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An Aubin continuity path for shrinking
gradient Kéhler—Ricci solitons

By Charles Cifarelli at Stony Brook, Ronan J. Conlon at Richardson
and Alix Deruelle at Orsay

Abstract. Let D be a toric Kédhler—Einstein Fano manifold. We show that any toric
shrinking gradient Kidhler—Ricci soliton on certain toric blowups of C x D satisfies a complex
Monge—Ampere equation. We then set up an Aubin continuity path to solve this equation and
show that it has a solution at the initial value of the path parameter. This we do by implementing
another continuity method.
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1. Introduction

1.1. Overview. A Ricci soliton is a triple (M, g, X), where M is a Riemannian mani-
fold endowed with a complete Riemannian metric g and a complete vector field X, such
that

1
(1.1) Ricg —I-Eiﬁxg:/\g
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for some A € R. The vector field X is called the soliton vector field. If X = V& f for some
smooth real-valued function f on M, then we say that (M, g, X) is gradient. In this case, the
soliton equation (1.1) becomes Ricg + Hessg (/) = Ag, and we call f the soliton potential. In
the case of gradient Ricci solitons, the completeness of X is guaranteed by the completeness
of g (see [40]).

Let (M, g, X) be a Ricci soliton. If g is Kéhler and X is real holomorphic, then we say
that (M, g, X) is a Kdhler—Ricci soliton. Let @ denote the Kéhler form of g. If (M, g, X) is in
addition gradient, then (1.1) may be rewritten as

(1.2) Po +100f = Aw,

where p,, is the Ricci form of w and f is the soliton potential.

Finally, a Ricci soliton and a Kihler—Ricci soliton are called steady if A = 0, expanding
if A < 0, and shrinking if A > 0 in (1.1). One can always normalise A, when non-zero, to satisfy
|A| = 1. We henceforth assume that this is the case.

Ricci solitons are interesting both from the point of view of canonical metrics and of
the Ricci flow. On one hand, they represent one direction in which the concept of an Einstein
manifold can be generalised. On compact manifolds, shrinking Ricci solitons are known to
exist in several instances where there are obstructions to the existence of Einstein metrics; see
for example [37]. By the maximum principle, there are no nontrivial expanding or steady Ricci
solitons on compact manifolds. However, there are many examples on non-compact manifolds;
see for example [15, 16,22] and the references therein. On the other hand, one can associate to
a Ricci soliton a self-similar solution of the Ricci flow, and gradient shrinking Ricci solitons
in particular provide models for finite-time Type I singularities of the flow [20, 29]. From this
perspective, it is an important problem to classify such solitons in order to better understand
singularity development along the Ricci flow.

In this article, we are concerned with the construction of shrinking gradient Kéhler—Ricci
solitons, models for finite-time Type I singularities of the Kéhler—Ricci flow. In essence, we set
up an Aubin continuity path for a complex Monge—Ampere equation to construct such solitons
in a particular geometric setting that allows for control on the data of the equation. We then
show that there is a solution to the equation for the initial value of the path parameter. This we
do by implementing another continuity path.

1.2. Main result. In order to state the main result, recall that a complex toric manifold
is a smooth n-dimensional complex manifold D endowed with an effective holomorphic action
of the complex torus (C*)" with a compact fixed point set. In such a setting, there always
exists an orbit U C D of the (C*)"-action which is open and dense in D. The (C*)"-action of
course determines the holomorphic action of a real torus 7" C (C*)", as is easily seen for the
action of the one-dimensional torus C* on P! via A - [zq : z1] = [Az] : z3]. This assumption
is crucial for obtaining a uniform lower bound on the solution along our continuity path. Our
main result is stated as follows.

Theorem A. Let D"~ ! be a toric Kihler-Einstein Fano manifold of complex dimen-
sion n — 1 with Kdhler form wp and Ricci form py,, = wp, and consider P! x D with the
induced product torus action acting by rotation on the P -factor. Let T™ denote the real torus
acting on P! x D, write Dy := {x} x D, and let M be a toric Fano manifold obtained as
a torus-equivariant (possibly iterated) blowup w: M — P x D along smooth torus-invariant
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subvarieties contained in Dy. Let M := M \ 171 (Doo), M := C x D, write J for the com-
plex structure on M, t for the Lie algebra of T", and let z denote the holomorphic coordinate
on the C-factor of M. Then

)

there exists a unique complete real holomorphic vector field JX € t such that X is the
soliton vector field of any complete toric shrinking gradient Kdhler—Ricci soliton on M .

Assume that the flow lines of J X are closed. Then

(i)

(iii)

(iv)

(v)

there exists a complete Kdhler metric w on M invariant under the action of T, A > 0
uniquely determined by X, and a holomorphic isometry

v:(M\K,w)e(M\I?,cB::a)C + wp),

where K C M, K C M are compact and w¢c 1= %aé|z|21, such that
2
dv(X) = 1 -Re(z0;).

There exists a unique 2tlorus-invariant function f € C®°(M) such that —w_.JX = df.
Moreover, f = v*(% —1)and Ao f + f — % - f = 0 outside a compact subset of
M containing K.

Any shrinking Kdhler—Ricci soliton on M invariant under the action of T of the form
w+i00¢ for some ¢ € C®°(M) with w 4+ i90¢ > 0

satisfies the complex Monge—Ampére equation

(1.3) (w + i00¢)" = eFH3e—eyn

where F € C®°(M) is equal to a constant outside a compact subset of M and is deter-
mined by the fact that

Pw + %éﬁxw —w =i00F and /M(eF — e /0" =0.
Here, pg, denotes the Ricci form of w.
There exists a function y € C°° (M) invariant under the action of T and with
o +i00y > 0
such that
(1.4) (0 + i00y)" = eF+ 2V,

where [y, e~/ w" = 0 and, outside a compact subset, ¥ = clog f + ¢2 + O for some
constants c1, ¢y € R and a smooth real-valued function v: M — R satisfying

Vi), = O(f~%) foralli.j eN, Be(0,AD).
Here, V denotes the Levi-Civita connection associated to w,

fg) — fxo---0Ly.
[ ——
J -times

and AP is the first non-zero eigenvalue of —Ap acting on L?-functions on D.
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Note that, since M does not split off any S!-factors, toricity implies that M has finite
fundamental group [17], a necessary condition for the existence of a shrinking gradient Kihler—
Ricci soliton on M (see [38]). Note also that, throughout, our convention for the Kéhler
Laplacian A,, is that with respect to the Kihler form w, A, f = try,(i00 f) for f a smooth
real-valued function, so that the eigenvalues of minus the Laplacian are non-negative on a com-
pact Riemannian manifold.

Part (i) of the theorem determines the soliton vector field of any complete toric shrinking
gradient Kdhler—Ricci soliton on M and follows immediately from [12, Theorem A], where it
is asserted that a complete toric shrinking gradient Kédhler—Ricci soliton is unique up to biholo-
morphism. The vector field J X is characterised by the fact that it is the point in a specific open
convex subset of t at which a certain strictly convex functional attains its minimum. More pre-
cisely, because H'!(M,R) = 0 and M is toric, the action of T is Hamiltonian and there exists
a strictly convex functional %,: A, — Ry, the “weighted volume functional” [16, Defini-
tion 5.16], defined on an open convex cone A, C t uniquely determined by the image of M
under the moment map defined by the action of 7" and the choice of w (see [31, Proposi-
tion 1.4]) and well-defined by the non-compact version of the Duistermaat—Heckman formula
[31] (see also [16, Theorem A.3]). Because T provides a full-dimensional torus symmetry, the
domain A, of %, and ¥, itself only depend on the torus action [13] so that both are indepen-
dent of the choice of w. Furthermore, henceforth dropping the subscripts w, ¥ is known to be
strictly convex [16, Lemma 5.17 (i)] and in addition proper [12, Proposition 3.1] on A in the
toric case, and so it must attain a unique minimum on A. This minimum defines a distinguished
point in t, namely the only vector field in t that can admit a complete toric shrinking gradient
Kéhler—Ricci soliton [12, Theorem 4.6]. This is precisely the vector field J X of Theorem A (i).
Since everything is explicit and is determined by the torus action, one can a priori determine
this vector field for a given M ; see for example [16, Section A.4].

Parts (ii) and (iii) give a reference metric on M that is isometric to a model shrinking
gradient Kéhler—Ricci soliton outside a compact set. This requires the assumption that the flow
lines of JX are closed. Indeed, this is the case for the soliton vector field on the model. With
respect to this background metric, part (iv) gives a complex Monge—Ampere equation (1.3)
that any complete toric shrinking gradient Kéhler—Ricci soliton on M must satisfy with control
on the asymptotics of the data F' of the equation. By [12], we know that there is at most one
such soliton on M and we expect that this equation has a solution, resulting in a complete
toric shrinking gradient Kéhler—Ricci soliton on M. Such a soliton should model finite time
collapsing of the Kihler—Ricci flow in order to be consistent with [36]. One may attempt to
solve (1.3) by implementing the Aubin continuity path that was introduced for Kdhler—Einstein
manifolds [4, Section 7.26]. Specifically, in our case, one may consider the path

(@ + i00g,)" = eF T3 01001 g e CO(M), Lyxp =0,
(%) w +iddp >0, tel0,1],

/eF_fa)”=/ e Lo,
M M

The main content of Theorem A is part (v) where we provide a solution to the equation corre-
sponding to t = 0. This we do by implementing another continuity path. In the compact case,
this was achieved by Zhu [41].

The simplest example of a toric Fano manifold D satisfying the conditions of Theorem A
is D = P! with 7 the blowup map. Indeed, these choices result in M being the blowup of
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C x P! at one point, a manifold for which the flow lines of JX close as one can see from
Example 2.24 or [13, Example 2.33]. In [13, Conjecture 1.1], M was identified as a new
manifold potentially admitting a (unique) complete shrinking gradient Kédhler—Ricci soliton
with bounded scalar curvature. Thanks to [6], it is now known that M admits such a soliton.
However, the proof of existence in [6] is strictly dimension dependent and is indirect in that
the soliton is constructed as a blowup limit of a specific Kihler—Ricci flow on the blowup of
P! x P! at one point. The principal motivation behind Theorem A therefore is that it provides
a first step in a direct construction of this soliton on M, namely via the continuity method,
and is more widely applicable than the methods of [6]. It also serves to provide examples of
non-compact manifolds with strictly positive Bakry—Emery tensor.

Equation (1.4) a priori looks identical to the complex Monge—Ampere equation solved
in [15], where complete steady gradient Kdhler—Ricci solitons were constructed. Even though
the equations appear the same and the same continuity path is used in both cases, there are
several important differences between the two that result in additional difficulties arising in the
solution of (1.4) in contrast to the equation of [15]. We conclude this section by highlighting
some of these differences.

* On a closed Kéhler manifold, the X -derivative of any Kéhler potential is bounded prior
to any other bound; see [41]. This fact does not seem to be amenable to an arbitrary non-
compact Kéhler manifold and represents one of the major obstacles to adapting Tian and
Zhu’s work [35] to our current setting. For us, not only is the drift operator X of (1.4)
unbounded, in contrast to [15] where it is bounded, but it also has the opposite sign. This
prevents us from adapting the proof of the C° a priori estimate in [15] to the present
situation.

 In [41], a generalisation of Calabi’s conjecture was proved on compact Kihler manifolds
using a continuity path that shrinks the hypothetical soliton vector field X to zero as the
path parameter tends to zero, thereby reducing the existence at the initial value of the path
parameter to Yau’s solution of the Calabi conjecture [39]. In our setting, implementing
such a continuity path to solve (1.3) does not preserve the weighted volume, and indeed,
the weighted volume diverges at the initial value of the path parameter. This explains why
the Aubin continuity path is more suited to solving (1.3), which yields (1.4) at the initial
value of the path parameter (in contrast to the Calabi—Yau equation). This is precisely the
equation that we provide a solution to in Theorem A (v).

* In [15], the corresponding equation was solved using the continuity path with exponen-
tially weighted function spaces. Here, we solve (1.4) in polynomially weighted function
spaces. This difference is derived from the fact that, in the present situation, the linearised
operator contains logarithmically growing functions in its kernel at infinity. This makes
the linear theory more delicate than in the previous work [15].

« In obtaining an a priori C°-estimate for (1.4), the toricity assumption is crucial. This
was not the case in [15] where no toricity was required. However, a priori weighted L7-
estimates on the solution of (1.4) are obtained without requiring toricity. The same also
applies to the a priori estimates apart from the one concerning a lower bound on the
solution. This will all be made clear in the relevant statements throughout.

e The order in which we obtain the a priori estimates differs to that of [15]. Here we first
obtain an a priori lower bound on the radial derivative of the solution. This then allows
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us to derive an a priori upper bound on the solution. The next step is to derive an a priori
lower bound on the solution. At this stage, we follow the same strategy as that of [15] to
obtain a priori local estimates on the solution.

¢ In addition to containing logarithmically growing functions, the kernel of the linearised
operator in the present situation contains constants, a fact that makes the a priori weighted
estimate of the difference of the solution and of its value at infinity more subtle in a non-
linear setting. To circumvent this issue, we apply the Bochner formula to the X -derivative
of our solution with respect to the unknown Kéhler metric.

* Our geometric setting bears some resemblance to the work [25] on asymptotically cylin-
drical Calabi—Yau metrics. However, in the context of metric measure spaces, our setting
is somewhat dissimilar to theirs in that, as metric measure spaces, our spaces have finite
volume, whereas their spaces have infinite volume. This forces us to take an alternative
approach to obtain (weighted) a priori estimates.

1.3. Outline of paper. We begin in Section 2.1 by recalling the basics of shrinking
Ricci and Kédhler—Ricci solitons. Some important examples are discussed as well as some tech-
nical lemmas proved. We also recall the definition of a metric measure space in Section 2.2. In
Section 2.3, we digress and define polyhedrons and polyhedral cones before moving on to the
definition of a Hamiltonian action in Section 2.4. Section 2.5 then comprises the background
material on toric geometry that we require.

In Section 3, we construct a background metric with the desired properties, resulting
in the proof of Theorem A (ii). Next, in Section 4, the complex Monge—Ampere equation is
set up and the normalisation of the Hamiltonian of JX is obtained, leading to the proof of
Theorem A (iii)—(iv). Our background metric is isometric to a shrinking gradient Kdhler—Ricci
soliton compatible with X outside a compact set. This is what allows us to set up the complex
Monge-Ampere equation with compactly supported data.

From Section 5 onwards, the content takes on a more analytic flavour with the proof of
Theorem A (v) taking up Sections 5-7. To prove this part of Theorem A, we implement the
continuity method. The specific continuity path that we consider is outlined at the beginning
of Section 7, but beforehand, in Section 5, we prove a Poincaré inequality which is the content
of Proposition 5.1. This is essential in deriving the a priori weighted energy estimate for the
complex Monge—Ampere equation (1.3) with compactly supported data.

In Section 6, we study the properties of the drift Laplacian of our background metric
acting on polynomially weighted function spaces. More precisely, we introduce polynomially
weighted function spaces whose elements are invariant under the flow of JX in Section 6.2.
We follow this up in Section 6.3 by showing that the drift Laplacian of our background metric
is an isomorphism between such spaces. This latter result is the content of Theorem 6.3. Using
it, we then prove Theorem 6.12 that serves as the openness part of the continuity argument.
The closedness part involves a priori estimates and these make up Section 7.

As noted previously, the presence of the unbounded vector field X makes the analysis
much more involved. An a priori lower bound for the radial derivative X - ¥, where ¥ solves
(1.3), has to be proved before the a priori C° bound in order to avoid a circular argument; see
Section 7.4. A priori energy estimates are obtained in Section 7.5 through the use of the so-
called Aubin-Tian—Zhu functionals and result in an a priori upper bound on a solution to the
complex Monge—Ampere equation (1.3); cf. Proposition 7.11. As explained above, the invar-
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iance of the solution under the whole action torus is crucial in obtaining an a priori lower
bound on the infimum; cf. Proposition 7.19. Then and only then an a priori upper bound on the
radial derivative of a solution to (1.3) is derived; cf. Proposition 7.6. Section 7.7 is devoted to
proving a local bootstrapping phenomenon for (1.3). Finally, Section 7.8 takes care of estab-
lishing a priori weighted estimates at infinity for (1.3), leading to the completion of the proof
of Theorem A (v) in Section 7.9.

2. Preliminaries

2.1. Shrinking Ricci solitons. Recall the definitions given at the beginning of Sec-
tion 1.1. An important class of examples of such manifolds for us is the following.

Example 2.1. We have a 1-parameter family {@, }s>0 of (incomplete) shrinking gra-
dient Kidhler—Ricci solitons on C. Indeed, for each a > 0, the Kéhler form of the shrinking
soliton is given by @, := %E)E)|Z|2a, where z is the holomorphic coordinate on C. The soliton
vector field of @, is given by % -Re(z0;). Of course, when a = 1, &, is complete and we
recover the flat shrinking Gaussian soliton wc on C with soliton vector field 2 - Re(z0;).

Any Kiahler—Einstein manifold trivially defines a shrinking gradient Kédhler—Ricci soliton
(with soliton vector field X = 0). We may then take the Cartesian product with Example 2.1 to
produce many more examples. These examples provide the model at infinity for the reference
metric that we will construct in Theorem A (i).

Example 2.2. Let (D, wp) be a Kihler-Einstein Fano manifold with Kéhler form wp .
Then, for each a > 0, the Cartesian product M := C x D endowed with the Kéhler form
®q = @g + wp is an example of an (incomplete) shrinking gradient Kihler-Ricci soliton.
Here, @, is as in Example 2.1. Writing r := |z|? with z the complex coordinate on the C-
factor of M, the soliton vector field of this example is given by X :=rd, = % -Re(z0;). When
a = 1, the soliton is complete, and up to isometry, we obtain a complete shrinking gradient
Kihler—Ricci soliton on C x D with bounded scalar curvature which is unique if D is more-
over toric [12, Corollary C]. We write g, and J for the Kihler metric associated to @y and
product complex structure on M, respectively.

The following lemma concerning (M , @Wg) will prove useful throughout.

Lemma 2.3. With notation as in Example 2.2, fix a > 0 (and hence the function r) and
let K C M be a compact subset such that M \ K is connected. If u: M \ K — R is a smooth
real-valued function defined on M \ K that is pluriharmonic (meaning that d0u = 0) and
invariant under the flow of JX, thenu = cq log(r) + c1 for some co, c1 € R.

Proof. Let X0 .= %()? —iJX ). Then, since X is real holomorphic and £ 7gu = 0,
we see that . )
(X -u) = dous(X'%) =0,
ie, X -uis holomorphic. As a real-valued holomorphic function, X - u, which itself is equal
to rd,u, must be equal to a constant, cqg say. Thus, because u is invariant under the flow of J X,
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we can write u = cglogr + ¢1(x), where x € D. Let Ac and Ap denote the Riemannian
Laplacians with respect to the flat metric gc on C and the Kédhler—Einstein metric wp on D,
respectively. Then u being pluriharmonic implies that Acu + Apu = 0, and so

0= (Ap + Ac)(colog(r) + c1(x))
= Apci1(x) + Accr(x) +co Ac log(r) = Apcr(x),
\26_./ _=0,_4

which leads to ¢1(x) = c;. This leaves us with u = ¢ log(r) + ¢, as desired. m]
We conclude this section with a gluing lemma.

Lemma 2.4 (Gluing lemma). With notation as in Example 2.2, fixa > 0 (and hence the
functionr), let K C M be a compact subset, and let p € C*°(M \ K) be such that

¢ = O(log(r)), |d¢lz, = O(1), and |idd¢|z, = O(r™?).

Then, for all R > 0 with K C {r < R}, there exists a cut-off function yg: M — R supported
on M\ {r < R} with yr(x) = 1 ifr(x) > 2R such that

= C _
[i00(xR - )5, =< W(H(log(r)) ! Pllcogn gy + 1dPllcown . z.)
+ [Ir* - 100¢ || co w1\ R 2.))
or some C > 0 independent of R. In particular, yg - ¢ = ¢ on {r(x) > 2R}.
X

Proof. Let y:R — R be a smooth function satisfying y(x) =0 for x < 1, y(x) =1
for x > 4, and | y(x)| < 1 for all x, and with it, define a function y g: M — R by

r(x)?
R2
Then ypg is identically zero on {x € M | ¥(x) < R} and identically equal to one on the set

{x e M | r(x) > 2R}. Define ¢pg := yg.¢. Then the closed real (1, 1)-form i99(y g.¢) on M
is given by

Yr(x) = )(( ) for R > 0 as in the statement of the lemma.

- = r2y\ or?  0¢ ¢ r? =
. _ . / . / . 2
100(xr.$) = (R(r).i00¢ + (ﬁ)_.z? Nt (ﬁ).iaar
N Xf(ﬁ),iai Lo L9 //(ﬁ),iﬁ N
R?/)" R R R? R? R R
The assumptions on ¢ and its derivatives then imply for example that
|xR(x).i00¢|z, < sup [iddogplz, < ( sup r~*)( sup r®-|idog|z,)
r€[R,00) r€[R,00) r€[R,00)
< R™|r®-i00¢ | coin\R g)
and that
2y or2 0o
X/( d )',’L N4

c o
22 )R 2 sup r)( sup |ior AOdlz,)

<
8a R? r€[R,2R] r€[R,2R]
< CR7'd$|coun\R z.)-

The estimate of the lemma is now clear. D
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2.2. Basics of metric measure spaces. We take the following from [21]. A smooth
metric measure space is a Riemannian manifold endowed with a weighted volume.

Definition 2.5. A smooth metric measure space is a triple (M, g,e_f dVyg), where
(M, g) is a complete Riemannian manifold with Riemannian metric g, dVj is the volume
form associated to g, and f: M — R is a smooth real-valued function.

A shrinking gradient Ricci soliton (M, g, X)) with X = V& f naturally defines a smooth
metric measure space (M, g, e=rd Vg). On such a space, we define the weighted Laplacian
Ay by

Aru = Au —g(VE f,Vu)

on smooth real-valued functions u € C®° (M, R). There is a natural L?-inner product (-, -) L2
on the space Lj% of square-integrable smooth real-valued functions on M with respect to the
measure e~/ d 'V, defined by

(u,v);2 = [ uve™/ dVg, u,ve L}.
v M
As one can easily verify, the operator A is self-adjoint with respect to (-, ) L3

2.3. Polyhedrons and polyhedral cones. We take the following from [17]. Let E be
a real vector space of dimension n and let E* denote the dual. Write (-, ) for the evaluation
E* x E — R. Furthermore, assume that we are given a lattice I' C E, that is, an additive
subgroup I' >~ Z". This gives rise to a dual lattice '* C E*.Foranyv € E,c € R, let K(v,c)
be the (closed) half-space {x € E | (v, x) > ¢} in E. Then we have the following definition.

Definition 2.6. A polyhedron P in E is a finite intersection of half-spaces, i.e.,
r
P = m K(v;,c;) forv;i € E* ¢; € R.
i=1

It is called a polyhedral cone if all ¢; = 0, and moreover a rational polyhedral cone if all
v; € I'* and ¢; = 0. In addition, a polyhedron is called strongly convex if it does not contain
any affine subspace of E.

The following definition will be useful.

Definition 2.7. A polyhedron P C E* is called Delzant if its set of vertices is non-
empty and each vertex v € P has the property that there are precisely n edges {e1,...,ex}
(one-dimensional faces) emanating from v and there exists a basis {¢1, ..., &, } of I'* such that
¢; lies along the ray R(e; — v).

Note that any such P is necessarily strongly convex. We also have the following.

Definition 2.8. The dual of a polyhedral cone C is the set

CY={xe€eE*|(x,C) >0}
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2.4. Hamiltonian actions. Recall what it means for an action to be Hamiltonian.

Definition 2.9. Let (M, w) be a symplectic manifold and let 7 be a real torus acting by
symplectomorphisms on (M, w). Denote by t the Lie algebra of 7 and by t* its dual. Then we
say that the action of T is Hamiltonian if there exists a smooth map jte: M — t* such that, for
all{ € t, —wi = dug, where ug (x) = (Ue(x),¢) forall { € tand x € M and (-, -) denotes
the dual pairing between t and t*. We call 1., the moment map of the T-action and we call u¢
the Hamiltonian (potential) of .

2.5. Toric geometry. In this section, we collect together some standard facts from toric
geometry as well as recall those results from [12] that we require. We begin with the following
definition.

Definition 2.10. A foric manifold is an n-dimensional complex manifold M endowed
with an effective holomorphic action of the algebraic torus (C*)” such that the following hold
true.

* The fixed point set of the (C*)"-action is compact.

* There exists a point p € M with the property that the orbit (C*)” - p C M forms a dense
open subset of M.

We will often denote the dense orbit simply by (C*)” C M in what follows. The (C*)"-
action of course determines the action of the real torus 77" C (C*)".

2.5.1. Divisors on toric varieties and fans. Let 7" C (C*)" be the real torus with
Lie algebra t and denote the dual pairing between t and the dual space t* by (-, ). There is
anatural integer lattice I’ ~ Z" C t comprising all 1 € t such thatexp(A) € T" is the identity.
This then induces a dual lattice I'* C t*. We have the following combinatorial definition.

Definition 2.11. A fan X in t is a finite set of rational polyhedral cones o satisfying the
following.

(i) For every o € %, each face of o also lies in .

(i1) For every pair 01,0, € X, 01 N 05 is a face of each.

To each fan X in t, one can associate a toric variety Xx. Heuristically, ¥ contains all
the data necessary to produce a partial equivariant compactification of (C*)”, resulting in Xy.
More concretely, one obtains X'y, from X as follows. For each n-dimensional cone o € X, one
constructs an affine toric variety U, which we first explain. We have the dual cone ¢V of o.
Denote by S, the semigroup of those lattice points which lie in 0¥ under addition. Then one
defines the semigroup ring, as a set, as all finite sums of the form

CISo] = {3 Ass ‘ s € S},

with the ring structure defined on monomials by Ag, 51 - As,52 = (Ag,As,)(s1 + 52) and ex-
tended in the natural way. The affine variety U, is then defined to be Spec(C[S]). This
automatically comes endowed with a (C*)"-action with a dense open orbit. This construc-
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tion can also be applied to the lower-dimensional cones t € X. If o1 N 0, = 1, then there is
a natural way to map U; into Uy, and U, isomorphically. One constructs X5 by declaring
the collection of all Uy to be an open affine cover of Xy with transition functions determined
by U,. This identification is also reversible.

Proposition 2.12 ([17, Corollary 3.1.8]). Let M be a smooth toric manifold. Then there
exists a fan X such that M ~ Xy.

Proposition 2.13 ([17, Theorem 3.2.6], orbit-cone correspondence). The k-dimensional
cones 0 € X are in a natural one-to-one correspondence with the (n — k)-dimensional orbits
Oy of the (C*)"-action on Xx.

In particular, each ray o € ¥ determines a unique torus-invariant divisor Ds. As a con-
sequence, a torus-invariant Weil divisor D on Xy, naturally determines a polyhedron Pp C t*.
Indeed, we can decompose D uniquely as D = ZZNZI a; Dy;, where {0;}; C X is the collec-
tion of rays. Then, by assumption, there exists a unique minimal lattice element v; € 0; N T'.
The polyhedron Pp is then given by

N
(2.1) Pp ={xet*|(v.x) > —a;} = | K(vj.—a;).
i=1

2.5.2. Kéahler metrics on toric varieties. For a given toric manifold M endowed with
a Riemannian metric g invariant under the action of the real torus 7" C (C*)" and Kihler
with respect to the underlying complex structure of M, the Kihler form w of g is also invariant
under the 7" -action. We call such a manifold a toric Kéiihler manifold. In what follows, we
always work with a fixed complex structure on M .

Hamiltonian Kihler metrics have a useful characterisation due to Guillemin.

Proposition 2.14 ([24, Theorem 4.1]). Let w be any T"-invariant Kiihler form on M.
Then the T"-action is Hamiltonian with respect to w if and only if the restriction of w to the
dense orbit (C*)" C M is exact, i.e., there exists a T"-invariant potential ¢ such that

w = 2i00¢.

Fix once and for all a Z-basis (X1, ..., X,) of ' C t. This in particular induces a back-
ground coordinate system £ = (§1,...,£") on t. Using the natural inner product on t to
identify t =~ t*, we can also identify t* =~ R”. For clarity, we will denote the induced coordi-
nates on t* by x = (x!,...,x"). Let (z1....,z,) be the natural coordinates on (C*)" as an
open subset of C”. There is a natural diffeomorphism Log: (C*)" — t x T" which provides
a one-to-one correspondence between T”-invariant smooth functions on (C*)” and smooth
functions on t. Explicitly,

Lo
22) (z1.....2n) —> (10g(r1). .. ..108(r). 01 ... . 6n) = (E1.....&n. 1. ... 6n),

where z; = rjeief, rj > 0. Given a function H(£) on t, we can extend H trivially to t x 7"
and pull back by Log to obtain a 7"-invariant function on (C*)". Clearly, any 7" -invariant
function on (C*)” can be written in this form.
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Choose any branch of log and write w = log(z). Then we clearly have that w = § + i 6,
where £ = (£, ..., £") are real coordinates on t (or, more precisely, there is a corresponding
lift of 6 to the universal cover with respect to which this equality holds), and so if ¢ is T"-
invariant and @ = 2i00¢, then we have that

0%¢ 9%¢

(2.3) w=2i dw; Adw; = RS N2

In this setting, the metric g corresponding to w is given on t x T" by
g = ¢ij(£)dE' d&7 + ¢i;(§) dO" b’
and the moment map p as amap u:t x T — t* is defined by the relation

(1(€.0),b) = (Vo(§),b)

for all b € t, where V¢ is the Euclidean gradient of ¢. The 7" -invariance of ¢ implies that
it depends only on & when considered a function on t x 7" via (2.2). Since w is Kéhler, we
see from (2.3) that the Hessian of ¢ is positive-definite so that ¢ itself is strictly convex. In
particular, V¢ is a diffeomorphism onto its image. Using the identifications mentioned above,
we view V¢ as a map from t into an open subset of t*.

2.5.3. Kéhler—Ricci solitons on toric manifolds. Next we define what we mean by
a shrinking Kéhler—Ricci soliton in the toric category.

Definition 2.15. A complex n-dimensional shrinking K#hler—Ricci soliton (M, g, X)
with complex structure J and Kidhler form w is toric if (M, w) is a toric Kihler manifold as in
Definition 2.10 and J X lies in the Lie algebra t of the underlying real torus 7" that acts on M .
In particular, the zero set of X is compact.

It follows from [38] that 771 (M) = 0; hence the induced real T"-action is automati-
cally Hamiltonian with respect to w. Working on the dense orbit (C*)"” C M, the condi-
tion that a vector field JY lies in t is equivalent to saying that, in the coordinate system

(E',...,€",64,...,0,) from (2.2), there is a constant by = (bll,, ..., by) € R" such that
2.4 y = bi, 2 walently, ¥ = bi, -2
2.4) JY = Y 557 or equivalently, = Ya—gl..

From Proposition 2.14, we know that £yw = 2i 90X (¢). In addition, the function X(¢) on
(C*)™ can be written as
o

o’
where by € R" corresponds to the soliton vector field X via (2.4). These observations allow
us to write the shrinking soliton equation (1.2) as a real Monge—Ampere equation for ¢ on R”.

(bx. Vo) = b},

Proposition 2.16 ([12, Proposition 2.6]). Let (M, g, X) be a toric shrinking gradient
Kdihler—Ricci soliton with Kéhler form . Then there exists a unique smooth convex real-valued
function ¢ defined on the dense orbit (C*)" C M such that = 2i00¢ and

(2.5) det(¢ij) = o 20+(bx, V)
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A priori, the function ¢ is defined only up to addition of a linear function. However, (2.5)
provides a normalisation for ¢ which in turn provides a normalisation for V¢, the moment map
of the action. The next lemma shows that this normalisation coincides with that for the moment
map as defined in [16, Definition 5.16].

Lemma 2.17. Let (M, g, X) be a toric complete shrinking gradient Kihler—Ricci soli-
ton with complex structure J and Kdhler form w with soliton vector field X = V& f for
a smooth real-valued function f: M — R. Let ¢ be given by Proposition 2.14 and normalised
by (2.5), let JY € t, and let uy = (V¢,by) be the Hamiltonian potential of J Y with by as
in (2.4) so that V&uy =Y. Then £ yxuy = 0 and Apuy +uy —3Y - f = 0.

To see the equivalence with [16, Definition 5.16], simply replace ¥ with J Y in this latter
definition as here we assume that J Y € t, contrary to the convention in [16, Definition 5.16]
where it is assumed that ¥ € t.

Given the normalisation (2.5), the next lemma identifies the image of the moment map

uw = V.

Lemma 2.18 ([12, Lemmas 4.4 and 4.5]). Let (M, g, X) be a complete toric shrinking
gradient Kihler—Ricci soliton, let {D;} be the prime (C*)"-invariant divisors in M, and let
> C t be the fan determined by Proposition 2.12. Let o; € X be the ray corresponding to D;
with minimal generator v; € I

(1) There is a distinguished Weil divisor representing the anticanonical class — Ky given by
K =YD
i
whose associated polyhedron (cf. (2.1)) is given by

(2.6) P_gy = {x | {vi.x) = —1}

which is strongly convex and has full dimension in t*. In particular, the origin lies in the
interior of P_g,,.

(ii) If u is the moment map for the induced real T"-action normalised by (2.5), then the
image of | is precisely P_g,,.

2.5.4. The weighted volume functional. As a result of Lemma 2.17, we can now
define the weighted volume functional.

Definition 2.19 (Weighted volume functional [16, Definition 5.16]). Let (M, g, X) be
a complex n-dimensional toric shrinking gradient Kdhler—Ricci soliton with Kéhler form

w = 2i00¢

on the dense orbit with ¢ strictly convex with moment map u = V¢ normalised by (2.5).
Assume that the fixed point set of the torus is compact and define the open convex cone

Ap :={Y €t | (u,Y) is proper and bounded below} C t.
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Then the weighted volume functional ¥,: Ay — R is defined by
Foo(v) = / e
M

As the fixed point set of the torus is compact by definition, %, is well-defined by the non-
compact version of the Duistermaat—Heckman formula [31] (see also [16, Theorem A.3]). It is
moreover strictly convex on A, (see [16, Lemma 5.17 (i)]), hence has at most one critical point
in this set. This leads to two important lemmas concerning the weighted volume functional in
the toric category, the independence of A, and ¥, from the choice of shrinking soliton .

Lemma 2.20 ([13, Lemma 2.25]). Ay, is independent of the choice of toric shrinking
Kidihler—Ricci soliton w in Definition 2.19.

Lemma 2.21 ([13, Lemma 2.26]). ¥, is independent of the choice of toric shrinking
Kdihler—Ricci soliton w in Definition 2.19. Moreover, after identifying A, with a subset of R"
via (2.4), ¥, is given by

Fuv) = 27)" / e =X x|

P_k,,

where x = (x,...,x™) denotes coordinates on t* dual to the coordinates (£,..., ") on t
introduced in Section 2.5.2.

Thus, we henceforth drop the subscript @ from ¥, and A, when working in the toric
category. The functional #: A — R is in addition proper in this category [12, proof of Proposi-
tion 3.1], hence attains a unique critical point in A. This critical point characterises the soliton
vector field of a complete toric shrinking gradient Kihler—Ricci soliton.

Theorem 2.22 ([12, Theorem 4.6], [11, Theorem 1.1]). Let (M, g, X) be a complete
toric shrinking gradient Kdhler—Ricci soliton with complex structure J. Then JX € A and
J X is the unique critical point of ¥ in A.

Having established in Lemmas 2.20 and 2.21 that, in the toric category, the weighted
volume functional F and its domain A are determined solely by the polytope P_g,, which
itself, by Lemma 2.18, depends only on the torus action on M (i.e., is independent of the
choice of shrinking soliton), and having an explicit expression for & given by Lemma 2.21,
after using the torus action to identify P_g,, via (2.6), we can determine explicitly the soliton
vector field of a hypothetical toric shrinking gradient Kéhler—Ricci soliton on M. Indeed, in
light of Lemma 2.21, the unique minimiser by € t >~ R" is characterised by the fact that

0=dp, F(v)= / (x,v)e XX gy forallv € R”.

P iy

In the setting of Theorem A, we can also determine A explicitly. To this end, with
notation as in Theorem A, we make the following observation concerning the Lie algebra
t of T. By assumption, the restricted map 7|p: M — M:=CxDisa torus-equivariant
biholomorphism on the complement of 7~ !(Dg) € M and D¢ C M hence M \ 77 1(Dy) is
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(C*)"-equivariantly biholomorphic to C* x D D (C*)". It subsequently follows that t admits
the splitting t >~ tc* @ tp, where tc+ and tp denote the Lie algebra of vector fields in t on M
whose image under d 7 vanish along the D- and C*-factors of M \ Do, respectively. With this
in mind, we then have the following lemma.

Lemma 2.23. [n the setting and notation of Theorem A and with respect to the splitting
t >~ tc* @ tp, the domain A of the weighted volume functional ¥ is the half-space

A ={aRe(z0;)+Y etc+®tp |a >0and Y € tp}.

Proof. Since D is Fano, by Lemma 2.18, we know that the anticanonical polyhedron
P_kc..p for C x D is the “simple product”, i.e.,

(2.7) P_kcop =4(x1,....xp) | x1 = =1 and (x2,...,x,) € Pp}.

Moreover, it follows from the definition of 7 that the normal fan Xy, of P_g,, is just a refine-
ment of the normal fan Y¥cxp of P_g..,, (see [17, Definition 3.3.17]). The set of defining
equations for P_g,, is therefore obtained from those defining (2.7) by including finitely many
linear inequalities. This in particular implies that P_g,, and P_g.. ,, coincide outside a suf-
ficiently large ball B C t*.

Let Z € t and, via (2.4), identify Z with a point bz € R”. Then the distinguished vector
field Re(z0;) € t is identified with (1,0,...,0) € R” via the aforesaid splitting of t so that
Z = aRe(z0;) + Y € tex @ tp is identified with the point bz = («, b2, ...,b,) € R" for
some b; € R, i =2,...,n. Since P_g,, is closed, it follows that the Hamiltonian potential
nz = (u,Z)y = {x,bz) of Z is proper if and only if |(x,bz)| — +0o0 as |x| = 4o0. Thus,
since D is compact so that Pp is bounded, we see that the set of vector fields Z € t for which
the Hamiltonian potential @z is proper is precisely the complement of the inclusion tp < t.
In addition, pz is bounded from below if and only if (x,b) — 400 as |x| - +oo0in P_g,,.
As |x| = +o0 in P_g,, if and only if x; — 400, the condition that 1z be bounded from
below picks out the desired component of t defining A. |

We illustrate an application of Lemma 2.23 with the following example.

Example 2.24. Let D = P!, let 7= be the blowup map, and let ([z; : z5], w) denote
coordinates on P! x C. Then there is an action of a real two-dimensional torus 72 on P! x C
given by

([z1: z2), w) ([eib2zl : z2], e!P1w),

where (b1, b2) € R? which we identify with the Lie algebra t of 72. Moreover, M is the blow-
up of P! x C at one point which, without loss of generality, we may assume to be ([0 : 1], 0).
The action of 72 on P! x C induces a 7'?-action on M in the obvious way. Lemma 2.23 then
tells us that the domain A of the weighted volume functional ¥ of M is given by

{(b1.b2) € R? | by > 0and b, € R} C t.

Using the Duistermaat—-Heckman theorem [16, Theorem A.3], one can write ¥ as

by by eb1—b2

e e

F(by.bo) = _ .
rb) = e, T e b0y ik
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Observe that this is symmetric under the transformation (b1, b2) — (b1, by — b3), a transfor-
mation that preserves A. The minimum of ¥ in A therefore lies along the line 0 < b; = 2b,,
in which case we have, for b, > 0,

2b> b

e

Flby) = —°

b3

We then have that
F'(by) = by 3ebP2[2(by — 1)e?2 — (b2 — 2)].

This has a zero for b, > 0 precisely when 2(b, — 1)e?2 = b, — 2. Numerical approximations
give the unique positive root as b, =~ 0.64, in agreement with [13, Example 2.33].

2.5.5. The Legendre transform. Let M be a toric manifold of complex dimension n
endowed with a complete Kihler form @ invariant under the induced real T"-action and with
respect to which this action is Hamiltonian. Write @ = 2i99¢ on the dense orbit for ¢ strictly
convex as in Proposition 2.14. Then V¢ (R") is a Delzant polytope P. Recall that we have
coordinates £ on R” >~ t, x on P, and 6 on T. Given any smooth and strictly convex function
¥ on R” such that Vi (R") = P, there exists a unique smooth and strictly convex function
uy (x) on P defined by

V(&) +uy (Vi) = (VY. §).

This process is reversible, that is to say, V¥ is the unique function satisfying

¥ (Vuy) +uy(x) = (x, Vuy),

where V now denotes the Euclidean gradient with respect to x. The function uy, is called the
Legendpre transform of ¥ and is sometimes denoted by L(v)(x). Clearly, L(L())(§) = ¥ (§).
The Legendre transform u of ¢ is called the symplectic potential of w, as the metric g associated
to w is given by

g =u;;(x)dx" dx’/ +u" (x)do"' do’ .

The following will prove useful.

Lemma 2.25 (cf. [12, Lemma 2.10]). Let ¢ be any smooth and strictly convex function
on an open convex domain Q' C R" and let u = L(¢) be the Legendre transform of ¢ defined
on (Vo)(RQ) =: Q. If 0 € Q, then there exists a constant C > 0 such that

$(§) = C gl - C.
In particular, ¢ is proper and bounded from below.
If ¢ € C*°(R") solves (2.5), then the Legendre transform u = L(¢) satisfies
(2.8) 2((Vu,x) —u(x)) —logdet(u;;(x)) = (bx,x) on P_g,,.

To study Kéhler—Ricci solitons on M via (2.8) on P_g,,, we need to understand when a strictly
convex function on a Delzant polytope defines a symplectic potential, i.e., is induced from
a Kihler metric on M via the Legendre transform. To this end, consider a Delzant polytope
P obtained as the image of the moment map of a toric Kihler manifold. Let F;,i = 1,...,d,
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denote the (n — 1)-dimensional facets of P with inward-pointing normal vector v; € I, nor-
malised so that v; is the minimal generator of g; = R4 - v; in I, and let €; (x) = (v;, x) so
that P is defined by the system of inequalities £; (x) > —a;,i = 1,..., N, a; € R. Then there
exists a canonical metric wp on M (see [12, Proposition 2.7]), the symplectic potential u p of
which is given explicitly by the formula (see [9, 24])

d
29 up(¥) = 3 3 () + i) log(Ei(x) + ay).
i=1
In particular, the Legendre transform ¢p of up will define the Kihler potential on the dense
orbit of a globally defined Kéhler metric wp on M (see [9,24]). More generally, it was observed
by Abreu [1] that the Legendre transform L (u) of a strictly convex function u on P will define
the Kéhler potential on the dense orbit of a globally defined Kihler metric wp on M if and
only if u has the same asymptotic behaviour as u p of all orders as x — 0P. Indeed, we have
the following slightly more general statement.

Lemma 2.26 ([1], [2], [12, Proposition 2.17]). A convex function u on P defines a Kdhler
metric w, on M if and only if u has the form
Uu=up-+v,

where v € C*®(P) extends past OP to all orders.

In the case that P = P_g,,, we read from Lemma 2.18 (ii) that a; = —1 for all i. Thus,
in this case, the canonical metric on P_g,, has symplectic potential

Up_y,, = %Z(@i(x) + 1) log(; (x) + 1).

2.5.6. The F -functional. We next define the F -functional on toric Kihler manifolds.

Definition 2.27. Let (M, ) be a (possibly non-compact) toric Kihler manifold with
complex structure J endowed with a real holomorphic vector field X such that JX € Ag.
Write T for the torus acting on M, identify the dense orbit with R”, let & = (§1,...,&,)
denote coordinates on R”, let by be as in (2.4), and write w = 2i 85(1)0 on the dense orbit as in
Proposition 2.14. Let P := (V¢o)(R") denote the image of the moment map associated to @
and let x = (x1,...,Xx,) denote coordinates on P. Let ¢ € C°°(M) be a smooth function
on M invariant under the action of 7" such that @ + i aé<p > 0 and assume that

(a) there exists a C!-path of smooth functions () sefo,1] € C*°(M) invariant under the
action of 7 such that g9 =0, ¢1 = ¢, @ +100¢ps > 0, and (Vgs)(R") = P for all
s € [0, 1], where ¢5 := ¢o + &
(0) fy froldsle™ V9 det(@s i) d§ ds < +oc.
Then we define

Flg) =2 /P (L($1) — L(go)e=x) dx.

The existence of the path (¢5)se[0,1] satisfying conditions (a) and (b) is required so that
F (@) is well-defined. To see this, first note the following lemma.
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Lemma 2.28. Under the assumptions of Definition 2.27, let
us = L(gs), ws=w+ iaé%,

and write fs := f + % - @5 for the Hamiltonian potential of J X with respect to wg, where f
is the Hamiltonian potential of J X with respect to w. Then the following are equivalent.

Q) [} fanldsle™x-V99) det(@y i) dE ds < +o0.
(i) fol fp|i‘s|€_(bx’x) dx ds < +oo0.
i) [ [if|@sleFol ds < +oo.

In particular, when this is the case, |ﬁ(ga)| < 4o0.

Proof. The equivalence of (i) and (iii) is clear. The equivalence of (i) and (ii) follows
from [12, Lemma 3.7]. Finally, for the last statement, for every x € P, we have that

1
|u1—u0|(x)§/0 it |(x) ds.

Then, using Fubini’s theorem and noting Lemma 2.28, we estimate that

1
|F(p)] < 2[ lui — ugle XX gy < 2/ (/ |L'¢s|ds)e—(bx,x) dx
P p\Jo

1
= 2/ / litgle X %) dx ds < 400,
o Jp

as desired. D

Under an additional assumption on the path (¢s)se[0,1], We recover the well-known ex-
pression for the F'-functional given in [10, p. 702].

Lemma 2.29. [f one (and hence all) of the conditions of Lemma 2.28 hold true and if in
addition it holds true that fol fM|¢s|e_fa)” ds < 400, then

1
(2.10) F(p) = / / gs(e " — e_fsa)?) Ads —/ pe .
0 JM M

Proof. The extra condition implies in particular that |, M|<p|e_f " < +o00 since, by
assumption and Fubini’s theorem,

1
/ lple™ " 5[ / lgsle ™ o™ ds < +o00
M o Jm

so that the right-hand side of (2.10) is at least finite. To show that it is equivalent to the expres-
sion for F given by Definition 2.27, using the change of coordinates induced by V¢s: R? — P
and the fact that ¢5(Ves) = —t5(x) (cf. [12, Lemma 3.7]), we compute that

Flp) =2 /P (1 (x) — o (x))e= X dx

1
=2 / / s (x)e XX gx A ds
0 P
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1
=2 f f bs(Vps)e X %) dx A ds
0 P

1
—) [ A Gse O V) det(s i) dE A ds
O n

1
:—/ / (/')se_fsa)?/\ds
o Jm

1
= / / ¢s(e_fa)" — e_f‘a);’) Ads —/ we_fw",
0o JM M

resulting in the desired expression. Here we have used Fubini’s theorem in the last equality. ©

2.5.7. Integrability and independence of the path. In light of conditions (a) and (b) of
Definition 2.27 required to define the F-functional, it remains to identify sufficient conditions
for the moment polytope to remain unchanged under a path of Kéhler metrics and for each
summand in the integral of F to be finite. This will be important for achieving an a priori
C-bound along our continuity path.

To this end, suppose that (M, w) is a toric Kéhler manifold, i.e., (M, w) is Kéhler with
Kihler form @ with respect to a complex structure J, endowed with the holomorphic action
of a complex torus of the same complex dimension as (M, J) whose underlying real torus 7
induces a Hamiltonian action, and let JX € t. Via (2.4), we can identify X with an element
by € R" ~ t. Using Proposition 2.14, we can also write @ = 2idd¢ on the dense orbit for
some strictly convex function ¢: R” — R. Assume that

» JX € A, so that the Hamiltonian potential f of JX is proper and bounded from below.

* There exists a smooth bounded real-valued function F on M so that the Ricci form py
of w satisfies p, + %iﬁxw —w = 1(00F.

The equation in the second bullet point reads as
(F + logdet(¢o,ij) — (Vpo. bx) + 2¢0)ij =0 ont~R"

so that
F = —logdet(¢o,ij) + (Vo.bx) — 2¢0 + a(§) onR"

for some affine function a(§) defined on R”. By considering 2¢9 + a + (Va, by ), we can
therefore assume that

(2.11) F = —logdet(¢o,ij) + (Vo,bx) —2¢o onR".
The main observation of this section is the following lemma.

Lemma 2.30. Under the above assumptions, suppose that ¢ € C°°(M) is a torus-in-
variant smooth real-valued function on M such that

wy = w + i00p >0 and sup|X - ¢| < 4oo.
M

Define ¢ := ¢o + %go so that w + i00¢ = 2i00¢ on the dense orbit. Then

(i) the image of the moment map jie,: M — t* with respect to w, defined by the Euclidean
gradient V¢: R" — R" is equal to P_g,,. In particular, 0 € int(jte, (M)).

(i) [plL(go)le™x*) dx < +oo.
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Proof. (i) To prove (i), we begin by noting that, as sup,,|X - ¢| < +o00, the Hamilton-
ian potential f, = f + % - ¢ of X with respect to w,, is proper and bounded from below. In
particular, the image (V¢)(R") of the moment map ji,,: M — t* is equal to a Delzant polyhe-
dron P (see [12, Lemma 2.13]) that a priori depends on ¢. Let u(x) := L(¢) be the Legendre
transform of ¢. Then the domain of u is precisely P. We need to show that P = P_g,,. To
this end, let F' be as in (2.11). Then a computation shows that

A
(2.12) —logdeti; + (Vop.bx) —2¢ = F + 1og(ﬁ) I
w” 2
Set A(x) := (bx, x) and define
pu(x) 1= 2((Vu, x) —u(x)) — log det(u;;).

Then, via the change of coordinates x = V¢ (&), we can rewrite (2.12) in terms of u as

nox
2.13) A — pul) = (F + log(%) +5 0 ¢)(Vu(x)) onP.

Observe that the right-hand side of (2.13) admits a continuous extension up to the boundary 0 P
of P. Denoting the right-hand side of (2.12) by & which is a function #: M — R, this extension
is simply given by & o ,u,;ql;, where e, M — P, as the moment map, has fibres precisely the
orbits of the torus action.

We now proceed as in [12, Lemma 4.5] using an argument originally due to Donaldson
[19]. Suppose that P is defined by the linear inequalities ¢; (x) > —a;, where £; (x) = (v;, x).
Since the right-hand side of (2.13) as well as A(x) has a continuous extension up to 0P,
we see that the same holds true for p,(x). Moreover, as u is the symplectic potential of the
Kihler form w, on P, we read from Lemma 2.26 that there exists a function v € C (P’
with v = up + v, where up is given as in (2.9), i.e.,

2.14) up() = 1 (6 0) + an) log(ti () + ap).

Fix any facet F’ of P. Without loss of generality, we may assume that F’ is defined
by £1(x) = —aj. Up to a change of basis in t*, we may also assume by the Delzant condi-
tion that £ (x) = x1. Fix a point p in the interior of F’. Then, from (2.14), we see that, in
a neighbourhood of p, u can be written as

u(x) =up(x)+vx) = %(xl 4+ ay)log(xy +ay) + v1

for some smooth function vy which extends smoothly across F’. From this expression, it
follows that, in a small half ball B in the interior of P containing p, p, takes the form

pu(x) = x1log(x1 +a1) — (x1 +ap)log(xy + ar) +log(x1 +a1) + v2
= (I —ay)log(x1 + ar) + vz

for another smooth function v, that extends smoothly across F’ in B. Thus, already know-
ing that p,, has a continuous extension across 0P, we deduce that 1 —a; =0, i.e., a; = 1.
Continuing in this manner, we see that a; = 1 for all i, leading us to the conclusion that
P =Pk,
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(ii) Let ug = L(¢o). Then, as uo is a convex function on P_g,, whose gradient has
image equal to all of R” by the invertibility of the Legendre transform, it is proper and bounded
from below by Lemma 2.25. Let A denote the lower bound, let p, be as in part (i), and
write pg = py,. Then F being bounded implies the existence of a constant C > 0 such that
|po — (bx.x)| < C on P_kg,,. Indeed, this is clear from (2.11). Since

/ uge P dx < 400
by [12, Lemma 4.7], it follows that

/ uge X% gy < oo,

Km

/ e~ (bxox) gy

together with the fact that ug is bounded from below now yields the desired result. |

Finiteness of the integral

3. Proof of Theorem A (ii): Construction of a background metric

Given the setup and notation of Theorem A and with X determined by Theorem A (i), we
henceforth assume that the flow lines of J X close. In this section, we construct a background
metric on M with the properties as stated in Theorem A (ii) with a construction reminiscent
of that of [25, Section 4.2]. To this end, recall for a > 0 the (incomplete) shrinking gradient
Kihler—Ricci soliton (M =C XD, := g + a)D, = .Re(z0;)) of Example 2.2 with com-
plex structure J endowed with the product holomorphlc action of the real n-torus 7', with z
denoting the holomorphic coordinate on the C-factor of M, and r := |z]%.

Proposition 3.1. There exist
(a) a complete Kihler metric w on M invariant under the action of T, and
(b) a biholomorphism v: M \ K — M \ K, where K ¢ M, K C M are compact,
and A > 0 such that
(i) dv(X) = % -Re(z02),
(i) w = v*(®, + wp), and
(ii1) the Ricci form py, of w satisfies
1 _
(3.1) Pw + ESCXa) —w =1i00F;
for F1 € C°°(M) compactly supported with £ yx F1 = 0.
Theorem A (ii) immediately follows from this proposition. Indeed, this is easily seen
by writing wc := @, (cf. Example 2.1) and & := @) = @, + wp (cf. Example 2.2). With A

fixed in subsequent sections, this is the notation that we adopt to be consistent with that of
Theorem A. Property (iii) of this proposition will be used in the next section.
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Proof of Proposition 3.1. Recall that 7: M — P! x D is a torus-equivariant holomor-
phic map that restricts to a holomorphic map 7w: M — M:=CxD by removing the fibre
Doo from M and P! x D, respectively, and that z denotes the holomorphic coordinate on the
C-factor of M. We define the map v: M \ 771 (Do) — M \ Dy of (b) as the C*-equivariant
map one obtains by identifying a IP!-fibre in each manifold and for each point in this P!, flow-
ing along the vector field X 10 := %(X —i(JX)) on M and the holomorphic vector field zo,
on M. Since the flow lines of J X close by assumption, this map is well-defined.

From the construction, it is clear that dv(X 1) = % - 20, for some A > 0. This defines
A and verifies condition (i) of the proposition. The map v then extends to a holomorphic
map v: M \ 7~ 1(Dg) — M \ Dy. On C x D, we consider the product metric @). We write
w = % and r := |z|*. Identifying M \ 7 ~!(Dy) and M \ Dy via v, we view these as func-
tions, and @, as a Kihler form, both on the former. In this way, w defines a holomorphic
coordinate on M \ w1 (Dg) with the divisor D at infinity defined by {w = 0}.

Using v, we construct the background metric @ of (a) in the following way. As M is
Fano by assumption, there exists a hermitian metric 4 on — K737 with strictly positive curvature
form ®y. Moreover, since the normal bundle Np of D in M is trivial so that Kp = K37 D
by adjunction, the d0-lemma guarantees the existence of a function u € C° (D) such that
i®y|p +i00u = wp. Extend u to be constant along the w-direction and multiply this exten-
sion by a cut-off function depending only on w to further extend u to the whole of M. We still
denote this extension by u. If the support of this cut-off function is contained in a sufficiently
small tubular neighbourhood of D, then the restriction of i ®;, + i00u to any of the D-fibres
of the fibration will be positive-definite. All negative components of i ©, + id0u on the total
space M can be compensated for by adding a sufficiently positive “bump 2-form” of the form
x(Jw|) dw A dw, where y is a bump function supported in an annulus containing the cut-off
region; such a 2-form is automatically closed and (1, 1) on M, and exact on M. This creates
a Kihler form 77 on M. One can verify in a sufficiently small neighbourhood of D that

3.2) T —wp = 0(|w|)<dw/\du')+2dw/\dﬁ]—
J

+Zdv,~ ANdvy+ Zdvi /\du_)) asw — 0
ij i
for {vy,...,v,—1} local holomorphic coordinates on D.
Next, let : R — R be a smooth function satisfying

Y (x),¥"(x) >0 forallx € R,

and
const. ifx <1,

¥(x) = {

X ifx > 2,
and consider the composition k := v o r2, areal-valued smooth function on M . One computes
that ) ) )
500k = " (r2)59r? ABr® + ¢/ (r%)500r% = 0,
a positive semi-definite form equal to %851’2 on the region of M where r? > 2. Define the
Kéhler form )
1 —_
= —~00k,
=1 + >
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and in the holomorphic coordinates (z, v) on M, consider the product metric @, given by

2|2+ A2dz ndz

D) =0 +w =iaé(—)+a) =—— +wp.
A A +©p D= 2 D

2

Then, from (3.2), it is clear that the difference is given by

T — &) = 0(|w|)(dw AdD+ Y dw A di;
J
+Zdv,~ /\dl_)j-l—Zdvi /\dlZ)) asw — 0
i,j i
so that, in particular,

(3.3) T2 — B2la, = O(r %),

We now work with the hermitian metric H on —K j; induced by @, . Via the map v, this pulls

back to the hermitian metric 5
H— A= det((gp)ij)
2| Z|2—2)L

on —Kp|m\»—1(Dy) With respect to the local trivialisation 0; A 0y; A -++ A Oy,,_, . The corre-
sponding curvature form is then given by —iddlog H = wp. Hence, as a difference of two
curvature forms, there exists a smooth real-valued function ¢ defined on M \ 7~!(Dg) such
that (i O, 4 i00u) — wp = i09¢. In particular, outside a large compact subset of M, we have
that

(3.4) T — @) = i00¢.

We claim that ¢ is in fact smooth on M \ 7 ~!(Dy). To see this, note that, as

_ _ TU|D, ADy, A-r A D 2
iaagb:—iaalog(e 0: 7 9 ””“l”)

|aZ VAN avl TAREREIVAN avn_l |2H
and
e_ulaz A avl VARREIVAN avn_l |I%l
log 5
|az /\avl /\"‘/\avn_l |H

(e_u|w|4|aw /\avl /\"'/\avn_lli)
|az/\av1 /\"'/\avn_l|%1

| (2e—"|aw Ay, Ao Ady,_|2]z|272
= Og
A2 det((gp)iy)
(Ze_u|aw A\ avl VANRERIVAN avn_l |i
= log

|avl ARRRA avn—l 5)1)

) 1 2log(wl?)

) — (1= 1) loglw|? + 2 log(|w[?) — log(A2).

pluriharmonic

extends smoothly over {w=0}

¢ may be taken to be

27|y A Dyy A=+ ADy,_, |7
[0y, A=A O ’

(3.9) ¢ = —log(

|2
Un—1lwp
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which, albeit defined in terms of local coordinates, is clearly globally defined on M \ 7~ 1(Dy).
Thus, ¢ = O(1), and from (3.3) and (3.4), we see that |ia3¢|@ = O(r_%). Finally, after
a computation, the expression for ¢ given in (3.5) gives us that |d¢ |5, = O(1). Now, @, and
T are equivalent outside some large compact subset K of M by (3.3), and on the complement
of K in M, Lemma 2.4 implies that, for all R > 0 sufficiently large, ¢ admits an extension
¢r to M supported on M \ K such that |iE)E)(,i)R|aA < CR—min{A™"1) Thus, at the expense of
increasing C if necessary, we can infer that |i 65¢R|r2 < CR—min(A"L.1} globally on M. We
fix R > 0 large enough so that |i00¢g|,, < 1 and define a Kihler form on M by

& 1= 1y — i00PR.

By what we have just said, @ is positive-definite everywhere on M and equal to @, outside
a large compact subset, hence is complete. By averaging over the action of 7', we may assume
that £ yx @ = 0 without changing the behaviour at infinity. We further modify @ to construct
o satisfying conditions (a) and (ii) of the proposition.

To this end, we know that, since M does not split off any S !-factors, 71 (M) = 0 by toric-
ity [17]. In particular, H ' (M, R) = 0 so that the action of 7" on M is Hamlltonlan with respect
to @. Consequently, there exists a smooth real-valued function f such that 1 sLxow = i00 f By
averaging, f can be taken to be invariant under the action of 7 on M. It i 1s also clear that, as
& = Oy, + i00u; for some u; € C°°(M) with i ®, the curvature form of a hermitian metric
on —Kjz, we can write pg — @ = i 90u» for another function uy € C% (M), pgz here denoting
the Ricci form of @. Thus, there exists a function G € C (M) such that

1 -~
(3.6) P — & + S Ex® = i00G.

After averaging, we may assume that G is invariant under the action of 7. In particular,
henceforth identifying M and M on the complement of compact subsets containing Do and
7~ 1(Dy), respectively, we can write

G = é(r, X),
where r = |z|* is as above and x € D C M. As & defines a 1 shrinking gradient Kéhler—Ricci
soliton on M \ K for some K C M compact, we see that G is pluriharmonic on M \ K. It

therefore follows from Lemma 2.3 that
G = co log(r)

for some constant ¢y € R. Arguing as above, Lemma 2.4 guarantees the existence of an exten-
sion ¢ of co log(r) + 3 to M such that w := & + i00¢ defines a Kiihler metric on M. As ¢ is
pluriharmonic at infinity, it is clear that @ = @ = v*®,, outside a large enough compact subset
of M. Averaging over the action of 7', we obtain our metric w of (a) satisfying condition (ii).

Next, as in (3.6), we see that there exists a function G € C°°(M) invariant under the
action of 7" such that

1 _
3.7 P —©® + Eéﬁxa) = 1i00G.

Subtracting (3.6) from (3.7) yields the relation

i00G = i90G + P — P — 100¢ + iBé(% ~g0) = iaé(é —log(g—};) -+ % .(p)
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between G and G. Set

n

~ w X
F 3=G—10g(ﬁ>—(/)+7'§0.

Then i90F; = i99G so that (3.1) holds true, and outside a large compact subset of M, we have
that

- n

w X r
Fr =G —log(Z;) — ¢ + 5 -0 = colog(r) = ¢(r) + 5 -¢/(r) = 0,

demonstrating that F; is smooth and is compactly supported. As £ xG = 0, condition (iii)
and, correspondingly, the proposition now follow. ]

4. Proof of Theorem A (iii), (iv): Set-up of the complex Monge—Ampeére equation

Proof of Theorem A (iii) and (iv): Set-up of the complex Monge—Ampere equation

Returning now to the setup and notation of Theorem A, we next provide a proof of Theo-
rem A (iii) by setting up a complex Monge—Ampere equation that any shrinking Kihler—Ricci
soliton on M differing from our background metric by 100 of a potential must satisfy, followed
by a proof of Theorem A (iv) where a normalised Hamiltonian potential of JX with respect
to w is given. Throughout this section, we write r := |Z|A, where z is the holomorphic coordi-
nate on the C-factor of M and A > 0is as in Theorem A (iii) so that d V(X) = ror. Our starting
point is the following proposition.

Proposition 4.1. Let w be the Kdhler metric in Proposition 3.1 and let J denote the
complex structure on M. Then there exists p € C°° (M) with

Lix¢ =0 and wz ‘= w+i00p > 0
such that
1
4.1) Pwy + Eéﬁxw@ = wg

if and only if, for all a € R, there exists p € C°(M) with Lyx¢ = 0and o + iaé(p > 0 and
F> € C°°(M) compactly supported with £ yx F» = 0 satisfying

1 _
4.2) Pw + Eixw —w =100F,

such that

4.3) mggiﬁ@g X

o7 -5 ete=hta

Here, py and pe,; denote the Ricci form of w and wg, respectively.

Proof. If ¢ satisfies (4.3), then by taking i 00 of this equation, we see that ¢ satisfies
(4.1) by virtue of (3.1). Conversely, assume that (4.1) holds. Then we compute

1 1
0= po; —wg + E‘:CXC‘)@ = Poy — Po + Po — G + Eixwa

@i X |
= —i8810g<(wwl—n(p)) — 1000 + 168(3 ~g0) + po —® + Eéﬁxw
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so that

1
=pp—0+ =Lxw.

) -5 -9) ;

(4.4) iaé(a + log(
Now, as we have seen in (3.1),
1 _
Pow —® + EIXQ) =idoF,;

for some J X -invariant compactly supported F; € C°°(M). Plugging this into (4.4), we have
that, for every a € R,

(w+i009)" X
& o 2
J X -invariance of the sum in parentheses next implies from Lemma 2.3 that
5 w+i009)"\ X _
(p—i-log((—(p))——-(pzﬂ—l—a—kH

" 2

for H a pluriharmonic function equal to cg log(r) + ¢; outside a compact subset of M for
some co, c1 € R. Thus,

(s’ﬁ—H—C—")+1og((w+iaé@_H_%0))n)_;(a—H_C_O)

iaé(¢+1o -a—Fl—a)=0.

2 w”_ 2
N (0 +i009)" X _ X co
_ ] (— _Z. )—H Ry 2
(‘p+°g " ) 2 ¢ T 2

= (F\+a+H) HtX 9 tar X g
D 2 T ety 2

Notice that after identifying X with 70, via v, we have that

X 1

5 H — %0 = Erar(co log(r) +¢1) — %0

outside a compact set. Set ¢ := @ — H — 3 and F := F1 + % -H — 3. Then F> € C*(M)
is compactly supported, both ¢ and F5 are J X -invariant, i00F, = i00F7, and

=0

Z .o=F ,
5 @ 2 t+a

as required. O

¢+ log<—(w +ai,?3(p)n> 2

Theorem A (iii) is a consequence of the next lemma.

Lemmad4.2. Let A, w, and v:(M \ K,0) — (M \ K.®), K C M, K C M compact,
be as in Proposition 3.1. Moreover, let F» € C°° (M) be as in Proposition 4.1 satisfying (4.2)

and recall that z denotes the holomorphic coordinate on the C-factor of M. Set r := |Z|A.
Then there exists a unique torus-invariant smooth real-valued function f: M — R such that
2
.

—w JX =df, f =v*(5 —1)on M\ K, and
X
4.5) Ao f+ f— 5 f =0 outside a compact subset of M.

In particular, f — +00 asr — 400, hence is proper.
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Proof. Since M does not split off any S!-factors and is toric, we know that 71 (M) = 0
(see [17]). Hence there exists a smooth real-valued function f € C°° (M), defined up to a con-
stant, with —w_1J X = df. Any such choice of /" is invariant under the action of 7" by virtue of
the fact that w_J X is invariant under this action and 7 has ﬁxed points so that every element
of t has at least one zero. Next notice that —@®.J rd, = d (5 ) where we recall that J is the
complex structure on M.Asw =v*®on M \ K, itis therefore clear that d(f — ) =0on
M \ K so that f differs from Z 7 by a constant on this set, i.e., f = r 5+ const. on M\ K.
Normalise f so that this constant is equal to —1. Then f = v*(’ 1) on M \ K. What
remains to show is that, with this normalisation, (4.5) holds true.

To this end, using the J X -invariance of F» and f, contract (4.2) with

1
ﬂﬁ:aa—um
and use the Bochner formula to derive that

i3(8af — 5 145 B) =0

As a real-valued holomorphic function, we must have that A, f — % -+ f+ % - Fy s
constant on M. But since X - F> = 0 outside a compact subset of M, by the properties of f
and o, we have that, outside a compact subset of M,

72

s =Fere sl ) 5 )+ (5 -0

Thus, this constant is zero and we are done. O

Let co € R be such that e [, efF2=fyn = I e~/ w" and define F := F, + ¢o. Then
* F € C°°(M) and F is torus-invariant,

e F is equal to ¢g outside a compact subset of M, and

Moreover, from (4.2), we have that
1 _
w — E:ﬁxw +w =1i00F.

By Proposition 4.1, any shrinking Kihler—Ricci soliton of the form w + i aé<p > 0on M will
solve the complex Monge—Ampere equation

(w 4 i00¢)" = eFHao—oyn  for ¢ € C*®(M) and ¢ torus-invariant,

/eF_fa)”=/ e Lo,
M M

This is precisely the statement of Theorem A (iv). A strategy to solve this equation is given by
considering the Aubin continuity path

( + i00¢;)" = eF 3 etonyn, p e C®(M), Ljxp =0,
(+)) w+i00p >0, el0,1],

/eF_fa)”:/ e on.
M M
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The equation corresponding to ¢ = 0 is given by

(@ +i00y)" = eFT3¥0" Y e C®(M), Lyxy =0,
(*0) w + 00y > 0,

/eF_fw”=/ e on.
M M

This equation we will solve by the continuity method, the particular path of which will be
introduced in Section 7.1. This will yield the final part of Theorem A. Beforehand however, we
prove some analytic results regarding the metric @ and those metrics that are asymptotic to it,
beginning with a Poincaré inequality.

5. Poincaré inequality

In this section, we prove a Poincaré inequality for the Kéhler form w of Proposition 3.1
using the fact that it holds true on the model shrinking gradient Kdhler—Ricci soliton

(M :=CxP'.®:=&; +wp,rd)

(see [27]), where r = |z |)“. This will be used in Proposition 7.9 to establish an a priori weighted
L?-estimate along the continuity path that we consider in deriving a solution to (*¢). Recall
the Hamiltonian potential f of JX satisfying (4.5).

We work with the Lebesgue and Sobolev spaces L? (e~ ") and W -2 (e=/ w™) on M,
respectively, defined in the obvious way for p > 1, and we denote

1
][ ue ot = —/ ue " forallu € L?(e~ ™).
M Jue o™ Iu

By Holder’s inequality and the finiteness of [, e~/ w", the integral far ue=F w" is finite.

Proposition 5.1 (Poincaré inequality). For all p > 1, there exists a constant C(p) > 0

such that
u —][ ue o
M Lp(e_fw")

forallu € WhP(e=f w™) N CY(M). Here, g is the Kiihler metric associated to .

< CIVEullLrer o)

Proof. For sake of a contradiction, suppose that the assertion is not true. Then there
exists a sequence of functions (uy)x>1 C WP (¢=/ ") with the following properties:

luelre—ron =1 [ ueo” =0,
M
1
IVEuk|lLr (e wm) < s
Indeed, since |, M e~/ w" < +o0, an application of Holder’s inequality demonstrates that we

can normalise the sequence (ug)r>; so that the weighted integral of each function in the
sequence is zero. By the Rellich—-Kondrachov theorem, there exists a subsequence which we
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also denote by (ug)r>; converging to some oo € L{;C(M ) as k — 400. On the other hand,

for every compactly supported one-form o on M, we have that

[ Uso - 88w = lim ug - 8aw" = — lim gldug,a)o™ =0,
M k—+o0 J M k—+o00 J M

where §, is the co-differential of d with respect to g. Thus, u € W];C’p (M) and dueo =0
almost everywhere. In particular, u  is constant.

For R > 0, let Dg := f~1((—o0, R]), a compact subset of M by properness of f (cf.
Lemma 4.2). Then the fact that |, MU e fo" =0 implies that, for every R > 0,

/ uge S o™ = —/ uge ™.
Dpr M\DR

It then follows from Holder’s inequality that
1

‘[ uge " 5/ lugle ™ "
Dpr M\DR
1 1—1
S(/ |uk|pe_fwn)p(/ e_fa)”) g
M\Dg M\Dg
< ||uk||me—fwn)( | et w)
M\Dpg

1—1
= (/ e_fa)”) p.
M\Dg

(M)-convergence implies that

p

Furthermore, L; .

/ uke_fa)” — ool 0" = oo vols (DR) ask — +oo.
Dpr Dpg

This allows us to derive that

|/puke ™ @ (/s\p e_fa)n)l_%
[Uoo| = lim R < lim R
k—4o00 VOlf(DR) k—4o00 VOlf(DR)
ol (M \ Dg)' "7

—-0 as R — +o0o,

VOlf(DR)

where vols(A) := [, e~/ w" for A € M. Thatis, e = 0.

Next, choose C > 0 such that f + C > 0 on M, something that is possible to do by
Lemma 4.2, and let n: R — R be a smooth function satisfying n(x) = 0 for x < 1, n(x) =1
for x > 2, and |n(x)| < 1 for all x. Define ng: M — R by
( Vi) +C )

R

nr(x)=n for R > 0 a positive constant to be chosen later.

Then, with % + é = 1, we have that, for some positive constant C(p) > 0 that may vary from
line to line,

G 1=kl s oy
= C(p)(”(l - nR)ukuip(e—fwn) + ”nRuk”ip(e—fwn))
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sC<p)( / P! o + / |nRuk|Pe—fw")
Dpr M

<C(p) (/D lug|Pe™ 0" + /M NRUK — ][M nruge Lo e o™
R
p
+ ‘][ r)Ruke_fa)” )
M
p
<C(p) (/D |uk|p€_fa)n + /M NRU) — ][M nRuke_fa)” e o
R
" ||uk||§p(e_fwn)||nR||{q(e_fwn))
p
<C(p) (/D |uk|p€_f60n + /M NRUK — ][M r)Ruke_fa)” e~ fot
R

+ vol 7 (M \ Dze;)ff).

Now, for R > 0 sufficiently large, nruy is supported on the set where w is isometric to @
via the biholomorphism v of Proposition 3.1, a manifold on which we know that the assertion
already holds true [27]. Applying this observation to the middle term in the last line of (5.1),
we arrive at the fact that, for R > 0 sufficiently large,

— DL
V= € [ e o+ 1T a0 oy + 0l 1\ D))
R

<) [ e o 1901y 0
R

y
IV gy 0l M\ D))

1 1 »
<C Pe /" + — + — +volp (M \ D&2)4 |.
<) [ Il 0+ g5+ g vol, 0\ D)

2 (M) as k — +o00, we see upon letting k — +oo that, for all R > 0 suffi-

loc

Asup — 0in L
ciently large,

| < C(p)(% +voly (M \ 0%2)5).

Letting R — 400 now yields the desired contradiction. O

6. Linear theory

Working again in the setting and notation of Theorem A, we set up the linear theory for
metrics asymptotic to w. Openness along the continuity path that we apply to solve () will
automatically follow. Although Theorem A holds true for torus-invariant functions, in order to
remain as broad as possible, we present the linear theory under minimal assumptions, namely
for J X -invariant functions.

6.1. Main setting. Let g be any J X -invariant Kéhler metric on M with Kihler form @
and Levi-Civita connection V¥ satisfying

6.1) (VE) £0(@ —w)lg = OG- foralli,j >0,
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for some y € (0, AP), where r = |z|* and AP is the first non-zero eigenvalue of —Ap acting
on L2-functions on D. Write X = V& f~ for some smooth function ]7 :M — R, a function
defined up to an additive constant that is guaranteed to exist because, as noted previously,
H'(M,R) = 0 by toricity. We use v to identify M and M so that X = ro, outside a compact
set. Since V8 f = X = ng, it follows from (6.1) that | f — f| =07V 2)asr — +oo0.
Throughout, we denote Az x = Az — X.

We begin by identifying a good barrier function for this particular geometric setup.

Lemma 6.1. For all § € (0, 1), there exists R(8) > 0 such that the function ¢/ is
a subsolution of the following equation:

Ag.xe” <0 on f > R().
|2A,
2

z .
| — 1 outside a com-

Moreover, the logarithm and polynomial powers of [ (which equals
pact subset of M ) satisfy, for all § > 0,

Agx [0 =24+ 0(f°Y) and Azxlog(f+1)=-2

outside a compact subset of M.

Proof. Using (6.1) and the fact that
(A —Ag)f =205 — Do) f = (@—w) xi00f = O(IF — glg).

the last equality because the Hessian of f is bounded on M, we compute that
Ag.xe® = S0z x f +8*|VE f2)e’
=8(Agxf + (Agx — Dgx)f +8IVEfI2)e
= 8(=2f +8IVESIZ + 0(F —glp))e’
= §(=2f +8|X[2(1 + o(1)) + o(1))e’/
<0

outside a sufficiently large compact subset of M. Here we have also used that | X |§, =2f+2
and § € (0, 1) in the last line.
A similar computation based on the asymptotics of g given by (6.1) shows that

Agx /=g =X
=—=8f N AGf =X )+ 8@+ D) fTO2VESZ
=8N Agf =X f) =8N AGS — Dg f) + 8@+ 1) fTE2|VEfI2
=28/ 0 =8 TN (DG f = Dg ) +SG+ ST VESZ
=0(2—2le) =0(X2)=0(f)
=28f % +0(f% ).

As log(r?) is pluriharmonic outside a compact set, the fact that X = r9, outside a compact set
gives us that

Az x log(f 4+ 1) = Az x log(rz) = -2

outside a compact subset of M, as claimed. |
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6.2. Function spaces. We next define the function spaces within which we will work.
For B € R and k a non-negative integer, define C}%kﬂ (M) to be the space of JX-invariant
continuous functions ¥ on M with 2k continuous derivatives such that

B 5iswl
lullczr, == 3~ supl £ 2 (V8) (£ w)lz < +o0.
i+2j<2k M

Thanks to (6.1), this norm is equivalent to that defined with respect to the background metric g;
hence we may use either g or g with our particular choice depending on the context. Similarly,
as f and f are equivalent at infinity, these function spaces can be defined in terms of either of
these two potential functions. Define C)??ﬂ (M) to be the intersection of the spaces C)%f‘ﬂ (M)
over all k € Nj.

Notice in the definition of the above norm that the number of spatial derivatives that
appear in each summand is no more than twice the number of Lie derivative terms that appear.
This is because, when solving the Poisson equation for the weighted Laplacian as defined
in (6.1), the weighted Laplacian can be treated as a second-order parabolic operator with the
time derivative corresponding to the X -derivative. These heuristics are used in the proof of
Theorem 6.3 below.

Let 6(g) denote the injectivity radius of g, write dg(x, y) for the distance with respect to
g between two points x, y € M, and let (th denote the flow of X for time 7. A tensor 7 on M
is said to be in C22*(M), & € (0, 7).if

, )]
Tlegae = sup [mmu(x),f(y))z
x#yeM
dz(x,y)<8(8)

|T(x) — Px,yT(Y)|h]
dz(x, y)®

)g (07T (x) — (ﬁwf(x),(pf((x)((fpg)*T(x)))|h] < 400,

S min(z, s
- “p[ ( 0 spo

xeM
t#s>1

where Py, denotes parallel transport along the unique geodesic joining x, y, and ﬁ(pg( ()0 X (x)
denotes parallel transport along the unique flow line of X joining <st (x), <th (x).

Forf e R,k a non—nggative integer, and « € (0, %), define the Holder space C;i;zo‘(M )
with polynomial weight f 2 to be the set of u € C )%kﬂ (M) for which the norm

lellczepe = lullez, + Y (VA (£ w)]co2
i+2j=2k

is finite. It is straightforward to check that the space C)?ﬁéza (M) is a Banach space. The
intersection [z C)%f‘ﬂ (M) we denote by C f}o g(M).

We now consider a smooth cut-off function y: M — [0, 1] which equals 1 outside a com-
pact set. The source function space @)2(1,?2,20; (M) is defined as

DY (M) = (Rylogr & R & CF52* (M),
endowed with the norm
lull 92t 22 i=ler| + [ea] + [l c2kf22«, = ciylogr + ¢z + .
The target function space is defined as

Er (M) == (R & Cg57* (M),
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endowed with a norm defined in a similar manner to above. We define

k,
€Y (M) = [ 5> (M).
k>0
Finally, we define the spaces
M4 (M) = (g € CZ(M) | & + iddp > 0} N DFF>>(M),
and we will work with the following convex set of Kéhler potentials:
MTp(M) = () MFF>>* (M),

k>0

Notice that, for each k > 0, the spaces M)Z(k[;" 2:2%(Mf) depend on the choice of a background

metric @. However, these spaces are all equivalent as soon as @ satisfies (6.1).

6.3. Preliminaries and Fredholm properties of the linearised operator. We proceed
with the same set-up as in Section 6.1, beginning with the following useful observation.

Lemma 6.2. Let (¢¢):e[0,1] be a C -path of smooth functions in eMS’(O’ﬂ (M) for some
B > 0 and write

_ ~ ~ X
6t=5+laa<pt>0 and ft=f+3¢)t
so that —d &, . JX = d f;.

(1) Let G:R — R be a Cl-function such that, for some —o0 < o < 1,

|G(x)| + |G (x)] <e**, x>-C.

Then ~ ~
f G(fpe far = / G(fo)e @, 1elo.1].
i) [y [yl@cle Ti@m dt < +ooand [} [yl¢cle™T @" dt < +o0.

Proof. (i) By differentiating, one sees that

d = _F~n
([ oinerar)

X el ~ D S
=/ G'(fo)= - gre ftw?+/ G(ft)(A@(ﬂt——'%)e Jiggn
M 2 M 2

- X A - I
:/ G/(ft)f'ﬁl’te f’a);l_if G'(f)VE fr - Gre™T13) = 0.
M M

Here, we have used integration by parts together with the fact that X = V& f: forallz € [0, 1],
where g; denotes the Kihler metric associated to @y . B

(ii) First note that, by definition of the function space, the weighted measures e Ji o}
and e~/ @" are equivalent to each other. Therefore, it suffices to verify only that

1 ~
/ / lgele™ & di < +oo.
0o JM

But from the definition of the function space and @, this is trivially satisfied. |
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Next, define the following map as in [33]:

~n

_ an. X
MAgz v € {p € C2(M) | &, ::a~)+iaa<p>0}.—>1og(~—‘,’;)——-¢eR.

For any ¢ € C;Z. 2 (M), let gy (respectively g;y) denote the Kihler metric associated to the
Kihler form @y, (respectively @;y for any ¢ € [0, 1]). Brute force computations show that

MAz(0) =0,

X
DyMAz(u) = Az, u— ", ue C2.(M),
d? _d =5
(6.2) W(MAGUW)) = E(Aa,wﬂ) = —|ooy |z, forr €][0.1],

63) MAG(W) = MAO) + | _ MAzaw)
tlt=0

1 u d2
— (MAgz(ty))dtd
+ [ S Asyy dra
X 1 u )
=A51ﬁ—5-w—/0 /0 00y 2, dt du.

The main result of this section is that the drift Laplacian of g is an isomorphism between
polynomially weighted function spaces with zero mean value.

Theorem 6.3. Let o € (0, %), k € N, and B € (0, AP). Then the drift Laplacian
Az, @2k+2 24 (MY N {/ ue_fcﬁn = 0} — ‘€2k 2O‘(M) N {/ ve_fcﬁ" = ()}
M M

is an isomorphism of Banach spaces.

Remark 6.4. In the statement of Theorem 6.3, if D = P! endowed with its metric of
constant sectional curvature 1, then AP' =2 and correspondingly 8 € (0, )L]Pl) =(0,2). In
general, Lichnerowicz’s estimate implies that 1D > 2; see [5, Theorem 6.14] for a proof. The
rate y from (6.1) can take any value in the interval (0, A?). In Section 6.4, we will apply
Theorem 6.3 with y = .

Proof of Theorem 6.3.  First observe that the drift Laplacian Ag x is symmetric with
respect to the weighted measure e~/ @&", a measure with finite volume. Set

H}(M) {u € H} (M) JX-invariant | u € Lz(e ~”) Veu e L2~/ ~")}
W}%«(M) {uecH! F(M) | Ag.xue L (e ")}

endowed with the obvious norms induced by that of L2(e~/@"). It can be shown that the
operator Az x restricted to compactly supported smooth JX- 1nvanant functions admits a
unique self—adjomt extension to W;(M ), with domain contained in H} 7 ~(M) and with dis-
crete L?(e™ f @™")-spectrum; see [18, Proposition 6.13] and [23, Theorem 4.6] in the context
of expanding gradient Ricci solitons, but whose proofs can be adapted to the current situa-
tion. Observe also that the kernel (and hence the cokernel) of this operator is the constant
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functions. By considering any function F in the codomain as an element of the weighted L2-
space L2(e~/ &™), we can therefore find a unique weak solution u € H!(e~/ &") with zero
weighted mean value of the equation

(6.4) Ag xu = F.
In addition, we have the estimate
(6.5) lullL2e~7an) + IVEullL2e=7am) < ClIFliL2e7am) < C|Flico

for some positive constant C independent of u and F that may vary from line to line. This
estimate essentially follows from the weighted L2-Poincaré inequality with respect to the drift
Laplacian Az — X -. We improve on the regularity of u through a series of claims.

Claim 6.5. There exists a positive constant C = C(@,n) such that
ies)
lu(x)| = Ce 2 ||[Flco, xeM.

Proof of Claim 6.5. By conjugating (6.4) with a suitable weight, notice that the function
v 1= e~/ /2y satisfies ~ | |
v =e % 2 _ 7
Agv=e"5F + (Z|X|§ . 5Agf)v.
This implies that |v| satisfies the following differential inequality in the weak sense:

(6.6) Aglv| = =Clv[ = C||F||co.

Here we have made use of the non-negativity of | X |§; together with the boundedness of Az f
given by (6.1).

We perform a local Nash-Moser iteration on (6.6) in Bgz(x,r). More precisely, since
(M?",%) is a Riemannian manifold with Ricci curvature bounded from below, the results of
[32] yield the following local Sobolev inequality:

n—1

1 on n
(6.7) (— |€0|”_10)n)

volg (Bg(x,7)) JBz(x.r)
2
S( C(ro)r

volg(Bg(x.7)) JB,(x.r)

IWIE;LT)”)

for any ¢ € HO1 (Bg(x,r)) and for all x € M and 0 < r < ro, where rg is some fixed positive
radius.

A Nash—Moser iteration proceeds in several steps. First, one multiplies (6.4) across by
niszv|v|2(1’_1) with p > 1, where 7, with 0 < s + 5" < r and s,s" > 0, is a Lipschitz cut-
off function with compact support in Bz (x, s + s") equal to 1 on Bz (x, s) and with

~ 1

IVns,s'lg < v
almost everywhere. One then integrates by parts and uses the Sobolev inequality of (6.7) to
obtain a so-called “reversed Holder inequality” which, after iteration, leads to the bound

sup |v] = C(l[vllL2Byx,ry) T 1F Lo (Bz(xr))
Bz(x,%) T
U < Clull2e-Tamy + IF lcoan) < CIF comn
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for r < rg, where C = C(rg,®,n). Here we have made use of (6.5) in the last line. This esti-
mate yields an a priori local C °-estimate which is uniform on the centre of the ball Bg(x,5%).
In particular, unravelling the definition of the function v, one obtains the expected a priori
uniform exponential growth, namely

)
lu(x)| < Ce 2 [|[F|co, x€M. o

Thanks to Claim 6.5, by local Schauder elliptic estimates, we actually see that u lies in

Clﬁf 2,20 and that we have the estimates

(6.8) [ullc2xt2e F<ry) < CIIF l[c2x20( F<2ry) < CIF [le2k2e

for some positive constant C = C(R, @, n). We now proceed to prove the expected a priori
weighted estimates on u and on its derivatives.

Claim 6.6. There exists a positive constant A = A(@,n) such that
lu(x)| < Alog f(x)|Fllco forall x € M with f(x) > 2.

Proof of Claim 6.6. Lete > 0andlet§ € (0, 1) be such that

lim (u— 8€8f) = —o0,
f—>+o0

parameters that we can choose by Claim 6.5. For A > 0 a constant to be determined later, we
have outside a compact set { f > R(5)} the inequality

Ag.x(u— Alog(f + 1) —ee’) = —[|F|lco +24 > 0,

so long as A4 > %HF |co. Here Lemma 6.1 has been applied. Appealing to the maximum
principle then yields the bound

max (u—Alog(f +1)— sesf) = max (u—Alog(f +1)— ee‘sf).
{f=R(8)} {f=R()}

Next, letting ¢ — 0, we see that

u—Alog(f +1) < max (u—Alog(f—l—l))fO

{/=R©)}
if we set 4 := C max;7—geyu < C|F|co with C := C(8,®,n). This we can do thanks
to (6.8). Applying the same argument to —u concludes the proof of the claim. O
Observe that i1 := u + cylogr, where F — ¢ € C;,k[;z“ (M), satisfies the equation
(6.9) Ag xii = F +cAgz x(xlogr)
=F—c+c+cAgx(xlogr):= F e C;kﬂ’z“(M).

compactly supported
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The next claim estimates the Ckz)f +2:2¢_norms of # in terms of the data F and of its local
C%-norm. For this purpose, define the corresponding solution to the Ricci flow

g(1) = (—0)(@#)*g forz <0,

where

09X = 0o¢pX and ¢X _, =1ldcxp.

X
2(—1)
Here,

$X(2,0) = (\/L__re) for (z.0) € C x D.

In particular, if A,, ,, :=={(z,0) €e C x D | r; <|z| <rp}for0 <r; <ry, then

X
¢17 (Arl,rz) = Ajl—r,ji—t

Claim 6.7. There exist a radius ro > 0 and a positive constant C such that if r > ry,

then
(6.10) ”mlc}%]foﬁ’za(Ar(x)—c,r(x)+c)
= Clullcocaren cre) + ||ﬁ||c§’de“(Ar<Cx)‘C,m))-
Moreover,
(6.11) |X i1 + |VEil|z + V&g < Clogr|[Fllezt2e, r = ro.

Proof of Claim 6.77.  Since (6.9) is expressed in terms of the Riemannian metric g, we
define analogously the family of metrics g(z) := (—7)(¢X)*g for < 0, where

X
X X X
Oty = 201 © ¢z and ¢r__; =Idcxp.

For —7 € [%, 2], the metrics g(7) are uniformly equivalent and their covariant derivatives (with
respect to g) and time derivatives are bounded by (6.1). Now, u(t) := ((]53( )*1 satisfies

(6.12) Ol = Agyil + F(r), F(2):=—(—0) " N¢X)*F.

Standard parabolic Schauder estimates applied to (6.12) on a ball B¢ (x,79), 2rp < inj(g), then
ensure the existence of a uniform positive constant C such that

% ()| c2k+2.2¢ (B, (x.r0)x [~ 3,~1])
< C (17Dl cO(By (x.2r0)x[—2.~ 1) + ”ﬁ(f)||C2k’2°‘(Bg(x,2r0)x[—2,—%]))-

Unravelling the definition of the function #%(7) and that of the metrics g(7) then yields (6.10)
after observing that

X
U ¢‘E (Bg(x,2r0)) C A%—ﬁm,ﬁr(}c)—f-zﬁro'

‘CG[—2,—%]

The final estimate (6.11) is a straightforward combination of (6.10) together with the a priori
bound from Claim 6.6. O
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Now we are in a position to linearise equation (6.4) outside a compact set with respect to
the background metric. Namely, we write

(6.13) Ag xil = F + (Ag — Ap)ii := G,
where G satisfies pointwise estimate
(6.14) G—F=("'-g"*0oou=0(@"7)|00ul,.

here * denoting any linear combination of contractions of tensors with respect to the metric g.
Indeed, this estimate holds true by virtue of (6.1). We rewrite (6.13) (outside a compact set) as
follows:

(6.15) Acii — X -7l + Apil = G.

Here A¢ and Ap denote the Riemannian Laplacian of the metric wc on C and wp on D,
respectively. Integrating this equation over D at a sufficiently large height r, we find that

(6.16) Acxu(r)=G(r), r > ro,

where

u(r) = ]{)ﬁ(r,-)a%_l and G(r) :]{)G(r,-)a)ﬁ_l,

both functions in the r-variable only because both are JX-invariant by definition. We next
derive some estimates on u(r).

Claim 6.8. One has
()| < CIFllczipe. 1= ro.
Moreover, limy — 4 o0 U(F) =: U exists, is finite, and

[U(r) —uco| < C(r—ﬂ ||ﬁ||c§13§2a +rY sup, |83u|), r > ro.
{f=5}

Proof of Claim 6.8. Equation (6.16) can be rewritten as

XX -u(r)

6.17) ( =

-X -ﬁ(r)| < C(r_ﬂ ||f||c§ﬁ§2“ +r77 sup, |62_3u|), r > ro,
{(f=5}

by virtue of (6.14). This is a first-order differential inequality for X - 7 (r). Now, estimate (6.11)
from Claim 6.7 implies a first rough estimate, namely

‘X-X'ﬁ(r)
2

=X -5()| = Crm BN (1 4 10g )| Fllczize. = ro.
r B

Gronwall’s inequality then leads to the bound

~ r2 +o0 . .3‘2
X -2(r)] < ClIFllcgpee™ / s+ logs)se™ > ds

;
< C||Fllczper™™™ P  ogr, 1 = ro,
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for some uniform positive constant C independent of r > r¢. Integrating once more in r,
Claim 6.6 ensures that () admits a limit #~, as r — +o00 and that, for r > ry,

’
()| = [0 + CIFlegipe [ s~ ogs ds < C Pl

for some positive constant C which is independent of r (and of the data F') that may vary from
line to line. This concludes the proof of the first part of the claim.

Returning to inequality (6.17), another application Gronwall’s inequality leads to the
bound

+w S2 ~ +m S2
X -u(r)| < Ce'z (/ sBse™ 2 ds|| Fllczk2e —i—/ s Vse” 2 ds sup, |Bau|)
r ’ r {f>’ }

<C(r ﬂ||F||Czkza+r Y sup, |0oul), r > ro.
{fzz}

Integrating this inequality once more between r and r = +oo yields the second part of the
claim. |

The next claim concerns the uniform boundedness of the projection of u onto the ortho-
gonal complement of the kernel of Ap, D being interpreted as embedded in each level set

(f =5

Claim 6.9. Given § € (0, min{pB, y}), there exists ro = ro(8,®,n) such that

~ Z 1 ok 2o b
I =u() 2y = CIIFllcgkper™,

r>ro.
Proof of Claim 6.9. Recall that, by (6.15) and (6.16), Ay xi = G so that
(6.18) Ag x (@ —1u(r)) =G —G(r)
outside a compact set. Since, for any function v, we have
20Ac,xv = Ac,x (v?) —2|VEu[2 .

multiplying (6.18) across by % — u(r) and integrating over D gives rise to the lower bound

6.19  Acx(l# —ﬁ(”)”i%D))

n—1
= Acx (=70 Rap) =2 [ IVE@—T0DE. 2,
n—l
=2 [ @) acx @) P
n—l
=2 [ @=70)(G ~G0) — A - P,

= 2||VE2 (i — u(r)I72py + 2(G = G (r), & = U(r)) 2(p)

> 20217~ ()22 ) — 216G — G (")l 20y 1T — T2
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where we have made use of the Poincaré inequality on (D, gp) in the last line. Young’s in-
equality then implies for & € (0, A?) that

Acx (1T —T0) 22 ) = 20° = )T 722, — Cel G~ G ()22,

Therefore, invoking estimate (6.14) and Claim 6.7 together with the previous inequality, we
find that

Acx (IlF —u(r)l12py) = 2P =) |F —u(r)72p)
- C8||f||é§1fézar_2mi“{'3’y} log?r, r>2.
By Lemma 6.1 applied to g := g, we see that
Acx(r™2) =28r72 + 0(272),
which, for A > 0 and § € (0, min{j, y}), implies that
Acx (17 =u()72p) — Ar~?)
> 27 = e)llif = u ()72 py — Cell Fllgznzar 2™ 10g? r
—248r7% — ACr™72
> 2002 —¢) (|7 - U172y — Ar72) 424000 — e —8)r %
- C5||ﬁ||%§1'<32ar_2min{ﬂ’y} log?r — ACr—2672
> 2007 — o) (|7 —u()|72p) — Ar ™),

provided that & € (0, AP —§8),r > ro = ro(8,n,&), and A > C||F||C2k52a
Now, since || —u(r)|z2(py is growing at most logarithmically by Claim 6.6, given
B > 0, we compute that

Aex (I =) 2py = Ar = Br) = 202 =) (|17 = () }2p) — Ar~>" — Br)

if e € (0,AP —=8), r >rog =ro(8,n,&), and A > C||F||C2kﬂ2a In particular, the maximum
principle applied to the function ||i7 — u(r)||? 12(D) — Ar=25"Z Br outside a compact set of the
form r > rg leads to the equality

{rr;ax ([ —ﬁ(r)||1%2(D) — Ar=?% — Br) = max{0, nlax (||ﬁ—ﬁ(r)||1%2(D) — Ar=? — Br)).

Letting B — 0 and setting A = C|| F ||C2k[32°‘ with C sufficiently large but uniform in the data

F and the radius r, one arrives at the expected bound
I# =%l L2py < CIFllczrger™. r=ro. D

The next claim proves a quantitative almost sharp weighted C°-estimate on #f — 1o in
terms of the data F.

Claim 6.10. Given § € (0, min{B, y}), there exists ro = ro(8,®,n) > 0 independent
of F (and the solution u) such that

sup rl[if — uoo| < C||Fl|c3e.
r=ro
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Proof of Claim 6.10. It suffices to prove that, for all § € (0, min{B, y}), there exists
ro = ro(8.n,®) > 0 such that

(6.20) sup r'[if —u(r)| < C||F ||z

r=ro

Indeed, the triangle inequality together with Claims 6.7 and 6.8 already yield such a uniform
C°-polynomial rate on the difference (1) — Uoo.

In order to prove (6.20), we apply a local parabolic Nash—Moser iteration to the following
heat equation with a source term (see for instance [26, Theorem 6.17]) by recalling that, for
T < 0,i(r) == (¢pX)*T and u(r, 7) := (pX)*u(r) = u(—-~ ),

=
0 (7 — () (1) = Ay (T —T(-.))(0)
+ Ac(T—u(-.))@) = (G-G)(1). (-1)e [%2]

:=S(7), source term

Here we have used (6.12), (6.13), and (6.16). Also, the notation (—7) - gp denotes the metric
on D rescaled by (—7). In particular, there exists C > 0 such that if r > rg,

(621)  sup [#—W()| = sup,[i(r) ~ (. 7)|e=1
=% =

<C sup (Ji(r) —u(r.0)lL2py +15(0)))
(—0)€l1/2,2]

<C sup ([l (1) —u (s, Dlz2py + [SD]).
s€lr/v/2,4/2r]

The source term can be estimated as follows: if k > 1, (—7) € [%, 2] and r > rg, then
Ac(@—u(-.)) (@) = (G ~G)®)| < C(r P Fllczipe + 177 sup [0dul +r > sup Jul)
' f=% f=
< ClIFllcgger™™ P71 + logr),
where we have applied Claim 6.7 to X - % and X - X - in order to estimate Acii.

Finally, thanks to (6.21), Claim 6.9 combined with the above estimate on the source term
implies that
sup |77 —w(r)| < C||Fllczepar™ + C||Fllezeper™™™ P71 4+ logr)
For . .

< Cl|Fllcztper™, r=ro,

as claimed. O

The next claim provides a quantitative sharp weighted C ®-estimate on i — 1o in terms
of the data.

Claim 6.11. Given B € (0, AP), there exists ro = ro(B,®,n) > 0 independent of F
(and the solution u) such that

sup rP il —ueo| < C||ﬁ||C§kl-32a.
r=ro :
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Proof of Claim 6.11.  Applying (6.10) to & — U together with Claim 6.10 demonstrates
that, for § € (0, min{g, y}),

X &) + [VER|(x) + [VE2a|(x) < Cl| Fllcgiper™. 1= ro.
Recalling (6.14), the previous estimate implies in turn the following one:
(6.22) |G —F| < C|Fllczrper™7", r=ro.
On one hand, thanks to Claim 6.8, one obtains an improved decay on u(r) — U0, namely
[#(r) = uool < CIIF [l c2kpa (™™ B+ - = g,

On the other hand, (6.22) can then be inserted into the proof of Claim 6.9 to establish an
improved L?(D)-decay on i — u(r). Indeed, from inequality (6.19), we deduce that, for r > rq,

Acx (1T =725 p)
= 24217 = w1}y — T =H() | L2(py | Fll cgipar ™ P 7 +8)
2 2P — )| = () |72y — Cell Fll gz aur 2 mntfr+0)
for any & € (0, AP). Using a barrier function of the form 25" with
0 <68 <min{f,y + 8 < AP

and by choosing & > 0 carefully, one arrives at an improved L?(D)-decay of the form above,
specifically

~ —_ =~ 8/
|&@ = w(r)lL2py < CIIFllc2igar™ 1 = ro.

The proof of Claim 6.10 can now be adapted to give a corresponding improved pointwise
decay. By applying this reasoning a finite number of times, one arrives at the desired sharp
decay on #f — U oo. O

Theorem 6.3 now follows by combining Claim 6.7 (after multiplying by the weight rP)
and Claim 6.11. O

6.4. Small perturbations along the continuity path. In this section, we show, using
the implicit function theorem, that the invertibility of the drift Laplacian given by Theorem 6.3
allows for small perturbations in polynomially weighted function spaces of solutions to the
complex Monge—Ampere equation that we wish to solve. This forms the openness part of the
continuity method as will be explained later in Section 7.1.

In notation reminiscent of that of [34, Chapter 5], we consider the space (“6)%2%"‘ (M))z.0
of functions F € €22%(M) with

X’ﬂ
/ ef —De Ta" =o.
M

This function space is a hypersurface of the Banach space f’;’%"‘ (M). Notice that the tangent
space at a function Fy is the set of functions u € f)z(’%“ (M) with

/ ueFO_fG" =0.
M

We have the following theorem.



Cifarelli, Conlon and Deruelle, An Aubin path for shrinking gradient Kéhler—Ricci solitons 271
Theorem 6.12. Let
2 2a D
Fo € (Cy (M))woﬂfxﬂ(M) for some € (0,A7)

and let Yo € M?ﬁ g (M) be a solution of the complex Monge—-Ampeére equation

an X
log( "’0) -5 Vo = Fo.

Then, for any a € (0, 2) there exists a neighbourhood U, C (C2 /23“ (M))g.0 of Fo such that,
forall F € UF,, there exists a unique function \ € J\/( 4,2a (M ) such that

(6.23) log(f}:—%) - % Y =F.

Moreover, if F' € UF, lies in ‘C’}O(?ﬂ (M), then the unique solution \ € M4 2a (M) to (6.23) lies

Remark 6.13. Consideration of only finite regularity of the difference w — @ (which
lowers the assumptions on the regularity of the coefficients of the drift Laplacian Agz x) and of
the data (o, Fp) would lead to a more refined version of Theorem 6.12.

Proof of Theorem 6.12.  To apply the implicit function theorem for Banach spaces, we
must reformulate the statement of Theorem 6.12 in terms of the map M Ag introduced formally
at the beginning of Section 6.3. To this end, consider the mapping

MAG: vy € M42”‘(M) +—>10g<~n)—£

e Mz e (0.3):

Notice that the function spaces above can be defined by either using the metric & or gy,
for any ¢ € [0, 1]. To see that M Az is well-defined, apply the Taylor expansion (6.3) to the
background metric @ to obtain

X

(6.24) MAz(y) = 1og(2—f) -5

X 1 u )
=Aa~)w—?¢—[ / 93y (2, di du.

Then, by the very definition of 504 22( M), the first two terms of the last line of (6.24) lie in
-62 20 ( M)

Now if S and T are tensors in C 2ky2“ (M) and Cy 2k 2 (M ), respectively, with y; > 0,
i =1,2,then S T lies in CZ%:2% (M), where * denotes any linear combination of contrac-

X.y1+v2
tions of tensors with respect to the metric g. Moreover,

(6.25) IS * Tlcge2a, = Clk.o)[[Sllcge2e - ITllcgeze
Next notice that B B
100y 13, = &rg * &y * (VE) 2 % (VE) Py
and that
gt_wl ~—1 2 2a (M)
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Thus, applying (6.25) twice to ~
=T = (V&)*y
and to the inverse §t_1/} with weights y; = y» = B and k = 1, one finds that
i00y |3, € Cg34(M) C Cyg(M) foreach € [0, 1]

1 ru
S22
/ / |zaa¢|§w dt du
as long as |V | o4 420 < 1. Finally, the J X -invariance of the right-hand side of (6.24) is clear

and Lemma 6.2 (1) ensures that the function

exp MAgz(y) — 1

and that

o = Clk, o, DV pg2e,
Xﬁ

has zero mean value with respect to the weighted measure e_f @®". Indeed, Lemma 6.2 (i)
applied to the linear path @, := @ + i00(t ) for t € [0, 1] gives us that

/ (eXpMAC;(W) — l)e_fc"én = / e—ﬁ/f&;‘rz _/ e—f&;n —0.
By (6.2), we have that

Dy,MAz: ¥ € My 2"‘(M) {/ ue—fwoaf;,o = 0}
M

X
= Aallfow - 5 1/’ € TF()( 2205(M))w 0

where the tangent space of (f’z 2e (M ))&.0 at Fois equal to the set of functions u € ‘62 29(M)
with 0 mean value with respect to the weighted measure e ~Fuo a)w Therefore, after apply—
ing Theorem 6.3 to the background metric @y, in place of @, we conclude that Dy, M Az is
an isomorphism of Banach spaces. The result now follows by applying the implicit function
theorem to the map M Az in a neighbourhood of

Yo € M4 20‘(M) N {/ ue_f‘/focﬂl';jo = 0}.
M

The proof of the regularity at infinity of the solution ¥ in case the data F' € ‘€°° (M) fol-
lows by a standard bootstrapping and will therefore be omitted; see Propositions 7. 32 and 7.34
for the nonlinear setting. O

7. Proof of Theorem A (v): A priori estimates

7.1. The continuity path. Recall the setup and notation of Theorem A: J denotes the
complex structure on M, z the holomorphic coordinate on the C-component of M, and we
write r = |z|*, treating both r and z as functions on M via v. It is clear then that X = ro,
on M\ K.

Recall from (1.3) that the complex Monge—Ampere equation we wish to solve is

(@ +i00y)" = eF T3V y e C®M), Lixy =0,
(*0) w + 00y > 0,

/eF_fw”=/ e on,
M M
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where F: M — R is a J X-invariant smooth function equal to a constant ¢ outside a com-
pact subset V of M and f: M — R is the Hamiltonian potential of X with respect to w,
ie., —wiJ X = df, normalised so that A, f — f + % - f = 0 outside a compact set. Define
Fy :=log(1 + s(ef —1)). In this section, we prove Theorem A (v) by providing a solution
to (o) by implementing the continuity path

(@ +i00y)" = P30y e MPgM),  Lyxvs =0,
(%) s €0, 1],

/eF_fw”Z/ e~ o, /wse—fwnzo
M M M

When s = 0, (%) admits the trivial solution, namely ¢¥9 = 0. When s = 1, (x) corre-
sponds to (xq), that is, the equation that we wish to solve. Via the a priori estimates to follow,
we will show that the set s € [0, 1] for which (x4) has a solution is closed. As we have just
seen, this set is non-empty. Openness of this set follows from the isomorphism properties of
the drift Laplacian given by Theorem 6.12. Connectedness of [0, 1] then implies that (x5) has
a solution for s = 1, resulting in the desired solution of (x¢).

7.2. The continuity path re-parametrised. To obtain certain localisation results and,
in turn, a priori estimates for (x s) we need to consider a reformulation of (* s) in the following
way. Identify (M \ K, a)) and (M \ K, @®) using v, where K C M, K C M are compact, and
define Fy := log(1 4+ s(ef —1)). Then there exists a compact subset K C V C M such that,
for all s € [0, 1], F; is equal to a constant c¢g on M \ V. Explicitly, ¢ = log(1 + s(e® — 1)).
Note that ¢y varies continuously as a function of s and that (%) takes the form

(0 + 100Ys)" = eFs 3y,

Let ng := —2c¢; log(r), a real-valued function defined on M \ K. Then, with g denoting
the Kihler metric associated to w, it is clear that

[Qog(r) ™" - nsllcoan k) + ldnsl comn\k.g) + I - i100msllcoar\ k.0
< 2|cs|(1 + sup r_l) < C(K),
M\K

and so Lemma 2.4 yields the existence of a bump function y: M — R supported on M \ V and
a compact subset W D V, both independent of s, such that y = 1 on M \ W and such that, for
all s € [0, 1], wg := @ +i00() - ns) > 0 on M. Define g := y - 15. Then wg = w + i00dy,
and since &3 = —2czlogr on M \ W, that is, a pluriharmonic function, wy is isometric to
on this set. Furthermore, we find that

o ((a)s-i-laa(l’fs ®S))n)—£'(ws—®s)
N 2
_pog( 2100V X
—lo ((w+iaéq)s)n) - )
= tog (IO 2y g 1 X,
wn 2 " 2

100Ds)"\ X
:FS_(log(M)__'©S) ::GS7
w 2
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with G vanishing on M \ W. Set ¥ := ¢y — ®5. Then 5 € R @ C;?ﬂ(M) and we can
rewrite (xy) in terms of ¥y as

10095)"\ X
M)——.f}s:@, Dy e R & CTp(M), Lyxdy =0,

(kxg) 1og( >
ws + 1000 >0, s €[0,1],

n
a)s

with the support of G contained in W and wg = w on M \ W. We derive a priori estimates
for (x*g), the advantage over (x5) being that it allows for a localisation of the infimum and
supremum of ||, essentially because the unbounded log term has been absorbed into the
background metric wg in (*xx5). As we have control on @y, the a priori estimates we derive for
¥ will translate into the desired a priori estimates for Vg, thereby allowing us to complete the
closedness part of the continuity method for ().

Define o5 := ws + iaéﬁs. Then, in terms of the Ricci forms pg, and p,, of oy and wsy,
respectively, (x*;) yields

1 1 =
(7.1) Po, + EefXUs = Po, + Eewas —100G;.

We will write i for the Kdhler metric associated to oy.
We will need the following lemma regarding the Hamiltonian potential f,,, of X with
respect to wy.

Lemma 7.1. Let f,, = f + % - ;. Then —ws1J X = df,, and there exists a com-

pact subset U C M containing W such that, for all s € [0, 1], there exists Hy € C*°(M)
varying smoothly in s and equal to —cg on M \ U so that

X
(7.2) Aoy fo, — 5 Jos + fo, = Hs.

Proof. The first assertion is clear. Regarding the normalisation condition (7.2), a com-
putation shows that, for the Ricci forms pg, and pg, of @ and wy, respectively,

n

1 1 - X
Pos + =L€xws —ws = pp + —Lxw —w — iaa(log(w—s) —— D5 + @s)
2 ] 2 " 2
:laa(F2+Gs_Fs_®s),

where we have used (4.2). Write Qg := F5 4+ Gy — Fy — ®5. Then Qg is J X -invariant and
it is easy to see that Qj is equal to 2¢g log(r) — ¢s outside a compact subset U 2 W of M
independent of s. Contracting the identity

1 _
pws + Eist — Wy = laaQs

with X 1.0 := %(X —iJX) and arguing as in Lemma 4.2 using the JX-invariance of the
functions involved, we find that

X
Awsfws_i.fws +fws+_'Qs

is constant on M. But since, on M \ W, oy = 0, fu, =
stant must be zero. Hence the result follows with Hg := —

X .
—¢s, and 5 - Q5 = c;, this con-

'Qs- O

O N X
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This allows for a normalisation for the Hamiltonian potential f5, = fo, + % ‘¥ of X
with respect to oy.

Lemma 7.2. Let f5, := fo, + % - 05 and let U be as in Lemma 7.1. Then
_UsJJX - dfgs,

and for all s € [0, 1], there exists a compactly supported function Py € C°° (M) varying smooth-
Ly in s with supp Py € U such that

X

AO'st‘S_E'fO’S :_f+PS

Proof.  Again, the first assertion is clear. As for (7.2), we have that
O.n

X 1 1
> -log(w—?vz) =3 trg, Lx05 — 3 tro, Lx s
= try, (100 fy,) — tre, (100 f,)

= AUSfO'S - Awsfws'

Thus, contracting both sides of (x*4) with %, we obtain

X X X X
AO’st'x - Awsfws = 5 : GS + 5 . (fa); + 5 .ﬁs) - E ' fws’
i.e.,
X X X
A(Tsf(fs - 5 . st = Awsfa)s - 5 : fws + 5 : GS'
Hence we derive from (7.2) that
X X
Ao'sfas - ? : fas = HS + 3 : GS - fws'
With P := Hg + % -Gy — % - @y, the result is now clear. O

7.3. Summary of notation. For clarity, in this section, we provide a summary of our
notation regarding the various Kéhler forms in play.

o F is the data in (*¢) equal to a constant co outside a compact set.

* o is the background Kéhler form given in (xq) isometric to wc + wp outside a fixed
compact subset K C M.

g is the Kéhler metric associated to w.

e f is the Hamiltonian potential of JX with respect to @ given in Theorem A (iii). It is

24
equal to k: |2 — 1 outside the compact subset K C M and normalised so that

X
Awf - f + 5 . f =0
outside a compact set.
o ¢5 :=log(l + s(e© —1)).
o Fj is the data in (x4) equal to ¢ outside a fixed compact subset V- C M with V D K.
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e g is the solution to the original continuity path (*g).

e &g = 2y -c5logr, where 0 < y < 1 is a bump function identically equal to 1 outside
a fixed compact subset W O V D K of M. In particular, notice that

dy = —cslog2(f +1)) on M\ W.
« wg = w + 00Dy is the 1-parameter family of background metrics isometric to w outside
a compact set independent of s appearing in (x ).
* g4 is the Kihler metric associated to w.
e fii=f+ % - @y is the Hamiltonian potential of JX with respect to wy.
o ¥ = Yy — Oy is the solution of the re-parametrised continuity path (xxy).
° 0y =ws + 1 E)E_)ﬁs is the associated Kihler metric.
* fo, is the Hamiltonian potential of J X with respect to o . It is normalised by the equation

X
AGSfUS - E ' fO's = _f + PS’

where Pg is compactly supported.

 hy is the Kdhler metric associated to oy.

7.4. A priori lower bound on the radial derivative. The fact that the data G of
(x*g) is compactly supported allows us to localise the extrema of X - ¢ using the maximum
principle. This leads to a uniform lower bound on X - 5 and in particular on X - /5.

Lemma 7.3 (Localising the supremum and infimum of the radial derivative). Suppose
that (¥5)o<s<1 is a path of solutions in R & C;?lg (M) to (xxs). Then

sup X - ¥y = max{0,max X - 95} and infX -3¥s = min{0, min X - J}.
M w M w

Proof. First, using v to identify (M, w) and (M, ®) on M \ W, notice that

n

X ( o
—- log<—s>) = trg, LX 05 —try, LX0
2 a);l [of 2 S (] ) 2 )
1
= trg, wCc + EAGS (X - U5) — try, oC
1
== tras a)C + EAO"S(X . 05*) - 1.

Thus, upon differentiating (xx5) along X, we obtain on M \ W the equation

X-z?s):: AUé(X-l?s) X'(X-z?s

(73) Aoy x ( 2)-2 (55

) =1—try, wcC.

Now, on M \ V', we have that

_ _ XV
noy LA wc ne~ 2 o" ' Awc
trg, wc = = ;

n n
of a)
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hence
_x9s/ x9s no" lAw
(7.4) =t oc =e 2 (72" = 22 )
a)n

_ s o —no" ' A wc

= o .
Fork = 1,...,n, we have for dimensional reasons that

ok = (wp + wc)k = a)g + ka)g—l Aoc.

Thus,

0" = (o + i009;)"
n
-y (Z)wk A (1000)" %
k=0
n
= (i009,)" + ) (Z)wk A (i0095)" K
k=1
n
= (i009,)" + ) (’;)(w,’g + ko7 A wc) A (10009)"F
kn ' n
= (1909,)" + Y (Z)wg A 909" + 3 k(Z)wg—l A (10095)" % A we
k=1 k=1

n n
= Z(’;)wg A (009" 5 + ) k(Z)wg—l A (i10095)" % A wc
k=0 k=1

and
n—1 n— . _ )
no ' Awc :nZ( . )a)J A (i0005)" 17 A wc

—\ J

Jj=0

_ n—1 n—1 ) ~ )

= niddd" ! A oc +nZ( , )a)f A (i0095)" 1 A we

, J
Jj=1

n—1
- -1 . -
:niaaﬁ;’—lch +n2(n . )(wlj)-l—ja)lj) 1/\a)c)

= A (10395 A wc
= nidod;™ nwc +n S(n J_ l)wlj) A (i0005)" "1 A wc
3 j:I n—1 -
= i3y~ Aoc +n ) (k —~ 1)“)53‘1 A (i9095)"* A wc

k=2

n
n—1\ x_ a2 q v
=nk2_:1(k_1)a)g LA (10095)" % A wc.
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Consequently,

n
of —nof ' Awc = (i0095)" + Y (Z)a)}g A (10005)"*
k=1

n
+) k(’;)wjg—l A (10095)" % A wc
k=1
=1\ jy sk
—ny_ L1 )on A0 Aoc
k=1
- n n -
= (100%5)" + Z(k)w’g, A (1000)"
k=1

" n n—1 _ = _
+Y [k(k)—n(k_l)}wg VA (10095)" % A we
k=1
=0

n
= Z(Z)wg A (10095)" % = (wp + i009)".
k=0

Combining (7.3) and (7.4), we find that

X0 _ x5 (wp + 1000)"
(7.5) oux ( ; = (Dw—ns)

first-order operator acting on X -8

Indeed, the right-hand side of (7.5) can be written schematically as

10005)" 1
M = (X (X - dy)an + VEP (X - 0) % VEP (X - 05) 5 ),

(7.6)
where o1 and a5 are tensors on M \ V depending polynomially on i 909 and where * denotes
any linear combination of tensors with respect to the background metric w. This can be seen,
for example, by noting that, on M \ V,

’

(p + i0095)" _ (i0005)" = (m)wh K A (19005)F
wh - wh + Z k wh
k=1
together with an application of the following claim.

Claim 7.4. Let Y and Z be real holomorphic vector fields such that [Y, Z] = 0. Then,
Sfor any smooth real-valued function v on M with £yyv = £ jzv = 0, we have

%aév(y, 7) = %aév(JY, JZ)=0 and Z-(Y-v)=Y -(Z-v) =2i000(Z,JY).

Proof of Claim 7.4. The first equality follows from the fact that

2i00v(Y, Z) =2i00v(JY,JZ) = ddv(JY,JZ)
=JY -dvJZ)—=JZ -(dvJY))—dv(JY.JZ)).
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As for the second, the vanishing of [Y, Z] implies that Z - (Y -v) = Y - (Z - v), whereas with
1,0 1 . 1.0 1 .
Yo' = E(Y—lJY) and Z° = E(Z_ZJZ)’

the invariance of v and the fact that J Y - (Z - v) = 0 implies that

%Y (Z-v)y=Y10 . (z10. ) =y 1.0 (z10 . y) = dov(Z!0, Y 1.0)
- L
= Loow(Z,JY) - ~0dv(J Y. I Z). o
2 PRttt/

=0

The strong maximum principle combined with the fact that X - ¥ — 0 at infinity now
implies the result. ]

From this, we can derive a lower bound on X - %, and hence on X - 1.

Proposition 7.5. There exists a positive constant C such that, for all s € [0, 1], we have
X -9y > —C. In particular, X - s > —C forall s € [0, 1].

Proof. In order to prove that X - ¥ is uniformly bounded from below, first note that,
since X - @y is bounded and X - 5 tends to zero at infinity, f5, := f + % - Oy + % -0y s
a proper function bounded from below by virtue of the fact that f is by Lemma 4.2. Then,
since X = Vs Joy» fo, must attain its global minimum at a point lying in the zero set of X
and hence must coincide with the global minimum of f on this set, that is to say,

> min = min f > —-C.
st _{X=0}fUS {X=0}f =
The lower bound on X - @5 then follows from the previous localisation of the minimum of this
function given by Lemma 7.3. ]

7.5. A priori C*-estimate. We proceed with the a priori estimate on the C °-norm of
(¥5)o<s<1 which is uniform in s € [0, 1]. We begin with two crucial observations, the first
a localisation result for the global extrema of ¥5.

Lemma 7.6 (Localising the supremum and infimum of a solution of (xxy)). Suppose
that (U5)o<s<1 is a path of solutions in R & C;‘:ﬂ (M) to (x*g). Then supy, ¥ = maxwy Uy
(respectively infys 5 = miny ;).

Proof.  We first prove the assertion of Lemma 7.6 concerning the supremum of a solu-
tion 9. To this end, observe from (% *) and the basic inequality log(1 + x) < x forall x > —1
that ¥, is a subsolution of the following differential inequality:

X
Aa)sﬁs - E : ﬁs = G.w

where we recall that G is compactly supported. Let & > 0 and consider any smooth function u,
on M identically equal to 2elog(r) on M \ W such that lim;—o u, = 0 uniformly on compact
sets of M. This function will serve as a barrier function. Indeed, since log(r) is pluriharmonic,
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one has that,on M \ W,
X
(7.7) Aw, (19s —2¢ log(r)) -3 (19S —2¢ log(r)) >e>0.

Now 9 being bounded on M implies that the function 5 — 2glog(r) tends to —oo as r — 400.
In particular, this latter function must attain its maximum on M. The maximum principle
applied to (7.7) then ensures that it must be attained in W, i.e.,

max (g — u = max (s — ug).
( N 8) ( S 8)
In conclusion, we have that

Us(x) < ug(x) + mua}x(ﬁs —Ug), XEM,

which leads to the bound ¥ (x) < maxy U5 by letting ¢ — 0 and making use of the assumption
on . Since this holds true for any x € M, the desired estimate follows.

The statement involving the infimum of ¥ can be proved in a manner similar to the above
beginning with the differential inequality

X
Aasﬁs - 5 'ﬁs = Gs,

which itself follows from the arithmetic mean-geometric mean inequality. O

7.5.1. Aubin-Tian-Zhu’s functionals. We now introduce two functionals that have
been defined and used by Aubin [3], Bando and Mabuchi [7], and Tian [34, Chapter 6] in
the study of Fano manifolds, and by Tian and Zhu [35] in the study of shrinking gradient
Kéhler—Ricci solitons on compact Kihler manifolds.

Definition 7.7. Let (¢;)o<s<1 be a Cl—path in M?’ﬂ (M) from g9 = 0 to 91 = ¢. We
define the following two generalised weighted energies:

Lox(¢) = / ple~f o — eI F0u).
M
1

Jox(©) :=f / g o — et ) A ds
0 M

At first sight, these two functionals resemble relative weighted mean values of a potential
@ in M}?ﬂ (M) or of a path (¢;)o<s<1 in M}Ciﬂ (M), respectively. When X = 0 and (M, ) is
a compact Kéhler manifold, an integration by parts together with some algebraic manipulations
(see Aubin’s seminal paper [3] or Tian’s book [34, Chapter 6]) show that

n—1
Ipo(p) = Z / i0p A0 A Wk A a)g_l_k,
M
k=0
(7.8) 1
k+1 = k _1—
J, =Y —— | idp Adg A* A@ETITR
0.0(9) Zn—l—l/Ml ¢ A 0p A 0° Ao
k=0
This justifies the description of 7, 0(¢) and J 0(¢) as modified energies. Moreover, it demon-

strates that, on a compact Kéhler manifold, J,, o is a true functional, that is to say, it does not
depend on the choice of path.
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Such formulae (7.8) for I, x and J, x for a non-vanishing vector field X and a non-
compact Kihler manifold (M, w) do not seem to be readily available for a good reason: the
exponential function is not algebraic. However, following Tian and Zhu’s work [35], one can
prove that the essential properties shared by both 7, ¢ and J, o hold true for a non-vanishing
vector field X in a non-compact setting. The proof follows exactly as in [15, Theorem 7.5].

Theorem 7.8. 1, x(¢) and Jy x (@) are well-defined for ¢ € M?’ﬂ (M). Moreover,
Jw,x does not depend on the choice of a c! path (¢:)o<i<1 in M?ﬁ (M) from ¢og = 0 to
©1 = @, hence defines a functional on M%o B (M). Finally, the first variation of the difference
(Iw,x — Jw,x) is given by

o x — o)) = [ or(Ba - X g)e Foray,
where f,, = f + % - @y satisfies X = V@ f, and where (¢;)o<t<1 is any C'-path in
M;Z'B(M)from wo = 01to @1 = o.
Recall that the equation we wish to solve is (%), namely
e Sus Wy, = eFs=Ion.

Proposition 7.9 (A priori energy estimates). Let (Vs)o<s<1 be a path of solutions in
M}Oﬂ (M) to (xg). Then, for p € (1,2), there exists a positive constant

C =C(n po, sup |Fsco)

s€[0,1]
such that
sup / [Vs _Wslpe_fwn =C,
M

0<s<l1

where g = fM wse_fa)”. In particular, if g = 0, then

sup / 19s|Pe 0" < C.
M

0<s<l1

Proof. By Theorem 7.8, we can use any C !-path (¢;)o<<1 in M?Zﬂ (M) from 9 = 0
top; =@ € QM?Z g (M) to compute Jy, x (¢). As in [35], we choose two different paths to com-
pute J,,,x (¥), the first being the linear path defined by ¢; := ¢y, € [0, 1], for Y € ,M}o’ﬁ (M)
a solution to (). For this path, Theorem 7.8 asserts that

! X —f—tXy n
Uox =Jo)@) == [ | t0(Bup v =5 -9)e 3V 0ly, ndr.
0o JMm 2
Integration by parts with respect to the weighted volume form e~ f1 %"”a);’w then leads to
(7.9) (Ia),X - Jw,X)(W)

1 -
n/o /M 1oy A OV A (e—f—‘%"/fw;a;l) A dt

1
n/ / tioy AOY A (e TIEV((1 = Do + toy)" ) Adt
0o JM
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—(n—1 1k+1 n—1—k
e

x /M iy AP A (e /T E VI A wfz)) A dt
1 _
> n/ (1 — "1 f 10y AV A (e~ TV 1y A dy
0 M

1
= n/ (/ t(1— )LtV dt)iaw Aoy Aef oL
M \JO
From this, the following claim will allow us to obtain a lower bound.

Claim 7.10. There exist positive uniform constants A, ¢ such that

1
/ (=" e 3V >
0 (5 ¢ + A)?
Proof of Claim 7.10. For k > k, := 2n(n — 1), we find using integration by parts and
a change of variable that

1 1
/ t(1 —t)”‘le_’” dt =/ (1 _S)Sn—le—k(l—s) ds
0 0
1 k
— —k E n—1 ks _e_
=e {(1 + k)/o s" e ds . }
k 1 k
— ek f e__(l’l—l) n—2 ks _e_
=e {(1+k)(k 3 fos e ds) k}

n\/1 (m—=1) —k 1
- (14 1) (3 )}
=(1+ D)) ¢
k—nmn-—1) _(n+k)n-1)
T e T T e
1
> —.
— 2k2
Here we have bounded 5”2 from above by 1 in the fourth inequality.
Set A := k;,, —infyy % -Yrandletk = % - + A. Then k > kj, A is uniformly bounded
from above by Proposition 7.5, and it follows from what we have just derived that

1
/ U PR A A RO e —
0 2%y + 4)2

resulting in the desired bound. m)

Applying Claim 7.10 to (7.9) yields the lower bound
—fwn—l
(3 +42

V|2
zc/ —X| Vlg e "
M (7-W+A)2

(7.10) (Tox — Jox)(W) = ¢ f 109 A Y A
M
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for some positive constant ¢. We also require an upper bound on (1, x — J,,x) () to complete
the proof of the proposition.

To this end, we consider the continuity path of solutions ¢y := Vg, s € [0, 1], to (*g)
to compute (I, x — Jw,x)(¥). First observe that the first variations (1/'13)05551 satisfy the
following PDE obtained from (x4) by differentiating with respect to the parameter s:

Aw,/,sl//s_z"/fs=Fs, 0<s<Il.

Combined with (x5) and Theorem 7.8, we see that

1
(Tox — Jox)(¥) = /0 /M Ve (—Ee Mol ndi

1
= / / wt . (—F,)eF’_fa)n A dt
0 M

so that, from (7.10), for some ¢ > 0,

! : IVEY I3
(7.11) / / Vi (—F)ef= o Adt > c/ — 8 S,
0 JM M

(5 v+ 4)?
d -
%(/M ‘ fmw"’i’f) Y

by Lemma 6.2 (i) with G = 1, we derive from (*g) that

/ Fefi=f o = 0.
M

Now, as

This allows us to rewrite (7.11) as

! e VeVl
—f n f . n
/0 /M(wt—w-(—Ft)eF © AdtchM(%,Mj)ze ",

with ¥, as in the statement of the proposition. Applying the Poincaré inequality of Proposi-
tion 5.1, we then see that, for any p € (1,2) and é =1-1

4
(7.12) ([Mw—ml’e—fw”)p
< c(/MWé’wge—fw")”
Ve X 22 =
C ' Tlg —f . n 2 A r —f n)
(/M(éerA)Ze w)(/M(2 er) e
1
c(/0 /M|w,—%||ﬁt|e‘”f—fw"m)

2—p

(5T

IA

IA
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1 1 1
< C[ (/ |V, _wtlpe—fwn)p(/ |Ft|qeqFte—fwn)q dt
0o \Um Mz_p
X - 7
Z. A I o
X /M(z v+ ) e ’w )

SC/()l(/MWt—WHpe_fw");dt B
x /M(g'iﬂ-i-A)%ppe_fwn)p.

Here we have used Holder’s inequality in the second and fourth lines with respect to the

weighted measure e~ on.
Next, observe from Lemma 6.2 (i) that, for all r € N,

C/M(fxlfs + A e o < /M(fx/fs + A) efse= o™
B /M (fy, + A e v @y,
= [ (f + A e T <Cwr).
M

By induction on r, using the fact that % - + A > 0 and that A < C by Proposition 7.5, one
can prove directly from this that

X r
/(_.¢+A) e /" <C(r) forallreN.
M\2

It then follows from Holder’s inequality that this statement holds true for all » > 1. Applying
this to (7.12), we arrive at the fact that, for all p € (1, 2),

1
(/Mw—wl’e—fw") <Cp) fo (wat—Wpe—fwn) ar

SIS
N[=

1.€.,

1
¥ =T re sy = C0) [ W= Fellireramdi forany p e (1,2),

This last inequality applies to any truncated path of the one-parameter family of solutions
(¥s)o<s<1 of (x4). Thus,

1
(7.13) s = Vel e ram = € [ Wt = Taelirie=som ds

C [S _
i / Wi = FellLre-rom dt.
s Jo

This is a Gronwall-type differential inequality and can be integrated as follows. Let

S
H(s) = /0 Wi =Tl e—rem di
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and observe that (7.13) can be rewritten as

C
H'(s) = - (H()7, s € (0.1]
§2
Integrating then implies that H(s) < C(n, , supse[o,1]ll Fsllco) - s for all s € [0, 1] which,
after applying (7.13) once more, yields the desired upper bound. |

7.5.2. A priori estimate on supy; #s. Let ¥ be a solution to (x*4) for some fixed
value of the parameter s € [0, 1]. We next obtain an upper bound for sup,, ¥ uniform in s. To
obtain such a bound, it suffices by Lemma 7.6 to only bound maxy ¢ from above. We do this
by implementing a local Nash—Moser iteration using the fact that 5 is a supersolution of the
linearised complex Monge—Ampere equation of which the drift Laplacian with respect to the
known metric wg forms a part.

Proposition 7.11 (A priori upper bound on sup,, ©). Let (¥5)o<s<1 be a path of solu-
tions in R @ C;?ﬂ (M) to (xg). Then there exists a positive constant

C =C(n.w, sup |Gg|lco) suchthat  sup supdy < C.
s€[0,1] 0<s<1 W

Proof. Let s € [0,1] and let (¥;)+ := max{Js, 0}. This is a non-negative Lipschitz
function. The strategy of proof is standard: we use a Nash—Moser iteration to obtain an a pri-
ori upper bound on supy, (¥s)+ in terms of the (weighted) energy of ()4 on a tubular
neighbourhood of W. The result then follows by invoking Proposition 7.9.

To this end, notice that, since log(1 + x) < x for all x > —1 and since ¥y is a solution to
(x*g), Uy satisfies the differential inequality

X
(7.14) Awbﬁs_g'ﬁs Z_|Gsl OnM.

Let g5 denote the Kihler metric associated to wg and let f,,, := f + % - @;. Then these met-
rics are all equivalent to g uniformly in s and —ws X = df,,. Letx € {f < R} and ¢ > O be
such that Bg, (x,&) € {f < R} and multiply (7.14) across by n? /(%) +|(9s)+ >~ with
p > 1, where n; 4/, with0 <t + ¢’ < gand t,¢’ > 0, is a Lipschitz cut-off function with com-
pact support in Bg (x,7 4+ t') equal to 1 on B (x,¢) and with |V&sn /|o. < tl, almost every-
where. Next, integrate by parts and use a local Sobolev inequality for the pair (ws, fu,) to
obtain a so-called “reversed Holder inequality” which, after iteration, leads to the following
bound for p € (1, 2):

N =

sup (F5)+ < C(n, p’a)’8)(”(195)"‘”i”(Bgs(x,s),e_waw?) + ||Gs||50)
Bgs(x’%) A 1

pr
<C(n,p,w,e) (/ (ﬁs)ie_f""w;l + ||Gs||’60)
{f<R}

N =

- C(n,p,w,e>(/ 9517 o + ||Gs||zo)
{f<R}

Sc(n’psa)’g’ sup ”GS”CO)
s€[0,1]

Here, we have made use of Proposition 7.9 in the last line. o
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7.5.3. A priori estimate on infy; #5. Recall that the equation we wish to solve is (),

that 1s,
e_fl//_ga):}/ — eEY_fa)n’
5

where wy, := w 4+ i00Y; > 0 and fy, = f + % - V5. This pair satisfies —wy,, 1 X = dfy,.
We work under the assumption that [, vse F o = 0.

An upper bound on the I, x-functional. We first show that the I, x-functional is
bounded along the continuity path.

Lemma 7.12.  supge(o,1] 1w, x (¥Vs) < C(supps (95)+).

Proof. By assumption, fM Yse~F 0" = 0 so that

/ wse_fa)” = —/ wse_fa)”.
{Ys>0} {ys=<0}

We therefore have that
o) = [ wste o o) == [ g o,
M M
—— [ e na [y o,
{¥s>0} b Jyg<o ’

<[ cwetne = [ (cyefe o
{Yrs<0} {¥s=<0}

<c / (—yp)el " = C / Yol o
{¥s =<0} {¥s=0}
= C(/ (s + CIDS)e_fa)")
{Os=—Ds}

< C(/ |Dgle™ " —i—/ ﬁse_fa)”)
M {5 >—Dy}
—

bounded

§C+Csupz93+/ e~/ o"
M {0s=>=—d,}

<C+C sup(ﬁs)+/ e "
M M

< C(1 + sup(dy)4).
M

From this, the result follows. O

An upper bound on the weighted L?-norm of the gradient of the Legendre trans-
form. Recall the continuity path (),

(0 4+ i00Y)" = eFsT2¥sn | s eo,1],

where |
Fy:=log(sef + (1—5)) and i00F = p, + Eixw —w.
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Here, py, denotes the Ricci form of w and F € C°°(M) is bounded. On t >~ R”, we have
coordinates & := (&1, ..., &), induced coordinates x = (x1, ..., X,) on t* which contains the
image of the moment map, and we can write @ = 2i 00¢ for a convex function ¢g on R” ~ t
up to the addition of a linear function (cf. Section 2.5). Let by € R” denote the vector field
JX € tasin (2.4), write V for the Levi-Civita connection of the flat metric on R”, and (-, -)
for the corresponding inner product. As in (2.11), we normalise ¢¢ so that

F = —logdet(¢o,ij) + (Véo.bx) — 2¢o.
Set ¢s := ¢o + %1//3. Then, in the coordinates £ on R”, equation (*z) becomes
det(¢s,ij) = (seF + (- s))e(v"bf’bX)_(v‘j’o’bX) det(¢o,ij), s €[0,1].

Plugging in the definition of F, this becomes

det(¢s.ij) = (Se—2¢0—10gdet(¢o,ij) +(1— S)e—(tho,bx))e(thmbx) det(¢o.i)

= (se_2¢0 +(1— s)e_(v¢°’bX) det(¢0,l~j))e(v¢“b’(), s €1[0,1],
or equivalently,
(7.15) e~ {VePX) det(¢hs ;1) = 57290 + (1 — 5)e™(VP0PX) det(g ;). s € 0. 1].

Let ug = L(¢s). Then we have the following uniform integral bound on |Vug|?, p > 1.

Lemma 7.13. Forall p > 1,

sup / IVug|Pe™bxX) gy < C.
s€l0,1] Pk

Proof.  First note that

/ £17e~0-V00) det(go ) dE < C.

Indeed, since F' is equal to a constant cq off of a compact subset of M, we see that F' is globally
bounded on M. This means that

sup|—logdet(¢o,ij) + (Vo.bx) — 20| = C,
R~
resulting in the fact that

/ £[7¢=Bx-990) det(go ;1) dE < C / E[7e2% d < C.
R” R”

where we have used Lemma 2.25 in the last inequality. Therefore, using Lemma 2.25 once
again and (7.15), we find that

/ |Vug|Pe™0xX) gy
P

_KM

= [ 1617e 058 depesg)

— / E[7e2%0 dE + (1— ) / E17e™ X V60) det(go ) dE
R” R”
<C,

as desired. O
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An upper bound on the F -functional. Now, our background metric w satisfies the two
bullet points above Lemma 2.30 as demonstrated in the already proved Theorem A (ii)—(iv). As
a consequence, it is clear from Lemma 2.30 (i) that condition (a) of Definition 2.27 holds true.
The hypothesis of Lemma 2.29 as well as condition (b) of Definition 2.27 via Lemma 2.28 also
hold true thanks to Lemma 6.2 (ii). Thus, the F-functional from Definition 2.27 is finite and
therefore well-defined along the continuity path (xs) and moreover, by Lemma 2.29, may be
expressed along in terms of the J,, x -functional as

F(Ws) = Jux (Ws) — /M ool o,

We next show that F is bounded above along the continuity path (x4) using Lemma 7.12.
This will in turn provide an a priori estimate on the weighted integral of the Legendre transform
us := L(¢s) of ¢. From this, we derive an a priori estimate on the weighted L!-norm of uj.
Via the Sobolev inequality, we then obtain local control on ug, and as a result, on . This
eventually leads to the desired uniform lower bound on infjs 9.

Lemma 7.14. F(Y5) < C(supys (¥5) +).

Proof. By assumption, we have that [, Yse 0" =0 so that ﬁ(ws) = Jo,x (Ws).
Moreover, from (7.10), we read that (1, x — J»,x)(¥s) > 0. Thus, Lemma 7.12 implies that

F(Wy) = Jox Ws) = Lo x(Ws) — U, x — Jo,x)(Ws) < I x(¥5) +0 < C(sﬂulpwsn),
as claimed. O

An upper bound on the weighted integral of the Legendre transform. We know that

/ |us|e—(bx,x) dx < /
P_k,, P_xg,,

1
5/ (/ |ust|dz)e—<bx’x> dx+/ lugle™ X *) dx,
P_KM 0 P

lug — uole XX dx + / lugle™X*) dx

P_g,,

and these last two integrals are finite by Lemma 6.2 (ii) via Lemma 2.28, and Lemma 2.30 (ii),
respectively. By definition, the F-functional along (*4) is given by

(7.16) F(ys) = 2/ (ug —ug)e Px¥) gx.

Therefore with

f |u0|e_(bX’x)dx and f |u1|e_(bX’x>dx
P_ky P_kuy,

convergent, we can split the integral in (7.16). Together with the integral bound given in
Lemma 2.30 (ii), this leads to the following consequence of Lemma 7.14.

Corollary 7.15.

sup / uge X% gy < C.
s€[0,1] / P—k
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An upper bound on the weighted L !-norm of the Legendre transform. We now use
Corollary 7.15 to derive a uniform weighted L-norm on u;. Notice that we must make use of
the already obtained uniform upper bound on ;.

Lemma 7.16.

sup / lugle™0x%) gy < C.
s€l0,1] J P—

Proof. Recall from the definition of the Legendre transform that, for all x € P_g,,,
us(x) —uo(x) = 5811115 ((x.&) — ¢s(8)) — uo(x)
> (x, Vug(x)) — ¢s(Vuo(x)) — uo(x)
= ¢o(Vuo(x)) — ¢s(Vuo(x))
1
= —Ews(wo(x))

= —%CDS(Vuo(x)) — %z?s(Vug(x))

> —%Cbs(vuo(x)) e

for some uniform positive constant C. Here we have used the a priori upper bound on ¥ given
by Proposition 7.11 in the last line. With this, we estimate that

(7.17) / |ugle™0x %) gy
P_g

M

1

< (us — g 4 =~ D5 (Vug(x)) + c)e—“’X’ﬂ dx
P_k 2

M

|
n / ‘uo — Z®s (Vo (x)) — c‘e—“’X’x) dx
P_ky, 2
< / use” P gy 4 2/ lugle™0x*) dx
P_k,,

P_ky,
+ 2C/
P_kp,

<+ / 1@, (Vatg (x)) e~ ¥ ) dx
P

e bxX) gy 4 f |Ds (Vg (x))]e X ¥ dx

P_k,,

for a uniform positive constant C’. Here we have used Corollary 7.15, Lemma 2.30 (ii), and the

fact that
J,

to bound each of the terms in the third line, respectively. The final integral we bound in the
following way.

Choose a compact subset U C M strictly containing W and f~!((—o0, 1]). This we
can do because f is proper and bounded below. Next, choose R > 0 sufficiently large so that
(Vgo)(U) C Bgr(0). Then, in particular, (V¢o)(W) C Bg(0) and

(bx,x)>1 forallx € P_g,, \ (Br(0)N P_g,,),

e XX gy = (271)”/ e/ o < +00

—Kpg M
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the latter being true because (by,x) = f(Vuo(x)) for all x € P_g,,. Then, recalling that
&y = —c5log(2(f + 1)) on M \ W, which in particular holds on P_g,, \ (Br(0) N P_k,,),
and using the fact that 0 < log(x) < x for all x > 1, we estimate that

/ 1@ (Vato(x)) e~ #% ) dx
P

= |5 (Vg (x))|e™Px*) dx
BR(O)ﬂP_[(M

+ / | D (Vg (x))|e™ X X) gx
P_kp \(BR(O)NP_k,,)

=¢ (1 - / [log(2(f(Vup(x)) + 1))|e—<bx,x) dx)
P_k,, \(BR(OO)NP_g,,)

C(l + / log(2({bx, x) + 1))6—(bx,x) dx)
P_g \(BR(O)NP_k,,)

< C(l +/ (1 + (bx, x))ebx-x) dx) <cC’
Pk \(BR(OO)NP_g,,)

for a uniform positive constant C’. Combined with (7.17), this yields the desired bound. D

Local control on ug. Lemmas 7.13 and 7.16, combined with an application of the
Sobolev inequality, now give us local control on .

Proposition 7.17. There exists C > 0 such that, for all x € P_g,, and s € [0, 1],

Jus (x) = uo(x)] < CelPx¥),

Proof. From the first paragraph of the proof of Lemma 2.23, we know that, outside
a compact subset, P_g,, coincides with the Cartesian product of the half line and Pp, the
polytope associated to D. More precisely, in light of (2.7), P_g,, coincides with

[a,00) x Pp CR xR" ! forsomea € R

outside a convex compact subset. Suppose that x € P_g,, lies in the region [a + 1, 00) x Pp.
Then there exists b € [a + 1, 00) such that x € {b} x Pp. Let

Q:=[—1,b+1]x Pp Cla,00) x Pp CRxR"".

Set Us := ug —ug and let ¢ > n. Then, since Uy is smooth up to 0 P_g,, by Lemma 2.26 (i),
we can apply the Sobolev inequality from [28, Theorem 3.4] (which in particular states that the
Sobolev constant depends only on the Euclidean diameter and measure of €2), together with
Lemmas 7.13 and 7.16, to determine that, for a uniform constant C > 0,

1
coe 19l J/e

1
< CIVUsllo@) + —f Uy | dx
12 Ja

1
yeQ yeQ yER

1
Us@)] < [Us oo < HU _ @/QUS dx
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because 0 < é < 1. Continuing, we find that

|Us(x)| < C sup e{ox:y) — Cplbx.x) | sup ebx:y=x) < Cplbx.X)
YEQ yeQ

A slight modification of this argument also shows that
|Us(x)| < Ce!®XX) forall x € P_gy \ ([a +1,00) x Pp)
which, as noted above, is a compact convex subset of R”. In sum, we arrive at the bound
|Us(x)| < Ce!®XX) forall x € P_ky, s

as required. |

Local control on 5. The previous proposition can be reformulated to give local con-
trol on V.

Proposition 7.18. There exists C > 0 such that, for all x € M and s € [0, 1],

Vs(x) > —Ce/ ™.

Proof. The definition of the Legendre transform and Proposition 7.17 gives us that, for
all £ e R" and s € [0, 1],

Vs () = 2(¢5(5) — do(§)) = 2( sup  {(&.x) —us(x)} — ¢o(§))

xEP_KM

> 2((£, Voo (£)) — us(Vo(£)) — ¢o(§))
= 2(u0(Vo()) —us(Vgo(£)))
> —Celbx:Veo(®) — _ /&)

for some uniform C > 0, as claimed. O

A priori lower bound on infys ;. This brings us to the concluding bound of this
section. Proposition 7.18 yields a uniform lower bound on miny . By Lemma 7.6, this results
in a uniform lower bound on infys 5. This is demonstrated in the following proposition.

Proposition 7.19 (A priori lower bound on infys ¥5). Let (¥5)o<s<1 be a path of solu-
tionsin R @ C )C}o g (M) to (xxs). Then there exists a uniform constant C > 0 such that

inf inf?d, > —C.
0<s<1 M

Proof. Combining Lemma 7.6 and Proposition 7.18, we find that, for all s € [0, 1],

inf 95 = min ¥ = mi — @) > min(—Ce’/ — ®;) > —C.
11‘1}[ s nl}llfn s mulln(ws s)_mW},n( e s) = o

7.6. A priori upper bound on the radial derivative. The C°-bound on ¥, allows us
to derive an a priori upper bound on X - .
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Proposition 7.20. Let (¥U5)o<s<1 be a path of solutions in R @ C;?B (M) to (xxy).
Then there exists a positive constant C = C(n, », supgepo 11 Gsllco) such that
sup sup X -9 <C.
0<s<1 M
In particular, X - 95 < C forall s € [0, 1].

Proof.  Our proof is based on that of Siepmann in the case of an expanding gradient
Kéhler—Ricci soliton; see [33, Lemma 5.4.14]. We adapt his proof here to our particular setting.
We begin with Claim 7.4, which gives

(7.18) X X -0 =2i0004(X,JX) = 2(05(X. JX) — ws(X. J X))
> 2ws(X,JX) = =2|X[2 .
To get an upper bound for X - 5, we introduce the flow ((th )zer generated by the vector
field % This flow is complete since X grows linearly at infinity. Define 93 (¢) := ¥ (gth (x))
for (x,t) € M x R. Then, for any cut-off function n: R4 — [0, 1] such that n(0) = 1 and
n’(0) = 0, we have that

+o0

+00 +o0
/0 o980 di = — /0 OO (1) di = 93)(0) + /0 a3 (1) d1.
Using (7.18), it then follows that

X
S ds(x) = (93 0)

X (X
s— [ S (Geo)eFendi+ s ol [ o)
supp(1) t&supp(n”) supp(n”')
1
<3 [ XIg, (@ () de+ sup [95(97 ()] " ()] dr.
supp(17) t&supp(n”) supp(n”)

Choose 7 such that supp(n) C [0, 1] and let x now be the point where X - ¢ attains its
maximum value. By Lemma 7.3 (i), we know that x is contained in . Hence, we deduce from
the above that

X
5 Os(x) < C( sup ( sup 1X[2.) + 19l co).
S€[0,1] U, cpo.17 07 (W)

The result now follows from the uniform upper bound on ||| co. O

7.7. A priori estimates on higher derivatives. We next derive a priori global bounds
on higher derivatives of solutions to the complex Monge—Ampeére equation (x*g), beginning
with the C2-estimate. The a priori bounds we derive hold everywhere on the manifold M, not
just on a given fixed compact subset. The unboundedness of the vector field X prevents us from
applying standard local estimates to higher derivatives of solutions to (x*g).

7.7.1. C? a priori estimate.

Proposition 7.21 (A priori C2-estimate). Suppose that (¥5)o<s<1 is a path of solutions
inR & C;?ﬂ (M) to (x«g). Then there exists a positive constant

C =C(no. sup |Gslc2)
s€[0,1]
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such that the following C? a priori estimate holds true:

sup 10095 co < C.

0<s<l1

In particular, )
sup [li0oys|co < C.

0<s<l1

Proof. Following closely [14, Proposition 6.6] where the approach taken is based on
standard computations performed in Yau’s seminal paper [39, pp. 347-351] (see also [33, Lem-

ma 5.4.16] and [34, pp. 52-55]), we let A denote the Laplacian with respect to o and first

estimate the drift Laplacian Ay — X of trey, Oy to obtain

2
(19s)ijk (19s);j]€
>
T+ @i+ D))
— C try, 05 - trg, Wy - (1 + iz\rxllme(gS)) —C(n,w).

+ AsGs

(7.19) (As - %) tr, O

Letug ;= e s (n + Agds), where A > 0 will be specified later. Then one estimates the

drift Laplacian Ay — % - of ug with respect to oy in the following way using the fact that
satisfies (x*g):

X X _
(As - E-)us > e MGy + e Mg (Vs (5) iaaﬁs) — Cyn2e Vs
A0s—Gs—X95  _n

X
+/\(5-ﬁs)us—knus+(k+Cs)e n—1 ulrt,

where V* is the Levi-Civita connection of g5 and Cs := inf;2; Rm}, -, Rm® here denoting
the complex linear extension of the curvature operator of the metric g5. As C; is uniformly
bounded below in s by a constant A (which we may assume is at most 1), we may choose
A > 0O sufficiently large so that A + A = 1. Moreover, as

(o (3) o)

for some generic constant C > 0, we deduce that u satisfies the differential inequality

= CIV*X|co(1 +u)

X n_
(As - E)us > _Cl(l + Ms) + Czu:_l s
where C; and C, depend only on 1, A4,

sup [[Fsllco,  sup [ X -Dsllco,  sup [|Gsllc2, and  sup [VPX|co.
s€[0,1] s€[0,1] s€[0,1] s€[0,1]

The combination of Propositions 7.5, 7.11, 7.19, and 7.20 shows that C; and C, depend only
onn, A and supeqo, 1711 Gsll c2-

Since u is non-negative and converges to n at infinity as 9, €e R @ C f}o g (M), an appli-
cation of the maximum principle to an exhausting sequence of domains of M yields an upper
bound for n + Ag¥s and, consequently, the desired bound on i 007 O
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A useful consequence of Proposition 7.21 is that the Kéhler metrics induced by oy and
wy are uniformly equivalent.

Corollary 7.22. Let (¥5)o<s<1 be a path of solutions in R & C;?ﬂ (M) to (xxg), and
for s € [0,1], let g, hs denote the Kdhler metrics induced by wg, o, respectively. Then the
tensors gs_lh s and hs_1 g satisfy the following uniform estimate:

-1 -1
sup [lgg " hsllco + sup [lhg gsllco = C
0<t<1 0=<r<l1

for some positive constant C = C(n, w, supgepo 11lGsllc2)- In particular, the metrics g and
(hs)o<s<1 are uniformly equivalent.

Proof. The estimate follows as in [15, Corollary 7.15] using Propositions 7.5, 7.20,
and 7.21. The fact that w and oy differ by a (1, 1)-form whose norm is controlled uniformly
in s yields the last claim of the corollary. O

7.7.2. C3 a priori estimate. We now present the C 3-estimate.

Proposition 7.23 (A priori C3-estimate). Suppose that (¥5)o<s<1 is a path of solutions
in R® C;?ﬂ (M) to (x*g) and let g5 be the Kdhler metric induced by wg with Levi-Civita
connection V&, Then

sup || V850009]|co < C(n,a), sup ||Gs||C3)-

0<s<l1 s€l0,1]
In particular,
(7.20) sup |[|[VE (X - d)|lco < C(n,a), sup ||Gs||C3)-
0<s<1 s€[0,1]

Proof. 'We follow closely the proof given in [14, Proposition 6.9] which itself is based
on [30]. Set
S(hs, gs) = |Vgshs|%s-

Then, from the definition of .S, we see that
S(hs. gs) = W WE RPIVE (he)ip VE (h)ig = |VIj,
where _
W (hs, g5) = T(he)f; — T(gs)ly = hS'VE (hs) 5.

Now, since 5 solves (xxg), (M, hg, X) is an “approximate” steady gradient Kidhler—Ricci soli-
ton in the following precise sense: if hs(t) := ((th)*hs and g5(2) 1= (gatX)*gs, where ((th),eR
is the one-parameter family of diffeomorphisms generated by % then (h5(2))seRr is a solution
of the following perturbed Kihler—Ricci flow with initial condition /:

d/hs(t) = —Ric(hs(1)) + () * (L x g5 + Ric(gy) + VEVEGs), 1 €R,
hs(o) = hs.

In particular, d;hy = —Ric(hy) + (gotX)*A, where A 1= £x g5 + Ric(gs) + V& V&5 Gy has
uniformly controlled C!-norm as gy is isometric to g and Gy is equal to zero, all outside
a compact set independent of s.
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Define S(¢) := S(hs(s), gs(¢)) and correspondingly W(¢) := W(hs(t), gs(¢)). We adapt
[8, Proposition 3.2.8] to our setting. By a brute force computation, we have that

Ao, S = 2Re(h h2T (h)ki (Ao, 1/2915) V) + VP WL+ [V
+ Ric(hs)'ThY7 (o)1 Vi, W, + bl Ric(hs) P2 (hs)er ¥y, 91,
— Wi hP9 Ric(hs) i Wi, V!,
where - - o
Agy1yz i= VIV T = R R T
for Trj € AVOM ® A% M. We also have that
k
W (), lu=0 = Bulu=o (T (hs () — T(g5(w)));,
hg : Ky
= VP (- Ricthol + M) - V(23 80))
O h'/ =0 = Ric(hs)'7 — A",
Finally, using the second Bianchi identity, we compute that
_ he o
Aoy1/2%, = 1PV Rm(ge) = Vi Ric(hs)},
which in turn implies that the following evolution equation is satisfied by W:
AW, (Wlu=o = Aoy 172Vl + Ty
for a tensor T of the form
T =h' VP Rm(gs) + VA — V& (£x g)
= hy' % VE Rm(gs) + by '« hy! « Rm(gs) % W+ Ay * Wk A 4 VE (A — Lx g5).

Notice the simplification here regarding the “bad” term —V*s Ric(hy). Since this flow is evolv-
ing only by diffeomorphism, we know that

X
S() = (¢7)*S(hs.g5).  0uSlu=o = 7 - S(hs. gs)-

Hence Young’s inequality, together with the boundedness of ||h; ! gs|lco and |hsg; | co en-
sured by Corollary 7.22 and the boundedness of the covariant derivatives of the tensors Rm(gy)
and A, imply that

X
Ao S =582 -C(S+1)

for some positive uniform constant C.
We use as a barrier function the trace tr,,, 0 which, by (7.19) and the uniform equivalence
of the metrics g5 and kg provided by Corollary 7.22, satisfies

X -1
Ag, try, 05 — =5 My, 05 > C S —C,

where C is a uniform positive constant that may vary from line to line. By applying the max-
imum principle to &S + try, o5 for some sufficiently small ¢ > 0, one arrives at the desired
a priori estimate.

The proof of (7.20) is a consequence of the previously proved a priori bound on V5999,
once we differentiate (% xg). O
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We next establish Holder regularity of g, 'y and & !gs, an improvement on Corol-
lary 7.22.

Corollary 7.24. Let (¥5)o<s<1 be a path of solutions in R & C)Of g(M) to (xxs), and
for s € [0, 1], let hg be the Kiihler metric induced by os. Then, for any o € (0, %), the tensors
gy Yhs and hi'gs satisfy the following uniform estimate:

sup (llg5  hsllcoze + 1Ay gsllcoze) < C(n,a, 0, sup [|Gslics).

oc

0<s<l1 s€[0,1]

Proof. By standard local interpolation inequalities applied to Propositions 7.21 and 7.23,

we see that
lgs sl oz < C(n a0, sup [|Gsllcs).
s€[0,1]

Combining the previous estimate with Corollary 7.22, it suffices to prove a uniform bound on
the local 2c-Holder norm of hs_1 gs. We conclude with the following observation: if u is a pos-
itive function on M in Clg’cz"‘ (M) uniformly bounded from below by a positive constant, then
[u™ 20 < [u]2q(infas u) 2. By invoking Corollary 7.22 once more, this last remark applied to
h;'gs implies that

Ihs gsllcoze < C(n.a, 0, sup [|Gsllcs)
s€[0,1]
as well. !

7.7.3. Local bootstrapping. We now improve the local regularity of our continuity
path of solutions to (x*g). This estimate will be used in deriving the subsequent weighted
a priori estimates.

Proposition 7.25. Let (¥5)o<s<1 be a path of solutions in R & C;?ﬂ (M) to (xxg).
Then, for any o € (0, %) and for any compact subset K C M,

sup [|9sllcscaxy < C(n, a0, sup ||Gsllcs, K).
0<s<1 s€[0,1]

Proof. From the standard computations involved in the proof of the a priori C %-estimate,
we derive that

X
T21) A, (Awsﬁs -5 z?s)
= Ay, Gs + hs_1 * gs_l x Rm(gs) + Rm(gy) * Vhsﬁhsﬁs * hs_1
+ g5 x gy ! xRm(gy)
+ gyt w b w VAV VA R hs i g

~ (Ao, — Aws)(X 'zﬁs),

where * denotes the ordinary contraction of two tensors. Now, since X is real holomorphic and
¥ being J X -invariant, we see that

(7.22) i00(X - ¥5) = £x(10005) = V' (i000) + 1009 * V&5 X.
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Therefore, thanks to (7.22), we have the following pointwise estimate:

(7~23) |(A0's - Aws)(X : ﬁs)|
= |h; ! % 10005 % i00(X - O)|g,
< |hy " gslg, - |iaé?9s|gs : (|i5519s|gs|vg‘vx|gs + |Vgsl'aél9s|gs|x|gs)-

By Propositions 7.21 and 7.23 together with (7.23), the C °-norm of the right-hand side
of (7.21) is uniformly bounded on compact subsets and, thanks to Corollary 7.24, so too are the
coefficients of Ay, in the Clgf“—sense. As a result, by applying the Morrey—Schauder C 1-2%-
estimates, we see that, for any x € M and for § < inj P (M),

X

HAwsﬁs——-ﬁs

5 < C(x,6,a).

C12%(Bg (x,8))

Finally, applying standard interior Schauder estimates for elliptic equations once again with
respect to A, x, we deduce that

X

195l c320 (B (x,8)) < C(x,S,oz)(HAws 9y — 5 -0

C12%(Bg, (x.8))
+ 15l 2ep,, a0
<C(x,8,a). =

We next establish the following well-known local regularity result for solutions to (% *y).

Proposition 7.26. Let Gy € Cllgé“ (M) for some k > 1 and o € (0, 1) and suppose that

Vs € le)é“(M) is a solution to (x*z) with data Gg. Then ¥ € Cllgjz’“(M). Moreover, for all
k>1,a € (0,1), and compact subset K C M,

||l9s||ck+2.o¢(K) < C(n,oz,a), sup |G|l cmaxtk 330, K).
s€[0,1]

Proof. We prove this proposition by induction on k > 1. The case k = 1 is true by
Proposition 7.25, so let G € Cl];:rl’a (M) and let ¥ € C1<3>’ca (M) be a solution of (x*g). Then,
by induction, ¥ € Cllé:r 2%(M). Let x € M and choose local holomorphic coordinates defined

on Bg (x,d) for some 0 < § < inj, (M). Then, since ¥ satisfies

n

lopd X
Gy = ‘Og(w—g) -5 b
we know that, for j = 1,..., 2n, the derivative 0; ¥ satisfies

loc

X
Ao, 095) = 0 (Gs +5 195) e cke(m).

As the coefficients of Ay, are in Cllgé"‘(M ), an application of the standard interior Schauder
estimates for elliptic equations now gives us the desired local regularity result, namely

0,95 € CKF2% (M) forall j =1,...,2n,

loc

k+3,a

or equivalently, 95 € C

(M) together with the expected estimate. ]
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7.8. Weighted a priori estimates. Our first proposition establishes an a priori decay
estimate on the gradient of the X -derivative of solutions to (x ). Its proof uses the Bochner
formula in an essential way.

Proposition 7.27. Let (V5)o<s<1 be a path of solutions in R & C;f’ﬂ (M) to (xxy).
Then there exist positive constants C, Ry, and ¢ > 0 such that, for all s € [0, 1],

C

Proof. Letu := X -0, write Ay y := Ap, — X -, where Ay denotes the Riemann-
ian Laplacian with respect to /g, and recall from (7.5) the differential equation satisfied by u
outside a sufficiently large compact set W of M,

[VE(X - Js)lg

IA

1 1 000)"
(7.24) S Ay gu=2e"7 (@p +1999,)" .
2 7% w”

Applying the Bochner formula for the drift Laplacian to the function u, we obtain

1
5B x Vil
= [Hess;,, )|+ Ric(hs)(V*5u, VAu) + Hessp, (fo,)(V5u, V1)
+ (Vs A, xu, Vs,
= |Hessp, (u)|%ls + Ric(gs)(VhSu, Vhsu) + Hessg, (fws)(VhSu, Vhsu)

. 1 3 n
X0 (wp + 1007) )’ Vhsu>h ’

— 100G (VIu, Vi) + 4<vhs (e_
wn

where we have used (7.1) and (7.24) in the second equality. As Gy is supported in W and gy is
isometric to g on M \ W, on this latter set, this equation reads as

1 .

zAhs,X |Vhsu|%s = [Hessp, (u)|is + Rlc(g)(VhSu, Vhsu) + Hessg (f)(Vh‘u, Vhsu)

age n
+ 4{ v (e—X'TﬁS—(“’D +1999y) ). Vi)
" K
which, using the properties of g, then becomes
(7.25) Apy x |VEul? = 2[Hessp, )7+ 2|V ul?

n S(Vhs (e_

™

x5 (@p + iaéﬁs)")’vhsbl)

on M \ W. Henceforth working on M \ W, we analyse the last term of this equation in the
following claim.

Claim 7.28. On M \ W, we have that

‘(vhs (e_x.zﬁs (wp + iaéﬁs)")’ Vhs“>h

™

| O

=

—(|Hessp, ()ln, + V™ ulp,) |V ul,.
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Proof of Claim 7.28. By the pointwise Cauchy—Schwarz inequality together with the
a priori C?2 estimate from Proposition 7.21, it suffices to prove that, on M \ W,

_x9s (wp + 10005 )"

C
‘Vg(e )‘ < —(|Hessp, (u)|n, + |Vhsu|hv).
w” g r ; : ;
Now, thanks to (7.6), the a priori bounds on X - 5 (Propositions 7.5 and 7.20) and its gradient

(Proposition 7.23), one gets schematically

_x95 (wp + i000)"

1 1 1
)Vg(e o ))g §C(;|Vgu|g+r—2|vgu|§+;|Hessg(u)|g)

C
=< 7(|Vg“|g + |Hessg(u)|g),

where we have used implicitly the a priori C® bound (Proposition 7.23). In order to conclude,
it suffices to observe that

|Hessy,, (1) — Hessg (u)|g < C|VE000s|g|VEUl, < C|VEU,,

where C is a positive constant independent of s € [0, 1] that may vary from line to line. Here
we have used Proposition 7.23 again in the last line. ]

Combining (7.25) with Claim 7.28 and using Proposition 7.22 to deal with the term
|VhSu|§, of (7.25), all in all, we end up with the following differential inequality satisfied
by |Vh5u|,2“:

Apy xIVsuly = 2[Hess; )7+ C 71 Vulf
C
— —([Hessn, ()l + V" uli, )V ul,.
Next, upon applying Young’s inequality, we derive that, on the set {r > R} for some R > 0
with W C {r < R} chosen sufficiently large,

1
(7.26) Apy x| VPl = EC—1|V’1m|§s.

Now, Lemma 7.2 ensures that f(;ﬂ for B > 0 satisfies outside a sufficiently large uniform
compact set of M the differential inequality

A x Joib = =BIoP 7 (Bngx for — (B + DIXT 1)
= B(2for = X 05 + B+ DIX[} 15.") fP7
<281+ Cf 0 15 <3817
for some uniform positive constant C. Here we have used Proposition 7.5 in the last line
to bound —X - ¥ uniformly from above. We have also used (7.20) from Proposition 7.23
to bound |X|%S from above, since 2|X|ZS =2X - fo, =2X-f+X-X -0 =r>+0(r),
where O(-) is uniform in s € [0, 1]. Recalling (7.26), one can then use f,,” for some f > 0

to be specified as a barrier function. Indeed, if A > 0, then outside a sufficiently large compact
subset of M, we have that

_ I _ _
(7.27) A x (V' ulf = AP = SCT VRl — AfP)

whenever 68 < C~!. The maximum principle applied to (7.27) now yields the desired esti-
mate. |
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This leads to the following weighted estimate.

Corollary 7.29. Let (V5)o<s<1 be a path of solutions in R & Cf}?ﬂ (M) to (x*g) and let
C, Ry, and € > 0 be as in Proposition 7.27. Then, for all s € [0, 1], there exists 9° € R such
that

C
|95 — 0] + | X - O] + |VEDy|g < F 7 > Ro.

Proof. First observe that, since X = V& f, for any vector field Y on M, we have that
g(VE(X - 95).Y) = Hessg (f)(VEDs. ) + Hessg (95)(X. Y)
1
= S(£x8)(V¥ 9. ¥) + Hessy (B5)(X. V).
In particular, upon setting ¥ := V&4, using the J X -invariance of 95 and the fact that
X
5 |VE 9|2 = Hessg (95)(X, VED)
and %Jix g = gc on M \ W, we see that, on this set,

X
g(VE(X - 05). VEDs) = [V 055 + = IVE 0l

X
=712 |X 0P Hr 2 TX 052+ - |VEY
S —3

C X 5
Er_2+3'|vgﬁs| )

2
r

where we have also used the boundedness of | X - 5| given by Propositions 7.5 and 7.20 in the
last line. Therefore by Young’s inequality together with Proposition 7.27, we find that

X C
5 VEDlg = —|VE(X - 09)lg [ VEDslg —

C C
> —r7|vg19s|g )
C C
L VEYE
z 26 v ﬁs|g pmin{2¢,2}°

where C is a positive constant that may vary from line to line. The previous differential
inequality can be reformulated as follows:

Ce=Cr™

—Cr=2%1gg 9 |2 _
or(e [VEDslg) = 14min{2¢,2} °

Integrating from r to r = 400 and using the assumption that the covariant derivatives of
decay to 0 at infinity, we subsequently deduce that

—Cr—2¢ 2 oo —1-min{2¢,2} —Cs—2¢
0<e [VEYs|z < C s e ds
r
so that

+oo
—2¢ 11— _ —2¢ —mi —2¢
0< |Vgﬁs|§ < CeCr s 1 mm{2€,2}e Cs ds <Cr m1n{28,2}€Cr )
d 1
=<

—2¢e . . . . . —mi
As €77 is bounded at infinity, we arrive at the estimate |V 9| g <Cr minge, 1}
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Next note from the mean value theorem on D that, at height r,

C
(7.28) ds(r,-) —][ z9s(r,-)a);’)_1 < sup |V&d|, diamg D < -,
D Dx{r} r
and thanks to Proposition 7.27 that
n—1 c
(7.29) X 050, )=+ X -9(r,-)op | < —.
D ré

These inequalities we will make use of later.
Linearising (x ) around the background metric g on M \ W, we can write

1 u
(7.30) Ag,Xﬁszf [ 000s|; drdu, hgr:=(1—1)g+ hs.
s Jo s

Integrating over D x {r} then yields the equation

AC,Xﬁs(V)Z// / |aaz9s|§ drdua)}’)_l,
DJo Jo =T

where we recall that
T5(r) = f Dy(r, YL
Dx{r}

By Corollary 7.22, we therefore have that
(7.31) 0<AcxDs(r)<C /D|iaéﬁs|§,w;3—l

for some uniform constant C > 0.

Now, since VEX = V&2 f = g, one gets the following pointwise estimate obtained
by considering an orthonormal frame of the form X, r Y IX, (e, J €i)1<i<n—1), Where
(ei, Je;)1<i<n—1 is an orthonormal frame with respect to gp:

10095 |2 < C|VE20,]2 < C(r2|VE(X - D)2 + r 2| VEG|Z + [VEP20)2 )

for some uniform positive constant C. Integrating over D, using integration by parts together
with Proposition 7.27, we next derive that

(7.32) / i00dsF o) ! < 4f+2 + / IVED29 |2 Wit
D r D
Now, by Bochner formula applied to (D, gp) and the function 5, we have that
(7.33) Ap|VEP |2 | = 2|VEP2Y|2 |+ 2Ric(gp)(VEP ¥y, VEL U)
+ 2gp(VEPL Ap v, VEL ¥y)
> 2|VEP2|2 | 4 2gp(VEP Ap iy, VEP D),

where we have used that gp has non-negative Ricci curvature. (Ricci curvature bounded from
below would be enough to complete the argument thanks to the decay on the gradient of ¥ that
we have just proved above.) Integrating (7.33) on D and noticing that Ap s = 2try,, (i 000;)
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then leads to the bound

(7.34) /D|VgD’219s|§Dw7)‘1 5/Dlvf”[’Az>15‘slgpIVg"ﬁsIngE'f1

_ C
< C sup |VEP(i00Vs)lg, |VEP Dslep < —,
Dx{r} r

where C denotes a uniform positive constant that may vary from line to line. Here we have
used Proposition 7.23 and the decay on the gradient of 5 previously proved in the last line.
Combining (7.31), (7.32), and (7.34), we can now infer that

— C
0<AcxVs(r) < prre) + pre
We then have that

3 2
0<—(e 2X-05)<Crli e 7
or

After integrating this differential inequality from r to r = +o00, we find that
+Oo S2 I"2 -
—c/ s178e™ T ds <em 2 X -05(r) <
r

Now, fr+°° sl_ge_% ds < C r_se_% for r large enough, which can be proved using inte-
gration by parts. In particular, we have that —Cr~¢ < X - ¥4(r) < 0. Integrating once more
yields the existence of a constant #J° € R such that 9° < I(r) < U¥3° + Cr~*. The triangle
inequality applied to the oscillation estimates (7.28) and (7.29) then imply the desired estimates
for ¥y and X - vy, respectively. m]

As an intermediate step, we obtain a first rough decay estimate of the difference between
the background metric and the metric resulting from the solution to (). More precisely, we
have the following corollary.

Corollary 7.30. Let (O5)o<s<1 be a path of solutions in R & Cy. B(M) to (xxs). If
a € (0, 2) then there exist C > 0 and € > 0 such that, for all s € [0, 1],

| /% - 1099, llce < C.
Proof. 1t suffices to prove this estimate outside a compact set W such that wgy = @ on
M \ W. To this end, let x € M \ W and choose normal holomorphic coordinates in a ball

Bg (x, 1) for some ¢ > 0 uniform in x € M. Let g denote the components of the inverse of
the Kihler metric associated to w + i90(t ;) in these coordinates and set

1
ij._ iy
a .—/ gﬂ%df'
0
Then we have that

1:193 _{_
0—10g( ——19—/ )dr 2 Dy
1
- . X
= (/0 gijﬁvdf)ala]_ﬁs__'ﬁs :aljaiajﬁs_g'ﬁs.

Now, by Corollary 7.24, ||a’/ |02« is uniformly bounded from above and a'l > A71817 on
Bg (x, 1) for some uniform constant A > 0. Therefore, by considering - X . 9, as a source term,
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the Schauder estimates imply that

195 — 0% lc220 (B, (x,0/2)) < CUIX - Fsllco2e (B, (x,00) + 105 — P57 cOBe(x,0))
<Cf(x)2

for some uniform positive constant C = C(n, &, ). Here we have used Proposition 7.27 and
Corollary 7.29 in the last line. The desired rough a priori decay estimate on 00V and its
Holder semi-norm now follow. O

The next result proves a sharp decay at infinity on the C °-norm of the difference between
a solution to (x*4) and its limit at infinity.

Theorem 7.31. Let (95)o<s<1 be a path of solutions in R & C;?B (M) to (%xg). Then
there exist Ry > 0 and C > 0 such that, for s € [0, 1],

C
|19S_19_S?o|§_’ fZRO,
f2
where ¥3° € R is as in Corollary 7.29 and B is as in Theorem A (v). Moreover, there exists
C > 0 such that ||19s||i))2(s%°‘ <C.

Proof. Linearising (x*4) around g outside a compact set to obtain (7.30) and using the
uniform equivalence of the metrics /s and g given by Corollary 7.22 together with the bounds
of Corollary 7.30, we obtain the improved estimate

0<Agxd <Cr 2.

Akin to the proof of Claims 6.8 and 6.9, one estimates X 19_3 and U — ﬁ_s separately. Esti-
mating the former can be reduced to an ODE which gives X - 95 = O(r~2¢) uniformly in
s € [0, 1], and by integrating from r to r = 400, we obtain ¥y — B#° = O(r—2%). The lat-
ter estimate uses the Poincaré inequality on D endowed with its metric gp. By assumption,
AP > B > 0 is the first non-zero eigenvalue of the spectrum of the Laplacian on D, and so
one has that 95 — 95 = O(r~™A:2¢}) Combining these two estimates, one arrives at the fact
that ¥y — 93° = O(r—min{B.2¢}) " \which is a strict improvement of Corollary 7.29, provided
that e < .

Next, invoking local parabolic Schauder estimates established in [(6.10), Claim 6.7] with
k = 0 applied to the linearisation of (x*g) around the background metric g outside a compact
set as in (7.30) yields the existence of a positive constant C such that, for R > Ry,

|05 — ﬁsoo”C;%ﬁ?nw,zs}

< CI0s = 0N ey + 11000slIco22 11000 co¢r>R)) + C(R)
<C|vs — 1950||C§mn{mg) + C||vs — 19“?0”C)%ﬁﬁw,zg}R_min{ﬂ’zs} + C(R),

where we have invoked local uniform estimates given by Propositions 7.21 and 7.23. By
choosing R large enough and absorbing the relevant terms, one finds in particular that

o0
195 =07 e 2 p 00 = €

for some uniform positive constant C . This implies that |i 90| g = O (r—min{B.2e})
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By iterating the previous steps a finite number of times, the decay on ¥, is multiplied
by 2 with each iteration until it eventually reaches the threshold decay r8. O

We now present the weighted C#-estimate.

Proposition 7.32 (Weighted C*# a priori estimate). Let (J5)o<s<1 be a path of solutions
inR ® C;?ﬁ (M) to (xxg). If a € (0, %), then there exists C > 0 such that, for all s € [0, 1],

(7.35) 1% = 95 llcg2e < C.

Proof. In order to prove the a priori bound on the C;}’%o‘—norm of ¥y — U¥&°, we first
establish the following uniform decay on the third derivatives of s — #2°.

Claim 7.33. There exists C > 0 such that, for all s € [0, 1],
g
IVEsllcz2e < C.
In particular,

_ C
V&390, < —.
B

Proof of Claim 7.33. 'We differentiate the linearisation of (x*) around the background
metric g outside a compact set as given in (7.30) to get schematically, on {r > R} with R
sufficiently large,

Ag.x (VEDs) = VEG; + Q (0005, VEIT;),
(7.36) 100995, VE0Us)llcg2e < C[[VE00Us [l 9210005 | co2e(r> gy

A

C _
P IVE 0095 | .20

Here we have used Theorem 7.31 in the last inequality. In particular, as in the proof of Theo-
rem 7.31, by choosing R large enough and absorbing the nonlinear term on the right-hand side
of (7.36), thanks to Proposition 7.26 together with Theorem 7.31, one is led to the bound

V€05l cz0 < C.
In particular, the desired decay on |V8301;| ¢ holds true. O
By Proposition 7.26, in order to establish (7.35), it suffices to estimate the C}%’g"‘—norm
of the right-hand side of the linearisation of () around the background metric g as given
in (7.30) once it is localised on {r > R} for R sufficiently large. As in the proof of Claim 7.33,

the linearisation of (x*g) around the background metric g outside a compact set as given
in (7.30) gives schematically, on {r > R},

Ag xPs = Q(30%),
1039l cz2x = CUI9s — 9N g220 + 19095230 19095l coar )
+ (V8 000; || c-2¢ [ V¥ 90s]| cogr> k)
< C(1+ R7P|9s =9 caze + (195 — 3% c220 ]| V203 | cor> )
< C(L+ RP|95 — 0l caze)
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for some positive uniform constant that may vary from line to line. Here we have used Theo-
rem 7.31 in the second and third inequalities together with Claim 7.33 in the last inequality. In
particular, Theorem 6.3 applied to ¢y — ¥° and k = 2 and « € (0, %) gives for some constant
C independent of R the following bound:

195 — 9% llcaze < C(R) + CRP 9 — 9% e

This yields the expected a priori estimate after absorbing the last term on the right-hand side of
the previous estimates into the left-hand side. |

The next proposition gives the a priori higher-order weighted estimates. Since its proof
is along the same lines as that of Proposition 7.32, we omit it.

Propos1t10n 7.34 (Higher-order weighted estimates). Let (J5)o<s<1 be a path of solu-
tions in R & C2 52 20l(M) to (xxg) fork > 1. If o € (0, %) and if there exists Cy o > 0 such
that, for all s € [0 1],

191934220 < Cra

then there exists Cy 1 4 > 0 such that, for all s € [0, 1],

9]l p2t+ 4220 < Cp 1.0

7.9. Completion of the proof of Theorem A (v). We finally prove Theorem A (v). Set
= {s €[0,1] | there exists Ys € My g (M) satisfying (xs)}.

Note that S # @ since 0 € S (take Yo = 0).

We first claim that S is open. Indeed, this follows from Theorem 6.12: if s¢ € S, then
by Theorem 6.12, there exists g9 > 0 such that, for all s € (s — €9, So + €0), there exists
a solution Y5 € M4 2"‘(M) to (xg) with data Fy € (‘(‘32 2"‘(M))a, o- Since the data Fj lies in
o574 (M), Theorem 6 12 ensures that, for each s in this 1nterval Vs € MY p(M). It follows
that (so — €0, S0 + €9) N [0,1] C S.

We next claim that S is closed. To see this, take a sequence (sx)x>o in S converging
to some Soo € S. Then, for Fy := Fy,, k > 0, the corresponding solutions 5, =: ¥, k > 0,
of (xy) satisfy

(7.37) (@ + 100y )" = eFxktTVign | >0,

It is straightforward to check that the sequence (F ) > is uniformly bounded in o2 %"‘ (M). As
a consequence, the sequence (Y )x>o is uniformly bounded in <M4 2a (M ) by Pr0p0s1t10n 7.32.
Indeed, recall the correspondence between solutions of (x) and (* * s) Y is a solution to (*g)
if and only if ¥y, = Y5, — Py, is a solution to (). The Arzela—Ascoli theorem therefore
allows us to pull out a subsequence of (Y )k>o that converges to some Voo € Clﬁcz"‘ (M),
@' € (0,a). As (Vx>0 is uniformly bounded in My 2"‘(M) Yoo will also lie in M2 5 (M).
We need to show that (w + i90Ys0)(x) > 0 at every pomt X € M. For this, it sufﬁces to show
that (@ + i90¥w0)" (x) > 0 for every x € M. This is seen to hold true by letting k tend to +o00
(up to a subsequence) in (7.37). The fact that Yo, € MS}O g (M) follows from Proposition 7.34.

Finally, as an open and closed non-empty subset of [0, 1], connectedness of [0, 1] implies
that S = [0, 1]. This completes the proof of the Theorem A (v).
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