuery [18], DataSynthesizer [20], PrivBayes [19]

accuracy. It was later defined in terms of Renyi Dif-133

ferential Privacy (RDP) [23], which is a slight variant134

of differential privacy designed for easy composition.135

Much of the work that followed used deep generative136

models, and can be broadly categorized into two types:137

autoencoder-based and GAN-based. Our algorithmic138

framework is the first to combine both DP GANs and139

autoencoders.140

Differentially private autoencoder-based models. A141

variational autoencoder (VaE) [9] is a generative model142

that compresses high-dimensional data to a smaller143

space called latent space. The compression is com-144

monly achieved through deep models and can be differ-145

entially privately trained [11,16]. VaE makes the (often146

unrealistic) assumption that the latent distribution is147

Gaussian. Acs et al. [16] uses Restricted Boltzmann148

machine (RBM) to learn the latent Gaussian distribu-149

tion, and Abay et al. [10] uses expectation maximiza-150

tion to learn a Gaussian mixture. Our work extends this151

line of work by additionally incorporating the gener-152

ative model GANs which have also been shown to be153

successful in learning latent distributions.154

Differentially private GANs. GANs are generative155

models proposed by Goodfellow et al. [24] that have156

been shown success in generating several different types157

of data [25–33]. As with other deep models, GANs can158

be trained privately using the aforementioned private159

stochastic gradient descent (formally introduced in Sec-160

tion 2.1). In this work, we focus on and compare to161

previous works where DP have been applied.162

Variants of DP GANs have been used for syn-163

thetic data generation, including the Wasserstein GAN164

(WGAN) [34,35] and DP-WGAN [6,36] that use165

a Wasserstein-distance-based loss function in train-166

ing [6,34–36]; the conditional GAN (CGAN) [37] and167

DP-CGAN [38] that operate in a supervised (labeled)168

setting and use labels as auxiliary information in train-169

ing; and Private Aggregation of Teacher Ensembles170

(PATE) [39,40] for the semi-supervised setting of multi- 171

label classification when some unlabelled public data 172

are available (or PATEGAN [41] when no public data 173

are available). Our work focuses on the unsupervised 174

setting where data are unlabeled, and no (relevant) la- 175

beled public data are available. 176

These existing works on differentially private syn- 177

thetic data generation are summarized in Table 1. 178

Differentially private generation of mixed-type data. 179

Next we describe the three most relevant recent works 180

on privately generating synthetic mixed-type data. [10] 181

considers the problem of generating mixed-type labeled 182

data with k possible labels. Their algorithm, DP-SYN, 183

partitions the dataset into k sets based on the labels 184

and trains a DP autoencoder on each partition. Then 185

the DP expectation maximization (DP-EM) algorithm 186

of [42] is used to learn the distribution in the latent 187

space of encoded data of the given label-class. The 188

main workhorse, DM-EM algorithm, is designed and 189

analyzed for Gaussian mixture models and more general 190

factor analysis models. [11] works in the same setting, 191

but replaces the DP autoencoder and DP-EM with a 192

DP variational autoencoder (DP-VAE). Their algorithm 193

assumes that the mapping from real data to the Gaussian 194

distribution can be efficiently learned by the encoder. 195

Finally, [14] uses a Wasserstein GAN (WGAN) 196

to generate differentially private mixed-type synthetic 197

data, which uses a Wasserstein-distance-based loss 198

function in training. Their algorithmic framework pri- 199

vatizes the WGAN using DP-SGD, similar to previous 200

approaches for image datasets [15,43]. The methodol- 201

ogy of [14] for generating mixed-type synthetic data 202

involves two main ingredients: changing discrete (cate- 203

gorical) data to binary data using one-hot encoding, and 204

adding an output softmax layer to the WGAN generator 205

for every discrete variable. 206

Our framework is distinct from these three ap- 207

proaches. We use a differentially private autoencoder 208
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Table 2
Summary of evaluation metrics in DP synthetic data generation literature. We list applicability of each metric to each of the data type. Parts in
bold are our new contributions. Evaluation methods with asterisk * are predictive-model-specific, and their applicability therefore depends on
types of data that the chosen predictive model is appropriate for. Methods with asterisks ** are equipped with any distributional distance of choice
such as Wasserstein distance or total variation distance

Types Evaluation methods Data types
Binary Categorical Regression

Supervised Label prediction* [10,11,14] Yes Yes Yes
Predictive model ranking* [41] Yes Yes Yes

Unsupervised,
prediction-based

Dimension-wise prediction plot* Yes ([47], ours) Yes Yes

Unsupervised, Dimension-wise probability plot [47] Yes No No
distribution- 2, 3-way feature marginal, total variation distance [10,44]** Yes Yes Yes
based 1-way feature marginal, diversity measure (µ-smooth KL diver-

gence) **
Yes Yes Yes

Unsupervised,
qualitative

1-way feature marginal (histogram) (e.g. in [53,54] and in the imple-
mentation of [14])

Yes Yes Yes

2-way PCA marginal (data visualization) Yes Yes Yes

which, unlike DP-VAE of [11], does not require map-209

ping data to a Gaussian distribution. This allows210

us to reduce the dimension of the problem handled211

by the WGAN, hence escaping the issues of high-212

dimensionality from the one-hot encoding of [14]. We213

also use DP-GAN, replacing DP-EM in [10], to learn214

more complex distributions in the latent or encoded215

space.216

NIST differential privacy synthetic data challenge.217

The National Institute of Standards and Technology218

(NIST) recently hosted a challenge to find methods219

for privately generating synthetic mixed-type data [44],220

using excerpts from the Integrated Public Use Micro-221

data Sample (IPUMS) of the 1940 U.S. Census Data222

as training and test datasets. Four of the winning so-223

lutions have been made publicly available with open-224

source code [45]. However, all of these approaches are225

highly tailored to the specific datasets and evaluation226

metrics used in the challenge, including specialized data227

pre-processing methods and hard-coding details of the228

dataset in the algorithm. As a result, they do not provide229

general-purpose methods for differentially private syn-230

thetic data generation, and it would be inappropriate–if231

not impossible – to use any of these algorithms as base-232

line for other datasets such as ones we consider in this233

paper.234

Evaluation metrics for synthetic data. Various eval-235

uation metrics have been considered in the litera-236

ture to quantify the quality of the synthetic data (see237

Charest [46] for a survey). The metrics can be broadly238

categorized into two groups: supervised and unsuper-239

vised. Supervised evaluation metrics are used when240

there are clear distinctions between features and la-241

bels of the dataset, e.g., for healthcare applications, a242

person’s disease status is a natural label. In these set-243

tings, a predictive model is typically trained on the syn- 244

thetic data, and its accuracy is measured with respect to 245

the real (test) dataset. Unsupervised evaluation metrics 246

are used when no feature of the data can be decisively 247

termed as a label. Recently proposed metrics include 248

dimension-wise probability for binary data [47], which 249

compares the marginal distribution of real and synthetic 250

data on each individual feature, and dimension-wise 251

prediction which measures how closely synthetic data 252

captures relationships between features in the real data. 253

This metric was proposed for binary data, and we ex- 254

tend it here to mixed-type data. Recently, NIST [44] 255

used a 3-way marginal evaluation metric which used 256

three random features of the real and synthetic datasets 257

to compute the total variation distance as a statistical 258

score. See Appendix 4 for more details on both cate- 259

gories of metrics, including Table 2 which summarizes 260

the metrics’ applicability to various data types. 261

2. Preliminaries on differential privacy 262

In the setting of differential privacy, a dataset X 263

consists of m individuals’ sensitive information, and 264

two datasets are neighbors if one can be obtained from 265

the other by the addition or deletion of one datapoint. 266

Differential privacy requires that an algorithm produce 267

similar outputs on neighboring datasets, thus ensuring 268

that the output does not overfit to its input dataset, and 269

that the algorithm learns from the population but not 270

from the individuals. 271

272

Definition 1 (Differential privacy [5]). For ε, δ > 0, an 273

algorithmM is (ε, δ)-differentially private if for any 274

pair of neighboring databases X,X ′ and any subset S 275
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of possible outputs produced byM,276

Pr[M(X) ∈ S] 6 eε · Pr[M(X ′) ∈ S] + δ.

A smaller value of ε implies stronger privacy guar-277

antees (as the constraint above binds more tightly), but278

usually corresponds with decreased accuracy, relative279

to non-private algorithms or the same algorithm run280

with a larger value of ε. Differential privacy is typically281

achieved by adding random noise that scales with the282

sensitivity of the computation being performed, which283

is the maximum change in the output value that can284

be caused by changing a single entry. Differential pri-285

vacy has strong composition guarantees, meaning that286

the privacy parameters degrade gracefully as additional287

algorithms are run on the same dataset. It also has a288

post-processing guarantee, meaning that any function289

of a differentially private output will retain the same290

privacy guarantees.291

2.1. Differentially private stochastic gradient descent292

(DP-SGD)293

Training deep learning models reduces to mini-294

mizing some (empirical) loss function f(X; θ) :=295

1
m

∑m
i=1 f(xi; θ) on a dataset X = {xi ∈ Rn}mi=1.296

Typically f is a nonconvex function, and a common297

method to minimize f is by iteratively performing298

stochastic gradient descent (SGD) on a batch B of sam-299

pled data points:300

B ← BATCHSAMPLE(X)

θ ← θ − η · 1

|B|
∑
i∈B ∇θf(xi, θ) (1)

The size ofB is typically fixed as a moderate number301

to ensure quick computation of gradient, while main-302

taining that 1
|B|
∑
i∈B ∇f(xi, θ) is a good estimate of303

true gradient ∇θf(X; θ).304

To make SGD private, Abadi et al. [22] proposed305

to first clip the gradient of each sample to ensure the306

`2-norm is at most C:307

CLIP(x,C) := x ·min (1, C/||x||2) .

Then a multivariate Gaussian noise parametrized by308

noise multiplier ψ is added before taking an average309

across the batch, leading to noisy-clipped-averaged gra-310

dient estimate g:311

g ← 1

|B|
(∑

i∈B CLIP(∇θf(xi, θ), C)

+N (0, C2ψ2I)
)
.

The quantity g is now private and can be used for the 312

descent step θ ← θ − η · g in place of Eq. (1). 313

Performance Improvements. In general, the descent 314

step can be performed using other optimization meth- 315

ods – such as Adam or RMSProp – in a private man- 316

ner, by replacing the gradient value with g in each step. 317

Also, one does not need to clip the individual gradients, 318

but can instead clip the gradient of a group of data- 319

points, called a microbatch [48]. Mathematically, the 320

batch B is partitioned into microbatches B1, . . . , Bk 321

each of size r, and the gradient clipping is performed 322

on the average of each microbatch: 323

g ← 1

k

(∑k
i=1 CLIP(∇θf(XBi

, θ), C)

+N (0, C2ψ2I)
)
.

Standard DP-SGD corresponds to setting r = 1, but 324

setting higher values of r (while holding |B| fixed) sig- 325

nificantly decreases the runtime and reduces the accu- 326

racy, and does not impact privacy significantly for large 327

dataset. Other clipping strategies have also been sug- 328

gested. We refer the interested reader to [48] for more 329

details of clipping and other optimization strategies. 330

The improved moment accountant privacy analysis 331

by [22] (which has been implemented in Google [49] 332

and is widely used in practice) obtains a tighter privacy 333

bound when data are subsampled, as in SGD. This anal- 334

ysis requires independently sampling each datapoint 335

with a fixed probability q in each step. 336

The DP-SGD framework (Algorithm 1) is generically 337

applicable to private non-convex optimization. In our 338

proposed model, we use this framework to train the 339

autoencoder and GAN. 340

Algorithm 1: DP-SGD (one iteration step)

1: parameter input: Dataset X = {xi}mi=1, deep learning model
parameter θ, learning rate η, loss function f , optimization method
OPTIM, batch sampling rate q (for the batch expectation size
b = qm), clipping norm C, noise multiplier ψ, microbatch size
r

2: goal: differentially privately train one step of the model
parametrized by θ with OPTIM

3: procedure DP-SGD
4: procedure SAMPLEBATCH(X, q)
5: B ← {}
6: for i = 1 . . .m do
7: Add xi to B with probability q
8: Return B
9: Partition B into B1, . . . , Bk each of size r (ignoring the

dividend)
10: k̂ ← qm

r
. an estimate of k

11: g ← 1

k̂

(∑k
i=1 CLIP(∇θf(XBi

, θ), C)+N (0, C2ψ2I)
)

12: θ ← OPTIM(θ, g, η)
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Fig. 1. The summary of our DP-auto-GAN algorithmic framework. Pre- and post-processing (in black) are assumed to be public knowledge.
Generator (in green) is trained without noise, whereas encoder, decoder, and discriminator (in yellow) are trained with noise. The four red arrows
indicate how data are forwarded for autoencoder, generator, and discriminator training. After training, the generator and decoder are released to the
public to generate synthetic data.

2.2. Renyi differential privacy accountant341

A variant notion of differential privacy, known as342

Renyi Differential Privacy (RDP) [23], is often used to343

analyze privacy for DP-SGD. A randomized mechanism344

M is (α, ε)-RDP if for all neighboring databases X,X ′345

that differ in at most one entry,346

RDP(α) := Dα(M(X)||M(X ′)) 6 ε,

where Dα(P ||Q) := 1
α−1 logEx∼X

(
P (x)
Q(x)

)α
is the347

Renyi divergence or Renyi entropy of order α between348

two distributions P and Q. Renyi divergence is bet-349

ter tailored to tightly capture the privacy loss from the350

Gaussian mechanism that is used in DG-SGD, and is a351

common analysis tool for DP-SGD literature. To com-352

pute the final (ε, δ)-differential privacy parameters from353

iterative runs of DP-SGD, one must first compute the354

subsampled Renyi Divergence, then compose privacy355

under RDP, and then convert the RDP guarantee into356

DP.357

Step 1: Subsampled renyi divergence. Given sam-358

pling rate q and noise multiplier ψ, one can obtain RDP359

privacy parameters as a function of α > 1 for one run of360

DP-SGD [23]. We denote this function by RDPT=1(·),361

which will depend on q and ψ.362

Step 2: Composition of RDP. When DP-SGD is run363

iteratively, we can compose the Renyi privacy parameter364

across all runs using the following proposition.365

Proposition 1 ([23]). IfM1,M2 respectively satisfy 366

(α, ε1), (α, ε2)-RDP for α > 1, then the composition of 367

two mechanisms (M2(X),M1(X)) satisfies (α, ε1 + 368

ε2)-RDP. 369

Hence, we can compute RDP privacy parameters for 370

T iterations of DP-SGD as RDP-ACCOUNT(T, q,ψ) : 371

= T · RDPT=1(·). 372

Step 3: Conversion to (ε, δ)-DP. After obtaining an 373

expression for the overall RDP privacy parameter val- 374

ues, any (α, ε)-RDP guarantee can be converted into 375

(ε, δ)-DP. 376

Proposition 2 ([23]). If M satisfies (α, ε)-RDP for 377

α > 1, then for all δ > 0,M satisfies (ε+ log 1/δ
α−1 , δ)- 378

DP. 379

Since the ε privacy parameter of RDP is also a func- 380

tion of α, this last step involves optimizing for the α that 381

achieves smallest privacy parameter in Proposition 2. 382

3. Algorithmic framework 383

The overview of our algorithmic framework DP-auto- 384

GAN is shown in Fig. 1, and the full details are given 385

in Algorithm 2. 386

The algorithm takes in m raw data points, and pre- 387

processes these points into m vectors x1, . . . , xm ∈ 388
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Rn to be read by DP-auto-GAN, where usually n is389

very large. For example, categorical data may be pre-390

processed using one-hot encoding, or text may be con-391

verted into high-dimensional vectors. Similarly, the392

output of DP-auto-GAN can be post-processed from393

Rn back to the data’s original form. We assume that394

this pre- and post-processing can done based on public395

knowledge, such as possible categories for qualitative396

features and reasonable bounds on quantitative features,397

and therefore do not incur a privacy cost.398

Within the DP-auto-GAN, there are two main compo-399

nents: the autoencoder and the GAN. The autoencoder400

serves to reduce the dimension of the data to d � n401

before it is fed into the GAN. The GAN consists of a402

generator that takes in noise z sampled from a distribu-403

tion Z and produces Gw(z) ∈ Rd, and a discriminator404

Dy(·) : Rn → {0, 1}. Because of the autoencoder, the405

generator only needs to synthesize data based on the406

latent distribution in Rd, which is much easier than syn-407

thesizing in Rn. Both components of our architecture,408

as well as our algorithm’s overall privacy guarantee, are409

described in the remainder of this section.410

3.1. Autoencoder framework and training411

An autoencoder consists of an encoder Enφ(·) :412

Rn → Rd and a decoder Deθ(·) : Rd → Rn413

parametrized by weights φ, θ respectively. The architec-414

ture of the autoencoder assumes that high-dimensional415

data xi ∈ Rn can be represented compactly in a416

low-dimensional latent space Rd. The encoder Enφ is417

trained to find such low-dimensional representations,418

and the decoder Deθ maps Enφ(xi) in the latent space419

back to xi. A natural measure of the information pre-420

served in this process is the error between the decoder’s421

image and the original xi. A good autoencoder should422

minimize the distance dist(Deθ(Enφ(xi)), xi) for each423

point xi for an appropriate distance function dist. Our424

autoencoder uses binary cross entropy loss: dist(x, y) =425

−
∑n
j=1 y(j) log(x(j))−

∑n
j=1(1−y(j)) log(1−x(j)),426

where x(j) is the jth coordinate of the data x ∈ [0, 1]n427

after our preprocessing.428

This motivates a definition of a (true) loss function429

Ex∼ZX
[dist(Deθ(Enφ(x)), x)] when data are drawn in-430

dependently from an underlying distribution ZX . The431

corresponding empirical loss function when we have an432

access to sample {xi}mi=1 is433

Lauto(φ, θ) :=
∑m
i=1 dist(Deθ(Enφ(xi)), xi). (2)

Finding a good autoencoder requires optimizing φ434

and θ to yield small empirical loss in Eq. (2).435

Algorithm 2: DPAUTOGAN (full procedure)
1: architecture input: Sensitive dataset D ∈ Xm where X is

the (raw) data universe, preprocessed data dimension n, latent
space dimension d, preprocessing function Pre : X → Rn,
post-processing function Post : Rn → X , encoder architecture
Enφ : Rn → Rd parameterized by φ, decoder architecture Deθ :

Rd → Rn parameterized by θ, generator’s noise distribution Z
on sample space Ω(Z), generator architecture Gw : Ω(Z) →
Rd parameterized by w, discriminator architecture Dy : Rn →
{0, 1} parameterized by y.

2: autoencoder training parameters: Learning rate η1, number of
iteration rounds (or optimization steps) T1, loss function Lauto,
optimization method OPTIMauto batch sampling rate q1 (for batch
expectation size b1 = q1m), clipping norm C1, noise multiplier
ψ1, microbatch size r1

3: generator training parameters: Learning rate η2, batch size
b2, loss function LG, optimization method OPTIMG, number of
generator iteration rounds (or optimization steps) T2

4: discriminator training parameters: Learning rate η3, number
of discriminator iterations per generator step tD , loss function
LD , optimization method OPTIMD , batch sampling rate q3 (for
batch expectation size b3 = q3m), clipping norm C3, noise
multiplier ψ3, microbatch size r3

5: privacy parameter δ > 0
6: procedure DPautoGAN
7: X ← Pre(D)
8: Initialize φ, θ, w, y for Enφ,Deθ, Gw, Dy
9: . Phase 1: autoencoder training

10: for t = 1 . . . T1 do
11: DPTRAINAUTO(X , En, De, autoencoder training parameters)

. Phase 2: GAN training
12: for t = 1 . . . T2 do
13: for j = 1 . . . tD do

. (privately) train Dy for tD iterations
14: DPTRAINDISCRIMINATOR(X,Z,G,De, D, discriminator

training parameters)
15: TRAINGENERATOR(Z,G,De,D, generator training parame-

ters)
. Privacy accounting

16: RDPauto(·)← RDP-ACCOUNT(T1, q1, ψ1, r1)
17: RDPD(·)← RDP-ACCOUNT(T2 · tD, q3, ψ3, r3)
18: ε←GET-EPS(RDPauto(·) + RDPD(·))
19: return model (Gw,Deθ), privacy (ε, δ)

We minimize Eq. (2) privately using DP-SGD (Sec- 436

tion 2.1). Our approach follows previous work on pri- 437

vate training of autoencoders [10,11,16] by adding 438

noise to both the encoder and decoder. In our DP-auto- 439

GAN framework, the autoencoder is trained first until 440

completion, and is then fixed while training the GAN. 441

As noted earlier, the decoder is trained privately by 442

clipping gradient norm and injecting Gaussian noise in 443

order to obtain the gradient of decoder gθ, while the 444

gradient of encoder gφ can be used directly as encoder 445

can be trained non-privately. 446

3.2. GAN framework and training 447

A GAN consists of a generator Gw and a discrim- 448

inator Dy : Rn → {0, 1}, parameterized respectively 449
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Algorithm 3: DPTRAINAUTO(X , Enφ, Deθ , training parameters)

1: training parameter input: Learning rate η1, number of itera-
tion rounds (or optimization steps) T1, loss function Lauto, opti-
mization method OPTIMauto batch sampling rate q1 (for the batch
expectation size b1 = q1m), clipping norm C1, noise multiplier
ψ1, microbatch size r1

2: goal: train one step of autoencoder (Enφ,Deθ)
3: procedure DPTRAINAUTO

4: B ← SAMPLEBATCH(X, q1)
5: Partition R into B1, . . . , Bk each of size r (ignoring the

dividend)
6: k̂ ← q1m

r
. an estimate of k

7: for j = 1 . . . k do
. Both gjφ, g

j
θ can be computed in one backpropagation

8: gjφ, g
j
θ ← ∇φ(Lauto(Deθ(Enφ(Bj)), Bj)),

∇θ(Lauto(Deθ(Enφ(Bj)), Bj)

9: gφ ← 1

k̂

∑k
j=1 g

j
φ

10: gθ← 1

k̂

((∑k
j=1 CLIP(gjφ, C1)

)
+N (0, C2

1ψ
2
1I)
)

11: (φ, θ)← OPTIMauto(φ, θ, gφ, gθ, η1)

by weights w and y. The aim of the generator Gw is to450

synthesize (fake) data similar to the real dataset, while451

the discriminator aims to determine whether an input452

xi is from the generator’s synthesized data (and assign453

label Dy(xi) = 0) or is real data (and assign label454

Dy(xi) = 1). The generator is seeded with a random455

noise z ∼ Z that contains no information about the456

real dataset, such as a multivariate Gaussian vector, and457

aims to generate a distribution Gw(z) that is hard for458

Dy to distinguish from the real data. Hence, the gener-459

ator wants to minimize the probability that Dy makes460

a correct guess, Ez∼Z [1−Dy(Gw(z))]. The discrim-461

inator wants to maximize its probability of a correct462

guess, which is Ez∼Z [1−Dy(Gw(z))] when the datum463

is fake and Ex∼ZX
[Dy(x)] when it is real.464

We extend the binary output of Dy to a continuous465

range [0, 1], with the value indicating the confidence466

that a sample is real. We use the zero-sum objective467

for the discriminator and generator [34], which is moti-468

vated by the Wasserstein distance of two distributions.469

Although the proposed Wasserstein objective cannot be470

computed exactly, it can be approximated by optimiz-471

ing:472

miny maxw O(y, w) := Ex∼ZX
[Dy(x)]

−Ez∼Z [Dy(Gw(z))]. (3)

We optimize Eq. (3) privately using the DP-SGD473

framework described in Section 2.1. We differ from474

prior work on DP-GANs in that our generator Gw(·)475

outputs data Gw(z) in the latent space Rd, which476

needs to be decoded by the fixed (pre-trained) Deθ to477

Deθ(Gw(z)) before being fed into the discriminator478

Dy(z). The gradient ∇wGw is obtained by backpropa- 479

gation through this additional component Deθ(·). 480

As suggested by [24], the discriminator trained 481

for several iterations per one iteration of generator 482

training. While the discriminator is being trained, the 483

generator is fixed, and vice-versa. The discriminator 484

and generator training are described in Algorithms 4 485

(DPTRAINDISCRIMINATOR) and 5 (TRAINGENERATOR) re- 486

spectively. Since the discriminator receives real data 487

samples as input for training, the training is made dif- 488

ferentially private by clipping the norm of the gradient 489

updates, and adding Gaussian noise to the gradient g. 490

The generator does not use any real data in training 491

(or any functions of the real data that were computed 492

without differential privacy), and hence it can be trained 493

without any need to clip the gradient norm or to inject 494

noise into the gradient. 495

Algorithm 4: DPTRAINDISCRIMINATOR(X , Z, Gw,Deθ , Dy , train-
ing parameters)
1: training parameter input: Learning rate η3, number of discrim-

inator iterations per generator step tD , loss function LD , opti-
mization method OPTIMD , batch sampling rate q3 (for the batch
expectation size b3 = q3m), clipping norm C3, noise multiplier
ψ3, microbatch size r3

2: goal: train one step of discriminator Dy
3: procedure DPTRAINDISCRIMINATOR

4: B ← SAMPLEBATCH(X, q3)
5: Partition R into B1, . . . , Bk each of size r (ignoring the

dividend)
6: k̂ ← q1m

r
. an estimate of k

7: for j = 1 . . . k do
8: {zi}ri=1 ∼ Zr
9: B′ ← {De(Gw(zi))}ri=1

10: gj ← ∇y(LD(Bj , B
′, Dy))

. In the case of WGAN,

LD(Bj , B
′, Dy) : =

1

r

∑
b∈Bj

Dy(b)−

1

r

∑
b′∈B′

Dy(b′)

11: g ← 1

k̂

((∑k
j=1 CLIP(gj , C3)

)
+N (0, C2

3ψ
2
3I)
)

12: y ← OPTIMD(y, g, η3)

After this two-phase training (of the autoencoder 496

and GAN), the noise distribution Z, trained generator 497

Gw(·), and trained decoder Deθ(·) are released to the 498

public. The public can sample z ∼ Z to obtain a syn- 499

thesized datapoint Deθ(Gy(z)) repeatedly to obtain a 500

synthetic dataset of any desired size. 501

3.3. Privacy accounting 502

We use Renyi Differential Privacy (RDP) of [23], to 503

account for privacy in each phase of training as in prior 504
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Algorithm 5: TRAINGENERATOR(Z,Gw,Deθ, Dy , generator training
parameters)
1: training parameter input: Learning rate η2, batch size b2, loss

functionLG, optimization method OPTIMG, number of generator
iteration rounds (or optimization steps) T2

2: goal: train one step of generator Gw
3: procedure TRAINGENERATOR

4: {zi}b2i=1 ∼ Z
b2

5: B′ ← {De(Gw(zi))}b2i=1
6: g ← ∇w(LG(B′, Dy))

. In the case of WGAN,

LG(B′, Dy) := −
1

b2

∑
b′∈B′

Dy(b′)

7: w ← OPTIMG(w, g, η2)

works. Our autoencoder and GAN are trained privately505

by clipping gradients and adding noise to the encoder,506

decoder, and discriminator. Since the generator only507

accesses data through the discriminator’s (privatized)508

output and Deθ is first trained privately and then fixed509

during GAN training, the trained parameters of gen-510

erator are also private by post-processing guarantees511

of differential privacy. Privacy accounting is therefore512

required for only two parts that access real data X:513

training of the autoencoder and of the discriminator.514

In each training procedure, we apply the RDP accoun-515

tant described in Section 2.2, to analyze privacy of the516

DP-SGD training algorithm.517

The RDP accountant is a function r : [1,∞)→ R+518

and guarantees (ε, δ)-DP for any given δ > 0 with519

ε = minα>1 r(α) + log 1/δ
α−1 ( [23]; also used in Tensor-520

flow Privacy [49]). Hence, at the end of two-phase train-521

ing, we have two RDP accountants r1, r2. We compose522

two RDP accountants before converting the combined523

accountant into (ε, δ)-DP. Note that another method524

used in DP-SYN [10] first converts ri to (εi, δi)-DP525

and then combines them into (ε1 + ε2, δ1 + δ2)-DP by526

basic composition [5]. For completeness, we show that527

composing RDP accountants first always results in a528

better privacy analysis.529

Lemma 1. Let M1,M2 be any mechanisms and530

r1, r2 : [1,∞) → R+ ∪ {∞} be functions such that531

M1,M2 are (α, r1(α))- and (α, r2(α))-RDP, respec-532

tively. Let δ ∈ (0, 1] and let533

ε1 = min
α>1

r1(α) +
log(2/δ)

α− 1
,

ε2 = min
α>1

r2(α) +
log(2/δ)

α− 1
,

and

ε = min
α>1

r1(α) + r2(α) +
log(1/δ)

α− 1
.

ThenM1 is (ε1, δ/2)-DP,M2 is (ε2, δ/2)-DP, and 534

the composition M = (M1,M2) is (ε, δ)-DP. If ε1 535

and ε2 are finite, then ε < ε1 + ε2. 536

Proof. Let 537

α∗1 ∈ arg minα>1r1(α) +
log(2/δ)

α− 1

and

α∗2 ∈ min
α>1

r2(α) +
log(2/δ)

α− 1

and let α = min{α∗1, α∗2}. Then, we have 538

ε 6 r1(α) + r2(α) +
log(1/δ)

α− 1

6 r1(α∗1) + r2(α∗2) +
log(1/δ)

α− 1

= ε1 + ε2 +
log(1/δ)

α− 1
− log(2/δ)

α∗1 − 1

− log(2/δ)

α∗2 − 1
< ε1 + ε2

where the two inequalities use the definitions of ε1, ε2, 539

ε, and the second inequality uses the fact that ri is an 540

increasing function of α [50]. 541

For most settings of training parameters, we found 542

that ε by RDP composition in Lemma 1 is ≈ 30% 543

smaller than that of the standard composition (see Fig. 2 544

for this privacy saving in our DP-auto-GAN ε = 0.51 545

ADULT setting). The observation can be support by 546

theoretical analysis as follows. It is observed in [51] 547

that ri(α) appears linear until a phase transition at some 548

α, and is close to linear again. In our parameter settings, 549

the optimal order to achieve smallest ε is before the 550

phase transition, and thus ri(α) “practically” behaves 551

linear as the privacy analysis never uses ri(α) at α be- 552

yond the phase transition. This is illustrated in Fig. 3 553

by an example of our DP-auto-GAN ε = 0.51 ADULT 554

setting. 555

Assuming linear ri(α) = ciα, we can compute the 556

analytical solutions: 557

ε1 = c1 + 2
√
c1 log 2/δ,

ε2 = c2 + 2
√
c2 log 2/δ,

ε = c1 + c2 + 2
√

(c1 + c2) log 1/δ

In practice, δ is small compared to ci’s and the term 558√
ci log 1/δ dominates. Hence, ε2 ≈ ε21 + ε22, and for 559

many settings where we set ε1 close to ε2 (such as in our 560

setting or DP-SYN [10]), this implies ε ≈ 0.707(ε1 + 561

ε2), an approximately 30% reduction of privacy cost. 562
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Fig. 2. Privacy ε for different training phases of the algorithm in
ε = 0.51 DP-auto-GAN parameter setting for ADULT data: the
sampling rate q and noise multiplier ψ for autoencoder and GAN are
q = 64

32561
, ψ = 2.5 and q = 128

32561
, ψ = 7.5, respectively. We

target δ = 10−5 overall and δ = 1
2
· 10−5 for each training phase.

4. Evaluation metrics for synthetic data563

In this section, we review the evaluation schemes for564

measuring quality of synthetic data in existing literature.565

Various evaluation metrics have been considered in the566

literature to quantify the quality of synthetic data [46].567

Broadly, evaluation metrics can be divided into two568

major categories: supervised and unsupervised. Super-569

vised evaluation metrics are used when clear distinc-570

tions exist between features and labels in the dataset,571

e.g., for healthcare applications, whether a person has572

a disease or not could be a natural label. Unsupervised573

evaluation metrics are used when no feature of the data574

can be decisively termed as a label. For example, a data575

analyst who wants to learn a pattern from synthetic data576

may not know what specific prediction tasks to perform,577

but rather wants to explore the data using an unsuper-578

vised algorithm such as Principle Component Analy-579

sis (PCA). Unsupervised metrics can then be divided580

into three broad types: prediction-based, distributional-581

distance-based, and qualitative (or visualization-based).582

We describe supervised evaluation metrics and all three583

types of unsupervised evaluation metrics below. Metrics584

in previous work and our proposed metrics in this paper585

are summarized in Table 2.586

Various evaluation metrics have been considered in587

the literature to evaluate the quality of the synthetic588

data (see Charest [46] for a survey). The metrics can589

be broadly categorized into two groups: supervised and590

unsupervised. Supervised evaluation metrics are used591

when there are clear distinctions between features and592

labels of the dataset, e.g., for healthcare applications, a593

person’s disease status is a natural label. In these set-594

tings, a predictive model is typically trained on the syn- 595

thetic data, and its accuracy is measured with respect to 596

the real (test) dataset. Unsupervised evaluation metrics 597

are used when no feature of the data can be decisively 598

termed as a label. Recently proposed metrics include 599

dimension-wise probability for binary data [47], which 600

compares the marginal distribution of real and synthetic 601

data on each individual feature, and dimension-wise 602

prediction, which measures how closely synthetic data 603

captures relationships between features in the real data. 604

This metric was proposed for binary data, and we ex- 605

tend it here to mixed-type data. Recently, NIST [44] 606

used a 3-way marginal evaluation metric which used 607

three random features of the real and synthetic datasets 608

to compute the total variation distance as a statistical 609

score. 610

Supervised evaluation metrics. The main aim of 611

generating synthetic data in a supervised setting is to 612

best understand the relationship between features and 613

labels. A popular metric for such cases is to train a ma- 614

chine learning model on the synthetic data and report 615

its accuracy on the real test data [15]. Zhang et al. [43] 616

used inception scores on the image data with classifica- 617

tion tasks. Inception scores were proposed in Salimans 618

et al. [27] for images which measure quality as well as 619

diversity of the generated samples. Another metric used 620

in Jordon et al. [41] reports whether the accuracy rank- 621

ing of different machine learning models trained on the 622

real data is preserved when the same machine learning 623

model is trained on the synthetic data. Although these 624

metrics are used for classification in the literature, they 625

can be easily generalized to the regression setting. 626

In the DP setting of synthetic data generation, su- 627

pervised metrics also differ from unsupervised in that 628

the label feature is sometimes treated as public (e.g. 629

in DP-SYN [10]), whereas in unsupervised setting, all 630

features are treated as private. We note it as this may 631

create a slight difference in privacy accounting. 632

Unsupervised evaluation metrics, prediction- 633

based. Rather than measuring accuracy by predicting 634

one particular feature as in supervised-setting, one can 635

predict every individual feature using the rest of fea- 636

tures. The prediction score is therefore created for each 637

single feature, creating a list of dimension- (or feature-) 638

wise prediction scores. Good synthetic data should have 639

similar dimension-wise prediction scores to that of the 640

real data. Intuitively, similar dimension-wise predic- 641

tion shows that synthetic data correctly captures inter- 642

feature relationships in the real data. 643

One metric of this type is proposed by Choi et al. [47] 644

for binary data. Although it was originally proposed 645
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Fig. 3. RDP values over different order α for ε = 0.51 DP-autho-GAN parameter setting for ADULT data: the sampling rate q, noise multiplier ψ,
and T the number of training iterations for autoencoder and GAN are q = 64

32561
, ψ = 2.5, T = 10000 and q = 128

32561
, ψ = 7.5, T = 15000,

respectively. The phase transitions (spikes of RDP value) for autoencoder and GAN appear at α = 79 and α = 624. The optimal order for smallest
ε for autoencoder and GAN analysis targeting δ = 1

2
10−5 are 60 and 77, below the phase transitions.

for binary data, we extend this to mixed-type data by646

allowing varieties of predictive models appropriate for647

each data type present in the dataset. For each feature,648

we try predictive models on the real dataset in order649

of increasing complexity until a good accuracy score650

is achieved. For example, to predict a real-valued fea-651

ture, we first used a linear classifier and then a neural652

network predictor. This ensures that a choice of pre-653

dictive model is appropriate to the feature. Synthetic654

data is then evaluated by measuring the accuracy of655

the same predictive model (trained on the real data) on656

the synthetic data. Similarly high accuracy scores on657

synthetic data and real data indicates that the synthetic658

data closely approximates the real data.659

Zhang et al. [43] provides an unsupervised Jensen-660

Shannon score metric which measures the Jensen-661

Shannon divergence between the output of a discrimi-662

nating neural network on the real and synthetic datasets,663

and a Bernoulli random variable with 0.5 probability.664

This metric differs from dimension-wise prediction in665

that the predictive model (discriminator) is trained over666

the whole dataset at once, rather than dimension-wise, 667

to obtain a score. 668

Diversity metric. Inception score is one common 669

metric for evaluating the quality of data generated by 670

GAN [52]. Both inception and Jensen-Shannon scores 671

aim to capture both the accuracy and diversity of gener- 672

ated data through comparing the distributions of predic- 673

tions by a fixed classifier on original and synthetic data. 674

Inception score is similar to µ-smoothed KL divergence 675

we propose in Section 5, but we apply it to discrete 676

distribution and use a smoothing to avoid divergence 677

being undefined. Our metric also differs from inception 678

scores in that it is based on the distributions of syn- 679

thetic and original data, and not on predictions on those 680

datasets by any classifier. We observed that introducing 681

a classifer can itself be a reason for lack of diversity, and 682

concern that a predictive model in general can intro- 683

duce bias and unfairness in other forms. For example, 684

we found that in a categorical feature with one strong 685

majority class, the classifier predicts only the major- 686

ity to maximize a standard notion of "accuracy," hence 687
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making a synthetic data that ignore minority classes688

represent the original data perfectly well, as predictions689

on synthetic and original data are identical. Therefore,690

for diversity applications, we prefer distribution-based691

metric to a distribution-based metric.692

Moreover, we aim our metric to be appropriate in693

differential privacy setting. A natural metric to penalize694

missing a minority class is KL divergence, as used in695

the definitions of inception and Jensen-Shannon scores.696

However, it is impossible for a private model to recog-697

nize if a minority exists if the class is really small, sim-698

ply due to the definition of differential privacy (unless699

the algorithm assumes existence of all possible classes700

in the dataset, but this would greatly impact accuracy as701

the number of classes increase). Bagdasaryan et al. [53]702

observed a phenomena that differentially private train-703

ing indeed impacts minority classes more than majority704

class, as we also observed in our work. Missing a mi-705

nority class, therefore, is sometimes unavoidable with706

DP guarantees. Since missing any class makes KL di-707

vergence undefined, we added a smoothing term to KL708

divergence so that the penality of missing a minority709

class is finite, yet significant.710

Unsupervised evaluation metrics, distributional-711

based. One way to evaluate the quality of synthetic data712

is computing a dimension-wise probability distribution,713

which was also proposed in Choi et al. [47] for binary714

data. This metric compares the marginal distribution715

of real and synthetic data on each individual feature.716

Below we survey other metrics in this class that can717

extend to mixed-type data.718

3-Way Marginal: Recently, the NIST [44] challenge719

used a 3-way marginal evaluation metric in which three720

random features of the real and synthetic data R,S are721

used to compute the total variation distance as a statis-722

tical score. This process is repeated a few times and fi-723

nally, average score is returned. In particular, values for724

each of the three features are partitioned in 100 disjoint725

bins as follows:726

BiR,k =

⌊
(Rik −Rk,min) ∗ 100

Rk,max −Rk,min

⌋
and727

BiS,k =

⌊
(Sik −Rk,min) ∗ 100

Rk,max −Rk,min

⌋
,

where Rik, S
i
k is the value of i-th datapoint’s k-th fea-728

ture in datasets R and S, and Rk,min, Rk,max are re-729

spectively the minimum and maximum value of the k-th730

feature in R. For example, if k = 1, 2, 3 are the se-731

lected features then i-th data points of R and S are put732

into bins identified by a 3-tuple, (BiR,1, B
i
R,2, B

i
R,3) 733

and (BiS,1, B
i
S,2, B

i
S,3), respectively. 734

Let BR,BS be the set of all 3-tuple bins in datasets 735

R and S, and let |B| denote number of datapoints in 3- 736

tuple bin B, normalized by total number of data points. 737

Then, the 3-way marginal metric reports the `1-norm of 738

the bin-wise difference of BR and BS as follows: 739∑
B1∈BR

∑
B2∈BS

I{B1∈BS}I{B2=B1}||B1| − |B2||

+
∑

B1∈BR

(1− I{B1∈BS})|B1|

+
∑

B2∈BS

(1− I{B2∈BR})|B2|.

Both aforementioned metrics (dimension-wise prob- 740

ability from [47] and 3-way marginal from [44]) involve 741

two steps. First, a projection (or a selection of features) 742

of data is specified, and second some statistical distance 743

or visualization of synthetic and real data in the pro- 744

jected space is computed. Dimension-wise probability 745

for binary data corresponds to projecting data into each 746

single dimension, and visualizing synthetic and real 747

distributions in projected space by histograms (for bi- 748

nary data, the histogram can be specified by one single 749

number: probability of the feature being 1). The 3-way 750

marginal metric first selects a three-dimensional space 751

specified by three features as a space into which data 752

projected, discretizes the synthetic and real distributions 753

on that space, then computes a total variation distance 754

between discretized distributions. We can generalize 755

these two steps process and conceptually design a new 756

metric as follows. 757

Generalization of data projection: One can general- 758

ize selection of 3 features (3-way marginal) to any k 759

features (k-way marginal). However, one can also select 760

k principle components instead of k features. We distin- 761

guish these as k-way feature marginal (projection onto 762

a space spanned by feature dimensions) and k-way PCA 763

marginal (projection onto a space spanned by principle 764

components of the original dataset). Intuitively, k-way 765

PCA marginal best compresses the information of the 766

real data into a small k-dimensional space, and hence is 767

a better candidate for comparing projected distributions. 768

Generalization of distributional distance: Total vari- 769

ation distance can be misleading as it does not encode 770

any information on the distance between the supports of 771

two distributions. In general, one can define any metric 772

of choice (optionally with discretization) on two pro- 773

jected distributions, such as Wasserstein distance which 774

also depends on the distance between the supports of 775

the two distributions. 776
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Computing distributional distance: The distance be-777

tween two distributions can also be computed with-778

out any data projections. Computing an exact statistical779

score on high-dimensional datasets is likely computa-780

tionally hard. However, one can, for example, subsam-781

ple uniformly at random points from two distributions782

to compute the score more efficiently, then average this783

distance over many iterations.784

Unsupervised evaluation metrics, qualitative. As785

described above, dimension-wise probability is a spe-786

cific application of comparing histograms under binary787

data. One can plot histograms of each feature (1-way788

feature marginal) for inspection. In practice, histogram789

visualization is particularly helpful when a feature is790

strongly skewed, sparse (majority zero), and/or hard to791

predict well by predictive models. An example of this792

occurred when predictive models do not have mean-793

ingful predictive accuracy on certain features of the794

ADULT dataset, making prediction-based metric in-795

appropriate. Instead, inspection of histograms of those796

features on synthetic and real data (as in Fig. 12) indi-797

cate that synthetic data replicates those features well.798

In addition, 2-way PCA marginal is a visual repre-799

sentation of data that explains as much variance as pos-800

sible in a plane, providing a good trade-off between801

information and ease of visualization on two datasets.802

This visualization can be augmented with a distribu-803

tional distance of choice over the two distributions on804

these two spaces to get a quantitative metric.805

4.1. Background on evaluation metrics used in806

experiments807

Here, we discuss in more technical details the evalua-808

tion metrics that we use in the experiments in Section 5809

and in our paper to empirically measure the quality of810

the synthetic data. Some of these metrics have been811

used in the literature, while 2-way PCA is novel in this812

work. Another novel metric µ-smooth KL divergence813

is described in Section 5.814

For the following two metrics, the dataset should be815

partitioned into a training set R ∈ Rm1×n and testing816

set T ∈ Rm2×n, where m = m1 + m2 is the total817

number of samples the real data, and n is the number of818

features in the data. After training, the generative model819

creates a synthetic dataset S ∈ Rm3×n for sufficiently820

large m3.821

Dimension-wise probability. When the feature is822

binary, we compares the proportion of 1’s (which can823

be thought of as estimators of Bernoulli success proba-824

bility) in each feature of the training setR and synthetic825

dataset S, i.e. the marginal distribution of each feature. 826

For each feature, the closer the proportion of 1’s in the 827

original dataset is to that of synthetic dataset, the better. 828

Dimension-wise prediction. This metric evaluates 829

whether synthetic data maintain relationships between 830

features. For the k-th feature of training set R and syn- 831

thetic dataset S, we choose yRk
∈ Rm1 and ySk

∈ Rm2 832

as labels of a classification or regression task based on 833

the type of that feature, and the remaining features R−k 834

and S−k are used for prediction. We train either a clas- 835

sification or regression model on R−k and S−k, and 836

measure goodness of fit based on the model’s accuracy 837

by testing on T . That is, we “train on synthetic, test on 838

original” to evaluate the quality of synthetic data. The 839

closer of accuracy scores obtained from original and 840

synthetic data, the better. 841

Model accuracy can be reported using AUROC, F1, 842

or R2 scores, as appropriate. We describe the model’s 843

accuracy as follows: 844

1. Area under the ROC curve (AUROC) score and 845

F1 score for classification: The F1 score of a clas- 846

sifier is defined as F1 := 2×precision×recall
precision+recall , where 847

precision is ratio of true positives to true and false 848

positives, and recall is ratio of true positives to 849

total true positives (i.e., true positives plus false 850

negatives). F1 score on multi-class features are 851

averaged using micro-averaging. AUROC score 852

is a graphical measure capturing the area under 853

ROC (receiver operating characteristic) curve, and 854

is only intended for binary data. Both metrics take 855

values in interval [0, 1] with larger values imply- 856

ing good fit. The ROC curve are pairs of true and 857

false positive rates obtained from setting different 858

thresholds at the classifier’s predicted probability. 859

Note that when the classifier is trained on the data 860

with one class and predicts always with proba- 861

bility 0 (or 1), ROC curve is a single pair, and 862

AUROC is thus undefined. 863

2. R2 score for regression: The R2 score is defined 864

as 1 −
∑

(yi − ŷi)2∑
(yi − ȳ)2

, where yi is the true label, 865

ŷi is the predicted label, and ȳ is the mean of the 866

true labels. This is a popular metric used to mea- 867

sure goodness of fit as well as future prediction 868

accuracy for regression. 869

1-Way feature marginal (histogram). We compute 870

probability distribution of the feature of interest of both 871

real and synthetic data. For continuous features, we par- 872

tition the range into intervals. This can be extended to k- 873

way feature marginals by considering joint distribution 874

over k features and made into a quantitative measure 875

by adding a distance measure between the histograms. 876
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We also propose the following novel qualitative eval-877

uation metric.878

2-Way PCA marginal. This metric generalizes the879

3-way marginal score used in NIST [44]. In particular,880

we compute principle components of the original data881

and evaluate a projection operator for first two principle882

components. Denote P ∈ Rn×2 the projection matrix883

such that R̄ = RP is the projection on first two principle884

components of R. After we fix P , we project synthetic885

data S̄ = SP and scatterplot 2-D points in R̄ and S̄886

for visual evaluation. That is, we train PCA from the887

original dataset, and use the same projection from this888

PCA on (possibly many) synthetic datasets.889

5. Experiments890

In this section, we empirically evaluate the perfor-891

mance of our DP-auto-GAN framework on the MIMIC-892

III [12] and ADULT [13] datasets, which have been893

used in prior works on differentially private synthetic894

data generation. We compare against these prior ap-895

proaches using a variety of qualitative and quanti-896

tative evaluation metrics, including some from prior897

work and some novel metrics we introduce. We tar-898

get δ = 10−5 in all settings, and all ε values reported899

that are rounded are rounded up to guarantee the valid-900

ity of privacy guarantee. All experimental details and901

additional experimental results can be found in Ap-902

pendices A and B, and our code is available at https://903

github.com/DPautoGAN/DPautoGAN.904

5.1. Binary data905

MIMIC-III [12] is a binary dataset consisting of med-906

ical records of 46,520 intensive care unit (ICU) patients907

over 11 years old with 1071 features. For the experi-908

ments, the data was partitioned in into train, validation,909

and test data sets of sizes 60%, 20%, 20%, respectively.910

Even though DP-auto-GAN can handle mixed-type911

data, we evaluate it first on MIMIC-III since this dataset912

has been used in similar non-private [47] and pri-913

vate [15] GAN frameworks. We apply the same evalua-914

tion metrics used in these papers, namely dimension-915

wise probability and dimension-wise prediction. Predic-916

tion is defined by AUROC score of a logistic regression917

classifier.918

Dimension-wise probability. Figure 4 shows the919

dimension-wise probability of DP-auto-GAN for dif-920

ferent ε. Each point in the figure corresponds to a fea-921

ture in the dataset, and the x and y coordinates respec-922

tively show the proportion of 1s in the real and synthetic 923

datasets. Points closer to the y = x line correspond to 924

better performance, because this indicates the distri- 925

bution is similar in the real and synthetic datasets. As 926

shown in Fig. 4, the proportion of 1’s in the marginal 927

distribution for is similar on the real and synthetic 928

datasets in the non-private (ε =∞) and private settings. 929

The marginal distributions of the privately generated 930

data from DP-auto-GAN remain a close approxima- 931

tion of the real dataset, even for small values of ε, be- 932

cause nearly all points fall close to the line y = x. We 933

note that our results are significantly stronger than the 934

ones obtained in [15] with ε ∈ [96.5, 231] because we 935

obtain dramatically better performance with ε values 936

that are two orders of magnitude smaller. For visual 937

performance comparison, see Fig. 4 of [15]. 938

Dimension-wise prediction. Figure 5 shows 939

dimension-wise prediction using DP-auto-GAN for dif- 940

ferent values of ε. Each point in the figure corresponds 941

to a feature in the dataset, and the x and y coordinates 942

respectively show the AUROC score of a logistic regres- 943

sion classifier trained on the real and synthetic datasets, 944

and points closer to the y = x line still correspond to 945

better performance. As shown in the figure, for ε =∞, 946

many points are concentrated along the lower side of 947

line y = x, which indicates that the AUROC score of 948

the real dataset is only marginally higher than that of 949

the synthetic dataset. When privacy is added, there is a 950

gradual shift downwards relative to the line y = x, with 951

larger variance in the plotted points, indicating that AU- 952

ROC scores of real and synthetic data show more dif- 953

ference when privacy is introduced. Surprisingly, there 954

is little degradation in performance for smaller ε values, 955

including ε = 0.81. For sparse features with few 1’s in 956

the data, the generative model will output all 0’s for that 957

feature, making AUROC ill-defined. We follow [15] by 958

excluding those features from dimension-wise predic- 959

tion plots. 960

Our results for DP-auto-GAN under this metric are 961

also significantly stronger than the ones obtained in [15] 962

with much larger ε values of ε ∈ [96.5,231]; for visual 963

performance comparison, see Fig. 5 of [15]. Our proba- 964

bility and prediction plots of DP-auto-GAN are either 965

comparable to or better than [15], with our prediction 966

plots detecting many more sparse features. The per- 967

formance of DP-auto-GAN degrades only slightly as ε 968

decreases and is achieved at much smaller ε values, giv- 969

ing a roughly 100x improvement in privacy compared 970

to [15]. 971

Dimension-wise prediction for sparse features. 972

MIMIC-III dataset contains several sparse features, i.e. 973
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Fig. 4. Dimension-wise probability scatterplots for different values of ε. Each point represents one of the 1071 features in the MIMIC-III dataset.
The x and y coordinates of each point are the proportion of 1s in real and synthetic datasets of a feature, respectively. The line y = x, which
represents ideal performance, is shown in each plot. Note that even for small ε values, performance is not degraded much relative to the non-private
method. Compare with Fig. 4 in [15], which provides worse performance for ε ∈ [96, 231].

Fig. 5. Dimension-wise prediction scatterplots for different values of ε. Each point represents one of the 1071 features in the MIMIC-III dataset.
The x and y coordinates of each point represent the AUROC score of a logistic regression classifier trained on real and synthetic datasets,
respectively. The line y = x corresponds to the ideal performance. Again we note that even for small ε values, performance is not degraded much
relative to the non-private method. Compare with Fig. 5 in [15], which provides worse performance for ε ∈ [96, 231].

Fig. 6. Dimension-wise prediction scatterplots of 925 of 1071 features which AUROC prediction scores are defined on the original dataset. AUROC
is not defined when the test set of the original data has only one class on that feature. Prediction scores are by a logistic regression classifier trained
on the original binary dataset MIMIC-III and on synthetic datasets generated by DP-auto-GAN at different privacy parameters ε.

features with small number of 1’s. In fact, we found974

that 146 features do not have any 1’s, and 706 more975

features have proportion of 1’s less than 1% in the orig-976

inal dataset. The presence of sparse features is a chal-977

lenge for prediction-based evaluation since the classi-978

fier accuracy is unstable on sparse features. Moreover,979

the prediction score is unmeaningful when the train or980

test dataset has only one class present, such as AUROC981

being undefined when one class is presented in the test982

data. Even when AUROC is defined, the sparsity of 1’s983

in dataset makes a classifier unable to learn anything 984

and give a score of 0.5, or perform worse than a random 985

classifer and give a score below 0.5, which is arguably 986

unmeaningful. 987

In our experiment, after an 80%/20% split into the 988

training and testing datasets, AUROC scores are not 989

defined on those 146 features with no 1’s in the original 990

dataset. Of the rest 925 features, 35 and 69 of those 991

have AUROC prediction scores exactly at and below 992

0.5, respectively, on the original dataset. All 104 of 993
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Fig. 7. Dimension-wise prediction scatterplots of 219 of 1071 features with at least 1% of 1’s, 127 features with at least 2.5% of 1’s, and 64
features with at least 5% of 1’s in the original dataset. Prediction scores are by a logistic regression classifier trained on the original binary dataset
MIMIC-III and on synthetic datasets generated by DP-auto-GAN at different privacy parameters ε.

those with unmeaningful AUROC have less than 0.2%994

proportion of 1’s in the original dataset. Figure 6 shows995

dimension-wise prediction scatterplots of full 925 of996

1071 features where AUROC is defined.997

When ε = ∞, DP-auto-GAN generates all 0’s in998

many of the sparse features in the synthetic dataset,999

including all 146 features with no 1’s in the original1000

datasets. Those features obtain scores of 0.5, giving1001

the horizontal line y = 0.5 in Fig. 6a. When noise is1002

injected, DP-auto-GAN generates few but enough of1003

1’s in all features that AUROC is not 0.5, and thus the1004

horizontal line is no longer present in Fig. 6b–d. The1005

vertical line x = 0.5 represents 69 features that the1006

classifier is unable to learn in the orignal dataset due to1007

the sparsity and learn from random noise injected in the1008

synthetic data generator.1009

Xie et al. [15] presented dimension-wise prediction1010

by deleting features which synthetic dataset contain1011

no 1’s. While this conveniently deletes points on the1012

horizontal and vertical lines, the features being deleted1013

are dependent on the synthetic dataset, which can ob-1014

scure the presentation of its quality. For example, if 1015

the generator performs poorly on non-sparse features 1016

by outputting only one class, that feature is not on the 1017

plot rather than being presented as far away from the 1018

line y = x. Since we observe that prediction scores on 1019

sparse features are unstable, thus necessarily showing 1020

large variances in the context of differential privacy, 1021

we propose to delete features whose proportions of 1’s 1022

in the original dataset are below a threshold. The set 1023

of deleted feature is therefore fixed and independent 1024

of synthetic data to be evaluated. In Fig. 7, we show 1025

dimension-wise prediction scatterplots of MIMIC-III 1026

dataset with the thresholds set at 1%, 2.5%, and 5%. 1027

We are able to more clearly see the performance of 1028

DP-auto-GAN than plotting all 925 features and better 1029

observe a slight change of performance as ε decreases 1030

across three ε values. 1031

5.2. Mixed-type data 1032

ADULT dataset [13] is an extract of the U.S. Census 1033

of 48K working adults, consisting of mixed-type data: 1034
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Fig. 8. Dimension-wise prediction scatterplot of all (applicable) features of ADULT dataset for different ε values and algorithms. The line y = x
represents ideal performance. Blue, green, and red points respectively correspond to unlabeled categorical, labeled binary, and continuous features.
Brown points indicate the synthetic data exhibit no diversity (i.e., all data points have the same category). Note that DP-SYN has several features
without diversity. Red points with R2 scores close to zero in the original data have unstable (and unmeaningful) synthetic R2 scores due to
the sparse nature of those features in the original data, and some of these R2 scores fall outside of the plotted range. The implementation of
DP-WGAN in [14] did not allow continuous features, and the implementation of DP-SYN in [10] converted two continuous features to categorical;
see Appendix B for more details.

nine categorical features (one of which is a binary la-1035

bel) and four continuous. This dataset has been used to1036

evaluate DP-WGAN [14] and DP-SYN [10]. We com-1037

pare DP-auto-GAN against these methods, as well as1038

DP-VAE [16]. We target ε = 1.01, 0.51, 0.36. For DP-1039

SYN, we allow ε = 1.4 ,0.8, 0.5 because their imple-1040

mentation uses standard privacy composition, which is 1041

looser than than RDP composition (Lemma 1). These 1042

larger ε values provide comparable privacy guarantees 1043

to the smaller ε values achieved by RDP composition, 1044

and allow for a fair comparison of architectures without 1045

modifying the implementation in [10]. For more details, 1046



Galley Proof 3/12/2021; 10:00 File: idt–1-idt210195.tex; BOKCTP/ljl p. 18

18 U.T. Tantipongpipat et al. / Differentially private synthetic mixed-type data generation for unsupervised learning

see Appendix B.4.1047

Dimension-wise prediction. Figure 8 compares the1048

performance of DP-auto-GAN with these three prior1049

algorithms for the task of dimension-wise prediction.1050

For categorical features (represented by blue points and1051

a single green point), we use a random forest classifier1052

for prediction as in [14], and we measure performance1053

using F1 score, which is more appropriate than AU-1054

ROC for multi-class prediction. For continuous features1055

(represented by red points), we used Lasso regression1056

and report R2 scores. The green point corresponds to1057

the salary feature of the data, which is real-valued but1058

treated as binary based on the condition > $50 k, which1059

was similarly used as a binary label in [14]. We use1060

brown points to indicate the categorical features for1061

which the synthetic data exhibit no diversity, where1062

all synthetic data points have the same category. We1063

explore metrics for measuring diversity later in this1064

section.1065

Note that in Fig. 8, there are not four red points in1066

each plot (corresponding to the four continuous features1067

of the dataset). While AUROC for the binary features is1068

always supported on [0, 1], the R2 score for real-valued1069

features can be negative if the predictive model is poor,1070

and these values for these missing points fell outside1071

the range of Fig. 8. These features are explored later in1072

Fig. 11, using 1-way marginals as a qualitative metric.1073

Each point in Fig. 8 corresponds to one feature, and1074

the x and y coordinates respectively show the accu-1075

racy score on the real data and the synthetic data. Fig-1076

ure 8 shows that DP-auto-GAN achieves considerable1077

performance for all ε values tested. As expected, its1078

performance degrades as ε decreases, but not substan-1079

tially. DP-WGAN [14] performs well at ε = 1.01, but1080

its performance degrades rapidly with smaller ε. This1081

is consistent with [14], which uses higher ε = 3, 7.1082

DP-auto-GAN outperforms DP-VAE [16] across all ε1083

values. DP-SYN [10] is able to capture relationships1084

between features well even for small ε using this metric.1085

1-Way marginal and diversity divergence. While1086

DP-SYN has good dimension-wise prediction, this does1087

not capture diversity, a concern of bias known for DP-1088

SGD ( [53]). For features with a large majority class1089

and many minority classes, the classifier often predicts1090

the majority class with probability one. We found that1091

for four features, DP-SYN generates data from only1092

one class, whereas all other algorithms do not behave1093

this way for any feature. Lack of diversity in synthetic1094

data can raise fairness concerns, as societal decisions1095

based on the private synthetic data will inevitably ignore1096

minority groups.1097

We start by turning to 1-way marginal as a method of 1098

evaluation, which is able to detect such issues and give 1099

another perspective of synthetic data. Figure 9 shows 1100

histograms of synthetic data from the four algorithms 1101

on two categorical features: marital-status and race. 1102

Marital-status distributes more evenly across categories, 1103

and DP-VAE, DP-SYN and DP-auto-GAN are able to 1104

learn this distribution well. Race, on the other hand, has 1105

an 85.5% majority; DP-SYN only generated data from 1106

the majority class, whereas DP-auto-GAN and DP-VAE 1107

were able to detect the existence of minority classes. 1108

DP-WGAN suffered similar issues on the marital status 1109

feature. 1110

Figure 10 shows similar histograms for the native- 1111

country feature of the ADULT dataset, where the ma- 1112

jority class constitutes > 85% of the population. Each 1113

of the 41 minority classes in native-country constitute 1114

less than 2% in the original dataset, with most of them 1115

weighing less than 0.2% of the population. DP-auto- 1116

GAN and DP-WGAN are able to capture some minor- 1117

ity classes. DP-VAE was unable to accurately learn the 1118

majority structure and significantly overestimates the 1119

weight on all minority classes, which greatly impacts 1120

the estimate of the majority class. DP-SYN did not 1121

capture an existence of any minority classes. 1122

A standard measure for diversity between the origi- 1123

nal distribution P and synthetic distribution Q includes 1124

Kullback-Leibler (KL) divergence DKL(P ||Q). Under 1125

differential privacy the support of P is a private infor- 1126

mation, so the private synthetic data inherently cannot 1127

ensure its support to align with the original data. This 1128

makes DKL(P ||Q) and DKL(Q||P ) (and related met- 1129

rics such as Inception score [27]) undefined. One al- 1130

ternative is Jensen–Shannon divergence (JSD) [24,54]: 1131

JSD(P ||Q) := 1
2DKL(P ||Q) + 1

2DKL(Q||P ) which is 1132

always defined and nonnegative. We use this metric to 1133

evaluate the diversity of the synthetic data. 1134

In addition, we propose another diversity measure, 1135

µ-smoothed Kullback-Leibler (KL) divergence between 1136

the original distribution P and synthetic distribution Q: 1137

Dµ
KL(P ||Q) : =

∑
x∈supp(P)(P (x) + µ)

log

(
P (x) + µ

Q(x) + µ

)
,

for small µ > 0. Dµ
KL maintains the desirable property 1138

that Dµ
KL > 0 and is zero if and only if P = Q. Smaller 1139

µ implies stronger penalties for missing minority cate- 1140

gories in the synthetic data, and the penalty approaches 1141

∞ as µ → 0. This allows µ as a knob to adjust the 1142

penalty necessary in private setting. 1143
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Fig. 9. Histograms of synthetic data generated by different algorithms.

Fig. 10. Histogram of native-country features of the original data and synthetic data generated by different algorithms.

In our settings, we are concerned with one category1144

dominating in the original distribution P (e.g., as in1145

Fig. 9), say P = (p1, . . . , pk) with high p1 = maxi pi,1146

and when the synthetic distributionQ = (q1, . . . , qk) =1147

(1, 0, . . . , 0) supports only one single category. Then,1148

we have Dµ
KL(P ||Q) =

∑k
i=2(pi + µ) log(pi + µ) −1149

(p1 +µ) log(p1+µ1+µ )− (
∑k
i=2(pi +µ)) logµ. For small1150

µ > 0, logµ dominates log(pi + µ) and log(p1+µ1+µ ),1151

so the dominating term is
(∑k

i=2(pi + µ)
)

logµ ≈1152

(1 − p1) logµ. Hence, we use µ = e−
1

1−p1 so that1153

this term is a constant, thus normalizing scores across1154

features.1155

Table 3 reports the diversity divergences of all four1156

algorithms for marital-status, race, and the sum across1157

eight categorical features. One out of the nine categor-1158

ical features are not used due to a difference in pre-1159

processing of DP-SYN; see Appendix B for details.1160

Both measures are able to detect the lost of diversity in1161

DP-SYN in race, and identify DP-auto-GAN as gener-1162

ating more diverse data than the prior methods for most 1163

features and ε values. 1164

We note that predictive scores may also not be appro- 1165

priate for continuous features when no good classifier 1166

exists to predict the feature, even in the original dataset. 1167

In our setting, we found three continuous features with 1168

R2 scores close to zero even with more complex regres- 1169

sion models, and with negative R2 scores on synthetic 1170

data, which is not meaningful. For those features, 1-way 1171

marginals (histograms, explored next) are preferred to 1172

prediction scores. 1173

In general, we suggest that an evaluation of synthetic 1174

data should be based on probability measures (distri- 1175

butions of data) and not predictive scores of models. 1176

Models may be a source of not only unpredictability 1177

and instability, but also of bias and unfairness. 1178

Histograms for continuous features with small r2 1179

scores. For three continuous features in the ADULT 1180

dataset (capital gain, capital loss, and hours worked per 1181

week), we were not able to find a regression model with 1182
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Table 3
Diversity measures JSD and DµKL on different features of ADULT data and the sum of divergences across all eight
applicable categorical features (All). Recall that p1 is the maximum probability across all categories of that feature in the
original data. Smaller values for the diversity measures imply more diverse synthetic data. For each row (feature), the
smallest value for each setting of ε is highlighted in bold

DP-auto-GAN DP-WGAN DP-VAE DP-SYN
ε values 0.36 0.51 1.01 0.36 0.51 1.01 0.36 0.51 1.01 0.50 0.80 1.40

JSD diversity measure
Marital 0.025 0.043 0.014 0.119 0.624 0.136 0.139 0.043 0.021 0.017 0.013 0.017
Race 0.021 0.014 0.016 0.081 0.053 0.040 0.095 0.031 0.011 0.053 0.053 0.053
All 0.33 0.23 0.19 1.29 2.41 0.73 0.80 0.44 0.23 0.25 0.27 0.28

DµKL Diversity Measure, with µ = e
− 1

1−p1

Marital 0.019 0.053 0.005 0.165 1.16 0.290 0.207 0.044 0.017 0.017 0.011 0.012
Race 0.125 0.064 0.089 0.262 0.465 0.277 0.315 0.102 0.038 0.465 0.465 0.465
All 0.81 0.48 0.53 5.26 6.39 1.53 2.52 1.17 0.58 0.99 1.00 1.02

Fig. 11. 1-way histogram for different values of ε. Each pair of consecutive rows correspond to capital gain, capital loss and weekly work-hours,
respectively. Blue corresponds to the histogram of the real dataset, and red corresponds to the histogram of the synthetic dataset generated by
DP-auto-GAN with the indicated ε. The overlap of both histograms is purple.

good fit (as measured by R2 score) for the latter three1183

features (capital gain, capital loss, and hours worked1184

per week) in terms of the other features even on the1185

real data. We attempted several different approaches,1186

ranging from simple regression models such as lasso to1187

complex models such as neural networks, and all had a1188

low R2 score on both the real and synthetic data. The1189

capital gain and capital loss attributes are inherently1190

hard to predict because the data are sparse (mostly zero)1191

in these attributes.1192

Since theR2 scores did not prove to be a good metric 1193

for these features, we instead plotted 1-way feature 1194

marginal histograms for each of these three remaining 1195

features to check whether the marginal distribution was 1196

learned correctly. These 1-way histograms for DP-auto- 1197

GAN are shown in Fig. 11. The figure shows that DP- 1198

auto-GAN identifies the marginal distribution of capital 1199

gain and capital loss quite well, and it does reasonably 1200

well on the hours-per-week feature. 1201

Random forest prediction scores. Following [14], 1202
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Fig. 12. Scatterplots of projection of ADULT original and synthetic datasets on first two principle components of the original dataset. Synthetic
datasets are generated from several algorithms at different ε values.

we also evaluate the quality of synthetic data by the1203

accuracy of a random forest classifier to predict the1204

label “salary” feature. In particular, we train a random1205

forest classifier on synthetic data and test on the holdout1206

original data, and report the F1 accuracy score. The1207

aim is that a classifier trained on synthetic data should1208

report a similar accuracy score as the one trained on the1209

original data.1210

In Table 3, we report the accuracy of synthetic data-1211

sets generated by DP-auto-GAN and DP-WGAN [14].1212

The results reported in [14] use ε = 3, 7,∞, whereas1213

our algorithms used parameter values ε = 0.36, 0.51,1214

1.01, ∞, a significant improvement in privacy. We1215

see that our accuracy guarantees are higher than those1216

of [14] with smaller ε values, and DP-auto-GAN1217

achieved higher accuracy in the non-private setting. We1218

note that part of the accuracy discrepancy because DP- 1219

auto-GAN can handle mixed-typed features, whereas 1220

DP-WGAN only handles categorical features. 1221

2-Way PCA. In order to understand combined qual- 1222

itative performance of all features, we show 2-way PCA 1223

marginal in Fig. 12. We fix the same projection from 1224

the original data, and require the synthetic data to be of 1225

the same format and go through the same preprocess- 1226

ing. For this reason, we do not compare to DP-WGAN 1227

since the original implementation [14] does not handle 1228

continuous columns, and we apply our preprocessing 1229

rather than the original preprocessing for DP-SYN. A 1230

qualitative inspection of the plots clearly shows the sim- 1231

ilarities of trends between the plots for real dataset and 1232

synthetic data generated by DP-auto-GAN for different 1233

values of ε, as low as ε = 0.51. 1234
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Figure 12 is able to depict a qualitative description of1235

the synthetic datasets that dimension-wise probability1236

and predictive scores may not capture. DP-auto-GAN1237

is able to capture the overall structure of 2-dimension1238

PCA, with more points collapsing into a cluster as pri-1239

vacy budget ε decreases. The algorithm’s internal GAN1240

structure, however, is able to generate points on differ-1241

ent clusters even at smaller ε, which better matches the1242

projection of the original dataset. DP-VAE has a clear 1-1243

cluster Gaussian-like distribution of 2-way PCA, which1244

is consistent with this method’s assumption that the1245

underlying distribution in the latent space is Gaussian.1246

The autoencoder transforms some datapoints near the1247

edge of the cluster to shapes similar to the original 2-1248

way PCA, but most datapoints remain at the center of1249

the cluster. DP-SYN is able to capture the large single1250

cluster in the original data, but is not diverse enough1251

to capture small clusters. This is consistent with our1252

previous observations on diversity under DP-SYN and1253

the fact that DP-SYN assumes a mixture of Gaussian1254

distributions in latent space, which may not be diverse1255

or complex enough to capture smaller clusters of the1256

original distribution.1257

DP-SYN and DP-VAE do not improve 2-way PCA1258

plots as ε increases, suggesting that the underlying as-1259

sumptions in latent space are likely a bottleneck. Inter-1260

estingly, for ε = ∞, DP-SYN synthetic data collapse1261

to a single flat cluster (it is possible that many clus-1262

ters are generated, but only one appears due to PCA),1263

suggesting that DP-SYN overfits to the majority, and1264

that adding noise for privacy splits the cluster. DP-auto-1265

GAN 2-way PCA does not show structural limitations,1266

but rather a promising result that it is possible to gen-1267

erate more detailed distributions that are closer to the1268

original data.1269

6. Conclusion1270

We propose DP-auto-GAN – a combination of DP-1271

autoencoder and DP-GAN – for differentially private1272

data generation of mixed-type data. The inclusion of the1273

autoencoder improves the efficacy of GANs, especially1274

for high-dimensional data. Our method enjoys a 5x1275

privacy improvement compared to [14] on the ADULT1276

dataset in 14 dimensions and greater 100x improvement1277

compared to [15] on a higher 1071-dimensional dataset,1278

and achieves a meaningful privacy ε < 1 for practical1279

use. This approach is more complex than assuming a1280

standard Gaussian distribution as in DP-VAE [16], and1281

is better able to learn relationships among features.1282
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A. Training details for experiments on MIMIC-III data 1501

MIMIC-III data set contains 46,520 data points in total, and is partitioned into train, validation, and test 1502

data sets of sizes 27912, 9304, 9304 (60%, 20%, 20%), respectively. Privacy analysis is calculated using the 1503

training size. Data are stored in 0/1 format. DP-auto-GAN pre-trained models in this paper are available at 1504

https://github.com/DPautoGAN/DPautoGAN/tree/master/results/pre-trained%20models. 1505

DP-auto-GAN Computing Infrastructure. DP-auto-GAN are run on GCP: n1-highmem-2 (2 vCPUs, 13 GB 1506

memory) with 1 x NVIDIA Tesla K80. The training of autoencoder (for 15,000 iterations) and of GAN (for 20,000 1507

iterations) each takes about 1.5 hours. The combined training together with performance evaluations (probability and 1508

prediction plots) are done in less than 4 hours for each setting of parameter. 1509

DP-auto-GAN Training. The autoencoder was trained via Adam with Beta 1 = 0.9, Beta 2 = 0.999, and a 1510

learning rate of 0.001. It was trained on minibatches of size 100 and microbatches of size 1. L2 clipping norm was 1511

selected to be the median L2 norm observed in a non-private training loop, set to 0.8157. The noise multiplier was 1512

then calibrated to achieve the desired privacy guarantee. 1513

The GAN was composed of two neural networks, the generator and the discriminator. The generator was a simple 1514

feed-forward neural network, trained via RMSProp with alpha = 0.99 with a learning rate of 0.001. The discriminator 1515

was also a simple feed-forward neural network, also trained via RMSProp with the same parameters, with minibatches 1516

of size 128. The L2 clipping norm of the discriminator was set to 0.35. The pair was trained on minibatches of size 1517

1,000 and a microbatch size of 1, with 2 updates to the discriminator per 1 update to the generator. Again, the noise 1518

multiplier was then calibrated to achieve desired privacy guarantees. 1519

Selecting the Noise Multipliers and the Numbers of Iterations. Noise multipliers are finally set at ψ = 3.5, 1520

2.3, 1.3 simultaneously to both autoencoder and GAN to achieve ε = 0.81, 1.33, 2.70 respectively. Training is first 1521

done for 20000 iterations, and the generated data every 1000 iterations are saved. We then inspect whether an earlier 1522

trained model may be used as follows. For ψ = 2.3, 1.3, the number of features where the model outputs all zero 1523

converges to 181 out of 1071 features and stabilize at 181 for the remaining of training. We picked the second saved 1524

model which has 181 such features. For ψ = 3.5the number of such features quickly drops to 181–182 and then 1525

fluctuates between 181–182 in the remaining of the training. We pick the third saved model which has the number of 1526

such features being 181 or 182. The final iterations picked is T = 6000, 7000, 7000 for ψ = 3.5, 2.3, 1.3 respectively, 1527

and these numbers of iterations are then used to calculate the privacy parameters. 1528

Model Architecture. A serialization of the (non-private, i.e. ε =∞) model architectures used in the experiment 1529

can be found below. For the private version, we change the latent dimension from 128 to 64. 1530

(encoder): Sequential( 1531

(0): Linear(in-feature=1071, out-feature=128, bias=True) 1532

(1): Tanh() 1533

) 1534

(decoder): Sequential( 1535

(0): Linear(in-feature=128, out-feature=1071, bias=True) 1536

(1): Sigmoid() 1537

) 1538

1539

Generator( 1540

(model): Sequential( 1541

(0): Linear(in-feature=128, out-feature=128) 1542

(1): LeakyReLU(negative-slope=0.2) 1543

(2): Linear(in-feature=128, out-feature=128) 1544

(3): Tanh() 1545

) 1546

) 1547

Discriminator( 1548

(model): Sequential( 1549

(0): Linear(in-feature=1071, out-feature=256, bias=True) 1550
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(1): LeakyReLU(negative-slope=0.2)1551

(2): Linear(in-feature=256, out-feature=1, bias=True) )1552

)1553

B. Training details for experiments on ADULT data1554

In this section, we describe experimental details of DP-auto-GAN, DP-WGAN, DP-VAE, and DP-SYN for1555

reproducibility.1556

For DP-auto-GAN and in original implementation of existing algorithms, data are preprocessed by one-hot1557

encoding categorical features, and by max-min scalar on continuous features, i.e. mapping maximum to 1 and1558

minimum to 0. While maximum and minimum are technically leaking privacy, and hence not public as assumed in1559

our framework, they are sometimes treated as publicly available such as in synthetic data challenge [44] and assumed1560

in implementation of existing works. In other usage, reasonable cap can be assumed on features, or a standard1561

differentially private query on minimum and maximum of a feature on a bounded range can be used.1562

Synthetic data are generated from each trained generative model to a size of 32561, the training size (which is two1563

thirds) of ADULT data. (Results of dimension-wise prediction we observed are similar with synthetic data of full1564

ADULT size 48842).1565

In parameter tuning of pre-existing methods from original authors, we keep the whole framework including1566

preprocessing of ADULT data, architecture, optimizer, and other hyper-parameters, except the noise multiplier. We1567

attempted to keep original architectures as they are likely optimized in original work for generating synthetic ADULT1568

data. We tune the noise multiplier on several higher values to achieve a smaller ε values needed, and pick the est1569

performing model across noise multiplier values used. Details for each algorithm can be found in the remainder of1570

this section.1571

Computing infrastructure and runtime. DP-auto-GAN are run on GCP: n1-highmem-2 (2 vCPUs, 13 GB1572

memory) with 1 x NVIDIA Tesla K80. The combined training on autoencoder and GAN are done in approximately1573

2–3 hours for each setting of parameter. DP-WGAN, DP-VAE, DP-SYN are run on a personal computer with1574

processor Intel(R) Core(TM) i7-6600U CPU @ 2.60 GHz 2.81 GHz and RAM 16.0 GB. Training of DP-WGAN,1575

DP-VAE, DP-SYN for each parameter setting finishes in between approximately 15 minutes to 2 hours. Any of all1576

evaluation metrics to an ADULT synthetic dataset finishes in less than 1–2 minutes.1577

B.1. DP-auto-GAN training1578

Preprocessing. Original ADULT dataset contains 15 features, one of which is a positive integer feature named1579

“fnlwgt” (final weight). This feature is discarded as unrelated to each individual person in the census, but rather the1580

additional feature US census created by mapping a person to an estimated weight of another demographic dataset.1581

Two features “education” and “education-num” are the same feature representing in a different format – string or a1582

positive integer. In particular, education consists of 16 levels of education, and education-num represents them as1583

numbers 1, 2, . . .,16. Hence, we remove one of these two features and treat this column as one categorical feature. In1584

the end, we have 9 categorical features, one of which is a binary label named “salary”, and four continuous features.1585

ADULT data consists of 48842 datapoints, partitioned into 32561 (two-thirds) for training and 16281 (one-third)1586

for testing. We follow the same partitioning by training our DP-auto-GAN on 32561 samples and holding the rest1587

only for synthetic data evaluation.1588

Training. The autoencoder was trained via Adam with Beta 1 = 0.9, Beta 2 = 0.999, and a learning rate of 0.0051589

for 10,000 minibatches of size 64 and a microbatch size of 1. The L2 clipping norm was selected to be the median L21590

norm observed in a non-private training loop, equal to 0.012. The noise multiplier was then calibrated to achieve the1591

desired privacy guarantee. The final noise multiplier used for ε = 0.36, 0.51, 1.01 are ψ = 5, 2.5, 1.5, respectively.1592

The GAN was composed of two neural networks, the generator and the discriminator. The generator used a ResNet1593

architecture, adding the output of each block to the output of the following block. It was trained via RMSProp1594

with alpha = 0.99 with a learning rate of 0.005. The discriminator was a simple feed-forward neural network with1595

LeakyReLU hidden activation functions, also trained via RMSProp with alpha = 0.99. The L2 clipping norm of the1596
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discriminator was set to 0.022. The pair was trained on 15,000 minibatches of size 128 and a microbatch size of 1, 1597

with 15 updates to the discriminator per 1 update to the generator. Again, the noise multiplier was then calibrated to 1598

achieve the desired privacy guarantee. The final noise multiplier used for ε = 0.36, 0.51, 1.01 are ψ = 8, 7.5, 3.5, 1599

respectively. 1600

Model architecture. A serialization of the model architectures used in the experiment can be found below. Note 1601

that the number of latent dimension, 64, is the same as in the implementation of DP-SYN. 1602

Autoencoder( 1603

(encoder): Sequential( 1604

0: Linear(in-features=106, out-feature=60, bias=True) 1605

(1): LeakyReLU(negative-slope=0.2) 1606

(2): Linear(in-feature=60, out-feature=15, bias=True) 1607

(3): LeakyReLU(negative-slope=0.2) 1608

) 1609

(decoder): Sequential( 1610

(0): Linear(in-feature=15, out-feature=60, bias=True) 1611

(1): LeakyReLU(negative-slope=0.2) 1612

(2): Linear(in-feature=60, out-feature=106, bias=True) 1613

(3): Sigmoid() 1614

) 1615

) 1616

Generator( 1617

(block-0): Sequential( 1618

(0): Linear(in-feature=64, out-feature=64, bias=False) 1619

(1): BatchNorm1d() 1620

(2): LeakyReLU(negative-slope=0.2) 1621

) 1622

(block-1): Sequential( 1623

(0): Linear(in-feature=64, out-feature=64, bias=False) 1624

(1): BatchNorm1d() 1625

(2): LeakyReLU(negative-slope=0.2) 1626

) 1627

(block-2): Sequential( 1628

(0): Linear(in-feature=64, out-feature=15, bias=False) 1629

(1): BatchNorm1d() 1630

(2): LeakyReLU(negative-slope=0.2) 1631

) 1632

) 1633

Discriminator( 1634

(model): Sequential( 1635

(0): Linear(in-feature=106, out-feature=70, bias=True) 1636

(1): LeakyReLU(negative-slope=0.2) 1637

(2): Linear(in-feature=70, out-feature=35, bias=True) 1638

(3): LeakyReLU(negative-slope=0.2) 1639

(4): Linear(in-feature=35, out-feature=1, bias=True) ) 1640

) 1641

B.2. DP-WGAN training 1642

Preprocessing. The algorithm of WGAN [14] (their implementation can be found at https://github.com/SAP- 1643

samples/security-research-differentially-private-generative-models) is used and implemented only for discrete data. 1644

The preprocessing automatically delete continuous columns. Hence, DP-WGAN preprocesses ADULT data into 9 1645
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categorical features, one of which is the binary “salary” label. Each categorical feature is then one-hot encoded before1646

feeding into DP-WGAN training.1647

Parameter tuning. The original implementation uses noise multiplier ψ = 7, originally for a higher values of1648

epsilons as mentioned in [14]. We found that the training cannot achieve ε = 0.51 just after one epoch, while the1649

typical training requires multiple (tens to almost a hundred) epochs. Hence, we train with higher noise parameters1650

ψ = 7, 9, 11, 13, 15, 19, 23, 27.5, 35. For ε = 0.36, we also attempted ψ = 40, 45, 50, 60, 70, 80, 100 which still1651

gives ε > 0.36 only after one epoch. However, if we relax to ε = 0.37, we are able to train a few epochs at high noise1652

level to achieve the privacy guarantee, so we allow ε = 0.37.1653

For each of the noise parameter, we select the generated data from the epoch before privacy busget is exhausted.1654

The synthetic data is evaluated by dimension-wise prediction. We exclude a few cases where prediction score of1655

the salary feature is zero, indicating possibly a mode collapse. Then, we pick the model for each ε setting across1656

different noise multiplier with highest total prediction score. We note that overall performance of DP-WGAN are1657

comparable across ψ ∈ {7, 9, 11, 13} for ε > 0.8 and less predictable for smaller ε. The final ψ we use for ε =1658

0.36, 0.51, 1.01 are ψ = 27.5, 19,9, respectively. Dimension-wise prediction across different ε and ψ are available at1659

https://github.com/DPautoGAN/DPautoGAN/tree/master/results/prediction-plots/DP-WGAN.1660

B.3. DP-VAE training1661

Preprocessing. An implementation of DP-VAE (not by the author of original work [16]) can be found at1662

https://github.com/SAP-samples/security-research-differentially-private-generative-models/blob/master/Tutorial_dp-1663

VAE.ipynb for training on ADULT data. We slightly modify the size of the training set to 32561 sample points, as1664

used in original dataset and our DP-auto-GAN training. Though the original implementation uses all 15 features, we1665

preprocess the data exactly the same way as DP-auto-GAN preprocessing for a fairer reporting.1666

We, however, observed that dimension-wise prediction is either of similar overall quality when using original 151667

dimensions instead of what is reported. Dimension-wise predictions of 13 and 15 features on several values of ε is1668

available at https://github.com/DPautoGAN/DPautoGAN/tree/master/results/prediction-plots/DP-VAE/vae-13-vs-1669

15-features.1670

Parameter tuning. The tutorial defaults noise multiplier at ψ = 1. To get smaller ε, we test ψ = 1, 1.5, 2, 2.5, 3,1671

3.5, 4, 4.5, 5 and additionally ψ = 5.5, 6, 6.5, 7, 7.5, 8 for ε = 0.36. Standard validation accuracy score of VAE in the1672

training process from the keras package are used. We observed an expected pattern that accuracy increases from very1673

small ψ until it drops again at some high ψ value, where the peak of ψ is larger for smaller ε. As a result, we extended1674

ψ as mentioned for smaller ε to be certain that we have reached such peak. Then, the model from noise multiplier1675

which gives highest accuracy score is used. The final ψ used for ε = 0.36, 0.51, 1.01 are ψ = 5, 4,2, respectively.1676

B.4. DP-SYN training1677

Preprocessing. The original implementation of DP-SYN deletes “fnlwgt” and a redundant “education-num” as1678

in our preprocessing. However, it group some similar educational levels into one category, resulting in 8 categories1679

rather than 16. It preprocesses capital-gain and capital-loss into categorical features with 3 classes: “low”, “medium”,1680

and “high.” Hence, the final preprocessed data has 2 continuous and 11 categorical features. Because one categorical1681

feature, education, is preprocessed differently from other algorithms, it is excluded from reporting the sum of diversity1682

divergence scores in Table ??.1683

When using the original preprocessing, we update the test set for dimension-wise prediction score to the same1684

preprocessed format. We observed, however, that despite the architecture likely tuned for the original preprocessing,1685

we ran DP-SYN using preprocessing and obtained a similar result. As we aim to report the optimized and most1686

original version of previous work, we choose the original preprocessing in reporting results in this work. We suspect,1687

however, that the empirical results and conclusions would be similar under our preprocessing.1688

Parameter tuning. Original ε and noise multiplier ψ used are ψ = 2, 4 for ε = 2.4, 3.2 and ψ = 4 for ε = 1.6 and1689

ψ = 4, 8 for ε = 1.2. We tested on ψ = 2, 4, 6, 8 for ε = 0.5, 0.8, 1.4. ψ = 2 was not possible at ε = 0.5 due to large1690

ε incurred even within the first epoch of training. The implementation includes its own accuracy metric [10], which is1691

an SVM classifier on the synthetic data. The model is trained 10 times for each noise and ε setting, and the noise1692
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which gives the highest average accuracy score for each ε setting is used. We saw a pattern of accuracy score either 1693

stay the same or increase from smallest ψ then later degrades, so we extended the range of ψ (up to 8 as mentioned) 1694

until we were certain that we have found a peak of accuracy score. We note that dimension-wise prediction performs 1695

similarly for ψ = 2, 4, 6 and slightly better at these ψ than the higher ψ = 8. Final ψ used for ε = 0.5, 0.8, 1.4 is ψ = 1696

4 for all three settings (and 6, 4, 4 if using our preprocessing). The results across all noise multiplier values can be 1697

found at https://github.com/DPautoGAN/DPautoGAN/tree/master/results/prediction-plots/DP-SYN. 1698

DP-SYN first partitions the data into groups based on number of unique labels, which is 2 in “salary” label of 1699

the ADULT data. DP-EM then chooses the number of clusters in a mixture of Gaussian in each group by Calinski- 1700

Harabasz criterion. The range of numbers of clusters tested (which is also from the original implementation) is K = 1701

1, 2, . . ., 7. 1702

Privacy accounting. We keep the original privacy accounting, which is to split ε, δ into halves, each for autoencoder 1703

and DP-EM, in the original implementation of DP-SYN. We allow higher ε which is computed by using standard 1704

composition instead of RDP composition on two phases of our DP-auto-GAN training. We also note that DP-SYN 1705

treats the label column as public, which is used in partitioning the original data into groups based on the label, 1706

whereas DP-auto-GAN, DP-WGAN, and DP-VAE treat all features as private. 1707

The original implementation of DP-SYN was not able to finish a single epoch even for a large noise multiplier 1708

ψ = 16,32 to achieve ε = 0.5 by a standard composition. We found that this is due to a loose analysis of RDP in the 1709

original implementation. We increase the moment order of 32 in the original implementation to 96 to obtain a tighter 1710

DP analysis, which allows the ε = 0.5 (standard composition) results reported in this work. 1711


