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Ensuring the privacy of training data is a growing concern since many machine learning models are trained on confidential and

potentially sensitive data. Much attention has been devoted to methods for protecting individual privacy during analyses of large

datasets. However in many settings, global properties of the dataset may also be sensitive (e.g., mortality rate in a hospital rather than

presence of a particular patient in the dataset). In this work, we depart from individual privacy to initiate the study of attribute privacy,

where a data owner is concerned about revealing sensitive properties of a whole dataset during analysis. We propose definitions to

capture attribute privacy in two relevant cases where global attributes may need to be protected: (1) properties of a specific dataset and

(2) parameters of the underlying distribution from which dataset is sampled. We also provide two efficient mechanisms for specific

data distributions and one general but inefficient mechanism that satisfy attribute privacy for these settings. We base our results on a

novel and non-trivial use of the Pufferfish framework to account for correlations across attributes in the data, thus addressing “the

challenging problem of developing Pufferfish instantiations and algorithms for general aggregate secrets” that was left open by Kifer

and Machanavajjhala in 2014 [17].
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1 INTRODUCTION

Privacy in the computer science literature has generally been defined at the individual level, such as differential privacy

[8], which protects the value of an individual’s data within analysis of a larger dataset. However, there are many settings

where confidential information contained in the data goes beyond the presence or absence of an individual in the data

and instead relates to attributes at the dataset level. Global properties about attributes revealed from data analysis may

leak trade secrets, intellectual property and other valuable information pertaining to the data owner, even if differential

privacy is applied [6].

In this paper, we are interested in privacy of attributes in a dataset, where an analyst must prevent global properties

of sensitive attributes in her dataset from leaking during analysis. For example, insurance quotes generated by a

machine-learned model might leak information about how many female and male drivers are insured by the company

that trained the model; voice and facial recognition models may leak the distribution of race and gender among users

in the training dataset [2, 5]. Under certain circumstances, even releasing the distribution from which the data were
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sampled may be sensitive. For example, experimental findings by a pharmaceutical company measuring the efficacy of

a new drug would be considered proprietary information. It is important to note that the problem we consider here

departs from individual-level attribute privacy where one wishes to protect attribute value of a record (e.g., person’s

race) as opposed to a function over all values of this attribute in the dataset (e.g., race distribution in a dataset).

Several recent attacks show that global properties about a dataset can indeed be leaked from machine learning

model APIs [11, 23, 26, 29]. In fact, these works show that models learn sensitive attributes even when censorship is

applied or when the attributes are deemed irrelevant for the actual learning task. Hence, the naive solution of removing

sensitive attributes from the dataset is insufficient, as attributes are often correlated, and protected information can still

be leaked by releasing non-sensitive information about the data. Though differential privacy (DP) can be used to protect

sensitive attributes at the individual level (e.g., in the algorithmic fairness literature [7]), the study of attribute privacy

at the dataset or distribution level is limited, both in terms of a framework for reasoning about it and mechanisms for

protecting it.

1.1 Our Contributions

Problem formulation. We initiate the study of attribute privacy at the dataset and distribution level and establish the

first formal framework for reasoning about these privacy notions. Our work aims to protect aggregate properties of a

dataset and not individual properties that make up this dataset as the as the latter can be already captured by DP. For

example, contrast protecting trade secrets of an organization based on their customer base versus the privacy of their

individual customers.

We identify two cases where information about global properties of a dataset may need to be protected: (1) properties

of a specific dataset and (2) parameters of the underlying distribution from which dataset is sampled. We refer to the first

setting as dataset attribute privacy, where the data owner wishes to protect properties of her sample from a distribution,

but is not concerned about revealing the distribution. For example, even though the overall prevalence of a disease may

be known, a hospital may wish to protect the fraction of its patients with that disease. We refer to the second setting as

distributional attribute privacy, which considers the distribution parameter itself a secret. For example, demographic

information of the population targeted by a company may reveal information about its proprietary marketing strategy.

These two definitions distinguish between protecting a sample and protecting the distribution from which the dataset

is sampled.

Definitions of Attribute Privacy. We propose definitions for capturing dataset and distributional attribute privacy

by instantiating a general privacy framework called the Pufferfish framework [17]. This framework was originally

introduced to handle correlations across individual entries in a database. Instantiating this framework for attribute

privacy is non-trivial as it requires reasoning about secrets and parameters at a dataset level.

For dataset attribute privacy, our definition considers the setting where individual records are independent of each

other while correlations may exist between attribute values of each record. Then, to be able to capture general global

properties of a dataset that need to be protected, we choose to express secrets as functions over attribute values across

all records in a dataset. For example, this allows one to express that the average income of individuals in a dataset being

below or above $50K is secret information.

Our second definition also instantiates the Pufferfish framework while explicitly capturing the random variables

used to generate attribute values of a record. Here, the parameters of the distribution of protected attributes are treated

as confidential information. For example, in a dataset where records capture trials in a stochastic chemical environment,
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one can express that determining whether the probability with which a certain compound is added in each trial is 0.2 or

0.8 is a secret.

Interestingly, there are some settings where dataset and distributional privacy are equivalent. In Section 3 we describe

technical conditions on the secrets when this occurs.

Mechanisms to Protect Attribute Privacy. Our definitions allow an analyst to specify secrets about global properties

of a dataset that they wish to protect. In order to satisfy these definitions the analyst can use a general tool for

providing Pufferfish privacy called the Wasserstein mechanism proposed by Song et al. [27]. However, this mechanism

is computationally expensive and may require computing an exponential number of pairwise Wasserstein distances.

Wasserstein distance is generally hard to compute, which makes the algorithm not feasible in most practical settings.

To this end, we propose more practical mechanisms in the following two settings.

For dataset attribute privacy, we consider a special class of functions and attribute properties and propose amechanism

based onGaussian noise. Though the nature of the noise is added from the same family of distributions as the differentially

private Gaussian Mechanism, in Section 4 we articulate that the similarity between the two is based solely on the

nature of the noise. In Section 4.1, we show that the mechanism can be applied to datasets where (1) attributes follow a

multivariate Gaussian distribution and (2) the function to be computed on the data and the attribute property to be

protected are linear in the number of records in the dataset (e.g., mean). We empirically evaluate the noise added by our

mechanism and show that there are settings where no noise needs to be added due to randomness present in the data.

We note that with the help of variational auto-encoders (VAEs) [18], one can obtain a Gaussian representation of the

data even if a dataset does not come from a Gaussian distribution. Moreover, such disentangled representations can be

based on interpretable attributes [14] that are easier for specifying which attributes require protection, particularly

when the original data are complex (e.g., pixels on an image vs. the gender of the person in it).
1
Nevertheless, we

also consider the case where data may not follow Gaussian distribution. Specifically, in Appendix B, we relax the

Gaussian assumption and show that our mechanism can still provide dataset attribute privacy by leveraging Gaussian

approximations.

For distributional attribute privacy, we consider a model where dependencies between the attributes form a Bayesian

network. This model helps us capture the extent to which a sensitive attribute parameter affects parameters of attributes

in the query, and we add noise proportional to this influence. Although our mechanism is inspired by the Markov Quilt

mechanism [27], the difference in settings prompts several changes, including a different metric for measuring influence

between the variables.

Finally, we note that although [17] identified that “there is little focus in the literature on rigorous and formal

privacy guarantees for business data”, they leave “the challenging problem of developing Pufferfish instantiations and

algorithms for general aggregate secrets" as future work.

1.2 Examples

Dataset privacy. Consider a hospital releasing statistics about their adult patients who have been diagnosed with a certain

virus. The hospital is careful not to release information about the gender of the patients as there is not enough evidence

yet to suggest whether the virus is more prevalent among certain gender groups. Among other biometric statistics

about the patients receiving treatment, the information released by the hospital includes patients’ average height of 67.7

1
Though naive use of VAEs may not provide end-to-end privacy guarantees, it serves as an example that it is possible to obtain a representation of

non-Gaussian data with interpretable Gaussian features. We leave it as an interesting open question on how to provide end-to-end privacy-preserving

feature disentanglement.
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inches and average weight 185 pounds. According to https://www.worlddata.info/average-bodyheight.php, average

height and weight of men and women is 68.9 inches and 200 pounds and 64.2 inches and 169 pounds, respectively. Any

observer comparing these public numbers to the statistics released by the hospital, may notice that it is likely that the

dataset contained more male patients than other genders, leading to unfounded conclusions about correlation of the

virus and gender.

Distributional privacy. An area council requests all schools to submit statistics about their students including their

height, weight, SAT score, and gender. Since the schools are concerned with privacy of their students, they agree to

submit statistics from only a random sample of their students. Furthermore, in order to preserve anonymity of the

schools (e.g., single vs. mixed gender schools), the schools opt out from releasing the gender distribution along with

their statistics. Due to correlations among gender, height, and weight, naive release of the sampled data by schools

would give an indication about the gender distribution of the students where the samples were taken from. As a result,

schools’ identities could be revealed.

We see that these two examples contrasting the information that needs to be concealed under both privacy notions.

In the former it is the distribution of gender among patients, while in the latter it is the distribution of the students

from which the sample was taken.

We also note that our examples are reminiscent of algorithmic fairness, and indeed, our definitions are related to

group fairness. Our attribute privacy definitions and mechanisms provide statistics that are de-correlated from protected

attributes in the dataset, and can be used to satisfy group-blind fairness notions such as demographic parity, where

the output of a mechanism (such as labels generated by a classifier) should be independent of protected attributes. We

note, however, that our privacy notions would not be suitable for satisfying fairness notions that explicitly incorporate

protected attributes to make up for historical injustices, such as affirmative action or fairness through awareness.

1.3 Related work

Machine learning models have been shown to memorize and leak data used to train them, raising questions about the

release and use of these models in practice. For example, membership attacks [25] show that models can leak whether

certain records (e.g., patient data) were part of the training dataset or not. Attribute (or feature) privacy attacks, on the

other hand, consider leakage of attribute values at an individual level [10, 26], and property inference attacks show that

global properties about datasets can be leaked [2, 11, 23].

Differential privacy (DP) [8, 9] guarantees individual-level privacy when publishing an output computed on a

database, by bounding the influence of any record on the output and adding noise. Importantly, DP does not aim

to protect population-level information, and was designed to learn global properties of a dataset without sacrificing

individual privacy. DP does provide group privacy guarantees for groups of 𝑘 correlated records, but these quantitative

guarantees are only meaningful when 𝑘 is small relative to the size of the dataset. Syntactically, DP guarantees that if

any individual record were to be changed—including all attributes of that record—the result of the analysis would be

approximately the same. For attribute privacy, we seek similar guarantees if an entire attribute of the dataset were

to be changed—including all individuals’ values for that attribute. Several works [3, 4] consider settings where data

come from a fixed distribution, as opposed to the set of all possible neighboring datasets as in DP. The corresponding

definitions and mechanisms also explicitly specify these data distributions. However, similar to differential privacy,

these works focus on hiding the presence or absence of a single record, rather than dataset properties as we consider

here.
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The Pufferfish framework [17] that we instantiate and describe in detail in the following sections, can be seen

as a generalization of differential privacy that explicitly states the information that needs to be kept secret and the

adversary’s background knowledge about the data. Blowfish privacy [13] also allows one to express secrets and publicly

known information about the data, but expressed as constraints on the data rather than distributions over data. We

adapt the Markov Quilt Mechanism from [27], who also employ the Pufferfish framework [17] for private analysis of

correlated data, although they also focus on individual-level privacy. Our focus instead on privacy of dataset properties

and distributions leads to a substantially different instantiation of the Pufferfish framework where the secrets are

defined over attribute values rather than individual records in the dataset.

Research on algorithmic fairness has proposed several definitions formalizing the idea that machine learning models

should not exhibit discrimination based on protected attributes (e.g., gender or race). Demographic parity formalizes

fairness by requiring that a classifier’s predicted label is independent of an individual’s protected attributes. Our notion

of dataset attribute privacy is a general framework where one can specify what information about attributes need to

be protected, with attribute independence being one such scenario. However, our attribute privacy definitions would

not be useful for satisfying other fairness notions that explicitly incorporate protected attributes, such as affirmative

action or fairness through awareness [7]. Moreover, techniques proposed to obtain fair representations of the training

data [21, 28] have been shown to still leak sensitive attributes [26] when applied in the privacy context.

2 PRELIMINARIES

Pufferfish Privacy. The Pufferfish privacy framework [17] consists of three components: a set 𝑆 of secrets, a set

Q ⊆ 𝑆 × 𝑆 of discriminative pairs, and a class Θ of data distributions. 𝑆 is a set of possible facts about the database

that we might wish to hide. Q is the set of secret pairs (𝑠𝑖 , 𝑠 𝑗 ), 𝑠𝑖 , 𝑠 𝑗 ∈ 𝑆 , that we wish to be indistinguishable. The

class of data distributions Θ can be viewed as a set of conservative assumptions about the underlying distribution that

generates the database.

Definition 1 ((𝜖, 𝛿)-Pufferfish Privacy [17, 27]
2
). A mechanismM is (𝜖, 𝛿)-Pufferfish private in a framework (𝑆,Q,Θ) if

for all 𝜃 ∈ Θ with 𝑋 ∼ 𝜃 , for all secret pairs (𝑠𝑖 , 𝑠 𝑗 ) ∈ Q such that 𝑃 (𝑠𝑖 |𝜃 ) ≠ 0 and 𝑃 (𝑠 𝑗 |𝜃 ) ≠ 0, and for all𝑇 ⊆ 𝑅𝑎𝑛𝑔𝑒 (M),
we have

𝑃M,𝜃 (M(𝑋 ) ∈ 𝑇 |𝑠𝑖 , 𝜃 ) ≤ exp(𝜖)𝑃M,𝜃 (M(𝑋 ) ∈ 𝑇 |𝑠 𝑗 , 𝜃 ) + 𝛿.

The Wasserstein Mechanism proposed in [27] and defined formally in Appendix C is the first general mechanism

for satisfying instantiations of Pufferfish privacy framework. It defines sensitivity of a function 𝐹 as the maximum

Wasserstein distance between the distribution of 𝐹 (𝑋 ) given two different realizations of secrets 𝑠𝑖 and 𝑠 𝑗 for (𝑠𝑖 , 𝑠 𝑗 ) ∈ Q.

The mechanism then instantiates the Laplace mechanism by outputting 𝐹 (𝑋 ) plus Laplace noise that scales with this

sensitivity. Although this mechanism works in general for any instantiation of the Pufferfish framework, computing

Wasserstein distance for all pairs of secrets is computationally expensive, and will typically not be feasible in practice.

Song et al. [27] also gave the Markov Quilt Mechanism (Algorithm 3 in Appendix A) for some special structures of data

dependence. It is computationally less expensive than the Wasserstein Mechanism and also guarantees (𝜖, 0)-Pufferfish
privacy. The Markov Quilt Mechanism of [27] assumes that the entries in the input database 𝑌 form a Bayesian network,

as defined below. These entries could either be: (1) the multiple attributes of a single record when the database contained

only one record, or (2) the attribute values across multiple records for a single-fixed attribute when the database

contained multiple attributes. Hence, the original Markov Quilt Mechanism aims to protect the privacy of a single entry,

2
The original definition [17] and the one considered in [27] is (𝜖, 0)-Pufferfish. We extend the definition to (𝜖, 𝛿)-Pufferfish in the natural way.
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and it could not accommodate correlations across multiple attributes in multiple records, as we study in this work. Full

details of this algorithm are given in Appendix A.

Definition 2 (Bayesian Networks). A Bayesian network is described by a set of variables 𝑌 = {𝑌1, . . . , 𝑌𝑛} and a directed
acyclic graph 𝐺 = (𝑌, 𝐸) whose vertices are variables in 𝑌 . The probabilistic dependence on 𝑌 induced by the network can

be written as: Pr(𝑌1, . . . , 𝑌𝑛) = Π𝑛
𝑖=1

Pr(𝑌𝑖 |parent(𝑌𝑖 )) , where the parent of 𝑌𝑖 is the vertex connected to 𝑌𝑖 on the path to

the root.

Accuracy. We will measure accuracy of our mechanisms with the following definition. For real-valued outputs, this

definition says that the mechanism must output an answer that is at most an additive 𝛼 away from the true answer

with probability 1 − 𝛽 . For vector-valued outputs, this notion can be naturally extended using the appropriate norm.

Definition 3 ((𝛼, 𝛽)-accuracy). A mechanismM with real-valued outputs is (𝛼, 𝛽)-accurate for a function 𝐹 if for all

databases 𝑋 ,

𝑃 ( |M(𝑋 ) − 𝐹 (𝑋 ) | > 𝛼) ≤ 𝛽.

3 ATTRIBUTE PRIVACY DEFINITIONS

Data model and representation. The dataset 𝑋 contains 𝑛 records, where each record consists of𝑚 attributes. We view

the dataset 𝑋 as an 𝑛 ×𝑚 matrix. In this work, we are interested in privacy of the columns, which represent attributes

that a data owner wishes to protect. Thus we refer to the matrix 𝑋 as 𝑋 = [𝑋1, . . . , 𝑋𝑚], where 𝑋𝑖 is the column vector

related to the 𝑖th attribute (column). In contrast, traditional differential privacy [8, 9] is concerned with privacy of

the rows of the dataset matrix. We let 𝑋
𝑗
𝑖
denote 𝑖th attribute value of the 𝑗th record. One might think of applying

DP to the rows of the transpose of the data matrix, however, using group privacy to handle the correlation across the

attributes would give poor utility, because the set of correlated attributes to be covered under group privacy might

be large relative to the total number of attributes. Moreover, directly applying Pufferfish privacy or Blowfish privacy

can only capture the correlation across attributes for a specific individual, rather than the global properties over 𝑛

individuals.

Each record is assumed to be sampled i.i.d. from an unknown distribution, where attributes within a single record

can be correlated (e.g., consider height and weight). We use𝐶 ⊆ [𝑚] to denote a set of indices of the sensitive attributes
that require privacy protection (e.g., race and gender may be sensitive attributes; hair color may be non-sensitive). The

data owner wishes to compute a function 𝐹 over her dataset and release the value (or estimate of the value) 𝐹 (𝑋 ) while
protecting some information about the sensitive attributes.

Privacy notions. We distinguish between three kinds of attribute privacy, corresponding to three different types of

information the data owner may wish to protect.

Individual attribute privacy protects 𝑋
𝑗
𝑖
for sensitive attribute 𝑖 when 𝐹 (𝑋 ) is released. Note that differential privacy

provides individual attribute privacy simultaneously for all individuals and all attributes [8], but does not protect against

individual-level inferences from population-level statistics [6]. For example, if a DP result shows a correlation between

lung disease and smoking, one may infer that a known-smoker in the dataset has an elevated likelihood of lung disease.

Dataset attribute privacy is applicable when the owner wishes to reveal 𝐹 (𝑋 ) while protecting the value of some

function 𝑔(𝑋𝑖 ) for sensitive attribute 𝑖 ∈ 𝐶 (e.g., whether there were more Caucasians or Asians present in the dataset).

Distribution attribute privacy protects privacy of a parameter 𝜙𝑖 that governs the distribution of 𝑖th sensitive attribute

in the underlying population from which the data are sampled.
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The last two notions are the ones put forward in this paper and studied in detail. The difference between them may

be subtle depending on 𝑔 and 𝜙 . For example, consider one setting where the sensitive attribute is binary and 𝑔 is the

fraction of records where this attribute is 1, and another setting where the sensitive attribute is a Bernoulli random

variable with parameter 𝜙 . In this case, 𝑔 can be seen as an estimate of 𝜙 based on a sample. The difference becomes

particularly relevant in settings where privacy is required for realizations of the dataset that are unlikely under the data

distribution, or settings with small datasets where 𝑔 is a poor estimate of 𝜙 .

Formal framework for attribute privacy. The standard notion of differential privacy is not directly applicable to our

setting since we are interested in protecting population-level information. Instead, we formalize our attribute privacy

definitions using the Pufferfish privacy framework of Definition 1 by specifying the three components (𝑆,Q,Θ). The
distributional assumptions of this framework are additionally useful for formalizing correlation across attributes.

Definition 4 (Dataset Attribute Privacy). Let (𝑋 𝑗

1
, 𝑋

𝑗

2
, . . . , 𝑋

𝑗
𝑚) be a record with𝑚 attributes that is sampled from an

unknown distribution D, and let 𝑋 = [𝑋1, . . . , 𝑋𝑚] be a dataset of 𝑛 records sampled i.i.d. from D where 𝑋𝑖 denotes the

(column) vector containing values of the 𝑖th attribute of every record. Let𝐶 ⊆ [𝑚] be the set of indices of sensitive attributes,
and for each 𝑖 ∈ 𝐶 , let 𝑔𝑖 (𝑋𝑖 ) be a function with codomainU𝑖 .

A mechanismM satisfies (𝜖, 𝛿)-dataset attribute privacy if it is (𝜖, 𝛿)-Pufferfish private for the following framework

(𝑆,Q,Θ):

Set of secrets: 𝑆 = {𝑠𝑖𝑎 := 1[𝑔𝑖 (𝑋𝑖 ) ∈ U𝑖
𝑎] : U𝑖

𝑎 ⊆ U𝑖 , 𝑖 ∈ 𝐶}, whereU𝑖
𝑎 is a certain specified subset ofU𝑖 .

Set of secret pairs: Q = {(𝑠𝑖𝑎, 𝑠𝑖𝑏 ) ∈ 𝑆 × 𝑆, 𝑖 ∈ 𝐶}, which consists of certain pairs of interest.

Distribution: Θ is a set of possible distributions 𝜃 over the dataset 𝑋 . For each possible distribution D over records, there

exists a 𝜃D ∈ Θ that corresponds to the distribution over 𝑛 i.i.d. samples from D.

This definition defines each secret 𝑠𝑖𝑎 as the event that 𝑔𝑖 (𝑋𝑖 ) takes a value in a particular set U𝑖
𝑎 , and the set of

secrets 𝑆 is the collection of all such secrets for all sensitive attributes. This collection may include all possible subsets

of U𝑖
, or it may include only application-relevant events. For example, if all U𝑖

𝑎 are singletons, this corresponds to

protecting any realization of 𝑔𝑖 (𝑋𝑖 ). Alternatively, the data owner may only wish to protect whether 𝑔𝑖 (𝑋𝑖 ) is positive
or negative, which requires only U𝑖

𝑎 = (−∞, 0) and U𝑖
𝑏
= [0,∞). The set of secret pairs Q that must be protected

includes all pairs of the events on the same sensitive attribute. The Pufferfish framework considers distributions 𝜃 over

the entire dataset 𝑋 , whereas we require distributions D over records. We resolve this by defining Θ to be the collection

of distributions over datasets induced by the allowable i.i.d. distributions over records.

Determining which functions 𝑔𝑖 to consider is an interesting question. For example, in [22] the authors show that

it is tractable to check whether the output of certain classes of functions evaluated on a dataset reveals information

about the output of another query evaluated on the same dataset. Hence, given a function 𝐹 whose output a data owner

wishes to release, the owner may consider either those 𝑔𝑖 ’s about which 𝐹 reveals information, or those for which

verifying perfect privacy w.r.t. 𝐹 is infeasible.

Let us instantiate the first example in the introduction using the definition above. Suppose a patient’s record consists

of 5 attributes: gender, height, weight, average blood pressure, and temperature. Exemplar records could be:

𝑋 1 = (male, 69, 200, 119:79, 100) 𝑋 2 = (female, 59, 200, 115:83, 98)

𝑋 3 = (male, 79, 225, 119:81, 99) 𝑋 4 = (other, 71, 180, 114:79, 102)
7
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The hospital wishes to release an average of every column of the dataset except for gender, 𝑋1, which it deems as the

sensitive attribute. That is, the hospital wishes to release a tuple of four values denoting average height, weight, blood

pressure, and temperature. In order to provide privacy for the gender attribute, the hospital instantiates Definition

4 as follows. Given 𝑛, the size of the dataset, it defines 𝑔1 to be a function that counts the fraction of patients in the

dataset with gender female. It then declares a set of secrets 𝑆 = {1[𝑔1 (𝑋1) = 𝑛/2],1[𝑔1 (𝑋1) = 𝑛/4],1[𝑔1 (𝑋1) =

𝑛/8],1[𝑔1 (𝑋1) = 𝑛/8]}, capturing the fact that any mechanism M that operates on this data should not allow an

attacker to distinguish whether number of females in the dataset is half, a quarter, an eighth or a tenth of the dataset.

Definition 5 (Distributional Attribute Privacy). Let (𝑋 𝑗

1
, 𝑋

𝑗

2
, . . . , 𝑋

𝑗
𝑚) be a record with𝑚 attributes that is sampled from

an unknown distribution described by a vector of random variables (𝜙1, . . . , 𝜙𝑚), where 𝜙𝑖 parameterizes the marginal

distribution of 𝑋 𝑗
𝑖
conditioned on the values of all 𝜙𝑘 for 𝑘 ≠ 𝑖 . The (𝜙1, . . . , 𝜙𝑚) are drawn from a known joint distribution

𝑃 , and each 𝜙𝑖 has support Φ𝑖 . Let 𝑋 = [𝑋1, . . . , 𝑋𝑚] be a dataset of 𝑛 records sampled i.i.d. from the distribution described

by (𝜙1, . . . , 𝜙𝑚) where 𝑋𝑖 denotes the (column) vector containing values of 𝑖th attribute of every record. Let 𝐶 ⊆ [𝑚] be the
set of indices of sensitive attributes.

A mechanism M satisfies (𝜖, 𝛿)-distributional attribute privacy if it is (𝜖, 𝛿)-Pufferfish private for the following

framework (𝑆,Q,Θ):

Set of secrets: 𝑆 = {𝑠𝑖𝑎 := 1[𝜙𝑖 ∈ Φ𝑖𝑎] : Φ𝑖𝑎 ⊂ Φ𝑖 , 𝑖 ∈ 𝐶}, where Φ𝑖𝑎 is certain specified subset of Φ𝑖 .

Set of secret pairs: Q = {(𝑠𝑖𝑎, 𝑠𝑖𝑏 ) ∈ 𝑆 × 𝑆, 𝑖 ∈ 𝐶}, which consists of certain pairs of interest.

Distribution: Θ is a set of possible distributions 𝜃 over the dataset 𝑋 . For each possible 𝜙 = (𝜙1, . . . , 𝜙𝑚) describing the
conditional marginal distributions for all attributes, there exists a 𝜃𝜙 ∈ Θ that corresponds to the distribution over 𝑛

i.i.d. samples from the distribution over records described by 𝜙 .

This definition naturally parallels Definition 4, with the attribute-specific random variable 𝜙𝑖 taking the place of

the attribute-specific function 𝑔𝑖 (𝑋𝑖 ). Although it might seem natural for 𝜙𝑖 to define the marginal distribution of the

𝑖th attribute, this would not capture the correlation across attributes that we wish to study. Instead, 𝜙𝑖 defines the

conditional marginal distribution of the 𝑖th attribute given all other 𝜙≠𝑖 , which does capture such correlation. This also

allows the distribution 𝜃 over datasets to be fully specified given these parameters and the size of the dataset.

More specifically, we model attribute distributions using standard notion of Bayesian hierarchical modeling. The

(𝜙1, . . . , 𝜙𝑚) can be viewed as a set of hyperparameters of the distributions of the attributes, and 𝑃 as hyper-priors of

the hyperparameters. The distribution 𝑃 is captured in Θ, and the distribution of attribute𝑋𝑖 is governed by a realization

of the random variable 𝜙𝑖 . The 𝜙𝑖 describes the conditional marginal distribution for attribute 𝑖: it is the hyperparameter

of the probability of 𝑋𝑖 given hyperparameters of all other attributes 𝑃 (𝑋𝑖 |𝜙1, . . . , 𝜙𝑖−1, 𝜙𝑖+1, . . . , 𝜙𝑚). We make the

“naive” conditional independence assumption that all attributes 𝑋𝑖 are mutually independent conditional on the set

of parameters (𝜙1, . . . , 𝜙𝑚), hence, (𝜙1, . . . , 𝜙𝑚) fully capture the distribution of a record. The “naive” conditional

independence is a common assumption in probabilistic models, and naive Bayes is a simple example that employs this

assumption.

Let us instantiate the second example in the introduction using the definition above. Suppose an all-girls school

takes a sample of their students, where each student record contains 4 attributes: gender, height, weight, and SAT score.

Exemplar records could be:

𝑋 1 = (female, 69, 200, 1250) 𝑋 2 = (female, 59, 200, 1300)

𝑋 3 = (female, 79, 225, 1400) 𝑋 4 = (female, 71, 180, 1410).
8
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The school is asked to release an average of every column of the dataset except for gender, 𝑋1, which it regards as a

sensitive attribute. That is, the school wishes to release a tuple of three values denoting average height, weight, and

SAT score. In order to provide privacy for the gender attribute, the school instantiates Definition 5 as follows. It models

𝑋1 as a Bernoulli random variable where 𝜙1 is the probability of a record having a female attribute. It then declares

a set of secrets corresponding to protected values of 𝜙1 to be 𝑆 = {1[𝜙1 = 0],1[𝜙1 = 0.5],1[𝜙1 = 1]}. This captures
the fact that any mechanism M that operates on this data should not allow an attacker to distinguish whether the

data was sampled from the population with no, 50%, or all female students. The school may consider the set of possible

distributions Θ to contain all gender distributions represented at schools in the district, or it may consider all possible

distributions with support [0, 1].

Dataset vs. Distributional privacy. Suppose there exists an unbiased estimator for the distribution parameter 𝜙𝑖

corresponding to the secrets. Then we can achieve distributional attribute privacy by using dataset attribute private

mechanisms (such as those given in Section 4) with the secrets defined as values of this unbiased estimator. In the last

example, a function 𝑔1 that computes an average number of female patients in the dataset is an unbiased estimator for

𝜙1. Hence, one could also instantiate this example using the dataset attribute privacy with secrets based on the value of

𝑔1. However, such unbiased estimators do not always exist. In these cases, it is necessary to use mechanisms designed

for distributional attribute privacy (such as those given in Section 5). In general, unbiased estimators do not exist for

quantities that cannot be written as a polynomial of degree less than the population size 𝑛 [19].

Mechanisms for attribute privacy. Since both of our attribute privacy definitions are instantiations of the Pufferfish

privacy framework, one could easily apply the Wasserstein Mechanism [27] to satisfy (𝜖, 0)-attribute privacy for either

of our definitions. The Wasserstein distance metric has also been used to calibrate noise in prior work on distributional

variants of differential (individual-level) privacy [15, 16]. However, as described in Section 2, implementing this

mechanism requires computing Wasserstein distance between the conditional distribution on 𝐹 (𝑋 ) for all pairs of
secrets in Q. Computing exact Wasserstein distance is known to be computationally expensive, and our settings may

require exponentially many computations in the worst case. In the remainder of the paper, we provide algorithms that

satisfy each of these privacy definitions, focusing on dataset attribute privacy in Section 4 and distributional attribute

privacy in Section 5. We formally discuss the (computationally more expensive) Wasserstein Mechanism along with

concrete examples of its instantiation in Appendix C.

4 THE GAUSSIAN MECHANISM FOR DATASET ATTRIBUTE PRIVACY

In this section we consider dataset attribute privacy as introduced in Definition 4. In this setting, an analyst wants to

publish a function 𝐹 evaluated on her dataset 𝑋 , but is concerned about an adversary observing 𝐹 (𝑋 ) and performing a

Bayesian update to make inferences about a protected quantity 𝑔𝑖 (𝑋𝑖 ). We propose a variant of the Gaussian Mechanism

[9] that satisfies dataset attribute privacy when 𝐹 (𝑋 ) conditioned on 𝑔𝑖 (𝑋𝑖 ) follows a Gaussian distribution, with

constant variance conditioned on 𝑔𝑖 (𝑋𝑖 ) = 𝑎 for all 𝑎.

Although this setting is more restrictive, it is still of practical interest. For example, it can be applied when 𝑋

follows a multivariate Gaussian distribution and 𝑔𝑖 and 𝐹 are linear with respect to the entries of 𝑋 , as we show in the

instantiation of our mechanism in Section 4.2. We also note that using variational auto-encoders (VAEs) [14, 18], it

is possible to encode data from other distributions using a Gaussian representation with interpretable features. This

would then allow an analyst to specify which latent features are deemed sensitive for the data, even if the original

features are less descriptive (e.g., pixels on an image vs. the gender of the person in it).

9
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In Appendix B, we propose the Attribute-Private Gaussian Mechanism for non-Gaussian data that does not make the

above assumptions. In particular, the mechanism allows the analyst to use Gaussian approximations to characterize the

conditional distribution of 𝐹 (𝑋 ) given 𝑔𝑖 (𝑋𝑖 ), while still providing formal dataset attribute privacy guarantees. Further

details are deferred to the appendix.

4.1 Attribute-Private Gaussian Mechanism

Algorithm 1 presents the Attribute-Private GaussianMechanism for answering a real-valued query 𝐹 (𝑋 ) while protecting
the values of 𝑔𝑖 (𝑋𝑖 ) for 𝑖 ∈ 𝐶 . Much like the Gaussian Mechanism for differential privacy [9], the Attribute-Private

Gaussian Mechanism first computes the true value 𝐹 (𝑋 ), and then adds a Gaussian noise term with mean zero and

standard deviation that scales with the sensitivity of the function. However, sensitivity of 𝐹 in the attribute privacy

setting is defined with respect to each secret attribute 𝑋𝑖 as,

Δ𝑖𝐹 = max

𝜃 ∈Θ
max

(𝑠𝑖𝑎,𝑠𝑖𝑏 ) ∈Q

��E [𝐹 (𝑋 ) |𝑠𝑖𝑎, 𝜃
]
− E

[
𝐹 (𝑋 ) |𝑠𝑖

𝑏
, 𝜃
] �� . (1)

This differs from the sensitivity notion used in differential privacy in two key ways. First, we are concerned with

measuring changes to the value of 𝐹 (𝑋 ) caused by changing secrets 𝑠𝑖𝑎 corresponding to realizations of 𝑔𝑖 (𝑋𝑖 ), rather
than by changing an individual’s data. Second, we assume our data are drawn from an unknown underlying distribution

𝜃 , so 𝐹 (𝑋 ) is a random variable. Our attribute privacy sensitivity bounds the maximum change in posterior expected

value of 𝐹 (𝑋 ) in the worst case over all distributions and pairs of secrets for each attribute. We note that if 𝐹 (𝑋 ) is
independent of the protected attribute 𝑋𝑖 , then Δ𝑖𝐹 = 0 and no additional noise is needed for privacy. The Attribute-

Private Gaussian Mechanism of Algorithm 1 further benefits from the inherent randomness of the output 𝐹 (𝑋 ). In
particular, it reduces the variance 𝜎2

of the noise added by the conditional variance of 𝐹 (𝑋 ) given 𝑔𝑖 (𝑋𝑖 ) and 𝜃 , as the
sampling noise can mask some of the correlation. Hence, privacy also comes for free if the function of interest has low

correlation with the protected attributes. A similar observation is made by “noiseless” mechanisms in [3, 4] that show

that the uncertainly that comes from some data distributions can be leveraged to protect individual record privacy

without additional noise.

Algorithm 1 can be easily extended to handle vector-valued queries with 𝐹 (𝑋 ) ∈ R𝑘 and sensitive functions 𝑔𝑖

over multiple attributes by changing Δ𝑖𝐹 in Equation (1) to be the maximum ℓ2 distance rather than absolute value.

Additionally, the noise adjustment for each attribute should be based on the conditional covariance matrix of 𝐹 (𝑋 )
rather than the conditional variance.

Algorithm 1 Attribute-Private Gaussian Mechanism, APGM(𝑋, 𝐹, {𝑔𝑖 },𝐶, {𝑆,Q,Θ}, 𝜖, 𝛿) for dataset attribute privacy.
Input: dataset 𝑋 , query 𝐹 , functions 𝑔𝑖 for protected attributes 𝑖 ∈ 𝐶 , framework {𝑆,Q,Θ} , privacy parameters 𝜖 , 𝛿

Set 𝜎2 = 0, 𝑐 =
√︁

2 log(1.25/𝛿).
for each 𝑖 ∈ 𝐶 do

Set Δ𝑖𝐹 = max𝜃 ∈Θ max(𝑠𝑖𝑎,𝑠𝑖𝑏 ) ∈Q

���E [𝐹 (𝑋 ) |𝑠𝑎
𝑖

]
− E

[
𝐹 (𝑋 ) |𝑠𝑏

𝑖

] ���.
if (𝑐Δ𝑖𝐹/𝜖)2 − min𝜃 ∈Θ Var(𝐹 (𝑋 ) |𝑔𝑖 (𝑋𝑖 ), 𝜃 ) ≥ 𝜎2 then

Set 𝜎2 = (𝑐Δ𝑖𝐹/𝜖)2 − min𝜃 ∈Θ Var(𝐹 (𝑋 ) |𝑔𝑖 (𝑋𝑖 ), 𝜃 ).
if 𝜎2 > 0 then

Sample 𝑍 ∼ N(0, 𝜎2).
Return 𝐹 (𝑋 ) + 𝑍 .

else Return 𝐹 (𝑋 ).
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Theorem 1. The Attribute-Private Gaussian Mechanism

APGM(𝑋, 𝐹, {𝑔𝑖 },𝐶, {𝑆,Q,Θ}, 𝜖, 𝛿) in Algorithm 1 is (𝜖, 𝛿)-dataset attribute private when 𝐹 (𝑋 ) |𝑔𝑖 (𝑋𝑖 ) is Gaussian dis-

tributed for any 𝜃 ∈ Θ and 𝑖 ∈ 𝐶 .

Privacy follows from the observation that the summation of 𝐹 (𝑋 ) and the Gaussian noise 𝑍 is Gaussian distributed

conditioned on any secrets, and the probabilities of the output conditioned on any pairs of secrets have the same

variance with mean difference Δ𝑖𝐹 . Since we bound the ratio of the two probabilities caused by shifting this variable,

the analysis reduces to the proof of Gaussian mechanism in differential privacy. The full proof of the theorem appears

in Appendix D.

High probability additive accuracy bounds on the output of Algorithm 1 can be derived using tail bounds on the noise

term 𝑍 based on its variance 𝜎2
. The formal accuracy guarantee is stated in Theorem 2, which follows immediately

from tail bounds of a Gaussian.

Theorem 2. The Attribute-Private Gaussian Mechanism

APGM(𝑋, 𝐹, {𝑔𝑖 },𝐶, {𝑆,Q,Θ}, 𝜖, 𝛿) in Algorithm 1 is (𝛼, 𝛽)-accurate for any 𝛽 > 0 and

𝛼 =

√︂
max{0,max

𝑖∈𝐶
{(𝑐Δ𝑖𝐹/𝜖)2 − min

𝜃 ∈Θ
Var(𝐹 (𝑋 ) |𝑔𝑖 (𝑋𝑖 ), 𝜃 )}}Φ−1 (1 − 𝛽

2

),

where 𝑐 =
√︁

2 log(1.25/𝛿) and Φ is the CDF of the standard normal distribution.

In general, if 𝐹 (𝑋 ) is independent of, or only weakly correlated with the protected functions 𝑔𝑖 (𝑋𝑖 ), then no noise is

needed is preserve dataset attribute privacy, and the mechanism can output the exact answer 𝐹 (𝑋 ). On the other hand,

if 𝐹 (𝑋 ) is highly correlated with 𝑔𝑖 (𝑋𝑖 ), we then consider a tradeoff between the sensitivity and the variance of 𝐹 (𝑋 ).
If the variance of 𝐹 (𝑋 ) is relatively large, then 𝐹 (𝑋 ) is inherently private, and less noise is required. If the variance of

𝐹 (𝑋 ) is small and the sensitivity of 𝐹 (𝑋 ) is large, the mechanism must add a noise term with large 𝜎2
, resulting in

low accuracy with respect to the true answer. In contrast to individual privacy, the accuracy of the mechanism will

decrease as the number of records 𝑛 goes to∞, because more records will reveal the global information more accurately

(the variance of 𝐹 (𝑋 ) decreases). To make these statements more concrete and understandable, Section 4.2 provides a

concrete instantiation of Algorithm 1.

4.2 Instantiation with Gaussian distributed data

In this section, we show an instantiation of our Attribute-Private Gaussian Mechanism when the joint distribution

of the𝑚 attributes is multivariate Gaussian. The privacy guarantee of this mechanism requires that 𝐹 (𝑋 ) |𝑔𝑖 (𝑋𝑖 ) is
Gaussian distributed, which is satisfied when 𝑔𝑖 and 𝐹 are linear with respect to the entries of 𝑋 . For simplicity of

illustration, we will choose both 𝐹 (𝑋 ) and all 𝑔𝑖 (𝑋𝑖 ) to compute averages.

We continue with our example from Section 3 with a dataset that consists of patients’ information including gender

𝑋gndr, heights𝑋h, weights𝑋w, blood pressure𝑋b, and temperature𝑋t. The hospital wishes to release the average weight

of its patients, so 𝐹 (𝑋 ) = 1

𝑛

∑𝑛
𝑗=1

𝑋
𝑗
w. The hospital also wants to prevent an adversary from inferring the proportion of

females among their patients, so 𝐶 = {gndr} and 𝑔(𝑋gndr) = 1

𝑛

∑𝑛
𝑗=1

1[𝑋 𝑗

gndr = female].
To instantiate our framework, let 𝑠𝑖𝑎 denote the event that 𝑔(𝑋𝑖 ) = 𝑎. If 𝑔(𝑋𝑖 ) has support U𝑖

, then the set of secrets

is 𝑆 = {𝑠𝑖𝑎 : 𝑎 ∈ U𝑖 , 𝑖 ∈ 𝐶}, and the set of secret pairs is Q = {(𝑠𝑖𝑎, 𝑠𝑖𝑏 ) : 𝑎, 𝑏 ∈ U𝑖 , 𝑎 ≠ 𝑏, 𝑖 ∈ 𝐶}. In the above example,

setting a pair of secrets

(
𝑠
gndr
𝑛/2

, 𝑠
gndr
𝑛/4

)
to

(
𝑔(𝑋gndr) = 𝑛/2, 𝑔(𝑋gndr) = 𝑛/4

)
captures that the hospital wishes to hide

whether the proportion of female patients is 50% or 25%.
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Each 𝜃 ∈ Θ is a distribution over 𝑛 i.i.d. samples from an underlying multivariate Gaussian distribution with mean

(𝜇1, . . . , 𝜇𝑚)𝑇 and covariance matrix (𝑉𝑖 𝑗 ), 𝑖, 𝑗 ∈ [𝑚], where 𝑉𝑖 𝑗 = 𝑉𝑗𝑖 is the covariance between 𝑋𝑖 and 𝑋 𝑗 if 𝑖 ≠ 𝑗 , and

𝑉𝑖𝑖 is the variance of 𝑋𝑖 . We note that the height, weight, and gender attributes may not be Gaussian distributed in

practice. Hence, the choice of whether to use the Attribute-Private Gaussian Mechanism for Gaussian or non-Gaussian

data should be determined by the practitioner. See Appendix B for a version of Algorithm 1 that does not rely on

assumptions of Gaussian-distributed data.

Suppose we want to guarantee (𝜖, 𝛿)-dataset attribute privacy through the Attribute-Private Gaussian Mechanism.

Then we need to first compute E
[
𝐹 (𝑋 ) |𝑠𝑖𝑎

]
and Var(𝐹 (𝑋 ) |𝑠𝑖𝑎) for each 𝑖 ∈ 𝐶 . Let 𝑗 denote the index of the attribute

averaged in 𝐹 (𝑋 ). By the properties of a multivariate Gaussian distribution, the distribution of 𝐹 (𝑋 ) conditional on
𝑔(𝑋𝑖 ) = 𝑎 is Gaussian N(𝜇𝑎,𝑉 ), where 𝜇𝑎 = 𝜇 𝑗 +

𝑉𝑖 𝑗
𝑉𝑖𝑖

(𝑎 − 𝜇𝑖 ) and 𝑉 = 1

𝑛 (𝑉𝑗 𝑗 −
𝑉 2

𝑖 𝑗

𝑉𝑖𝑖
). We define the diameter of U

as 𝑑 (U) = max𝑎,𝑏∈U |𝑎 − 𝑏 |. The sensitivity is: Δ𝑖𝐹 = max(𝑠𝑖𝑎,𝑠𝑖𝑏 ) ∈Q
|𝜇𝑎 − 𝜇𝑏 | =

𝑉𝑖 𝑗
𝑉𝑖𝑖

max𝑎,𝑏∈U |𝑎 − 𝑏 | = 𝑉𝑖 𝑗
𝑉𝑖𝑖

𝑑 (U).
To ensure (𝜖, 𝛿)-dataset attribute privacy for protected attribute 𝑋𝑖 , the variance of the Gaussian noise must be at

least (𝑐𝑉𝑖 𝑗𝑑 (U)
𝑉𝑖𝑖𝜖

)2 − 1

𝑛 (𝑉𝑗 𝑗 −
𝑉 2

𝑖 𝑗

𝑉𝑖𝑖
) for 𝑐 =

√︁
2 log(1.25/𝛿) as in Algorithm 1. Adding Gaussian noise with variance

𝜎2 = max𝑖∈𝐶 {(𝑐
𝑉𝑖 𝑗𝑑 (U)

𝑉𝑖𝑖𝜖
)2 − 1

𝑛 (𝑉𝑗 𝑗 −
𝑉 2

𝑖 𝑗

𝑉𝑖𝑖
)} will provide (𝜖, 𝛿)-dataset attribute privacy for all protected attributes.

We note that 𝜎2
is monotonically increasing with respect to 𝑉𝑖 𝑗 . That is, our Attribute-Private Gaussian Mechanism

will add less noise to the output if the query 𝐹 is about an attribute which has a low correlation with the protected

attributes.

So far we have discussed about the case when Θ only consists of one distribution, in order to show the impact

of 𝑉𝑖 𝑗 . For the general case, the sensitivity Δ𝑖𝐹 is max𝜃 ∈Θ
𝑉𝑖 𝑗
𝑉𝑖𝑖

𝑑 (U), and the noise is scaled with variance 𝜎2 =

max𝑖∈𝐶 {(𝑐 max𝜃 ∈Θ
𝑉𝑖 𝑗𝑑 (U)

𝑉𝑖𝑖𝜖
)2 − min𝜃 ∈Θ

1

𝑛 (𝑉𝑗 𝑗 −
𝑉 2

𝑖 𝑗

𝑉𝑖𝑖
)}.

Experiments. In this section we evaluate our Algorithm 1 in the above Gaussian setting. The goal of the experiments

is to empirically evaluate how sensitivity affects accuracy of the results, and to demonstrate cases where no noise

needs to be injected. We generate a synthetic dataset of 50 patient records as follows. Gender 𝑋gndr is generated by

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (.6) with 1 representing female and 0 representing all other genders. If female, then we generate heights

𝑋h from 𝑁 (65, 3) and heights 𝑋h from 𝑁 (70, 3), otherwise. For any given heights 𝑋h, we generate the corresponding

weights 𝑋w by 𝑁 (3.6𝑥w − 90, 15). Since temperature is irrelevant to gender, we generate the temperature column by

𝑁 (98.6, 0.5), and we generate the blood pressure by 𝑁 (100, 3) for female [24] and 𝑁 (106, 3), otherwise.
We now describe the set Θ of possible distributions. We assume the possible conditional distributions of weights

is {𝑁 (𝑘1𝑥w − 𝑘2, 15) : 𝑘1 ∈ (3, 3.5), 𝑘2 ∈ (80, 90)}; the possible conditional distribution of heights is {𝑁 (𝜇𝐹 , 3), 𝜇𝐹 ∈
(64, 66)} if female and {𝑁 (𝜇𝑂 , 8), 𝜇𝑂 ∈ (69, 71)} otherwise; the possible conditional distribution of blood pressure is

𝑁 (𝑏𝐹 , 10) if female and 𝑁 (𝑏𝑂 , 10) otherwise with 6 ≤ 𝑏𝐹 − 𝑏𝑂 ≤ 10; the possible distribution of temperature 𝑁 (𝑡𝐹 , 2)
if female and 𝑁 (𝑡𝑂 , 2) otherwise with 0 ≤ 𝑡𝐹 − 𝑡𝑂 ≤ 0.3. The possible distributions of gender is {𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝), 𝑝 ∈
(.25, .75)}.

An analyst wishes to release aggregate statistics of the record attributes while hiding whether proportion of female

patients is above 50% or below 50%. Therefore, the set of secrets is defined as Q = {(𝑠gndr𝑎 , 𝑠
gndr
𝑏

) : 𝑎 ∈ (.25, .5), 𝑏 ∈
(.5, .75)}. We now evaluate Algorithm 1 on three scenarios where the analyst wants to release one of the following

statistics: the average weight, the average blood pressure and the average temperature. We set 𝜖 = 1 and 𝛿 = 10
−3
. We

report accuracy results over an average of 100 runs.
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Releasing average weight 𝐹1: Given the above parameters, the sensitivity of 𝐹1 isΔgndr𝐹1 = 3.5 max |𝜇𝐹 − 𝜇𝑂 | max |𝑎 − 𝑏 | =
6.125 and the variance is Var(𝐹1 |𝑠gndr𝑎 ) = 4.5. The true average of weights in the simulated dataset is 161.33, and

the average absolute error of Algorithm 1 is 18.90.

Releasing average blood pressure 𝐹2: The sensitivity is now Δgndr𝐹2 = max |𝑏𝐹 − 𝑏𝑂 | max |𝑎 − 𝑏 | = 10 ∗ 0.25 = 2.5 and

the variance is Var(𝐹2 |𝑠gndr𝑎 ) = 2. The true average blood pressure in the simulated dataset is 102.18, and the

average absolute error of Algorithm 1 is 7.40.

Releasing average temperature 𝐹3: For this query, the sensitivity is Δgndr𝐹3 = max |𝑡𝐹 − 𝑡𝑂 | max |𝑎 − 𝑏 | = 0.3 ∗ 0.25 =

0.075 and the variance Var(𝐹3 |𝑠gndr𝑎 ) = 0.08. Note that Algorithm 1 does not inject noise in this case, and thus

outputs the true average of weights in our simulated dataset, which is 98.58.

Algorithm 1 is computationally efficient and, similar to differential privacy, relies on knowing the sensitivity of the

query 𝐹 (𝑋 ) that may require additional analysis. The sensitivity can be computed through the possible conditional

distribution information from Θ, which is dataset-independent, as we have seen in the above experiments.

5 THE MARKOV QUILT MECHANISM FOR DISTRIBUTIONAL ATTRIBUTE PRIVACY

In this section we consider distributional attribute privacy, as introduced in Definition 5, and develop a mechanism

that satisfies this privacy definition. Recall that in this setting, an analyst aims to release 𝐹 (𝑋 ) while protecting the

realization of a random parameter 𝜙𝑖 , which describes the conditional marginal distribution of the 𝑖th attribute, given

the realization of all 𝜙𝑘 for 𝑘 ≠ 𝑖 for all other attributes. This formalization implies that all (column) attribute vectors 𝑋𝑖

are mutually independent, conditional on the set of parameters (𝜙1, . . . , 𝜙𝑚).

5.1 Attribute-Private MarkovQuilt Mechanism

We base our mechanism on the idea of a Markov Quilt, which partitions a network of correlated random variables into

those which are “near” (𝑋𝑁 ) a particular variable 𝑋𝑖 , and those which are “remote” (𝑋𝑅 ). Intuitively, we will use this to

partition attributes into those which are highly correlated (𝑋𝑁 ) with our sensitive attributes, and those which are only

weakly correlated (𝑋𝑅 ).

Definition 6 (Markov Quilt). A set of nodes 𝑋𝑄 in a Bayesian network 𝐺 = (𝑋, 𝐸) is a Markov Quilt for a node 𝑋𝑖 if

deleting 𝑋𝑄 partitions 𝐺 into parts 𝑋𝑁 and 𝑋𝑅 such that 𝑋𝑖 ∈ 𝑋𝑁 and 𝑋𝑅 is independent of 𝑋𝑖 conditioned on 𝑋𝑄 .

We quantify the effect that changing the distribution parameter 𝜙𝑖 of a sensitive attribute 𝑋𝑖 has on a set of

distribution parameters 𝜙𝐴 (corresponding to a set of attributes 𝑋𝐴) using the max-influence. Since attributes are

mutually independent conditioned on the vector (𝜙1, . . . , 𝜙𝑚), the max-influence is sufficient to quantify how much a

change of all values in attribute 𝑋𝑖 will affect the values of 𝑋𝐴 . If 𝜙𝑖 and 𝜙𝐴 are independent, then 𝑋𝐴 and 𝑋𝑖 are also

independent, and the max-influence is 0.

Definition 7. The max-influence of an attribute 𝑋𝑖 on a set of attributes 𝑋𝐴 under Θ is:

𝑒Θ (𝑋𝐴 |𝑋𝑖 ) = sup

𝜃 ∈Θ
max

𝜙𝑎
𝑖
,𝜙𝑏

𝑖
∈Φ𝑖

max

𝜙𝐴∈Φ𝐴

log

𝑃 (𝜙𝐴 |𝜙𝑎𝑖 , 𝜃 )
𝑃 (𝜙𝐴 |𝜙𝑏𝑖 , 𝜃 )

.

The sensitivity of 𝐹 with respect to a set of attributes 𝐴 ⊆ [𝑚], denoted Δ𝐴𝐹 , is defined as the maximum change that

the value of 𝐹 (𝑋 ) caused by changing all columns 𝑋𝐴 . Formally, we say that two datasets 𝑋,𝑋 ′
are 𝐴-column-neighbors
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Algorithm 2 Attribute-Private Markov Quilt Mechanism, APMQM(𝑋, 𝐹,𝐴,𝐶, {𝑆,Q,Θ}, 𝜖) for distributional attribute
privacy.

Input: dataset 𝑋 , query 𝐹 , index set of queried attributes 𝐴, index set of sensitive attributes 𝐶 , framework {𝑆,Q,Θ},
privacy parameter 𝜖 .

for each 𝑖 ∈ 𝐶 do
Set 𝑏𝑖 = Δ𝐴𝐹/𝜖 .
Set 𝐺𝑖 := {(𝑋𝑄 , 𝑋𝑁 , 𝑋𝑅) : 𝑒Θ (𝑋𝑄 |𝑋𝑖 ) ≤ 𝜖} to be all possible Markov quilts of 𝑋𝑖 with max-influence less than 𝜖 .

if 𝐺𝑖 ≠ ∅ do
for each (𝑋𝑄 , 𝑋𝑁 , 𝑋𝑅) ∈ 𝐺𝑖 do

if Δ𝐴∩𝑁 𝐹/(𝜖 − 𝑒Θ (𝑋𝑄 |𝑋𝑖 )) ≤ 𝑏𝑖 then
Set 𝑏𝑖 = Δ𝐴∩𝑁 𝐹/(𝜖 − 𝑒Θ (𝑋𝑄 |𝑋𝑖 )).

Sample 𝑍 ∼ Lap(max𝑖∈𝐶 𝑏𝑖 ).
Return 𝐹 (𝑋 ) + 𝑍

if they are identical except for the columns corresponding to attributes in 𝐴, which may be arbitrarily different. Then

Δ𝐴𝐹 = max

𝑋,𝑋 ′ 𝐴-column-neighbors

��𝐹 (𝑋 ) − 𝐹 (𝑋 ′)
�� .

Although changing 𝑋𝐴 may lead to changes in other columns, these changes are governed by the max influence, and

will not affect attributes that are nearly independent of 𝑋𝑖 .

Observe that the event that 𝑋𝑅 and 𝑋𝑖 are independent conditional on 𝑋𝑁 is equivalent to the event when 𝜙𝑅 and 𝜙𝑖

are independent conditional on 𝜙𝑁 , which is why we can define the Markov Quilt based on 𝑋𝑖 . However, since the

distribution of 𝑋𝑖s are governed by 𝜙𝑖s, the max-influence score must be computed using 𝜙𝑖s rather than 𝑋𝑖s.

The mechanism. We extend the idea of the Markov Quilt Mechanism in [27] to the attribute privacy setting as follows.

Let 𝐴 ⊆ [𝑚] be a set of attributes over which 𝐹 is computed. For example, 𝐹 may compute the average of a particular

attribute or a regression on several attributes. At a high level, we add noise to the output of 𝐹 scaled based on the

sensitivity of 𝐹 with respect to 𝑋𝑁 𝑠 . However, when computing the sensitivity of 𝐹 we only need to consider sensitivity

of 𝐹 with respect to 𝐴 ∩ 𝑁 , i.e., the queried set of attributes 𝐴 that are in the “nearby” set of the protected attribute. If

the query 𝐹 is about attributes that are all in the “remote” set 𝑋𝑅𝑖 and the max-influence on the corresponding Markov

quilt is less than the privacy parameter 𝜖 , then Δ𝐴∩𝑁 𝐹 is simply 0 and the mechanism will not add noise to the query

answer. We note that the original Markov Quilt Mechanism was designed for protecting individual privacy, or one

attribute record where the dataset only consists of one person’s data. To extend the idea to protect dataset-level attribute

information, non-trivial new data model and the corresponding max-influence definition is required.

Theorem 3. The Attribute-Private Markov Quilt Mechanism

APMQM(𝑋, 𝐹,𝐴,𝐶, {𝑆,Q,Θ}, 𝜖) in Algorithm 2 is (𝜖, 0)-distributional attribute private.

The proof of this theorem appears in Appendix D. As before, the accuracy follows immediately from the tail bound

on the noise term based on the Laplace distribution parameter. The accuracy depends on 𝐴 ∩ 𝑁 and 𝑒Θ (𝑋𝑄 |𝑋𝑖 ), which
measures the correlations between the sensitive attributes and the queried attributes.

Theorem 4. The Attribute-Private Markov Quilt Mechanism

APMQM(𝑋, 𝐹,𝐴,𝐶, {𝑆,Q,Θ}, 𝜖) in Algorithm 2 is (𝛼, 𝛽)-accurate for any 𝛽 > 0 and

𝛼 = max{max

𝑖∈𝐶
min

(𝑋𝑄 ,𝑋𝑁 ,𝑋𝑅 ) ∈𝐺𝑖

Δ𝐴∩𝑁 𝐹/(𝜖 − 𝑒Θ (𝑋𝑄 |𝑋𝑖 )),Δ𝐴𝐹/𝜖} log( 1

2𝛽
),
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Family 
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SAT 
score

Height

Weight

Fig. 1. Bayesian Network of five attributes where income is a sensitive attribute.

where 𝐺𝑖 := {(𝑋𝑄 , 𝑋𝑁 , 𝑋𝑅) : 𝑒Θ (𝑋𝑄 |𝑋𝑖 ) ≤ 𝜖} is the set of all possible Markov quilts of 𝑋𝑖 with max-influence less than 𝜖 .

Example 1. Consider the setting from Section 3 where a school is interested in releasing statistics about their students,

while now wishing to protect the distribution of family income (instead of gender) among their students. The set of secrets

is 𝑆 = {𝑠𝑖𝑎 := 1[𝜙𝑖 ∈ Φ𝑖𝑎] : Φ𝑖𝑎 ⊂ Φ𝑖 }, where 𝜙𝑖 denotes the distribution parameter of family income, and Φ𝑖𝑎 can be a

range or a particular value in Φ𝑖 . Here, a dataset consists of students’ SAT scores 𝑋s, heights 𝑋h, weights 𝑋w, gender 𝑋gndr,

and their family income 𝑋i, where these variables form a Bayesian network as in Figure 1. The school wishes to release

the number of students that are taller than 66 inches, while protecting the distribution of family income of their students

with privacy parameter 𝜖 . In this case, 𝐶 = {i}, 𝐴 = {h} and 𝐹 (𝑋 ) = ∑𝑛
𝑗=1

1[𝑋 𝑗

h > 66]. Consider a Markov quilt for 𝑋i:

𝑄 = {gndr}, 𝑁 = {i, s}, 𝑅 = {h,w}. Then 𝐴 ∩ 𝑁 = ∅, so we can safely release 𝐹 (𝑋 ) = ∑𝑛
𝑖=1

1[𝑋 𝑗

h > 66] without additional
noise.

Next consider the case when the school wishes to release the number of students that are taller than 66 inches and have

SAT score > 1300. Then, 𝐹 (𝑋 ) = ∑𝑛
𝑗=1

1[(𝑋 𝑗

h > 66) ∧ (𝑋 𝑗
s > 1300)] and 𝐴 = {h, s}. In this case we can still use the same

Markov quilt as before, but now𝐴∩𝑁 = {s}. The mechanism will add Laplace noise scaled with Δ{s}𝐹/(𝜖 −𝑒Θ (𝑋gndr |𝑋i)).

It is instructive to contrast the above mechanism to the Markov Quilt Mechanism of [27], presented fully in Appendix

A. The most important difference is that the mechanism in [27] was not designed to guarantee attribute privacy. It

provides privacy of the values 𝑋
𝑗
𝑖
but does not protect the distribution from which 𝑋

𝑗
𝑖
is generated. This difference

in high-level goals leads to three key technical differences. Firstly, the definition of max-influence in [27] measures

influence of a variable value on values of other variables. This is insufficient when one wants to protect distributional

information, as 𝑋𝑖 may take a range of values while still following a particular distribution (e.g., hiding the gender of an

individual in a dataset vs. hiding the proportion of females to males in this dataset.) Secondly, while it is natural to

consider 𝐿-Lipschitz functions to bound sensitivity when one value changes (as is done in [27]), this is not applicable to

settings where the distribution of data changes, since this may change all values in a column. As a result, we do not

restrict 𝐹 in this way. Finally, the mechanisms themselves are different as [27] consider answering query 𝐹 over all

attributes of an individual. As a result, they need to consider sensitivity of a function to all the “nearby” attributes. In

contrast, we only consider sensitivity of those “nearby” attributes that happen to be in the query (i.e., those in 𝐴).
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