STEADY GRADIENT KAHLER-RICCI SOLITONS ON CREPANT
RESOLUTIONS OF CALABI-YAU CONES
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ABSTRACT. We show that, up to the flow of the soliton vector field, there exists a unique complete
steady gradient Kéhler-Ricci soliton in every Kéhler class of an equivariant crepant resolution of a
Calabi-Yau cone converging at a polynomial rate to Cao’s steady gradient Kéahler-Ricci soliton on

the cone.
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1. INTRODUCTION

1.1. Overview. A Ricci soliton is a triple (M, g, X ), where M is a Riemannian manifold endowed
with a complete Riemannian metric ¢ and a complete vector field X such that
. A 1
Ric(g) + 59 = 5Lx9g (1.1)
for some A € {—1,0, 1}. If X = V9f for some smooth real-valued function f on M, then we say
that (M, g, X) is gradient. In this case, the soliton equation (1.1) becomes

Ric(g) + %g = Hess(f).

If g is complete and Kéhler with Ké&hler form w, then we say that (M, g, X) is a Kdhler-Ricci
soliton if the vector field X is complete and real holomorphic and the pair (g, X) satisfies the
equation

1
Ric(g) + Ag = §£Xg (1.2)

for A as above. If g is a K&hler-Ricci soliton and if X = V9 f for some smooth real-valued function
f on M, then we say that (M, g, X) is gradient. In this case, the soliton equation (1.2) may be
rewritten as

Pu + Aw = 100,
where p,, is the Ricci form of w.

For Ricci and Kéhler-Ricci solitons (M, g, X), the vector field X is called the soliton vector field.
Its completeness is guaranteed by the completeness of g [Zha09]. If the soliton is gradient, then the
smooth real-valued function f satisfying X = V9f is called the soliton potential. It is unique up to
addition of a constant. Finally, Ricci and Kéhler-Ricci solitons are called steady if A = 0, expanding
if A =1, and shrinking if A = —1 in (1.1) and (1.2) respectively.

The study of Ricci solitons and their classification is important in the context of Riemannian
geometry. For example, they provide a natural generalisation of Einstein manifolds and on certain
Fano manifolds, shrinking Kéhler-Ricci solitons are known to exist where there are obstructions to
the existence of a Kéhler-Einstein metric [WZ04]. Also, to each soliton, one may associate a self-
similar solution of the Ricci flow [CK04, Lemma 2.4] which are candidates for singularity models of
the flow. The difference in normalisations between (1.1) and (1.2) reflects the difference between the
constants preceding the Ricci term in the Ricci low and in the Kahler-Ricci flow respectively when
one takes this dynamic point of view.

In this article, we are concerned with the existence and uniqueness of complete steady gradient
Kaéhler-Ricci solitons on crepant resolutions of Calabi-Yau cones. Such solitons which are not Ricci-
flat are necessarily non-compact [Ive93]. Examples include Hamilton’s cigar soliton [Ham88] on C
which was generalised by Cao [Ca096] to C™ and Kpr. Further generalisations were then obtained by
Dancer-Wang [DW11], Yang [Yan12], and more recently by Schéfer [Sch20]. All examples mentioned
thus far are highly symmetric and were constructed by solving an ODE. In [BM17], Biquard-Macbeth
implement a gluing method to construct examples of complete steady gradient Kahler-Ricci solitons
in small Kéhler classes of an equivariant crepant resolution of C"/I", where I' is a finite subgroup of
SU(n) acting freely on C™ \ {0}. Our main result is the construction of a complete steady gradient
Kahler-Ricci soliton in every Kéhler class of a crepant resolution of a Calabi-Yau cone, unique up
to the flow of the soliton vector field, converging at a polynomial rate to Cao’s steady gradient
Kahler-Ricci soliton on the cone.

1.2. Main result. Cao’s construction of a steady gradient Kahler-Ricci soliton on C™ [Ca096] allows
for an ansatz to construct a one-parameter family of incomplete steady gradient Kahler-Ricci solitons
@q, a > 0, on any Ricci-flat Kéhler (or “Calabi-Yau”) cone (Cp, go). With this in mind, our main
result can be stated as follows.



Steady gradient K&hler-Ricci solitons on crepant resolutions of Calabi-Yau cones 3

Theorem A (Existence and uniqueness for steadies). Let (Co, go) be a Calabi- Yau cone of complex
dimension n > 2 with complex structure Jy, Calabi- Yau cone metric go, radial function r, and trivial
canonical bundle. Let m: M — Cy be a crepant resolution of Cy with complex structure J such that
the real holomorphic torus action on Cy generated by Jord, extends to M so that the holomorphic
vector field 2rd, on Cy lifts to a real holomorphic vector field X = n*(2rd,) on M. Set t := log(r?)
and define the Kdhler form & := %85 (”—§2> on Cy.

Then in every Kdhler class € of M, up to the flow of X, there exists a unique complete steady
gradient Kdhler-Ricci soliton w € € with soliton vector field X and with Ljyxw = 0 such that for all
e € (0, 1), there exist constants C(i, j, ) > 0 such that

VLY (ruw — @)y < C, 4, )27 for all i, j € Ny, (1.3)

where g denotes the Kdahler metric associated to w and V is the corresponding Levi-Civita connection.
More precisely, for all € € (0, %) and for all a > 0, there exist constants C(i, j, €, a) > 0 such that

~

\@Z[g) (e — @0 — C)

§ <C(1, J, ¢, a)t*%g*%*j for all i, j € Ny, (1.4)

where f is a real (1, 1)-form uniquely determined by ¢ that is invariant under the flow of X and JX,
and Qgq, a > 0, denotes Cao’s family of incomplete steady gradient Kdhler-Ricci solitons on Cy. If
t is compactly supported or if n = 2, then for all a > 0, there exists a smooth real-valued function
¢ : M — R and constants C(i, j, a) > 0 such that

W — @y = 100, where ]@"ﬁg)(t*”“e”t@) 5 < C(i, 4, a)t*%*j for alli, j € Ng. (1.5)

A resolution for which the torus action on the cone extends to the resolution is called equivariant.
Such a resolution of a complex cone always exists (cf. [Kol07, Proposition 3.9.1]). However, for
Calabi-Yau cones, it may not necessarily be crepant. On the other hand, if a crepant resolution of
a Calabi-Yau cone is unique, then it is necessarily equivariant; apply the proof of [CDS19, Lemma
2.13] to see this. Moreover, the steady solitons of Theorem A display so-called “cigar-paraboloid”
asymptotics. Most notably, the volume of a ball of radius R in M grows at rate O(R% dime M) and
the curvature decays linearly. Finally, Cao’s steady gradient Kéahler-Ricci soliton @, on Cy also
converges to w at infinity. The precise asymptotics may be found in Proposition 3.2. Together with
(1.4), they yield the following more refined asymptotics:

{C(z’, Nt log(t) if j =0,
g <

§i£(j) T — W P
Vi ) C(i, jt~'-277 if j > 1.

1.3. The CYestimate. The problem of constructing a Calabi-Yau metric on a complete Kéhler
manifold (M, 7) of complex dimension n with trivial canonical bundle and Ké&hler form 7 can be
reformulated in terms of solving the complex Monge-Ampere equation

Ty = ef'rm, (1.6)

where 1 is an unknown smooth real-valued function, F' is a smooth real-valued function (the given
data), and 7y = 7 + i00n is positive-definite. In the compact case, Yau [Yau78] successfully
implemented the continuity method to obtain a solution of this equation. The same strategy has
also borne much fruit in the non-compact case; see for instance [Heil0, HHN15, Joy00, TY90, TY91].

A common feature shared by the proofs of the aforementioned results is the need to establish a
uniform C?-bound along the continuity path, where the data F in (1.6) has either compact support
or, when the underlying complex manifold M is non-compact, decays sufficiently fast at infinity.
This bound has been achieved by implementing a Nash-Moser iteration. It works as follows. One
first establishes an a priori L?-bound by considering the difference between the volume forms 7 and
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T,Z in the following way:

n—1
/M(l ey = /M¢ (r" —7p) = ;/M WOY NP AT AT > /M 0 Ao AT (L)

The first equality uses (1.6), the second is an integration by parts (which must be justified when M
is non-compact), and the inequality is obtained by dropping all of the terms in the sum apart from
the last which does not depend on the unknown Kéhler form 7. A Poincaré-type inequality (in
the compact case) or a Sobolev inequality (in the case of maximal volume growth for example) then
allows for uniform L2-control on 1 (or, if F is only decaying polynomially at infinity, LP-control for
p sufficiently large). From this, the a priori C°-bound follows by applying (1.7) with ¢|¢[P=2, p > 2,
in place of ¢ and letting p tend to 4oc0.

Analogously, the problem of constructing a steady gradient Kéhler-Ricci soliton on M can be
reformulated in terms of solving the complex Monge-Ampere equation

T’ZL = eng'w7n7 (18)

where 7, 7, and F are as before, and X is a given real holomorphic vector field on M. In our
situation, the data F' is polynomially decaying. As above, our approach to solve this PDE is to
implement the continuity method. As such, we also require a uniform C°-bound along the continuity
path. In contrast to (1.6) however, the added difficulty in this case arises from the fact that the
unknown function ¢ appears on both sides of (1.8). Nevertheless, to obtain an initial energy estimate
we proceed as above, but rather than considering the difference between the volume forms 7" and Tg,
we consider the difference between the weighted volume forms e/ 7™ and e/ TIZ, where —71JX = df
and similarly for fy, the reason being that the framework of metric measure spaces is the correct one
to take to account for the existence of the vector field X that was missing from (1.6). Unsurprisingly
though, the approach taken in the Calabi-Yau case no longer suffices; not only does the first equality
of (1.7) fail if one replaces 7™ and Ty with their respective weighted analogues, but we no longer have
a global Sobolev inequality that would be needed in order to implement a Nash-Moser iteration.

To overcome these difficulties, we first observe that it is enough to solve (1.8) with data F' com-
pactly supported, the reason being that via an application of the implicit function theorem, we are
able to reduce to this case when F' is polynomially decaying. Once we have reduced to the com-
pactly supported case, we apply the continuity method working in the space M¥ exp (M) of smooth
real-valued functions that decay exponentially with derivatives at infinity. Then to obtain an initial
a priori energy bound along the continuity path of solutions, we introduce, in line with Tian-Zhu
[TZ00a] and their work on the uniqueness of shrinking gradient K&hler-Ricci solitons on compact
Kéhler manifolds, the following functionals defined on M% . (M):

1
I x(p) == / % (efT" — ef“"T;‘) and Jr x (@) == / / Ds (efT" - ef“GSTgS) Ads.
M 0 JMm

Here, (pt)o<t<1 is a Cl-path in M (M) from o = 0 to @1 = ¢, T, =T + 100y is positive-
definite, —7,, X = df,,, 7, := 7,,, and f, := f,,. The exponential decay guarantees that both of
these integrals converge; polynomial decay is not sufficient for this to be the case. The fact that J; x
is independent of the choice of path and so does indeed define a functional is due to Zhu [Zhu00]
in the compact case; we modify his proof accordingly to prove this fact for our situation. We also
remark that Aubin [Aub84], Bando-Mabuchi [BM87] and Tian [Tia00, Chapter 6] have used these
functionals (with X = 0) to successfully study Kéahler-Einstein Fano manifolds. By considering
separately the continuity path of solutions (¢1)o<i<1 of (1.8) in MF . (M) and the linear path
(t1)o<t<1, and making use of a suitable Poincaré inequality, we obtain an a priori weighted L2-
bound for (1.8). Our ability to use a Poincaré inequality is crucial for this part of the argument to
work and the existence of such an inequality follows from the existence of a steady gradient Ricci
soliton at infinity that we have thanks to Cao’s ansatz [Cao96] on the Calabi-Yau cone.
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The next step involves improving the initial a priori weighted energy estimate to an actual a
priori C%-estimate. Since the data F in (1.8) is assumed to be compactly supported, and since ¢ in
(1.8) is a subsolution of the drift Laplacian, i.e., App + X - ¢ > F, where Ay, is the Laplacian with
respect to the Kéhler metric h associated to 7, we can assume without loss of generality that along
the continuity path of solutions (v:)o<¢<1, sup,s ¢+ is contained within the (compact) support of
F for each t. A local Nash-Moser iteration in a tubular neighbourhood of the support of F', using
the already-established a priori weighted energy bound, then allows for a uniform upper bound for
sup,s ¥¢. As for obtaining a uniform lower bound for inf 57 ¢/, this is much more delicate. To achieve
such a bound, we adapt the proof of Blocki [B105], whose result comprises an alternative proof of
Yau’s a priori CY-estimate for solutions of (1.6) on a compact Kihler manifold with vanishing first
Chern class [YauT78|, making use of the weighted energy estimate in the process. Blocki’s proof
exploits the L*°-stability of the complex Monge-Ampere operator and has its roots in the pluri-
potential theory developed by Bedford and Taylor [BT76]. As Blocki explains in [Bl05], the estimate
that he utilises is simpler than the finer estimates of Kolodziej [Kol98]. All that is required is the
maximum principle of Alexandrov [HL97, Chapter 2] for real Monge-Ampeére equations.

As is evident from the above discussion, the fact that F' is compactly supported plays a key role in
passing from global energy estimates to pointwise estimates. Assuming rapid decay of F' at infinity
would not have been sufficient to reach the same conclusions.

1.4. Outline of paper. We begin in Section 2 by recalling the basics of Kéhler and Calabi-Yau
cones, the relevant aspects of Sasakian geometry that we require, as well as the definition of an
equivariant resolution and a metric measure space. We also define and make some important notes
on steady gradient Ricci and Kéhler-Ricci solitons and introduce the Cao ansatz for the construction
of a steady gradient Kahler-Ricci soliton on a Calabi-Yau cone. In Section 3, we analyse more
precisely the asymptotics of Cao’s steady gradient Kéahler-Ricci soliton, cumulating in the statement
of Proposition 3.2. We follow this up in Section 4 with the construction of a background metric in
each Kahler class in Proposition 4.3 which we then use in Proposition 4.5 to reformulate the problem
of existence in terms of solving a scalar PDE, namely the complex Monge-Ampere equation (1.8).
Our background metric is asymptotic to Cao’s steady gradient Kahler-Ricci soliton on the cone and
hence serves as an approximate steady gradient K&hler-Ricci soliton.

From Section 5 onwards, the content takes on a more analytic flavour. In Section 5, we show
that the spectrum of the drift Laplacian of a Riemannian metric uniformly equivalent to a steady
gradient Ricci soliton at infinity and with comparable potentials for the soliton vector field has a
strictly positive lower bound. This observation, comprising Corollary 5.5, is essential in deriving the
a priori weighted energy estimate for (1.8) with compactly supported data. In Section 6, we study the
properties of the drift Laplacian of our background metric acting on exponentially weighted function
spaces. More precisely, in Section 6.2, we introduce exponentially weighted function spaces and in
Section 6.3 we show that the drift Laplacian of our background metric is an isomorphism between
such spaces. This latter result is the content of Theorem 6.7. Using it, we then prove Theorem 6.8
that serves as the openness part of the continuity method. The continuity method itself is outlined
at the beginning of Section 7 and is the approach that we take in order to solve (1.8) with the caveat
being however that the data of the PDE is compactly supported. As in [Siel3], the exponentially
weighted function spaces introduced in Section 6.2 cater specifically for the compactness of the
support of the data. The closedness part of the continuity method involves a priori estimates and
these make up the remainder of Section 7.

Our strategy for solving the complex Monge-Ampere equation (1.8) for polynomially decaying data
involves an application of the implicit function theorem to reduce to the (previously solved) case
of compactly supported data. To achieve this simplification, we work in the space of polynomially
decaying functions. These are introduced in Section 8.1. The invertibility of the drift Laplacian
of our background metric between such spaces is demonstrated in Section 8.2, namely in Theorem
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8.1. Via the implicit function theorem, this invertibility allows for local invertibility of the complex
Monge-Ampeére operator at a polynomially decaying solution. This forms the statement of Theorem
8.4 in Section 8.3. We also show in Theorem 8.6 that the drift Laplacian is surjective onto the space
of polynomially decaying functions. This result, which forms the bulk of Section 8.4, is used in the
proof of the uniqueness part of Theorem A.

In Section 9, we complete the proof of Theorem A. The existence part is taken care of in Section
9.1 with the key step allowing us to reduce everything to compactly supported data the content of
Proposition 9.1. The proof of this proposition requires Theorem 8.4 regarding the local invertibility
of the complex Monge-Ampere operator. The uniqueness part of Theorem A is then proved in Section
9.2. Finally, Appendix A gathers together the various estimates with respect to g, the asymptotic
model metric of Cao’s steady gradient Kéahler-Ricci soliton on the cone, that we use throughout.

1.5. Acknowledgements. The authors wish to thank Richard Bamler, Aziz El Kacimi-Alaoui, and
Song Sun for useful discussions. Part of this work was carried out while the authors were visiting
the Institut Henri Poincaré as part of the Research in Paris program in July 2019. They wish to
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by grant ANR-17-CE40-0034 of the French National Research Agency ANR (Project CCEM) and
Fondation Louis D., Project “Jeunes Géometres”.

2. PRELIMINARIES
2.1. Cones.
2.1.1. Riemannian cones. For us, the definition of a Riemannian cone will take the following form.

Definition 2.1. Let (S, g) be a compact connected Riemannian manifold. The Riemannian cone
Co with link S is defined to be Ry x S with metric gg = dr? @ r?gs up to isometry. The radius
function r is then characterized intrinsically as the distance from the apex in the metric completion.

2.1.2. Kibhler cones. Boyer-Galicki [BGO08| is a comprehensive reference here.

Definition 2.2. A Kdhler cone (Cy, go, Jo) is a Riemannian cone (Cy, go) such that go is Kéhler,
together with a choice of gg-parallel complex structure Jy. This will in fact often be unique up to
sign. We then have a Kahler form wy(X,Y) = go(JoX,Y), and wy = %857”2 with respect to Jp.

The vector field 70, is real holomorphic and £ := Jyrd, is real holomorphic and Killing [MSY08,
Appendix A]. This latter vector field is known as the Reeb vector field. The closure of its flow in the
isometry group of the link of the cone generates the holomorphic isometric action of a real torus on
the cone that fixes the apex.

Every Kéhler cone is affine algebraic.

Theorem 2.3. For every Kdhler cone (Cy, go, Jo), the complex manifold (Cy, Jy) is isomorphic to
the smooth part of a normal algebraic variety V.C CN with one singular point. In addition, V can
be taken to be invariant under a C*-action (t,z1,...,2n5) — (t*'21,...,t"NzN) such that all of the
weights w; are positive integers.

This can be deduced from arguments written down by van Coevering in [vC11, Section 3.1].
We will frequently make use of the fact that every real-valued pluriharmonic function on a Kahler
cone that is invariant under the flow of the Reeb vector field is constant.

Lemma 2.4. Let (Cy, go, Jo) be a Kdihler cone with Reeb vector field &, let m : M — Cy be a
resolution of Cy with exceptional set E/, and let K C M be a compact subset of M containing E such
that M \ K is connected.

(i) Ifu: Co\m(K) — R is a smooth real-valued function defined on Co\7(K) that is pluriharmonic
(meaning that 00u = 0) and invariant under the flow of &, then u is constant.
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(ii) If u: M — R is a smooth real-valued function defined on M that is pluriharmonic on M and
invariant under the flow of (dr)~1(¢) on M \ K, then u is constant.

Proof. (i) Let r denote the radial function of gg. Then 70, is real holomorphic, and since L j,9,u =
Leu = 0, we see that
A(royu) = 00us(rd, —i&) = 0,
that is, r0,u is holomorphic. As a real-valued holomorphic function, r0,u must be equal to a
constant, cg say. Thus,
u=cologr+ c(x),
where ¢1(x) is a function that depends only on the link (S, gg) of the cone (Cy, go). Now, u
being pluriharmonic implies that Ag u =0, i.e.,
(2nr22)60 + %Agscl(x) =0,
where n is the complex dimension of Cy. Integrating this equation over S then shows that
co = 0 so that u is constant, as claimed.
(ii) By part (i), we know that u is constant on M \ K. The result now follows from the maximum
principle.
O

2.1.3. Sasaki manifolds and basic cohomology. A closed Riemannian manifold (S, gg) of real dimen-
sion 2n — 1 is called Sasaki if and only if its Riemannian cone (Cp, go) is a Kahler cone [BGOS§|,
in which case we identify (S, gg) with the level set {r = 1} of Cj, r here denoting the radial func-
tion of gg. The restriction of the Reeb vector field to this level set induces a non-zero vector field
§ = JorOr|gr—1y on S, where Jy denotes the complex structure on the Kéhler cone associated to
S. Let n denote the gg-dual one-form of £ on S. This is a contact form and may be written in
terms of r as n = d°log(r) with d° := i(d — 9). Moreover, 7 induces a gs-orthogonal decomposition
TS =D @ (€), where D is the kernel of n and (£) is the R-span of £ in T'S, and correspondingly a
decomposition of the metric gg as gg = n®n+ g’ with g7 := gg|p. The metric g7 on D is invariant
under the flow of £ and hence induces a Kahler metric on the local leaf space of the Reeb foliation,
that is, the foliation of S induced by the flow of £&. We call g7 the transverse metric. Associated to g”
are the transverse Kihler form w’ and the transverse Ricci curvature Ric(g”) defined on the local
leaf space in a natural way. The transverse Kiahler form may be written as w’ = %dn = %ddC log(r)
which yields the following expression for the Kéhler form wg of the cone metric gq:

wo = %857‘2 =rdr Ay +r2wt.

Differential forms on S that are invariant under the flow of £ and for which the contraction with
¢ is zero are called basic, as seen in the following definition.

Definition 2.5. A p-form a on S is called basic if
Eoa=0 and Lea = 0.

We will denote the sheaf of sections of smooth basic p-forms and the sheaf of smooth basic functions
on M by A, and CF respectively. By considering a local foliated chart on S, one can always find

a local basic orthonormal coframe {6; 221_12 of g” such that 6; o Jy = —0;,1. With respect to this
coframe, we may write
2n—2
T 2
g'=> 6
i=1

If o is a basic form, then one can check that do is also basic. The exterior derivative d therefore
restricts to a map dp : A, — A%H and we obtain a complex of sheaves

d d d
0 — O3 28, 7, 92, 02 9By
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Taking the cohomology of this complex, we get the basic de Rham cohomology groups Hp(S) of the
Reeb foliation. Explicitly, they are given by

HP(S) = ker(dp : AL(S) — A%H(S))
p(S) = - .
Im(dp : A% (S) — AB(S))
We write [a]p for the cohomology class of a closed basic form «a. It is a result of El-Kacimi Alaoui
et al. [EKASHS85] that the basic de Rham cohomology groups are finite-dimensional.

Naturally associated to the transverse Kihler metric ¢” is the basic Hodge star operator % :
A (S) — AQB"#*Q(S) defined in terms of the Hodge star operator x of gg by

*xa=*x(nANa)=(-1)"¢ixa.

Notice that *2 = (—1)""Id on A’5(S). We also have a non-degenerate inner product (-, -) on A"(S)
defined by

(-, ) A"(S) x A"(S) — R, (o, B) := /M gs(a, B)dpgg = /Ma A %03,

where dp, denotes the volume form of gg. This inner product restricts on basic forms to the
expression

(-, ) : A5(S) x A5(S) — R, (o, B)B := /Mg(a, B) dvolyy = /Moz/\;ﬁ/\n,

and defines a non-degenerate inner product on A%(S). We define L%(S) to be the Hilbert space
completion of C'%(S) with respect to (-, -) p. With respect to this inner product, it is straightforward
to check that the adjoint dp : A (S) — A%y ' of dp : A1 (S) — A%(S) is given by 65 = —*odpox.
We then define the basic Laplacian Ap acting on A% (S) by

Ap :=dgdp + dpdp.

This differential operator is self-adjoint with respect to (-, -)p and the kernel of its action on the
space of basic r-forms is defined to be the space of basic harmonic r-forms. In analogy with the
Hodge theorem on compact manifolds, there exists a transverse Hodge theorem [EKAHS6] for Sasaki
manifolds, which in particular states that each basic cohomology class has a unique basic harmonic
representative.

Next, let pg : Cop ~ Ry xS — {r = 1} ~ S denote the natural projection. Then we say that a
complex-valued basic differential form o on S is of type (p, q) if and only if pSa is a differential form
of type (p, ¢) on Cy. The sheaf of sections of such forms on S we denote by A%;?. As in the complex
case, there is a splitting

ApeC= @ A%
ptg=r
We define operators

Op : A%lq — A%H’q and Op : A%lq — A%qurl
by 0 = IIP*1 90 dp and 0 = 1P 911 o dp respectively, where
b . + T7 S
I A7 ®@C — AY
denotes the projection map and where we consider the complex linear extension of dg, i.e.,
dp: Ny ®@C — A @ C.

In analogy with the complex world, we have the following basic Dolbeault complex

15} 0 5]
0 — AR T8 AR T8y TB AR,
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together with the basic Dolbeault cohomology groups
HP(S) ker(9p : AY(S) — ABTT(9))
B = = — .
Im(dp : AR (S) — ALY(S))
These are finite-dimensional [EKA90], and so we define the basic Hodge numbers h%%(S) by
RB9(S) := dim HEY(S).

For k <n — 1, we say that a basic k-form « is primitive if it lies in the kernel of the adjoint A of
the map L : a + a A dn with respect to (-, -)g. This is equivalent to saying that a A (dn)"~* = 0.
The notion of a primitive basic form works equally well for basic (p, g)-forms. Indeed, we extend A

ApS)eCc=E @ AE°S

p>0r+s=p

complex linearly to

and define a basic (p, ¢)-form to be primitive if and only if it lies in the kernel of this linear extension.
Using the fact that the commutator [A, Ap] vanishes [BGO08, Lemma 7.2.7], we see that A maps
basic harmonic forms to basic harmonic forms. In particular, from the basic harmonic representation
theory of Hj(S), we find that the map A descends to a well-defined map on these spaces. We then
define the rth-basic primitive cohomology group Hp(S), as the kernel of the induced map

A HE(S) — Hy *(S),  [Blp — [A8]s,
which may equivalently be realised as
Hg(S)p ={la]p € HR(S)|[L" "a]p =0} forr <n-—1.
In a similar manner, A induces a map
A HEU(S) — HE 2 7NS), [Bls — (M,

the kernel of which we define as the (p, q)th-basic primitive Dolbeault cohomology group HY(S),.
[BGO8, Corollary 7.2.10] then asserts that

Hp(S), ©C= @ Hp(S),. (2.1)
ptg=r
Notice that, as a subset of Hj(S), each element of H};(S), admits a unique basic harmonic rep-
resentative. Since [A, Ag] = 0, this representative is necessarily primitive at every point of S. By
the next proposition, it is therefore harmonic. This allows us to identify the de Rham cohomology
groups with the basic primitive cohomology groups of a Sasaki manifold in a natural way.

Proposition 2.6 ([BGO08, Proposition 7.4.13]). Let (S, gs) be a compact Sasaki manifold of dimen-
sion 2n — 1 and let p be an integer satisfying 1 < p < n—1. Then a p-form is harmonic if and only
if it is primitive and basic harmonic. Thus, for each r > 0, the basic primitive cohomology group
Hy(S)p can be naturally identified with the de Rham cohomology group H" (S, R).

2.1.4. Calabi-Yau cones. The particular type of Kahler cone that concerns us is the following.

Definition 2.7. We say that (Cy, go, Jo, Qo) is a Calabi- Yau cone if

(i) (Co, go, Jo) is a Ricci-flat Kéhler cone of complex dimension n,
(ii) the canonical bundle K¢, of Cy with respect to Jy is trivial, and
(iii) Qo is a nowhere vanishing section of K¢, with wj = i Qo A Q.

The link of a Calabi-Yau cone is a Sasaki-FEinstein manifold, an example of a “positive” Sasaki
manifold. Such manifolds enjoy the following vanishing property.

Proposition 2.8 ([Got12, Lemma 5.3]). The basic (p, 0)-Hodge numbers of a positive Sasaki man-
ifold vanish for p > 0.
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2.1.5. Crepant resolutions. A Calabi-Yau cone may be desingularised by a crepant resolution (if one
exists).

Definition 2.9. Let Cj be a complex space with an isolated normal singularity o € Cy and suppose
that the complex manifold Cj \ {0} has trivial canonical bundle. A crepant resolution of Cj is a
pair (M, m) comprising a smooth complex manifold M with trivial canonical bundle together with
a proper map w : M — Cy such that the restriction map

Tane-1(op : M\ 7 ({0}) — Co \ {0}

is a biholomorphism. We call the set E := 7~({o}) the exceptional set of the resolution.
We have the following vanishing result for such a resolution.

Lemma 2.10 ([Got12, Lemma 5.5]). Let Cy be an affine variety of complex dimension n > 2 with
a normal isolated singularity o and with K¢\ oy trivial and let w: M — Cy be a crepant resolution
of Cy. Then

HY(M, Oy) = 0. (2.2)
Furthermore, let My denote the complement M \ E, where E is the exceptional set of the resolution.
If n > 3, then it also holds true that

HY(My, Opg) = 0. (2.3)

Proof. First observe from Takegoshi’s generalisation of the Grauert-Riemenschneider vanishing the-
orem [Tak85, Theorem I] that
Rin, Ky =0 for ¢ > 0.

Since K is trivial, it follows that RIm,.Op; = 0 for ¢ > 0 as well.

As for the cohomology of the sheaves RIm,O);, we know from Oka’s coherence theorem and
Grauert’s direct image theorem that for ¢ > 0 they are coherent analytic sheaves on C. We also
know that Cp, as a closed analytic subspace of the Stein manifold C", is itself an example of a Stein
space. As a result, Cartan’s Theorem B applies, from which we deduce that

HP(Cy, Rim,.Op) =0 for all p > 1 and g > 0.
Consider next the Leray spectral sequence [God73, Theorem 4.17.1, p.201]
ED9 = HP(Cy, Rim.Op) = HPT(M, Opp)
and form its exact sequence of terms of low degree [God73, Theorem 4.5.1, p.82]
0 — HY(Cy, m.0p1) — HY M, Opr) — H°(Cy, R'7,0pp) — H*(Cy, m.Onr) — HA(M, Oyp).

Since R'm,Oyr = 0 and H'(Cp, m.Oypr) = 0, we see that H'(M, Oy;) = 0. The vanishing (2.2) now
follows.

Finally, let H}E(M , Opr) denote the cohomology groups with supports in E and coefficients in the
structure sheaf Op;. Then we have a long exact sequence of cohomology with supports

o — Hg(M, Oy) — HY(M, Opr) — HY (Mo, Onrlny) — HFH(M, Opp) — -+ (2.4)

In order to compute the cohomology groups H }E(M , Onr), we utilise a version of Hartshorne’s formal
duality theorem [GKK10, Theorem A.1]. This requires the hypothesis in the lemma that Cj is
normal. As Rim,Op; = 0 for g > 0, the duality theorem asserts that

HE Y (M, 0y ®@Ky)=0  for g >0,

where O}, denotes the sheaf dual to Oy;. Triviality of Kj; then implies that this vanishing is
equivalent to the vanishing of H% (M, Oy) for i < n, and so from (2.4) we deduce that

Hl(M, OM)ng(Mo, OM‘MO) 1fn23
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From the first part of the lemma we already know that H'(M, Oy;) = 0. Hence for n > 3, we have
that
H' (Mo, Ong,) = HY (Mo, Onr|ngy) = 0.

As a result of the vanishing (2.2), we have a d0-lemma on M.

Lemma 2.11 (99-lemma). Let Cy be an affine variety of complex dimension n > 2 with a normal
isolated singularity o and with Kcy\ (o) trivial, let w: M — Cy be a crepant resolution of Co, and let
a be an exact real (1, 1)-form on M. Then there exists a smooth real-valued function u on M such
that a = i00u.

Proof. As a real exact two-form, there exists a real one-form S on M such that o = dfS. Write
B =0+ 3% for some B0 € AOM and %! € A% M. Then, as a = df is real of type (1, 1),
19 and %! must satisfy

ag=0p"°+0p%',  9"°=0, and 9B"'=0.
Since Cy is a normal affine variety by Theorem 2.3 and since M has trivial canonical bundle, the
vanishing H% (M) = HY(M, Ops) = 0 given by (2.2) together with the d-closedness of 3% ! implies
that 8% 1 = 0¢ for some smooth complex-valued function ¢ on M. This yields a simplification of
the above expression for dg, namely
dB = 9p"° +08% 1 = 0p%1 + 9B%" = 006 + 00¢ = 00(¢ — ¢) = i00u,

where u := i(¢ — ¢) is twice the imaginary part of ¢. Thus, o = df = i00u with u : M — R
real-valued and smooth, as required. O

Crepant resolutions of Calabi-Yau cones have finite fundamental group.

Lemma 2.12. Let 7 : M — Cy be a crepant resolution of a Calabi-Yau cone Cy. Then 71 (M) is
finite. In particular, H' (M, R) = 0.

Proof. By [Got12, vC10], M admits an asymptotically conical Calabi-Yau metric, in particular a
complete Ricci-flat Riemannian metric of Fuclidean volume growth. Such a manifold has finite
fundamental group by [And90, Lil10]. O

2.1.6. Equivariant resolutions. The real holomorphic torus action on a Kéhler cone leads to the
notion of an equivariant resolution.

Definition 2.13. Let Cjy be a Kéahler cone with complex structure Jy, let 7 : M — Cj be a resolution
of Cp, and let G be a Lie subgroup of the automorphism group of (Cy, Jp) fixing the apex of Cy. We
say that 7 : M — Cy is an equivariant resolution with respect to G if the action of G on Cj extends
to a holomorphic action on M in such a way that 7(g-z) = ¢g - n(z) for all zx € M and g € G.

Such a resolution of a Kéhler cone always exists; see [Kol07, Proposition 3.9.1]. If a Calabi-Yau
cone admits a unique crepant resolution, then the crepant resolution is necessarily equivariant with
respect to the real holomorphic torus action on the cone induced by the Reeb vector field. This
follows from the proof of [CDS19, Lemma 2.13].

2.2. Steady Ricci solitons.
2.2.1. Definition and properties. The specific metrics that we are interested in are the following.

Definition 2.14. A steady Ricci soliton is a triple (M, g, X), where M is a Riemannian manifold
with a complete Riemannian metric ¢ and a complete vector field X satisfying the equation

Ric(g) = %ﬁxg. (2.5)
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If moreover X = VY9 f for some smooth real-valued function f on M, then we say that the steady
Ricci soliton (M, g, X) is gradient. In this case, (2.5) reduces to

Ric(g) = Hessy(f),

where Hess, denotes the Hessian with respect to g.
A steady Kdhler-Ricci soliton is a triple (M, g, X), where M is a Kéhler manifold, X is a complete
real holomorphic vector field on M, and g is a complete Kahler metric on M whose Kahler form w

satisfies )

with p,, denoting the Ricci form of w. If moreover X = V9 f for some smooth real-valued function
f on M, then we say that the steady Kéahler-Ricci soliton (M, g, X) is gradient. In this case, the
defining equation of the soliton (2.6) may be rewritten as

P = 100f.
For steady Ricci and Kéhler-Ricci solitons (M, g, X), the vector field X is called the soliton vector

field. When such solitons are gradient, the smooth real-valued function f on M satisfying X = VI f
is called the soliton potential.

Two steady Kihler-Ricci solitons with the same soliton vector field that differ by 90 of a function
satisfy the following.

Lemma 2.15. Let wy and wy be two steady Kdahler-Ricci solitons with the same soliton vector field
X on a complex manifold M such that wy = wy +i00u for some smooth real-valued function u. Then
- 00u)"\ X
0 (10g <<w+>) X ) —o.
wi 2
Proof. With p,, denoting the Ricci form of w;, we have that

1
0= pu, — §£Xw2

1
= Pwy — Pwi T Pwi — 5£XW2
A E wy 1
= —i00log (w?) + Puwy — §£Xw2

_ 00u)™ 1 _
= —100 log <((*)1_‘_<j:?6w> + Puwy — 55){(&]1 + iaau)
1

- i00u)"” X 1
w1 —_————

=0
) <1Og (Wlfé’u)) X u) _
wi 2
[l

The next lemma collects together some well-known Ricci soliton identities concerning steady
gradient Kéhler-Ricci solitons that we require.

Lemma 2.16 (Ricci soliton identities). Let (M, g, X) be a connected steady gradient Kdhler-Ricci
soliton with soliton vector field X = VIf for a smooth real-valued function f : M — R. Then the
trace and first order soliton identities are:

_ Ry
Awf - ?)
VI R4 +2Ric(g)(X) =0,
V9 f[5 + Ry = clg),
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where Ry denotes the scalar curvature of g and |V9f]§ := g0, f0;f. Here, c(g) is a positive constant
and represents the “charge” of the soliton at infinity.

Proof. These are proved as in [CDS19, Proof of Lemma 2.23]. O

Finally, to each complete steady gradient Kahler-Ricci soliton, one can associate an eternal solu-
tion of the Kéhler-Ricci flow that evolves via diffeomorphism. Indeed, if (M, g, X) is a complete
steady gradient Kahler-Ricci soliton with Kéahler form w and soliton potential f, set

W(S) = szw7 s € (_007 OO),
where @g is the family of diffeomorphisms generated by the vector field —% with o =1d, i.e.,

Ops, +_ VIf(ps(2))
Os (=) = 2
Then Osw(s) = —py(s) for s € (=00, 00) with w(0) = w, where p,(s) denotes the Ricci form of w(s).

By pulling back the steady gradient Ké&hler-Ricci soliton g by the family of diffeomorphisms

generated by the vector field —X rather than —%, one obtains an eternal solution of the Ricci

flow, i.e., a one-parameter family of Riemannian metrics ¢(s), s € (—o0, 00), with ¢g(0) = g and
0s9(s) = —2Ric(g(s)).

’ o = 1d.

2.2.2. Steady Ricci solitons as metric measure spaces. A metric measure space is a Riemannian
manifold endowed with a weighted volume form.

Definition 2.17. A metric measure space is a triple (M, g, efdug), where (M, g) is a complete
Riemannian manifold with Riemannian metric g, dug is the volume form associated to g, and
f: M — R is a real-valued C'-function called the potential.

On such a space, we define the drift Laplacian Ay by
Apu = Au+ g(VIf, Vu)

on smooth real-valued functions u € C*°(M). There is a natural L2-inner product (-, ‘>L2(€fd#g)
on the space L?(ef dpg) of square-integrable smooth real-valued functions on M with respect to the
measure ef dpg defined by

(U, V) p2(ef dpy) = /M wv el dpg, u, v € L2 (el duy).

The operator Ay is symmetric with respect to (-, -) £2( )- Indeed, simply observe that

efdpug

/M(Afu)v eldu, = — /M 9(V9u, V9v) el du, = /M u(Afv) el dug, u, v € C°(M).

A steady gradient Ricci soliton (M, g, X) with X = V9f for f : M — R smooth naturally defines
a metric measure space (M, g, e/ du,).

2.2.3. Cao’s steady gradient Kdhler-Ricci soliton on a Calabi-Yau cone. Given a Calabi-Yau cone
of complex dimension n, the Calabi-Yau cone metric induces a one-parameter family of incomplete
steady gradient Kéhler-Ricci solitons on the underlying complex space of the cone. This is seen
by implementing Cao’s ansatz [Ca096] which itself involves solving an ODE. This we now explain.
These solitons provide the model for the complete steady gradient Kahler-Ricci solitons that we
construct.

Proposition 2.18. Let (Cy, go, Jo, Qo) be a Calabi- Yau cone with radial function r and set r> = é’.

Then for all a > 0, there exists a steady gradient Kdhler-Ricci soliton g, on Coy with soliton vector
field 2r0, = 40; whose Kdihler form is given by &, = %85@%(15) for a smooth real-valued function
D, (t) on Cy characterised by the fact that 0 < a = limy_,_o D/, (t) and whose soliton potential is

given by @q(t) := P/ (t).
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Proof. Recall that d° = i(0 — ) so that dd® = 2i00 and that n = d®log(r) defines a contact form

on the link of the cone Cy with w! = %dalC log(r) the corresponding transverse K&hler metric. We

assume an ansatz metric of the form & = 299®(t) for ® : Cy — R a (yet to be determined) smooth
real-valued function on Cy depending only on ¢t. We compute:

o= Lodo@) = Ldaca) = o/ (t) 2ader + o7 DA T

2 4 4 2 2 (2.7)

dt
= p(t)w’ + ()5 A,

where ¢(t) := ®’(t). Thus, in order for @ to define a Kahler metric, we require that both ¢, ¢’ > 0.
With @ written as above, it is easy to see that

As for the Kéhler form wg of gg, we have that
dt
wit = (rdr A+ 20T = nr? WD) A rdr A = ne”tg An A (wh)nL

These last two expressions allow us to write the Ricci form pg of © as
— _i001 O ) = iodlog (L) = —iddlog (¢ gle 2
po = —100log <m)>——z og<w6L>——z og(gp Oe ), (2.8)
where we have made use of the Calabi-Yau condition on the cone in the second equality.
Next, let X = 2rd, = 49;. Then the pair (&, X) defines a steady Kéhler-Ricci soliton with soliton
vector field X if and only if

po = iﬁxw,
that is, if
—i00log (gp”*lcp’e*m) = i00¢p.
Therefore it suffices that
Py e? = Cem
for some constant C' > 0. By a translation in ¢ (which corresponds to a scaling in ), we may assume
that C' = 1. Thus, we consider the ODE

gp”_lgo'e‘p =™, (2.9)
First separating variables in ¢ and ¢ yields
O tefdp = e™MdL.

Next, after integrating both sides, we find that

nt
F(p)e? = % +C (2.10)
for another constant C, where
n—1
n—k— (TL _ 1)'
F(s) =Y (-1)** 1Tsk. (2.11)
k=0 '

One can verify that
(F(s)e®) = s"Les.
Consequently, F(s)e® is strictly increasing for s > 0, hence (2.10) implicity defines ¢ so long as
C > F(0)e°. Notice that for s > 0,
(F(s)e® — s"Le®) = (F(s)e®) —s" e’ —(n—1)s"2%e* < 0

-~

=0

S
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so that
F(s)e? —s"te® < F(0)e” = F(0) for all s > 0.
As a result, we find that for all s > sy > 0,

vs /S(F(x)ex)/d”” = F(s)e® — F(s)e™ < F(s)e’ — F(0)e” < s""'e”,

which leads to the inequality
0 < F(s)e® — F(sp)e®® < 5" Lef for all s > s9p > 0. (2.12)

Finally, taking the limit in (2.10) as t — —oo, we arrive at the fact that

. lim¢— — oo p(t) _
F (t_lgr_noo go(t)) e C.

Specify
0<a:= lim ¢t)

t— —o0
and accordingly add a subscript a to ¢. Set C' := F(a)e®. Then ¢, is defined implicitly by the

equation
nt

Flpa(t)er® = S 1 Fa)e. (2.13)
n
Since F'(s)e® is strictly increasing for s > 0, its inverse on (0, co) is also strictly increasing, and
so we deduce from (2.13) that ¢, (t) is strictly increasing. Consequently, ¢/ (t) > 0 and ¢, (t) >
lim¢—,_ oo 9 (t) = a > 0 for all ¢. Using this latter inequality, we see from (2.12) that

e leta > F(pg)efe — Fla)e® = —,

hence (2.9) implies that

0 < ¢ (t) <n. (2.14)
It follows that both ¢, and ¢/, are strictly positive. We therefore conclude that for a > 0, ®,(t) :=
J @a(t) dt defines the Kéhler potential of a steady Kahler-Ricci soliton on Cp with soliton vector
field X = 20, = 40;. To see that @, is gradient with ¢, (t) serving as a soliton potential, just note
that pg, = 100w (t) which follows by combining (2.8) and (2.9), and ©,1X = —dip, which is clear
from (2.7). O

Remark 2.19. For clarity, we henceforth drop the subscript a from @,, ¢q(t), and ®,(t) in state-
ments where, for each particular choice of a > 0, the statement holds true with @ replaced by @,,
etc.

3. AsyMPTOTICS OF CAQO’S STEADY GRADIENT KAHLER-RICCI SOLITON

Let (Cop, go) be a Calabi-Yau cone of complex dimension n with radial function . Then, as we
have just seen, there exists a steady gradient Kéhler-Ricci soliton @ on Cy of the form & = %05@@),
where 2 = e!. In this section, we study in depth the asymptotics of ©. We begin first with an

analysis of the asymptotics of p(t) := ®'(¢).

Proposition 3.1. Ast — +oo, we have

n—1)%Ilo n— oo 1)2
(P(t):nt—(n—l)logt—nlogn—f—( nl) ltgt+<( nl)—i-(n—l)logn)i—l—O((l gt) >,

S(t) = — =1 5 <(10gt)2> ’ (1) =0 <(10gt)2> ’ S () = O <(logt)2> _

t t2 t2 t2

The asymptotics stated here on the second and third derivative of ¢(t) are not optimal, but
nevertheless suffice for our purposes.
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Proof of Proposition 3.1. Recalling from (2.14) that ¢ is strictly increasing, we derive from (2.13)
that for all ¢ > 0,

o —nt = —log(F(p)) —log(n) + log(1 + O(e™™))
1

= —log(¢" '(1+ 0(¢™"))) —log(n) +log(1 + O(e™™))
= —(n—1)log(p) — log(n) + O(p™") + O(e *"t) (3.1)
= —(n—1)log(nt) — (n —1)log ( ) log(n) + O(p~') + O(e™™),

~(n = 1)log(t) = nlog(n) + O(¢™") + O(e™) = (n — Nlog ().

where we have used (2.11) in the second equality. Again, since ¢(t) is increasing, we see from
the third line above that ¢(t) — nt < 0 for ¢ sufficiently large. Thus, as ¢(t) > a for all ¢ where
0 <a:=1limy_o ¢(t), we have that

0< 2 Wy (3.2)

—nt nt
Moreover, from (3.1), we see that for ¢ sufficiently large,

(n—1) A (n—1)log(t) log(n) 1 1 —nt log(t)
log (5) + 5 —1=- = ot Ot e ™ > —C (=2
nt 8\t T nt - TOUTeT) 0T e > t
for some C' > 0. Observing that log(z) < z for x > 0 then yields the lower bound

—C(logt(t)> < (”*1)1og(f)+f—1g (n—1) (‘p)+¢—1_<1+("1)>—1

nt nt nt nt % nt nt nt
so that

ha >1-C (log(t)) (3.3)

nt t
for t sufficiently large. Combining (3.2) and (3.3), we arrive at the fact that

—C (Iog(t)> <2 _1<0

t nt

for t sufficiently large, i.e.,

nt

‘p:1+0<logt(t)>. (3.4)

This in turn implies that ¢~ = O(¢~1). Using this and plugging (3.4) back into (3.1), we then find
that

o =nt — (n—1)log(t) —nlog(n) + O (10gt( )> . (3.5)
In particular, we deduce that
_ 1 log(t)
1 _
® _nt+0< 2 ) (3.6)

One can develop further the asymptotic expansion of ¢ by plugging (3.5) into the last line of
(3.1). This results in the expansion

—1logt 1 logt
o = nt—(n—l)logt—nlogn—(n—l)log(l—(nn )Otg - °§”+0<‘:§)>+0(t—1)

(n —1)2logt

= nt—(n—1)logt—nlogn+ +0(t™h).

Unfortunately this does not suffice to obtain a sharp first order term in the expansion of ¢'(t). We
need to analyse the expansion of O(p~!) more carefully. To this end, recall the definition of F(i)
from (2.11). We have that

F(s) = s (n— 1)5”_2 + O(s"_?’),
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so that
Fp)=¢" = (n=1)" 2+ 0(0" ) = " (1 = (n = 1)~ + O(p72)).
Plugging this into the first line of (3.1) then leads to the expansion

p —nt = —log(F(y)) — log(n) +log(1 + O(e™™))
= —(n—1)logp —log(n) + (n — 1)~ + O(¢™?) + O(e™™)
= —(n—1)log (=) = (n — 1) log(nt) — log(n) + (n — ™" + O(p %) + O(e ™)

=—(n—1)log ( @t) —(n—1)logt —nlogn+ (n—1)p ' 4+ O(p2) + O(e™™)

n (nn 1) logt(t) B logt(n) Lo <1C;§t>> N

=—(n—1)logt —nlog(n) — (n—1)log <1 —

+(n =1 +0(p™%) +0(e™)
(n ;1)2 loigt N (n— lilog(n) Lo <(logt)2> N
+(n =1 +0(p™%) +0(e™)
n—1)%1o n— ogt)?
:—(n—l)logt—nlogn—l—( nl) ltgt+(( nl)—i—(n—l)logn)i—i-O((l tht) ),

where we have used (3.5) in the fifth equality and (3.6) in the final equality. This yields the desired
expansion of .
As for ¢/(t), making use of the above expansion of ¢, we see from (2.9) that

=—(n—1)logt —nlog(n) +

logy' =nt—p—(n—1)logey

(n —1)2logt B <(n— 1)

= (n—1)log(t) + nlog(n) — o ; n

Lo ((lotg2t)2>

= (n —1)log(t) + nlog(n) —

+ (n— 1)logn> % — (n—1)log (v)

n t n nt

oo )2
— (n —1)log(nt) + O <(1 tgzt) >

(n—1)%logt B ((n— 1) 4 (n— 1)logn> % —(n—1)log (E)

n—1)%1o n—
= (n —1)log(t) + nlog(n) — (n—1)logt _ <( D + (n— 1)logn> %

n t n
— (n—1)log (1 _m - o) logt(t) = logt(”) +0 (kﬁt» — (n—1)log(nt) + O (“"fﬁ)
~ log(n) — (”;1)21"? _ <(”; DIy l)logn> 2
~(n—1)log (1 _n - 1) logt(t) - logt(n) L0 (hﬁt» o ((1otg2t)2)
— log(n) - (n ;1)2 lotgt B ((n; DN (n— mogn) %Jr (n n1)2 logt(t) (n— 1ilog(n)
o <(lotg2t)2)

Cogn— "=H1 Lo ((10gt)2>

t 12
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¢(t)=n~— (nt_l)+0 ((logt)2> |

so that

12
as claimed.
For ¢"(t), we deduce from (2.9) and our previous expansions of ¢(t) and ¢'(t) that

as desired.
Finally, for ¢ (¢), we have that

I
Q
7 N

=
o
el
~
N—
o
\_/

O

The previous proposition allows us to derive the following precise asymptotics of Cao’s steady
gradient Kéahler-Ricci soliton.

Proposition 3.2. Let (Cy, go) be a Calabi-Yau cone of complex dimension n > 2 with complex
structure Jy, radial function r, and transverse metric g', and set n = d°log(r) and r?> = e'. Let §
denote Cao’s steady gradient Kdhler-Ricci soliton on Cy and set g :=n (idt2 +n%+ th). Then

Vi(g—g)l =0 (t’l’% log(t)> for alli >0, (3.7)
and
VLl G- ), =02 )  foralli >0 andj > 1. (3.8)

In particular, for all € € (0, 1), there exist constants C(i, j, €) > 0 such that
VLD (G- g, <CG, j, =27 foralli, j > 0.
Proof. We prove this proposition through several claims. We begin with the following initial estimate.
Claim 3.3. [§ — §|; = O(t ! log(t)).
Proof. We see from (2.7) that § = ¢(t)g” + ¢/(t)(3dt* +n?). Thus, we can write
30 = (ol0) ~ n0)g” + (0~ ) (3 4 47). (3.9

In light of Proposition 3.1, we then have that

. 1
15— dls < | —ntllgT ]y + ¢ —nl 1dt? +n? A
g
<C(tlog(t) +t7h)
< Ct tlog(t),
as claimed. O

We next estimate the norm of the curvature tensor Rm(g) of g.

Claim 3.4. |[Rm(g)[; = O(t™1).
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Proof. As above, we can write § = p(t)g? + ¢'(t) (% —|—772>. Let 61,...,602,_2 be a local basic

orthonormal coframe for g7 with 6; o Jy = —6;41 for i odd, and let (wij)1<i,j<2n—2 be the matrix
of connection one-forms of g”. Then (wij) solves the Cartan structure equations

do; = 370 wii A G
wij + wj; = 0.

The one-forms

e o0 s = VI, Gy im0,

where 1 < ¢ < 2n — 2, serve as a local orthonormal coframe of §g. We first compute the matrix of
connection one-forms (@;;)1<y, j<2n of § with respect to this coframe. We have that

2n—2
=) wii AOj+ Y (())e% LA 0, 1<i<2n-—2,

2n2

j=1

dfan—1 =0, dfap =

i1 — Oi1 N O;) + ()39271—1 A Oy
2

7 odd

The matrix (@;;) is then given by

s {wﬂﬂslﬂ '((f))n, 1<i<2n—2o0dd, 1<j<2n-2,
ji =

wi — 012 Wp 1 <i<2n—2even, 1<j<2n-2,
J 5 (1)
/
t
Wop—1,i = — (p()@‘, 1<i<2n-2,
’ o(t)
Won—1,2 ——wn
n—1,2n = ’
©'(t)
i %(?em, 1<i<2n—2odd,
Wan, i = o' (1) ]
(p(t)HZ 1, 1 <i<2n—2even.

Next, from Proposition 3.1 we derive that

o'(t) 1 ¢\ '(t) _ -3 () 3
o(t) =06, <<P(t)> =00, ¢'(t) =0™2), (w’(t)) =0@2).

Thus, with respect to the metric g, we have the asymptotics
@i =0(t7%),  da;=0(t""), 1<ij<2n-2,
@an—1,; = O(t™1), don—1,i = O(t™2), 1<i<2n—2,

3 3 N 3
Wan—1,2n = O(t™ 2), d@on—1,20n = O(t™ 2),
Goni = O(t™Y),  dign:=O0(t"2), 1<i<2n—2

From the Cartan structure equations, it is clear that | Rm(g)|; = O(¢t1). Since § and § are equivalent
at infinity as a consequence of Claim 3.3, the assertion follows. O

Next employing Shi’s derivative estimates, we estimate the norm of the derivatives of Rm(g) with
respect to g and its Levi-Civita connection V.

Claim 3.5. |V* Rm(g)|; = O(t_l_g) for all k£ > 0.
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Proof. Claim 3.4 asserts the existence of a positive constant C' such that |Rm(g)|; < Ct~'. Set
A= % (1 +4/14+ %) > 1. We will prove the following statement.

= C
(%) Forall m € N, [V*¥Rm(g)|; < 7kk on {N™ <t <A™} for all k> 0.
()\m 1+§

Here C}, is a positive constant independent of m.

To this end, we know that | Rm(g)|; < /\% on the region {\™ <t < A2}, Let (§(s))ser denote
the Ricci flow associated to g with §(0) = g. Then by Shi’s derivative estimates [Shi89] (see [Zhall,
Theorem 5.3.2] for the precise statement that we use), there exist constants Cj such that
; _ CCy
[(V9))* Rin(3(5)lgs) < —%

As2

In particular, for sqg = %, we find that

m

A
on {\" <t < /\m+2} for all s € (0, C] and for all £ > 0.

ClJr%ék
(vt
But since g(s) is obtained from ¢ by flowing along the vector field —X = —40, for time s, this last
statement is equivalent to

|(v§(so))k R (§(50))j(s0) < on {\" <t < )\m+2} for all £ > 0.

_ 1+2 A ™M AN\
T Rm()); < S h o {Am L cpcmiz 24 } for all k > 0,
(Am)1+3 C C
1
=) \m+
so that in particular,
_ 1+5 A
IVFRm(g)|; < €0 {A™ <t <X for all k > 0.

(Am)1+3

This establishes (x) with Cj := CH: 0.
Now for any x € M with t(z) > ), there exists N € N such that AV < ¢(x) < AN*1. Then since
(%) holds true, we see that

C,. A0
< k

M2 7 (#(z)' 2
as desired. O

[V* Rm(g)|3(x) <

for all £ > 0,

We also have the following estimates on the Lie derivatives of Rm(g) along the soliton vector field
X.

Claim 3.6. |£') (Rm(§))|; = O(t~1F) for all k > 0.

Proof. In order to show that ]Eglg) (Rm(g))|; = O(t~17%) for all k& > 0, recall that the curvature
operator Rm(g(s)) satisfies the following evolution equation along the Ricci flow (g(s))ser, §(0) = g,
associated to §:

9s Rm(g(s)) = Ag(s) Rm(g(s)) + Rm(g(s)) « Rm(g(s)). (3.10)
Since g(s) is obtained from ¢ by flowing along the vector field —X, we know that Lx Rm(g) =
—0s Rm(g(s))|s=0. Using Claim 3.5 together with (3.10), this yields the expected result for k = 1,
namely |£x Rm(g)|; = O(t72).

Next, note the following commutation formula for any tensor 7" on M:

2
([0, Ay T)|,_, = D V¥ ' Ric(g) = V'T. (3.11)
i=0
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This formula can be derived from [CLN06, Lemma 2.27] using the definition of the rough Laplacian.
In particular, by (3.11), if £ = 2, then

£P(Rm()) = Lx(—Ag Rm(§)) + Lx(Rm(§) * Rm (7))
Zad—Aa@Rﬂﬁ(ﬂ»bzo+ﬁxﬂhn@)*Rm@»

= —Ay(Lx(Rm(j) +Zv2 "Rm(g) * V' Rm(g) + Rm(g) * Rm(g) * Rm(§)
i=0

= AZRm(g) + Az(Rm(g) * Rm(g) +Zv2 "Rm(g) * V' Rm(g)
=0
+Rm(g) Rm(~) * Rm(g)

= A2 Rm(g) + Z V27 Rm(g) * V' Rm(g) + Rm(j) * Rm(§) * Rm(g).
1=0

This implies that \Eg?) Rm(g)|z = O(t™3). The cases k > 3 can be proved similarly by induction. [

Using this, we can now estimate all of the derivatives of ¢.

Claim 3.7.

p(t) = O(1),
(¢'(t) —n) *) — Ot~ 17F) for all £ > 0,
e® )y =0t  forall k > 2.

Proof. The first estimate follows immediately from Proposition 3.1.
As for the other estimates, we read from the third soliton identity (Lemma 2.16) that for Cao’s
steady gradient Kahler-Ricci soliton g,

X3+ Ry = (@)

for some positive constant ¢(g). Since Rz = O(t™1) as a consequence of Claim 3.4 and since X = 49,
so that \X|g =4n + O(t 1log(t)) by Claim 3.3, we deduce that c(§) = 4n. Also observe from (2.7)

that | X |2 = 4¢/(t). Thus, we may write
4¢'(t) = 4n — Ry (3.12)
As a result, we see from Claim 3.6 that for all £ > 0,
(' (6) = m)®| < CLL (P (1) = )] < CILY R | < O

and that for all k£ > 2,
e® (1) < ClLk ™V Ry | < O,
This yields the second and third estimates of the claim respectively. O

We next estimate the covariant derivatives of (@ (t) for all ¢ > 1.

Claim 3.8.
V@ (t)]; =0 (¢ for all ¢ > 1,

Vi@ (t); =0 (r178)  foralll>2and > 1.
Proof. Recall from Proposition A.1 that with the orthonormal coframe

0; := V/ntb; fori=1,...,2n —2, égn,l = \éﬁdt, and égn =nvn
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of g, we have the estimates

v

~

“3 =0 (175)  for 1<i<2n—2and forall k >0,

|§kégn,1|g =0 (t_l_(kgl)) for all k > 1,

V00,

;=0 () forallk> 1.
Using these facts together with Claim 3.7, we deduce that for all ¢ > 1,
V9 (8)]; < Ol (1) = )@z ]y < O,
which yields the first estimate of the claim. For all ¢ > 1 and [ > 2, we then derive that

l
T (I Y | LT
i=1 s5p>0 0<p<l—i

Z;_:io(P"‘l)sP =1
;_:’0 psp=1—i

l
<C Z (t(Hq) Z H ‘Vp(%n_l 2:7)
j 5p >0 0<p<i—i

Z;_:iq(p'i‘l)sp =1
le_:’ oPsp=1—1

l
) I—i (p—1)
oy x Eae )
=1 0<p<l—i —i —i
‘ _5550 ’ :o(t’%zézlspt’%zézlpsp)
Z;_:ip(lﬂ‘l)sp:l
E;_:Z oPsp=1—i

l ‘ |
< CZ (tiq Z t(Z;O)t(lQZ))

0<p<i—i
sp >0

Z;_:io(lﬂ‘l)sp =1
Zi,_:z oPsp=1—i

!
<otz ey (ti 3 tszo)

0<p<i—i
sp>0

Z;_:io(PJFI)SP =1
Z;_:Zo psp=1—i

Vi) (2)

<ot

which is the second estimate of the claim.

As for ¢(t) and its covariant derivatives, we have:
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Claim 3.9.
lp(t) — nt| = O (log(t)) ,
V(p(t) —nt)|y =0 (t7),
Vip(t) —nt)ly =0 (¢7175)  foralll>2.

Proof. The first estimate follows immediately from Proposition 3.1. As for the remaining estimates,
we compute using Claim 3.7 that

V(p(t) =nt)ly < Cl'(£) = nllfan-alg < CE,

Ftt) — nt)ly < C (19" (0] + 1¢/0) = [ Fhan-as) < O 2,

93(e(t) )l < C (1 ()] + 1 ()] [Fhanrly + /(1) — |
and from Claims 3.7 and 3.8 that for all [ > 4,

IV (p(t) = nt)]y < CIVH(P () — n)f20-1)lg
-1

_5
g) SCt 2,

<CY VR ) = )| VT o g
k=0
< C{ 1) = ||V ban1ly + [V (& (£) = ) V' 20on1]g + V' (1) — )y

-2
+ ) IR () - n)|g|Vl_1_k92n1!g>
k=2

-2
< C(tltl(l_zz) pey S Sy > t2§t1(l_22_k)>
k=2

< C(t—l‘é NI t—2—5>

<Ot 173,

The claim now follows. (I

We have already seen in Claim 3.3 that (3.7) holds true for £ = 0. We now show that it in fact
holds true for all £ > 1.

Claim 3.10.
VA —g)l; = O (t—l—% log(t)) for all k > 1.

Proof. Recall the estimates on the local orthonormal coframe {él, e ,é2n_2} of ntg!” from Proposi-
tion A.1. From there, we also read that

V), =0 (t’l’k> for k=0, 1, 2,

IMES

VR ;=0 (t*2* ) for all k£ > 2.
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Using these estimates, we derive that

Similarly, one can verify that

and that

~ (1
v <4dt2 +772>

<C V2115 [ V90314Vl
~—_——
=1

O e o)
<C Z t7§|§p(til)‘g

k=0p=I—k

l

<Y AR

k=0

o (it
g

) for all I > 1.

Recalling (3.9), the above estimates then imply that

~

+1e'(t) —n

V(5 -9l < c(\wu) = nt)| 16" ls + lo(t) = ntl|¥g" 1y + 9 (1) = mlg

1
*dtQ 2
TR

g

~ /1
v <4dt2 + 772)

)

<C (t’% log(t) + t’z)

<Ct s log(t) =

Cct 12 log(t),
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V23— 9)ls
< 22: V7o) = nn)| [T 22: V(e (1) = m)| ‘62% (idt2+n2> A
m=0 | — m=0 9

<C (\w(t) — ntt™2 4+ [V (p(t) = nt)|gt ™2 + [V2(o(t) = nt) 5t~ + [/ (t) = 7l
+

g

~ 1
\& <4dt2 + 772)

IV(¢'(t) —n)| |V <4dt2 + 772> + V(' (t) = n)l; zdtz + 7 )
g g
<C (t’Q log(t) + 75 + t’?’)
< Ct2log(t) = Ct "2 log(t),
and that for k > 3,
V¥(G - 9)l;
k R N k R R )
< ‘Vm(w(t) - nt)‘A )V'f_’”gT‘A +> ’Vm(w’(t) - n)‘ ‘V’“‘m <4dt2 + 772)
m=0 g e __/g m=0 g
_

(k—1) (k—1)

< C(tl'é log(t) + =550 428 o S s +t3’5>

k 5

<C (H*% log(t) + ¢35 417275 ¢ t’T%)

<ot '3 log(t).

Finally, we show that (3.8) holds true, the last step in the proof of the proposition.
Claim 3.11.
VicP (G- g)l;=0 (t—l—%—i) for all i >0 and j > 1.
Proof. Since

5%) G-9) = <E%)(90/ - ")) : <idt2 + 7}) + (ﬁgﬁ)(cp — nt)) gt

(Eg)(w’ - n)) : (idtz + 77) +4 (ngl)(sz?’ - n)) 9"
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we deduce from Claim 3.7 that

]Eg?)(g —9)lg=0 (") for all j > 1.
Next, for all j7 > 1, we see that

1
o N
VLG -9l < 0<§ AP ’vl K <4dt2 +n>

k=0

1
i Z ‘@kﬁg—l)(gol _n)’g ‘§1—kgT|g )

g k=0
—k
O(t_l_(lji))

+ [V, 473 (o — n)(j—n’ e ’%(%)
g

< C(’@(JH)‘ ‘@ (idtQ + 77)

<C (i 4 )
3 . 1 .
<cCte:V=0ctlz,
For j > 1, we also find that

2
~o (i I = 1
|V2£%)(g _g)b < C(Z ’vk(p(J+1)|§ 'v?k <4dt2 +77>

k=0

< C(‘go(jJrl)’ ‘62 <411dt2 + n)

72| —n)U D e

g

2
+ 3 [T )| 9
g E—0 g N—_—

~ /1 ,
V<4dt +77>

W(j)\g Lt ‘@2@@)‘@)

2—k
—_ou—-%2

+ [Vl + V23Ut

g g

<C (2 4T 47 )
<ot =ct i,
Finally, for all 4 > 3 and j > 1, we have that

|§z[’g?)(g g <C<Z|vk ]+1)‘ ’vz k( dt2+77>

k=0

+Z!V’%“ U =) [V )

_O(t**(igk»

\§i90(j+1)!
g A,—/

—o(ci-4-) o) wo()
+1§2 kU], ‘%i—’f (idt2+n) +t71 th L9 (p m‘g)

_i_k_
:O(t ) 2) k-1
=0ft )

g

~ . . 1
+| VUt ’v” (4dt2 - 77)
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The following lower bound on the scalar curvature of Cao’s steady gradient Kéahler-Ricci soliton
along the end of the cone will prove useful for later.

Lemma 3.12. R; > § along the end of Cy for some constant ¢ > 0.

Proof. From (3.12), we read that
Rg =4n — 4@/(t).
The asymptotics of ¢'(t) as dictated by Proposition 3.1 then imply that
Rg = 4n — 44/ (1)

Cn i 50 o (1Y)
“i(rmo (M)

S 4n—1—¢)
- t
for any € € (0, 1) for ¢ sufficiently large. O

4. CONSTRUCTING A BACKGROUND METRIC AND THE EQUATION SET-UP

4.1. Construction of an approximate soliton. In this section, we consider a Calabi-Yau cone
(Co, go) of complex dimension n > 2 with complex structure Jy and radius function r and an
equivariant crepant resolution w : M — Cy of Cy with exceptional set F so that M has trivial
canonical bundle and the real holomorphic torus action induced by the flow of the holomorphic
vector field Jord, on Cy extends to M. We set 2 =: ¢! and write X for the lift of the holomorphic
vector field 270, = 49, on Cy to M. We have a transverse Kahler form w! = %ddC log(r) on Cy as
well as a contact form 1 = d°log(r) on the link (5, gg) of Cy which we identify with the level set
{r = 1}. We also have a natural projection pg : Cp ~ Ry xS — {r = 1} ~ S. Let J denote the
complex structure on M and let ®(¢) denote the Kahler potential of Cao’s steady gradient Kéahler-
Ricci soliton @ on Cj (as in Proposition 2.18), the asymptotic model of which is the Kéahler form @

on Cy defined by
i [ nt? dt T
w:= 580 (2) —n<2/\77+tw >

with associated Kéahler metric g. Throughout this section, we identify the complement of the vertex
o of Cyp with M \ E via w. In this way, we treat r, ¢, and ®(¢) not only as smooth functions on
Co \ {0}, but also as smooth functions on M \ E.

We begin with the following preliminary lemma.

Lemma 4.1 ([Gotl2, Lemma 5.6]). Let x be an arbitrary Kdhler form on M with Kdhler class
[k] € H*(M, R). Assume that n = dim¢ Co > 3. Then for every T > 1, there exists a smooth real
(1, 1)-form &y on M depending on T with the following properties.
(i) [Fr] = [x] € H*(M, R).
(ii) Ar =k on EU{x € M : t(x) < T} and the restriction of kr to the subset {z € M : t(z) > 2T}
is given by the pullback of a closed, primitive basic (1, 1)-form ¢ on S that is independent of
T and determined uniquely by the cohomology class [k|c,] € H*(Cy, R). In other words,

BTz e M| t(z)>2my = Ps(C)  for every T > 1.

Proof. By Proposition 2.6, we know that the vector spaces H?(S, R) and H%(S), coincide. Further-
more, since S is a Sasaki-Einstein manifold which is necessarily a positive Sasaki manifold, we have
the vanishing h%O(S) = h%’Q(S) = 0 from Proposition 2.8. Together with (2.1), these two statements
imply that H?(S, C) = H3(S)p, ® C = H; 1(S)p, and so we have an isomorphism

H*(Cy, C) = H(S, C) = Hy'(S),
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given by the pullback p§ : H%(S, C) — H?*(Cy, C). Since r|¢, defines a cohomology class in
H?(Cp, R), we can therefore assert that

klc, = Ps(¢) + db
for some real one-form 6 on Cj and for some real primitive basic (1, 1)-form ¢ on S that is basic
harmonic and determined uniquely by [#|c,]. Now, n = dim¢ M > 3 so that H*(Cp, O¢,) = 0 by
Lemma 2.10, and df is a real (1, 1)-form. Therefore by arguing as in the proof of Lemma 2.11 with
Cy and df in place of M and « respectively, we deduce that df = i90¢ for some smooth real-valued
function ¢ : Cy — R.
Next fix T > 1 and choose a smooth cut-off function pr : M — R satisfying |pr(z)| < 1 for all

x € M and
0 fee FU{ye M|ty) <T},

pT(x):{ 1 ifze{yeM|t(y)>2T}.
We define k1 by
Fr = k —i00(pr.0).
Then this is a closed real (1, 1)-form on M lying in the same cohomology class as « that interpolates
between x on the set EU {x € M |t(x) < T} and p%(() on the set {x € M |t(x) > 2T}, ie., it
satisfies properties (i) and (ii) of the lemma, as desired. O

The next ingredient we need for the construction of our background metric is the following lemma,
akin to [CH13, Lemma 2.15].

Lemma 4.2. For all o > %, there exists a smooth plurisubharmonic function ho on M which is
1

strictly plurisubharmonic and equal to 5(®(t))* outside a compact subset Ko of M containing E.

Proof. Let v : Ry — R, be smooth with ;4" > 0 and

T+2 if s<T+1,
U(s) = .
s if s>1T+ 3,

for some T > 1 to be specified later. Then hq(t) := 3¢ o (®(¢))* : M — Ry satisfies

e {0 on U (x| 9(t()) < (T + 13}
S W EO(@(1)* A D(D(1)* + ' 59D(D(1)*  on {x|®(t(x)) > T},

Since ®(t), as an antiderivative of ¢(t), tends to +o00 as t — 400 by Proposition 3.1 so is proper,
we see that EU {z|®(t(x)) < A} is compact for every A > 0 and that on {z | ®(t(z)) > Ti},

300(2(0))* = a2(0)"2( (0 = Dplt? + £ OR) G Au+ )BT ) >0

~ (a—%)thQ >0

so long as o > % and T >> 1, again by virtue of Proposition 3.1. Moreover, notice that i0u A du > 0
for any smooth real-valued function u. Together, these observations imply that h, has the desired
properties. U

We can now construct our background metric on M via a construction reminiscent of that in the
asymptotically conical Calabi-Yau case [CH13, Got12, vC10].

Proposition 4.3 (Construction of a background metric). Let k be an arbitrary Kdhler form on M
and let @ denote the Kdahler form of Cao’s steady gradient Kdhler-Ricci soliton on Cy. Then there
exists a Kdahler form o on M with the following properties.

(i) lo] = [5] € H*(M, R).
(11) ,CJ)(O' =0.
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(iii) There exists a compact subset K C M containing the exceptional set E of m: M — Cy such
that on M\ K,

w if n =2 or [k| is compactly supported,
O =
w+ps(C) ifn=3,

where € is as in Lemma 4.1.

Proof. Fix o € (%, 1) once and for all. Throughout the proof we assume that T > 1 is chosen
sufficiently large so that & > 0 as well as hy = 2(®(¢))® and hy = 3®(t) on {t > T}, and that both
of these latter functions are strictly plurisubharmonic on this region.

We first deal with the case n = dimgc Cy > 3. Let ¢ be the basic (1, 1)-form on the link S of
Cy associated to the class [k] given by Lemma 4.1. Since [p%(¢)|; = O(t™!) (cf. Proposition A.1)
and since g and g are equivalent at infinity as a consequence of Proposition 3.2, by choosing T
larger if necessary, we can assume that [p§(¢)|s < 1 on {t > T'}. Then on this region, we have that
@ + p&(¢) > 0. For this choice of T', let Ry € [k] be as in Lemma 4.1. Then &7 is equal to s on
EU{z € M|t(x) < T} and p5(¢) on {z € M |t(x) > 2T}. We fix a cut-off function x : M — R
with

(2) = 0 ifee FU{ye M |t(y) <T},
X 1 it t(z) > 2T,
and define x(x) := x(x/A) in the obvious way for A > 2. We then construct a Kdhler metric ¢ in
(%] by ) )
6 :=Fkr+ 0188((1 - X)\)ha) + i00h1,

where C' > 0 and \ > 2 are both to be determined. First observe that & = k + Ci90h, + i00hy >
k> 0on EU{t < T} because hq and hy are plurisubharmonic; 6 = @ + p§(¢) + Cid0hy > 0 on
{2T < t < AT} because |(|z < 1 on this region by choice of T; 6 = @ + p&(¢) > 0 on {t > 2AT'}
since [p%(¢)|3 < 1 on this region, again by choice of T; 6 > 0 on {T" < t < 2T} by compactness if
C' is made large enough; and finally, 6 > 0 on {A\T < t < 2A\T'} if A > 1 depending on all previous
choices because from the equivalence of g and g, we have that

19D((1 — x2)ha)ls = O (\*%) = o(1)
by choice of . In conclusion, & is a genuine Kéhler form on M with
&=w+p5(C)
at infinity.

Next assume that [k] is compactly supported and that n > 2. Then the vanishing (2.3) may no
longer hold true and so we proceed as in [vC10]. Let {E;} be the prime divisors in the exceptional
set E of the resolution 7 : M — Cy. Since Ha,_o(M) is generated by the fundamental classes of the
E;, [r] is Poincaré dual to ), a;E; for some a; € R. Thus, there exists a compactly supported closed
(1, 1)-form j Poincaré dual to ), a; E; with [3] = [k]. Let a be a smooth one-form with da = x — .
Then by Lemma 2.11, there exists a smooth real-valued function ¢ on M such that da = i00¢. By

choosing T larger if necessary, we can assume that supp(f), the support of S, is contained within
{t < T}. Choose a smooth cut-off function pp : M — R satisfying |pr(x)| < 1 for all x € M and

(2) = 0 ifee FU{ye M|tly) <T}
PTEI =1 if v € {ye M|t(y) >2T}.
Then we define ¢ in this case by
6 =B +i00((1 — pr) - ¢) + CidI((1 — xx)ha) + i00h1,

where C' > 0 and A > 2 are yet to be determined. Observe that & = k + Ci00h, +i00h1 > Kk > 0 on
EU{t < T} because h, and hy are plurisubharmonic; & = @+Ci00hs > 0 on {21 < t < AT} because
supp(B) C {t < T} by choice of T; 6 = & > 0 on {t > 2AT} again because supp(8) C {t <T}; 5 >0
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on {T' <t < 2T} by compactness if C' is made large enough; and finally, 6 > 0 on {\T <t < 2\T'}
if A > 1 depending on all previous choices because from the equivalence of § and g, we have that

[100((1 = xa)ha)lg = O (N**72) = o(1).
In conclusion, ¢ is a genuine Kéhler form on M with
o=w
at infinity.

We now average & as given over the action of the real torus 7% on M induced by the flow of the
holomorphic vector field Jord, on Cy by setting

1
= 6 d
o |Tk|/Tk¢)ga 1(9),

where ¢, : M — M is the automorphism of M induced by g € T k and du is the Haar measure on
T*. Since there is a path in 7% connecting g to the identity, we have that ¢%[0] = [¢}0] = [0], from
which it follows that [o] = [@] = [k]. Moreover, it is clear that £;xo = 0. Finally, since the action
of T* preserves r and hence ¢, we have that Yy = @ and for n > 3, ¥rps(C) = pg(¢) for every
g € T*. Thus, o has the desired properties at infinity.

If n = 2, then we have a long exact sequence of cohomology

HY(S,R) — H?(M, R) — H*(M, R) — H?(S, R) — H2(M, R), (4.1)

where recall that S is the link of the cone Cp. In this dimension, Cy = C?/T for I' C SU(2) a
finite subgroup acting freely on C2\ {0} so that S = S or some finite quotient thereof [Ham82].
In particular, H'(S, R) = H?(S, R) = 0 and so we deduce from (4.1) that H2(M, R) = H?(M, R).
Hence for n = 2, every Kahler class is compactly supported, a case that has already been dealt with
in two dimensions. This completes the proof of the proposition. O

The metric o of Proposition 4.3 enjoys the following asymptotics measured with respect to § and
its Levi-Civita connection V.

Lemma 4.4. Let o be the Kahler form from Proposition 4.3. Then
ViLQ (ro—@)]; =0 (t’l’%’j> for all i, j > 0. (4.2)

Proof. If n = 2 or [o] is compactly supported, then this is clear. Otherwise for n > 3, we have by
construction that m.o — & = p§(¢) for ¢ a basic two-form on the link of the cone. As a pullback,
it is clear that Lx(p5(¢)) = 0, and it is easy to see that Lx(i00t) = 0. Consequently, (4.2)
holds true for all ¢ > 0 and 5 > 1. If ¢ > 0 and 5 = 0, then observe from Proposition A.1 that
|§k(i8<§t)]g =0 (t_1_§> for all k¥ > 0 with respect to the metric g, and that ]@km@ =0 (t_1_§>
for all k& > 0 for any basic two-form 8 on Cj, a fact that itself may be proved by induction as
demonstrated in Proposition A.1 for basic one-forms. These asymptotics imply that

Vi (o = @) | = [Vi5(O); = 0 (778)  forani=o,

from which the lemma follows. O

4.2. Set-up of the complex Monge-Ampeére equation. We next set up the complex Monge-
Ampere equation on the crepant resolution m : M — Cj that we will solve in order to construct our
steady gradient Kahler-Ricci solitons.

Proposition 4.5. Let o be the Kdhler form of Proposition 4.3 with Ricci form ps, let X be the lift
of the holomorphic vector field 2r0, = 40; on Cy to M via 7, and let J denote the complex structure
on M. Furthermore, let ¢p € C°(M) be such that oy = o + 100y > 0 and Ljxv = 0, and consider
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the equations ~
. n Y
log <(U +009) ) + =Y =F, (4.3)
o™ 2
where F'€ C*®(M) and L;xF =0, and

1
Po, = 5Lx0y, (4.4)

where py,, denotes the Ricci form of oy. Then:
(i) If ¢ satisfies (4.3) and i0OF = p, — 3Lx0, then oy satisfies (4.4).
(ii) Conversely, if oy satisfies (4.4), then 1 satisfies (4.3) for a function F with i00F = pa—%ﬁxo
that outside a compact subset of M is given by
0 if n =2 orif [o] is compactly supported,
F=9 _iog ((az+pg<<>)n

on > otherwise.

Proof. (i) If ¢ satisfies (4.3) with F as prescribed, then by taking i09 of this equation, we see
that o, satisfies (4.4).
(i) As for the converse, suppose that o, satisfies (4.4). Then

1
0= ’OUIZJ — Qﬁ){o—w

1
= Poy — Po + po — iﬁXUw
_ 001\ 1
= —i00 log (W) +po — zLx0y
o

= —i00log (W) - %i@é (X -Y)+ (po — 1£XU),

so that
- 100)" X 1
100 <log <(U +1099) ) + = w> = po — =Lxo0.

O-Tl

Now, since Lyxo = 0, JX is Killing, and so by [CD20, Lemma A.6], the g,-dual one-form
Nx = go(X, -) of X is closed, g, denoting the Kéhler metric associated to o. The fact that
HY(M, R) = 0 by Lemma 2.12 then implies that there is a smooth real-valued function 6y
on M such that nxy = dfx, or equivalently, such that X = V9%#6x, where V9% denotes the
Levi-Civita connection of g,. It follows that c_.X = dfx o J, which allows us to write

Lxo =d(c.X)=i000x.

Since [X, JX] =0and L;xo = 0, we know that L;xLxo = LxLyxo+Lyx, xj0 = 0. Hence,
by averaging over the real torus action on M induced by that on Cjy, we may assume that
Ljx0x = 0. Furthermore, as Kj; is trivial, we may write

po = 100V

for some smooth real-valued function v € C*°(M). Averaging this equation over the real torus
action on M, we may then also assume that

P = 100D
for some v € C*°(M) satisfying L;x0 = 0. Here we have used the fact that JX is real
holomorphic and L;xo = 0 so that L;xp, = 0. In summary, we can now write

1 _ _
Po — iﬁxa = 1000 — 1000 x
= i00F,
where F := 0 — 0x € C°°(M). In particular, notice that L;xF = 0.

(4.5)
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With @ as usual denoting Cao’s steady gradient Kéahler-Ricci soliton on Cjy and pg its Ricci
form, next observe that at infinity we have that

1 1 - .
Po — E,CXU = pPs — Po+ Po — iﬁX(w +p5(Q))
— _idd1 o 1£ 1£ :
= —i00log { — —i—p@—i xXw—3 x(Ps(€)) (4.6)
=0 =0
= i00G (),
where
o ol | on 0 if n = 2 or if [0] is compactly supported,
- (W) = —log (W) — log (%ﬂ) otherwise.

Notice that £;xG = 0. On subtracting (4.6) from (4.5), we see that at infinity
i00(F — G) = 0.

Since Ljx(F —G) = 0, it then follows from Lemma 2.4(i) that F'— G = C on the complement
of a compact subset of M for some constant C'. Therefore, by subtracting a constant from F
in (4.5) if necessary, we may assume that

i@é(log(W)%-Q('Qﬁ—F) =0,

@n

P 0 if n = 2 or if [o] is compactly supported,
] —log <M) =o0(1) otherwise. ’

the asymptotics in the latter case a result of Proposition A.1 and the fact that ¢ and § are
equivalent at infinity by Proposition 3.2. Lemma 2.4(ii) now asserts that

00"\ X
log <<U+2¢>> X uor
o 2
Recalling (4.5) and the fact that £;xF = 0, this completes the proof of part (ii) of the

proposition.
O

5. POINCARE INEQUALITY FOR STEADY GRADIENT RICCI SOLITONS

In this section, we establish a lower bound on the spectrum of the drift Laplacian of a non-trivial
steady gradient Ricci soliton; cf. Section 2.2.2. This allows for a Poincaré inequality that we will
use in Proposition 7.7 to establish an a priori weighted L2-estimate along the continuity path of
solutions to (4.3), the first step in the derivation of an a priori C%-estimate.

We begin with a preliminary result that gives a lower bound on the spectrum of the drift Laplacian
on a Riemannian manifold as soon as a positive eigenfunction exists. We in fact provide sufficient
conditions ensuring the existence of a Hardy inequality. The precise statement is as follows.

Lemma 5.1. Let (M, g, edpug) be a metric measure space endowed with the volume form dpg, of g
and a C potential function p on M such that fM ePdug = +0o. Assume that there exists a positive
C?-function ¢o on M such that A, < —Xopo outside a compact subset K C M for Ao a positive
constant. Then there exists a positive constant A1 < Ao such that the following global Poincaré
equality holds true:

A1 /M @2 ePdpug < /M |Vg¢)|§ e’dug  for any smooth compactly supported function ¢ on M.
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Equivalently, inf o(—A,) > A\ > 0, where o(—A,) denotes the L*(ePdu,)-spectrum of the operator
—A,.

The statement and proof of this lemma are straightforward adaptations of [Car97].
Proof of Lemma 5.1. We first prove that
inf oess(Ap) > Ao > 0, (5.1)

where 0ess(—A,) denotes the essential L?(e”dpug)-spectrum of the operator —A,,.
To this end, let ¢ be a smooth function on M with compact support contained in M \ K and let
¢o be as in the statement of the lemma. Then writing e’dug =: du,, we have that

/ V9 (609 2 dpp = — / A, (00) (90) dpy
M M
- / (20) (G02) dpty — 2 /Mg<v9¢o, VI ot dty — /M<pr><w¢3> iy
== [ (Apn)Go?) i, =5 [ o906 i,
4 / (9, VI(62)) dp
- / (B 0)(J00) dpsy + / VIR
> / A o) (bov?) d,

2
>0 [ (o) duy
M
Since ¢q is positive, the previous estimate implies that

ll¢lle<du

¢ € L*(dp,) \ {0} and supp(¢) C M\ K} > Xo.

A straightforward adaptation of [Agm82, Chapter 2| then yields the expected lower bound (5.1) on
Tess(Dp).

Now, the operator —A,, being non-negative, has spectrum o(—A,) C [0,+00). As a result of
(5.1), proving info(—A,) > 0 is therefore equivalent to showing that inf oqis(—A,) > 0, where
oais(—A,) denotes the discrete L?(e”dpu,)-spectrum of —A,. Suppose, for sake of a contradiction,
that inf ogis(—A,) = 0. Then there exists a non-zero function ¢ € L?*(dp,) such that A,¢ = 0.
By a straightforward adaptation of Yau’s Liouville theorem [Lil2, Lemma 7.1], one arrives at a
contradiction with the fact that [, du, = +oc. O

From this, we obtain a lower bound on the spectrum of the drift Laplacian of a Riemannian metric
equal to a steady gradient Ricci soliton at infinity.

Proposition 5.2. Let (M, g) be a one-ended complete Riemannian manifold with infinite volume
and with lim,_, o Rg = 0 endowed with a smooth proper positive function f: M — R such that
limg s 400 |V§f\§ = ¢(g) > 0 for some positive constant c(g). Assume that there exists a com-
pact subset K C M and a vector field X on M \ K such that Ric(g) = %ngfg on M\ K, ie.,

(M\K, g, X = ng) s a steady gradient Ricci soliton. Then
inf o (_Af—alogf> >0
for any o € R.

Recall that the constant ¢(g) can be interpreted as the “charge” at infinity of the (incomplete)
steady gradient Ricci soliton (M \ K, g, X); cf. Lemma 2.16.



34 Ronan J. Conlon and Alix Deruelle

Remark 5.3. The assumptions made in Proposition 5.2 on the scalar curvature R and (V9 f |§ are
not optimal. One would arrive at the same conclusion by assuming that liminf, . . Rz > 0 and

limgs oo (Rg +|V§f|§) = ¢(§) > 0.

Proof of Proposition 5.2. Applying Lemma 5.1 to p := f — alog f, it suffices to find a positive
i alogfﬁbo < —Xp¢g on M \ K for some \g > 0 and
some compact subset K C M. To this end, first observe from the trace version of the Bianchi
identity that

smooth function ¢y with the property that A ;

2divz Ric(§) = VIR;.
On the other hand, since the steady Ricci soliton equation holds on M \ K, we have that
2 dng Ric(g) = dng ,Cvgf(g)

o
ZW+A VI f + Rie(3) (V9 )

= VgAgf + Aj ng + Ric(§)(Vf)

= 2V9Agf + 2Ric(§)(VIf)

= 2V9 Ry +2Ric(g )(vg f)

— 9V Ry +(Lgs 1) (V)

= VI2R; +|VIf]2).
Here we have used the soliton identity Rg = Aj f in the fifth line obtained by tracing the steady Ricci
soliton equation, together with the Bochner formula in the third line. It follows that V9 (Rg +| V9 f |§> =

0 on M\ K so that by connectedness of this set, Rz +|V? f ]?] is constant on M \ K. By assumption,
we then find that

Rg+VIf2 = lim (Rg +|Vf’f|§) —¢§)>0 on M\ K. (5.2)

We define the function ¢q := e85 for B € (0, 1). Then, making use of (5.2), we see that ¢g is a
positive smooth function satisfying

Affozlogfgbo =/ (A§f+ (1 - B - j;) ’vg}f’?}) e Bt

:_5(</3+‘]’;> Rg+<1—/3—(;:> c@)) bo.

Since Ry tends to 0 at infinity, we deduce that

B —B)e(g)

Af,alogfﬁbo < _f@)

[~

outside a compact subset of M. An application of Lemma 5.1 to ¢g := e~ 2 and Ay := 0(89) > 0 now
yields the result. (Il

Remark 5.4. For a complete steady gradient Ricci soliton (M, §, X = V9 f), one can show that

info(—A;) > 42

proposition can also be refined to show that actually inf oegs (—A Foalog f) >

in the notation of Proposition 5.2; see [MW11] for a proof. The proof of this
%g) for any o € R.
We do not require this fact here.

From Proposition 5.2, we obtain the following corollary that will prove useful in establishing an a
priori weighted energy estimate for the complex Monge-Ampere equation (4.3).

Corollary 5.5. Let (M, g, f) be as in Proposition 5.2 and let h be a complete Riemannian metric on
M uniformly equivalent to § such that X = V" f for some smooth proper positive function f : M — R
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with |f — f| = O(1). Then the bottom of the L*(f~“efduy)-spectrum of the operator —A¢_qlog f
corresponding to h s positive.

The requirement for the difference between the potentials f and f of X to be bounded is so that
the respective weighted volume forms are uniformly comparable.

Proof of Corollary 5.5. Let dug and duy, denote the volume forms of g and h respectively. Then by
assumption, there exists a positive constant C such that C~'§ < h < C§ and such that

s d o
Clfeel < froef <th) <Cfeef on M.
Hg

In particular, we have that
h 1112
| { 1961220 aerguy

¢ € L2(f~/dun) \ {0}}

in

2

1012 woram
19612, - ..; :
_3. (f~>efdug T
= inf 612 = dg) ¢ € Lz(f aefd:“@)\{o}
¢ L2(f-eefdpug)

The result now follows from Proposition 5.2. O

6. INVERTIBILITY OF THE DRIFT LAPLACIAN: EXPONENTIAL CASE

In this section, we introduce the exponentially weighted function spaces in which we shall work in
order to solve the complex Monge-Ampere equation (4.3) with compactly supported data. We also
analyse various properties of the drift Laplacian acting on such spaces. We begin by recalling the
set-up.

6.1. Main setting. Let (Cy, go, Jo, €0) be a Calabi-Yau cone of complex dimension n > 2 with
radial function r. Set r? =: ¢! and let 7 : M — Cj be an equivariant crepant resolution of Cy
with respect to the real holomorphic torus action on Cy generated by Jyrd, so that the holomorphic
vector field 2r0, = 40; on Cj lifts to a real holomorphic vector field X = 7*(2r9,) on M. Denote
by E the exceptional set of the resolution 7 : M — Cj and let J denote the complex structure on
M. Throughout, using 7, we identify M and Cp on the complement of compact subsets of each
containing F and the apex of the cone respectively.
We define a Kéhler form @ on Cy by

i (nt? dt T

T is the transverse Kéhler form on (Cp, go). Then the Kéhler metric § associated to & takes

where w
the form

1
Gg=n <4dt2 +n? +th> ,

where g7 is the transverse Kihler metric associated to w? and n = d®log(r) is a contact form on
the link of the cone. Recall that

T 1 1 1 1=
C C

= —dn = =dd°l = —

w 2d77 2dd og(r) 4dd t 28(%

and observe that —w.1JX = d(nt). We extend nt to a smooth real-valued function f:M —Ron
M with f > 1. Then by definition, —@w1JX = df along the end of Cy. We also have the following
expression for the Riemannian Laplacian with respect to § acting on u € C2_({t > 0}):
40%u 4n—1)0u  £(Eu)
Asu=20Apu = —— —
g4 St = o * nt Ot * n
where Ap denotes the basic Laplacian on the link of (Cp, go).

1
—A 6.1
+ nt BU, ( )



36 Ronan J. Conlon and Alix Deruelle

Thanks to the Ricci-flatness of gg, we have, via the Cao ansatz, a steady gradient Kéhler-Ricci
soliton @ on Cy with soliton potential ¢(t) and with £;x@® = 0 that satisfies

VLY (@—a)]; =0 (t—f—%—j) for all £ € (0, 1) and 4, j > 0,
where ¥ denotes the Levi-Civita connection of g. These asymptotics are contained in the statement
of Proposition 3.2. Let 7 be any Kéahler form on M with £;x7 = 0 such that for some ¢ € (0, 1),
|§i£§) (T — W) |3 =0 (t_s_%_j) for all i, j > 0. (6.2)

We denote by h the Kéhler metric associated to 7 and by V" its Levi-Civita connection. Moreover,
for any smooth real-valued function ¢ € C°°(M) such that T +i09¢ > 0, we write 7, := 7 + i00¢
and denote by hg the Kéhler metric associated to 74. Since g and h are asymptotic with derivatives,
one can verify that measuring the asymptotics of a tensor using either metric is equivalent — that is
to say, along the end of M, there exist constants C; ; > 0 such that for every tensor 7" on M,

VLT, < (VY LP T < G IVEQPT);  for all 4, j > 0.

In what follows, we shall use this fact without further reference.
We first note that X is gradient with respect to h.

Lemma 6.1. There exists a smooth proper real-valued function f : M — R bounded from below such
that X = V"f.

Proof. 1t suffices to show that —7.JX = df for a smooth real-valued function f : M — R with
the desired properties. To this end, observe that JX is Killing for A and holomorphic so that
0=LyxT=d(r1JX). A smooth function f : M — R with —7.JX = df therefore exists by Lemma
2.12. To see that f is proper and bounded from below, just note that since § and h are asymptotic
along the end of Cjy and |X]§ = 4n, |X|? is asymptotic to 4n so that f(z) — +oco as x = +oo. [

Remark 6.2. The function f from Lemma 6.1 is defined up to a constant. We henceforth fix this
constant so that f > 1 on M.

As the next lemma shows, both f and f are comparable.

Lemma 6.3. There exists a positive constant C such that C’*lf <f< Cf on M. In particular,
f ~nt.

Proof. Let x € M \ E and let v,(t) denote the integral curve of X with 7,(0) = x. Then

(F00(6)) = FOu) = (F(@) = o) = [ S wta) = Forutu) d

zlix4f—ﬁx%w»m
:Ahxﬁ—w@huwww

Now, the fact that “-¢(v,(u)) = dt(X) = 4 implies that t(v,(u)) = 4u + t(z), hence it follows from
(6.2) that

uﬂ%@»—ﬂ%@m—«mw—ﬂmﬂscﬁiwaw>Wu
< C/s(4u +t(x)) “du
0

< O ((4s + ()" — t(2)' )
< C(t(ya(5))' 7% = t(2)' ),
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and correspondingly, that for all z, y, lying on the same flow-line of X along the end of Cj,
(F(y) = f() = (f(@) = fl@)] < Clt(y)' = 1) 7| < O1f(9)'* = fla)' .

From this, the result is clear. O

As a consequence of Lemma 6.3, it makes no difference whether one measures polynomial rates of
growth and decay using f or f. However, in contrast to f , [ is a globally defined potential for X on
M. The need for such a function becomes apparent in the proof of Lemma 7.3, hence we work with
f rather than f . Note that Lemma 6.3 does not imply that e/ is comparable to ef; in fact, this is
not true, and so there is a difference in using f and f when measuring exponential rates of growth
and decay. These are the rates that we will primarily be dealing with in this section and the next.
For this reason, we assume in these sections that in addition to the above,

Additional assumption: lf — ()] =0(), (6.3)

so that the exponential weights e/ and e/ are comparable. Notice that this condition does not follow
automatically from (6.2). We will use this assumption in this section specifically in Theorem 6.7
in the deriviation of the estimates for the drift Laplacian acting between exponentially weighted
function spaces, where we must appeal to Corollary 5.5.

We next state a crucial lemma that will enable us to build good barrier functions at infinity,
thereby allowing us to obtain suitable a priori estimates. This lemma, which mirrors Lemma 2.16,
can be proved using the estimates from Proposition A.1.

Lemma 6.4. In the above situation, the following asymptotics hold true:

(VME(f =) =0 (f—a—“;”) for all k> 1,

~

vied (LxT)‘ —0 (f—l—%—j) for alli, j >0,

g

P 1
vicd <p.r - 2£XT>

iy (|Vhf|i +Ry, —4n> (g ~0 (f—f—%—ﬂ') for alli, j >0,

= O(f_l_s_%_j) for alli, j >0,

g

g

VLD (Anf + X f—am)| =0 (F775) Joralli =0

Here, p; and Ry, denote the Ricci form of T and scalar curvature of h respectively, and € € (0, 1) is
as in (6.2).

Remark 6.5. In the terminology of Section 8.1, these last four estimates can equivalently be written
as

1
ﬁXTGC%?l(M% PT—§£XTEC§(?1+E<M)7
yvhfyz+Rh—4neC§gE(M), and Apf+X-f—dneCT (M),

respectively.

Proof of Lemma 6.4. We prove only the second and third estimate. The others can be proved in a
similar manner. Regarding the second estimate, using (6.2), Lemma 6.3, and Proposition A.1, and
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with € € (0, 1) as in (6.2), we have the bounds

vigd ([,XT)‘g < \wg@ (Lxd)

[V (ex(r -

< \wg@ (Lxd)

_+ C(Zv Js 5)f_8_1_%_j

g

< C|VieQuT| +Cl, g ) f o1 E
g

<cftti,
as stated.
As for the third estimate, this encodes the obstruction for 7 to be a steady gradient K&hler-Ricci
soliton. The existence of such a soliton on Cj is crucial in order for this bound to hold true. Without
this, the decay rate would be linear rather than faster than linear with only the latter being sufficient

for us to solve the complex Monge-Ampere equation (4.3). Regarding this bound, simply observe
that for all ¢, j > 0,

=vicd <—z'(98 (log (::)) + %ﬁX(T - w))
~o(rt)

outside a compact subset of M, where we have used Proposition 3.2 together with (6.2) in the final
line and the fact that @ is a steady gradient Ké&hler-Ricci soliton on Cj in the first line. O

Using Lemma 6.4, we derive the following properties of the drift Laplacian acting on exponential
weights.

Lemma 6.6. In the above situation, let f : M — R be a smooth proper real-valued function satisfying
X = V"f chosen such that f > 1 on M (which exists by Lemma 6.1). Then for any § > 0, the
function e~ is both a sub- and super-solution of the following equation:

2

Moreover, the Laplacian of f with respect to T is asymptotically positive and satisfies

<AT + X-) e =501 - 5)47”6—” +O(fhe 9.

Af> © outside a compact subset of M

f

for some constant ¢ > 0. In particular,

X
(AT + 2-) e/ < —%e_f outside a compact subset of M (6.4)

for another constant ¢ > 0.

Proof. We begin with the following computation:

X 2
2 2 2
X 2
=6 <(1 — 5)7| 2|h + ATf> e,

In particular, notice that for § € (0, 1),

(a3 ) e s (-0 5 + 0 + 8.0 ) e

=—6(1— 5)476—51‘ +O(f He ot
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by Lemma 6.4. If § = 1, then we have that

(AT + )2(> e f = —Af- e .

Finally, using equations (6.1) and (6.2) together with Lemma 6.3, we find that
Arf=0sf+(Ar— D) f
=As(f =D+ Dof +(Ar—Ay)f
N~

:4(77,71)
t
4(n—1) A
= = A )+ (A — Ao
4(n—1 - . _
= (7175)+Cb*7:68(f_f)+(7—_(2})*i88f
4(n—1 1 1
= (7175)+2w*£x(7—@)+2(7'—w)*£x7'
—_———
=0(t—1-¢)
4(n—1 1 1
=MD 0 ) 4 ()« £x(r 0 by (7= @)+ L
:O(t71725) :O(tflfs)
c_ c
> - > =
=777
outside a compact subset of M. [l

6.2. Function spaces. We make the following definitions.
e The drift Laplacian (with respect to X) is defined as
A, xT:=AT+VET,

where T is a tensor on M, V" is the complex linear extension of the Levi-Civita connection of h,
and A, denotes the Laplacian associated to h. In normal coordinates, A, takes the form

_Lohon hoh
A= (vivi +vai).
Recall that the Laplacian acting on functions is given by
Ay = hijaiﬁj—u = tr, (;85u>

for u € C°°(M) a smooth real-valued function on M. Here, the trace operator trr on (1, 1)-forms
is defined by

n—1
nT N« -
o— — 1
trr(a) = = h* a3,

where o = %ajkdzj Adz* is a (1,1)-form on M.

For clarity, we will omit the reference to the background Kéhler metric h or to the associated Kahler
form 7 when there is no possibility of confusion.

e For B € R and k a non-negative integer, define C’g(k(M ) to be the space of J X-invariant continuous
functions v on M with 2k continuous derivatives such that

lulloy = - sup| a9 (£0u)| < ox,
ir2j <2k M h

where '
LPu:=X-..-X.u.
—_—

j-times
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Set CE(M) :== >0 C%(M).
e Let 6(h) denote the injectivity radius of h, write dj(x, y) for the distance with respect to h between

two points z, y € M, and let ¢;X denote the flow of X for time ¢. A tensor T on M is said to be
in C%2(M), a € (0, 3), if

[T)c0,20 == sup [min(f(w%f(y))a
cFyeM
dp(z,y) <4(h)

T'(x) — Px,yT<y)’h:|
dh(l’, y)2o¢

(S)eT (@) = (Pyx (1), 6 () (03)T(@)))
[t — sl

< 400,
xeM

+ sup [min(t, s)*
t#£s>1

where P, , denotes parallel transport along the unique geodesic joining = and y, and 13¢§(I)’ 6X ()
denotes parallel transport along the unique flow-line of X joining ¢ () and ¢;* (z).

e For k a non-negative integer and a € (O, %), define the Holder space Cg(k’M(M ) to be the set of
u € C% (M) for which the norm

Hu||C§(k,2a = ||U”C§(k + Z [(vh>i (ES?)U)}

i+2j =2k €02

is finite.
Similarly, define the Hélder space C2% 2

X exp(M) with exponential weight ef to be the set of u €

C2k (M) for which the norm
— |lef
T
is finite. It is straightforward to check that the space Cik’ei%(M ) is a Banach space. We set

C?(.iexp(M) = ﬂkzo C?(kjexp(M)’

e Finally, we define the spaces

METER2A(M) = {4 € CF (M) | 7y := 7 + 0% > 0} N Cx 27 (M)

X, exp , €Xp

and
MR ep(M) :={p € CRo.(M) |74 >0 and ¢ € CF o,(n (M)} . (6.5)
We remark that in [BM17], the choice of function spaces differs from ours for the case of com-
pactly supported data in that they work with much larger function spaces where the functions have
exponential decay e %, § € (0, 1). Their function spaces do have an advantage over ours; mixed
polynomial and exponential weights do not appear in their analysis of the isomorphism properties
of the drift Laplacian as is the case for us in Theorem 6.7.

6.3. Preliminaries and Fredholm properties of the linearised operator. We proceed with
the same set-up as in Section 6.2.
Define the following map as in [Siel3]:

2 N7 Tg X
MA; ¢ €{p € Cho(M) |1, :=7+i0dp > 0} > log p —i—E-i/JE]R.
For any 1 € C2 (M), let hy (respectively hsy) denote the Kéhler metric associated to the Kihler
form 7, (resp. 75y for any s € [0, 1]). Brute force computations show that

MAT(O) =0,
X 2
Dt/)MAT(u) :Afwu_'—i'uv UGCIOC(M)’

2
d? d _
P (MA-(sv)) = ] (Ar,, ) = *!33¢I%3¢ for s € [0, 1],

S
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MA($) = MA(0) +

1 ru d2
I MAT(SY/J)—F/O /0 @(MAT(mb))dsdu

s=0

X 1 u B
= At - / / 00y ;,.,, ds du.
0o Jo

We state the first property of the drift Laplacian that we require, namely that it is an isomorphism

(6.6)

between exponentially weighted function spaces.
Theorem 6.7. Let o € (O, %) and k € N. Then

X -
At s CRLGINO) = [ RS (M)

is an isomorphism of Banach spaces.

Proof. We first prove surjectivity. Let F € f~!. Cg(k’ei‘;(M ). Then for R > 0 sufficiently large

such that the level sets {f = R} are smooth closed hypersurfaces of M (recall that f is proper
and bounded from below by Lemma 6.1), let ur : {f < R} — R be the solution of the following
Dirichlet problem:

X
ATUR+5‘UR:F on{f<R},
up=0 on{f = R}.
Applying Corollary 5.5 (with o = 0) to the measure /7" and the function ug, we see that

/\1/ \uRIQefT" S/ \thR\%LefT"
{f <R} {f<R}

= 2/ <—A7uR X uR> ugel ™ (6.8)
(f<R) 2

(6.7)

for some constant A\; > 0 independent of R. Using Holder’s inequality on the right-hand side of
(6.8), we obtain the following a priori energy estimate:

/{f<R} |uR|2 e < e(n, T) /M ]F|2 efrm, (6.9)

the right-hand side of which is finite because F' = O(f~'e~/) implies that F € L?(e/7").

Next, let © € {f < R} be such that By(xz, r) € {f < R}. We perform a local Nash-Moser
iteration on (6.7) in By(x, r). More precisely, since (M?", h) is a Riemannian manifold with Ricci
curvature bounded from below, the results of [SC92] give the following local Sobolev inequality:

n—1
1 2n_ " C(ro)r? / ho12
_— n—1 7" <|—— A\ "
<V01h(Bh(fUa 7)) /Bh(z,r) ia ) - (VOlh(Bh(fna 7)) JBy (2, 1) Vel

for any ¢ € H}(By(x, r)) and for all x € M and 0 < r < 1y, where r( is some fixed positive radius.
Now, as | X |, is bounded, the oscillation of f is bounded on Bj(z, r) by a constant depending only
on 79, and so we have the following local weighted Sobolev inequality:

n—1

1 / 2n_ f " C(T07Ta ’I’L)’I"2 / h, 12 f
_— n—1 el " < | =1 V| el " (6.10)
(VOlf(Bh(% 7)) B (z,r) “ ) (VOlf(Bh(x, ) JBy(z,r) Vool

for any ¢ € H}(Bp(z, r)) and for all z € M and 0 < r < ro, where vol¢(Bp(z, r)) := th(m’T) efrm.

A Nash-Moser iteration proceeds in several steps. First, one multiplies (6.7) across by
UE,SIURWR’Q(I)_U with p > 1, where 75 ¢, with 0 < s+ s’ < r and s, > 0, is a Lipschitz cut-
off function with compact support in By(z, s + s') equal to 1 on By(z,s) and with |V, o], < é
almost everywhere. One then integrates by parts and uses the Sobolev inequality of (6.10) to obtain
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a so-called “reversed Holder inequality” which, after iteration, leads to the bound

sup [ug| <C <|’uRHL2(Bh(a:,7"),ef’rn) + HFHLOO(B,L(I,T)O

Bh(x’ %)
6.11
<C (IFll2(essmy + IFllco) (6.11)
<Olf - Fley,

for r <o, where C' = C(rp, 7,n). Here we have made use of (6.9) in the second line. This estimate
yields an a priori C%-estimate on any fixed subdomain of {f < R}.
As for the weighted a priori estimate, observe from [(6.4), Lemma 6.6] that

<AT + f) el < —%ﬁf (6.12)

outside a fixed compact subset K C M with smooth boundary independent of ug. Choose R > 0
sufficiently large so that K C {f < R}. Then on combining (6.7) and (6.12), we see that for any
positive constant A,

(AT ¥ f) (un = AcF) = 26T el Ples e}f (6.13)

on {f < R}\ K. In particular, choosing A so that A > ¢~ !||fef F||co, the maximum principle
applied to (6.13) shows that

sup  (up — Ae™/) = max {—AeR, max(up — Aef)} ,
{f <RN\K oK
since up vanishes along the boundary component {f = R}. Now, by (6.11),

max(ug — Ae ™) < C — Ae~maxox f
0K
for some uniform constant C'. As a consequence, one can choose A large enough such that

max (uR — Ae_f) <0.
oK

This establishes the expected a priori weighted upper bound. Applying the same line of reasoning
to —upR, we obtain a similar a priori lower bound for ur. Thus, we arrive at the following linear a

priori estimate:
¢ un

<c(n, 1) erf . F‘ (6.14)

CO{f<R}) co
for any R sufficiently large.

To achieve a priori local estimates on higher derivatives of ug, we invoke standard elliptic Schauder
estimates on each ball By(z, §) with 20 = inj,(M) > 0 compactly contained in {f < R}. This

results in the bound

f(x)
sup e ug|| ~2rt2, 20 <C <n, ko, 7, || f - F|l 2k,2a) ,
Bi(,0)e{f < R} Cloc ™ (Bn(,9)) CX

which, via the Arzela-Ascoli theorem, gives rise to a subsequence still denoted by (ug)r> R, that

2k+2, 2a
Cloc

converges to a function u € (M) in the Ciﬁ”’zal—topology for any o' € (0, «) satisfying

X
Aq-u—&—?-u:F on M,

f(x) :
oy lull gz za g, (0 5 < € (””“’O"T’ If F”Ci’f’i‘i)'

Before proving a priori weighted estimates on higher derivatives of the solution u, we need to
verify that the operator A, + % remains surjective when restricted to the set of JX-invariant

functions. This essentially follows from the maximum principle. Indeed, let F € f~1. Cg(k’eiog(M ),
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C2k+2 2a(

let ¢ € C% exp

M) be a solution to

2

and let (¢/~); denote the flow generated by JX. Then, since F, X, and JX are all JX-invariant,
the function ¢; := (¢7X)*p also satisfies (6.15). The function ¢ — ¢; therefore lies in the kernel of
A+ % But ¢ — ¢ also tends to 0 at infinity. Hence, we deduce from the maximum principle that

(AT + X.> - (6.15)

p¢ =  for every t € R. In other words, ¢ is JX-invariant, as claimed.

In order to obtain a priori weighted estimates on higher derivatives of u, we need to re-interpret
the elliptic equation Apu+ X -u = 2F as a parabolic one. First, we conjugate the operator Ay + X-
with the exponential weight e~/ to obtain

(el o(Ap+X)oe ™ W) =M — X -TU—Apf-T
where @ := e - u. Thus, the function @ is a solution of the equation
Api— X U —Apf-u=2F = Fef'. c¥*wm). (6.16)

Next, let (¢;%);er be the flow generated by the vector field X, a complete flow since X is complete.
Then as in [Brel3], let (r;,)m be a sequence of radii tending to +oco and define hy,(s) := r,;! (. )*h,

U = (¢, )*u, and F, = rm(¢§m)*f. Then the sequence of functions (U, (s))ser satisfies

s, — Ahm(s)am + Ahm(s)fm Uy = _ﬁm on M,

6.17
fm(s) = (62, ) f- (617

1
By Lemma 6.4, the vector field 7, X converges smoothly to the constant vector field 49; on R+ and

the operator Ay, (,) acting on JX-invariant functions is asymptotic to the operator %g—; Tt Ap

1+4s)
as ry, tends to +oo for s € [—d(n), 0], with §(n) positive and small enough such that

X ({rm - ﬁwﬁ<m+ﬁa>{<w§m} s € [-6(n).0].

Moreover, by Lemma 6.4, Ay, () fm and the derivatives thereof are uniformly bounded on { <f< rm}
To conclude, we apply interlor parabolic Schauder estimates for transversally elliptic operators to
(6.17) which leads to the estimate

Jiimllcaes2.20 2, 0 < € 7) (1 Fonllcon 20 ooy + Nimloo@u@sy ) s (6:18)

where Q,,(s) := [—s, 0] x {rm VT < f<rpm+ ./rm}. Such parabolic Schauder estimates can be
derived along the same lines as elliptic Schauder estimates as in [EKA90, Section 3.5.6]. Tracking the

scaling properties of the various Schauder norms involved in (6.18), we reach the desired conclusion.
Indeed, we find that

d

where Q,,(6(n)) := Use[- 0]<Z>5rm ({rm — m < f <rm+\/Tm}). Here we have made use of
the C%estimate (6.14) on u (once we allow R — +oc) in the last line. This proves that u €

CXiewy (M), O

< c(n, T)rm
C2k+2,20(Q),,, (0))

+c(n, 7) Hef . u‘

‘ef . F‘ -
Ok, 2 (Qm (5(71)))
<c(n, T|f - Fll c2k. 20,
X, exp

CO(Qn (8(n)))

6.4. Small perturbations of steady gradient Kahler-Ricci solitons: exponential case. In
this section we show, using the implicit function theorem, that the invertibility of the drift Laplacian
given by Theorem 6.7 allows for small perturbations in exponentially weighted function spaces of
solutions to the complex Monge-Ampeére equation that we wish to solve. This forms the openness
part of the continuity method as will be explained later in Section 7. We have:
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Theorem 6.8. Let Fy € f~1- CF exp(M) and let 1o € MF . (M) be a solution of the complex
Monge-Ampeére equation

T X
1%<‘“>+-¢N:%.
T 2
Then for all o € (0, %), there exists a neighbourhood Ug, C f~1- c% 2 (M) of F such that for all

X, exp
F € Up,, there exists a unique function i € Mé&zg(p(M) such that

T X
Y
1 — — -y =F.
%<ﬂ>+2 (G
Remark 6.9. This theorem does not assume any finite regularity on the data (¢, Fy) in the corre-

sponding function spaces. This essentially comes from Theorem 6.7 where the closeness of 7 to @ in
derivatives, and hence of 7 to Cao’s steady gradient Kéhler-Ricci soliton in derivatives, is assumed.

Proof of Theorem 6.8. In order to apply the implicit function theorem for Banach spaces, we must
reformulate the statement of Theorem 6.8 in terms of the map M A, introduced formally at the
beginning of Section 6.3. To this end, consider the mapping

MAr, : (¢,G) € My G (M) x f71- O 5 (M)

Tor X _ o 1

Notice that the function spaces can be defined either by using the metric h or hgy, for any s € [0, 1].
To see that M A 4 18 well-defined, apply the Taylor expansion (6.6) to the background metric 7,
to obtain

— T X
MA:, (¢,G) = log <w0n+90> +5 -G
(6.19)

Then note that by a computation similar to that undertaken in (6.16), the first three terms of the
. .. —1 2,2
last line of (6.19) lie in f~' - C¢ 5 (M).
Now, if S and T are tensors in C’l%)lz 2a(M ) that decay as fast as e~/ together with their derivatives,
then observe that S * T shares the same local regularity and decays as fast as e =2/, where * denotes
any linear combination of contractions of tensors with respect to the metric h. Notice that

‘ag@‘%6(¢o+w) - h;&/’0+¥’) * (Vh) 2('0 * (Vh) 2('0

and that hs_(ibo +o) T h1e 0120’C2a(M ) decays as fast as e~/. Thus, applying the above reasoning twice
to S =T = (V") 29 and to the inverse h_} , one finds that [00¢|? wore € FL 0% (M) for
s(Yo+e

S("Z}OJ’_@D) X7 exp
each s € [0, 1] and that

1 ru
5 .12
‘/O /0 |aa<p|h5(wo+<p) ds du

as long as |||l 4,2« < 1. Finally, the JX-invariance of the right-hand side of (6.19) is clear.
X, exp

(e g Infoll s 2o ) il 2o

<C
_ 2,2
f 1'CX, exp

By definition, 1\774% (p, F' — Fp) = 0 if and only if ¢y + ¢ is a solution to (1.8) with data F'. By

X

DoMA;, (1) = Ar, b+ S forye Oyl (M),

Hence, by Theorem 6.7 applied to the background metric 7, in place of T, DomT o is an isomor-
phism of Banach spaces. The result now follows by applying the implicit function theorem to the

map ]\7;17#)O in a neighbourhood of (0, 0) € Mﬁéif:(p(M) x f7L. C’?é?eip(M). O
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7. A PRIORI ESTIMATES

In this section, (Co, go, Jo, €20) will denote a Calabi-Yau cone of complex dimension n > 2 with
radial function r. We set 2 =: ¢! and let m : M — Cy be an equivariant crepant resolution of Cy
with respect to the real holomorphic torus action on Cy generated by Jyrd, so that the holomorphic
vector field 2rd, = 40; on Cy lifts to a real holomorphic vector field X = 7*(2r9,) on M. J will
denote the complex structure on M and 7 will again be any Kéahler form on M with L;x7 = 0
satisfying for some € € (0, 1) the asymptotic bounds

|§i£g?) (T — W) |3 =0 (t_e_%_]) for all i, j >0, (7.1)

where @ denotes the Kéhler form %85 ("7’52) on Cp, g denotes the corresponding Kéhler metric,

and V denotes the associated Levi-Civita connection. The metric h will denote the Kihler metric
associated to 7 and for any smooth real-valued function ¢ € C*(M) such that 7 + i0d¢ > 0, we
write 74 = 7 + i00¢ and let hg denote the corresponding Kéhler metric and V"¢ the Levi-Civita
connection associated to hy. By Lemma 6.1, there exists a smooth proper real-valued function
f: M — R that is bounded from below with X = V" f, which is chosen so that f > 1 on M. We
also have the incomplete steady gradient Kaher-Ricci soliton @ on Cj given to us by the Cao ansatz
with soliton potential ¢(t). As we are working with exponentially weighted function spaces in this
section, we assume in addition that (6.3) holds true, i.e., |f — ¢(t)| = O(1). This will allow us to
appeal to Corollary 5.5 and in doing so, establish an a priori weighted energy estimate in Section
7.1, the precursor to the C%-estimate.
Our goal in this section is to solve the complex Monge-Ampére equation

10g<(T+’T(Za‘/’)>+)2(.¢:F, T+1i00¢ >0, F e C3P(M), (7.2)

on M in the space of functions that decay exponentially at infinity. More precisely, we seek a solution
¥ of (7.2) that lies in MS . (M), the space of admissible Kéhler potentials defined in (6.5) by

MZ cxp(M) = {¢ € Cige(M) |74 > 0 and 1) € CF (M)}
The main result we prove here is:

Theorem 7.1. Let F' be a compactly supported smooth JX -invariant function on M. Then there
exists a solution ¢ € MF . (M) to (7.2).

Our approach to solve (7.2) is to implement the continuity method. We consider the following
one-parameter family of complex Monge-Ampere equations:

10g<<f+ﬁaw)+§¢t:t.ﬂ FeCP(M), te[0, 1, € MZap(M). (7.3)

When ¢ = 0, there is the trivial solution to (7.3), namely 1y = 0. When t = 1, (7.3) corresponds
to (7.2), that is, the equation that we wish to solve. Via the a priori estimates to follow, we will
show that the set ¢ € [0, 1] for which (7.3) has a solution is closed. As we have just seen, this set is
non-empty. Openness of this set follows from the isomorphism properties of the drift Laplacian given
by Theorem 6.8. Connectedness of [0, 1] then implies that (7.3) has a solution for ¢t = 1, resulting
in the desired solution of (7.2).

7.1. A priori C%estimate. We begin with the a priori estimate on the CY-norm of (Yr)o<t<1
which is uniform in ¢ € [0, 1]. For the sake of clarity, we omit the dependence on the parameter ¢
while estimating various norms of the solutions (¢)o<+<1. We begin with two crucial observations.
Our first is:

Lemma 7.2 (Localising the supremum and infimum of a solution). Let ¢y € MS (M) be a
solution to (7.2). Then
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(i) either v attains a maximum (respectively a minimum) at a point contained in the support
supp(F') of F' and sup ;v = maxg,pp(r) ¥ = 0 (resp. infpy ¢ = ming,pnry 9 < 0),

(ii) or supy; ¢ <0 (resp. infprp > 0).

Proof. We prove the assertions of Lemma 7.2 that concern the supremum of a solution v only. The
statements on the infimum of ¢ can be proved in a similar manner.
Observe that 1 is a subsolution of the following differential inequality:

Arp+ g ¢ > F. (7.4)

If ) attains a maximum at a point in supp(F'), then sup,,¢ = maXgypp(r) ¥ and since ¢ tends
to 0 at infinity, we deduce that maxps¢ > 0. If ¢ attains a maximum in M \ supp(F'), then
the strong maximum principle of Hopf [GT01, Theorem 3.5] applied to (7.4) implies that v is
constant outside of supp(F). In this particular case, as 1 tends to O at infinity, we have that
supy ¥ = maxXpn\supp(F) ¢ =0.

Now, if 1) does not attain a maximum at a point in M, then there is a sequence of radii (R)r>o0
tending to +oo such that ¢(z) < supyp, p, r,) ¥ for all © € By(p, Rg) and for all k > 0, where
By, (p, Ry) denotes the geodesic ball with respect to h of radius Ry > 0 centered at a point p € M.
By letting R — 400 together with the fact that ¢ tends to 0 at infinity, one reaches the desired
conclusion. ([

Next we have:

Lemma 7.3 (A first rough lower bound on X -1). Let ¢ € M . (M) be a solution to (7.2). Then

inf(f—l—;(-d]): min (f—l-);-?ﬁ):mjvi[anl.

M {(X =0}
In particular, % <> —f on M.

Proof. A crucial observation is that the gradient of the function f -+ % -1 with respect to the Kéhler
metric hy induced by 7, is X, i.e.,

X =V <f+)2(-¢). (7.5)

To see this, note that (7.5) is equivalent to the statement that 7,.JX = —d (f + % . w). Then with
X109 = 2(X —iJX) and keeping in mind the fact that £;xt = 0, this latter statement follows from
the imaginary part of the sequence of equalities:
1 .
ST — %WJJX = 7y X 10
= 7,X50 4 (i00¢).x 10

= % (12X —iraJX) +i0(X"0 - )
1 ; i (7.6)
= %TJXJF %df+i(d(X'1/f) +id(X - ) 0 J)

1

1 i X
:2<T_|X—2d(X‘¢)OJ>+2d<f+2'7/’>'

Now, since v together with its derivatives decay exponentially to 0 at infinity, we see that X -¢ =
2 (% . w) decays to 0 at infinity as the norm of X is bounded. Thus, f + % -1) is a proper function
bounded from below. In particular, it attains a minimum at a point pyi, € M, a point at which X
vanishes by virtue of (7.5). From this last remark, the result follows. (]
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7.1.1. Aubin-Tian-Zhu’s functionals. We now introduce two functionals that have been defined and
used by Aubin [Aub84], Bando and Mabuchi [BM87], and Tian [Tia00, Chapter 6] in the study
of Fano manifolds, and by Tian and Zhu [TZ00b] in the study of shrinking gradient Kéhler-Ricci
solitons on compact Kéahler manifolds.

Definition 7.4. Let (¢1)o<¢<1 be a Cl-path in M exp(M) from g = 0 to 1 = ¢. We define the
following two generalised weighted energies:

IT,X(('ID) = / ¥ (ean - ef+%.(p7—£) )
M

1
Jr, x(p) == / Ps <€fT” - ef+§“"5728> A ds.
o Jm

At first sight, these two functionals resemble relative weighted mean values of a potential ¢ in
K exp(M) or of a path (pr)o<e<1 in M . (M) respectively. When X = 0 and (M, 7) is a
compact Kéhler manifold, an integration by parts together with some algebraic manipulations (see

Aubin’s seminal paper [Aub84] or Tian’s book [Tia00, Chapter 6]) show that

n—1
I o(p) = Z / idp A dp ATF A Tg_l_k,
k=0 (7.7)

n—1

kE+1 -

Jro(p) = Z n_—:: . / idp A Op AT /\T;L_l_k.
k=0 M

This justifies the description of I ¢(¢) and J; o(¢) as modified energies. Moreover, it demonstrates
that on a compact Kahler manifold J; ¢ is a true functional, that is to say, it does not depend on
the choice of path.

Such formulae (7.7) for I x and J; x for a non-vanishing vector field X and a non-compact Kéhler
manifold (M, 7) do not seem to be readily available for a good reason; the exponential function is
not algebraic. However, our aim here is to prove that the essential properties shared by both I o
and J; ¢ hold true for a non-vanishing vector field X in a non-compact setting. We follow closely
Tian and Zhu’s work [TZ00b], beginning with:

Theorem 7.5. I; x(p) and J;, x () are well-defined for o € M .. (M). Moreover, J. x does not
depend on the choice of path (pr)o<i<1 in M o ,(M) from @9 = 0 to ¢1 = ¢, hence defines a
functional on M exp(M). Finally, the first variation of the difference (I, x — Jr x) is given by

d X n
at (Ir,x = Jr,x) (pt) = — /M Pt <AT<Pt Pt + 95 90t> efet Tper (7.8)

where f,, = f + %5 - ¢ satisfies X = V7 f,,. and where (p1)o<t<1 is any Cl-path in M exp (M)
from wg =0 to 1 = .
Proof. We begin by showing that I x(y) is well-defined. By linearising the weighted measure ef%"T(;Z
at ¢ = 0, one sees that

2

X _ 1 9
ef“’T;L =efrm +ef ((2 . gp) 7" + niddp N\ T”_1> +/0 (1-— s)@(efwﬂzo) A ds

X - _
=elrm e ((2 . gp) 7" + niddp N 7'"_1> + e/ Q(X - ,i00y),
where @ is a 2n-form satisfying
s X0l A .
QX - ¢,i09p)| < ce 2 (|X - |}, +i00¢|7) T

pointwise on M. Since ¢ € /\/l‘)’(O exp (M), we know that ¢ and its derivatives decay exponentially with
respect to f. Moreover, since X is bounded, X - ¢ also decays exponentially, and by construction,
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we know that the volume of the level sets of f have polynomial growth, that is to say,
/ X =0 (R”_l) as R — 4oo.
{f=R}

Using the co-area formula, these observations together imply that

Jio

where A is a positive constant large enough so that {X = 0} C { f< %} This shows that I, x
is well-defined. The assertion that J. x(¢) is well-defined for any path (¢;)o<i<1 in M? exp (M)
from @9 = 0 to 1 = ¢ is proved in a similar manner.

fn _ fon
T 67'90

“+oo
< c/ e *s" lds < +o0,
A

Before proving that J. x is path-independent and hence defines a functional, we establish the
first variation of I x — Jr x. To this end, let (¢;)o<i<1 be a Cl-path in MZ eXp(M) with g =0
and @1 = ¢. Then differentiating with respect to the parameter ¢ under the integral sign in the
definition of I x(¢¢), we find that

d ) n n X n AF e
pr I x () = / bt (efT - ef%"tﬁpt> —/ @ - eler ((2 : g0t> Tg, +ni00P N 7L, 1) ,  (7.9)
M M

where the dominated convergence theorem justifies passing the derivative under the integral.
Regarding the first variation of J; x, for each fixed ¢t € [0, 1], define the path ¢! := ¢4 in
% exp(M) for s € [0, 1]. Then (Py)o<s<1 is a Cl-path from @f =0 to ¢} = p; and

TX Sot / / (8803) - f+2 8057— t) ANds
:/ / t%t ™ — St pen )/\ds (7.10)
0 JM

t
= / / Bu (efT" — ef+§‘P“T£u) A du,
0 M

where the change of variables v := st was performed in the third line. One can check that the
integrand (with respect to du) in (7.10) is a real-valued continuous function. As such,
d
7<]T X(gpt) = / @t (Can o €f+§-4,0t7_n) . (711)
" o 2

Taking the difference of (7.9) and (7.11) then yields (7.8).
What remains to be shown is that J- x(¢) does not depend on the chosen path (¢:)o<i<1 in
% exp(M) from 0 to . We follow Bando and Mabuchi’s seminal paper [BM87] together with
[Zhu00, Lemma 3.1] to prove this. By concatenating paths, it suffices to show that if (¢¢)o<r<1 is
a C'l-path in M p(M) from ¢g = 0 to 1 = ¢ =0, then J; x(¢) = 0. To prove this, we need
to enlarge the space of parameters [0, 1] to a square [0, 1] x [0, 1] in the following way. Define the
following two-parameter path:

r5 = (1—=20)- ¢ for (t, 0) € [0, 1] x [0, 1].
This path has the following properties:

P15 € MR op(M) for all (¢, 6) € [0, 1] x [0, 1],
w0 = forall t € [0, 1],

wr1=0forall t € [0, 1],

o5 =0 for all § € [0, 1],

1,6 =0 for all § € [0, 1].

Next, define the 2n-forms (Qt,S)(t,E) €[0,1]x[0,1] by

Q5= el — efen, 571;, 5 for all (¢, 0) € [0, 1] x [0, 1].
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Then by definition
Qul:QO’a:Ql,g:OA%LM for all t,5€ [0, 1],

and we can rewrite J-, x(¢) as

Jr, x(p) = /01 /M (;(th’o)gtﬁ) A dt.

An important observation is the following.

Claim 7.6. J; x(¢) can be computed as

1,1
Jr x(p) = / / / dy, 501,65 N di, 58, 5, (7.12)
o Jo Jum

where d; s is the exterior derivative with respect to the parameters ¢ and 9.

Proof. We first compute the integrand of (7.12) pointwise:

B ) o0 o0
dy 5015 N dy 5 5 = <( g;’6>dt+< g§5)d5>A<< 8;’6>/\dt+( a;’6>/\d5>

_ &Pt,é 891&,6 &Pt,é 391&,6
_< at a0 o5 ot ) NUNd

Next, integration by parts, first with respect to d and then with respect to t, yields

! Lo o9 1o 6=1 1 1 52
Pt, 8 t,8 Pt, 8 Pt, 8
0 ; 2.0 - —
/0 <0 5 75 /\dé)/\dt /0 { 5 t75:| 5:0/\dt /0 <0 9501 t’(;/\dé)/\dt

1 1 182
:—/ ¢t -QLO/\dt—/ ( S"t"sszt,(;/\da) A dt,
0 0 0

080t
Lt oors 0s > L T0¢ 5 =1 Lt 0% s
— . ~ Adt /\déz/ [ — . Q) 5] /\d&—/ ( — ) 5/\dt>/\d5

/0 (0 a8 ot o L a5 T2, o \Uo b

1 132

Pt, 6
= — 2 Q .
/0 < . 0tos ng/\dt) A dd

otdd
2 92
The claim now follows from the fact that aaf%f = daf555 = —¢; by definition of the path ¢; 5. O

Now, from the definition of the 2n-forms €2, 5, we have that

—d 58 5 = di s <6f"’t757'£t76>

X o B
= <<2 : dt,é@t,é) ATy, s +nid0 (di,5pr,5) N 7—;151) efers

(X [Ops X [(0Ops for 5.
=[5 (55)) o+ (3 (55)) o] netom,

oz [O0t s aa [ Opts for s n—1
—I—n[z@@( 5 >/\dt—|—268< 95 A do /\e“’tﬁ%m.

This allows us to express the integrand of the right-hand side of (7.12) as:

0 X [0 0 X [0
dg, spt,6 N dp, 58 5 = [ cgga (2~ < tg;g)) - g;’é <2- (?))] ef“"tﬁTgt’é Adt A dd

B _(d ) _(d
on | Oggtio0 (%Gt ) - %Gition (%Gt )| neemsit nannas
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Integration by parts with respect to the weighted measure el sno7p, o for some fixed parameters
t,0 € [0, 1] then gives us

T{Z?[8ggéﬁﬁa<ag;5)“agi6ﬁ%9<aggé>}/AehmaﬂZj
o o5 ) o () o (%557) o (5t ) | 2 oemi
+n/M [aat af“’”m@(g?) - 8?;;’6 afgatéAa(a‘g;é)] A efeusgnl
:n/M [8?;6 8f(pt5/\8<a§:55> - &ggg 8f<pt5/\8<8(g;6>:| A eler, 672 51

:/ Opr,s X (Oprs\  Oprs X (Ops ofor s 0
w7 2\ Tas o 2 \ ot X

Here, the exponential decay of the functions ¢; s justifies the use of Stokes’ theorem in the first

equality, and in the last line we have applied the identity

X
nidfg, ; N OuA Tor. 51 = [(Vh‘”ﬁ)o’lf%é Ul Ty, s = <2 : u> Tg, s for JX-invariant u € C°°(M)

to 823 % and ngtt, % both of which are J X-invariant by virtue of the fact that ¢, is for allt € [0, 1]. O

We next show how Theorem 7.5 can be applied to obtain a priori energy estimates along a path
of solutions to (7.3) in M . (M). Here we make use of the assumption that |f — ¢(t)| is bounded
in applying Corollary 5.5.

Proposition 7.7 (A priori energy estimates). Let (¢t)o<t<1 be a path of solutions in MS ., (M)
to (7.3). Then there exists a positive constant C = C (n,T, Ilf - FHCQ( ) such that
, exp

sup / |1pt|2—7- < C.

0<t<1

Proof. As a consequence of Theorem 7.5, we can use any Cl-path (p:)o<¢<1 in M xp(M) from
po =0to g1 = € MF (M) to compute Jr x(p). Asin[TZ00b], we choose two different paths to
compute J; x (1), the first being the linear path defined by ¢, :=ty, ¢ € [0, 1], for ¢ € MS ., (M)
a solution to (7.2). For this path, Theorem 7.5 asserts that

1 X
(Ir,x —Jr x) (V) = /0 /M te (Anw + g : ¢> el 2 A dt.
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Integration by parts with respect to the weighted volume form ef +t§¢rgﬁ then leads to
1
(Ir,x = Jr,x) (¥) = n/ / tiohh A O A (ef+t%-w7%—1> A dt
0 JM
1
= "/ / tioy A oY A (e7TEY (1= t)r +tm)" ") A
0 JM
/n—1 1 N
=n 2 ( k > ( / @ -y / 0 N Oy A (TP rnIok Tj;)> A dt
k=0 0 M
1
=z n/ t(1 - t)n_l/ i0y A 0P A (ef—i-t%an—l) A dt
0 M

1
> n/ t(1— t)"l/ i A AP A (e‘“ﬂfr”*l) A dt
0 M

1
= n/ </ (1 — t)"_le(l_t)fdt> PO A Y AT,
M 0

X
fHt

(7.13)

where we have used Lemma 7.3 to bound the weight e ¥ from below in the penultimate line.

From this, the following claim will allow us to obtain a lower bound.

Claim 7.8. There exists a positive constant ¢, such that
1 f
/ t(1— )" e gt > cn%.
0 !
Proof. Via the change of variables s = 1 — ¢, notice that for k£ > 1,

1 1
/ t(1 =)k te0-DF gt = / (1—s)skLeslds
0 0

1 1

:/ Sk_lesfds—/ sFestds
0 0

= cg-1(f) — ex(f),

where ¢ (f) := fol skesf ds for k € N. An induction argument using the relations

f_ f
wlf) == L Ck<f>=jc—fcck_1<f>, k>

derived using integration by parts then shows that for all & > 0, cx(f) is equivalent to f~'el as f
tends to +oo.
Next, a computation shows that for all £ > 2,

of of

el (1) = en(f) = & - (k ) D eoa(f) - <f _ ﬁck_ﬂf))
_ ’Jick_1<f> _ Lk - D era(F)
_ ’“Jff) - Haalh) - (D).

Another induction argument on k (the case k = 1 can be handled easily) further yields the fact that
for all k > 2, cx_1(f) — cx(f) is equivalent to f~2e/ as f tends to +oco. This in turn implies Claim
7.8. O

Applying Claim 7.8 to (7.13) results in the lower bound

!
(IT,X — ‘]T,X)(¢) > C/M % 281/1 A 5’¢ A 7'n_1 (7_14)
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for some positive constant ¢,,. We also require an upper bound on (I x — J- x)(%) to complete the
proof of the proposition. To achieve such a bound, we use the continuity path of solutions ¢; := 1,
t € [0, 1], to (7.3) to compute (I, x — Jy, x)(1). First observe that the first variations (¢)o<¢<1
satisfy the following PDE obtained from (7.3) by differentiating with respect to the parameter t:

X .
Awtwt‘i‘?'wt:F, 0<t<1.

Combined with Theorem 7.5, this leads to the estimate:

1
(IT’)(—J77x)(¢):—/O /M¢t-F€fth$t/\dt

1
:—//wt'F6f+tFTn/\dt
0 JM

1
< CellFlico / / |F ||| e/ 77 A dt (7.15)
0 Jsupp(F)
1
< Ce”F||COHFHL2(f2€an)/ [t ll 22 (y-2e57m) di
0

1
=:C <n’ Hf . F”C%’exp) /0 ”thlﬁ(ffzean) dt’

where we have used (7.3) in the third line and the Cauchy-Schwarz inequality in the penultimate
line. Comparing (7.14) with (7.15), we deduce that

1
IV Pl 2 f-20s7my < C/o 19l 2 f-2ef7my dE, (7.16)

where C' = C (n, \f-F ||C<))( ) is a positive constant that depends only on n and F' that may vary
, exp

from line to line. Now, an application of Corollary 5.5 to (M, 7, f) and (M \ K, @, ¢(t)) for K ¢ M
compact, keeping in mind the fact that the difference between f and the soliton potential ¢(t) of @
is bounded on M \ K by assumption, shows that

)‘<T)H¢H%2(f—2ef7-n) S “Vh¢”%2(f—2€an)

for some positive constant A(7) independent of the parameter ¢ € [0, 1]. Concatenating this inequal-
ity with (7.16), we therefore see that

1
191 g-ser ooy < C [ Wtlzagp-zereny

where C' = C (n, T, || f-F H(Jg)( ) . This last inequality applies to any truncated path of the one-
, exp

parameter family of solutions (¢t)o<¢<1. Thus,

1
[ -serrmy <€ [ tlingg-sesrny ds
0 (7.17)

C t
=% [ sz .

This is a Gronwall-type differential inequality and can be integrated as follows. Let

t
H(t) 5:/0 ||¢s||L2(f—2€an) ds

and observe that (7.17) may be rewritten as
C

H'(t) < —\/H(t), te(0,1].

(t) < i (t) (0,1]
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Integrating then implies that H(t) < C (n, T f - F”CQ( ) -t for all t € [0, 1] which, after applying
, exp
(7.17) once more, yields to the desired upper bound. O

7.1.2. A priori estimate on sup,; 1. Let ¢ be a solution to (7.3) for some fixed parameter ¢t € [0, 1].
We next obtain an upper bound for sup,; ¥ uniform in ¢. To obtain such a bound, it suffices by
Lemma 7.2 to only bound maxg,,(r) ¥+ from above. We do this by implementing a local Nash-Moser
iteration as in the proof of Theorem 6.7 using the fact that 1, is a super-solution of the linearised
complex Monge-Ampere equation of which the drift Laplacian with respect to the known metric 7
forms a part.

Proposition 7.9 (A priori upper bound on sup,, ). Let (¢Yr)o<t<1 be a path of solutions in
X exp(M) to (7.8). Then there exists a positive constant C'= C (n, T f - FHC%,exp) such that

sup sup ¥y < C.
0<t<1supp(F)

Proof. Let t € [0, 1] and set ¢ := 9, to simplify notation. Let 1, := max{e, 0}. This is a non-
negative Lipschitz function. The strategy of proof is standard and follows along the lines of the proof
of Theorem 6.7; we use a Nash-Moser iteration to obtain an a priori upper bound on supg,,,r) ¥+
in terms of the (weighted) energy of ¥4 on a tubular neighbourhood of supp(F'). The result then
follows by invoking Proposition 7.7.

To this end, notice that since log(1 + =) < z for all z > —1 and since ¥ is a solution to (7.3), ¢
satisfies the differential inequality

X
Arp+ 0= —|F|  on M. (7.18)

As in the proof of Theorem 6.7, let z € {f < R} be such that By (z, r) € {f < R} and multiply
(7.18) across by n? S,UR]uRP(p_l) with p > 1, where 1, ¢, with 0 < s+ <rand s, s >0, isa

Lipschitz cut-off function with compact support in By(x, s + s’) equal to 1 on Bj(x, s) and with

|Vh7]$, s|n < L almost everywhere. Next, integrate by parts and use the Sobolev inequality (6.10)

s/
to obtain a reversed Holder inequality which after iteration leads to the bound
1

5, ¥s < Ol ) (1041323, 0, ey + 1Fl120)
h 175

N

<C(n,7,7) < / Wi fel 4 HFH%O>
T (supp(F))

< C (7%7-7 T, ”f ’ FHC?( eXP) ’

where T, (supp(F)) := {x € M |dy(z, supp(F')) < r}. Here, we have made use of Proposition 7.7 in
the last line. O

7.1.3. A priori estimate on infr 1. Obtaining a lower bound on ), is more difficult. The function
1y is a sub-solution of the linearised equation, however with respect to the drift Laplacian of the
unknown metric, and so an alternative approach is required. We use the weighted L?-bound given by
Proposition 7.7 together with an adaption of Blocki’s method [BI05] to achieve the desired estimate.
The fact that the data F' in (7.3) is compactly supported is crucial for the proof to work.

Proposition 7.10 (A priori lower bound on infys ). Let (¢Yr)o<i<1 be a path of solutions in
X exp(M) to (7.3). Then there exists a positive constant C' = C (n,T, supp(F), || f - FHC?(,CXP)
such that

inf inf ¢, > —C.
0<t<1supp(F)

Proof. Fix t € [0, 1] and set 1 := 9, to lighten notation. By Lemma 7.2, we can assume that
1 attains a minimum at a point z¢ € supp(F). Following [Bl05], one can find a local coordinate



54 Ronan J. Conlon and Alix Deruelle

chart U with zyp € U together with a smooth strictly plurisubharmonic function G defined on U
with 100G = 7. After adding a pluriharmonic function to G if necessary, one can then find two
positive numbers a and r depending only on the local geometry of (M, 7) around xg such that
G < 0 on By (xo, 2r), G attains its minimum at zg on By (zo, 2r), and G > G(z) + a on the annulus
By, (g, 2r) \ Bp(xo, 7).

Consider the non-positive function u defined on By (x¢, 2r) by

v+ G if sup,; ¢ <0,
u =
Y — SUPgupp(r) Y + G otherwise.

We are now in a position to apply [B105, Proposition 3] which asserts that

2n | T

|| oo (B, (0, 20)) < @+ (- (2) - a™) " Nl 1By (2o, 20) - (7.19)

pry

Lo (Bp(wo,2r))
In the case that sup;; ¢ = maxgppr)? > 0, we obtain, after rearranging (7.19), the following
sequence of inequalities:
—infy < supy—infy = sup ¢ — (o)
M M M supp(F)
= G(xg) — u(zo)

< llull oo (B4 o, 20)
ﬁ

T ta

Lo (Bp(z0,2r))
— 5 +F

< C(T, a,r, n)”uHLl(Bh(I(h?T)) )

+a

- C<T7 a,T, n)HUHLl(Bh(meT)) |€ LOO(Bh(zO,Q'I‘))

< C(T, a,r, n) ”uHLl(Bh(I(h 2r)) ’

6f+FH
Loo(Bh(x(), 27‘))

< C(r,a,m,n, F)||ull LB, (20, 2r)) + @

< C(Tv a,r,mn, F) <H¢HL1(Bh(x0,2r)) + sup ¢+ 1)
supp(F)

< C(Ta a,r,n, F) (Hz/}HLQ(B;L(Io,QT)) + 1)

< 0,1, F) ([ll2(-2erem) + 1)
< C(r,a,r,n, F),

where ¢(7,a,r,n) denotes a positive constant that may vary from line to line. Here we have used
TTL
P

n

Lemma 7.3 in the sixth line to bound uniformly from above since Bp(xg, 2r) is contained in

the tubular neighbourhood T5,(supp(F')) of supp(F’) of radius 2r, we use Proposition 7.9 to bound
SUDgupp(F) ¥ uniformly together and Holder’s inequality in the antepenultimate line, and finally, we
use Proposition 7.7 in the last line to bound ||| 12(f-2¢7,n) uniformly from above. This concludes
the proof of Proposition 7.10 in the case that sup,; ¢ = maxg,pp(r)?¥ = 0. The case supy; ¢y < 0
proceeds similarly. ([

7.2. A priori estimates on higher derivatives. We next derive a priori local bounds on higher
derivatives of solutions to the complex Monge-Ampere equation (7.2), beginning with the radial
derivative.
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7.2.1. A priori estimate on the radial derivative.
Proposition 7.11 (A priori estimate on X -1)). Let (¢¥1)o<i<1 be a path of solutions in M . (M)
to (7.3). Then there exists a positive constant C = C (n,T, supp(F), || f - F||C§< ) such that

, exp

sup sup |X -y < C.
0<t<1 M

Remark 7.12. The JX-invariance of 1 is crucial for the proof of this proposition to go through.
Proof of Proposition 7.11. Our proof is based on that of Siepmann in the case of an expanding
gradient K&hler-Ricci soliton; see [Siel3, Lemma 5.4.14]. We adapt his proof here to our particular
setting.

The proof comprises two parts. The first gives rise to an upper bound for X - v, whereas the
latter part yields a lower bound for X - . Before proceeding with the first part though, we make
the following claim.

Claim 7.13. Let X% = (X —iJX). Then
XL0. (X150 ) = 2090 (Re (X10), JRe (X1)) > —2|Re (X"9)[7.
Proof. Since v is invariant under the flow of JX, we know that
JX (X 1) =0.

In particular, we have that X0 . (XLO . w) = Re (XLO) . (Re (XLO) -w) = X10. (Xl’o . w). A
straightforward computation then shows that

X0 (x40 ) = 994 (X0, XT0) = 21099 (Re (X1°) , JRe (X0)).

The result now follows from the fact that 7, > 0 so that
i90y (Re (X1°), JRe (X)) = 7, (Re (X"°), JRe (X19)) — |Re (X-0)[2
> — [Re (X19)[7.
d

To achieve an upper bound for X -, we introduce the flow ((bf( )ter generated by the vector field
5. This flow is complete as X is complete. Define 9,(t) := ¢ (¢7 (z)) for (z, t) € M x R. Then for
any cut-off function 7 : Ry — [0, 1] such that n(0) = 1, #'(0) = 0, we have that

+00 +oo
/ (Ot dt = — / o (B0 (1) e
0 0

+o0o
— )+ /0 Dty (1) dt.

Hence it follows from the boundedness of the soliton vector field X with respect to the norm induced
by 7 and Claim 7.13 that

X X X
2 la) = ¥(0) < - / 2-(2-¢><¢5‘<x>>dt+ sup  [a(t) ()] dt
supp(n) t € supp(n’) supp(n’’)
1
<5 [ XR@E @+ sw ) ()] dt
supp(n) t € supp(n’) supp(n”)
<en / di+  sup  [du(t)] 1" ()] dt.
supp(n) t € supp(n'’) supp(n’’)

Choose 7 such that for some ¢ > 0 to be chosen later, n = 1 on [0, §], supp(n) C [0,¢], and such that
In"| < ¢/e? for some uniform positive constant c. Then for all & > 0,

g “p(x) < cpe+ c||1/;||coe_1. (7.20)
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Minimising the right-hand side of (7.20) seen as a function of € > 0, one obtains the inequality
X 1
D) “YP(z) < Cn”ngjm

reminiscent of an interpolation inequality with the lower bound given by Claim 7.13 on the second

derivatives of 1 in the direction of X succinctly contained within the constant ¢,. The upper bound

now follows from Propositions 7.9 and 7.10. The lower bound can be proven analogously by working

on an interval [—¢, 0] and choosing £ > 0 in a manner similar to above. (]

7.2.2. C? a priori estimate. The C?-estimate is next.

Proposition 7.14 (A priori C2-estimate). Let (¢1)o<i<1 be a path of solutions in M exp (M)
to (7.3). Then there exists a positive constant C = C <n,T, supp(F), || f - FHCf( ) such that the
, exp

following C? a priori estimate holds true:

sup ||i85wt\|CO(M) <C.
0<t<1

Proof. We follow closely [CD20, Proposition 6.6] where the approach taken is based on standard
computations performed in Yau’s seminal paper [Yau78, pp.347-351]; see [Siel3, Lemma 5.4.16] for
a modification of these computations to the setting of expanding gradient Ké&hler-Ricci solitons.
Only the presence of the vector field X has to be taken into account, therefore we only outline the
main steps.

For the sake of clarity, we suppress the dependence of the function 1, on the parameter t € [0, 1].
According to (7.3), 1 satisfies

Y g XL
log <7_n> =F - 5 “p =: F(v).

As in [YauT78], we compute the Laplacian of F'()) with respect to 7 in local holomorphic coordinates
around a point x € M such that at x, the Riemannian metrics h and h,, associated to 7 and 7, take
the form hi;(x) = ;7 and (hy)i(z) = (1 + ¥a(x))d; respectively. After a lengthy computation, one
arrives at the fact that

_ wijkwijl_c - 1 iz
Ac(F() = A (o) = gy b R (1= 15— ) (721
Now, a standard computation shows that
1 i . _
- %;Rm(h)nk,; (1 e f m) > inf Rm(h) (trh(h¢1) trp (o) — C’(n)) :

where Rm(h) is the complex linear extension of the curvature operator of the metric h and where
infp Rm(h) := inf;z,, Rm(h) 7

Next we study the term A, (% . 1/1). Let X40 = %(X —4JX). Then since X is real holomorphic
and both 7 and v are JX-invariant, we find that

X _ 1,0
Ar (2-w) = A, (XB0 )
= VX0 g, + X0 Ay
= V(X0 % 004 + g YANRY)

X
< Ctrp(hy) + C) V"X |l coary + 5 - trnlhy),
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where we have used the fact that 0 < hy < (n + Az¢)h together with the boundedness of vhXx
given by Lemma 6.4. To summarise, we have the following first crucial estimate:

%jk%jfc
(1 + i) (1 + )

+ ALF — Ctrp(hy) <1 + 111\14f Rm(h) trh(h;1)> —C(n, 7).

X
Am) trh(h¢) + ? . trh(h¢) >
(7.22)

Now, if u := e=*¥ trj,(hy), where a € R will be specified later, then, as in the proof of [Siel3,
Lemma 5.4.16], one estimates the Laplacian of u with respect to 7 in the following way:

Aru> eV (ATF(zp) — i]r\l/[f Rm(h) trh(hqzl) trp(hy) — C(n) — a9 trh(h¢)> .

Here, one has to take advantage of the non-negative term involving the third derivatives of ¥ on the
right-hand side of (7.22) to absorb the term hy(Ve), VA ). Thus, for some positive constant
C independent of 1, it follows that

X . _ B
Az u+ 5 U > e W <ATF - 111\1/[f Rm(h) trh(h¢1) trh(hd,))

—C(n, 7)™ —a <)2( ' ¢) u=C(n, m)u—aln = tra(hy))u

—C (n, 7, ¥l coany I F llezany) — € (n, 7, |1 X - | coary) w
—|—trh(h1;1)u
> —C — Cu+trp(h

v

-1
v )t

where we set o := max{1 + inf); Rm(h), 1} and C = C (n,T, supp(F), ||f - F||C§( ), and we have
, exp
used Propositions 7.9, 7.10, and 7.11 in the last line. Another estimate using the geometric inequality

1 S (1 + ) | T
2Ty > <Hi<1+wn>> !

%

or equivalently,
1
1 try, (hw ) n=l
i) ()

then shows that u satisfies the following differential inequality:
X _n_
A u+ 5 U > —C(14u)+ Cur-1

for some positive constant C = C (n, T,supp(F), || f - F ||C§( ) Since u is non-negative and con-
, exp

verges to n at infinity as ¢ € MY exp(M ), an application of the maximum principle to an exhausting
sequence of domains of M finally yields the desired upper bound on n + A 1. O

A useful consequence of Proposition 7.14 is that the Kéhler metrics induced by 7 and 7 are
uniformly equivalent.

Corollary 7.15. Let (Y1)o<i<1 be a path of solutions in MS (M) to (7.3) and fort € [0, 1], let
hy, be the Kahler metric induced by 7y,. Then the tensors hilhwt and h;tlh satisfy the following
uniform estimate:

sup [|h" hy, lco + sup [lhy hllco < C
0<t<1 0<t<1

for some positive constant C' = C (n, T,supp(F), || f - F||C§( ) In particular, the metrics h and
, exp

(hyyJo<t<1 are uniformly equivalent.
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Proof. By Proposition 7.14, we know that

sup_[|h "y lleo < C (n,7,5upp(F), IS Flles ).
0<t<1 , eXp

Moreover, by Proposition 7.11, h_1h¢t satisfies
det(h™thy,) = =2 > ¢ C

for some uniform positive constant C' = C(n, 7, F'). Furthermore, each eigenvalue of h,, is uniformly
bounded from below by a positive constant. Hence we conclude that

sup [[hy hllco < C (n, 7, supp(F), If - Flles, )
0<t<1 , eXp

7.2.3. C3 a priori estimate. We now present the C3-estimate.

Proposition 7.16 (A priori C3-estimate). Let (1¢)o<t<1 be a path of solutions in M;léioj(p(M) to

(7.3) and let h be the Kdihler metric induced by T with Levi-Civita connection V". Then

sup || VP9[0 < C (n,T, If - P g2 )
OStSI X, exp

Proof. We follow closely the proof given in [CD20, Proposition 6.9] which itself is based on [PSS07].
For the sake of clarity, we drop the dependence of the potential i); and the data tF' on the
parameter t € [0, 1]. Set
| vhp |2
S(hy, h) = |V*hylj, -
Then from the definition of S, we see that
171, kl 1 pGoh vh1y
S(hy, h) Zhjth h{fvi h¢ka?h¢lq
2
_|\Il|h¢,7
where
W (hy, h) == T (hy)f; — T(h)}
= by Vi (hy)r
Now, since 1) solves (7.3), (M, hy, X) is an “approximate” steady gradient Kéhler-Ricci soliton in
the following precise sense: if hy(s) := (¢3)*hy and h(s) := (¢X)*h, where (¢X)scr is the one-
parameter family of diffeomorphisms generated by —%, then (hy(s))ser is a solution of the following
perturbed Kahler-Ricci flow with initial condition h:

Bshy(s) = — Ric(hy(s)) + (65)* (—Lgh + Ric(h) + vhth) . scR,
hy(0) = hy.
In particular, dshy = — Ric(hy) + (¢X)*A, where A := —Lxh + Ric(h) + V*V"F has uniformly
2
controlled C'-norm as h is asymptotic to § with derivatives (cf. (7.1)) and F is compactly supported.

Define S(s) := S(hy(s), h(s)) and correspondingly set W(s) := W(hy(s), h(s)). We adapt [BEG13,
Proposition 3.2.8] to our setting. By a brute force computation, we have that

P = =h
Ar, S =2Re (WM (Ar, 1295 ) W) + V700 + V"W
+ Ric(hy) TR0y Ul W 4 W Ric(hy)PThy, V5, U5 — B BT Ric(hy ), W5, O,
where

N Avuad il
T = hiFRIT,
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for Tj; € AHOM @ A% 1 M. We also have that
Bu¥ (w)fplu=0 = Bulu=0(T(hy(w)) = T(h(w))j,
h .
= V1" (= Ric(hy)f + AB) — VA(~Lx hf),
Buhfj\u:() = Ric(h¢)ij - Aij.
Finally, using the second Bianchi identity, we compute that

abh he 1
Ap, 17298, = BPVe" Rm(h)s — V" Ric(hy)},

which in turn implies that the following evolution equation is satisfied by W:
8u\11§p(u)|u:0 = AM, 1/2\IJ!L'Cp + Tz];
for a tensor 1" of the form
T = hy' « V" Rm(h) + V" A + vh(ﬁg(h))

= h;l * V" Rm(h) +h;1 * h;l « Rm(h) x ¥ + h;l x W *A-I—Vh(A—i—L%(h)),

Notice the simplification here regarding the “bad” term —V"¥ Ric(hy). Since this flow is evolving
only by diffeomorphism, we know that

S(s) = (¢3)*S(hy, h),
0uSlu—o = —%5(@,, h).

Hence Young’s inequality, together with the boundedness of Hh;thCO( ) and [|hyh ™| o ar) ensured
by Corollary 7.15 and the boundedness of the covariant derivatives of the tensors Rm(h) and A, imply
that

X
Ay S+ 582 -0(5+1)

for some positive uniform constant C.
We use as a barrier function the trace tr, () which, by (7.22) and the uniform equivalence of the
metrics h and hy, provided by Corollary 7.15, satisfies

X
Ay trr(1y) + 5 - trr(7y) = c's -,

where C' is a uniform positive constant that may vary from line to line. By applying the maximum
principle to €S + try(7y) for some sufficiently small € > 0, one arrives at the desired a priori
estimate. O

We next establish Holder regularity of h_1h¢t and hlztlh, an improvement on Corollary 7.15.

Corollary 7.17. Let (¢1)o<t<1 be a path of solutions in Mﬁ;?g(p(M) to (7.3) and for t € [0, 1],
let hy, be the Kihler metric induced by Ty,. Then for any o € (0, %), the tensors h™thy, and hltlh
satisfy the following uniform estimate:

su h'h 20+ ||t h ,a)<C’(n,a, ,supp(F), ||f - F 1(1).
s (I s legze + G Rl o) < r.supp(F), |1 - Fll oy

Proof. Asusual, we suppress the dependence of the solutions ¢, on the parameter ¢ € [0, 1] to lighten
the notation. The same statement applies to the data tF.
By standard local interpolation inequalities applied to Propositions 7.14 and 7.16, we see that

”h_lhw‘c&f“ <C (n,a,supp(F),T, | f - F|’C§<’2§p) .

Combining the previous estimate with Corollary 7.15, it suffices to prove a uniform bound on the local

2a-Holder norm of h;lh. We conclude with the following observation: if u is a positive function on

M in C¢(M) uniformly bounded from below by a positive constant, then [u™!)oq < [u]2q (inf ar u) 2.
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By invoking Corollary 7.15 once more, this last remark applied to h;lh implies that

thlhucﬁja <C (n,a,supp(F),q-, If - F”Cizeip)

as well. m

7.2.4. Local bootstrapping. We now improve the local regularity of our continuity path of solutions
to (7.3). This estimate will be used in deriving the subsequent weighted a priori estimates.

Proposition 7.18. Let (¢1)o<t<1 be a path of solutions in Mﬁé?g(p(M), o€ (0, %), to (7.3). Then
for any a € (0, %),

< . .
5 ileyze < € (mamllf - Floga, )

Proof. Again suppressing the dependence of the solutions v, and data tF on the parameter ¢ € [0, 1],
we see from the proof of the a priori C2-estimate (cf. Proposition 7.14 and (7.21)) that

X _ _ = _
Ar, (ATw—i—Q 1!1) :ATF—Fhwl x h~!« Rm(h) + Rm(h) *va*hwl

+h 7 s« s« Rm(h) + b1« h;l * h;l * VV V¢ « VVV (7.23)
X
+ (Arw - AT) <2> 9

where * denotes the ordinary contraction of two tensors. Notice that

[(Ar, = A7) (X - 0)] = [ = 900 (X - )|
(7.24)

< |Ihg hlco - 089 llco - (9" ¥llco + 109¥llco + 10009 o )

Here we have used the boundedness of the derivatives of the vector field X given by Lemma 6.4 with
respect to the norm induced by 7.

By Propositions 7.14 and 7.16 together with (7.24), the C%-norm of the right-hand side of (7.23)
is uniformly bounded and, thanks to Corollary 7.17, so too are the coefficients of A; in the CPO’CQO‘—

sense. As a result, by applying the Morrey-Schauder C2*-estimates, we see that for any z € M
and for 0 < inj, (M),

Finally, applying standard interior Schauder estimates for elliptic equations once again with respect
to A, leads to the bound

X

<C (n, a, 7,supp(F), || f - F|| 54,2« > .
Cl,?(x(Bh(x’é)) X, exp

(n,a, 7) (1A%l cr. 20 (B, (2, 6)) + 1l 01208, (, 5)))

(r 0750 (), 17 Fllgza )

1llcs.2e (B, @, 50 < ©
C

IN

We next establish the following well-known local regularity result for solutions to (7.2).

Proposition 7.19. Let F € C{Z’CO‘(M) for some k > 1 and o € (0, 1) and let ¢ € C2(M) be a
solution to (7.2) with data F'. Then 9 € C'II?CLQ’O‘(M). Moreover, for all k > 1, a € (0, 1), and
reM,

[Pl rre, @ 2y < Cln, ke, 7) (HF”C"“Q(B;L(I,zS)) + HwHC3»°‘(Bh(a:,6))) , 0 <inju(M).

Proof. We prove this proposition by induction on & > 1. The case k = 1 is true by assumption, so
let F € C’{Zﬁl’a(M) and let ¢ € Cli’ca(M) be a solution of (7.2). Then by induction, ¢ € CFT2%(M).

loc

Let € M and choose local holomorphic coordinates defined on By,(x, ) for some 0 < § < inj, (M).
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T X
Ptog (5) + 30

Then since ) satisfies

7—7’1,
we know that for j = 1,...,2n, the derivative 0;1 satisfies

X
A, (950) = 0; (F ~ 5 w) € Chi(M).

As the coefficients of A7, are in C’llf)’ca(M ), an application of the standard interior Schauder estimates

for elliptic equations now gives us the desired local regularity result, namely 0;1¢ € C’{Zf’a(M ) for

all j =1,...,2n, or equivalently, ¥ € Ck+3’a(M ) together with the expected estimate. O

loc

7.3. Weighted a priori estimates. We next deal with the weighted a priori estimates on deriva-
tives of solutions to (7.2) along the continuity path, beginning first with the weighted C%-estimate.

7.3.1. Weighted C° a priori estimate.
Proposition 7.20 (Weighted C° a priori estimate). Let (1t)o<t<1 be a path of solutions in M?ftipa (M),
k>1,a€e (0, %), to (7.3). Then there exists a positive constant C' such that

sup sup }efwt‘ <C (n,T, 1f - Fll 5,20 ) ) (7.25)
0§t§1 M X, exp

where C <n, T f - Fllg4,20 > is bounded by a constant C(n,7,A) depending only on an upper bound
X, exp
A * F a .
of If - Fllgaen

Proof. We begin with an upper bound for e/+. First note that v satisfies the differential inequality

n

-
StF=10g<¢>+X-w§AT¢+X-¢.
T 2 2

e_f

—=[lfe! Fllgo 7

n

Moreover, by (6.4) of Lemma 6.6, we see that
X
<AT + 2-) el =—eTAF< —%e_f

outside some compact subset K C M independent of ¥ for some ¢ > 0. Thus, one obtains, for any
positive constant A, the lower bound

X A -
(AT + ) <1/J — Ae_f) >SS erfFHCo6 (7.26)
2 f f
on M \ K. In particular, choosing A so that A > ¢~ !||fe/ F||co, the maximum principle applied to
(7.26) shows that

sup (1 — Ae™/) = max {0, max () — Ae—f)} ’
M\K OK

as both ¢ and e~/ converge (exponentially) to 0 at infinity. Now, by Lemma 7.2 and Proposition
7.9, we know that

— Ao~ < O — Ap— maxpk f
nal%x(@b Ae™ ) < C — Ae

for some uniform constant C'. Hence one can choose A large enough so that maxgg (w — Ae~f ) <0.
This establishes the expected a priori weighted upper bound.

As for the lower bound, we proceed in two steps, the first establishing a “rough” lower bound on
1 in the following claim.

Claim 7.21. There exists § = 6(F,7,n) € (0, 1) such that ¢ > —Ce™%f for some uniform positive
constant C.

Proof. Consider the function xp s := —Be%f for some B > 0 and 6 € (0, 1) to be specified later.
Since [i00f], = O(f~!) and |X]|, is bounded, there exists a uniform constant c1(7, n) such that
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1i00(Be~%1)|;, < 1 on the set where Bée~%/ < ¢;. By linearising around 7 and once again using the
fact that [i00f|, = O(f~!) and | X|j, is bounded, one obtains the following estimate on this set:

Tn 1 u
XB, s _ —5f Y 2
log (T" ) = —BA;e /0 /0 ‘ZaaXBvﬂhst,g dsdu

_ 2
> —BATe_‘sf —c ‘Biaae_‘sf’h

> —BAe % — ¢y(r, n)(Bs)2e 2/

for co(7, n) a sufficiently large positive constant. As a consequence, we find using Lemma 6.6 that

log (%) + % -XB,s > —B (AT + )2(> e — ¢y(r, n)(B6)2e 2/
> B§(1 — 5)%”5(” — ¢eo(7, n)(Bd)%2e %) — Beg(r, n) f e
> Bné(1 —8)e™%f
on the set where
Bée 0 < ¢ and coB8%e 0 + esf L < (1 —0)n. (7.27)

It follows that on this set we have that
Ty +100(xB.5 — V)" X T X
1og<(¢ (xs, ) + 5= (x5 — ) =log | 222 +§'(XB,5—¢)

Tg 2

Thus, letting R(B, §) > 0 be such that (7.27) holds true on {f > R} and {f > R} C M \ supp(F),
we find from the maximum principle that

max 5§ — = max< 0, max 65— .
{sz}(XB’ ¥) { {f:R}(XB 1/1)}
Now, Lemma 7.2 and Proposition 7.10 imply that

— ) < —inf) — Be O < ¢y(r,n, F) — Be 9% <0
{fjé}(XB,a ) < in/ Y — Be " <ey(Tyn, F) e ot <

as soon as B > ¢4(7, n, F)e’f. Choose B > c4e® and § € (0, 1) such that
Bée™® < ¢y, coB6%e™ + 5 < 6(1 — 6)n, and {f > %3} C M \ supp(F),

and set R := 9. Then with these choices, we obtain the desired lower bound. This completes the
proof of the claim. ([

The second step mimics the approach already taken to establish the upper bound on eft). Namely,
we linearise the complex Monge-Ampere equation (7.2) using Claim 7.21 and view it as a linear PDE
with data decaying as fast as F'. We then apply the minimum principle to ameliorate the decay of
1 given by Claim 7.21 before iterating the whole argument, incrementally improving the decay of
each time. To this end, recall the Taylor expansion of order two with integral remainder that was
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established in (6.6):
n
T X d
log(w> + = =0+ —

Tgw X
1 -
TN 2 dsS:0(0g<T”)+2 Y
1 u d2 T;Lw X
X 1 U =9
ZATUJ-FE'U)— |301j)|hw ds du.
0 0

As a solution of (7.2), ¥ must satisfy

1 u
A+ . W =F+ / / 100Y|2 , ds du. (7.28)
2 0o Jo °

We consider the right-hand side of (7.28) as the data, that is to say, we view (7.28) as a linear
equation in . Then by Claim 7.21 and the first part of the proof of Proposition 7.20, we know that

¥ < e(n, 7, F)e™*) (7.29)

for some 0 := dp(n, 7, F) € (0, 1). Let x € M and choose holomorphic coordinates centered at x in
a ball By(x, 0) for some § < inj,(M). Then the reminder form of Taylor’s theorem shows that in

these coordinates,
Y X
Y
F=1 —- —

1
X
- (/0 hsjwds> %y + 5 v

=: a"0;0p) + g -1,

Now, by Corollary 7.17, ||a”||co.20(p, (4, s)) is uniformly bounded from above and a7 > A~'4;; on
By (z, 6) for some uniform constant A > 0. The standard interior Schauder estimates for elliptic
equations therefore apply and tell us that

llle.20 5, e, 8)) < € (1 lcoganie, oy + IFllco20(5, .00 )

for some uniform positive constant C' = C (n, o, 7,supp(F), || f - F|| ;4,20 ) Using (7.29), this leads
X, exp

to the estimate
90l coze o, 39 < C (mobe o supB(F), I - Fllg e ) e™9®, e,
from which we deduce that [i09v|, < c(n, T, F)e~%/. In light of (7.28), it subsequently follows that

X
’Aﬂ/} + 5 1/)‘ < c(n,, F)€_260f + F.

If 20y < 1, then observe from Lemma 6.6 that the function e=2%7 is a good barrier function in
the sense that

X 4
(AT + 2~> e 200f < _9254(1 — 250)?”(250]‘

outside a compact subset of M. In particular, the function ¥ + Ce=2%7 for C' a positive constant to

be determined satisfies
X . —250 f
<AT+2><1/1+06 ><0

outside a compact set (which itself does not depend on the solution). By applying the minimum
principle to the function 1 + Ce~2%7f and arguing as for the supremum bound in the first part of the
proof, one obtains the lower bound ¢ > —C(n, 7, F)e~2%/ for some positive constant C' = C(n, 7, F)
sufficiently large. Notice that 26y > dp so that the a priori decay of ¥ has improved. Iterating this
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argument a finite number of times, we end up with the estimate

X —f
‘ATw—i_'w’SC(n’TaF)e'
2 f
Here, we treat F in (7.28) as data decaying like f~'e~/. To conclude the proof of the proposition,
we argue as for the supremum bound in the first part of this proof. O

7.3.2. C*-weighted estimate. We next obtain the weighted C* a priori estimate.
Proposition 7.22 (Weighted C* a priori estimate). Let ()0 <t<1 be a path of solutions in M;Lé?g(p (M),
a € (0, 3) to (7.8) with F € f=1- C20 (M). Then
sup 4,20 <C (n,a,T,supp ) f - Fl A4, 2a ) .
9l oy (F),If - Fllgg e
Proof. Let x € M and choose holomorphic coordinates centred at = in a ball By(x, d) for some

d < inj,(M). Then we have that
To X
leog( ¢> + -9

™) 2

1
X
= (/0 hs‘zpd8> 8Z6J—1/1+5 T/J

= aijaiaj¢ + g : w

Now, by Propositions 7.18 and 7.19, ||a"”||c2.20(p, (5, 5)) is uniformly bounded from above and a*” >
A*15ij— on By(x, §) for some uniform constant A > 0. In particular, standard interior Schauder
estimates for elliptic equations imply that

[Pllon.20(By @, 3y) < C (||¢||00(Bh(:s,5)) + HF”C’QvQO‘(B;L(x,é)))

for some uniform positive constant C' = C' (n, o, 7,supp(F), | f - Fl[ 4,20 ) From the bound [(7.25),
X, exp
Proposition 7.20], it then follows that

< . o —f(x)
19l .20 (B, (2, 3)) < C (n, k,7,supp(F), || f F|’C§é,2exp) e : z e M. (7.30)

2
Rewriting (7.3) as in (7.28), observe that the right-hand side of (7.28) now lies in f~! - C;zeip(M)
by (7.30) and that the following uniform estimate holds true:

Hf./ol/oupéwiw ds du

One now obtains the desired result by applying Theorem 6.7 with k£ =1 and « € (O, %) O

<C (n,a,T, supp(F), ||f - F| ;4,20 ) .
X, exp

2, 2a
C’X, exp

7.3.3. Bootstrapping at infinity. We now bootstrap to obtain higher regularity on .
Proposition 7.23 (Weighted a priori estimates on higher derivatives). Let (¢Y)o<t<1 be a path

of solutions in M_%ftipa(M), k>1,a€(0,3), to (7.3) with F € f~1. CX exp(M). Then ¢ €

C¥ eXp(M). Moreover, one has the following estimate:

HwHCQkJ"QaQ"‘ S C (n7 k7 Q,T, Supp(F)7 Hf : F||Cmax{2k,4},2a> .
X, exp X, exp

The proof of this proposition is identical to that of Proposition 7.22 and is therefore omitted.
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7.4. Proof of Theorem 7.1. We finally prove Theorem 7.1. Recall the statement:

Theorem 7.1. Let F' be a smooth compactly supported JX -invariant function on M. Then there
exists a solution ¢ € MS (M) to

AV ) X _
10g<(7“f28¢)>+2.¢zp, T+i00p >0,  FeCP(M)
T

Proof. Given F € f~1C%¢

X,exp(M)7 define Iy :=tF € f*lcoo

¥ exp(M) for t € [0, 1], fix a € (0, 3), and

2
set

S := {t €0, 1] | there exists 1y € CF .., (M) satisfying (7.3) with data F; € fﬁle}'iexp(M)} .

Note that S # @) since 0 € S (take g = 0).

We first claim that S is open. Indeed, this follows from Theorem 6.8; if ¢y € .S, then by Theorem
6.8, there exists ey > 0 such that for all ¢ € (tg — €g, to+€p), there exists a solution ¢y € M;lé?g(p(M)
to (7.3) with data tF € f*10§<’72§(p(M). Since the data tF lies in fflC)O(O’ exp(M), Proposition 7.23
ensures that for each ¢ in this interval, ¢ € M . (M). It follows that (to — €0, to+€0) N[0, 1] € S.

We next claim that S is closed. To see this, take a sequence (t;)r>0 in S converging to some

too € S. Then for Fy, := ¢, F', k > 0, the corresponding solutions vy, =: 1, k > 0, of (7.3) satisfy
(7 +i00y)" = =2 %ern k> 0. (7.31)

It is straightforward to check that the sequence (F})x > is uniformly bounded in f _1031(’ i?(p(M ). As

a consequence, the sequence (¢ )k >0 is uniformly bounded in C’;l(’ iip(M ) by Proposition 7.22. The
Arzela-Ascoli theorem therefore allows us to pull out a subsequence of (), >0 that converges to
some s € Cio 2’ (M), B € (0,0). As (¥3)r> o is uniformly bounded in Cy % (M), 1o will also lie

in C;l(’,zeip(M). We need to show that (7 +i90vs)(z) > 0 at every point € M. For this, it suffices
to show that (7 + i0010)™(z) > 0 for every # € M. This is seen to hold true by letting k tend
to +00 (up to a subsequence) in (7.31). The fact that ¢ € MY . (M) follows from Proposition
7.23.

Finally, as an open and closed non-empty subset of [0, 1], connectedness of [0, 1] implies that

S = [0, 1]. This completes the proof of the theorem. O

8. INVERTIBILITY OF THE DRIFT LAPLACIAN: POLYNOMIAL CASE

In this section, we introduce function spaces which, rather than being modeled on exponential
weights, are modeled on polynomial weights. We then carry out the corresponding analysis for these
spaces as was implemented in Section 6 for function spaces with exponential weights. Our set-up
is the same as that outlined at the beginning of Section 6.1. The definitions from Section 6.2 carry
forward as well. However, note that as we are now working with polynomial weights, the weight f
is comparable to f by Lemma 6.3, hence we do not need to assume that (6.3) holds true in this
section. We begin with the definition of the relevant function spaces.

8.1. Function spaces. We make the following definitions.

e For 8 € R and k a non-negative integer, define C’)Q(k B(M ) to be the space of J X-invariant continuous
functions © on M with 2k continuous derivatives such that

lulless, = D2 sup |47 (v (£Q0)| < oo,
’ iv2j<ok M

Define C§ 5(M) to be the intersection of the spaces C’)Qg‘;ﬁ(M) over all k € Ny.
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e Let d(h) denote the injectivity radius of h, write dj(x, y) for the distance with respect to h between
two points z, y € M, and let ¢;X denote the flow of X for time t. A tensor T on M is said to be
in CO’QO‘(M), ae (0, 3),if

Meae = swp  fminf(a), S+ H0 2

rz#yeM
dn(z,y) <6(h)

T(x) — Px,yT(y)!h]

(A1) T(@) = (Pyx ), 6 () (65T (2))) |1

|t — 5|

< 400,
zeM

+ sup [min(t, s)Vte
t#s>1

where P, , denotes parallel transport along the unique geodesic joining x and y, and ]3¢X(z), 6X ()

denotes parallel transport along the unique flow-line of X joining ¢ (x) and ¢ (x).
, 3), define the Holder space C; 62 *(M) with
polynomial weight f? to be the set of u € C)Q(k 5(M) for which the norm

bl = g, + 37 [(7)'(e40)]
i+2j =2k

is finite. It is straightforward to check that the space Cf(k; “(M) is a Banach space. The Holder

space C’g(k 62 *(M) with 8 = 0 coincides with C%"**(M) endowed with the norm introduced in

Section 6.2 as || - || ;2x.2a. The intersection [, CXkﬁ(M) we denote by CF 5(M).
X — ) k)

e For 8 € R, k a non-negative integer, and a € (

0,2
CB

e Finally, we define the spaces
M2 (M) = {p € Cie(M) | 7 +1i00p > O} (O3> (M),
and akin to MS ., (M) defined in (6.5), one considers the following convex set of Kéhler potentials:

k>0

8.2. Preliminaries and Fredholm properties of the linearised operator. As demonstrated
for exponentially weighted function spaces in Theorem 6.7, we show that the drift Laplacian is also
an isomorphism between polynomially weighted function spaces.

Theorem 8.1. Let o € ( ) k €N, and > 0. Then the drift Laplacian

X 2%42, 20 2%, 20
Ap+5: Oy " (M) = O3 (M)

is an isomorphism of Banach spaces.
Proof. Let 8 > 0. We compute the following conjugate operator associated to 2A, + X- = Ay + X -
fﬂ+1o(Ah+X-)of—ﬁ} U=f- (A +X)U-268X-U+ P (Ay+X) P U

=f (A +X)U—-28X -U—-B(Apf+X - f—(B+1)f'X-f)
:f'<AhU+X'U—47;B U>

(6+1)
f

—25X-U+,B<4n—Ahf—X-f+

— - (AhU+X U—;L,ﬁ U) +K(U)

X-f>U

for any function U € CIQOC( ). We analyse each term in this expression separately. Our first claim
asserts that the perturbed drift Laplacian is an isomorphism of Banach spaces.
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Claim 8.2. For a € (O, %) and > 0, the operator

X 4 . .
At —7}5 YRR (M) — O (M)

is an isomorphism of Banach spaces.

Proof. This operator is well-defined and continuous by definition of the relevant function spaces.
Let F' € C’)Z(k’fa(M ). Then for R > 0 sufficiently large such that the level sets {f = R} are smooth
closed hypersurfaces, let ugp : {f < R} — R be the solution of the following Dirichlet problem:

X 4
ATUR+2-UR—1;B'UR:F on{f<R},

Ur=0 on {f = R}.
For A € R, observe that

X 4 A A
ATUR+2-UR=;L5-<UR—>+F+f,

which, upon setting A := ||f - F||co, is bounded below by % : (UR — ﬁ). Thus, the maximum
principle applied to Ugr shows that
max (Ug — (4nB) 7Y f - F||co) < 0.
s (Up = (4n8)"!|f - Fllco)
The previous argument applied to —Upg further yields the fact that
min Ugr > —(4nB) Y| f - F||co.
min Un > ~(4nd) | /- Fllc
Together, these two bounds imply that maxs < gy |Ur| < (4n8) || f - F|lco.
Next, standard elliptic Schauder estimates on each ball By (x, §) with 26 = inj, (M) > 0 compactly
contained in {f < R} give the following a priori local estimates on higher derivatives of Ug:
sup HURH 2k+2, 2 < C’(n,k,a,T)HFH 2k, 2 .
Buwoelf<ry oo (P& Oxi
As a consequence, we may appeal to the Arzela-Ascoli theorem to pass to a subsequence still denoted
by (Ur)Rr > R, converging to a function U € C'IQOIZH’ (M) in the 0120]?2’ 2% _topology for any o’ € (0, a)
satisfying
X 4
ATU+2-U—7}’B-U—F on M, (8.1)

and

mSélﬁ} ||U‘|Cl2c,kc+2’2a(3h($:5)) < C(n, k‘, a, T)HFHC?”:[Q&'
We claim that this solution U of (8.1) is unique among all bounded solutions in CZ_(M). Indeed,
by subtracting U from another solution U’ with the same data F, it suffices to show that the kernel
of the operator defined by the left-hand side of (8.1) restricted to C2_(M)-bounded functions is

zero-dimensional. To this end, let V € C2 (M) N CY(M) be such that

loc
ATV—i—E-V—%-V:O on M.
2 /
Then for € > 0, the function V — elog f satisfies
X 4 4 X
AT(V—elogf)+2-(V—elogf)27}~(V—elogf)+#logf—;(ATf+2~f>.

Since f is proper and bounded from below by 1 (c¢f. Lemma 6.1), and since V is bounded, the
function V — elog f attains a maximum at some point g € M. Applying the maximum principle to
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V —elog f at this point yields the upper bound

08 (V(20) — elog o) < ¢ (Acf + 5 -~ nflog J(zo))

2

To conclude, observe that for all x € M and every e > 0, V(z) — elog f(z) < ¢(n, T)e. Letting €

tend to 0, one sees that V' < 0. Arguing with —V in place of V' shows that V > 0, and so V =0

and the operator A, + % . —#- is injective. The fact that U belongs to C§k+2’2a (M) follows along

the same lines as for the exponential case, specifically from (6.16) onwards in the proof of Theorem
6.7. This completes the proof of Claim 8.2. O

§6<A7f+X'f> < c(n, 7)e.

Our second claim asserts that the operator K is compact.

Claim 8.3. The operator

(6+1)
S

U e Ci_k’-i-Q,Qa(M) —)K(U) =2X-U+p <4n_Ahf_Xf+ Xf> Ue Ci—k’2a(M)

is a compact operator between Banach spaces.

Proof. From the very definition of the operator K, it is straightforward to check that K(U) is JX-
invariant if U is. Let (U;); be a sequence of functions in C’)Q(k+2’2a(M ) that is bounded (by 1 say).
Then by the Arzela-Ascoli theorem, there exists a subsequence still denoted by (U;); that converges
in the C’2k+2’2a/(M)—t0pology for any o/ € (0,) to a function U € C§k+2’2a(M). In particular,

loc
(K (U;)); converges in the 0120’?1’20‘ (M )-topology for any o/ € (0,a) to K(U) € C32*(M). We will
show that (K (U;)); converges to K (U) in the C;k’%‘ (M)-topology. We explain the proof in the case
k = 0 only. The proof for the cases k > 1 is similar.

Fix a cut-off function x : M — R with 0 < x <1 and

1 ifee EU{ye M|t(y) <1},

x(z) = .
0 ift(z) > 2,

define xr(z) := x(x/R) in the obvious way for R > 0, and write U; = (1 — xg)U; + xrU;. Then for

e€(0,1)asin (6.2) and ¢’ > 0, let R > 0 be large enough such that for all indices i > 0,

5 (an - a0 = x4 CE )] 10— )= 001 < (U + 030er) 2 < 5.
X - (U= U)o Ao
21 - (1~ XU U] < ctm ) I o (e ) < ST < 2

Here we have used Lemma 6.4. Similar estimates also hold true for the corresponding a-semi-norms
by increasing R if necessary. For such an R > 0, observe that lim; o [|[Xr(U — Uj)[| 0,20 =
X

lim; 400 [[XR(U — Ui)|| 10,20 = 0. This concludes the case k = 0. O
loc

Claims 8.2 and 8.3 show that the operator

X
Art o CLER2(M) — e (M)

is Fredholm of index 0. Since this operator is also injective by the maximum principle, the isomor-
phism property follows. ([

8.3. Small perturbations of steady gradient K&hler-Ricci solitons: polynomial case. In
this section we show, using the implicit function theorem, that the invertibility of the drift Laplacian
allows for small perturbations in polynomially weighted function spaces of solutions to the complex
Monge-Ampeére equation that concerns us. The precise statement that we prove is the following.
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Theorem 8.4. Let Iy € CF 5, (M) for some B> 0 and let g € MF 5(M) be a solution of the
complex Monge-Ampére equation

log< ¢0>+ o = Fo.

Then for a € (O ) there exists a neighbourhood U, C C'_?{ 2§+1( ) of Fy such that for all F € Ug,,
there exists a unique function 1 € Mﬁfg(M) such that

log (TZZ) + X “p=F. (8.2)

Remark 8.5. Theorem 8.4 does not assume any finite regularity on the data (19, Fp) in the relevant
function spaces; see Remark 6.9.

Proof of Theorem 8.4. In order to apply the implicit function theorem for Banach spaces, we must
reformulate the statement of Theorem 8.4 in terms of the map M A, introduced formally at the
beginning of Section 6.3. To this end, consider the mapping

A7 A 4,20 2,2
MAWOZ(QO,G)GMXB( )XCX5+1(M)
Tho+e X 2,2 1
H1°g<7n T3 Wt ) G- FyeCxgu(M), ac (0 5).

Notice that the function spaces can be defined either by using the metric h or hgy, for any s € [0, 1].

To see that mT v is well-defined, apply the Taylor expansion (6.6) to the background metric 7y,
to obtain

— X
MA:, (¢,G) = log < ¢0+¢> + 5 P G
o

(8.3)
7’¢)0 2 : ’ ‘hg(wo ») u.

Then by the very definition of 0315250‘ (M), the first three terms of the last line of (8.3) lie in

C 511 (M),

Now, if S and T are tensors in C% 2CY(M ) and C'g(kjéa (M) respectively, with v; > 0, i = 1,2, then

2k, 2a
observe that S+ T lies in C" 7

tensors with respect to the metric h. Moreover,

||S * T’|C§{k,2a < C(k, a)HSHCzk,za . ||T||02k,2a. (8.4)
»Y1+Y2 X, 71 X, 72

(M ), where * denotes any linear combination of contractions of

Notice that

98111 = Wby * (725 ()%
and that

1 2,2c
Mooty — € OX G (M),
Thus, applying (8.4) twice to S = T = (V")2p and to the inverse h_! sWot+)
B+ 1 and k = 1, one finds that |85<,0|%LSWO+ = Cg(éo/gﬁ( ) C C’iQﬁO‘H( ) for each s € [0, 1] and
02 2a

that
‘ X, B+1

so long as [[¢]| 4,20 < 1. Finally, the JX-invariance of the right-hand side of (8.3) is clear.
X, 8

with weights v; = 7 =

]38(,0|h ds du

s(yo+e)

< O (k,auh, lollgzza )l .

By definition, J\ﬂ% (p, F'— Fy) = 0 if and only if ¥y + ¢ is a solution of (8.2) with data F'. By
(6.6), we have that

_ N )
Dig 0y M Az, () := Dio,0)MAr,, (4, 0)) = Ar, o+ ¢ for g € Cy5(M).
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Hence, after applying Theorem 8.1 to the background metric 7, in place of 7, we conclude that
D(IO’O)M A o is an isomorphism of Banach spaces. The result now follows by applying the implicit

function theorem to the map J\’M% in a neighbourhood of (0, 0) € M;l(Qg( ) X C')Q( 2;+1(M) O

8.4. Surjectivity of the drift Laplacian. We next show that the drift Laplacian of 7 is surjective
on the space of functions that decay polynomially. This result is required in order to prove uniqueness
in each Kéhler class of the steady gradient Kéhler-Ricci solitons that we construct.

Theorem 8.6. There exists a finite set F C (0, %) such that for all § € (0, 1)\ F, the drift Laplacian

X o o
Ar + 5 C% -1 (M) — CX 5(M),

1S surjective.

Proof. Let Q € CS 5(M) be fixed once and for all. In order to find a JX-invariant solution u to
Apu+X -u = Q that grows at most like f1=7 we first solve the corresponding equation with respect
to g outside of a compact subset of M which we henceforth identify with the end of Cy via 7. To this
end, we invoke the spectral decomposition of the basic Laplacian Ap acting on LQB(S), the space of
basic L2-integrable functions defined on the link S of the cone Cp, which exists by virtue of [PR96,
Proposition 3.1]. Let (¢?);> o denote a complete orthonormal basis of smooth eigenfunctions of Ag
in L%(S) and let (A\P);>¢ denote the corresponding eigenvalues with A\? > )\;3 for ¢ > j. Then we
have that —ABqZ)lB = )\ZBQSZB for each ¢ > 0, )\63 =0, )\f; — 400 as © — +oo, and d)(]]B = 1, this last
equality following from the fact that on Sasaki manifolds, the basic Laplacian coincides with the
Laplacian acting on basic functions [PR96]. Moreover, as the cone is Ricci-flat, we can assert from
[LRO2] that AP > 2n (1+ 51
We seek a JX-invariant solution of the equation

Agii+ X i =Q

of the form a(t,-) := > ;5 g ui(t) - #P on the end {t > 1} of Cp say. When a solution of this form
exists, it is clear that it is JX-invariant. Thanks to (6.1), one can decompose this PDE into an

infinite system of second order linear ODEs on {¢ > 1}, namely

— B
40%u; + <4n + 4(nt 1)> Ou; — %uz =n-Q;, ui(t) = O (tl_’3> ,

) = /S Q. V6P dugs, 20

with gg the metric on S and dugyg the associated volume form. As one shall see, in order to solve
this system, it suffices to solve the following infinite system of first order linear ODEs which have
the added advantage of being more explicit in terms of the data Q:

B
Anodyu; — Aﬁzuz =n-Q;, uz(t) =0 (tliﬁ) ,

! (8.5)
= /SQ(L VP dpgg, i >0.
The solution of this latter system depends on the sign of 1 — 5 — % and indeed, is given by
128 \B
t4”/Qz : 4nds if1-38—-=-->0,
4dn (8.6)
1,27 Y . AB '
ul(t) = _thm Qz( ) In ds lfl_ﬁ_ﬁ <0.

t

When 1 —

B
corresponding to (8.5). By our lower bound on )\’13 , we know that 1 — 3 — z—in < % Hence, the critical

B
Z\f /() are defined up to a solution of the homogeneous equation
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B
case 1 — 8 — }n = 0 can be avoided by only considering positive S lying outside some finite subset
B
F of (0, 1), namely those 8 € (0, 1) with 8 =1— 3=
many as AP — +oo as i — +oo.
Working with 8 € (0, 1)\ F, we next investigate the common properties of the functions w;, i > 0,

for some )\f of which there are only finitely

beginning with the following estimate.

Claim 8.7. For all j, k > 0, there exists a positive constant C} ; such that
18w < Cj x(\B) TR =0 forall j >0 and ¢t > 1. (8.7)

Proof. By induction on j > 0, it is straightforward to check that \(‘?IZ u;| < Cjtt=PJ for all j > 0
using (8.5) and the fact that ﬁgg)Q = O(t~P77) for all j > 0 by assumption. Let us show that (8.7)

A

B
holds true for j = 0. For this, it suffices to prove this estimate for all indices ¢ with 1 — 3 — 7t < 0.

To this end, using (8.5) and the fact that Ag)df = (=AP)kgPB for all k > 0, we derive the following
estimate on the Fourier coefficients of Q:

1Qu(t)] = | (—AB) /S ABQ(t, 6P dyigs

_ 8.8
< )Y MIABQ(E, Ylleos) 1681122 (s) volys (S) (88)
< Ck()‘zB)_kt_Bv

@t ) = tFALQ(, ) = O(EH) for

all £ > 0. Plugging (8.8) into (8.6) now yields the desired conclusion for j = 0.
One can similarly show that |87Q;(t)] < Cj k(AP)™*=F=J for all j > 1 and k > 0. The higher
order estimates (8.7) for j > 1 can be proved by induction by repeatedly using the ODE (8.5)
satisfied by u;. O

where we have used the fact that ”@biBHL?(S) =1 and AW

Claim 8.7 together with a version of Weyl’s law for the spectrum of Ap on L%(S) [PR96, Propos-
tion 3.4] asserting that )\? > Ci% for some positive constant C' independent of 7, imply that the
function @ = Y, < g u; - ¢7 is a genuine JX-invariant smooth function defined on the complement of
a compact subset K of M and lying in Ccs B*l(M \ K). Moreover, by construction, each w;, i > 0,
satisfies the following second order linear ODE:

4 4(n—1 \B
Agui + X u; = *a?ul + <4 + (TL)) Ou; — —“u;
n nt nt

4 4(n—1 B
= —&?ul + Mﬁtul 4+ 40u; — Ly
n nt nt
1 \B n—1) (\B
= —0 (Zui + Qi) + {n-1) <’ui + Qi) + Qi
n nt nt nt
= Q’L + Riv
where the remainder term R; lies in CF +5(M ). Consequently, after writing R := ;5o R; - oP,
we see that R € CF |, 5(M \ K) and that @ satisfies the PDE:
Apap+X-1=0Q+ (Ah—Ag)ﬂ—l-R on M\ K.

€ C;’Z min{1+43, B+e} (M \ K)

(8.9)

Here we have used (6.2), i.e., § —h € CF (M) for some given ¢ € (0, 1).

Now, after localizing @ with the help of a JX-invariant smooth function equal to 1 outside a
sufficiently large compact subset of M, we end up with a function defined on M which we still
denote by u satisfying an equation of the same type as (8.9). More precisely, @ satisfies

Ayi+X-a=Q+R
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for someReC)O(‘jmin{HB’B%}(M). )
If B+e > 1, then Theorem 8.1 asserts that A,0+X -0 = —R for some function v € C;kﬁn?% 5+8_1}(M).

Since R € CF min{145, 8 +€}(M ), injectivity of the drift Laplacian between C'g(k?’ 22(M) and Cffk’gfl (M)

L - 2k+2,2 ~
for 8 > 0 implies that 0 € CX,_rtlin{%,,8+sfl}(M> for every k > 0, and so 0 € C;’Smm{ﬁ’ﬁﬁ_l}(M).
The function @ + v therefore lies in CF 5—1(M ) and solves the equation Apu+ X - u = Q.

In the case that § + e < 1, shrink € > 0 if necessary so that g + ke ¢ F U {1} for all k£ € N.
Then by applying the first part of this proof with data R € C% .. (148, 4} (M) in place of @, one
can find a function w € Cg . (M) with Ap(d — 1) + X - (@ — 1) —Q € C?,min{uﬂ,ﬁwe}(M)'
Iterating this argument a finite number of times reduces to the case 5 4+ ¢ > 1 which can then be

solved by invoking Theorem 8.1 as before. ([

Remark 8.8. If 7 in Theorem 8.6 is a complete steady gradient Kahler-Ricci soliton on M, then the
kernel of the drift Laplacian restricted to C’)"g B(M ) for any 3 > —1 comprises only constants. This
is a direct consequence of [HZZ11, Corollary 1.4], where one only needs to assume that the function
lying in the kernel of the drift Laplacian grows sublinearly, that is, as o(t).

9. PROOF OF THEOREM A

Let (Co, go, Jo, Q20) be a Calabi-Yau cone of complex dimension n > 2 with link S, radial function
r, and transverse Kahler form w’. Set 72 =: €' and let 7 : M — Cy be a crepant resolution of Cy
with exceptional set E which is equivariant with respect to the real torus action on Cjy generated by
Jord, so that the holomorphic vector field 270, = 40; on Cjy lifts to a real holomorphic vector field
X = 7*(2rd,) on M. Let J denote the complex structure on M and recall from Proposition 2.18
that we have Cao’s one-parameter family of steady gradient Kahler-Ricci solitons @,, a > 0, on Cy
with respective soliton potentials ¢q4(t), as well as the Kéhler form & = £00 (%2)

In this section, we use the results acquired thus far to prove Theorem A. We begin with the
existence part before moving on to uniqueness. Throughout, we identify M \ F with the complement
of the apex of Cy via 7.

9.1. Existence. Fix a > 0 and for a given Kahler class £ on M, take the Kahler form o in ¢
asymptotic to W, with £ ;xo = 0 given by Proposition 4.3. We now add a subscript a to ¢ to indicate
that this Kéhler form is asymptotic at infinity to @w,. Combining Proposition 3.2 and Lemma 4.4,
one can see from the triangle inequality that o, satisfies (6.2). Therefore by Proposition 4.5, the
problem of constructing a steady gradient Kéhler-Ricci soliton in £ with the desired properties can be
reformulated in terms of solving a scalar PDE on M, namely the complex Monge-Ampeére equation
(4.3) which we now recall:

log <(Ja i z’faw)”

X
>—|—2-¢):F, (9.1)
a
where 1 and F' are smooth functions invariant under the flow of JX and outside a compact subset
of M,
. 0 if n =2 or if ¢ is compactly supported, 99
] —log (%) otherwise, (9:2)

for ¢ a basic primitive (1, 1)-form on S determined uniquely by ¢ with ps : Cp — {r = 1} = S
denoting the projection. Recall from Section 2.1.3 that ¢ A (w?)"~2 = 0 and notice that, by Lemma
2.12 and the JX-invariance of o, and 1, any steady Kéahler-Ricci soliton resulting from the solution
of (9.1) is necessarily gradient. Finally, observe that the smooth proper real-valued function f, on
M defined by —o,1JX = df, and chosen such that f, > 1 (which is guaranteed to exist by Lemma
6.1) differs from the soliton potential ¢, (t) of @, by a constant. Indeed, to see this last point, just
note that

00(fa = p0) = 3Lx(00 — Ga) = 3Lx15(O) = 0
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and Ljx(fa — pa) = 0 and appeal to Lemma 2.4(i).

9.1.1. Compactly supported Kihler classes or n = 2. When ¢ is a compactly supported Kéhler class
or n = 2, we read from (9.2) that the function F' in (9.1) is compactly supported. Since |f, — pq| is
bounded along the end of M, Theorem 7.1 applies and provides us with a solution of (9.1). More
precisely, Theorem 7.1 asserts the existence of a function ¢ € M¥ exp(M ) with Lyx1 = 0 such
that w, := 04 + 1001 defines a steady gradient K&hler-Ricci soliton in the Kéahler class € of M.
In particular, JX will be Killing for w, and from Proposition 4.3 we see that outside a compact
subset, w, 1= @, +i001. The asymptotics (1.5) then follow from the fact that 1 € M p(M) and
the aforementioned fact that the function f,, the exponential of which being the weight used in the
definition of M ., (M) with respect to oq, differs from ¢,(t) by a constant. The independence of
wq from the parameter a will be shown in Section 9.1.3.

9.1.2. Non-compactly supported Kdhler classes. Supressing the subscript a for the moment, when ¢
is not compactly supported, we see that at infinity,

F=—log (Wg(o)n> _ 2 Aps(©) ' Aps + Z ( )Q”_k /\~(P§(C))k .

wmn wn

EC’}O’Q(M)

Now, ¢ being a basic primitive (1, 1)-form on S leads to the simplification

d
" ApE(Q) = (n = D" W) A T A AE(Q)
d
= (n— )" 20 An A W) Ap5(Q),
=0

=0.

Consequently, the right-hand side of (9.1) lies in C§ 5(M). We next show, via a modification of
the Kéhler form o, that solving (9.1) can be reduced to the case where the data F' is compactly
supported. This will then allow us to appeal directly to Theorem 7.1 to assert the existence of an
exponentially decaying solution of this reduced equation, thereby resulting in a solution of (9.1).
The reduction of (9.1) to an equation with data F' compactly supported we now present.

Proposition 9.1. Let o be the Kdhler form from Proposition 4.3. Then for all § € ( , 2) there
exists a constant T = T(5) > 0 and a smooth JX-invariant function pr € CS | (M) such that

o +i00pr > 0 and
O’+i8(§(an X
10g<w>+2@T:XTF7

where x7 is a smooth JX -invariant cut-off function supported on {t > T'}.

Proof. For o € ( ) fixed, Theorem 8.4 asserts that for all 6 € (0, 1), there exists a neighbourhood
2,2«

solution go € C’;"( 21a s(M) such that o +i00p > 0 and such that

M) of the constant function 0 such that for all data G € Uy, there exists a unique

o" 2
We fix a cut-off function y : M — R with |x| <1 and

{0 ifxe FU{ye M|t(y) <1},

D=0 i) > 2
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and define x7(x) := x(z/T) in the obvious way for T' > 0, a constant to be determined. Then for
any 0 € (0, 1),

sup [t2 Oxr - F| < sup t*70|F(z)] <C sup 2772 < CT9,
M t(x)>T t(zx)>T

- F -
sup 3"V (xr- F)| <O sup 157 (|x'|' <T9”>'+|w|§>
M

t(z)>T
F N
<C| sup t%%M_,_ sup t%*5|VF|g
T<t<2T T t(z)>T

1
§C’< sup t%_‘s—qt sup t_5>

T<t<2T t(z)>T
<cr.
Continuing in this manner, one sees that ||x7 - F|| 222 = O(T %) so that for T sufficiently large,
X,2—-06

one can find a unique function pp € C’_;l(’ 210‘7 s(M) with o + 1007 > 0 such that

+i00p7)" X
log <(080T)> P 93

o" 2

In order to complete the proof of the proposition, we bootstrap the regularity of ¢ at infinity in
the following way. Assume that ¢ € Cik;;z%‘(M ) is a solution to (9.3) for some k > 0, 8 > 0, and
a € (0, %) Then observe that ¢ is a solution of the following linear equation in disguise:

X 1 u _
Asp+ —-p=xr -F— / / |88cp|30 ds du, (9.4)
2 o Jo e

where g, is the Kéhler metric associated to the Kéhler form oy, := o + i00(sp). Applying
Theorem 8.1 to (9.4), one sees that ¢ € C'?(U%HHQ’M(M) as soon as the right-hand side of (9.4) lies

n C)Q(kgifa(M) Since ¢ € Ci’f;Q’Qa(M), we deduce that i00p € Cikgfl(M) Arguing as in the
proof of Theorem 8.4 using (8.4), one immediately sees that the integral term on the right-hand side
of (9.4) lies in C)Q(IT’Q?H(M ). Now, the local estimates provided by Proposition 7.19 imply that ¢
is bounded together with all of its derivatives on M. Standard local interpolation inequalities then
show that the integral term on the right-hand side of (9.4) lies in C’;kggff: a_e(M) for all € > 0
sufficiently small. In particular, with 8 =1-4, § € (0, %), we obtain the desired result by choosing

0<e<f—a=1-7§— «a after recalling that yp - F € C’;’(",Q%(M). O

Proposition 9.1 allows us to finally solve (9.1).

Theorem 9.2. For all § € (0, %), there exists a smooth JX -invariant solution v to (9.1) that has
the following decomposition:
Y =11 + 1o,

where ¥;, i =1, 2, are smooth JX -invariant functions with ¥ € C%le_g(M) and ¥y € C}’(O’ (M).

exp

Proof. Fix § € ((), %) Then by Proposition 9.1, there exists a smooth function ¢y € C¥,_5(M)

such that o + 399y > 0, Lyx1 = 0, and such that
o+ 100y )" X
log <( ) ) +5 i =xrk, (9-5)

O—’Vl
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where x7 is a smooth JX-invariant cut-off function supported on {t > T'}. Setting oy, := 0 + 100
and using (9.5), we rewrite (9.1) as

ol X
log< w>+2‘¢=XT'F+(1—XT)'F

O-’I’L

oc+i00y)"\ X
= log ((n¢1)> + 5 i+ (1—xr)- F,
o 2
which leads to the reduced equation
oy, + i00p)" X
T 2 —

compactly supported

where oy, = 0 + i00¢;. Now, since 9 € C% 1_5(M), the asymptotics (7.1) hold true, and akin
to (7.6), we have that —oy, 0JX = d (fa + % -wl). After noting in addition that f, + % S =
@a(t) + O(1), we see that Theorem 7.1 applies with 7 = oy, and data (1 — x7) - . This yields a
solution ¢ € CF (M) of (9.6). With this, we conclude the proof of Theorem 9.2. O

exp

Restoring now the subscript a to o, let § € (0, %) and for this particular choice of 9, let s

denote the solution of (9.1) given by Theorem 9.2 for o,. Write ws o := 04 + i00vs. Then W5 q is a
steady gradient Kahler-Ricci soliton in € with soliton vector field X which, by virtue of Proposition
4.3(iii) and the fact that ¢5 € CF,_5(M), satisfies (1.4) with ¢ = 6, and correspondingly (1.3) by
Proposition 3.2. Moreover, the JX-invariance of 15 implies that £ xws , = 0.

9.1.3. Independence of the parameters. All that remains to show is that ws , € € (respectively w, € €)
is independent of ¢ and a (resp. a). This will then allow us to set w := ws, 4 (resp. w := wy), resulting
in the steady gradient Kéhler-Ricci soliton w of Theorem A with the desired properties. We prove
this for ws , only. The proof for w, is similar.

To this end, consider the Kahler forms wy := ws, 4, and ws := ws, 4, in the same Kahler class ¢
of M, where 0 < a1 # a2 and without loss of generality we assume that 0 < §; < d2 < % Then by
Lemma 2.11, there exists a smooth real-valued function v : M — R such that

wo — wi = i00u. (9.7)
By averaging w over the real torus action on M induced by the torus action on Cjy generated by
Jord,, we may assume that £;xu = 0. Now, we know from the asymptotics that
Wy — W1 = Qg — Way + 100¢ = i00(®q, — Pu, + @) (9.8)
for some ¢ € CF | ;5 (M), where ®,(t) is the Kahler potential of &, as in Proposition 2.18. On
subtracting (9.7) from (9.8), we see that at infinity
i00(®gy — Poy + ¢ —u) = 0.

Set G := @4, — D4, + ¢ — u. Then G is a smooth real-valued pluriharmonic function on the end of
M with £;xG = 0 and so by Lemma 2.4(i) must be equal to a constant. Therefore by subtracting
a constant from u, we may assume that

u= Dy, — By + & (9.9)
outside a compact subset of M.
Returning now to (9.7), we deduce from Lemma 2.15 that
- 00u)™\ X
00 (log <<wl+zu>> + X u) 0.
w

T 2
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Since Ljx (log (%) + % . gp) = 0, it subsequently follows from Lemma 2.4(ii) that
(w1 + 100u)" X
1 - —u=C 9.10
og < o +5 (9.10)
for some constant C. Next recalling (9.9), we see that at infinity,
X = 4@, (1) — 48} (1) + X - ¢
= 490(12 (t) - 490a1 (t) +X-¢

~0 <(logt)2> +O(t2)

$2
= o(1),

where we have used Proposition 3.1 and the fact that ¢ € CF | ; (M) in the penultimate line.
Moreover, we also find that at infinity,

i00u = wy — wy

= Quy — Way + 10005, — 1005,

SN—— SN——
=0(t=%02) =0(t~%*0)
= (@ —8) + (G- Gw) +O(U)
SN—— N———
=0(t~"log(t)) =0O(t"log(t))
=0 (t 'log(t)) + O (t*2+51)
=o(1),

where this time we have used Proposition 3.2 in the penultimate line. These last two observations

imply that C' =0 in (9.10) and so
00u)"\ X
log (WZM) +X Lo
wy 2

The strong maximum principle of Hopf applied to this equation (as it was for instance in [BM17,
p.13]) now implies that u is a constant. Hence w; = wy, as required.

9.2. Uniqueness. In the setting of Theorem A, suppose that for some € > 0, v is a complete steady
gradient Kéahler-Ricci soliton in the Kéhler class € of M with £;xv = 0 satisfying

‘ﬁ’ (ﬁ%)(mu - o&))

< Ci, =" forall i, j € Np.
g

With w denoting the steady gradient Kéhler-Ricci soliton in ¢ from Theorem A, write p, and p,,
for the Ricci form of v and w respectively. Throughout, we identify M and Cy at infinity using
the resolution map. We begin with the following auxiliary claim which essentially asserts that the
difference between v and w must be of order O(t~1).

Claim 9.3. There exists ¢ € R and a function ¢ € CY 3(M) for some § > 0 such that
vV —w — ciddf = i00¢.
Proof. By Lemma 2.11, there exists a smooth real-valued function ¢ on M such that
v =w+i00y
that necessarily satisfies
‘%k (9 (r.(i000))) ‘g < Cut==57 forall j,k € No.

Since Lyxw = Ljxv = 0, by averaging ¢ over the real torus action on M induced by the torus
action on Cy generated by Jord,., we can assume that L;x@ = 0. Then from Lemma 2.15 we see
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oziaa‘(log(W)JrX-@).

that

wn 2

Now, Ljx <10g (w) + % : 90) = 0. Lemma 2.4(ii) therefore asserts that

. a n X
w™ 2

for some constant ¢ € R. In particular, we deduce that X -¢ = O(1) so that ¢ grows at most linearly.
Indeed, X - ¢ = 4nc+ O(t™°) and so writing v, (t) for the integral curve of X with ~,(0) = z, we
find that
©(2(t)) = @(x) + 4nct + O(t1°). (9.11)
By Lemma 2.16 and the asymptotics of w, we know that

| X|2+ Ry = 4n,

where ¢ is the Kahler metric associated to w. In particular, we have that

@1 0(1) = [X30(1)) = 4n — Ry((0)

so that

FOw(t) - flz) = / @ (Fra(s))) ds

OdS

= [ tan = Ry(au(s) s
:4nt—/0 Rg(72(s)) ds.

Solving for ¢ and plugging into (9.11) then yields:

t
e(12(t)) — cf(12(t) = p(z) — cf(x) + C/O Ry (72(5)) ds + O(t'—). (9.12)
Next consider the equation
Audo+ g o = log <W> ~ A (9.13)

At infinity, the right-hand side of this PDE takes the form

—chpzAw(p—l—Z

i ~\ 7 n—k 99,k
log <(w +100y) ) <n> W A (i00p)" N
wn k wn
k=2
B i (n) W F A (100p)*
N k wn
k=2
(i00p)% N\ W
ST

where U denotes a bounded (n — 2, n — 2)-form together with its derivatives. In particular, since
i00yp € CS 5, (M) for every &g € (0, €], we see that

w + i00p)" .
log (( o ?) > — Ayp € CX95,(M)

for every dg € (0, €]. Consequently, Theorem 8.6 applies and tells us that there exists a function
(

do € CF _1495,(M) solving (9.13) for every dp € (0, min{e, 1}) \ F for some F C (0, 3) a fixed
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finite subset. It follows that

X X w + 100p)"
Aulp +do) + 5 (04 d0) = Aup + -+ log ((wn(’p)> —Ayp
000)"\ X .
:10g<(w+188@) >+'90 (9.14)
w™ 2
= 2nc.
Since f satisfies Ay f + % - f =2n by Lemma 2.16, we deduce from (9.14) that

<Aw+)2('> (o —cf 4 ¢o) = 0.

Recalling now (9.12), we have that

(o —cf +d0) (1=(t) = () — cf (z) + do(r=(t)) + C/O Rg(72(s)) ds + O(t' ™).

Since the fixed point set of X is compact so that the flow-lines of X flow into a compact set (see
[CDS19, Proposition 2.28]), and since Ry, = O(t™!), we know that ¢ — c¢f + ¢o grows sublinearly.
As a sublinearly growing function lying in the kernel of A, + %, the Liouville theorem [HZZ11,
Corollary 1.4] asserts that ¢ — ¢f + ¢o must be equal to a constant. Thus, modifying ¢¢ by this
constant and setting ¢1 := cf — ¢p, we arrive at the fact that

v =w+ 10001,

where this time ‘ .
)v’f (9 (r.(i0961))) ] < Cut= 57 for all j,k € N
g

and cf —¢1 € CF 1,5 (M) for every 61 := 20y € (0, min{2¢, 1})\ F. Iterating the above argument
with §; in place of €, we can find a function ¢ with

V=w+ z’f)(%g,
where

)ﬁk (£9(r.(10962)) ) ]g < Cut= 57 for all j,k € N

and cf — g2 € CF _ || 95,(M) for every & € (0, min{24;, 1})\ F = (0, min{22%¢, 1})\ F. Continuing
in this manner, we can find a function ¢; with

V=w+ i65¢l,

where

}@k (Eg? (m(i@gqﬁl))) ‘ < th_él_g_j for all j,k € Ny
g
and where cf — ¢ € CF 55, (M) for every 6 € (0, min{2'e, 1})\ F. Choosing [ large enough such
that 2771 < ¢ < 27!, we can then write
v =w+1i00¢

for a smooth function ¢ satisfying cf — ¢ € CY —1+251(M) for every §; € (%, 215) \ F. In particular,
cf —¢€ C‘)’(‘f(S(M) for some ¢ > 0, as desired. O

Next, let 15 denote the family of diffeomorphisms generated by the vector field % with g = Id
ie.,

oy, X((@)) -
9s =5 t=ld

Then w(s) = Yiw, s € R, defines a backward Kéhler-Ricci flow on M with w(0) = w so that
Osw(8) = pu(s), Where p,(s) denotes the Ricci form of w(s). Our next observation, contained in the

following claim, concerns the asymptotics of w(s).
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Claim 9.4. For all s € R,
w(s) —w e C% 4 (M).

Proof. Let g and g(s) denote the Kéhler metrics determined by w and w(s) respectively. It suffices
to prove that |

[(V9) (g(s) — 9)}9 <Cpt™' 72 foralli>0
and that

v (£ (w(s) - w < th_l_%_k for all j > 0 and k > 1.
X > = =
g

To this end, we proceed as in the proof of [CDS19, Theorem 3.8].
For any = € M, let 7, (v) := 1b,(x) denote the flow of % with v,(0) = z. Then
| Rm(g(s))g(s)(x) = [Rm(g)lg(7z(s))

which is bounded above by some positive constant K, and so by integrating the backward Ricci flow
equation, it follows that

e Ksg(z) < g(s)(x) < f%g(x) for all z € M. (9.15)
Thus, for any z € M \ E,

19(5) — gly( /|aug W)y du<c/ I Ric(g(w))]y() du < C(s /|R1c W)y (@) dus
— (s / I Ric(g)]y(a(2)) du < C(s) / (t (@) ds,

0
where we have used (9.15). Now, since
0
L (He () = dt(X) = 4,
& t(v))) = dt(X)

we have that ¢(7;(v)) = 4v + t(z). Hence if ¢t(z) is larger than 8s say, so that ¢(y,(v)) > 0 for all
|v| < s, then

19(s) — gy ) < C () /O (b)) du = C(s) /O (4o + t(2) " du

4s + t(x) 4s _1
=C(s)ln|———)=C(s)ln |14+ — | <Ct
o (25 ) = oo (1+ 565 ) < oo
As for the covariant derivative, we must work slightly harder. Recall that if T is a tensor on M,
then VIO)T = VIT 4 g(s)~1 % V9(g(s) — g) * T since at the level of Christoffel symbols, one has that

L(g(s))j; = T(9); + %9(8)'”” <V?(g(8) — 9)jm + VI(9(5) = g)im — Vi (g(s) — g)ij> :
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In light of this, we have for all z € M \ E,
Ou (IV¥(g(u) = 9)f3) (x) < CIVI Ric(g(u))ly(x)| V9 (g(u) — g)ly(x

)
< (199 Rictglu)lyo) + (|(77 = 970 Riclgw)], @) ) (976000 = oo

sc(xvg Ric(g(u) o ) + (| (V7 = 99 Rictg(w), x)))wg u) — g)ly(x)
= (197 Riclg)lyra(w) + | (77 = 790) Rictg()] (@)} 197(at0) = 9y (2)

< C (199 Rielg) (1) + V(g0 — )]y ()| Ric(g(w)] (2)) [V (g() — )], ()

< C (V7 Ric(g)ly () + [V(g(w) ~ )], @)| Rie(g(u)) |y (2)) [V¥(0(0) - 0)]o(x)
< C (199 Ric(g)ly (12(0)) + [V¥(9(0) — 9)lg ()| Ric(g)], (e (1)) [¥¥(g(1) — 9}y (x)

< C (199 Riclg) (1) + [V (g ) — 9)lg(2)) [V (5() — )] (x)

< CIV(g(w) — 9)P(a) + IV Ric(g) (1 (w).

where throughout C' denotes a positive constant depending on s that may vary from line to line and
where Young’s inequality has been used in the last line. This inequality may be rewritten as

Ou (€7 VI (g(u) — g)I2) (z) < Ce™ |V Ric(g)[2(v2(w)),
which, upon integrating over [0, s], yields the fact that
e IV9(g(s) — 9)l3(x) — [V9(9(0) — g)[3(x) < C/Os e~ 9|V Ric(g) |3 (V2 (w)) du.
Since |V9(g(0) — g)|2(x) = 0, we deduce that
IV9(g(s) — g)[2(x) < Ce®* /OS e” V9 Ric(g)[2 (V2 (u)) du

s

< C(s) | IVIRic(g)[3(va(w)) du

so that

Njw

[V9(g(s) = g)lg(z) < Ct(z) ">
The cases ¢ > 2 are proved by induction.
Next, concerning the Lie derivatives, we know that

Lx (w(s) - w) = 2pw(s) = 2py.
Since |(V9) (w(s) —w)|y = O(t_%) for all j > 0, we then find that
(V) Lx(w(s) = )l = 2V (pugs) = pullg = O (7)) forall j = 0.

The conclusion now follows from another induction argument using the fact that

= w(s)™
Puots) — P = —i0D log (fu))
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so that

|(V9)j£g?)(w(s) —w),<C (V9)it2x (k=1 10 (wi;)> forall 7 >0 and k > 1.

g
(]

Applying Claim 9.3 with w(s) in place of v, we see accordingly that there exists a constant c
(depending on s) such that
w(8) —w — ¢si00f = i00¢ps (9.16)
for some ¢, € Cj’(fés(M), where §; > 0. Next note:

Claim 9.5.
w(s) —w — spuly = O (t72).

Proof. For any point x on the complement of the exceptional set of M, we have that

(w(s) —w — spw)( / Ou( —w —upy)(x)du

= / (Pao(u) = Puo) () du

iy LI

// ( Au(w)Pu(w) + Rm(w ())*pw(v)> (z) dv du
- /0 / <—2Aw<v>ﬂw<v>+Rm(w(v))*pw(v)> (z) du dv

= [0 (At + Ranle) # gy ) () e

where A,y denotes the usual rough Laplacian. Here, we have used the evolution equation satisfied
by the Ricci curvature p,(5) along the (backward) Kéhler-Ricci flow in the fourth line; see [BEG13,
Chapter 3, Section 3.2.6]. In particular, we obtain the bound

o(s) —w = spuly(o) < [ 15 = l|-

<cw [
SC(S)/OSeK”

s 1
< C(S) /0 _7Aw(v)pw(v) + Rm(w(v)) * Pu(v)
—C(s) /
0

2
< O(s) /0 () do

w(v YPuw(v) + Rm( ( )) * Puw(v)

(x)dv
g

1
- 2Aw(v)pw(v) + Rm(w(v)) * Puw(v)

(x)dv
9(v)

(x)dv

g(v)

(yo()) dv

g

1
_7Aw(v)pw(v) + Rm(‘”(”)) * Pu(v)

1
—5 80P+ Rm(w) * py,

< C(s) / (4v + t(z)) 2 dv
0
< Cta)?,
as desired. O
Now on one hand, we see from (9.16) that

|5 — CSHPw|g =|s— CSHiagﬂg = |w(s) —w — spy — iag(bS’g < Ct 170
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for some constant C' > 0, whereas on the other hand, from Lemma 3.12 we see that
pulg > CIRg| > C| |Rg| =Ry —Rg || > Ct™

for another constant C' > 0 and for ¢ sufficiently large. We must therefore have ¢ = s, and so

w(s) = w + sid0f + 100, (9.17)
for some ¢, € C?(O,JS(M) with d; > 0.

Finally, combining (9.17) with Claim 9.3, we conclude that
v —w(e) = iddu,
where now u € C)O(O,S(M) for some 6 > 0. After noting the JX-invariance of u, v, and w(c), Lemma
2.15 followed by an application of Lemma 2.4(ii) yields the equation
08 \n
o (1LY X

satisfied by u for some constant C. Since u € C;’(o’ S(M ), C must be equal to zero. The strong

maximum principle of Hopf now implies that u is a constant so that ¥ = w(c) for some ¢ € R, as
required.
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APPENDIX A. THE MODEL METRIC §

Let (Cop, go) be a Calabi-Yau cone of complex dimension n > 2 with link S, radial function r,
complex structure Jp, transverse metric g7, and set n = d°log(r) and r? = e'!. We define a Kéhler

~ i~ (nt?

One can check that the corresponding Kéhler metric § on Cj takes the form

1
g:=n <4dt2 +n+ th> .

form @ on Cjy by

We denote the Levi-Civita connection of g by V. In this appendix, we analyse how the norm and
covariant derivatives measured with respect to g of various tensors behave as t — +oo.

Let 61,...,09,_o be a local basic orthonormal coframe of g7 on S with 6; o Jy = —6,4, for i odd
and let (w;j;)1<i,j<2n—2 denote the matrix of connection one-forms of g”. Then each wi; is a basic
one-form on S and (w;;) solves the Cartan structure equations

db; = Z?Z_f wiji A Gj
wij + wj; = 0.
Next set

\éﬁdt, and éQn = nv/n.

The matrix of connection one-forms (w;j)1 <y, j <2, of § with respect to this coframe is given by

éi = v/ntb; fori=1,...,2n—2, 92n_1 =

) wji+6.’i+1%é2n7 1<i<2n-—2odd, 1<7<2n-2,
Gas = .
ji wji — 5‘7,1‘—1%9%7 1<4<2n—2 even, 1<j<2n-2,
1 -

0, 1<i<2n-—2,

Oan—1,i = o
Wap—1,2n = 0,
N ’_{ ﬁéiﬂ, 1<i<2n—2odd,
i = —ﬁéi—l, 1<4<2n—2even.

With i =1,...,2n — 2, we have the expressions
2n 2n—2

. o 1, 1 1,
vez = kz:l(,dki & 9k = kz:l (wki + 5k’i+1t\/7702n> & Hk - %01 & 0271—1 + ﬁezﬂ:l & 02717

2n 2n—2

o Z Ok, 2n1 © O = Z ——0y, @ Oy,

(A1)

where throughout it is understood that i =1, k +1 € {1,...,2n — 2}.
Let ¢ be any basic one-form on S. Then we may write
2n—2

C=Y_ fubn
k=1
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for some basic functions f on S as {6;}7"? has been chosen to be a basic orthonormal coframe of
g7 It is then easy to see that

Z_: fr
- Vi
so that )
<l =0 (173).
This in turn implies that
Véi; =0 (t—%) for 1 <i<2n—2. (A.2)
Next, from (A.1) it is clear that
2n—2
= 1 i Jr Ik &
V(= df ® 0, — dt®9k+—V0
kzl (W 2/t vt >
omo ; (A.3)
\/— Z (dfk ® 0y, — \/%téQn—l @ 0 + kaék> .
Since the exterior derivative of a basw function is basic, we know that
-0
Consequently, in light of (A.2), we must have that
V¢lg=0 (7).
By inspection it is also clear that
Vool =0 (t7),
Vlanly =0 (t71),
V)] =0 (t’l’k> for k=0, 1, 2.
Collecting all of these estimates together, in summary we have that
V) =0 (t’l’k) for k=0, 1, 2,
\@kC\g:OGS*%*g) for k=0, 1,
V65 :O(t—%> for 1 <4< 2n—2, (A-4)

We now derive the following estimates.

Proposition A.1. In the above situation, the following holds true:

\@Hk(t_l)\g -0 (t—3— (k§1>> forall k > 1,

|§k{|g = (t_%_§> for any basic one-form ¢ on S,
|v’“éi|g_0(t—§) for1<i<2n—2 and for all k> 1,
V*y_1]; = O (t—l—@> for all k> 1,
]V 92n|g =0 ( (k;1>> for all k > 1.
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Proof. We will prove the proposition by induction, where our induction hypothesis P(m) is that for

every 1 <k <m,
(0]

(tféfg) for any basic one-form ¢ on S,
~o(r)

_ (k 1)
|V ‘9271 1|g = (t 1= )

0 (r-4).

9=
P(1) is true by virtue of (A.4). So assume that P(m) holds true for some m > 1. Then beginning
with 65,1, we have that

A~

V00,

alp<C Y VY

i+j+k= )
P ~o(r )
< CZ Vit
L (A.5)
<ct 5[t et 2+Zt§ Vit Y,
i—9 S——

o

/N

tigi(iEQ))
<Ct % (t’l T +t’2>
<Ct "%,

In a similar fashion, one can show that |

_1l-m
g < Ct 2.
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Next, we consider the covariant derivatives of ¢!, We have just shown that
V7 H 0y, 1], < Ct1~% . Using this together with P(m), we compute that
g g

V271 < O™ (171)2bo0-1)
<C Y VIE IV Va5

i+j+k=m+1
50( Yo IVENIVIE ) al02als + D IVIEDIVIE !Vkézn—1|g>
i+j=m+l itjtk=m+1 ﬁ
k>1 1-5 )
< ( Ve g+ S T Vi) )
Z-‘rjfm-‘rl i+j+k=m+1
k>1
SC< MGR G FES I £ VYV ) )
i+j=m+1 0<it+j<m
sc( G Gl e I DI L G MG )
z+]—m+1 0<itj<m
1<j
gC( VT ED G IVED IV E D+ YD [V IV Y,
I o
+¢71m% (t‘Q 2 V(Y [t VRt + tV ()2
+ > t”z"%%t-l)brwt-l)\g))
3<i+5<m
1<j
< C(t—g—’? 2 (Y, e A (t—2 43 4¢3
\—,_z
=O(t_4_%>
+ 5 V)V (] ))
3<i+j<m
1<j
§C<t—3—3” +t‘1”’5< St VIV ))
3<i4+53<m
1<j
sc(ﬂ? +t12’( ot VI Y £ |V (Y)Y ()
3<j<m 3<1+5<m
0<y 1<y
=0(t?) :o(t—é)
+ o), tE v1<t-1>|grvj<t-1>\g>>
3<i+j<m
2<i<j
—o(t4)
<Ot 37,
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As for §; with 1 < i < 2n — 2, we find that

Vi[5 < C( > VPwrlg Vg + D VPV anl V7 Ok
. %f_/ —
ptg=m 1 m p+g+r=m
1<k<2n—2 :O(t_7_7) 1<k<2n—2

+ D VPV a5V i+ D \@P(t1)@\@‘1@%\@@@&1@)
ptrqt+r=m pt+gt+r=m

2n
<o(ta %+ Y ( > ﬁp(t—l)rgt—%ﬁqézb))
[=2n—1 \ptgtr=m
colrite X @erie Y ( 2. ﬁp(rl)\gt-éﬁqéﬂg))
p+r=m l=2n—1 P+(I+>Tl_m
q=

m
m -~ ~ r (g—1)
e I o | S SN A L (o o )
p=0 prqtr=
qg=1
) (g+7)
St Y e (t‘l)\>
p=0 ptg+r=m
qg=>1

Finally, we consider a basic one-form ¢ = 323" 2 fyf; on S, where {f;} are basic functions. First

note that by inspection it is clear that
V) =0 (15F)  for0<k<2,
and since
12672 VF(E2) |y — [VF ()5 = |12t 2VE(E2) |, — [VF(E 2t 7))
< [2t72Vk(t2) — VE(t 2t 2)
< DD VPV

p+qg=k
p,q<k—1
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so that
; _ ~p o1
( VEE g+ Y VPRV z>g)s2|vk<t )l
ptq=Fk
p,q<k—1

§t§<|§’“(t‘1)|g+ >ves 2[5Vt )|g>7
ptq=k
p,g<k-—1

an induction argument assuming P(m) shows that

\@Hk(t_%)]g =0 (f%‘@) forall 1 <k <m.

(m+1)

Using this together with (A.3) 5 < Ct™

for 1 <1i < 2n — 2, we derive the following estimate:

S _1 ~ A
§§C< Z IVP(t72)]; V701
1<k’ -0 (f 3-lgn )
Spr—iv 1S ~a S g
Y VP [V lg 9Tkl 1V ()59 B
—
+qtr+stl=
P 1q§l:§82n—2m :O(t,@)
< _1 ~ ~
+ YL VR AVT‘“em)
P2k Y ( - w>
> St
p+g+r+s+Hl=m

(m+1) ~ m (g+r+1) ~
o e e Ao 1P S S S s el A (D P
pratr=m _—

p>2 _O<,§,(:v52)>

c( 3 (““yvp( 5[,V A+tlg+t§?+t27§>

ptg+r+s+i=

IN

IN

c<t—1—?+ DR e S N AL

prqtr+s+l=m )
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Now, the sum in this last expression can be estimated as follows:

) &0, 1 ~ ~7 A
> (7 2) 5[V () 51902015
p+q+r+s+l=m

§C< ST IR e+ Y R,

ptqt+r+s=m ptqt+r+s+l=m
1>1

—o(-1)

>

) S _1 =, _1 (l+q+r) ~ _
) Ve g+t >t VP(t72) 5|V (¢ 1>|g>
ptgt+r+s=m p+q+72+s+l =m

>1

éC(Z > “lvp(t BN \g+t‘52 2. t‘?ﬁp(t—%)bﬁ%t—l)g)

= Cmen) a1 s
STONT TR g Ve 1)@)
+s=

<Ct % (t%t1+ 15475 4+ t—i—Z ST VP ||V 1)!)
r=3pts=r
m
gct'S(t%JrZ 12173V (t |g+Z ST V)V Yl
r=3s=r v

r=31+s=r

o) o)
i L _1 Ss/a—
+ 30 ST VPRV %)

r=3pts=r
p>2
<Ct_<t I 3+zzw [P(t3) 5t +Z S VPV
r=3p=1 =3ptl=r
pP=

+Z S VP VY

r=3pts=r N
ps>2 :O(,%w)

<Ct 3%,

(t 3+ (T P)) p>2 :O(t_%_,_(’r*l?))

v Q

Hence, in light of the above, we arrive at the fact that

1 (7n+1)

IV, <t =0t e e

as required. This completes the induction step. [l




90

[Agm82]

[And90]
[Aubs4]
[BEG13]
[BGOS]
[Bl05]

[BMS7]

[BM17]
[Bre13]
[BT76]
[Ca096]
[Car97]
[CD20]
[CDS19]
[CH13)]
[CKO4]
[CLNOG]
[DW11]
[EKA90]
[EKAHS6]
[EKASHS5]

[GKK10]

[GodT73]

[Got12]
[GTO01]

[Ham82]

Ronan J. Conlon and Alix Deruelle

REFERENCES

S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations: bounds on eigen-
functions of N-body Schrédinger operators, Mathematical Notes, vol. 29, Princeton University Press,
Princeton, NJ; University of Tokyo Press, Tokyo, 1982. MR 745286

M. Anderson, On the topology of complete manifolds of nonnegative Ricci curvature, Topology 29 (1990),
no. 1, 41-55. MR 1046624

T. Aubin, Réduction du cas positif de l’équation de Monge-Ampeére sur les variétés kahlériennes compactes
& la démonstration d’une inégalité, J. Funct. Anal. 57 (1984), no. 2, 143-153. MR 749521

S. Boucksom, P. Eyssidieux, and V. Guedj, An introduction to the Kahler-Ricci flow, Lecture Notes in
Mathematics, vol. 2086, Springer, Cham, 2013, pp. viii+333. MR 3202578

C. Boyer and K. Galicki, Sasakian geometry, Oxford Mathematical Monographs, Oxford University Press,
Oxford, 2008. MR 2382957

Z. Blocki, On uniform estimate in Calabi-Yau theorem, Sci. China Ser. A 48 (2005), no. suppl., 244-247.
MR 2156505

S. Bando and T. Mabuchi, Uniqueness of Finstein Kdahler metrics modulo connected group actions, Alge-
braic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 11—
40. MR 946233

O. Biquard and H. Macbeth, Steady Kdhler-Ricci solitons on crepant resolutions of finite quotients of C",
arXiv:1711.02019 (2017).

S. Brendle, Rotational symmetry of self-similar solutions to the Ricci flow, Invent. Math. 194 (2013),
no. 3, 731-764. MR 3127066

E. Bedford and B. Taylor, The Dirichlet problem for a complex Monge-Ampére equation, Invent. Math.
37 (1976), no. 1, 1-44. MR 445006

H.-D. Cao, Ezistence of gradient Kdhler-Ricci solitons, Elliptic and parabolic methods in geometry (Min-
neapolis, MN, 1994), A K Peters, Wellesley, MA, 1996, pp. 1-16. MR 1417944

G. Carron, Inégalités de Hardy sur les variétés riemanniennes non-compactes, J. Math. Pures Appl. (9)
76 (1997), no. 10, 883-891.

R. J. Conlon and A. Deruelle, Exzpanding Kdahler-Ricci solitons coming out of Kdhler cones, J. Differential
Geom. 115 (2020), 303-365.

R. J. Conlon, A. Deruelle, and S. Sun, Classification results for expanding and shrinking gradient Kdhler-
Ricei solitons, arXiv:1904.00147 (2019).

R. J. Conlon and H.-J. Hein, Asymptotically conical Calabi-Yau manifolds, I, Duke Math. J. 162 (2013),
no. 15, 2855-2902. MR 3161306

B. Chow and D. Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs, vol.
110, American Mathematical Society, Providence, RI, 2004. MR 2061425

B. Chow, P. Lu, and L. Ni, Hamilton’s Ricci flow, Graduate Studies in Mathematics, vol. 77, American
Mathematical Society, Providence, RI; Science Press, New York, 2006. MR 2274812

A. Dancer and M. Wang, On Ricci solitons of cohomogeneity one, Ann. Global Anal. Geom. 39 (2011),
no. 3, 259-292. MR 2769300 (2012a:53124)

A. El Kacimi-Alaoui, Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications,
Compositio Math. 73 (1990), no. 1, 57-106. MR 1042454 (91f:58089)

A. El Kacimi-Alaoui and G. Hector, Décomposition de Hodge basique pour un feuilletage riemannien,
Ann. Inst. Fourier (Grenoble) 36 (1986), no. 3, 207-227. MR 865667 (87m:57029)

A. El Kacimi-Alaoui, V. Sergiescu, and G. Hector, La cohomologie basique d’un feuilletage riemannien
est de dimension finie, Math. Z. 188 (1985), no. 4, 593-599. MR, 774559 (86j:53051)

D. Greb, S. Kebekus, and S. Kovéacs, Fxtension theorems for differential forms and Bogomolov-Sommese
vanishing on log canonical varieties, Compos. Math. 146 (2010), no. 1, 193-219. MR 2581247
(2011c:14054)

R. Godement, Topologie algébrique et théorie des faisceaur, Hermann, Paris, 1973, Troisiéeme édition revue
et corrigée, Publications de I'Institut de Mathématique de 1’Université de Strasbourg, XIII, Actualités
Scientifiques et Industrielles, No. 1252. MR 0345092 (49 #9831)

R. Goto, Calabi- Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated singu-
larities, J. Math. Soc. Japan 64 (2012), no. 3, 1005-1052. MR, 2965437

D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order, Classics in Mathemat-
ics, Springer-Verlag, Berlin, 2001, Reprint of the 1998 edition. MR 1814364

R. Hamilton, Three-manifolds with positive Ricci curvature, J. Differ. Geom. 17 (1982), no. 2, 255-306.
MR 664497 (84a:53050)



[Ham88|

[Heil0]
[HHN15]

[HL97]

[HZZ11]
[Ive93]
[Joy00]

[Kol98]
[Kol07]

[Li10]
[Li12]

[LRO2]
[MSYO8)]
[MW11]
[PR96]
[PSS07]
[SC92]

[Sch20]
[Shis9)

[Sie13]
[Tak85]
[Tia00]
[TY90]
[TY91]
[TZ00a]

[TZ00D]
[vC10]

[vC11]
[WZ04]

[Yan12]

[YauT78]

Steady gradient K&hler-Ricci solitons on crepant resolutions of Calabi-Yau cones 91

, The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), Contemp.
Math., vol. 71, Amer. Math. Soc., Providence, RI, 1988, pp. 237-262. MR 954419

H.-J. Hein, Complete Calabi- Yau metrics from P?#9P?, arXiv:1003.2646 (2010).

M. Haskins, H.-J. Hein, and J. Nordstrom, Asymptotically cylindrical Calabi-Yau manifolds, J. Differential
Geom. 101 (2015), 213-265.

Q. Han and F. Lin, Elliptic partial differential equations, Courant Lecture Notes in Mathematics, vol. 1,

New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical
Society, Providence, RI, 1997. MR 1669352

G. Huang, C. Zhang, and J. Zhang, Liouville-type theorem for the drifting Laplacian operator, Arch. Math.
(Basel) 96 (2011), no. 4, 379-385. MR, 2794093

T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4, 301-307.
MR 1249376

D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs, Oxford University
Press, Oxford, 2000. MR 1787733 (2001k:53093)

S. Kolodziej, The complex Monge-Ampere equation, Acta Math. 180 (1998), no. 1, 69-117. MR 1618325
J. Kollar, Lectures on resolution of singularities, Annals of Mathematics Studies, vol. 166, Princeton
University Press, Princeton, NJ, 2007. MR 2289519

C. Li, On rotationally symmetric Kdhler-Ricci solitons, arXiv:1004.4049 (2010).

P. Li, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge University
Press, Cambridge, 2012. MR 2962229

J. Lee and K. Richardson, Lichnerowicz and Obata theorems for foliations, Pacific J. Math. 206 (2002),
no. 2, 339-357. MR 1926781

D. Martelli, J. Sparks, and S.-T. Yau, Sasaki-Finstein manifolds and volume minimisation, Comm. Math.
Phys. 280 (2008), no. 3, 611-673. MR 2399609 (2009d:53054)

O. Munteanu and J. Wang, Smooth metric measure spaces with non-negative curvature, Comm. Anal.
Geom. 19 (2011), no. 3, 451-486. MR, 2843238

E. Park and K. Richardson, The basic Laplacian of a Riemannian foliation, Amer. J. Math. 118 (1996),
no. 6, 1249-1275. MR 1420923

D. Phong, N. Sesum, and J. Sturm, Multiplier ideal sheaves and the Kdhler-Ricci flow, Comm. Anal.
Geom. 15 (2007), no. 3, 613-632. MR 2379807

L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Differential Geom. 36 (1992),
no. 2, 417-450. MR 1180389 (93m:58122)

J. Schiifer, Existence and uniqueness of S*-invariant Kdhler-Ricci solitons, arXiv:2001.09858 (2020).
W.-X. Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989),
no. 1, 223-301. MR 1001277

M. Siepmann, Ricci flows of Ricci flat cones, Ph.D. thesis, ETH Ziirich, 2013, available at http://
e-collection.library.ethz.ch/eserv/eth:7556/eth-7556-02.pdf.

K. Takegoshi, Relative vanishing theorems in analytic spaces, Duke Math. J. 52 (1985), no. 1, 273-279.
MR 791302 (86i:32049)

G. Tian, Canonical metrics in Kdhler geometry, Lectures in Mathematics ETH Ziirich, Birkhauser Verlag,
Basel, 2000, Notes taken by Meike Akveld. MR 1787650

G. Tian and S.-T. Yau, Complete Kdhler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc. 3
(1990), no. 3, 579-609. MR 1040196 (91a:53096)

, Complete Kihler manifolds with zero Ricci curvature. II, Invent. Math. 106 (1991), no. 1, 27-60.
MR 1123371 (92j:32028)

G. Tian and X. Zhu, Uniqueness of Kdhler-Ricci solitons, Acta Math. 184 (2000), no. 2, 271-305.
MR 1768112

, Uniqueness of Kahler-Ricci solitons, Acta Math. 184 (2000), no. 2, 271-305. MR 1768112

C. van Coevering, Ricci-flat Kdhler metrics on crepant resolutions of Kdhler cones, Math. Ann. 347
(2010), no. 3, 581-611. MR 2640044

, Examples of asymptotically conical Ricci-flat Kdhler manifolds, Math. Z. 267 (2011), 465-496.
X.-J. Wang and X. Zhu, Kdhler-Ricci solitons on toric manifolds with positive first Chern class, Adv.
Math. 188 (2004), no. 1, 87-103. MR, 2084775

B. Yang, A characterization of noncompact Koiso-type solitons, Internat. J. Math. 23 (2012), no. 5,
1250054, 13. MR 2914656

S.-T. Yau, On the Ricci curvature of a compact Kdhler manifold and the complex Monge-Ampére equation.
I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339-411. MR 480350



http://e-collection.library.ethz.ch/eserv/eth:7556/eth-7556-02.pdf
http://e-collection.library.ethz.ch/eserv/eth:7556/eth-7556-02.pdf

92 Ronan J. Conlon and Alix Deruelle

[Zha09] Z.-H. Zhang, On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc. 137 (2009), no. 8,
2755-2759. MR 2497489

[Zhall] Q. Zhang, Sobolev inequalities, heat kernels under Ricci flow, and the Poincaré conjecture, CRC Press,
Boca Raton, FL, 2011. MR 2676347

[Zhu00] X. Zhu, Kdhler-Ricci soliton typed equations on compact complexr manifolds with C1(M) > 0, J. Geom.

Anal. 10 (2000), no. 4, 759-774. MR 1817785

DEPARTMENT OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF TEXAS AT DALLAS, RICHARDSON, TX 75080
Email address: ronan.conlon@utdallas.edu

INSTITUT DE MATHEMATIQUES DE JUSSIEU, 4, PLACE JUSSIEU, BOITE COURRIER 247 - 75252 PARIS
Email address: alix.deruelle@imj-prg.fr



	1. Introduction
	1.1. Overview
	1.2. Main result
	1.3. The C0-estimate
	1.4. Outline of paper
	1.5. Acknowledgements

	2. Preliminaries
	2.1. Cones
	2.2. Steady Ricci solitons

	3. Asymptotics of Cao's steady gradient Kähler-Ricci soliton
	4. Constructing a background metric and the equation set-up
	4.1. Construction of an approximate soliton
	4.2. Set-up of the complex Monge-Ampère equation

	5. Poincaré inequality for steady gradient Ricci solitons
	6. Invertibility of the drift Laplacian: exponential case
	6.1. Main setting
	6.2. Function spaces
	6.3. Preliminaries and Fredholm properties of the linearised operator
	6.4. Small perturbations of steady gradient Kähler-Ricci solitons: exponential case

	7. A priori estimates
	7.1. A priori C0-estimate
	7.2. A priori estimates on higher derivatives
	7.3. Weighted a priori estimates
	7.4. Proof of Theorem 7.1

	8. Invertibility of the drift Laplacian: polynomial case
	8.1. Function spaces
	8.2. Preliminaries and Fredholm properties of the linearised operator
	8.3. Small perturbations of steady gradient Kähler-Ricci solitons: polynomial case
	8.4. Surjectivity of the drift Laplacian

	9. Proof of Theorem A
	9.1. Existence
	9.2. Uniqueness

	Appendix A. The model metric 
	References

