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An Aubin continuity path for shrinking
gradient Kähler–Ricci solitons

By Charles Cifarelli at Stony Brook, Ronan J. Conlon at Richardson
and Alix Deruelle at Orsay

Abstract. Let D be a toric Kähler–Einstein Fano manifold. We show that any toric
shrinking gradient Kähler–Ricci soliton on certain toric blowups of C �D satisfies a complex
Monge–Ampère equation. We then set up an Aubin continuity path to solve this equation and
show that it has a solution at the initial value of the path parameter. This we do by implementing
another continuity method.

Contents

1. Introduction
2. Preliminaries
3. Proof of Theorem A (ii): Construction of a background metric
4. Proof of Theorem A (iii), (iv): Set-up of the complex Monge–Ampère equation
5. Poincaré inequality
6. Linear theory
7. Proof of Theorem A (v): A priori estimates
References

1. Introduction

1.1. Overview. A Ricci soliton is a triple .M; g;X/, where M is a Riemannian mani-
fold endowed with a complete Riemannian metric g and a complete vector field X , such
that

(1.1) Ricg C
1

2
LXg D �g
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for some � 2 R. The vector field X is called the soliton vector field. If X D rgf for some
smooth real-valued function f on M , then we say that .M; g;X/ is gradient. In this case, the
soliton equation (1.1) becomes Ricg CHessg.f / D �g, and we call f the soliton potential. In
the case of gradient Ricci solitons, the completeness of X is guaranteed by the completeness
of g (see [40]).

Let .M; g;X/ be a Ricci soliton. If g is Kähler and X is real holomorphic, then we say
that .M; g;X/ is a Kähler–Ricci soliton. Let ! denote the Kähler form of g. If .M; g;X/ is in
addition gradient, then (1.1) may be rewritten as

(1.2) �! C i𝜕N𝜕f D �!;

where �! is the Ricci form of ! and f is the soliton potential.
Finally, a Ricci soliton and a Kähler–Ricci soliton are called steady if � D 0, expanding

if � < 0, and shrinking if � > 0 in (1.1). One can always normalise �, when non-zero, to satisfy
j�j D 1. We henceforth assume that this is the case.

Ricci solitons are interesting both from the point of view of canonical metrics and of
the Ricci flow. On one hand, they represent one direction in which the concept of an Einstein
manifold can be generalised. On compact manifolds, shrinking Ricci solitons are known to
exist in several instances where there are obstructions to the existence of Einstein metrics; see
for example [37]. By the maximum principle, there are no nontrivial expanding or steady Ricci
solitons on compact manifolds. However, there are many examples on non-compact manifolds;
see for example [15, 16, 22] and the references therein. On the other hand, one can associate to
a Ricci soliton a self-similar solution of the Ricci flow, and gradient shrinking Ricci solitons
in particular provide models for finite-time Type I singularities of the flow [20, 29]. From this
perspective, it is an important problem to classify such solitons in order to better understand
singularity development along the Ricci flow.

In this article, we are concerned with the construction of shrinking gradient Kähler–Ricci
solitons, models for finite-time Type I singularities of the Kähler–Ricci flow. In essence, we set
up an Aubin continuity path for a complex Monge–Ampère equation to construct such solitons
in a particular geometric setting that allows for control on the data of the equation. We then
show that there is a solution to the equation for the initial value of the path parameter. This we
do by implementing another continuity path.

1.2. Main result. In order to state the main result, recall that a complex toric manifold
is a smooth n-dimensional complex manifoldD endowed with an effective holomorphic action
of the complex torus .C�/n with a compact fixed point set. In such a setting, there always
exists an orbit U � D of the .C�/n-action which is open and dense inD. The .C�/n-action of
course determines the holomorphic action of a real torus T n � .C�/n, as is easily seen for the
action of the one-dimensional torus C� on P1 via � � Œz0 W z1� 7! Œ�z1 W z2�. This assumption
is crucial for obtaining a uniform lower bound on the solution along our continuity path. Our
main result is stated as follows.

Theorem A. Let Dn�1 be a toric Kähler–Einstein Fano manifold of complex dimen-
sion n � 1 with Kähler form !D and Ricci form �!D D !D , and consider P1 �D with the
induced product torus action acting by rotation on the P1-factor. Let T n denote the real torus
acting on P1 �D, write Dx ´ ¹xº �D, and let M be a toric Fano manifold obtained as
a torus-equivariant (possibly iterated) blowup � WM ! P1 �D along smooth torus-invariant
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subvarieties contained in D0. Let M ´M n ��1.D1/, yM ´ C �D, write J for the com-
plex structure on M , t for the Lie algebra of T n, and let z denote the holomorphic coordinate
on the C-factor of yM . Then

(i) there exists a unique complete real holomorphic vector field JX 2 t such that X is the
soliton vector field of any complete toric shrinking gradient Kähler–Ricci soliton on M .

Assume that the flow lines of JX are closed. Then

(ii) there exists a complete Kähler metric ! on M invariant under the action of T , � > 0
uniquely determined by X , and a holomorphic isometry

�W .M nK;!/! . yM n yK; y! ´ !C C !D/;

where K �M , yK � yM are compact and !C ´
i
2
𝜕N𝜕jzj2�, such that

d�.X/ D
2

�
� Re.z𝜕z/:

(iii) There exists a unique torus-invariant function f 2 C1.M/ such that �!yJX D df .
Moreover, f D ��

�
jzj2�

2
� 1

�
and �!f C f �

X
2
� f D 0 outside a compact subset of

M containing K.

(iv) Any shrinking Kähler–Ricci soliton on M invariant under the action of T of the form

! C i𝜕N𝜕' for some ' 2 C1.M/ with ! C i𝜕N𝜕' > 0

satisfies the complex Monge–Ampère equation

(1.3) .! C i𝜕N𝜕'/n D eFCX
2
�'�'!n;

where F 2 C1.M/ is equal to a constant outside a compact subset of M and is deter-
mined by the fact that

�! C
1

2
LX! � ! D i𝜕N𝜕F and

Z
M

.eF � 1/e�f !n D 0:

Here, �! denotes the Ricci form of !.

(v) There exists a function  2 C1.M/ invariant under the action of T and with

! C i𝜕N𝜕 > 0

such that

(1.4) .! C i𝜕N𝜕 /n D eFCX
2
� !n;

where
R
M  e�f !n D 0 and, outside a compact subset,  D c1 logf C c2C # for some

constants c1; c2 2 R and a smooth real-valued function # WM ! R satisfying

jr
iL

.j /
X #j! D O.f �

ˇ
2 / for all i; j 2 N; ˇ 2 .0; �D/:

Here, r denotes the Levi-Civita connection associated to !,

L
.j /
X D LX ı � � � ı LX„ ƒ‚ …

j -times

;

and �D is the first non-zero eigenvalue of ��D acting on L2-functions on D.
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Note that, since M does not split off any S1-factors, toricity implies that M has finite
fundamental group [17], a necessary condition for the existence of a shrinking gradient Kähler–
Ricci soliton on M (see [38]). Note also that, throughout, our convention for the Kähler
Laplacian �! is that with respect to the Kähler form !, �!f D tr!.i𝜕N𝜕f / for f a smooth
real-valued function, so that the eigenvalues of minus the Laplacian are non-negative on a com-
pact Riemannian manifold.

Part (i) of the theorem determines the soliton vector field of any complete toric shrinking
gradient Kähler–Ricci soliton on M and follows immediately from [12, Theorem A], where it
is asserted that a complete toric shrinking gradient Kähler–Ricci soliton is unique up to biholo-
morphism. The vector field JX is characterised by the fact that it is the point in a specific open
convex subset of t at which a certain strictly convex functional attains its minimum. More pre-
cisely, because H 1.M;R/ D 0 and M is toric, the action of T is Hamiltonian and there exists
a strictly convex functional F! Wƒ! ! R>0, the “weighted volume functional” [16, Defini-
tion 5.16], defined on an open convex cone ƒ! � t uniquely determined by the image of M
under the moment map defined by the action of T and the choice of ! (see [31, Proposi-
tion 1.4]) and well-defined by the non-compact version of the Duistermaat–Heckman formula
[31] (see also [16, Theorem A.3]). Because T provides a full-dimensional torus symmetry, the
domain ƒ! of F! and F! itself only depend on the torus action [13] so that both are indepen-
dent of the choice of !. Furthermore, henceforth dropping the subscripts !, F is known to be
strictly convex [16, Lemma 5.17 (i)] and in addition proper [12, Proposition 3.1] on ƒ in the
toric case, and so it must attain a unique minimum onƒ. This minimum defines a distinguished
point in t, namely the only vector field in t that can admit a complete toric shrinking gradient
Kähler–Ricci soliton [12, Theorem 4.6]. This is precisely the vector field JX of Theorem A (i).
Since everything is explicit and is determined by the torus action, one can a priori determine
this vector field for a given M ; see for example [16, Section A.4].

Parts (ii) and (iii) give a reference metric on M that is isometric to a model shrinking
gradient Kähler–Ricci soliton outside a compact set. This requires the assumption that the flow
lines of JX are closed. Indeed, this is the case for the soliton vector field on the model. With
respect to this background metric, part (iv) gives a complex Monge–Ampère equation (1.3)
that any complete toric shrinking gradient Kähler–Ricci soliton onM must satisfy with control
on the asymptotics of the data F of the equation. By [12], we know that there is at most one
such soliton on M and we expect that this equation has a solution, resulting in a complete
toric shrinking gradient Kähler–Ricci soliton on M . Such a soliton should model finite time
collapsing of the Kähler–Ricci flow in order to be consistent with [36]. One may attempt to
solve (1.3) by implementing the Aubin continuity path that was introduced for Kähler–Einstein
manifolds [4, Section 7.26]. Specifically, in our case, one may consider the path

(�t )

8̂̂̂<̂
ˆ̂:
.! C i𝜕N𝜕't /n D eFCX

2
�'t�t't!n; ' 2 C1.M/; LJX' D 0;

! C i𝜕N𝜕' > 0; t 2 Œ0; 1�;Z
M

eF�f !n D

Z
M

e�f !n:

The main content of Theorem A is part (v) where we provide a solution to the equation corre-
sponding to t D 0. This we do by implementing another continuity path. In the compact case,
this was achieved by Zhu [41].

The simplest example of a toric Fano manifoldD satisfying the conditions of Theorem A
is D D P1 with � the blowup map. Indeed, these choices result in M being the blowup of
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C � P1 at one point, a manifold for which the flow lines of JX close as one can see from
Example 2.24 or [13, Example 2.33]. In [13, Conjecture 1.1], M was identified as a new
manifold potentially admitting a (unique) complete shrinking gradient Kähler–Ricci soliton
with bounded scalar curvature. Thanks to [6], it is now known that M admits such a soliton.
However, the proof of existence in [6] is strictly dimension dependent and is indirect in that
the soliton is constructed as a blowup limit of a specific Kähler–Ricci flow on the blowup of
P1 � P1 at one point. The principal motivation behind Theorem A therefore is that it provides
a first step in a direct construction of this soliton on M , namely via the continuity method,
and is more widely applicable than the methods of [6]. It also serves to provide examples of
non-compact manifolds with strictly positive Bakry–Emery tensor.

Equation (1.4) a priori looks identical to the complex Monge–Ampère equation solved
in [15], where complete steady gradient Kähler–Ricci solitons were constructed. Even though
the equations appear the same and the same continuity path is used in both cases, there are
several important differences between the two that result in additional difficulties arising in the
solution of (1.4) in contrast to the equation of [15]. We conclude this section by highlighting
some of these differences.

� On a closed Kähler manifold, the X -derivative of any Kähler potential is bounded prior
to any other bound; see [41]. This fact does not seem to be amenable to an arbitrary non-
compact Kähler manifold and represents one of the major obstacles to adapting Tian and
Zhu’s work [35] to our current setting. For us, not only is the drift operator X of (1.4)
unbounded, in contrast to [15] where it is bounded, but it also has the opposite sign. This
prevents us from adapting the proof of the C 0 a priori estimate in [15] to the present
situation.

� In [41], a generalisation of Calabi’s conjecture was proved on compact Kähler manifolds
using a continuity path that shrinks the hypothetical soliton vector field X to zero as the
path parameter tends to zero, thereby reducing the existence at the initial value of the path
parameter to Yau’s solution of the Calabi conjecture [39]. In our setting, implementing
such a continuity path to solve (1.3) does not preserve the weighted volume, and indeed,
the weighted volume diverges at the initial value of the path parameter. This explains why
the Aubin continuity path is more suited to solving (1.3), which yields (1.4) at the initial
value of the path parameter (in contrast to the Calabi–Yau equation). This is precisely the
equation that we provide a solution to in Theorem A (v).

� In [15], the corresponding equation was solved using the continuity path with exponen-
tially weighted function spaces. Here, we solve (1.4) in polynomially weighted function
spaces. This difference is derived from the fact that, in the present situation, the linearised
operator contains logarithmically growing functions in its kernel at infinity. This makes
the linear theory more delicate than in the previous work [15].

� In obtaining an a priori C 0-estimate for (1.4), the toricity assumption is crucial. This
was not the case in [15] where no toricity was required. However, a priori weighted Lp-
estimates on the solution of (1.4) are obtained without requiring toricity. The same also
applies to the a priori estimates apart from the one concerning a lower bound on the
solution. This will all be made clear in the relevant statements throughout.

� The order in which we obtain the a priori estimates differs to that of [15]. Here we first
obtain an a priori lower bound on the radial derivative of the solution. This then allows
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us to derive an a priori upper bound on the solution. The next step is to derive an a priori
lower bound on the solution. At this stage, we follow the same strategy as that of [15] to
obtain a priori local estimates on the solution.

� In addition to containing logarithmically growing functions, the kernel of the linearised
operator in the present situation contains constants, a fact that makes the a priori weighted
estimate of the difference of the solution and of its value at infinity more subtle in a non-
linear setting. To circumvent this issue, we apply the Bochner formula to theX -derivative
of our solution with respect to the unknown Kähler metric.

� Our geometric setting bears some resemblance to the work [25] on asymptotically cylin-
drical Calabi–Yau metrics. However, in the context of metric measure spaces, our setting
is somewhat dissimilar to theirs in that, as metric measure spaces, our spaces have finite
volume, whereas their spaces have infinite volume. This forces us to take an alternative
approach to obtain (weighted) a priori estimates.

1.3. Outline of paper. We begin in Section 2.1 by recalling the basics of shrinking
Ricci and Kähler–Ricci solitons. Some important examples are discussed as well as some tech-
nical lemmas proved. We also recall the definition of a metric measure space in Section 2.2. In
Section 2.3, we digress and define polyhedrons and polyhedral cones before moving on to the
definition of a Hamiltonian action in Section 2.4. Section 2.5 then comprises the background
material on toric geometry that we require.

In Section 3, we construct a background metric with the desired properties, resulting
in the proof of Theorem A (ii). Next, in Section 4, the complex Monge–Ampère equation is
set up and the normalisation of the Hamiltonian of JX is obtained, leading to the proof of
Theorem A (iii)–(iv). Our background metric is isometric to a shrinking gradient Kähler–Ricci
soliton compatible with X outside a compact set. This is what allows us to set up the complex
Monge–Ampère equation with compactly supported data.

From Section 5 onwards, the content takes on a more analytic flavour with the proof of
Theorem A (v) taking up Sections 5–7. To prove this part of Theorem A, we implement the
continuity method. The specific continuity path that we consider is outlined at the beginning
of Section 7, but beforehand, in Section 5, we prove a Poincaré inequality which is the content
of Proposition 5.1. This is essential in deriving the a priori weighted energy estimate for the
complex Monge–Ampère equation (1.3) with compactly supported data.

In Section 6, we study the properties of the drift Laplacian of our background metric
acting on polynomially weighted function spaces. More precisely, we introduce polynomially
weighted function spaces whose elements are invariant under the flow of JX in Section 6.2.
We follow this up in Section 6.3 by showing that the drift Laplacian of our background metric
is an isomorphism between such spaces. This latter result is the content of Theorem 6.3. Using
it, we then prove Theorem 6.12 that serves as the openness part of the continuity argument.
The closedness part involves a priori estimates and these make up Section 7.

As noted previously, the presence of the unbounded vector field X makes the analysis
much more involved. An a priori lower bound for the radial derivative X �  , where  solves
(1.3), has to be proved before the a priori C 0 bound in order to avoid a circular argument; see
Section 7.4. A priori energy estimates are obtained in Section 7.5 through the use of the so-
called Aubin–Tian–Zhu functionals and result in an a priori upper bound on a solution to the
complex Monge–Ampère equation (1.3); cf. Proposition 7.11. As explained above, the invar-
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iance of the solution under the whole action torus is crucial in obtaining an a priori lower
bound on the infimum; cf. Proposition 7.19. Then and only then an a priori upper bound on the
radial derivative of a solution to (1.3) is derived; cf. Proposition 7.6. Section 7.7 is devoted to
proving a local bootstrapping phenomenon for (1.3). Finally, Section 7.8 takes care of estab-
lishing a priori weighted estimates at infinity for (1.3), leading to the completion of the proof
of Theorem A (v) in Section 7.9.

2. Preliminaries

2.1. Shrinking Ricci solitons. Recall the definitions given at the beginning of Sec-
tion 1.1. An important class of examples of such manifolds for us is the following.

Example 2.1. We have a 1-parameter family ¹ z!aºa>0 of (incomplete) shrinking gra-
dient Kähler–Ricci solitons on C. Indeed, for each a > 0, the Kähler form of the shrinking
soliton is given by z!a ´

i
2
𝜕N𝜕jzj2a, where z is the holomorphic coordinate on C. The soliton

vector field of z!a is given by 2
a
� Re.z𝜕z/. Of course, when a D 1, z!a is complete and we

recover the flat shrinking Gaussian soliton !C on C with soliton vector field 2 � Re.z𝜕z/.

Any Kähler–Einstein manifold trivially defines a shrinking gradient Kähler–Ricci soliton
(with soliton vector field X D 0). We may then take the Cartesian product with Example 2.1 to
produce many more examples. These examples provide the model at infinity for the reference
metric that we will construct in Theorem A (i).

Example 2.2. Let .D; !D/ be a Kähler–Einstein Fano manifold with Kähler form !D .
Then, for each a > 0, the Cartesian product yM ´ C �D endowed with the Kähler form
y!a ´ z!a C !D is an example of an (incomplete) shrinking gradient Kähler–Ricci soliton.
Here, z!a is as in Example 2.1. Writing r ´ jzja with z the complex coordinate on the C-
factor of yM , the soliton vector field of this example is given by yX ´ r𝜕r D 2

a
� Re.z𝜕z/. When

a D 1, the soliton is complete, and up to isometry, we obtain a complete shrinking gradient
Kähler–Ricci soliton on C �D with bounded scalar curvature which is unique if D is more-
over toric [12, Corollary C]. We write yga and yJ for the Kähler metric associated to y!a and
product complex structure on yM , respectively.

The following lemma concerning . yM; y!a/ will prove useful throughout.

Lemma 2.3. With notation as in Example 2.2, fix a > 0 (and hence the function r) and
let yK � yM be a compact subset such that yM n yK is connected. If uW yM n yK ! R is a smooth
real-valued function defined on yM n yK that is pluriharmonic (meaning that 𝜕N𝜕u D 0) and
invariant under the flow of yJ yX , then u D c0 log.r/C c1 for some c0; c1 2 R.

Proof. Let yX1;0 ´ 1
2
. yX � i yJ yX/. Then, since yX is real holomorphic and L yJ yXu D 0,

we see that
N𝜕. yX � u/ D 𝜕N𝜕uy. yX1;0/ D 0;

i.e., yX � u is holomorphic. As a real-valued holomorphic function, yX � u, which itself is equal
to r𝜕ru, must be equal to a constant, c0 say. Thus, because u is invariant under the flow of yJ yX ,
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we can write u D c0 log r C c1.x/, where x 2 D. Let �C and �D denote the Riemannian
Laplacians with respect to the flat metric gC on C and the Kähler–Einstein metric !D on D,
respectively. Then u being pluriharmonic implies that �CuC�Du D 0, and so

0 D .�D C�C/.c0 log.r/C c1.x//

D �Dc1.x/C�Cc1.x/„ ƒ‚ …
D0

Cc0�C log.r/„ ƒ‚ …
D0

D �Dc1.x/;

which leads to c1.x/ D c1. This leaves us with u D c0 log.r/C c1, as desired.

We conclude this section with a gluing lemma.

Lemma 2.4 (Gluing lemma). With notation as in Example 2.2, fix a > 0 (and hence the
function r), let yK � yM be a compact subset, and let � 2 C1. yM n yK/ be such that

� D O.log.r//; jd�jyga D O.1/; and ji𝜕N𝜕�jyga D O.r�a/:

Then, for all R > 0 with yK � ¹r � Rº, there exists a cut-off function �RWM ! R supported
on M n ¹r � Rº with �R.x/ D 1 if r.x/ > 2R such that

ji𝜕N𝜕.�R � �/jyga �
C

Rmin¹1;aº

�
k.log.r//�1 � �k

C0. yMn yK/
C kd�kC0. yMn yK;yga/

C kra � i𝜕N𝜕�kC0. yMn yK;yga/

�
for some C > 0 independent of R. In particular, �R � � D � on ¹r.x/ > 2Rº.

Proof. Let �WR ! R be a smooth function satisfying �.x/ D 0 for x � 1, �.x/ D 1

for x � 4, and j�.x/j � 1 for all x, and with it, define a function �RWM ! R by

�R.x/ D �
�r.x/2
R2

�
for R > 0 as in the statement of the lemma:

Then �R is identically zero on ¹x 2 yM j r.x/ < Rº and identically equal to one on the set
¹x 2 yM j r.x/ > 2Rº. Define �R ´ �R:�. Then the closed real .1; 1/-form i𝜕N𝜕.�R:�/ on yM

is given by

i𝜕N𝜕.�R:�/ D �R.r/:i𝜕N𝜕� C �0
� r2
R2

�
:i
𝜕r2

R
^

N𝜕�
R

C
�

R2
:�0

� r2
R2

�
:i𝜕N𝜕r2

C �0
� r2
R2

�
:
i𝜕�
R

^

N𝜕r2

R
C

�

R2
:�00

� r2
R2

�
:i
𝜕r2

R
^

N𝜕r2

R
:

The assumptions on � and its derivatives then imply for example that

j�R.x/:i𝜕N𝜕�jyga � sup
r2ŒR;1/

ji𝜕N𝜕�jyga �
�

sup
r2ŒR;1/

r�a
��

sup
r2ŒR;1/

ra � ji𝜕N𝜕�jyga
�

� R�a
kra � i𝜕N𝜕�kC0. yMn yK;yga/

and that ˇ̌̌
�0
� r2
R2

�
:i
𝜕r2

R
^

N𝜕�
R

ˇ̌̌
yga

�
C

R2

�
sup

r2ŒR;2R�

r
��

sup
r2ŒR;2R�

ji𝜕r ^ N𝜕�jyga
�

� CR�1
kd�kC0. yMn yK;yga/:

The estimate of the lemma is now clear.
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2.2. Basics of metric measure spaces. We take the following from [21]. A smooth
metric measure space is a Riemannian manifold endowed with a weighted volume.

Definition 2.5. A smooth metric measure space is a triple .M; g; e�f dVg/, where
.M; g/ is a complete Riemannian manifold with Riemannian metric g, dVg is the volume
form associated to g, and f WM ! R is a smooth real-valued function.

A shrinking gradient Ricci soliton .M; g;X/ with X D rgf naturally defines a smooth
metric measure space .M; g; e�f dVg/. On such a space, we define the weighted Laplacian
�f by

�f u´ �u � g.rgf;ru/

on smooth real-valued functions u 2 C1.M;R/. There is a natural L2-inner product h � ; � iL2
f

on the space L2
f

of square-integrable smooth real-valued functions on M with respect to the
measure e�f dVg defined by

hu; viL2
f
´

Z
M

uve�f dVg ; u; v 2 L2f :

As one can easily verify, the operator �f is self-adjoint with respect to h � ; � iL2
f

.

2.3. Polyhedrons and polyhedral cones. We take the following from [17]. Let E be
a real vector space of dimension n and let E� denote the dual. Write h � ; � i for the evaluation
E� �E ! R. Furthermore, assume that we are given a lattice � � E, that is, an additive
subgroup � ' Zn. This gives rise to a dual lattice �� � E�. For any � 2 E, c 2 R, letK.�; c/
be the (closed) half-space ¹x 2 E j h�; xi � cº in E. Then we have the following definition.

Definition 2.6. A polyhedron P in E is a finite intersection of half-spaces, i.e.,

P D

r\
iD1

K.�i ; ci / for �i 2 E�; ci 2 R:

It is called a polyhedral cone if all ci D 0, and moreover a rational polyhedral cone if all
�i 2 �

� and ci D 0. In addition, a polyhedron is called strongly convex if it does not contain
any affine subspace of E.

The following definition will be useful.

Definition 2.7. A polyhedron P � E� is called Delzant if its set of vertices is non-
empty and each vertex v 2 P has the property that there are precisely n edges ¹e1; : : : ; enº

(one-dimensional faces) emanating from v and there exists a basis ¹"1; : : : ; "nº of �� such that
"i lies along the ray R.ei � v/.

Note that any such P is necessarily strongly convex. We also have the following.

Definition 2.8. The dual of a polyhedral cone C is the set

C_
D ¹x 2 E�

j hx; C i � 0º:
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2.4. Hamiltonian actions. Recall what it means for an action to be Hamiltonian.

Definition 2.9. Let .M;!/ be a symplectic manifold and let T be a real torus acting by
symplectomorphisms on .M;!/. Denote by t the Lie algebra of T and by t� its dual. Then we
say that the action of T is Hamiltonian if there exists a smooth map �! WM ! t� such that, for
all � 2 t, �!y� D du� , where u� .x/ D h�!.x/; �i for all � 2 t and x 2M and h � ; � i denotes
the dual pairing between t and t�. We call �! the moment map of the T -action and we call u�
the Hamiltonian (potential) of �.

2.5. Toric geometry. In this section, we collect together some standard facts from toric
geometry as well as recall those results from [12] that we require. We begin with the following
definition.

Definition 2.10. A toric manifold is an n-dimensional complex manifold M endowed
with an effective holomorphic action of the algebraic torus .C�/n such that the following hold
true.

� The fixed point set of the .C�/n-action is compact.

� There exists a point p 2M with the property that the orbit .C�/n � p �M forms a dense
open subset of M .

We will often denote the dense orbit simply by .C�/n �M in what follows. The .C�/n-
action of course determines the action of the real torus T n � .C�/n.

2.5.1. Divisors on toric varieties and fans. Let T n � .C�/n be the real torus with
Lie algebra t and denote the dual pairing between t and the dual space t� by h � ; � i. There is
a natural integer lattice � ' Zn � t comprising all � 2 t such that exp.�/ 2 T n is the identity.
This then induces a dual lattice �� � t�. We have the following combinatorial definition.

Definition 2.11. A fan † in t is a finite set of rational polyhedral cones � satisfying the
following.

(i) For every � 2 †, each face of � also lies in †.

(ii) For every pair �1; �2 2 †, �1 \ �2 is a face of each.

To each fan † in t, one can associate a toric variety X†. Heuristically, † contains all
the data necessary to produce a partial equivariant compactification of .C�/n, resulting in X†.
More concretely, one obtains X† from † as follows. For each n-dimensional cone � 2 †, one
constructs an affine toric variety U� which we first explain. We have the dual cone �_ of � .
Denote by S� the semigroup of those lattice points which lie in �_ under addition. Then one
defines the semigroup ring, as a set, as all finite sums of the form

CŒS� � D
°X

�ss
ˇ̌̌
s 2 S�

±
;

with the ring structure defined on monomials by �s1s1 � �s2s2 D .�s1�s2/.s1 C s2/ and ex-
tended in the natural way. The affine variety U� is then defined to be Spec.CŒS� �/. This
automatically comes endowed with a .C�/n-action with a dense open orbit. This construc-



Cifarelli, Conlon and Deruelle, An Aubin path for shrinking gradient Kähler–Ricci solitons 239

tion can also be applied to the lower-dimensional cones � 2 †. If �1 \ �2 D � , then there is
a natural way to map U� into U�1 and U�2 isomorphically. One constructs X† by declaring
the collection of all U� to be an open affine cover of X† with transition functions determined
by U� . This identification is also reversible.

Proposition 2.12 ([17, Corollary 3.1.8]). LetM be a smooth toric manifold. Then there
exists a fan † such that M ' X†.

Proposition 2.13 ([17, Theorem 3.2.6], orbit-cone correspondence). The k-dimensional
cones � 2 † are in a natural one-to-one correspondence with the .n � k/-dimensional orbits
O� of the .C�/n-action on X†.

In particular, each ray � 2 † determines a unique torus-invariant divisor D� . As a con-
sequence, a torus-invariant Weil divisorD on X† naturally determines a polyhedron PD � t�.
Indeed, we can decompose D uniquely as D D

PN
iD1 aiD�i , where ¹�iºi � † is the collec-

tion of rays. Then, by assumption, there exists a unique minimal lattice element �i 2 �i \ � .
The polyhedron PD is then given by

(2.1) PD D ¹x 2 t� j h�i ; xi � �aiº D

N\
iD1

K.�i ;�ai /:

2.5.2. Kähler metrics on toric varieties. For a given toric manifold M endowed with
a Riemannian metric g invariant under the action of the real torus T n � .C�/n and Kähler
with respect to the underlying complex structure ofM , the Kähler form ! of g is also invariant
under the T n-action. We call such a manifold a toric Kähler manifold. In what follows, we
always work with a fixed complex structure on M .

Hamiltonian Kähler metrics have a useful characterisation due to Guillemin.

Proposition 2.14 ([24, Theorem 4.1]). Let ! be any T n-invariant Kähler form on M .
Then the T n-action is Hamiltonian with respect to ! if and only if the restriction of ! to the
dense orbit .C�/n �M is exact, i.e., there exists a T n-invariant potential � such that

! D 2i𝜕N𝜕�:

Fix once and for all a Z-basis .X1; : : : ; Xn/ of � � t. This in particular induces a back-
ground coordinate system � D .�1; : : : ; �n/ on t. Using the natural inner product on t to
identify t Š t�, we can also identify t� Š Rn. For clarity, we will denote the induced coordi-
nates on t� by x D .x1; : : : ; xn/. Let .z1; : : : ; zn/ be the natural coordinates on .C�/n as an
open subset of Cn. There is a natural diffeomorphism LogW .C�/n ! t � T n which provides
a one-to-one correspondence between T n-invariant smooth functions on .C�/n and smooth
functions on t. Explicitly,

(2.2) .z1; : : : ; zn/
Log
7��!

�
log.r1/; : : : ; log.rn/; �1; : : : ; �n

�
D .�1; : : : ; �n; �1; : : : ; �n/;

where zj D rj e
i�j , rj > 0. Given a function H.�/ on t, we can extend H trivially to t � T n

and pull back by Log to obtain a T n-invariant function on .C�/n. Clearly, any T n-invariant
function on .C�/n can be written in this form.
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Choose any branch of log and write w D log.z/. Then we clearly have that w D � C i� ,
where � D .�1; : : : ; �n/ are real coordinates on t (or, more precisely, there is a corresponding
lift of � to the universal cover with respect to which this equality holds), and so if � is T n-
invariant and ! D 2i𝜕N𝜕�, then we have that

(2.3) ! D 2i
𝜕2�
𝜕wi𝜕 Nwj

dwi ^ d Nwj D
𝜕2�
𝜕� i𝜕�j

d� i ^ d�j :

In this setting, the metric g corresponding to ! is given on t � T n by

g D �ij .�/ d�
i d�j C �ij .�/ d�

i d�j ;

and the moment map � as a map �W t � T n ! t� is defined by the relation

h�.�; �/; bi D hr�.�/; bi

for all b 2 t, where r� is the Euclidean gradient of �. The T n-invariance of � implies that
it depends only on � when considered a function on t � T n via (2.2). Since ! is Kähler, we
see from (2.3) that the Hessian of � is positive-definite so that � itself is strictly convex. In
particular, r� is a diffeomorphism onto its image. Using the identifications mentioned above,
we view r� as a map from t into an open subset of t�.

2.5.3. Kähler–Ricci solitons on toric manifolds. Next we define what we mean by
a shrinking Kähler–Ricci soliton in the toric category.

Definition 2.15. A complex n-dimensional shrinking Kähler–Ricci soliton .M; g;X/
with complex structure J and Kähler form ! is toric if .M;!/ is a toric Kähler manifold as in
Definition 2.10 and JX lies in the Lie algebra t of the underlying real torus T n that acts onM .
In particular, the zero set of X is compact.

It follows from [38] that �1.M/ D 0; hence the induced real T n-action is automati-
cally Hamiltonian with respect to !. Working on the dense orbit .C�/n �M , the condi-
tion that a vector field J Y lies in t is equivalent to saying that, in the coordinate system
.�1; : : : ; �n; �1; : : : ; �n/ from (2.2), there is a constant bY D .b1Y ; : : : ; b

n
Y / 2 Rn such that

(2.4) J Y D biY
𝜕
𝜕� i

; or equivalently, Y D biY
𝜕
𝜕� i

:

From Proposition 2.14, we know that LX! D 2i𝜕N𝜕X.�/. In addition, the function X.�/ on
.C�/n can be written as

hbX ;r�i D b
j
X

𝜕�
𝜕�j

;

where bX 2 Rn corresponds to the soliton vector field X via (2.4). These observations allow
us to write the shrinking soliton equation (1.2) as a real Monge–Ampère equation for � on Rn.

Proposition 2.16 ([12, Proposition 2.6]). Let .M; g;X/ be a toric shrinking gradient
Kähler–Ricci soliton with Kähler form !. Then there exists a unique smooth convex real-valued
function � defined on the dense orbit .C�/n �M such that ! D 2i𝜕N𝜕� and

(2.5) det.�ij / D e�2�ChbX ;r�i:
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A priori, the function � is defined only up to addition of a linear function. However, (2.5)
provides a normalisation for � which in turn provides a normalisation for r�, the moment map
of the action. The next lemma shows that this normalisation coincides with that for the moment
map as defined in [16, Definition 5.16].

Lemma 2.17. Let .M; g;X/ be a toric complete shrinking gradient Kähler–Ricci soli-
ton with complex structure J and Kähler form ! with soliton vector field X D rgf for
a smooth real-valued function f WM ! R. Let � be given by Proposition 2.14 and normalised
by (2.5), let J Y 2 t, and let uY D hr�; bY i be the Hamiltonian potential of J Y with bY as
in (2.4) so that rguY D Y . Then LJXuY D 0 and �!uY C uY �

1
2
Y � f D 0.

To see the equivalence with [16, Definition 5.16], simply replace Y with J Y in this latter
definition as here we assume that J Y 2 t, contrary to the convention in [16, Definition 5.16]
where it is assumed that Y 2 t.

Given the normalisation (2.5), the next lemma identifies the image of the moment map
� D r�.

Lemma 2.18 ([12, Lemmas 4.4 and 4.5]). Let .M; g;X/ be a complete toric shrinking
gradient Kähler–Ricci soliton, let ¹Diº be the prime .C�/n-invariant divisors in M , and let
† � t be the fan determined by Proposition 2.12. Let �i 2 † be the ray corresponding to Di
with minimal generator �i 2 � .

(i) There is a distinguished Weil divisor representing the anticanonical class �KM given by

�KM D

X
i

Di

whose associated polyhedron (cf. (2.1)) is given by

(2.6) P�KM D ¹x j h�i ; xi � �1º

which is strongly convex and has full dimension in t�. In particular, the origin lies in the
interior of P�KM .

(ii) If � is the moment map for the induced real T n-action normalised by (2.5), then the
image of � is precisely P�KM .

2.5.4. The weighted volume functional. As a result of Lemma 2.17, we can now
define the weighted volume functional.

Definition 2.19 (Weighted volume functional [16, Definition 5.16]). Let .M; g;X/ be
a complex n-dimensional toric shrinking gradient Kähler–Ricci soliton with Kähler form

! D 2i𝜕N𝜕�

on the dense orbit with � strictly convex with moment map � D r� normalised by (2.5).
Assume that the fixed point set of the torus is compact and define the open convex cone

ƒ! ´ ¹Y 2 t j h�; Y i is proper and bounded belowº � t:
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Then the weighted volume functional F! Wƒ! ! R is defined by

F!.v/ D

Z
M

e�h�;vi!n:

As the fixed point set of the torus is compact by definition, F! is well-defined by the non-
compact version of the Duistermaat–Heckman formula [31] (see also [16, Theorem A.3]). It is
moreover strictly convex onƒ! (see [16, Lemma 5.17 (i)]), hence has at most one critical point
in this set. This leads to two important lemmas concerning the weighted volume functional in
the toric category, the independence of ƒ! and F! from the choice of shrinking soliton !.

Lemma 2.20 ([13, Lemma 2.25]). ƒ! is independent of the choice of toric shrinking
Kähler–Ricci soliton ! in Definition 2.19.

Lemma 2.21 ([13, Lemma 2.26]). F! is independent of the choice of toric shrinking
Kähler–Ricci soliton ! in Definition 2.19. Moreover, after identifying ƒ! with a subset of Rn

via (2.4), F! is given by

F!.v/ D .2�/n
Z
P�KM

e�hv;xi dx;

where x D .x1; : : : ; xn/ denotes coordinates on t� dual to the coordinates .�1; : : : ; �n/ on t

introduced in Section 2.5.2.

Thus, we henceforth drop the subscript ! from F! and ƒ! when working in the toric
category. The functional F Wƒ! R is in addition proper in this category [12, proof of Proposi-
tion 3.1], hence attains a unique critical point in ƒ. This critical point characterises the soliton
vector field of a complete toric shrinking gradient Kähler–Ricci soliton.

Theorem 2.22 ([12, Theorem 4.6], [11, Theorem 1.1]). Let .M; g;X/ be a complete
toric shrinking gradient Kähler–Ricci soliton with complex structure J . Then JX 2 ƒ and
JX is the unique critical point of F in ƒ.

Having established in Lemmas 2.20 and 2.21 that, in the toric category, the weighted
volume functional F and its domain ƒ are determined solely by the polytope P�KM which
itself, by Lemma 2.18, depends only on the torus action on M (i.e., is independent of the
choice of shrinking soliton), and having an explicit expression for F given by Lemma 2.21,
after using the torus action to identify P�KM via (2.6), we can determine explicitly the soliton
vector field of a hypothetical toric shrinking gradient Kähler–Ricci soliton on M . Indeed, in
light of Lemma 2.21, the unique minimiser bX 2 t ' Rn is characterised by the fact that

0 D dbXF .v/ D

Z
P�KM

hx; vie�hbX ;xi dx for all v 2 Rn:

In the setting of Theorem A, we can also determine ƒ explicitly. To this end, with
notation as in Theorem A, we make the following observation concerning the Lie algebra
t of T . By assumption, the restricted map �jM WM ! yM ´ C �D is a torus-equivariant
biholomorphism on the complement of ��1.D0/ �M and D0 � yM ; hence M n ��1.D0/ is
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.C�/n-equivariantly biholomorphic to C� �D � .C�/n. It subsequently follows that t admits
the splitting t ' tC� ˚ tD , where tC� and tD denote the Lie algebra of vector fields in t onM
whose image under d� vanish along theD- and C�-factors of yM nD0, respectively. With this
in mind, we then have the following lemma.

Lemma 2.23. In the setting and notation of Theorem A and with respect to the splitting
t ' tC� ˚ tD , the domain ƒ of the weighted volume functional F is the half-space

ƒ D ¹˛ Re.z𝜕z/C Y 2 tC� ˚ tD j ˛ > 0 and Y 2 tDº:

Proof. Since D is Fano, by Lemma 2.18, we know that the anticanonical polyhedron
P�KC�D

for C �D is the “simple product”, i.e.,

(2.7) P�KC�D
D ¹.x1; : : : ; xn/ j x1 � �1 and .x2; : : : ; xn/ 2 PDº:

Moreover, it follows from the definition of � that the normal fan †M of P�KM is just a refine-
ment of the normal fan †C�D of P�KC�D

(see [17, Definition 3.3.17]). The set of defining
equations for P�KM is therefore obtained from those defining (2.7) by including finitely many
linear inequalities. This in particular implies that P�KM and P�KC�D

coincide outside a suf-
ficiently large ball B � t�.

Let Z 2 t and, via (2.4), identify Z with a point bZ 2 Rn. Then the distinguished vector
field Re.z𝜕z/ 2 t is identified with .1; 0; : : : ; 0/ 2 Rn via the aforesaid splitting of t so that
Z D ˛ Re.z𝜕z/C Y 2 tC� ˚ tD is identified with the point bZ D .˛; b2; : : : ; bn/ 2 Rn for
some bi 2 R, i D 2; : : : ; n. Since P�KM is closed, it follows that the Hamiltonian potential
�Z D h�;Zi D hx; bZi of Z is proper if and only if jhx; bZij ! C1 as jxj ! C1. Thus,
since D is compact so that PD is bounded, we see that the set of vector fields Z 2 t for which
the Hamiltonian potential �Z is proper is precisely the complement of the inclusion tD ,! t.
In addition, �Z is bounded from below if and only if hx; bi ! C1 as jxj ! C1 in P�KM .
As jxj ! C1 in P�KM if and only if x1 ! C1, the condition that �Z be bounded from
below picks out the desired component of t defining ƒ.

We illustrate an application of Lemma 2.23 with the following example.

Example 2.24. Let D D P1, let � be the blowup map, and let .Œz1 W z2�; w/ denote
coordinates on P1 � C. Then there is an action of a real two-dimensional torus T 2 on P1 � C
given by

.Œz1W z2�; w/ 7! .Œeib2z1 W z2�; e
ib1w/;

where .b1; b2/ 2 R2 which we identify with the Lie algebra t of T 2. Moreover,M is the blow-
up of P1 � C at one point which, without loss of generality, we may assume to be .Œ0 W 1�; 0/.
The action of T 2 on P1 � C induces a T 2-action on M in the obvious way. Lemma 2.23 then
tells us that the domain ƒ of the weighted volume functional F of M is given by

¹.b1; b2/ 2 R2 j b1 > 0 and b2 2 Rº � t:

Using the Duistermaat–Heckman theorem [16, Theorem A.3], one can write F as

F .b1; b2/ D
eb1

.b1 � b2/b2
C

eb2

.b2 � b1/b1
�
eb1�b2

b1b2
:
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Observe that this is symmetric under the transformation .b1; b2/ 7! .b1; b1 � b2/, a transfor-
mation that preserves ƒ. The minimum of F in ƒ therefore lies along the line 0 < b1 D 2b2,
in which case we have, for b2 > 0,

F .b2/ D
e2b2 � eb2

b22
:

We then have that
F 0.b2/ D b�32 eb2 Œ2.b2 � 1/e

b2 � .b2 � 2/�:

This has a zero for b2 > 0 precisely when 2.b2 � 1/eb2 D b2 � 2. Numerical approximations
give the unique positive root as b2 � 0:64, in agreement with [13, Example 2.33].

2.5.5. The Legendre transform. Let M be a toric manifold of complex dimension n
endowed with a complete Kähler form ! invariant under the induced real T n-action and with
respect to which this action is Hamiltonian. Write ! D 2i𝜕N𝜕� on the dense orbit for � strictly
convex as in Proposition 2.14. Then r�.Rn/ is a Delzant polytope P . Recall that we have
coordinates � on Rn ' t, x on P , and � on T . Given any smooth and strictly convex function
 on Rn such that r .Rn/ D P , there exists a unique smooth and strictly convex function
u .x/ on P defined by

 .�/C u .r / D hr ; �i:

This process is reversible, that is to say,  is the unique function satisfying

 .ru /C u .x/ D hx;ru i;

where r now denotes the Euclidean gradient with respect to x. The function u is called the
Legendre transform of and is sometimes denoted byL. /.x/. Clearly,L.L. //.�/ D  .�/.
The Legendre transform u of � is called the symplectic potential of!, as the metric g associated
to ! is given by

g D uij .x/ dx
i dxj C uij .x/ d� i d�j :

The following will prove useful.

Lemma 2.25 (cf. [12, Lemma 2.10]). Let � be any smooth and strictly convex function
on an open convex domain �0 � Rn and let u D L.�/ be the Legendre transform of � defined
on .r�/.�0/µ �. If 0 2 �, then there exists a constant C > 0 such that

�.�/ � C�1
j�j � C:

In particular, � is proper and bounded from below.

If � 2 C1.Rn/ solves (2.5), then the Legendre transform u D L.�/ satisfies

(2.8) 2.hru; xi � u.x// � log det.uij .x// D hbX ; xi on P�KM :

To study Kähler–Ricci solitons onM via (2.8) onP�KM , we need to understand when a strictly
convex function on a Delzant polytope defines a symplectic potential, i.e., is induced from
a Kähler metric on M via the Legendre transform. To this end, consider a Delzant polytope
P obtained as the image of the moment map of a toric Kähler manifold. Let Fi , i D 1; : : : ; d ,
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denote the .n � 1/-dimensional facets of P with inward-pointing normal vector �i 2 � , nor-
malised so that �i is the minimal generator of �i D RC � �i in � , and let `i .x/ D h�i ; xi so
that P is defined by the system of inequalities `i .x/ � �ai , i D 1; : : : ; N , ai 2 R. Then there
exists a canonical metric !P on M (see [12, Proposition 2.7]), the symplectic potential uP of
which is given explicitly by the formula (see [9, 24])

(2.9) uP .x/ D
1

2

dX
iD1

.`i .x/C ai / log.`i .x/C ai /:

In particular, the Legendre transform �P of uP will define the Kähler potential on the dense
orbit of a globally defined Kähler metric !P onM (see [9,24]). More generally, it was observed
by Abreu [1] that the Legendre transform L.u/ of a strictly convex function u on P will define
the Kähler potential on the dense orbit of a globally defined Kähler metric !P on M if and
only if u has the same asymptotic behaviour as uP of all orders as x ! 𝜕P . Indeed, we have
the following slightly more general statement.

Lemma 2.26 ([1], [2], [12, Proposition 2.17]). A convex function u onP defines a Kähler
metric !u on M if and only if u has the form

u D uP C v;

where v 2 C1.P / extends past 𝜕P to all orders.

In the case that P D P�KM , we read from Lemma 2.18 (ii) that ai D �1 for all i . Thus,
in this case, the canonical metric on P�KM has symplectic potential

uP�KM
D
1

2

X
i

.`i .x/C 1/ log.`i .x/C 1/:

2.5.6. The yF -functional. We next define the yF -functional on toric Kähler manifolds.

Definition 2.27. Let .M;!/ be a (possibly non-compact) toric Kähler manifold with
complex structure J endowed with a real holomorphic vector field X such that JX 2 ƒ! .
Write T for the torus acting on M , identify the dense orbit with Rn, let � D .�1; : : : ; �n/

denote coordinates on Rn, let bX be as in (2.4), and write ! D 2i𝜕N𝜕�0 on the dense orbit as in
Proposition 2.14. Let P ´ .r�0/.Rn/ denote the image of the moment map associated to !
and let x D .x1; : : : ; xn/ denote coordinates on P . Let ' 2 C1.M/ be a smooth function
on M invariant under the action of T such that ! C i𝜕N𝜕' > 0 and assume that

(a) there exists a C 1-path of smooth functions .'s/s2Œ0;1� � C1.M/ invariant under the
action of T such that '0 D 0, '1 D ', ! C i𝜕N𝜕's > 0, and .r�s/.Rn/ D P for all
s 2 Œ0; 1�, where �s ´ �0 C

's
2

.

(b)
R 1
0

R
Rn j

P�sje
�hbX ;r�si det.�s;ij / d� ds < C1.

Then we define
yF .'/´ 2

Z
P

.L.�1/ � L.�0//e
�hbX ;xi dx:

The existence of the path .'s/s2Œ0;1� satisfying conditions (a) and (b) is required so that
yF .'/ is well-defined. To see this, first note the following lemma.
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Lemma 2.28. Under the assumptions of Definition 2.27, let

us ´ L.�s/; !s D ! C i𝜕N𝜕's;

and write fs ´ f C
X
2
� 's for the Hamiltonian potential of JX with respect to !s , where f

is the Hamiltonian potential of JX with respect to !. Then the following are equivalent.

(i)
R 1
0

R
Rn j

P�sje
�hbX ;r�si det.�s;ij / d� ds < C1.

(ii)
R 1
0

R
P j Pusje

�hbX ;xi dx ds < C1.

(iii)
R 1
0

R
M j P'sje

�fs!ns ds < C1.

In particular, when this is the case, j yF .'/j < C1.

Proof. The equivalence of (i) and (iii) is clear. The equivalence of (i) and (ii) follows
from [12, Lemma 3.7]. Finally, for the last statement, for every x 2 P , we have that

ju1 � u0j.x/ �

Z 1

0

j Pusj.x/ ds:

Then, using Fubini’s theorem and noting Lemma 2.28, we estimate that

j yF .'/j � 2

Z
P

ju1 � u0je
�hbX ;xi dx � 2

Z
P

�Z 1

0

j Pusj ds

�
e�hbX ;xi dx

D 2

Z 1

0

Z
P

j Pusje
�hbX ;xi dx ds < C1;

as desired.

Under an additional assumption on the path .'s/s2Œ0;1�, we recover the well-known ex-
pression for the yF -functional given in [10, p. 702].

Lemma 2.29. If one (and hence all) of the conditions of Lemma 2.28 hold true and if in
addition it holds true that

R 1
0

R
M j P'sje

�f !n ds < C1, then

(2.10) yF .'/ D

Z 1

0

Z
M

P's.e
�f !n � e�fs!ns / ^ ds �

Z
M

'e�f !n:

Proof. The extra condition implies in particular that
R
M j'je�f !n < C1 since, by

assumption and Fubini’s theorem,Z
M

j'je�f !n �

Z 1

0

Z
M

j P'sje
�f !n ds < C1

so that the right-hand side of (2.10) is at least finite. To show that it is equivalent to the expres-
sion for yF given by Definition 2.27, using the change of coordinates induced by r�sWRn ! P

and the fact that P�s.r�s/ D �Pus.x/ (cf. [12, Lemma 3.7]), we compute that

yF .'/ D 2

Z
P

.u1.x/ � u0.x//e
�hbX ;xi dx

D 2

Z 1

0

Z
P

Pus.x/e
�hbX ;xi dx ^ ds
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D �2

Z 1

0

Z
P

P�s.r�s/e
�hbX ;xi dx ^ ds

D �2

Z 1

0

Z
Rn

P�se
�hbX ;r�si det.�s;ij / d� ^ ds

D �

Z 1

0

Z
M

P'se
�fs!ns ^ ds

D

Z 1

0

Z
M

P's.e
�f !n � e�fs!ns / ^ ds �

Z
M

'e�f !n;

resulting in the desired expression. Here we have used Fubini’s theorem in the last equality.

2.5.7. Integrability and independence of the path. In light of conditions (a) and (b) of
Definition 2.27 required to define the yF -functional, it remains to identify sufficient conditions
for the moment polytope to remain unchanged under a path of Kähler metrics and for each
summand in the integral of yF to be finite. This will be important for achieving an a priori
C 0-bound along our continuity path.

To this end, suppose that .M;!/ is a toric Kähler manifold, i.e., .M;!/ is Kähler with
Kähler form ! with respect to a complex structure J , endowed with the holomorphic action
of a complex torus of the same complex dimension as .M; J / whose underlying real torus T
induces a Hamiltonian action, and let JX 2 t. Via (2.4), we can identify X with an element
bX 2 Rn ' t. Using Proposition 2.14, we can also write ! D 2i𝜕N𝜕�0 on the dense orbit for
some strictly convex function �0WRn ! R. Assume that

� JX 2 ƒ! so that the Hamiltonian potential f of JX is proper and bounded from below.
� There exists a smooth bounded real-valued function F on M so that the Ricci form �!

of ! satisfies �! C
1
2
LX! � ! D i𝜕N𝜕F .

The equation in the second bullet point reads as�
F C log det.�0;ij / � hr�0; bX i C 2�0

�
ij
D 0 on t ' Rn

so that
F D � log det.�0;ij /C hr�0; bX i � 2�0 C a.�/ on Rn

for some affine function a.�/ defined on Rn. By considering 2�0 C aC hra; bX i, we can
therefore assume that

(2.11) F D � log det.�0;ij /C hr�0; bX i � 2�0 on Rn:

The main observation of this section is the following lemma.

Lemma 2.30. Under the above assumptions, suppose that ' 2 C1.M/ is a torus-in-
variant smooth real-valued function on M such that

!' ´ ! C i𝜕N𝜕' > 0 and sup
M

jX � 'j < C1:

Define � ´ �0 C
1
2
' so that ! C i𝜕N𝜕' D 2i𝜕N𝜕� on the dense orbit. Then

(i) the image of the moment map �!' WM ! t� with respect to !' defined by the Euclidean
gradient r�WRn ! Rn is equal to P�KM . In particular, 0 2 int.�!' .M//.

(ii)
R
P jL.�0/je

�hbX ;xi dx < C1.
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Proof. (i) To prove (i), we begin by noting that, as supM jX � 'j < C1, the Hamilton-
ian potential f' D f C

X
2
� ' of X with respect to !' is proper and bounded from below. In

particular, the image .r�/.Rn/ of the moment map�!' WM ! t� is equal to a Delzant polyhe-
dron P (see [12, Lemma 2.13]) that a priori depends on '. Let u.x/´ L.�/ be the Legendre
transform of �. Then the domain of u is precisely P . We need to show that P D P�KM . To
this end, let F be as in (2.11). Then a computation shows that

(2.12) � log det�ij C hr�; bX i � 2� D F C log
�!n'
!n

�
C
X

2
� ' � ':

Set A.x/´ hbX ; xi and define

�u.x/´ 2.hru; xi � u.x// � log det.uij /:

Then, via the change of coordinates x D r�.�/, we can rewrite (2.12) in terms of u as

(2.13) A.x/ � �u.x/ D
�
F C log

�!n'
!n

�
C
X

2
� ' � '

�
.ru.x// on P:

Observe that the right-hand side of (2.13) admits a continuous extension up to the boundary 𝜕P
of P . Denoting the right-hand side of (2.12) by hwhich is a function hWM ! R, this extension
is simply given by h ı ��1

!'
, where �!' WM ! P , as the moment map, has fibres precisely the

orbits of the torus action.
We now proceed as in [12, Lemma 4.5] using an argument originally due to Donaldson

[19]. Suppose that P is defined by the linear inequalities `i .x/ � �ai , where `i .x/ D h�i ; xi.
Since the right-hand side of (2.13) as well as A.x/ has a continuous extension up to 𝜕P ,
we see that the same holds true for �u.x/. Moreover, as u is the symplectic potential of the
Kähler form !' on P , we read from Lemma 2.26 that there exists a function v 2 C1.P 0/

with u D uP C v, where uP is given as in (2.9), i.e.,

(2.14) uP .x/ D
1

2

X
.`i .x/C ai / log.`i .x/C ai /:

Fix any facet F 0 of P . Without loss of generality, we may assume that F 0 is defined
by `1.x/ D �a1. Up to a change of basis in t�, we may also assume by the Delzant condi-
tion that `1.x/ D x1. Fix a point p in the interior of F 0. Then, from (2.14), we see that, in
a neighbourhood of p, u can be written as

u.x/ D uP .x/C v.x/ D
1

2
.x1 C a1/ log.x1 C a1/C v1

for some smooth function v1 which extends smoothly across F 0. From this expression, it
follows that, in a small half ball B in the interior of P containing p, �u takes the form

�u.x/ D x1 log.x1 C a1/ � .x1 C a1/ log.x1 C a1/C log.x1 C a1/C v2

D .1 � a1/ log.x1 C a1/C v2

for another smooth function v2 that extends smoothly across F 0 in B . Thus, already know-
ing that �u has a continuous extension across 𝜕P , we deduce that 1 � a1 D 0, i.e., a1 D 1.
Continuing in this manner, we see that ai D 1 for all i , leading us to the conclusion that
P D P�KM .
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(ii) Let u0 D L.�0/. Then, as u0 is a convex function on P�KM whose gradient has
image equal to all of Rn by the invertibility of the Legendre transform, it is proper and bounded
from below by Lemma 2.25. Let A denote the lower bound, let �u be as in part (i), and
write �0 D �u0 . Then F being bounded implies the existence of a constant C > 0 such that
j�0 � hbX ; xij < C on P�KM . Indeed, this is clear from (2.11). SinceZ

P�KM

u0e
��0 dx < C1

by [12, Lemma 4.7], it follows thatZ
P�KM

u0e
�hbX ;xi dx < C1:

Finiteness of the integral Z
P�KM

e�hbX ;xi dx

together with the fact that u0 is bounded from below now yields the desired result.

3. Proof of Theorem A (ii): Construction of a background metric

Given the setup and notation of Theorem A and withX determined by Theorem A (i), we
henceforth assume that the flow lines of JX close. In this section, we construct a background
metric on M with the properties as stated in Theorem A (ii) with a construction reminiscent
of that of [25, Section 4.2]. To this end, recall for a > 0 the (incomplete) shrinking gradient
Kähler–Ricci soliton . yM ´ C �D; y!a ´ z!a C !D;

2
a
� Re.z𝜕z// of Example 2.2 with com-

plex structure yJ endowed with the product holomorphic action of the real n-torus yT , with z
denoting the holomorphic coordinate on the C-factor of yM , and r ´ jzja.

Proposition 3.1. There exist

(a) a complete Kähler metric ! on M invariant under the action of T , and

(b) a biholomorphism �WM nK ! yM n yK, where K �M , yK � yM are compact,

and � > 0 such that

(i) d�.X/ D 2
�
� Re.z𝜕z/,

(ii) ! D ��.z!� C !D/, and

(iii) the Ricci form �! of ! satisfies

(3.1) �! C
1

2
LX! � ! D i𝜕N𝜕F1

for F1 2 C1.M/ compactly supported with LJXF1 D 0.

Theorem A (ii) immediately follows from this proposition. Indeed, this is easily seen
by writing !C ´ z!� (cf. Example 2.1) and y! ´ y!� D z!� C !D (cf. Example 2.2). With �
fixed in subsequent sections, this is the notation that we adopt to be consistent with that of
Theorem A. Property (iii) of this proposition will be used in the next section.
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Proof of Proposition 3.1. Recall that � WM ! P1 �D is a torus-equivariant holomor-
phic map that restricts to a holomorphic map � WM ! yM ´ C �D by removing the fibre
D1 from M and P1 �D, respectively, and that z denotes the holomorphic coordinate on the
C-factor of yM . We define the map �WM n ��1.D0/! yM nD0 of (b) as the C�-equivariant
map one obtains by identifying a P1-fibre in each manifold and for each point in this P1, flow-
ing along the vector field X1;0 ´ 1

2
.X � i.JX// on M and the holomorphic vector field z𝜕z

on yM . Since the flow lines of JX close by assumption, this map is well-defined.
From the construction, it is clear that d�.X1;0/ D 2

�
� z𝜕z for some � > 0. This defines

� and verifies condition (i) of the proposition. The map � then extends to a holomorphic
map �WM n ��1.D0/! yM nD0. On C �D, we consider the product metric y!�. We write
w ´

1
z

and r ´ jzj�. Identifying M n ��1.D0/ and yM nD0 via �, we view these as func-
tions, and y!� as a Kähler form, both on the former. In this way, w defines a holomorphic
coordinate on M n ��1.D0/ with the divisor D at infinity defined by ¹w D 0º.

Using �, we construct the background metric ! of (a) in the following way. As M is
Fano by assumption, there exists a hermitian metric h on �KM with strictly positive curvature
form ‚h. Moreover, since the normal bundle ND of D in M is trivial so that KD D KM jD

by adjunction, the 𝜕N𝜕-lemma guarantees the existence of a function u 2 C1.D/ such that
i‚hjD C i𝜕N𝜕u D !D . Extend u to be constant along the w-direction and multiply this exten-
sion by a cut-off function depending only on w to further extend u to the whole of M . We still
denote this extension by u. If the support of this cut-off function is contained in a sufficiently
small tubular neighbourhood of D, then the restriction of i‚h C i𝜕N𝜕u to any of the D-fibres
of the fibration will be positive-definite. All negative components of i‚h C i𝜕N𝜕u on the total
space M can be compensated for by adding a sufficiently positive “bump 2-form” of the form
�.jwj/ dw ^ d Nw, where � is a bump function supported in an annulus containing the cut-off
region; such a 2-form is automatically closed and .1; 1/ on M , and exact on M . This creates
a Kähler form �1 on M . One can verify in a sufficiently small neighbourhood of D that

�1 � !D D O.jwj/
�
dw ^ d Nw C

X
j

dw ^ d Nv N|

C

X
i;j

dvi ^ d Nv N| C

X
i

dvi ^ d Nw
�

as w ! 0

(3.2)

for ¹v1; : : : ; vn�1º local holomorphic coordinates on D.
Next, let  WR ! R be a smooth function satisfying

 0.x/;  00.x/ � 0 for all x 2 R;

and

 .x/ D

´
const. if x < 1;

x if x > 2;

and consider the composition k ´  ı r2, a real-valued smooth function onM . One computes
that

i

2
𝜕N𝜕k D  00.r2/

i

2
𝜕r2 ^ N𝜕r2 C  0.r2/

i

2
𝜕N𝜕r2 � 0;

a positive semi-definite form equal to i
2
𝜕N𝜕r2 on the region of M where r2 > 2. Define the

Kähler form
�2 ´ �1 C

i

2
𝜕N𝜕k;
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and in the holomorphic coordinates .z; v/ on yM , consider the product metric y!� given by

y!� ´ z!� C !D D i𝜕N𝜕
�
jzj2�

2

�
C !D D

�2dz ^ d Nz

2jzj2�2�
C !D:

Then, from (3.2), it is clear that the difference is given by

�2 � y!� D O.jwj/
�
dw ^ d Nw C

X
j

dw ^ d Nv N|

C

X
i;j

dvi ^ d Nv N| C

X
i

dvi ^ d Nw
�

as w ! 0

so that, in particular,

(3.3) j�2 � y!�jy!� D O.r�
1
� /:

We now work with the hermitian metric H on �K yM induced by y!�. Via the map �, this pulls
back to the hermitian metric

H D
�2 det..gD/i N| /
2jzj2�2�

on �KM jMn��1.D0/ with respect to the local trivialisation 𝜕z ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 . The corre-
sponding curvature form is then given by �i𝜕N𝜕 logH D !D . Hence, as a difference of two
curvature forms, there exists a smooth real-valued function � defined on M n ��1.D0/ such
that .i‚h C i𝜕N𝜕u/ � !D D i𝜕N𝜕�. In particular, outside a large compact subset of M , we have
that

(3.4) �2 � y!� D i𝜕N𝜕�:

We claim that � is in fact smooth on M n ��1.D0/. To see this, note that, as

i𝜕N𝜕� D �i𝜕N𝜕 log
�
e�uj𝜕z ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2h
j𝜕z ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2H

�
and

log
�
e�uj𝜕z ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2h
j𝜕z ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2H

�
D log

�
e�ujwj4j𝜕w ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2h

j𝜕z ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2H

�
D log

�
2e�uj𝜕w ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2hjzj

2�2�

�2 det..gD/i N| /

�
C 2 log.jwj2/

D log
�
2e�uj𝜕w ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2h

j𝜕v1 ^ � � � ^ 𝜕vn�1 j2!D

�
„ ƒ‚ …

extends smoothly over ¹wD0º

� .1 � �/ logjwj2 C 2 log.jwj2/ � log.�2/„ ƒ‚ …
pluriharmonic

;

� may be taken to be

(3.5) � D � log
�
2e�uj𝜕w ^ 𝜕v1 ^ � � � ^ 𝜕vn�1 j2h

j𝜕v1 ^ � � � ^ 𝜕vn�1 j2!D

�
;
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which, albeit defined in terms of local coordinates, is clearly globally defined onM n��1.D0/.
Thus, � D O.1/, and from (3.3) and (3.4), we see that ji𝜕N𝜕�jy!� D O.r�

1
� /. Finally, after

a computation, the expression for � given in (3.5) gives us that jd�jy!� D O.1/. Now, y!� and
�2 are equivalent outside some large compact subset zK of M by (3.3), and on the complement
of zK in M , Lemma 2.4 implies that, for all R > 0 sufficiently large, � admits an extension
�R to M supported on M n zK such that ji𝜕N𝜕�Rjy!� � CR�min¹��1;1º. Thus, at the expense of
increasing C if necessary, we can infer that ji𝜕N𝜕�Rj�2 � CR�min¹��1;1º globally on M . We
fix R > 0 large enough so that ji𝜕N𝜕�Rj�2 < 1 and define a Kähler form on M by

z! ´ �2 � i𝜕N𝜕�R:

By what we have just said, z! is positive-definite everywhere on M and equal to y!� outside
a large compact subset, hence is complete. By averaging over the action of T , we may assume
that LJX z! D 0 without changing the behaviour at infinity. We further modify z! to construct
! satisfying conditions (a) and (ii) of the proposition.

To this end, we know that, sinceM does not split off any S1-factors, �1.M/ D 0 by toric-
ity [17]. In particular,H 1.M;R/ D 0 so that the action of T onM is Hamiltonian with respect
to z!. Consequently, there exists a smooth real-valued function zf such that 1

2
LX z! D i𝜕N𝜕 zf . By

averaging, zf can be taken to be invariant under the action of T on M . It is also clear that, as
z! D i‚h C i𝜕N𝜕u1 for some u1 2 C1.M/ with i‚h the curvature form of a hermitian metric
on �KM , we can write �z! � z! D i𝜕N𝜕u2 for another function u2 2 C1.M/, �z! here denoting
the Ricci form of z!. Thus, there exists a function zG 2 C1.M/ such that

(3.6) �z! � z! C
1

2
LX z! D i𝜕N𝜕 zG:

After averaging, we may assume that zG is invariant under the action of T . In particular,
henceforth identifying M and yM on the complement of compact subsets containing D0 and
��1.D0/, respectively, we can write

zG ´ zG.r; x/;

where r D jzj� is as above and x 2 D � yM . As z! defines a shrinking gradient Kähler–Ricci
soliton on M nK for some K �M compact, we see that zG is pluriharmonic on M nK. It
therefore follows from Lemma 2.3 that

zG D c0 log.r/

for some constant c0 2 R. Arguing as above, Lemma 2.4 guarantees the existence of an exten-
sion ' of c0 log.r/C c0

2
toM such that ! ´ z! C i𝜕N𝜕' defines a Kähler metric onM . As ' is

pluriharmonic at infinity, it is clear that ! D z! D �� y!� outside a large enough compact subset
of M . Averaging over the action of T , we obtain our metric ! of (a) satisfying condition (ii).

Next, as in (3.6), we see that there exists a function G 2 C1.M/ invariant under the
action of T such that

(3.7) �! � ! C
1

2
LX! D i𝜕N𝜕G:

Subtracting (3.6) from (3.7) yields the relation

i𝜕N𝜕G D i𝜕N𝜕 zG C �! � �z! � i𝜕N𝜕' C i𝜕N𝜕
�X
2

� '
�
D i𝜕N𝜕

�
zG � log

�!n
z!n

�
� ' C

X

2
� '

�
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between G and zG. Set

F1 ´ zG � log
�!n
z!n

�
� ' C

X

2
� ':

Then i𝜕N𝜕F1 D i𝜕N𝜕G so that (3.1) holds true, and outside a large compact subset ofM , we have
that

F1 D zG � log
�!n
z!n

�
� ' C

X

2
� ' D c0 log.r/ � '.r/C

r

2
� '0.r/ D 0;

demonstrating that F1 is smooth and is compactly supported. As LJX
zG D 0, condition (iii)

and, correspondingly, the proposition now follow.

4. Proof of Theorem A (iii), (iv): Set-up of the complex Monge–Ampère equation

Proof of Theorem A (iii) and (iv): Set-up of the complex Monge–Ampère equation
Returning now to the setup and notation of Theorem A, we next provide a proof of Theo-

rem A (iii) by setting up a complex Monge–Ampère equation that any shrinking Kähler–Ricci
soliton onM differing from our background metric by i𝜕N𝜕 of a potential must satisfy, followed
by a proof of Theorem A (iv) where a normalised Hamiltonian potential of JX with respect
to ! is given. Throughout this section, we write r ´ jzj�, where z is the holomorphic coordi-
nate on the C-factor of yM and � > 0 is as in Theorem A (iii) so that d�.X/ D r𝜕r . Our starting
point is the following proposition.

Proposition 4.1. Let ! be the Kähler metric in Proposition 3.1 and let J denote the
complex structure on M . Then there exists z' 2 C1.M/ with

LJX z' D 0 and !z' ´ ! C i𝜕N𝜕z' > 0

such that

(4.1) �!z'
C
1

2
LX!z' D !z'

if and only if, for all a 2 R, there exists ' 2 C1.M/ with LJX' D 0 and ! C i𝜕N𝜕' > 0 and
F2 2 C

1.M/ compactly supported with LJXF2 D 0 satisfying

(4.2) �! C
1

2
LX! � ! D i𝜕N𝜕F2

such that

(4.3) log
�.! C i𝜕N𝜕'/n

!n

�
�
X

2
� ' C ' D F2 C a:

Here, �! and �!z'
denote the Ricci form of ! and !z' , respectively.

Proof. If ' satisfies (4.3), then by taking i𝜕N𝜕 of this equation, we see that ' satisfies
(4.1) by virtue of (3.1). Conversely, assume that (4.1) holds. Then we compute

0 D �!z'
� !z' C

1

2
LX!z' D �!z'

� �! C �! � !z' C
1

2
LX!z'

D �i𝜕N𝜕 log
�.! C i𝜕N𝜕z'/n

!n

�
� i𝜕N𝜕z' C i𝜕N𝜕

�X
2

� z'
�
C �! � ! C

1

2
LX!
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so that

(4.4) i𝜕N𝜕
�
z' C log

�.! C i𝜕N𝜕z'/n

!n

�
�
X

2
� z'

�
D �! � ! C

1

2
LX!:

Now, as we have seen in (3.1),

�! � ! C
1

2
LX! D i𝜕N𝜕F1

for some JX -invariant compactly supported F1 2 C1.M/. Plugging this into (4.4), we have
that, for every a 2 R,

i𝜕N𝜕
�
z' C log

.! C i𝜕N𝜕z'/n

!n
�
X

2
� z' � F1 � a

�
D 0:

JX -invariance of the sum in parentheses next implies from Lemma 2.3 that

z' C log
�.! C i𝜕N𝜕z'/n

!n

�
�
X

2
� z' D F1 C aCH

for H a pluriharmonic function equal to c0 log.r/C c1 outside a compact subset of M for
some c0; c1 2 R. Thus,�

z' �H �
c0

2

�
C log

�.! C i𝜕N𝜕.z' �H �
c0
2
//n

!n

�
�
X

2
�

�
z' �H �

c0

2

�
D

�
z' C log

�.! C i𝜕N𝜕z'/n

!n

�
�
X

2
� z'

�
�H C

X

2
�H �

c0

2

D .F1 C aCH/ �H C
X

2
�H �

c0

2
D F1 C aC

X

2
�H �

c0

2
:

Notice that after identifying X with r𝜕r via �, we have that

X

2
�H �

c0

2
D
1

2
r𝜕r.c0 log.r/C c1/ �

c0

2
D 0

outside a compact set. Set '´ z' �H �
c0
2

and F2 ´ F1C
X
2
�H �

c0
2

. Then F2 2 C1.M/

is compactly supported, both ' and F2 are JX -invariant, i𝜕N𝜕F2 D i𝜕N𝜕F1, and

' C log
�.! C i𝜕N𝜕'/n

!n

�
�
X

2
� ' D F2 C a;

as required.

Theorem A (iii) is a consequence of the next lemma.

Lemma 4.2. Let �, !, and �W .M nK;!/! . yM n yK; y!/, K �M , yK � yM compact,
be as in Proposition 3.1. Moreover, let F2 2 C1.M/ be as in Proposition 4.1 satisfying (4.2)
and recall that z denotes the holomorphic coordinate on the C-factor of yM . Set r ´ jzj�.
Then there exists a unique torus-invariant smooth real-valued function f WM ! R such that
�!yJX D df , f D ��

�
r2

2
� 1

�
on M nK, and

(4.5) �!f C f �
X

2
� f D 0 outside a compact subset of M .

In particular, f ! C1 as r ! C1, hence is proper.
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Proof. SinceM does not split off any S1-factors and is toric, we know that �1.M/ D 0

(see [17]). Hence there exists a smooth real-valued function f 2 C1.M/, defined up to a con-
stant, with �!yJX D df . Any such choice of f is invariant under the action of T by virtue of
the fact that !yJX is invariant under this action and T has fixed points so that every element
of t has at least one zero. Next notice that �y!y yJ r𝜕r D d. r

2

2
/, where we recall that yJ is the

complex structure on yM . As ! D �� y! on M nK, it is therefore clear that d.f �
r2

2
/ D 0 on

M nK so that f differs from r2

2
by a constant on this set, i.e., f D

r2

2
C const. on M nK.

Normalise f so that this constant is equal to �1. Then f D ��. r
2

2
� 1/ on M nK. What

remains to show is that, with this normalisation, (4.5) holds true.
To this end, using the JX -invariance of F2 and f , contract (4.2) with

X1;0 ´
1

2
.X � iJX/

and use the Bochner formula to derive that

i N𝜕
�
�!f �

X

2
� f C f C

X

2
� F2

�
D 0:

As a real-valued holomorphic function, we must have that �!f �
X
2
� f C f C

X
2
� F2 is

constant on M . But since X � F2 D 0 outside a compact subset of M , by the properties of f
and !, we have that, outside a compact subset of M ,

�!f �
X

2
� f C f C

X

2
� F2 D �y!

�r2
2

� 1
�
�
r

2

𝜕
𝜕r

�r2
2

� 1
�
C

�r2
2

� 1
�
D 0:

Thus, this constant is zero and we are done.

Let c0 2 R be such that ec0
R
M eF2�f !n D

R
M e�f !n and define F ´ F2 C c0. Then

� F 2 C1.M/ and F is torus-invariant,

� F is equal to c0 outside a compact subset of M , and

�

R
M eF�f !n D

R
M e�f !n.

Moreover, from (4.2), we have that

�! �
1

2
LX! C ! D i𝜕N𝜕F:

By Proposition 4.1, any shrinking Kähler–Ricci soliton of the form ! C i𝜕N𝜕' > 0 on M will
solve the complex Monge–Ampère equation8̂<̂

:
.! C i𝜕N𝜕'/n D eFCX

2
�'�'!n for ' 2 C1.M/ and ' torus-invariant;Z

M

eF�f !n D

Z
M

e�f !n:

This is precisely the statement of Theorem A (iv). A strategy to solve this equation is given by
considering the Aubin continuity path

(�t )

8̂̂̂<̂
ˆ̂:
.! C i𝜕N𝜕't /n D eFCX

2
�'t�t't!n; ' 2 C1.M/; LJX' D 0;

! C i𝜕N𝜕' > 0; t 2 Œ0; 1�;Z
M

eF�f !n D

Z
M

e�f !n:



256 Cifarelli, Conlon and Deruelle, An Aubin path for shrinking gradient Kähler–Ricci solitons

The equation corresponding to t D 0 is given by

(�0)

8̂̂̂<̂
ˆ̂:
.! C i𝜕N𝜕 /n D eFCX

2
� !n;  2 C1.M/; LJX D 0;

! C i𝜕N𝜕 > 0;Z
M

eF�f !n D

Z
M

e�f !n:

This equation we will solve by the continuity method, the particular path of which will be
introduced in Section 7.1. This will yield the final part of Theorem A. Beforehand however, we
prove some analytic results regarding the metric ! and those metrics that are asymptotic to it,
beginning with a Poincaré inequality.

5. Poincaré inequality

In this section, we prove a Poincaré inequality for the Kähler form ! of Proposition 3.1
using the fact that it holds true on the model shrinking gradient Kähler–Ricci soliton

. yM ´ C � P1; y! ´ z!� C !D; r𝜕r/

(see [27]), where r D jzj�. This will be used in Proposition 7.9 to establish an a priori weighted
L2-estimate along the continuity path that we consider in deriving a solution to (�0). Recall
the Hamiltonian potential f of JX satisfying (4.5).

We work with the Lebesgue and Sobolev spaces Lp.e�f !n/ and W 1;p.e�f !n/ on M ,
respectively, defined in the obvious way for p > 1, and we denote«

M

ue�f !n ´
1R

M e�f !n

Z
M

ue�f !n for all u 2 Lp.e�f !n/:

By Hölder’s inequality and the finiteness of
R
M e�f !n, the integral

ª
M ue�f !n is finite.

Proposition 5.1 (Poincaré inequality). For all p > 1, there exists a constant C.p/ > 0
such that 



u �

«
M

ue�f !n





Lp.e�f !n/

� C.p/krgukLp.e�f !n/

for all u 2 W 1;p.e�f !n/ \ C 1.M/. Here, g is the Kähler metric associated to !.

Proof. For sake of a contradiction, suppose that the assertion is not true. Then there
exists a sequence of functions .uk/k�1 � W 1;p.e�f !n/ with the following properties:8̂̂<̂

:̂
kukkLp.e�f !n/ D 1;

Z
M

uke
�f !n D 0;

kr
gukkLp.e�f !n/ �

1

k
:

Indeed, since
R
M e�f !n < C1, an application of Hölder’s inequality demonstrates that we

can normalise the sequence .uk/k�1 so that the weighted integral of each function in the
sequence is zero. By the Rellich–Kondrachov theorem, there exists a subsequence which we
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also denote by .uk/k�1 converging to some u1 2 L
p
loc.M/ as k ! C1. On the other hand,

for every compactly supported one-form ˛ on M , we have thatZ
M

u1 � ıg˛!n D lim
k!C1

Z
M

uk � ı
g˛!n D � lim

k!C1

Z
M

g.duk; ˛/!
n
D 0;

where ıg is the co-differential of d with respect to g. Thus, u1 2 W
1;p

loc .M/ and du1 D 0

almost everywhere. In particular, u1 is constant.
For R > 0, let DR ´ f �1..�1; R�/, a compact subset of M by properness of f (cf.

Lemma 4.2). Then the fact that
R
M uke

�f !n D 0 implies that, for every R > 0,Z
DR

uke
�f !n D �

Z
MnDR

uke
�f !n:

It then follows from Hölder’s inequality thatˇ̌̌̌Z
DR

uke
�f !n

ˇ̌̌̌
�

Z
MnDR

jukje
�f !n

�

�Z
MnDR

jukj
pe�f !n

� 1
p
�Z
MnDR

e�f !n
�1� 1

p

� kukkLp.e�f !n/

�Z
MnDR

e�f !n
�1� 1

p

D

�Z
MnDR

e�f !n
�1� 1

p

:

Furthermore, Lploc.M/-convergence implies thatZ
DR

uke
�f !n !

Z
DR

u1e
�f !n D u1 volf .DR/ as k ! C1:

This allows us to derive that

ju1j D lim
k!C1

j
R
DR

uke
�f !nj

volf .DR/
� lim
k!C1

.
R
MnDR

e�f !n/1�
1
p

volf .DR/

D
volf .M nDR/

1� 1
p

volf .DR/
! 0 as R! C1;

where volf .A/´
R
A e

�f !n for A �M . That is, u1 � 0.
Next, choose C > 0 such that f C C > 0 on M , something that is possible to do by

Lemma 4.2, and let �WR ! R be a smooth function satisfying �.x/ D 0 for x � 1, �.x/ D 1

for x � 2, and j�.x/j � 1 for all x. Define �RWM ! R by

�R.x/ D �
�pf .x/C C

R

�
for R > 0 a positive constant to be chosen later:

Then, with 1
p
C

1
q
D 1, we have that, for some positive constant C.p/ > 0 that may vary from

line to line,

1 D kukk
p

Lp.e�f !n/
(5.1)

� C.p/
�
k.1 � �R/ukk

p

Lp.e�f !n/
C k�Rukk

p

Lp.e�f !n/

�
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� C.p/

�Z
DR

jukj
pe�f !n C

Z
M

j�Rukj
pe�f !n

�
� C.p/

�Z
DR

jukj
pe�f !n C

Z
M

ˇ̌̌̌
�Ruk �

«
M

�Ruke
�f !n

ˇ̌̌̌p
e�f !n

C

ˇ̌̌̌«
M

�Ruke
�f !n

ˇ̌̌̌p�
� C.p/

�Z
DR

jukj
pe�f !n C

Z
M

ˇ̌̌̌
�Ruk �

«
M

�Ruke
�f !n

ˇ̌̌̌p
e�f !n

C kukk
p

Lp.e�f !n/
k�Rk

p

Lq.e�f !n/

�
� C.p/

�Z
DR

jukj
pe�f !n C

Z
M

ˇ̌̌̌
�Ruk �

«
M

�Ruke
�f !n

ˇ̌̌̌p
e�f !n

C volf .M nDR2

2
/
p
q

�
:

Now, forR > 0 sufficiently large, �Ruk is supported on the set where ! is isometric to y!

via the biholomorphism � of Proposition 3.1, a manifold on which we know that the assertion
already holds true [27]. Applying this observation to the middle term in the last line of (5.1),
we arrive at the fact that, for R > 0 sufficiently large,

1 � C.p/

�Z
DR

jukj
pe�f !n C kr

g.�Ruk/k
p

Lp.e�f !n/
C volf .M nDR2

2
/
p
q

�
� C.p/

�Z
DR

jukj
pe�f !n C kr

g�Rk
p

L1.M/
kukk

p

Lp.e�f !n/

C kr
gukk

p

Lp.e�f !n/
C volf .M nDR2

2
/
p
q

�
� C.p/

�Z
DR

jukj
pe�f !n C

1

Rp
C

1

kp
C volf .M nDR2

2
/
p
q

�
:

As uk ! 0 in Lploc.M/ as k ! C1, we see upon letting k ! C1 that, for all R > 0 suffi-
ciently large,

1 � C.p/
� 1

Rp
C volf .M nDR2

2
/
p
q

�
:

Letting R! C1 now yields the desired contradiction.

6. Linear theory

Working again in the setting and notation of Theorem A, we set up the linear theory for
metrics asymptotic to !. Openness along the continuity path that we apply to solve (�0) will
automatically follow. Although Theorem A holds true for torus-invariant functions, in order to
remain as broad as possible, we present the linear theory under minimal assumptions, namely
for JX -invariant functions.

6.1. Main setting. Let zg be any JX -invariant Kähler metric onM with Kähler form z!

and Levi-Civita connection r zg satisfying

(6.1) j.rg/iL
.j /
X .z! � !/jg D O.r�
 / for all i; j � 0;
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for some 
 2 .0; �D/, where r D jzj� and �D is the first non-zero eigenvalue of ��D acting
on L2-functions on D. Write X D r zg zf for some smooth function zf WM ! R, a function
defined up to an additive constant that is guaranteed to exist because, as noted previously,
H 1.M;R/ D 0 by toricity. We use � to identify M and yM so that X D r𝜕r outside a compact
set. Since rgf D X D r zg zf , it follows from (6.1) that jf � zf j D O.r�
C2/ as r ! C1.
Throughout, we denote �zg;X ´ �zg �X .

We begin by identifying a good barrier function for this particular geometric setup.

Lemma 6.1. For all ı 2 .0; 1/, there exists R.ı/ > 0 such that the function eıf is
a subsolution of the following equation:

�zg;Xe
ıf

� 0 on f � R.ı/:

Moreover, the logarithm and polynomial powers of f (which equals jzj2�

2
� 1 outside a com-

pact subset of M ) satisfy, for all ı > 0,

�zg;Xf
�ı

D 2ıf �ı
CO.f �ı�1/ and �zg;X log.f C 1/ D �2

outside a compact subset of M .

Proof. Using (6.1) and the fact that

.�zg ��g/f D 2.�z! ��!/f D .z! � !/ � i𝜕N𝜕f D O.jzg � gjzg/;

the last equality because the Hessian of f is bounded on M , we compute that

�zg;Xe
ıf

D .ı�zg;Xf C ı2jr zgf j2
zg/e

ıf

D ı
�
�g;Xf C .�zg;X ��g;X /f C ıjr zgf j2

zg

�
eıf

D ı
�
�2f C ıjr zgf j2

zg CO.jzg � gjzg/
�
eıf

D ı
�
�2f C ıjX j

2
g.1C o.1//C o.1/

�
eıf

� 0

outside a sufficiently large compact subset of M . Here we have also used that jX j2g D 2f C 2

and ı 2 .0; 1/ in the last line.
A similar computation based on the asymptotics of zg given by (6.1) shows that

�zg;Xf
�ı

D .�zg �X/.f �ı/

D �ıf �ı�1.�zgf �X � f /C ı.ı C 1/f �ı�2
jr

zgf j2
zg

D �ıf �ı�1.�gf �X � f / � ıf �ı�1.�zgf ��gf /C ı.ı C 1/f �ı�2
jr

zgf j2
zg

D 2ıf �ı
� ıf �ı�1 .�zgf ��gf /„ ƒ‚ …

DO.jzg�gjg/

Cı.ı C 1/f �ı�2
jr

zgf j2
zg„ ƒ‚ …

DO.jX j2g/DO.f /

D 2ıf �ı
CO.f �ı�1/:

As log.r2/ is pluriharmonic outside a compact set, the fact that X D r𝜕r outside a compact set
gives us that

�zg;X log.f C 1/ D �zg;X log.r2/ D �2

outside a compact subset of M , as claimed.
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6.2. Function spaces. We next define the function spaces within which we will work.
For ˇ 2 R and k a non-negative integer, define C 2k

X;ˇ
.M/ to be the space of JX -invariant

continuous functions u on M with 2k continuous derivatives such that

kukC2k
X;ˇ

´

X
iC2j�2k

sup
M

jf
ˇ
2 .r zg/i .L

.j /
X u/jzg < C1:

Thanks to (6.1), this norm is equivalent to that defined with respect to the background metric g;
hence we may use either zg or g with our particular choice depending on the context. Similarly,
as f and zf are equivalent at infinity, these function spaces can be defined in terms of either of
these two potential functions. Define C1

X;ˇ
.M/ to be the intersection of the spaces C 2k

X;ˇ
.M/

over all k 2 N0.
Notice in the definition of the above norm that the number of spatial derivatives that

appear in each summand is no more than twice the number of Lie derivative terms that appear.
This is because, when solving the Poisson equation for the weighted Laplacian as defined
in (6.1), the weighted Laplacian can be treated as a second-order parabolic operator with the
time derivative corresponding to the X -derivative. These heuristics are used in the proof of
Theorem 6.3 below.

Let ı.zg/ denote the injectivity radius of zg, write dzg.x; y/ for the distance with respect to
zg between two points x; y 2M , and let 'Xt denote the flow of X for time t . A tensor T on M
is said to be in C 0;2˛

ˇ
.M/, ˛ 2 .0; 1

2
/, if

ŒT �C0;2˛
ˇ

´ sup
x¤y2M

dzg.x;y/<ı.zg/

�
min.f .x/; f .y//

ˇ
2
jT .x/ � Px;yT .y/jh

dzg.x; y/
2˛

�

C sup
x2M
t¤s�1

�
min.t; s/

ˇ
2

ˇ̌
.'Xt /�T .x/ �

�
yP'Xs .x/;'

X
t .x/

..'Xs /�T .x//
�ˇ̌
h

jt � sj˛

�
< C1;

wherePx;y denotes parallel transport along the unique geodesic joining x; y, and yP'Xs .x/;'
X
t .x/

denotes parallel transport along the unique flow line of X joining 'Xs .x/; '
X
t .x/.

For ˇ 2 R, k a non-negative integer, and ˛ 2 .0; 1
2
/, define the Hölder space C 2k;2˛

X;ˇ
.M/

with polynomial weight f
ˇ
2 to be the set of u 2 C 2k

X;ˇ
.M/ for which the norm

kukC2k;2˛
X;ˇ

´ kukC2k
X;ˇ

C

X
iC2jD2k

Œ.r zg/i .L
.j /
X u/�C0;2˛

ˇ

is finite. It is straightforward to check that the space C 2k;2˛
X;ˇ

.M/ is a Banach space. The
intersection

T
k�0 C

2k
X;ˇ

.M/ we denote by C1
X;ˇ .M/.

We now consider a smooth cut-off function �WM ! Œ0; 1� which equals 1 outside a com-
pact set. The source function space D2kC2;2˛

X;ˇ
.M/ is defined as

D2kC2;2˛
X;ˇ

.M/´
�
R� log r ˚ R ˚ C 2kC2;2˛

X;ˇ
.M/

�
;

endowed with the norm

kukD
2kC2;2˛
X;ˇ

´ jc1j C jc2j C kzukC2kC2;2˛
X;ˇ

; u´ c1� log r C c2 C zu:

The target function space is defined as

C
2k;2˛
X;ˇ

.M/´
�
R ˚ C

2k;2˛
X;ˇ

.M/
�
;
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endowed with a norm defined in a similar manner to above. We define

C
1

X;ˇ .M/´
\
k�0

C
2k;2˛
X;ˇ

.M/:

Finally, we define the spaces

M2kC2;2˛
X;ˇ

.M/´ ¹' 2 C 2loc.M/ j z! C i𝜕N𝜕' > 0º \ D2kC2;2˛
X;ˇ

.M/;

and we will work with the following convex set of Kähler potentials:

M
1

X;ˇ .M/ D
\
k�0

M2kC2;2˛
X;ˇ

.M/:

Notice that, for each k � 0, the spaces M2kC2;2˛
X;ˇ

.M/ depend on the choice of a background
metric z!. However, these spaces are all equivalent as soon as z! satisfies (6.1).

6.3. Preliminaries and Fredholm properties of the linearised operator. We proceed
with the same set-up as in Section 6.1, beginning with the following useful observation.

Lemma 6.2. Let .'t /t2Œ0;1� be a C 1-path of smooth functions in M
1
X;ˇ .M/ for some

ˇ > 0 and write
z!t ´ z! C i𝜕N𝜕't > 0 and zft ´ zf C

X

2
� 't

so that �d z!tyJX D d zft .

(i) Let GWR ! R be a C 1-function such that, for some �1 < ˛ < 1,

jG.x/j C jG0.x/j � e˛x; x � �C:

Then Z
M

G. zft /e
� zft z!nt D

Z
M

G. zf0/e
� zf0 z!n0 ; t 2 Œ0; 1�:

(ii)
R 1
0

R
M j P't je

� zft z!nt dt < C1 and
R 1
0

R
M j P't je

� zf z!n dt < C1.

Proof. (i) By differentiating, one sees that

d

dt

�Z
M

G. zft /e
� zft z!nt

�
D

Z
M

G0. zft /
X

2
� P'te

� zft z!nt C

Z
M

G. zft /
�
�z!t P't �

X

2
� P't

�
e�

zft z!nt

D

Z
M

G0. zft /
X

2
� P'te

� zft z!nt �
1

2

Z
M

G0. zft /r
g't zft � P'te

� zft z!nt D 0:

Here, we have used integration by parts together with the fact thatX D r zgt zft for all t 2 Œ0; 1�,
where zgt denotes the Kähler metric associated to z!t .

(ii) First note that, by definition of the function space, the weighted measures e� zft z!nt
and e� zf z!n are equivalent to each other. Therefore, it suffices to verify only thatZ 1

0

Z
M

j P't je
� zf

z!n dt < C1:

But from the definition of the function space and z!, this is trivially satisfied.
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Next, define the following map as in [33]:

MAz! W  2 ¹' 2 C 2loc.M/ j z!' ´ z! C i𝜕N𝜕' > 0º 7! log
� z!n 

z!n

�
�
X

2
�  2 R:

For any  2 C 2loc.M/, let zg (respectively zgt ) denote the Kähler metric associated to the
Kähler form z! (respectively z!t for any t 2 Œ0; 1�). Brute force computations show that

MAz!.0/ D 0;

D MAz!.u/ D �z! u �
X

2
� u; u 2 C 2loc.M/;

d2

dt2
.MAz!.t // D

d

dt
.�z!t  / D �j𝜕N𝜕 j2

zgt 
for t 2 Œ0; 1�;(6.2)

MAz!. / DMAz!.0/C
d

dt

ˇ̌̌
tD0

MAz!.t /

C

Z 1

0

Z u

0

d2

dt2
.MAz!.t // dt du

D �z! �
X

2
�  �

Z 1

0

Z u

0

j𝜕N𝜕 j2
zgt 

dt du:

(6.3)

The main result of this section is that the drift Laplacian of zg is an isomorphism between
polynomially weighted function spaces with zero mean value.

Theorem 6.3. Let ˛ 2 .0; 1
2
/, k 2 N, and ˇ 2 .0; �D/. Then the drift Laplacian

�zg;X WD
2kC2;2˛
X;ˇ

.M/ \

²Z
M

ue�
zf
z!n D 0

³
! C

2k;2˛
X;ˇ

.M/ \

²Z
M

ve�
zf
z!n D 0

³
is an isomorphism of Banach spaces.

Remark 6.4. In the statement of Theorem 6.3, if D D P1 endowed with its metric of
constant sectional curvature 1, then �P1 D 2 and correspondingly ˇ 2 .0; �P1/ D .0; 2/. In
general, Lichnerowicz’s estimate implies that �D � 2; see [5, Theorem 6.14] for a proof. The
rate 
 from (6.1) can take any value in the interval .0; �D/. In Section 6.4, we will apply
Theorem 6.3 with 
 D ˇ.

Proof of Theorem 6.3. First observe that the drift Laplacian �zg;X is symmetric with
respect to the weighted measure e� zf z!n, a measure with finite volume. Set

H 1
zf
.M/´ ¹u 2 H 1

loc.M/ JX -invariant j u 2 L2.e�
zf
z!n/; r zgu 2 L2.e�

zf
z!n/º;

W 2
zf
.M/´ ¹u 2 H 1

zf
.M/ j �z!;Xu 2 L2.e�

zf
z!n/º;

endowed with the obvious norms induced by that of L2.e� zf z!n/. It can be shown that the
operator �zg;X restricted to compactly supported smooth JX -invariant functions admits a
unique self-adjoint extension to W 2

zf
.M/, with domain contained in H 1

zf
.M/ and with dis-

crete L2.e� zf z!n/-spectrum; see [18, Proposition 6.13] and [23, Theorem 4.6] in the context
of expanding gradient Ricci solitons, but whose proofs can be adapted to the current situa-
tion. Observe also that the kernel (and hence the cokernel) of this operator is the constant
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functions. By considering any function F in the codomain as an element of the weighted L2-
space L2.e� zf z!n/, we can therefore find a unique weak solution u 2 H 1.e�

zf z!n/ with zero
weighted mean value of the equation

(6.4) �zg;Xu D F:

In addition, we have the estimate

(6.5) kukL2.e� zf z!n/ C kr
zgukL2.e� zf z!n/ � CkF kL2.e�

zf z!n/ � CkF kC0

for some positive constant C independent of u and F that may vary from line to line. This
estimate essentially follows from the weighted L2-Poincaré inequality with respect to the drift
Laplacian �zg �X � . We improve on the regularity of u through a series of claims.

Claim 6.5. There exists a positive constant C D C.z!; n/ such that

ju.x/j � Ce
zf .x/
2 kF kC0 ; x 2M:

Proof of Claim 6.5. By conjugating (6.4) with a suitable weight, notice that the function
v ´ e�

zf =2u satisfies
�zgv D e�

zf
2 F C

�1
4
jX j

2
zg �

1

2
�zg

zf
�
v:

This implies that jvj satisfies the following differential inequality in the weak sense:

(6.6) �zg jvj � �C jvj � CkF kC0 :

Here we have made use of the non-negativity of jX j2
zg

together with the boundedness of �zg
zf

given by (6.1).
We perform a local Nash–Moser iteration on (6.6) in Bzg.x; r/. More precisely, since

.M 2n; zg/ is a Riemannian manifold with Ricci curvature bounded from below, the results of
[32] yield the following local Sobolev inequality:�

1

volzg.Bzg.x; r//

Z
Bzg.x;r/

j'j
2n
n�1 z!n

�n�1
n

�

�
C.r0/r

2

volzg.Bzg.x; r//

Z
Bzg.x;r/

j zr'j2
zg z!

n

�(6.7)

for any ' 2 H 1
0 .Bzg.x; r// and for all x 2M and 0 < r < r0, where r0 is some fixed positive

radius.
A Nash–Moser iteration proceeds in several steps. First, one multiplies (6.4) across by

�2s;s0vjvj
2.p�1/ with p � 1, where �s;s0 , with 0 < s C s0 < r and s; s0 > 0, is a Lipschitz cut-

off function with compact support in Bzg.x; s C s0/ equal to 1 on Bzg.x; s/ and with

j zr�s;s0 jzg �
1

s0

almost everywhere. One then integrates by parts and uses the Sobolev inequality of (6.7) to
obtain a so-called “reversed Hölder inequality” which, after iteration, leads to the bound

sup
Bzg.x;

r
2
/

jvj � C.kvkL2.Bzg.x;r//
C kF kL1.Bzg.x;r///

� C.kukL2.e� zf z!n/ C kF kC0.M// � CkF kC0.M/
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for r � r0, where C D C.r0; z!; n/. Here we have made use of (6.5) in the last line. This esti-
mate yields an a priori local C 0-estimate which is uniform on the centre of the ball Bzg.x;

r
2
/.

In particular, unravelling the definition of the function v, one obtains the expected a priori
uniform exponential growth, namely

ju.x/j � Ce
zf .x/
2 kF kC0 ; x 2M:

Thanks to Claim 6.5, by local Schauder elliptic estimates, we actually see that u lies in
C 2kC2;2˛loc and that we have the estimates

(6.8) kukC2kC2˛.¹ zf <Rº/ � CkF kC2k;2˛.¹ zf <2Rº/ � CkF kC
2k;2˛
X;ˇ

for some positive constant C D C.R; z!; n/. We now proceed to prove the expected a priori
weighted estimates on u and on its derivatives.

Claim 6.6. There exists a positive constant A D A.z!; n/ such that

ju.x/j � A log zf .x/kF kC0 for all x 2M with zf .x/ � 2.

Proof of Claim 6.6. Let " > 0 and let ı 2 .0; 1/ be such that

lim
zf!C1

.u � "eı
zf / D �1;

parameters that we can choose by Claim 6.5. For A > 0 a constant to be determined later, we
have outside a compact set ¹ zf � R.ı/º the inequality

�zg;X

�
u � A log.f C 1/ � "eı

zf
�
� �kF kC0 C 2A > 0;

so long as A > 1
2
kF kC0 . Here Lemma 6.1 has been applied. Appealing to the maximum

principle then yields the bound

max
¹ zf�R.ı/º

�
u � A log.f C 1/ � "eı

zf
�
D max

¹ zfDR.ı/º

�
u � A log.f C 1/ � "eı

zf
�
:

Next, letting "! 0, we see that

u � A log.f C 1/ � max
¹ zfDR.ı/º

�
u � A log.f C 1/

�
� 0

if we set A´ C max¹ zfDR.ı/º u � CkF kC0 with C ´ C.ı; z!; n/. This we can do thanks
to (6.8). Applying the same argument to �u concludes the proof of the claim.

Observe that zu´ uC c� log r , where F � c 2 C
2k;2˛
X;ˇ

.M/, satisfies the equation

�zg;X zu D F C c�zg;X .� log r/

D F � c C c C c�zg;X .� log r/„ ƒ‚ …
compactly supported

´ zF 2 C
2k;2˛
X;ˇ

.M/:

(6.9)
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The next claim estimates the C 2kC2;2˛loc -norms of zu in terms of the data F and of its local
C 0-norm. For this purpose, define the corresponding solution to the Ricci flow

g.�/´ .��/.�X� /
�g for � < 0;

where
𝜕��X� D

X

2.��/
ı �X� and �X�D�1 D IdC�D :

Here,
�X� .z; �/ D

� z
p
��
; �

�
for .z; �/ 2 C �D:

In particular, if Ar1;r2 ´ ¹.z; �/ 2 C �D j r1 � jzj � r2º for 0 � r1 < r2, then

�X� .Ar1;r2/ D A r1p
��
;
r2p
��
:

Claim 6.7. There exist a radius r0 > 0 and a positive constant C such that if r � r0,
then

kzukC2kC2;2˛X;0 .Ar.x/�C;r.x/CC /

� C.kzukC0.A r.x/
C

;Cr.x// C k zF kC2k;2˛X;0 .A r.x/
C

;Cr.x///:

(6.10)

Moreover,

(6.11) jX � zuj C jr
zg
zujzg C jr

zg;2
zujzg � C log rkF kC

2k;2˛
X;ˇ

; r � r0:

Proof of Claim 6.7. Since (6.9) is expressed in terms of the Riemannian metric zg, we
define analogously the family of metrics zg.�/´ .��/.�X� /

�zg for � < 0, where

𝜕��X� D
X

2.��/
ı �X� and �X�D�1 D IdC�D :

For �� 2 Œ1
2
; 2�, the metrics zg.�/ are uniformly equivalent and their covariant derivatives (with

respect to g) and time derivatives are bounded by (6.1). Now, zu.�/´ .�X� /
�zu satisfies

(6.12) 𝜕� zu D �zg.�/zuC zF .�/; zF .�/´ �.��/�1.�X� /
�F:

Standard parabolic Schauder estimates applied to (6.12) on a ball Bg.x; r0/, 2r0 < inj.g/, then
ensure the existence of a uniform positive constant C such that

kzu.�/kC2kC2;2˛.Bg.x;r0/�Œ� 32 ;�1�/

� C
�
kzu.�/kC0.Bg.x;2r0/�Œ�2;� 12 �/ C k zF .�/kC2k;2˛.Bg.x;2r0/�Œ�2;� 12 �/

�
:

Unravelling the definition of the function zu.�/ and that of the metrics zg.�/ then yields (6.10)
after observing that [

�2Œ�2;� 1
2
�

�X� .Bg.x; 2r0// � A r.x/p
2
�
p
2r0;

p
2r.x/C2

p
2r0
:

The final estimate (6.11) is a straightforward combination of (6.10) together with the a priori
bound from Claim 6.6.
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Now we are in a position to linearise equation (6.4) outside a compact set with respect to
the background metric. Namely, we write

(6.13) �g;X zu D zF C .�g ��zg/zu´ G;

where G satisfies pointwise estimate

(6.14) G � zF D .g�1 � zg�1/ � 𝜕N𝜕u D O.r�
 /j𝜕N𝜕ujg ;

here � denoting any linear combination of contractions of tensors with respect to the metric g.
Indeed, this estimate holds true by virtue of (6.1). We rewrite (6.13) (outside a compact set) as
follows:

(6.15) �C zu �X � zuC�Dzu D G:

Here �C and �D denote the Riemannian Laplacian of the metric !C on C and !D on D,
respectively. Integrating this equation over D at a sufficiently large height r , we find that

(6.16) �C;Xu.r/ D G.r/; r � r0;

where
u.r/´

«
D

zu.r; � /!n�1D and G.r/ D

«
D

G.r; � /!n�1D ;

both functions in the r-variable only because both are JX -invariant by definition. We next
derive some estimates on u.r/.

Claim 6.8. One has

ju.r/j � Ck zF kC2k;2˛
X;ˇ

; r � r0:

Moreover, limr!C1 u.r/µ u1 exists, is finite, and

ju.r/ � u1j � C
�
r�ˇk zF kC2k;2˛

X;ˇ
C r�
 sup

¹f� r
2

2
º

j𝜕N𝜕uj
�
; r � r0:

Proof of Claim 6.8. Equation (6.16) can be rewritten as

(6.17)
ˇ̌̌X �X � u.r/

r2
�X � u.r/

ˇ̌̌
� C

�
r�ˇk zF kC2k;2˛

X;ˇ
C r�
 sup

¹f� r
2

2
º

j𝜕N𝜕uj
�
; r � r0;

by virtue of (6.14). This is a first-order differential inequality forX � u.r/. Now, estimate (6.11)
from Claim 6.7 implies a first rough estimate, namelyˇ̌̌X �X � u.r/

r2
�X � u.r/

ˇ̌̌
� Cr�min¹ˇ;
º.1C log r/k zF kC2k;2˛

X;ˇ
; r � r0:

Grönwall’s inequality then leads to the bound

jX � u.r/j � Ck zF kC2k;2˛
X;ˇ

e
r2

2

Z C1

r

s�min¹ˇ;
º.1C log s/se�
s2

2 ds

� Ck zF kC2k;2˛
X;ˇ

r�min¹ˇ;
º log r; r � r0;
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for some uniform positive constant C independent of r � r0. Integrating once more in r ,
Claim 6.6 ensures that u.r/ admits a limit u1 as r ! C1 and that, for r � r0,

ju.r/j � ju.r0/j C Ck zF kC2k;2˛
X;ˇ

Z r

r0

s�min¹ˇ;
º�1 log s ds � Ck zF kC2k;2˛
X;ˇ

for some positive constant C which is independent of r (and of the data F ) that may vary from
line to line. This concludes the proof of the first part of the claim.

Returning to inequality (6.17), another application Grönwall’s inequality leads to the
bound

jX � u.r/j � Ce
r2

2

�Z C1

r

s�ˇ se�
s2

2 dsk zF kC2k;2˛
X;ˇ

C

Z C1

r

s�
se�
s2

2 ds sup
¹f� r

2

2
º

j𝜕N𝜕uj
�

� C
�
r�ˇk zF kC2k;2˛

X;ˇ
C r�
 sup

¹f� r
2

2
º

j𝜕N𝜕uj
�
; r � r0:

Integrating this inequality once more between r and r D C1 yields the second part of the
claim.

The next claim concerns the uniform boundedness of the projection of u onto the ortho-
gonal complement of the kernel of �D , D being interpreted as embedded in each level set
¹f D

r2

2
º.

Claim 6.9. Given ı 2 .0;min¹ˇ; 
º/, there exists r0 D r0.ı; z!; n/ such that

kzu � u.r/kL2.D/ � Ck zF kC2k;2˛
X;ˇ

r�ı ; r � r0:

Proof of Claim 6.9. Recall that, by (6.15) and (6.16), �g;X zu D G so that

(6.18) �g;X .zu � u.r// D G �G.r/

outside a compact set. Since, for any function v, we have

2v�C;Xv D �C;X .v
2/ � 2jrCvj2gC

;

multiplying (6.18) across by zu � u.r/ and integrating over D gives rise to the lower bound

�C;X
�
kzu � u.r/k2

L2.D/

�
� �C;X

�
kzu � u.r/k2

L2.D/

�
� 2

Z
P1

jr
C.zu � u.r//j2gC

!n�1D

.n � 1/Š

D 2

Z
D

.zu � u.r//�C;X .zu � u.r//
!n�1D

.n � 1/Š

D 2

Z
D

.zu � u.r//.G �G.r/ ��D.zu � u.r///
!n�1D

.n � 1/Š

D 2krgD .zu � u.r//k2
L2.D/

C 2hG �G.r/; zu � u.r/iL2.D/

� 2�Dkzu � u.r/k2
L2.D/

� 2kG �G.r/kL2.D/kzu � u.r/kL2.D/;

(6.19)
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where we have made use of the Poincaré inequality on .D; gD/ in the last line. Young’s in-
equality then implies for " 2 .0; �D/ that

�C;X
�
kzu � u.r/k2

L2.D/

�
� 2.�D � "/kzu � u.r/k2

L2.D/
� C"kG �G.r/k2

L2.D/
:

Therefore, invoking estimate (6.14) and Claim 6.7 together with the previous inequality, we
find that

�C;X
�
kzu � u.r/k2

L2.D/

�
� 2.�D � "/kzu � u.r/k2

L2.D/

� C"k zF k
2
C
2k;2˛
X;ˇ

r�2min¹ˇ;
º log2 r; r � 2:

By Lemma 6.1 applied to zg ´ g, we see that

�C;X .r
�2ı/ D 2ır�2ı CO.r�2ı�2/;

which, for A > 0 and ı 2 .0;min¹ˇ; 
º/, implies that

�C;X
�
kzu � u.r/k2

L2.D/
� Ar�2ı

�
� 2.�D � "/kzu � u.r/k2

L2.D/
� C"k zF k

2
C
2k;2˛
X;ˇ

r�2min¹ˇ;
º log2 r

� 2Aır�2ı � ACr�2ı�2

� 2.�D � "/
�
kzu � u.r/k2

L2.D/
� Ar�2ı

�
C 2A.�D � " � ı/r�2ı

� C"k zF k
2
C
2k;2˛
X;ˇ

r�2min¹ˇ;
º log2 r � ACr�2ı�2

� 2.�D � "/
�
kzu � u.r/k2

L2.D/
� Ar�2ı

�
;

provided that " 2 .0; �D � ı/, r � r0 D r0.ı; n; z!/, and A � Ck zF kC2k;2˛
X;ˇ

.
Now, since kzu � u.r/kL2.D/ is growing at most logarithmically by Claim 6.6, given

B > 0, we compute that

�C;X
�
kzu � u.r/k2

L2.D/
� Ar�2ı � Br

�
� 2.�D � "/

�
kzu � u.r/k2

L2.D/
� Ar�2ı � Br

�
if " 2 .0; �D � ı/, r � r0 D r0.ı; n; z!/, and A � Ck zF kC2k;2˛

X;ˇ
. In particular, the maximum

principle applied to the function kzu � u.r/k2
L2.D/

� Ar�2ı � Br outside a compact set of the
form r � r0 leads to the equality

max
¹r�r0º

�
kzu� u.r/k2

L2.D/
�Ar�2ı �Br

�
D max

®
0; max

¹rDr0º

�
kzu� u.r/k2

L2.D/
�Ar�2ı �Br

�¯
:

Letting B ! 0 and setting A D Ck zF kC2k;2˛
X;ˇ

with C sufficiently large but uniform in the data
F and the radius r , one arrives at the expected bound

kzu � u.r/kL2.D/ � Ck zF kC2k;2˛
X;ˇ

r�ı ; r � r0:

The next claim proves a quantitative almost sharp weighted C 0-estimate on zu � u1 in
terms of the data F .

Claim 6.10. Given ı 2 .0;min¹ˇ; 
º/, there exists r0 D r0.ı; z!; n/ > 0 independent
of F (and the solution u) such that

sup
r�r0

rı jzu � u1j � Ck zF kC2k;2˛
X;ˇ

:
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Proof of Claim 6.10. It suffices to prove that, for all ı 2 .0;min¹ˇ; 
º/, there exists
r0 D r0.ı; n; z!/ > 0 such that

(6.20) sup
r�r0

rı jzu � u.r/j � Ck zF kC2k;2˛
X;ˇ

:

Indeed, the triangle inequality together with Claims 6.7 and 6.8 already yield such a uniform
C 0-polynomial rate on the difference u.r/ � u1.

In order to prove (6.20), we apply a local parabolic Nash–Moser iteration to the following
heat equation with a source term (see for instance [26, Theorem 6.17]) by recalling that, for
� < 0, zu.�/´ .�X� /

�zu and u.r; �/´ .�X� /
�u.r/ D u

�
rp
��

�
,

𝜕�
�
zu � u. � ; � /

�
.�/ D �.��/�gD

�
zu � u. � ; � /

�
.�/

C�C
�
zu � u. � ; � /

�
.�/ � .G �G/.�/„ ƒ‚ …

´S.�/; source term

; .��/ 2
h1
2
; 2
i
:

Here we have used (6.12), (6.13), and (6.16). Also, the notation .��/ � gD denotes the metric
on D rescaled by .��/. In particular, there exists C > 0 such that if r � r0,

sup
fD r2

2

jzu � u.r/j D sup
fD r2

2

jzu.�/ � u.r; �/j�D�1

� C sup
.��/2Œ1=2;2�

�
kzu.�/ � u.r; �/kL2.D/ C jS.�/j

�
� C sup

s2Œr=
p
2;
p
2r�

�
kzu.1/ � u.s; 1/kL2.D/ C jS.1/j

�
:

(6.21)

The source term can be estimated as follows: if k � 1, .��/ 2 Œ1
2
; 2� and r � r0, thenˇ̌

�C
�
zu � u. � ; � /

�
.�/ � .G �G/.�/

ˇ̌
� C

�
r�ˇk zF kC2k;2˛

X;ˇ
C r�
 sup

f� r
2

4

j𝜕𝜕uj C r�2 sup
f� r

2

4

juj
�

� Ck zF kC2k;2˛
X;ˇ

r�min¹ˇ;
º.1C log r/;

where we have applied Claim 6.7 to X � zu and X �X � zu in order to estimate �C zu.
Finally, thanks to (6.21), Claim 6.9 combined with the above estimate on the source term

implies that

sup
fD r2

2

jzu � u.r/j � Ck zF kC2k;2˛
X;ˇ

r�ı C Ck zF kC2k;2˛
X;ˇ

r�min¹ˇ;
º.1C log r/

� Ck zF kC2k;2˛
X;ˇ

r�ı ; r � r0;

as claimed.

The next claim provides a quantitative sharp weighted C 0-estimate on zu � u1 in terms
of the data.

Claim 6.11. Given ˇ 2 .0; �D/, there exists r0 D r0.ˇ; z!; n/ > 0 independent of F
(and the solution u) such that

sup
r�r0

rˇ jzu � u1j � Ck zF kC2k;2˛
X;ˇ

:
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Proof of Claim 6.11. Applying (6.10) to zu � u1 together with Claim 6.10 demonstrates
that, for ı 2 .0;min¹ˇ; 
º/,

jX � zuj.x/C jr
zg
zuj.x/C jr

zg;2
zuj.x/ � Ck zF kC2k;2˛

X;ˇ
r�ı ; r � r0:

Recalling (6.14), the previous estimate implies in turn the following one:

(6.22) jG � zF j � Ck zF kC2k;2˛
X;ˇ

r�
�ı ; r � r0:

On one hand, thanks to Claim 6.8, one obtains an improved decay on u.r/ � u1, namely

ju.r/ � u1j � Ck zF kC2k;2˛
X;ˇ

.r�min¹ˇ;
Cıº/; r � r0:

On the other hand, (6.22) can then be inserted into the proof of Claim 6.9 to establish an
improvedL2.D/-decay on zu� u.r/. Indeed, from inequality (6.19), we deduce that, for r � r0,

�C;X
�
kzu � u.r/k2

L2.D/

�
� 2�Dkzu � u.r/k2

L2.D/
� Ckzu � u.r/kL2.D/k zF kC2k;2˛

X;ˇ
r�min¹ˇ;
Cıº

� 2.�D � "/kzu � u.r/k2
L2.D/

� C"k zF k
2
C
2k;2˛
X;ˇ

r�2min¹ˇ;
Cıº

for any " 2 .0; �D/. Using a barrier function of the form r�2ı
0

with

0 < ı0 � min¹ˇ; 
 C ıº < �D

and by choosing " > 0 carefully, one arrives at an improved L2.D/-decay of the form above,
specifically

kzu � u.r/kL2.D/ � Ck zF kC2k;2˛
X;ˇ

r�ı
0

; r � r0:

The proof of Claim 6.10 can now be adapted to give a corresponding improved pointwise
decay. By applying this reasoning a finite number of times, one arrives at the desired sharp
decay on zu � u1.

Theorem 6.3 now follows by combining Claim 6.7 (after multiplying by the weight rˇ )
and Claim 6.11.

6.4. Small perturbations along the continuity path. In this section, we show, using
the implicit function theorem, that the invertibility of the drift Laplacian given by Theorem 6.3
allows for small perturbations in polynomially weighted function spaces of solutions to the
complex Monge–Ampère equation that we wish to solve. This forms the openness part of the
continuity method as will be explained later in Section 7.1.

In notation reminiscent of that of [34, Chapter 5], we consider the space .C2;2˛
X;ˇ

.M//z!;0
of functions F 2 C2;2˛

X;ˇ
.M/ with Z

M

.eF � 1/e�
zf
z!n D 0:

This function space is a hypersurface of the Banach space C2;2˛
X;ˇ

.M/. Notice that the tangent
space at a function F0 is the set of functions u 2 C2;2˛

X;ˇ
.M/ withZ

M

ueF0�
zf
z!n D 0:

We have the following theorem.
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Theorem 6.12. Let

F0 2 .C
2;2˛
X;ˇ .M//z!;0 \ C

1

X;ˇ .M/ for some ˇ 2 .0; �D/

and let  0 2 M
1
X;ˇ .M/ be a solution of the complex Monge–Ampère equation

log
� z!n 0

z!n

�
�
X

2
�  0 D F0:

Then, for any ˛ 2 .0; 1
2
/, there exists a neighbourhood UF0 � .C 2;2˛

X;ˇ
.M//z!;0 of F0 such that,

for all F 2 UF0 , there exists a unique function  2 M4;2˛
X;ˇ

.M/ such that

(6.23) log
� z!n 

z!n

�
�
X

2
�  D F:

Moreover, if F 2 UF0 lies in C
1
X;ˇ .M/, then the unique solution  2 M4;2˛

X;ˇ
.M/ to (6.23) lies

in M
1
X;ˇ .M/.

Remark 6.13. Consideration of only finite regularity of the difference ! � z! (which
lowers the assumptions on the regularity of the coefficients of the drift Laplacian�zg;X ) and of
the data . 0; F0/ would lead to a more refined version of Theorem 6.12.

Proof of Theorem 6.12. To apply the implicit function theorem for Banach spaces, we
must reformulate the statement of Theorem 6.12 in terms of the mapMAz! introduced formally
at the beginning of Section 6.3. To this end, consider the mapping

MAz! W 2 M4;2˛
X;ˇ .M/ 7! log

� z!n 

z!n

�
�
X

2
�  2 .C2;2˛X;ˇ .M//z!;0; ˛ 2

�
0;
1

2

�
:

Notice that the function spaces above can be defined by either using the metric zg or zgt 0
for any t 2 Œ0; 1�. To see that MAz! is well-defined, apply the Taylor expansion (6.3) to the
background metric z! to obtain

MAz!. / D log
� z!n 

z!n

�
�
X

2
�  

D �z! �
X

2
�  �

Z 1

0

Z u

0

j𝜕N𝜕 j2
zgt 

dt du:

(6.24)

Then, by the very definition of D4;2˛
X;ˇ

.M/, the first two terms of the last line of (6.24) lie in
C2;2˛
X;ˇ

.M/.
Now, if S and T are tensors in C 2k;2˛X;
1

.M/ and C 2k;2˛X;
2
.M/, respectively, with 
i � 0,

i D 1; 2, then S � T lies in C 2k;2˛X;
1C
2
.M/, where � denotes any linear combination of contrac-

tions of tensors with respect to the metric zg. Moreover,

(6.25) kS � T kC2k;2˛
X;
1C
2

� C.k; ˛/kSkC2k;2˛X;
1
� kT kC2k;2˛X;
2

:

Next notice that
ji𝜕N𝜕 j2

zgt 
D zg�1t � zg�1t � .r zg/2 � .r zg/2 

and that
zg�1t � zg�1 2 C 2;2˛X;ˇ .M/:
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Thus, applying (6.25) twice to
S D T D .r zg/2 

and to the inverse zg�1t with weights 
1 D 
2 D ˇ and k D 1, one finds that

ji𝜕N𝜕 j2
zgt 

2 C 2;2˛X;2ˇ .M/ � C 2;2˛X;ˇ .M/ for each t 2 Œ0; 1�

and that 



Z 1

0

Z u

0

ji𝜕N𝜕 j2
zgt 

dt du






C2;2˛
X;ˇ

� C.k; ˛; zg/k kD4;2˛
X;ˇ

;

as long as k kD4;2˛
X;ˇ

� 1. Finally, the JX -invariance of the right-hand side of (6.24) is clear
and Lemma 6.2 (i) ensures that the function

expMAz!. / � 1

has zero mean value with respect to the weighted measure e� zf z!n. Indeed, Lemma 6.2 (i)
applied to the linear path z!� ´ z! C i𝜕𝜕.� / for � 2 Œ0; 1� gives us thatZ

M

�
expMAz!. / � 1

�
e�

zf
z!n D

Z
M

e�
zf z!n �

Z
M

e�
zf
z!n D 0:

By (6.2), we have that

D 0MAz! W 2 M4;2˛
X;ˇ .M/ \

²Z
M

ue�
zf 0 z!n 0 D 0

³
7! �z! 0

 �
X

2
�  2 TF0.C

2;2˛
X;ˇ .M//z!;0;

where the tangent space of .C2;2˛
X;ˇ

.M//z!;0 at F0 is equal to the set of functions u 2 C2;2˛
X;ˇ

.M/

with 0 mean value with respect to the weighted measure e� zf 0 z!n 0 . Therefore, after apply-
ing Theorem 6.3 to the background metric z! 0 in place of z!, we conclude that D 0MAz! is
an isomorphism of Banach spaces. The result now follows by applying the implicit function
theorem to the map MAz! in a neighbourhood of

 0 2 M4;2˛
X;ˇ .M/ \

²Z
M

ue�
zf 0 z!n 0 D 0

³
:

The proof of the regularity at infinity of the solution in case the data F 2 C1
X;ˇ

.M/ fol-
lows by a standard bootstrapping and will therefore be omitted; see Propositions 7.32 and 7.34
for the nonlinear setting.

7. Proof of Theorem A (v): A priori estimates

7.1. The continuity path. Recall the setup and notation of Theorem A: J denotes the
complex structure on M , z the holomorphic coordinate on the C-component of yM , and we
write r D jzj�, treating both r and z as functions on M via �. It is clear then that X D r𝜕r
on M nK.

Recall from (1.3) that the complex Monge–Ampère equation we wish to solve is

(�0)

8̂̂̂<̂
ˆ̂:
.! C i𝜕N𝜕 /n D eFCX

2
� !n;  2 C1.M/; LJX D 0;

! C i𝜕N𝜕 > 0;Z
M

eF�f !n D

Z
M

e�f !n;
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where F WM ! R is a JX -invariant smooth function equal to a constant c0 outside a com-
pact subset V of M and f WM ! R is the Hamiltonian potential of X with respect to !,
i.e., �!yJX D df , normalised so that �!f � f C

X
2
� f D 0 outside a compact set. Define

Fs ´ log.1C s.eF � 1//. In this section, we prove Theorem A (v) by providing a solution
to (�0) by implementing the continuity path

(?s)

8̂̂̂<̂
ˆ̂:
.! C i𝜕N𝜕 s/n D eFsC

X
2
� s!n;  s 2 M

1

X;ˇ .M/; LJX s D 0;

s 2 Œ0; 1�;Z
M

eF�f !n D

Z
M

e�f !n;

Z
M

 se
�f !n D 0:

When s D 0, .?0/ admits the trivial solution, namely  0 � 0. When s D 1, .?1/ corre-
sponds to (�0), that is, the equation that we wish to solve. Via the a priori estimates to follow,
we will show that the set s 2 Œ0; 1� for which (?s) has a solution is closed. As we have just
seen, this set is non-empty. Openness of this set follows from the isomorphism properties of
the drift Laplacian given by Theorem 6.12. Connectedness of Œ0; 1� then implies that (?s) has
a solution for s D 1, resulting in the desired solution of (�0).

7.2. The continuity path re-parametrised. To obtain certain localisation results and,
in turn, a priori estimates for (?s), we need to consider a reformulation of (?s) in the following
way. Identify .M nK;!/ and . yM n yK; y!/ using �, where K �M , yK � yM are compact, and
define Fs ´ log.1C s.eF � 1//. Then there exists a compact subset K � V �M such that,
for all s 2 Œ0; 1�, Fs is equal to a constant cs on M n V . Explicitly, cs D log.1C s.ec0 � 1//.
Note that cs varies continuously as a function of s and that (?s) takes the form

.! C i𝜕N𝜕 s/n D eFsC
X
2
� s!n:

Let �s ´ �2cs log.r/, a real-valued function defined on M nK. Then, with g denoting
the Kähler metric associated to !, it is clear that

k.log.r//�1 � �skC0.MnK/ C kd�skC0.MnK;g/ C kr � i𝜕N𝜕�skC0.MnK;g/

� 2jcsj
�
1C sup

MnK

r�1
�
� C.K/;

and so Lemma 2.4 yields the existence of a bump function �WM ! R supported onM n V and
a compact subsetW � V , both independent of s, such that � D 1 onM nW and such that, for
all s 2 Œ0; 1�, !s ´ ! C i𝜕N𝜕.� � �s/ > 0 on M . Define ˆs ´ � � �s . Then !s D ! C i𝜕N𝜕ˆs ,
and since ˆs D �2cs log r on M nW , that is, a pluriharmonic function, !s is isometric to !
on this set. Furthermore, we find that

log
�
.!s C i𝜕N𝜕. s �ˆs//n

!ns

�
�
X

2
� . s �ˆs/

D log
�
.! C i𝜕N𝜕 s/n

.! C i𝜕N𝜕ˆs/n

�
�
X

2
� . s �ˆs/

D log
�
.! C i𝜕N𝜕 s/n

!n

�
�
X

2
�  s � log

�
.! C i𝜕N𝜕ˆs/n

!n

�
C
X

2
�ˆs

D Fs �

�
log

�
.! C i𝜕N𝜕ˆs/n

!n

�
�
X

2
�ˆs

�
µ Gs;
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with Gs vanishing on M nW . Set #s ´  s �ˆs . Then #s 2 R ˚ C
1
X;ˇ .M/ and we can

rewrite (?s) in terms of #s as

log
�
.!s C i𝜕N𝜕#s/n

!ns

�
�
X

2
� #s D Gs; #s 2 R ˚ C

1

X;ˇ .M/; LJX#s D 0;

!s C i𝜕N𝜕#s > 0; s 2 Œ0; 1�;

(??s)

with the support of Gs contained in W and !s D ! on M nW . We derive a priori estimates
for (??s), the advantage over (?s) being that it allows for a localisation of the infimum and
supremum of j#sj, essentially because the unbounded log term has been absorbed into the
background metric !s in (??s). As we have control on ˆs , the a priori estimates we derive for
#s will translate into the desired a priori estimates for  s , thereby allowing us to complete the
closedness part of the continuity method for (?s).

Define �s ´ !s C i𝜕N𝜕#s . Then, in terms of the Ricci forms ��s and �!s of �s and !s ,
respectively, (??s) yields

(7.1) ��s C
1

2
LX�s D �!s C

1

2
LX!s � i𝜕N𝜕Gs:

We will write hs for the Kähler metric associated to �s .
We will need the following lemma regarding the Hamiltonian potential f!s of X with

respect to !s .

Lemma 7.1. Let f!s ´ f C
X
2
�ˆs . Then �!syJX D df!s and there exists a com-

pact subset U �M containing W such that, for all s 2 Œ0; 1�, there exists Hs 2 C1.M/

varying smoothly in s and equal to �cs on M n U so that

(7.2) �!sf!s �
X

2
� f!s C f!s D Hs:

Proof. The first assertion is clear. Regarding the normalisation condition (7.2), a com-
putation shows that, for the Ricci forms �! and �!s of ! and !s , respectively,

�!s C
1

2
LX!s � !s D �! C

1

2
LX! � ! � i𝜕N𝜕

�
log

�!ns
!n

�
�
X

2
�ˆs Cˆs

�
D i𝜕N𝜕.F2 CGs � Fs �ˆs/;

where we have used (4.2). Write Qs ´ F2 CGs � Fs �ˆs . Then Qs is JX -invariant and
it is easy to see that Qs is equal to 2cs log.r/ � cs outside a compact subset U � W of M
independent of s. Contracting the identity

�!s C
1

2
LX!s � !s D i𝜕N𝜕Qs

with X1;0 ´ 1
2
.X � iJX/ and arguing as in Lemma 4.2 using the JX -invariance of the

functions involved, we find that

�!sf!s �
X

2
� f!s C f!s C

X

2
�Qs

is constant on M . But since, on M nW , !s D !, f!s D f � cs , and X
2
�Qs D cs , this con-

stant must be zero. Hence the result follows with Hs ´ �
X
2
�Qs .
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This allows for a normalisation for the Hamiltonian potential f�s ´ f!s C
X
2
� #s of X

with respect to �s .

Lemma 7.2. Let f�s ´ f!s C
X
2
� #s and let U be as in Lemma 7.1. Then

��syJX D df�s ;

and for all s 2 Œ0;1�, there exists a compactly supported functionPs 2C1.M/ varying smooth-
ly in s with suppPs � U such that

��sf�s �
X

2
� f�s D �f C Ps:

Proof. Again, the first assertion is clear. As for (7.2), we have that

X

2
� log

��ns
!ns

�
D
1

2
tr�s LX�s �

1

2
tr!s LX!s

D tr�s .i𝜕N𝜕f�s / � tr!.i𝜕N𝜕f!s /
D ��sf�s ��!sf!s :

Thus, contracting both sides of (??s) with X
2

, we obtain

��sf�s ��!sf!s D
X

2
�Gs C

X

2
�

�
f!s C

X

2
� #s

�
�
X

2
� f!s ;

i.e.,

��sf�s �
X

2
� f�s D �!sf!s �

X

2
� f!s C

X

2
�Gs:

Hence we derive from (7.2) that

��sf�s �
X

2
� f�s D Hs C

X

2
�Gs � f!s :

With Ps ´ Hs C
X
2
�Gs �

X
2
�ˆs , the result is now clear.

7.3. Summary of notation. For clarity, in this section, we provide a summary of our
notation regarding the various Kähler forms in play.

� F is the data in (�0) equal to a constant c0 outside a compact set.

� ! is the background Kähler form given in (�0) isometric to !C C !D outside a fixed
compact subset K �M .

� g is the Kähler metric associated to !.

� f is the Hamiltonian potential of JX with respect to ! given in Theorem A (iii). It is
equal to jzj2�

2
� 1 outside the compact subset K �M and normalised so that

�!f � f C
X

2
� f D 0

outside a compact set.

� cs ´ log.1C s.ec0 � 1//.

� Fs is the data in (?s) equal to cs outside a fixed compact subset V �M with V � K.
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�  s is the solution to the original continuity path (?s).

� ˆs D �2� � cs log r , where 0 � � � 1 is a bump function identically equal to 1 outside
a fixed compact subset W � V � K of M . In particular, notice that

ˆs D �cs log.2.f C 1// on M nW:

� !s ´ ! C i𝜕N𝜕ˆs is the 1-parameter family of background metrics isometric to! outside
a compact set independent of s appearing in (??s).

� gs is the Kähler metric associated to !s .

� fs ´ f C
X
2
�ˆs is the Hamiltonian potential of JX with respect to !s .

� #s D  s �ˆs is the solution of the re-parametrised continuity path (??s).

� �s ´ !s C i𝜕N𝜕#s is the associated Kähler metric.

� f�s is the Hamiltonian potential of JX with respect to �s . It is normalised by the equation

��sf�s �
X

2
� f�s D �f C Ps;

where Ps is compactly supported.

� hs is the Kähler metric associated to �s .

7.4. A priori lower bound on the radial derivative. The fact that the data Gs of
(??s) is compactly supported allows us to localise the extrema of X � #s using the maximum
principle. This leads to a uniform lower bound on X � #s and in particular on X �  s .

Lemma 7.3 (Localising the supremum and infimum of the radial derivative). Suppose
that .#s/0�s�1 is a path of solutions in R ˚ C

1
X;ˇ .M/ to (??s). Then

sup
M

X � #s D max¹0;max
W

X � #sº and inf
M
X � #s D min¹0;min

W
X � #sº:

Proof. First, using � to identify .M;!/ and . yM; y!/ on M nW , notice that

X

2
�

�
log

��ns
!ns

��
D tr�s LX

2
�s � tr!s LX

2
!s

D tr�s LX
2
.!s C i𝜕N𝜕#s/ � tr! LX

2
!

D tr�s !C C
1

2
��s .X � #s/ � tr! !C

D tr�s !C C
1

2
��s .X � #s/ � 1:

Thus, upon differentiating (??s) along X , we obtain on M nW the equation

(7.3) ��s ;X

�X � #s

2

�
´ ��s

�X � #s

2

�
�
X

2
�

�X � #s

2

�
D 1 � tr�s !C :

Now, on M n V , we have that

tr�s !C D
n�n�1s ^ !C

�ns
D
ne�

X �#s
2 �n�1s ^ !C

!n
I
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hence

1 � tr�s !C D e�
X �#s
2

�
e
X �#s
2 �

n�n�1s ^ !C

!n

�
D e�

X �#s
2

��ns � n�n�1s ^ !C

!n

�
:

(7.4)

For k D 1; : : : ; n, we have for dimensional reasons that

!k D .!D C !C /
k
D !kD C k!k�1D ^ !C :

Thus,

�ns D .! C i𝜕N𝜕#s/n

D

nX
kD0

�
n

k

�
!k ^ .i𝜕N𝜕#s/n�k

D .i𝜕N𝜕#s/n C
nX
kD1

�
n

k

�
!k ^ .i𝜕N𝜕#s/n�k

D .i𝜕N𝜕#s/n C
nX
kD1

�
n

k

�
.!kD C k!k�1D ^ !C / ^ .i𝜕N𝜕#s/n�k

D .i𝜕N𝜕#s/n C
nX
kD1

�
n

k

�
!kD ^ .i𝜕N𝜕#s/n�k C

nX
kD1

k

�
n

k

�
!k�1D ^ .i𝜕N𝜕#s/n�k ^ !C

D

nX
kD0

�
n

k

�
!kD ^ .i𝜕N𝜕#s/n�k C

nX
kD1

k

�
n

k

�
!k�1D ^ .i𝜕N𝜕#s/n�k ^ !C

and

n�n�1s ^ !C D n

n�1X
jD0

�
n � 1

j

�
!j ^ .i𝜕N𝜕#s/n�1�j ^ !C

D ni𝜕N𝜕#n�1s ^ !C C n

n�1X
jD1

�
n � 1

j

�
!j ^ .i𝜕N𝜕#s/n�1�j ^ !C

D ni𝜕N𝜕#n�1s ^ !C C n

n�1X
jD1

�
n � 1

j

�
.!
j
D C j!

j�1
D ^ !C /

^ .i𝜕N𝜕#s/n�1�j ^ !C

D ni𝜕N𝜕#n�1s ^ !C C n

n�1X
jD1

�
n � 1

j

�
!
j
D ^ .i𝜕N𝜕#s/n�1�j ^ !C

D ni𝜕N𝜕#n�1s ^ !C C n

nX
kD2

�
n � 1

k � 1

�
!k�1D ^ .i𝜕N𝜕#s/n�k ^ !C

D n

nX
kD1

�
n � 1

k � 1

�
!k�1D ^ .i𝜕N𝜕#s/n�k ^ !C :
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Consequently,

�ns � n�n�1s ^ !C D .i𝜕N𝜕#s/n C
nX
kD1

�
n

k

�
!kD ^ .i𝜕N𝜕#s/n�k

C

nX
kD1

k

�
n

k

�
!k�1D ^ .i𝜕N𝜕#s/n�k ^ !C

� n

nX
kD1

�
n � 1

k � 1

�
!k�1D ^ .i𝜕N𝜕#s/n�k ^ !C

D .i𝜕N𝜕#s/n C
nX
kD1

�
n

k

�
!kD ^ .i𝜕N𝜕#s/n�k

C

nX
kD1

�
k

�
n

k

�
� n

�
n � 1

k � 1

��
„ ƒ‚ …

D0

!k�1D ^ .i𝜕N𝜕#s/n�k ^ !C

D

nX
kD0

�
n

k

�
!kD ^ .i𝜕N𝜕#s/n�k D .!D C i𝜕N𝜕#s/n:

Combining (7.3) and (7.4), we find that

(7.5) ��s ;X

�X � #s

2

�
D e�

X �#s
2
.!D C i𝜕N𝜕#s/n

!n„ ƒ‚ …
first-order operator acting on X �#s

:

Indeed, the right-hand side of (7.5) can be written schematically as

(7.6)
.!D C i𝜕N𝜕#s/n

!n
D

1

r2

�
X � .X � #s/˛1 Cr

gD .X � #s/ � r
gD .X � #s/ � ˛2

�
;

where ˛1 and ˛2 are tensors onM n V depending polynomially on i𝜕N𝜕#s and where � denotes
any linear combination of tensors with respect to the background metric !. This can be seen,
for example, by noting that, on M n V ,

.!D C i𝜕N𝜕#s/n

!n
D
.i𝜕N𝜕#s/n

!n
C

n�1X
kD1

�
n

k

�
!n�kD ^ .i𝜕N𝜕#s/k

!n
;

together with an application of the following claim.

Claim 7.4. Let Y and Z be real holomorphic vector fields such that ŒY;Z� D 0. Then,
for any smooth real-valued function v on M with LJ Y v D LJZv D 0, we have

i

2
𝜕N𝜕v.Y;Z/ D

i

2
𝜕N𝜕v.J Y; JZ/ D 0 and Z � .Y � v/ D Y � .Z � v/ D 2i𝜕N𝜕v.Z; J Y /:

Proof of Claim 7.4. The first equality follows from the fact that

2i𝜕N𝜕v.Y;Z/ D 2i𝜕N𝜕v.J Y; JZ/ D dd cv.J Y; JZ/

D J Y � .d cv.JZ// � JZ � .d cv.J Y // � d cv.ŒJ Y; JZ�/:
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As for the second, the vanishing of ŒY;Z� implies that Z � .Y � v/ D Y � .Z � v/, whereas with

Y 1;0 ´
1

2
.Y � iJ Y / and Z1;0 ´

1

2
.Z � iJZ/;

the invariance of v and the fact that J Y � .Z � v/ D 0 implies that

1

4
Y � .Z � v/ D Y 1;0 � .Z1;0 � v/ D Y 1;0 � .Z1;0 � v/ D 𝜕N𝜕v.Z1;0; Y 1;0/

D
i

2
𝜕N𝜕v.Z; J Y / �

1

2
𝜕N𝜕v.J Y; JZ/„ ƒ‚ …

D0

:

The strong maximum principle combined with the fact that X � #s ! 0 at infinity now
implies the result.

From this, we can derive a lower bound on X � #s , and hence on X �  s .

Proposition 7.5. There exists a positive constant C such that, for all s 2 Œ0; 1�, we have
X � #s � �C . In particular, X �  s > �C for all s 2 Œ0; 1�.

Proof. In order to prove that X � #s is uniformly bounded from below, first note that,
since X �ˆs is bounded and X � #s tends to zero at infinity, f�s ´ f C

X
2
�ˆs C

X
2
� #s is

a proper function bounded from below by virtue of the fact that f is by Lemma 4.2. Then,
since X D rhsf�s , f�s must attain its global minimum at a point lying in the zero set of X
and hence must coincide with the global minimum of f on this set, that is to say,

f�s � min
¹XD0º

f�s D min
¹XD0º

f � �C:

The lower bound on X � #s then follows from the previous localisation of the minimum of this
function given by Lemma 7.3.

7.5. A priori C 0-estimate. We proceed with the a priori estimate on the C 0-norm of
.#s/0�s�1 which is uniform in s 2 Œ0; 1�. We begin with two crucial observations, the first
a localisation result for the global extrema of #s .

Lemma 7.6 (Localising the supremum and infimum of a solution of (??s)). Suppose
that .#s/0�s�1 is a path of solutions in R ˚ C

1
X;ˇ .M/ to (??s). Then supM #s D maxW #s

(respectively infM #s D minW #s).

Proof. We first prove the assertion of Lemma 7.6 concerning the supremum of a solu-
tion #s . To this end, observe from (??s) and the basic inequality log.1C x/ � x for all x > �1

that #s is a subsolution of the following differential inequality:

�!s#s �
X

2
� #s � Gs;

where we recall thatGs is compactly supported. Let " > 0 and consider any smooth function u"
onM identically equal to 2" log.r/ onM nW such that lim"!0 u" D 0 uniformly on compact
sets of M . This function will serve as a barrier function. Indeed, since log.r/ is pluriharmonic,
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one has that, on M nW ,

(7.7) �!s
�
#s � 2" log.r/

�
�
X

2
�
�
#s � 2" log.r/

�
� " > 0:

Now #s being bounded onM implies that the function #s � 2" log.r/ tends to �1 as r!C1.
In particular, this latter function must attain its maximum on M . The maximum principle
applied to (7.7) then ensures that it must be attained in W , i.e.,

max
M
.#s � u"/ D max

W
.#s � u"/:

In conclusion, we have that

#s.x/ � u".x/C max
W
.#s � u"/; x 2M;

which leads to the bound #s.x/ � maxW #s by letting "! 0 and making use of the assumption
on u". Since this holds true for any x 2M , the desired estimate follows.

The statement involving the infimum of #s can be proved in a manner similar to the above
beginning with the differential inequality

��s#s �
X

2
� #s � Gs;

which itself follows from the arithmetic mean-geometric mean inequality.

7.5.1. Aubin–Tian–Zhu’s functionals. We now introduce two functionals that have
been defined and used by Aubin [3], Bando and Mabuchi [7], and Tian [34, Chapter 6] in
the study of Fano manifolds, and by Tian and Zhu [35] in the study of shrinking gradient
Kähler–Ricci solitons on compact Kähler manifolds.

Definition 7.7. Let .'t /0�t�1 be a C 1-path in M
1
X;ˇ .M/ from '0 D 0 to '1 D '. We

define the following two generalised weighted energies:

I!;X .'/´

Z
M

'.e�f !n � e�f �X
2
�'!n' /;

J!;X .'/´

Z 1

0

Z
M

P's.e
�f !n � e�f �X

2
�'s!n's / ^ ds:

At first sight, these two functionals resemble relative weighted mean values of a potential
' in M

1
X;ˇ .M/ or of a path .'t /0�t�1 in M

1
X;ˇ .M/, respectively. When X � 0 and .M;!/ is

a compact Kähler manifold, an integration by parts together with some algebraic manipulations
(see Aubin’s seminal paper [3] or Tian’s book [34, Chapter 6]) show that

(7.8)

I!;0.'/ D

n�1X
kD0

Z
M

i𝜕' ^ N𝜕' ^ !k ^ !n�1�k' ;

J!;0.'/ D

n�1X
kD0

k C 1

nC 1

Z
M

i𝜕' ^ N𝜕' ^ !k ^ !n�1�k' :

This justifies the description of I!;0.'/ and J!;0.'/ as modified energies. Moreover, it demon-
strates that, on a compact Kähler manifold, J!;0 is a true functional, that is to say, it does not
depend on the choice of path.
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Such formulae (7.8) for I!;X and J!;X for a non-vanishing vector field X and a non-
compact Kähler manifold .M;!/ do not seem to be readily available for a good reason: the
exponential function is not algebraic. However, following Tian and Zhu’s work [35], one can
prove that the essential properties shared by both I!;0 and J!;0 hold true for a non-vanishing
vector field X in a non-compact setting. The proof follows exactly as in [15, Theorem 7.5].

Theorem 7.8. I!;X .'/ and J!;X .'/ are well-defined for ' 2 M
1
X;ˇ .M/. Moreover,

J!;X does not depend on the choice of a C 1 path .'t /0�t�1 in M
1
X;ˇ .M/ from '0 D 0 to

'1 D ', hence defines a functional on M
1
X;ˇ .M/. Finally, the first variation of the difference

.I!;X � J!;X / is given by

d

dt
.I!;X � J!;X /.'t / D �

Z
M

't

�
�!'t P't �

X

2
� P't

�
e�f't!n't ;

where f't ´ f C
X
2
� 't satisfies X D r!'t f't and where .'t /0�t�1 is any C 1-path in

M
1
X;ˇ .M/ from '0 D 0 to '1 D '.

Recall that the equation we wish to solve is (?s), namely

e�f s!n s D eFs�f !n:

Proposition 7.9 (A priori energy estimates). Let . s/0�s�1 be a path of solutions in
M

1
X;ˇ .M/ to (?s). Then, for p 2 .1; 2/, there exists a positive constant

C D C
�
n; p; !; sup

s2Œ0;1�

kFskC0
�

such that
sup
0�s�1

Z
M

j s �  sj
pe�f !n � C;

where  s ´
R
M  se

�f !n. In particular, if  s D 0, then

sup
0�s�1

Z
M

j#sj
pe�f !n � C:

Proof. By Theorem 7.8, we can use any C 1-path .'t /0�t�1 in M
1
X;ˇ .M/ from '0 D 0

to '1 D ' 2 M
1
X;ˇ .M/ to compute J!;X .'/. As in [35], we choose two different paths to com-

pute J!;X . /, the first being the linear path defined by 't ´ t , t 2 Œ0; 1�, for 2 M
1
X;ˇ .M/

a solution to (?s). For this path, Theorem 7.8 asserts that

.I!;X � J!;X /. / D �

Z 1

0

Z
M

t 
�
�!t  �

X

2
�  

�
e�f �t X

2
� !nt ^ dt:

Integration by parts with respect to the weighted volume form e�f �t X
2
� !nt then leads to

.I!;X � J!;X /. /(7.9)

D n

Z 1

0

Z
M

t i𝜕 ^ N𝜕 ^ .e�f �t X
2
� !n�1t / ^ dt

D n

Z 1

0

Z
M

t i𝜕 ^ N𝜕 ^
�
e�f �t X

2
� ..1 � t /! C t! /

n�1
�
^ dt
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D n

n�1X
kD0

�
n � 1

k

��Z 1

0

tkC1.1 � t /n�1�k

�

Z
M

i𝜕 ^ N𝜕 ^ .e�f �t X
2
� !n�1�k ^ !k /

�
^ dt

� n

Z 1

0

t .1 � t /n�1
Z
M

i𝜕 ^ N𝜕 ^ .e�f �t X
2
� !n�1/ ^ dt

D n

Z
M

�Z 1

0

t .1 � t /n�1e�t
X
2
� dt

�
i𝜕 ^ N𝜕 ^ e�f !n�1:

From this, the following claim will allow us to obtain a lower bound.

Claim 7.10. There exist positive uniform constants A; c such thatZ 1

0

t .1 � t /n�1e�t
X
2
� dt �

c

.X
2
�  C A/2

:

Proof of Claim 7.10. For k � kn ´ 2n.n � 1/, we find using integration by parts and
a change of variable thatZ 1

0

t .1 � t /n�1e�kt dt D

Z 1

0

.1 � s/sn�1e�k.1�s/ ds

D e�k
²�
1C

n

k

� Z 1

0

sn�1eks ds �
ek

k

³
D e�k

²�
1C

n

k

��ek
k

�
.n � 1/

k

Z 1

0

sn�2eks ds

�
�
ek

k

³
�

�
1C

n

k

�� 1
k
�
.n � 1/

k2
.1 � e�k/

�
�
1

k

D
k � n.n � 1/

k3
C e�k

.nC k/.n � 1/

k3

�
1

2k2
:

Here we have bounded sn�2 from above by 1 in the fourth inequality.
Set A´ kn � infM X

2
� and let k D

X
2
� CA. Then k � kn, A is uniformly bounded

from above by Proposition 7.5, and it follows from what we have just derived thatZ 1

0

t .1 � t /n�1e�t.
X
2
� CA/ dt �

1

2.X
2
�  C A/2

;

resulting in the desired bound.

Applying Claim 7.10 to (7.9) yields the lower bound

.I!;X � J!;X /. / � c

Z
M

i𝜕 ^ N𝜕 ^
e�f !n�1

.X
2
�  C A/2

� c

Z
M

jrg j2g

.X
2
�  C A/2

e�f !n

(7.10)
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for some positive constant c. We also require an upper bound on .I!;X � J!;X /. / to complete
the proof of the proposition.

To this end, we consider the continuity path of solutions 's ´  s , s 2 Œ0; 1�, to (?s)
to compute .I!;X � J!;X /. /. First observe that the first variations . P s/0�s�1 satisfy the
following PDE obtained from (?s) by differentiating with respect to the parameter s:

�! s
P s �

X

2
� P s D PFs; 0 � s � 1:

Combined with (?s) and Theorem 7.8, we see that

.I!;X � J!;X /. / D

Z 1

0

Z
M

 t � .� PFt /e
�f t!n t ^ dt

D

Z 1

0

Z
M

 t � .� PFt /e
Ft�f !n ^ dt

so that, from (7.10), for some c > 0,

(7.11)
Z 1

0

Z
M

 t � .� PFt /e
Ft�f !n ^ dt � c

Z
M

jrg j2g

.X
2
�  C A/2

e�f !n:

Now, as
d

ds

�Z
M

e�f s!n s

�
D 0

by Lemma 6.2 (i) with G � 1, we derive from (?s) thatZ
M

PFte
Ft�f !n D 0:

This allows us to rewrite (7.11) asZ 1

0

Z
M

. t �  t / � .� PFt /e
Ft�f !n ^ dt � c

Z
M

jrg j2g

.X
2
�  C A/2

e�f !n;

with  t as in the statement of the proposition. Applying the Poincaré inequality of Proposi-
tion 5.1, we then see that, for any p 2 .1; 2/ and 1

q
D 1 � 1

p
,�Z

M

j �  jpe�f !n
� 2
p

(7.12)

� C

�Z
M

jr
g jpge

�f !n
� 2
p

� C

�Z
M

jrg j2g

.X
2
�  C A/2

e�f !n
��Z

M

�X
2

�  C A
� 2p
2�p

e�f !n
� 2�p

p

� C

�Z 1

0

Z
M

j t �  t jj PFt je
Ft�f !n ^ dt

�
�

�Z
M

�X
2

�  C A
� 2p
2�p

e�f !n
� 2�p

p
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� C

Z 1

0

�Z
M

j t �  t j
pe�f !n

� 1
p
�Z
M

j PFt j
qeqFt e�f !n

� 1
q

dt

�

�Z
M

�X
2

�  C A
� 2p
2�p

e�f !n
� 2�p

p

� C

Z 1

0

�Z
M

j t �  t j
pe�f !n

� 1
p

dt

�

�Z
M

�X
2

�  C A
� 2p
2�p

e�f !n
� 2�p

p

:

Here we have used Hölder’s inequality in the second and fourth lines with respect to the
weighted measure e�f !n.

Next, observe from Lemma 6.2 (i) that, for all r 2 N,

c

Z
M

.f s C A/re�f !n �

Z
M

.f s C A/reFse�f !n

D

Z
M

.f s C A/re�f s!n s

D

Z
M

.f C A/re�f !n � C.r/:

By induction on r , using the fact that X
2
�  C A � 0 and that A � C by Proposition 7.5, one

can prove directly from this thatZ
M

�X
2

�  C A
�r
e�f !n � C.r/ for all r 2 N:

It then follows from Hölder’s inequality that this statement holds true for all r � 1. Applying
this to (7.12), we arrive at the fact that, for all p 2 .1; 2/,�Z

M

j �  jpe�f !n
� 2
p

� C.p/

Z 1

0

�Z
M

j t �  t j
pe�f !n

� 1
p

dt;

i.e.,

k �  k2Lp.e�f !n/ � C.p/

Z 1

0

k t �  tkLp.e�f !n/ dt for any p 2 .1; 2/:

This last inequality applies to any truncated path of the one-parameter family of solutions
. s/0�s�1 of (?s). Thus,

k s �  sk
2
Lp.e�f !n/ � C

Z 1

0

k st �  stkLp.e�f !n/ dt

D
C

s

Z s

0

k t �  tkLp.e�f !n/ dt:

(7.13)

This is a Grönwall-type differential inequality and can be integrated as follows. Let

H.s/´

Z s

0

k t �  tkLp.e�f !n/ dt
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and observe that (7.13) can be rewritten as

H 0.s/ �
C

s
1
2

.H.s//
1
2 ; s 2 .0; 1�:

Integrating then implies that H.s/ � C.n; !; sups2Œ0;1�kFskC0/ � s for all s 2 Œ0; 1� which,
after applying (7.13) once more, yields the desired upper bound.

7.5.2. A priori estimate on supM #s. Let #s be a solution to (??s) for some fixed
value of the parameter s 2 Œ0; 1�. We next obtain an upper bound for supM #s uniform in s. To
obtain such a bound, it suffices by Lemma 7.6 to only bound maxW #s from above. We do this
by implementing a local Nash–Moser iteration using the fact that #s is a supersolution of the
linearised complex Monge–Ampère equation of which the drift Laplacian with respect to the
known metric !s forms a part.

Proposition 7.11 (A priori upper bound on supM #). Let .#s/0�s�1 be a path of solu-
tions in R ˚ C

1
X;ˇ .M/ to (??s). Then there exists a positive constant

C D C
�
n; !; sup

s2Œ0;1�

kGskC0
�

such that sup
0�s�1

sup
W

#s � C:

Proof. Let s 2 Œ0; 1� and let .#s/C ´ max¹#s; 0º. This is a non-negative Lipschitz
function. The strategy of proof is standard: we use a Nash–Moser iteration to obtain an a pri-
ori upper bound on supW .#s/C in terms of the (weighted) energy of .#s/C on a tubular
neighbourhood of W . The result then follows by invoking Proposition 7.9.

To this end, notice that, since log.1C x/ � x for all x > �1 and since #s is a solution to
(??s), #s satisfies the differential inequality

(7.14) �!s#s �
X

2
� #s � �jGsj on M:

Let gs denote the Kähler metric associated to !s and let f!s ´ f C
X
2
�ˆs . Then these met-

rics are all equivalent to g uniformly in s and �!syX D df!s . Let x 2 ¹f < Rº and " > 0 be
such that Bgs .x; "/ b ¹f < Rº and multiply (7.14) across by �2t;t 0.#s/Cj.#s/Cj

2.p�1/ with
p � 1, where �t;t 0 , with 0 < t C t 0 < " and t; t 0 > 0, is a Lipschitz cut-off function with com-
pact support in Bgs .x; t C t 0/ equal to 1 on Bgs .x; t/ and with jrgs�t;t 0 jgs �

1
t 0

almost every-
where. Next, integrate by parts and use a local Sobolev inequality for the pair .!s; f!s / to
obtain a so-called “reversed Hölder inequality” which, after iteration, leads to the following
bound for p 2 .1; 2/:

sup
Bgs .x;

"
2
/

.#s/C � C.n; p; !; "/
�
k.#s/Ck

p

Lp.Bgs .x;"/;e
�f!s !ns /

C kGsk
p

C0

� 1
p

� C.n; p; !; "/

�Z
¹f <Rº

.#s/
p
C
e�f!s!ns C kGsk

p

C0

� 1
p

� C.n; p; !; "/

�Z
¹f <Rº

j#sj
pe�f !n C kGsk

p

C0

� 1
p

� C
�
n; p; !; "; sup

s2Œ0;1�

kGskC0
�
:

Here, we have made use of Proposition 7.9 in the last line.
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7.5.3. A priori estimate on infM #s. Recall that the equation we wish to solve is (?s),
that is,

e�f s!n s D eFs�f !n;

where ! s ´ ! C i𝜕N𝜕 s > 0 and f s ´ f C
X
2
�  s . This pair satisfies �! syX D df s .

We work under the assumption that
R
M  se

�f !n D 0.

An upper bound on the I!;X -functional. We first show that the I!;X -functional is
bounded along the continuity path.

Lemma 7.12. sups2Œ0;1� I!;X . s/ � C.supM .#s/C/.

Proof. By assumption,
R
M  se

�f !n D 0 so thatZ
¹ s�0º

 se
�f !n D �

Z
¹ s�0º

 se
�f !n:

We therefore have that

I!;X . s/ D

Z
M

 s.e
�f !n � e�f s!n s / D �

Z
M

 se
�f s!n s

D �

Z
¹ s�0º

 se
�f s!n s C

Z
¹ s�0º

.� s/e
�f s!n s

�

Z
¹ s�0º

.� s/e
�f s!n s D

Z
¹ s�0º

.� s/e
Fse�f !n

� C

Z
¹ s�0º

.� s/e
�f !n D C

Z
¹ s�0º

 se
�f !n

D C

�Z
¹#s��ˆsº

.#s Cˆs/e
�f !n

�
� C

�Z
M

jˆsje
�f !n„ ƒ‚ …

bounded

C

Z
¹#s��ˆsº

#se
�f !n

�

� C C C sup
M

#C
s

Z
¹#s��ˆsº

e�f !n

� C C C sup
M

.#s/C

Z
M

e�f !n

� C
�
1C sup

M

.#s/C
�
:

From this, the result follows.

An upper bound on the weighted Lp-norm of the gradient of the Legendre trans-
form. Recall the continuity path (?s),

.! C i𝜕N𝜕 s/n D eFsC
X
2
� s!n; s 2 Œ0; 1�;

where
Fs ´ log

�
seF C .1 � s/

�
and i𝜕N𝜕F D �! C

1

2
LX! � !:
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Here, �! denotes the Ricci form of ! and F 2 C1.M/ is bounded. On t ' Rn, we have
coordinates � ´ .�1; : : : ; �n/, induced coordinates x D .x1; : : : ; xn/ on t� which contains the
image of the moment map, and we can write ! D 2i𝜕N𝜕�0 for a convex function �0 on Rn ' t

up to the addition of a linear function (cf. Section 2.5). Let bX 2 Rn denote the vector field
JX 2 t as in (2.4), write r for the Levi-Civita connection of the flat metric on Rn, and h � ; � i

for the corresponding inner product. As in (2.11), we normalise �0 so that

F D � log det.�0;ij /C hr�0; bX i � 2�0:

Set �s ´ �0 C
1
2
 s . Then, in the coordinates � on Rn, equation (?s) becomes

det.�s;ij / D
�
seF C .1 � s/

�
ehr�s ;bX i�hr�0;bX i det.�0;ij /; s 2 Œ0; 1�:

Plugging in the definition of F , this becomes

det.�s;ij / D
�
se�2�0�log det.�0;ij / C .1 � s/e�hr�0;bX i

�
ehr�s ;bX i det.�0;ij /

D
�
se�2�0 C .1 � s/e�hr�0;bX i det.�0;ij /

�
ehr�s ;bX i; s 2 Œ0; 1�;

or equivalently,

(7.15) e�hr�s ;bX i det.�s;ij / D se�2�0 C .1 � s/e�hr�0;bX i det.�0;ij /; s 2 Œ0; 1�:

Let us D L.�s/. Then we have the following uniform integral bound on jrusj
p, p � 1.

Lemma 7.13. For all p � 1,

sup
s2Œ0;1�

Z
P�KM

jrusj
pe�hbX ;xi dx � C:

Proof. First note thatZ
Rn

j�jpe�hbX ;r�0i det.�0;ij / d� � C:

Indeed, since F is equal to a constant c0 off of a compact subset ofM , we see that F is globally
bounded on M . This means that

sup
Rn

j� log det.�0;ij /C hr�0; bX i � 2�0j � C;

resulting in the fact thatZ
Rn

j�jpe�hbX ;r�0i det.�0;ij / d� � C

Z
Rn

j�jpe�2�0 d� � C;

where we have used Lemma 2.25 in the last inequality. Therefore, using Lemma 2.25 once
again and (7.15), we find thatZ

P�KM

jrusj
pe�hbX ;xi dx

D

Z
Rn

j�jpe�hbX ;r�si det.�s;ij / d�

D s

Z
Rn

j�jpe�2�0 d� C .1 � s/

Z
Rn

j�jpe�hbX ;r�0i det.�0;ij / d�

� C;

as desired.
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An upper bound on the yF -functional. Now, our background metric ! satisfies the two
bullet points above Lemma 2.30 as demonstrated in the already proved Theorem A (ii)–(iv). As
a consequence, it is clear from Lemma 2.30 (i) that condition (a) of Definition 2.27 holds true.
The hypothesis of Lemma 2.29 as well as condition (b) of Definition 2.27 via Lemma 2.28 also
hold true thanks to Lemma 6.2 (ii). Thus, the yF -functional from Definition 2.27 is finite and
therefore well-defined along the continuity path (?s) and moreover, by Lemma 2.29, may be
expressed along in terms of the J!;X -functional as

yF . s/ D J!;X . s/ �

Z
M

 se
�f !n:

We next show that yF is bounded above along the continuity path (?s) using Lemma 7.12.
This will in turn provide an a priori estimate on the weighted integral of the Legendre transform
us ´ L.�s/ of �s . From this, we derive an a priori estimate on the weighted L1-norm of us .
Via the Sobolev inequality, we then obtain local control on us , and as a result, on  s . This
eventually leads to the desired uniform lower bound on infM #s .

Lemma 7.14. yF . s/ � C.supM .#s/C/.

Proof. By assumption, we have that
R
M  se

�f !n D 0 so that yF . s/ D J!;X . s/.
Moreover, from (7.10), we read that .I!;X � J!;X /. s/ � 0. Thus, Lemma 7.12 implies that

yF . s/ D J!;X . s/ D I!;X . s/ � .I!;X � J!;X /. s/ � I!;X . s/C 0 � C
�
sup
M

.#s/C
�
;

as claimed.

An upper bound on the weighted integral of the Legendre transform. We know thatZ
P�KM

jusje
�hbX ;xi dx �

Z
P�KM

jus � u0je
�hbX ;xi dx C

Z
P�KM

ju0je
�hbX ;xi dx

�

Z
P�KM

�Z 1

0

j Pust j dt

�
e�hbX ;xi dx C

Z
P�KM

ju0je
�hbX ;xi dx;

and these last two integrals are finite by Lemma 6.2 (ii) via Lemma 2.28, and Lemma 2.30 (ii),
respectively. By definition, the yF -functional along (?s) is given by

(7.16) yF . s/ D 2

Z
P�KM

.us � u0/e
�hbX ;xi dx:

Therefore with Z
P�KM

ju0je
�hbX ;xi dx and

Z
P�KM

ju1je
�hbX ;xi dx

convergent, we can split the integral in (7.16). Together with the integral bound given in
Lemma 2.30 (ii), this leads to the following consequence of Lemma 7.14.

Corollary 7.15.

sup
s2Œ0;1�

Z
P�KM

use
�hbX ;xi dx � C:
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An upper bound on the weightedL1-norm of the Legendre transform. We now use
Corollary 7.15 to derive a uniform weighted L1-norm on us . Notice that we must make use of
the already obtained uniform upper bound on #s .

Lemma 7.16.
sup
s2Œ0;1�

Z
P�KM

jusje
�hbX ;xi dx � C:

Proof. Recall from the definition of the Legendre transform that, for all x 2 P�KM ,

us.x/ � u0.x/ D sup
�2Rn

�
hx; �i � �s.�/

�
� u0.x/

� hx;ru0.x/i � �s.ru0.x// � u0.x/

D �0.ru0.x// � �s.ru0.x//

D �
1

2
 s.ru0.x//

D �
1

2
ˆs.ru0.x// �

1

2
#s.ru0.x//

� �
1

2
ˆs.ru0.x// � C

for some uniform positive constant C . Here we have used the a priori upper bound on #s given
by Proposition 7.11 in the last line. With this, we estimate thatZ

P�KM

jusje
�hbX ;xi dx

�

Z
P�KM

�
us � u0 C

1

2
ˆs.ru0.x//C C

�
e�hbX ;xi dx

C

Z
P�KM

ˇ̌̌
u0 �

1

2
ˆs.ru0.x// � C

ˇ̌̌
e�hbX ;xi dx

�

Z
P�KM

use
�hbX ;xi dx C 2

Z
P�KM

ju0je
�hbX ;xi dx

C 2C

Z
P�KM

e�hbX ;xi dx C

Z
P�KM

jˆs.ru0.x//je
�hbX ;xi dx

� C 0
C

Z
P�KM

jˆs.ru0.x//je
�hbX ;xi dx

(7.17)

for a uniform positive constant C 0. Here we have used Corollary 7.15, Lemma 2.30 (ii), and the
fact that Z

P�KM

e�hbX ;xi dx D .2�/n
Z
M

e�f !n < C1

to bound each of the terms in the third line, respectively. The final integral we bound in the
following way.

Choose a compact subset U �M strictly containing W and f �1..�1; 1�/. This we
can do because f is proper and bounded below. Next, choose R > 0 sufficiently large so that
.r�0/.U / � BR.0/. Then, in particular, .r�0/.W / � BR.0/ and

hbX ; xi > 1 for all x 2 P�KM n .BR.0/ \ P�KM /;
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the latter being true because hbX ; xi D f .ru0.x// for all x 2 P�KM . Then, recalling that
ˆs D �cs log.2.f C 1// onM nW , which in particular holds on P�KM n .BR.0/ \ P�KM /,
and using the fact that 0 < log.x/ < x for all x > 1, we estimate thatZ

P�KM

jˆs.ru0.x//je
�hbX ;xi dx

D

Z
BR.0/\P�KM

jˆs.ru0.x//je
�hbX ;xi dx

C

Z
P�KM

n.BR.0/\P�KM
/

jˆs.ru0.x//je
�hbX ;xi dx

� C

�
1C

Z
P�KM

n.BR.0/\P�KM
/

jlog.2.f .ru0.x//C 1//je�hbX ;xi dx

�
D C

�
1C

Z
P�KM

n.BR.0/\P�KM
/

log.2.hbX ; xi C 1//e�hbX ;xi dx

�
� C

�
1C

Z
P�KM

n.BR.0/\P�KM
/

.1C hbX ; xi/e
�hbX ;xi dx

�
� C 0

for a uniform positive constant C 0. Combined with (7.17), this yields the desired bound.

Local control on us. Lemmas 7.13 and 7.16, combined with an application of the
Sobolev inequality, now give us local control on us .

Proposition 7.17. There exists C > 0 such that, for all x 2 P�KM and s 2 Œ0; 1�,

jus.x/ � u0.x/j � CehbX ;xi:

Proof. From the first paragraph of the proof of Lemma 2.23, we know that, outside
a compact subset, P�KM coincides with the Cartesian product of the half line and PD , the
polytope associated to D. More precisely, in light of (2.7), P�KM coincides with

Œa;1/ � PD � R � Rn�1 for some a 2 R

outside a convex compact subset. Suppose that x 2 P�KM lies in the region ŒaC 1;1/ � PD .
Then there exists b 2 ŒaC 1;1/ such that x 2 ¹bº � PD . Let

�´ Œb � 1; b C 1� � PD � Œa;1/ � PD � R � Rn�1:

Set Us ´ us � u0 and let q > n. Then, since Us is smooth up to 𝜕P�KM by Lemma 2.26 (i),
we can apply the Sobolev inequality from [28, Theorem 3.4] (which in particular states that the
Sobolev constant depends only on the Euclidean diameter and measure of �), together with
Lemmas 7.13 and 7.16, to determine that, for a uniform constant C > 0,

jUs.x/j � kUskC0.�/ �





Us � 1

j�j

Z
�

Us dx






C0.�/

C
1

j�j

Z
�

jUsj dx

� CkrUskLq.�/ C
1

j�j

Z
�

jUsj dx

� C
�

sup
y2�

ehbX ;yi C
�

sup
y2�

ehbX ;yi
� 1
q
�
� C sup

y2�

ehbX ;yi;
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because 0 < 1
q
< 1. Continuing, we find that

jUs.x/j � C sup
y2�

ehbX ;yi D CehbX ;xi � sup
y2�

ehbX ;y�xi � CehbX ;xi:

A slight modification of this argument also shows that

jUs.x/j � CehbX ;xi for all x 2 P�KM n .ŒaC 1;1/ � PD/

which, as noted above, is a compact convex subset of Rn. In sum, we arrive at the bound

jUs.x/j � CehbX ;xi for all x 2 P�KM ;

as required.

Local control on  s. The previous proposition can be reformulated to give local con-
trol on  s .

Proposition 7.18. There exists C > 0 such that, for all x 2M and s 2 Œ0; 1�,

 s.x/ � �Cef .x/:

Proof. The definition of the Legendre transform and Proposition 7.17 gives us that, for
all � 2 Rn and s 2 Œ0; 1�,

 s.�/ D 2.�s.�/ � �0.�// D 2
�

sup
x2P�KM

¹h�; xi � us.x/º � �0.�/
�

� 2
�
h�;r�0.�/i � us.r�0.�// � �0.�/

�
D 2

�
u0.r�0.�// � us.r�0.�//

�
� �CehbX ;r�0.�/i D �Cef .�/

for some uniform C > 0, as claimed.

A priori lower bound on infM #s. This brings us to the concluding bound of this
section. Proposition 7.18 yields a uniform lower bound on minW  s . By Lemma 7.6, this results
in a uniform lower bound on infM #s . This is demonstrated in the following proposition.

Proposition 7.19 (A priori lower bound on infM #s). Let .#s/0�s�1 be a path of solu-
tions in R ˚ C

1
X;ˇ .M/ to (??s). Then there exists a uniform constant C > 0 such that

inf
0�s�1

inf
M
#s � �C:

Proof. Combining Lemma 7.6 and Proposition 7.18, we find that, for all s 2 Œ0; 1�,

inf
M
#s D min

W
#s D min

W
. s �ˆs/ � min

W
.�Cef �ˆs/ � �C:

7.6. A priori upper bound on the radial derivative. The C 0-bound on #s allows us
to derive an a priori upper bound on X � #s .
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Proposition 7.20. Let .#s/0�s�1 be a path of solutions in R ˚ C
1
X;ˇ .M/ to (??s).

Then there exists a positive constant C D C.n; !; sups2Œ0;1�kGskC0/ such that

sup
0�s�1

sup
M

X � #s � C:

In particular, X � #s < C for all s 2 Œ0; 1�.

Proof. Our proof is based on that of Siepmann in the case of an expanding gradient
Kähler–Ricci soliton; see [33, Lemma 5.4.14]. We adapt his proof here to our particular setting.

We begin with Claim 7.4, which gives

X �X � #s D 2i𝜕N𝜕#s.X; JX/ D 2
�
�s.X; JX/ � !s.X; JX/

�
� �2!s.X; JX/ D �2jX j

2
gs
:

(7.18)

To get an upper bound for X � #s , we introduce the flow .'Xt /t2R generated by the vector
field X

2
. This flow is complete since X grows linearly at infinity. Define #sx.t/´ #s.'

X
t .x//

for .x; t/ 2M � R. Then, for any cut-off function �WRC ! Œ0; 1� such that �.0/ D 1 and
�0.0/ D 0, we have thatZ C1

0

�00.t/#sx.t/ dt D �

Z C1

0

�0.t/.#sx/
0.t/ dt D .#sx/

0.0/C

Z C1

0

�.t/.#sx/
00.t/ dt:

Using (7.18), it then follows that
X

2
� #s.x/ D .#sx/

0.0/

� �

Z
supp.�/

X

2
�

�X
2

� #s

�
.'Xt .x// dt C sup

t2supp.�00/
j#sx.t/j

Z
supp.�00/

j�00.t/j dt

�
1

2

Z
supp.�/

jX j
2
gs
.'Xt .x// dt C sup

t2supp.�00/
j#s.'

X
t .x//j

Z
supp.�00/

j�00.t/j dt:

Choose � such that supp.�/ � Œ0; 1� and let x now be the point where X � #s attains its
maximum value. By Lemma 7.3 (i), we know that x is contained inW . Hence, we deduce from
the above that

X

2
� #s.x/ � C

�
sup
s2Œ0;1�

�
supS

t2Œ0;1� '
X
t .W /

jX j
2
gs

�
C k#skC0

�
:

The result now follows from the uniform upper bound on k#skC0 .

7.7. A priori estimates on higher derivatives. We next derive a priori global bounds
on higher derivatives of solutions to the complex Monge–Ampère equation (??s), beginning
with the C 2-estimate. The a priori bounds we derive hold everywhere on the manifold M , not
just on a given fixed compact subset. The unboundedness of the vector fieldX prevents us from
applying standard local estimates to higher derivatives of solutions to (??s).

7.7.1. C 2 a priori estimate.

Proposition 7.21 (A priori C 2-estimate). Suppose that .#s/0�s�1 is a path of solutions
in R ˚ C

1
X;ˇ .M/ to (??s). Then there exists a positive constant

C D C
�
n; !; sup

s2Œ0;1�

kGskC2
�
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such that the following C 2 a priori estimate holds true:

sup
0�s�1

ki𝜕N𝜕#skC0 � C:

In particular,
sup
0�s�1

ki𝜕N𝜕 skC0 � C:

Proof. Following closely [14, Proposition 6.6] where the approach taken is based on
standard computations performed in Yau’s seminal paper [39, pp. 347–351] (see also [33, Lem-
ma 5.4.16] and [34, pp. 52–55]), we let �s denote the Laplacian with respect to �s and first
estimate the drift Laplacian �s � X

2
� of tr!s �s to obtain�

�s �
X

2
�

�
tr!s �s �

.#s/i N|k.#s/N{j Nk

.1C .#s/i N{/.1C .#s/k Nk
/
C�sGs

� C tr!s �s � tr�s !s �
�
1C inf

M
Rm.gs/

�
� C.n; !/:

(7.19)

Let us ´ e��#s .nC�s#s/, where � > 0 will be specified later. Then one estimates the
drift Laplacian �s � X

2
� of us with respect to �s in the following way using the fact that #s

satisfies (??s):�
�s �

X

2
�

�
us � e��#s�sGs C e��#sgs

�
r
s
�X
2

�
; i𝜕N𝜕#s

�
� Csn

2e��#s

C �
�X
2

� #s

�
us � �nus C .�C Cs/e

�#s�Gs�
X
2

�#s

n�1 u
n
n�1
s ;

where rs is the Levi-Civita connection of gs and Cs ´ infi¤k Rms
i N{k Nk

, Rms here denoting
the complex linear extension of the curvature operator of the metric gs . As Cs is uniformly
bounded below in s by a constant A (which we may assume is at most 1), we may choose
� > 0 sufficiently large so that �C A D 1. Moreover, asˇ̌̌

gs

�
r
s
�X
2

�
; i𝜕N𝜕#s

�ˇ̌̌
� Ckr

sXkC0.1C u/

for some generic constant C > 0, we deduce that u satisfies the differential inequality�
�s �

X

2
�

�
us � �C1.1C us/C C2u

n
n�1
s ;

where C1 and C2 depend only on n, A,

sup
s2Œ0;1�

k#skC0 ; sup
s2Œ0;1�

kX � #skC0 ; sup
s2Œ0;1�

kGskC2 ; and sup
s2Œ0;1�

kr
sXkC0 :

The combination of Propositions 7.5, 7.11, 7.19, and 7.20 shows that C1 and C2 depend only
on n, A and sups2Œ0;1�kGskC2 .

Since us is non-negative and converges to n at infinity as #s 2 R ˚ C
1
X;ˇ .M/, an appli-

cation of the maximum principle to an exhausting sequence of domains of M yields an upper
bound for nC�s#s and, consequently, the desired bound on i𝜕N𝜕#s .
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A useful consequence of Proposition 7.21 is that the Kähler metrics induced by �s and
!s are uniformly equivalent.

Corollary 7.22. Let .#s/0�s�1 be a path of solutions in R ˚ C
1
X;ˇ .M/ to (??s), and

for s 2 Œ0; 1�, let gs; hs denote the Kähler metrics induced by !s; �s , respectively. Then the
tensors g�1s hs and h�1s gs satisfy the following uniform estimate:

sup
0�t�1

kg�1s hskC0 C sup
0�t�1

kh�1s gskC0 � C

for some positive constant C D C.n; !; sups2Œ0;1�kGskC2/. In particular, the metrics g and
.hs/0�s�1 are uniformly equivalent.

Proof. The estimate follows as in [15, Corollary 7.15] using Propositions 7.5, 7.20,
and 7.21. The fact that ! and �s differ by a .1; 1/-form whose norm is controlled uniformly
in s yields the last claim of the corollary.

7.7.2. C 3 a priori estimate. We now present the C 3-estimate.

Proposition 7.23 (A priori C 3-estimate). Suppose that .#s/0�s�1 is a path of solutions
in R ˚ C

1
X;ˇ .M/ to (??s) and let gs be the Kähler metric induced by !s with Levi-Civita

connection rgs . Then

sup
0�s�1

kr
gs𝜕N𝜕#skC0 � C

�
n; !; sup

s2Œ0;1�

kGskC3
�
:

In particular,

(7.20) sup
0�s�1

kr
gs .X � #s/kC0 � C

�
n; !; sup

s2Œ0;1�

kGskC3
�
:

Proof. We follow closely the proof given in [14, Proposition 6.9] which itself is based
on [30]. Set

S.hs; gs/´ jr
gshsj

2
hs
:

Then, from the definition of S , we see that

S.hs; gs/ D hi N|s h
k Nl
s h

p Nq
s r

gs
i .hs/kpr

gs
j .hs/lq D j‰j

2
hs
;

where
‰kij .hs; gs/´ �.hs/

k
ij � �.gs/

k
ij D hk

Nl
s r

gs
i .hs/j Nl :

Now, since #s solves (??s), .M; hs; X/ is an “approximate” steady gradient Kähler–Ricci soli-
ton in the following precise sense: if hs.t/´ .'Xt /

�hs and gs.t/´ .'Xt /
�gs , where .'Xt /t2R

is the one-parameter family of diffeomorphisms generated by X
2

, then .hs.t//t2R is a solution
of the following perturbed Kähler–Ricci flow with initial condition hs:

𝜕ths.t/ D �Ric.hs.t//C .'Xt /
�
�
LX

2
gs C Ric.gs/Cr

gs Nr
gsGs

�
; t 2 R;

hs.0/ D hs:

In particular, 𝜕ths D �Ric.hs/C .'Xt /
�ƒ, where ƒ´ LX

2
gs C Ric.gs/Crgs NrgsGs has

uniformly controlled C 1-norm as gs is isometric to g and Gs is equal to zero, all outside
a compact set independent of s.
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Define S.t/´ S.hs.s/; gs.t// and correspondingly ‰.t/´ ‰.hs.t/; gs.t//. We adapt
[8, Proposition 3.2.8] to our setting. By a brute force computation, we have that

��sS D 2Re
�
hi N|s h

p Nq
s .hs/k Nl.��s ;1=2‰

k
ip/‰

l
jq

�
C jr

hs‰j
2
hs

C jr
hs‰j

2
hs

C Ric.hs/i N|hp Nq
s .hs/k Nl‰

k
ip‰

l
jq C hi N|s Ric.hs/p Nq.hs/k Nl‰

k
ip‰

l
jq

� hi N|s h
p Nq
s Ric.hs/k Nl‰

k
ip‰

l
jq;

where
��s ;1=2 ´ hi N|s r

hs
i r

hs
N| ; T i N| ´ hi

Nk
s h

l N|
s Tk Nl

for Tk Nl 2 ƒ1;0M ˝ƒ0;1M . We also have that

𝜕u‰.u/kipjuD0 D 𝜕ujuD0
�
�.hs.u// � �.gs.u//

�k
ip

D r
hs
i

�
�Ric.hs/kp Cƒkp

�
� r

gs
i

�
LX

2
.gs/

k
p

�
;

𝜕uhi N|s juD0 D Ric.hs/i N| �ƒi N| :

Finally, using the second Bianchi identity, we compute that

��s ;1=2‰
k
ip D ha

Nb
s r

hs
a Rm.gs/ki Nbp � r

hs
i Ric.hs/kp ;

which in turn implies that the following evolution equation is satisfied by ‰:

𝜕u‰kip.u/juD0 D ��s ;1=2‰
k
ip C T kip

for a tensor T of the form

T D h�1s � r
hs Rm.gs/Cr

hsƒ � r
gs .LX

2
gs/

D h�1s � r
gs Rm.gs/C h�1s � h�1s � Rm.gs/ �‰ C h�1s �‰ �ƒCr

gs .ƒ � LX
2
gs/:

Notice the simplification here regarding the “bad” term �rhs Ric.hs/. Since this flow is evolv-
ing only by diffeomorphism, we know that

S.t/ D .'Xt /
�S.hs; gs/; 𝜕uS juD0 D

X

2
� S.hs; gs/:

Hence Young’s inequality, together with the boundedness of kh�1s gskC0 and khsg
�1
s kC0 en-

sured by Corollary 7.22 and the boundedness of the covariant derivatives of the tensors Rm.gs/
and ƒ, imply that

��sS �
X

2
� S � �C.S C 1/

for some positive uniform constant C .
We use as a barrier function the trace tr!s �s which, by (7.19) and the uniform equivalence

of the metrics gs and hs provided by Corollary 7.22, satisfies

��s tr!s �s �
X

2
� tr!s �s � C�1S � C;

where C is a uniform positive constant that may vary from line to line. By applying the max-
imum principle to "S C tr!s �s for some sufficiently small " > 0, one arrives at the desired
a priori estimate.

The proof of (7.20) is a consequence of the previously proved a priori bound on rgs𝜕𝜕#s ,
once we differentiate (??s).
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We next establish Hölder regularity of g�1s hs and h�1s gs , an improvement on Corol-
lary 7.22.

Corollary 7.24. Let .#s/0�s�1 be a path of solutions in R ˚ C
1
X;ˇ .M/ to (??s), and

for s 2 Œ0; 1�, let hs be the Kähler metric induced by �s . Then, for any ˛ 2 .0; 1
2
/, the tensors

g�1s hs and h�1s gs satisfy the following uniform estimate:

sup
0�s�1

.kg�1s hskC0;2˛loc
C kh�1s gskC0;2˛loc

/ � C
�
n; ˛; !; sup

s2Œ0;1�

kGskC3
�
:

Proof. By standard local interpolation inequalities applied to Propositions 7.21 and 7.23,
we see that

kg�1s hskC0;2˛loc
� C

�
n; ˛; !; sup

s2Œ0;1�

kGskC3
�
:

Combining the previous estimate with Corollary 7.22, it suffices to prove a uniform bound on
the local 2˛-Hölder norm of h�1s gs . We conclude with the following observation: if u is a pos-
itive function on M in C 0;2˛loc .M/ uniformly bounded from below by a positive constant, then
Œu�1�2˛ � Œu�2˛.infM u/�2. By invoking Corollary 7.22 once more, this last remark applied to
h�1s gs implies that

kh�1s gskC0;2˛loc
� C

�
n; ˛; !; sup

s2Œ0;1�

kGskC3
�

as well.

7.7.3. Local bootstrapping. We now improve the local regularity of our continuity
path of solutions to (??s). This estimate will be used in deriving the subsequent weighted
a priori estimates.

Proposition 7.25. Let .#s/0�s�1 be a path of solutions in R ˚ C
1
X;ˇ .M/ to (??s).

Then, for any ˛ 2 .0; 1
2
/ and for any compact subset K �M ,

sup
0�s�1

k#skC3;2˛.K/ � C
�
n; ˛; !; sup

s2Œ0;1�

kGskC3 ; K
�
:

Proof. From the standard computations involved in the proof of the a priori C 2-estimate,
we derive that

��s

�
�!s#s �

X

2
� #s

�
D ��sGs C h�1s � g�1s � Rm.gs/C Rm.gs/ � r

hs Nr
hs#s � h

�1
s

C g�1s � g�1s � Rm.gs/

C g�1s � h�1s � h�1s � Nr
hsr

hs Nr
hs#s � r

hs Nr
hsr

hs#s

� .��s ��!s /
�X � #s

2

�
;

(7.21)

where � denotes the ordinary contraction of two tensors. Now, sinceX is real holomorphic and
#s being JX -invariant, we see that

(7.22) i𝜕𝜕.X � #s/ D LX .i𝜕𝜕#s/ D r
gs
X .i𝜕𝜕#s/C i𝜕𝜕#s � r

gsX:
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Therefore, thanks to (7.22), we have the following pointwise estimate:

j.��s ��!s /.X � #s/j

D jh�1s � i𝜕N𝜕#s � i𝜕N𝜕.X � #s/jgs

� jh�1s gsjgs � ji𝜕N𝜕#sjgs � .ji𝜕N𝜕#sjgs jr
gsX jgs C jr

gs i𝜕N𝜕#sjgs jX jgs /:

(7.23)

By Propositions 7.21 and 7.23 together with (7.23), the C 0-norm of the right-hand side
of (7.21) is uniformly bounded on compact subsets and, thanks to Corollary 7.24, so too are the
coefficients of ��s in the C 0;2˛loc -sense. As a result, by applying the Morrey–Schauder C 1;2˛-
estimates, we see that, for any x 2M and for ı < injgs .M/,


�!s#s � X

2
� #s





C1;2˛.Bgs .x;ı//

� C.x; ı; ˛/:

Finally, applying standard interior Schauder estimates for elliptic equations once again with
respect to �!s ;X , we deduce that

k#skC3;2˛.Bgs .x;
ı
2
// � C.x; ı; ˛/

�


�!s#s � X

2
� #s





C1;2˛.Bgs .x;ı//

C k#skC1;2˛.Bgs .x;ı//

�
� C.x; ı; ˛/:

We next establish the following well-known local regularity result for solutions to (??s).

Proposition 7.26. Let Gs 2 C k;˛loc .M/ for some k � 1 and ˛ 2 .0; 1/ and suppose that
#s 2 C

3;˛
loc .M/ is a solution to (??s) with data Gs . Then #s 2 C kC2;˛loc .M/. Moreover, for all

k � 1, ˛ 2 .0; 1/, and compact subset K �M ,

k#skCkC2;˛.K/ � C
�
n; ˛; !; sup

s2Œ0;1�

kGskCmax¹k;3º;˛ ; K
�
:

Proof. We prove this proposition by induction on k � 1. The case k D 1 is true by
Proposition 7.25, so let Gs 2 C kC1;˛loc .M/ and let #s 2 C 3;˛loc .M/ be a solution of (??s). Then,
by induction, #s 2 C kC2;˛loc .M/. Let x 2M and choose local holomorphic coordinates defined
on Bgs .x; ı/ for some 0 < ı < injgs .M/. Then, since #s satisfies

Gs D log
��ns
!ns

�
�
X

2
� #s;

we know that, for j D 1; : : : ; 2n, the derivative 𝜕j#s satisfies

��s .𝜕j#s/ D 𝜕j
�
Gs C

X

2
� #s

�
2 C k;˛loc .M/:

As the coefficients of ��s are in C k;˛loc .M/, an application of the standard interior Schauder
estimates for elliptic equations now gives us the desired local regularity result, namely

𝜕j#s 2 C kC2;˛loc .M/ for all j D 1; : : : ; 2n;

or equivalently, #s 2 C kC3;˛loc .M/ together with the expected estimate.
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7.8. Weighted a priori estimates. Our first proposition establishes an a priori decay
estimate on the gradient of the X -derivative of solutions to (??s). Its proof uses the Bochner
formula in an essential way.

Proposition 7.27. Let .#s/0�s�1 be a path of solutions in R ˚ C
1
X;ˇ .M/ to (??s).

Then there exist positive constants C , R0, and " > 0 such that, for all s 2 Œ0; 1�,

jr
g.X � #s/jg �

C

f "
; f � R0:

Proof. Let u´ X � #s , write �hs ;X ´ �hs �X � , where �hs denotes the Riemann-
ian Laplacian with respect to hs , and recall from (7.5) the differential equation satisfied by u
outside a sufficiently large compact set W of M ,

(7.24)
1

2
�hs ;Xu D 2e�

X �#s
2
.!D C i𝜕N𝜕#s/n

!n
:

Applying the Bochner formula for the drift Laplacian to the function u, we obtain

1

2
�hs ;X jr

hsuj2hs

D jHesshs .u/j
2
hs

C Ric.hs/.rhsu;rhsu/C Hesshs .f�s /.r
hsu;rhsu/

C hr
hs�hs ;Xu;r

hsuihs

D jHesshs .u/j
2
hs

C Ric.gs/.rhsu;rhsu/C Hessgs .f!s /.r
hsu;rhsu/

� i𝜕N𝜕Gs.rhsu;rhsu/C 4
D
r
hs
�
e�

X �#s
2
.!D C i𝜕N𝜕#s/n

!n

�
;rhsu

E
hs
;

where we have used (7.1) and (7.24) in the second equality. As Gs is supported in W and gs is
isometric to g on M nW , on this latter set, this equation reads as

1

2
�hs ;X jr

hsuj2hs D jHesshs .u/j
2
hs

C Ric.g/.rhsu;rhsu/C Hessg.f /.rhsu;rhsu/

C 4
D
r
hs
�
e�

X �#s
2
.!D C i𝜕N𝜕#s/n

!n

�
;rhsu

E
hs

which, using the properties of g, then becomes

�hs ;X jr
hsuj2hs D 2jHesshs .u/j

2
hs

C 2jrhsuj2g

C 8
D
r
hs
�
e�

X �#s
2
.!D C i𝜕N𝜕#s/n

!n

�
;rhsu

E
hs

(7.25)

on M nW . Henceforth working on M nW , we analyse the last term of this equation in the
following claim.

Claim 7.28. On M nW , we have thatˇ̌̌D
r
hs
�
e�

X �#s
2
.!D C i𝜕N𝜕#s/n

!n

�
;rhsu

E
hs

ˇ̌̌
�
C

r

�
jHesshs .u/jhs C jr

hsujhs
�
jr
hsujhs :
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Proof of Claim 7.28. By the pointwise Cauchy–Schwarz inequality together with the
a priori C 2 estimate from Proposition 7.21, it suffices to prove that, on M nW ,ˇ̌̌

r
g
�
e�

X �#s
2
.!D C i𝜕N𝜕#s/n

!n

�ˇ̌̌
g
�
C

r

�
jHesshs .u/jhs C jr

hsujhs
�
:

Now, thanks to (7.6), the a priori bounds on X � #s (Propositions 7.5 and 7.20) and its gradient
(Proposition 7.23), one gets schematicallyˇ̌̌

r
g
�
e�

X �#s
2
.!D C i𝜕N𝜕#s/n

!n

�ˇ̌̌
g
� C

�1
r
jr
gujg C

1

r2
jr
guj2g C

1

r
jHessg.u/jg

�
�
C

r

�
jr
gujg C jHessg.u/jg

�
;

where we have used implicitly the a priori C 3 bound (Proposition 7.23). In order to conclude,
it suffices to observe that

jHesshs .u/ � Hessg.u/jg � C jr
g𝜕𝜕#sjg jrgujg � C jr

gujg ;

where C is a positive constant independent of s 2 Œ0; 1� that may vary from line to line. Here
we have used Proposition 7.23 again in the last line.

Combining (7.25) with Claim 7.28 and using Proposition 7.22 to deal with the term
jrhsuj2g of (7.25), all in all, we end up with the following differential inequality satisfied
by jrhsuj2

hs
:

�hs ;X jr
hsuj2hs � 2jHesshs .u/j

2
hs

C C�1
jr
hsuj2hs

�
C

r

�
jHesshs .u/jhs C jr

hsujhs
�
jr
hsujhs :

Next, upon applying Young’s inequality, we derive that, on the set ¹r > Rº for some R > 0
with W � ¹r � Rº chosen sufficiently large,

(7.26) �hs ;X jr
hsuj2hs �

1

2
C�1

jr
hsuj2hs :

Now, Lemma 7.2 ensures that f �ˇ
�s for ˇ > 0 satisfies outside a sufficiently large uniform

compact set of M the differential inequality

�hs ;Xf
�ˇ
�s

D � f̌ �ˇ�1
�s

�
�hs ;Xf�s � .ˇ C 1/jX j

2
hs
f �1
�s

�
D ˇ

�
2f�s �X � #s C .ˇ C 1/jX j

2
hs
f �1
�s

�
f �ˇ�1
�s

� 2ˇ.1C Cf �1
�s
/f �ˇ
�s

� 3 f̌ �ˇ
�s

for some uniform positive constant C . Here we have used Proposition 7.5 in the last line
to bound �X � #s uniformly from above. We have also used (7.20) from Proposition 7.23
to bound jX j2

hs
from above, since 2jX j2

hs
D 2X � f�s D 2X � f CX �X � #s D r2 CO.r/,

where O. � / is uniform in s 2 Œ0; 1�. Recalling (7.26), one can then use f �ˇ
�s for some ˇ > 0

to be specified as a barrier function. Indeed, if A > 0, then outside a sufficiently large compact
subset of M , we have that

(7.27) �hs ;X .jr
hsuj2hs � Af

�ˇ
�s

/ �
1

2
C�1.jrhsuj2hs � Af

�ˇ
�s

/

whenever 6ˇ � C�1. The maximum principle applied to (7.27) now yields the desired esti-
mate.
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This leads to the following weighted estimate.

Corollary 7.29. Let .#s/0�s�1 be a path of solutions in R ˚ C
1
X;ˇ .M/ to (??s) and let

C , R0, and " > 0 be as in Proposition 7.27. Then, for all s 2 Œ0; 1�, there exists #1
s 2 R such

that
j#s � #

1
s j C jX � #sj C jr

g#sjg �
C

f
"
2

; f � R0:

Proof. First observe that, since X D rgf , for any vector field Y on M , we have that

g.rg.X � #s/; Y / D Hessg.f /.rg#s; Y /C Hessg.#s/.X; Y /

D
1

2
.LXg/.r

g#s; Y /C Hessg.#s/.X; Y /:

In particular, upon setting Y ´ rg#s , using the JX -invariance of #s and the fact that

X

2
� jr

g#sj
2
g D Hessg.#s/.X;rg#s/

and 1
2
LXg D gC on M nW , we see that, on this set,

g.rg.X � #s/;r
g#s/ D jr

C#sj
2
gC

C
X

2
� jr

g#sj
2
g

D r�2 jX � #sj
2„ ƒ‚ …

�C

Cr�2 jJX � #sj
2„ ƒ‚ …

D0

C
X

2
� jr

g#sj
2
g

�
C

r2
C
X

2
� jr

g#sj
2
g ;

where we have also used the boundedness of jX � #sj given by Propositions 7.5 and 7.20 in the
last line. Therefore by Young’s inequality together with Proposition 7.27, we find that

X

2
� jr

g#sj
2
g � �jr

g.X � #s/jg jr
g#sjg �

C

r2

� �
C

r2"
jr
g#sjg �

C

r2

� �
C

r2"
jr
g#sj

2
g �

C

rmin¹2";2º
;

where C is a positive constant that may vary from line to line. The previous differential
inequality can be reformulated as follows:

𝜕r.e�Cr
�2"

jr
g#sj

2
g/ � �

Ce�Cr
�2"

r1Cmin¹2";2º
:

Integrating from r to r D C1 and using the assumption that the covariant derivatives of #s
decay to 0 at infinity, we subsequently deduce that

0 � e�Cr
�2"

jr
g#sj

2
g � C

Z C1

r

s�1�min¹2";2ºe�Cs
�2"

ds

so that

0 � jr
g#sj

2
g � CeCr

�2"

Z C1

r

s�1�min¹2";2º e�Cs
�2"„ ƒ‚ …

�1

ds � Cr�min¹2";2ºeCr
�2"

:

As eCr
�2"

is bounded at infinity, we arrive at the estimate jrg#sjg � Cr�min¹";1º.



Cifarelli, Conlon and Deruelle, An Aubin path for shrinking gradient Kähler–Ricci solitons 301

Next note from the mean value theorem on D that, at height r ,

(7.28)
ˇ̌̌̌
#s.r; � / �

«
D

#s.r; � /!
n�1
D

ˇ̌̌̌
� sup
D�¹rº

jr
g#sjg diamg D �

C

r"
;

and thanks to Proposition 7.27 that

(7.29)
ˇ̌̌̌
X � #s.r; � / �

«
D

X � #s.r; � /!
n�1
D

ˇ̌̌̌
�
C

r"
:

These inequalities we will make use of later.
Linearising (??s) around the background metric g on M nW , we can write

(7.30) �g;X#s D

Z 1

0

Z u

0

j𝜕N𝜕#sj2hs;� d� du; hs;� ´ .1 � �/g C �hs:

Integrating over D � ¹rº then yields the equation

�C;X#s.r/ D

Z
D

Z 1

0

Z u

0

j𝜕N𝜕#sj2hs;� d� du!
n�1
D ;

where we recall that
#s.r/´

«
D�¹rº

#s.r; � /!
n�1
D :

By Corollary 7.22, we therefore have that

(7.31) 0 � �C;X#s.r/ � C

Z
D

ji𝜕N𝜕#sj2g!
n�1
D

for some uniform constant C > 0.
Now, since rgX D rg;2f D gC , one gets the following pointwise estimate obtained

by considering an orthonormal frame of the form .r�1X; r�1JX; .ei ; Jei /1�i�n�1/, where
.ei ; Jei /1�i�n�1 is an orthonormal frame with respect to gD:

ji𝜕N𝜕#sj2g � C jr
g;2#sj

2
g � C

�
r�2jrg.X � #s/j

2
g C r�2jrg#sj

2
g C jr

gD ;2#sj
2
gD

�
for some uniform positive constant C . Integrating over D, using integration by parts together
with Proposition 7.27, we next derive that

(7.32)
Z
D

ji𝜕N𝜕#sj2g!
n�1
D �

C

r4"C2
C

Z
D

jr
gD ;2#sj

2
gD
!n�1D :

Now, by Bochner formula applied to .D; gD/ and the function #s , we have that

�Djr
gD#sj

2
gD

D 2jrgD ;2#sj
2
gD

C 2Ric.gD/.rgD#s;rgD#s/

C 2gD.r
gD�D#s;r

gD#s/

� 2jrgD ;2#sj
2
gD

C 2gD.r
gD�D#s;r

gD#s/;

(7.33)

where we have used that gD has non-negative Ricci curvature. (Ricci curvature bounded from
below would be enough to complete the argument thanks to the decay on the gradient of #s that
we have just proved above.) Integrating (7.33) on D and noticing that �D#s D 2 tr!D .i𝜕N𝜕#s/
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then leads to the boundZ
D

jr
gD ;2#sj

2
gD
!n�1D �

Z
D

jr
gD�D#sjgD jr

gD#sjgD!
n�1
D

� C sup
D�¹rº

jr
gD .i𝜕N𝜕#s/jgD jr

gD#sjgD �
C

r"
;

(7.34)

where C denotes a uniform positive constant that may vary from line to line. Here we have
used Proposition 7.23 and the decay on the gradient of #s previously proved in the last line.
Combining (7.31), (7.32), and (7.34), we can now infer that

0 � �C;X#s.r/ �
C

r4"C2
C
C

r"
:

We then have that

0 �
𝜕
𝜕r
.e�

r2

2 X � #s/ � Cr1�"e�
r2

2 :

After integrating this differential inequality from r to r D C1, we find that

�C

Z C1

r

s1�"e�
s2

2 ds � e�
r2

2 X � #s.r/ � 0:

Now,
RC1

r s1�"e�
s2

2 ds � Cr�"e�
r2

2 for r large enough, which can be proved using inte-
gration by parts. In particular, we have that �Cr�" � X � #s.r/ � 0. Integrating once more
yields the existence of a constant #1

s 2 R such that #1
s � #s.r/ � #1

s C Cr�". The triangle
inequality applied to the oscillation estimates (7.28) and (7.29) then imply the desired estimates
for #s and X � #s , respectively.

As an intermediate step, we obtain a first rough decay estimate of the difference between
the background metric and the metric resulting from the solution to (??s). More precisely, we
have the following corollary.

Corollary 7.30. Let .#s/0�s�1 be a path of solutions in R ˚ C
1
X;ˇ .M/ to (??s). If

˛ 2 .0; 1
2
/, then there exist C > 0 and " > 0 such that, for all s 2 Œ0; 1�,

kf
"
2 � i𝜕N𝜕#skC0;2˛loc

� C:

Proof. It suffices to prove this estimate outside a compact set W such that !s D ! on
M nW . To this end, let x 2M nW and choose normal holomorphic coordinates in a ball
Bg.x; �/ for some � > 0 uniform in x 2M . Let gi N|

�#s
denote the components of the inverse of

the Kähler metric associated to ! C i𝜕N𝜕.�#s/ in these coordinates and set

ai N| ´

Z 1

0

g
i N|

�#s
d�:

Then we have that

0 D log
��ns
!n

�
�
X

2
� #s D

Z 1

0

d

d�
log

�!n
�#s

!n

�
d� �

X

2
� #s

D

�Z 1

0

g
i N|

�#s
d�

�
𝜕i𝜕 N|#s �

X

2
� #s D ai N|𝜕i𝜕 N|#s �

X

2
� #s:

Now, by Corollary 7.24, kai N|kC0;2˛loc
is uniformly bounded from above and ai N| � ƒ�1ıi N| on

Bg.x; �/ for some uniform constant ƒ > 0. Therefore, by considering X
2
� #s as a source term,
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the Schauder estimates imply that

k#s � #
1
s kC2;2˛.Bg.x;�=2// � C.kX � #skC0;2˛.Bg.x;�// C k#s � #

1
s kC0.Bg.x;�///

� Cf .x/�
"
2

for some uniform positive constant C D C.n; ˛; !/. Here we have used Proposition 7.27 and
Corollary 7.29 in the last line. The desired rough a priori decay estimate on i𝜕N𝜕#s and its
Hölder semi-norm now follow.

The next result proves a sharp decay at infinity on the C 0-norm of the difference between
a solution to (??s) and its limit at infinity.

Theorem 7.31. Let .#s/0�s�1 be a path of solutions in R ˚ C
1
X;ˇ .M/ to (??s). Then

there exist R0 > 0 and C > 0 such that, for s 2 Œ0; 1�,

j#s � #
1
s j �

C

f
ˇ
2

; f � R0;

where #1
s 2 R is as in Corollary 7.29 and ˇ is as in Theorem A (v). Moreover, there exists

C > 0 such that k#skD2;2˛
X;ˇ

� C .

Proof. Linearising (??s) around g outside a compact set to obtain (7.30) and using the
uniform equivalence of the metrics hs and g given by Corollary 7.22 together with the bounds
of Corollary 7.30, we obtain the improved estimate

0 � �g;X#s � Cr�2":

Akin to the proof of Claims 6.8 and 6.9, one estimates X � #s and #s � #s separately. Esti-
mating the former can be reduced to an ODE which gives X � #s D O.r�2"/ uniformly in
s 2 Œ0; 1�, and by integrating from r to r D C1, we obtain #s � #1

s D O.r�2"/. The lat-
ter estimate uses the Poincaré inequality on D endowed with its metric gD . By assumption,
�D > ˇ > 0 is the first non-zero eigenvalue of the spectrum of the Laplacian on D, and so
one has that #s � #s D O.r�min¹ˇ;2"º/. Combining these two estimates, one arrives at the fact
that #s � #1

s D O.r�min¹ˇ;2"º/, which is a strict improvement of Corollary 7.29, provided
that " < ˇ.

Next, invoking local parabolic Schauder estimates established in [(6.10), Claim 6.7] with
k D 0 applied to the linearisation of (??s) around the background metric g outside a compact
set as in (7.30) yields the existence of a positive constant C such that, for R � R0,

k#s � #
1
s kC2;2˛

X;min¹ˇ;2"º

� C.k#s � #
1
s kC0

X;min¹ˇ;2"º
C ki𝜕𝜕#skC0;2˛

X;min¹ˇ;2"º
ki𝜕𝜕#skC0.r�R//C C.R/

� Ck#s � #
1
s kC0

X;min¹ˇ;2"º
C Ck#s � #

1
s kC2;2˛

X;min¹ˇ;2"º
R�min¹ˇ;2"º

C C.R/;

where we have invoked local uniform estimates given by Propositions 7.21 and 7.23. By
choosing R large enough and absorbing the relevant terms, one finds in particular that

k#s � #
1
s kC2;2˛

X;min¹ˇ;2"º
� C

for some uniform positive constant C . This implies that ji𝜕𝜕#sjg D O.r�min¹ˇ;2"º/.
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By iterating the previous steps a finite number of times, the decay on #s is multiplied
by 2 with each iteration until it eventually reaches the threshold decay r�ˇ .

We now present the weighted C 4-estimate.

Proposition 7.32 (Weighted C 4 a priori estimate). Let .#s/0�s�1 be a path of solutions
in R ˚ C

1
X;ˇ .M/ to (??s). If ˛ 2 .0; 1

2
/, then there exists C > 0 such that, for all s 2 Œ0; 1�,

(7.35) k#s � #
1
s kC4;2˛

X;ˇ
� C:

Proof. In order to prove the a priori bound on the C 4;2˛X;2 -norm of #s � #1
s , we first

establish the following uniform decay on the third derivatives of #s � #1
s .

Claim 7.33. There exists C > 0 such that, for all s 2 Œ0; 1�,

kr
g#skC2;2˛

X;ˇ
� C:

In particular,

jr
g𝜕𝜕#sjg �

C

rˇ
:

Proof of Claim 7.33. We differentiate the linearisation of (??s) around the background
metric g outside a compact set as given in (7.30) to get schematically, on ¹r � Rº with R
sufficiently large,

(7.36)

�g;X .r
g#s/ D r

g#s CQ.𝜕𝜕#s;rg𝜕𝜕#s/;

kQ.𝜕𝜕#s;rg𝜕𝜕#s/kC0;2˛
X;ˇ

� Ckr
g𝜕𝜕#skC0;2˛

X;ˇ
k𝜕𝜕#skC0;2˛.r>R/

�
C

Rˇ
kr

g𝜕𝜕#skC0;2˛
X;ˇ

:

Here we have used Theorem 7.31 in the last inequality. In particular, as in the proof of Theo-
rem 7.31, by choosing R large enough and absorbing the nonlinear term on the right-hand side
of (7.36), thanks to Proposition 7.26 together with Theorem 7.31, one is led to the bound

kr
g#skC2;2˛

X;ˇ
� C:

In particular, the desired decay on jrg𝜕𝜕#sjg holds true.

By Proposition 7.26, in order to establish (7.35), it suffices to estimate the C 2;2˛X;2 -norm
of the right-hand side of the linearisation of (??s) around the background metric g as given
in (7.30) once it is localised on ¹r > Rº for R sufficiently large. As in the proof of Claim 7.33,
the linearisation of (??s) around the background metric g outside a compact set as given
in (7.30) gives schematically, on ¹r > Rº,

�g;X#s D Q.𝜕𝜕#s/;

kQ.𝜕𝜕#s/kC2;2˛
X;ˇ

� C.k#s � #
1
s k

2
C2;2˛
X;ˇ

C k𝜕𝜕#skC2;2˛
X;ˇ

k𝜕𝜕#skC0;2˛.r>R/

C kr
g𝜕𝜕#skC0;2˛

X;ˇ
kr

g𝜕𝜕#skC0.r>R//

� C.1CR�ˇ
k#s � #

1
s kC4;2˛

X;ˇ
C k#s � #

1
s kC4;2˛

X;ˇ
kr

g𝜕𝜕#skC0.r>R//

� C.1CR�ˇ
k#s � #

1
s kC4;2˛

X;ˇ
/
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for some positive uniform constant that may vary from line to line. Here we have used Theo-
rem 7.31 in the second and third inequalities together with Claim 7.33 in the last inequality. In
particular, Theorem 6.3 applied to #s � #1

s and k D 2 and ˛ 2 .0; 1
2
/ gives for some constant

C independent of R the following bound:

k#s � #
1
s kC4;2˛

X;ˇ
� C.R/C CR�ˇ

k#s � #
1
s kC4;2˛

X;ˇ
:

This yields the expected a priori estimate after absorbing the last term on the right-hand side of
the previous estimates into the left-hand side.

The next proposition gives the a priori higher-order weighted estimates. Since its proof
is along the same lines as that of Proposition 7.32, we omit it.

Proposition 7.34 (Higher-order weighted estimates). Let .#s/0�s�1 be a path of solu-
tions in R ˚ C

2kC2;2˛
X;ˇ .M/ to (??s) for k � 1. If ˛ 2 .0; 1

2
/ and if there exists Ck;˛ > 0 such

that, for all s 2 Œ0; 1�,
k#skD

2kC2;2˛
X;ˇ

� Ck;˛;

then there exists CkC1;˛ > 0 such that, for all s 2 Œ0; 1�,

k#skD
2.kC1/C2;2˛

X;ˇ
� CkC1;˛:

7.9. Completion of the proof of Theorem A (v). We finally prove Theorem A (v). Set

S ´ ¹s 2 Œ0; 1� j there exists  s 2 M1
X;ˇ .M/ satisfying (?s)º:

Note that S ¤ ; since 0 2 S (take  0 D 0).
We first claim that S is open. Indeed, this follows from Theorem 6.12: if s0 2 S , then

by Theorem 6.12, there exists "0 > 0 such that, for all s 2 .s0 � "0; s0 C "0/, there exists
a solution  s 2 M4;2˛

X;ˇ
.M/ to (?s) with data Fs 2 .C2;2˛X;ˇ

.M//!;0. Since the data Fs lies in
C

1
X;ˇ .M/, Theorem 6.12 ensures that, for each s in this interval,  s 2 M

1
X;ˇ .M/. It follows

that .s0 � "0; s0 C "0/ \ Œ0; 1� � S .
We next claim that S is closed. To see this, take a sequence .sk/k�0 in S converging

to some s1 2 S . Then, for Fk ´ Fsk , k � 0, the corresponding solutions  sk µ  k , k � 0,
of (?s) satisfy

(7.37) .! C i𝜕N𝜕 k/n D eFkC
X
2
� k!n; k � 0:

It is straightforward to check that the sequence .Fk/k�0 is uniformly bounded in C2;2˛
X;ˇ

.M/. As
a consequence, the sequence . k/k�0 is uniformly bounded in M4;2˛

X;ˇ
.M/ by Proposition 7.32.

Indeed, recall the correspondence between solutions of (?s) and (??s):  k is a solution to (?s)
if and only if #sk D  sk �ˆsk is a solution to (??s). The Arzelà–Ascoli theorem therefore
allows us to pull out a subsequence of . k/k�0 that converges to some  1 2 C 4;2˛

0

loc .M/,
˛0 2 .0; ˛/. As . k/k�0 is uniformly bounded in M4;2˛

X;ˇ
.M/,  1 will also lie in M4;2˛

X;ˇ
.M/.

We need to show that .! C i𝜕N𝜕 1/.x/ > 0 at every point x 2M . For this, it suffices to show
that .! C i𝜕N𝜕 1/

n.x/ > 0 for every x 2M . This is seen to hold true by letting k tend to C1

(up to a subsequence) in (7.37). The fact that  1 2 M
1
X;ˇ .M/ follows from Proposition 7.34.

Finally, as an open and closed non-empty subset of Œ0; 1�, connectedness of Œ0; 1� implies
that S D Œ0; 1�. This completes the proof of the Theorem A (v).
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