EXPLICIT MINIMAL EMBEDDED RESOLUTIONS OF DIVISORS ON
MODELS OF THE PROJECTIVE LINE

ANDREW OBUS AND PADMAVATHI SRINIVASAN

ABSTRACT. Let K be a discretely valued field with ring of integers O with perfect residue
field. Let K(z) be the rational function field in one variable. Let Py, be the standard
smooth model of PL with coordinate z. Let f(z) € Ok[z] be a squarefree polynomial
with corresponding divisor of zeroes divg(f) on IF’}QK. We give an explicit description of the
minimal embedded resolution Y of the pair (P¢, ,divo(f)) by using Mac Lane’s theory to
write down the discrete valuations on K () corresponding to the irreducible components of
the special fiber of ).

1. INTRODUCTION

Let K be a discretely valued field with ring of integers Og with perfect residue field. Let
K (x) be the rational function field in one variable. Let P, = be the standard smooth model
of Pk with coordinate x. Let f(z) € Ok[z] with corresponding divisor of zeroes divy(f) on
P, - A minimal embedded resolution of the pair (P, divo(f)) is a regular model Y of Py
with a birational morphism 7: Y — P, such that the strict transform of divy(f) is regular,
and such that any other modification n’: )’ — IP%K with ) regular and the strict transform

of divy(f) regular factors uniquely as Y — Y = ]P’}gK.l The main result of this paper is the
following theorem (See Theorem 4.3 for a more precise statement, with notation as defined
in Notation 3.9. Also see the last paragraph of §1.1.)

Theorem 1.1. Let f € Okl[z] be a squarefree polynomial. There is an explicit description
of the minimal embedded resolution Y of the pair (Pg,_,divo(f)) when deg(f) > 2°. More
specifically, we write down the discrete valuations on K(x) corresponding to the irreducible
components of the special fiber of ).

Remark 1.2. This minimal embedded resolution is a key technical input to [OS19b], where
it is used to help prove a conductor-discriminant inequality for hyperelliptic curves in residue
characteristic # 2, as we now describe.

It is well-known that an algorithm for strong embedded resolution of singularities in di-
mension n — 1 gives rise to an algorithm for resolution of singularities in dimension n.
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INote that such a resolution exists only when f is squarefree.

2When deg(f) = 1, the divisor divo(f) is already regular on the standard model P, -
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The motivation for the current paper is to explicitly understand regular models of cyclic
covers of P}, branched at divy(f) by explicitly constructing embedded resolutions of pairs
(Py,., divo(f)) first. The eventual goal of these constructions is to give an upper bound on
the number of components in the exceptional fiber of such a resolution; see [OS19b] for an
application to proving conductor-discriminant inequalities for degree 2 covers of Pi, and
forthcoming work of the authors for higher degree cyclic covers. We do so by capitalizing on
the recent revival in [Riit14, OW18] of explicit descriptions of normal and regular models of
P, using descriptions of valuations of K (z) (now called “Mac Lane valuations”) going back
to Mac Lane [Mac36].

In [Riit14, Proposition 3.4], Riith shows that normal models of P} are in bijection with
non-empty finite collections of discrete valuations on K (x) (extending the given valuation
on K) whose residue fields have transcendence degree 1 over the residue field of K. Over
algebraically closed fields, it is known that analogous valuations with value group Q on
the rational function field can be constructed from supremum norms on non-archimedean
disks. Over non-algebraically closed discretely valued fields, Riith ([Riit14, Proposition 4.56],
restated in Proposition 2.4) shows that there is a similar description of valuations in terms
of “diskoids”, which are Galois stable collections of non-archimedean disks defined over the
algebraic closure. In fact, he shows that these diskoids can be explicitly described by giving
a certain sequence of polynomials ¢; in K|[z] of increasing degree (whose roots correspond
to the “centers” of a nested sequence of diskoids) and a corresponding sequence of rational
numbers \; (“radii” of the diskoids) — such a description goes back to Mac Lane [Mac36]
from 1936. These ¢; can be thought of as successive lower degree approximations to the
roots of a polynomial f € Ok|x], and each rational number )\; is simply v (¢;(a)) for any
root a of f (Corollary 2.8). Using successive ¢;-adic expansions, one can easily compute
the valuation of any given polynomial from this description, by a procedure analogous to
the computation of the Gauss valuation; see the discussion surrounding (2.1). Mac Lane
valuations have been implemented in Sage in [Riit]. In [OW18, Theorem 7.8| (restated here
in Proposition 3.10), the authors describe the minimal regular resolution of a model of Pk
with irreducible special fiber corresponding to a valuation v, using the same polynomials ;
that show up in the description of v, and natural Farey paths between successive \;.

The bulk of the paper is devoted to proving Theorem 4.3, which is Theorem 1.1 in the
case where f is monic and irreducible and the residue field k is algebraically closed. The
general result can easily be derived from Theorem 4.3; see Remarks 5.17 and 5.18. So for the
rest of the introduction, assume f is monic and irreducible and k is algebraically closed. To
each such f € Og|[z], there is a canonical diskoid centered about the roots of f giving rise
to a valuation vy on K (x) (§4.1). By Riith’s correspondence, this valuation v; corresponds
to a normal model of P}, with irreducible special fiber, which we will call the v;-model.
By vg-component, we mean the strict transform of the special fiber of the vy-model in any
model that dominates it. In what follows, we use divy(f) to mean the zero divisor of f on
any model of P}; the model will be clear from context.

Concurrent to our work in [OS19a] (an earlier version of [OS19b]), in [KW20, Theo-
rem 3.16], the authors also noted that divy(f) is a normal crossings divisor on the minimal
regular resolution y;;j,g of the vy-model ,,, which implies that the minimal regular model

Y, dominating ;¢ and Pp,_ is an embedded resolution of (P, divo(f)). However, V7%



is never the minimal embedded resolution of the pair (P, ,divo(f)). In fact, for the ap-
plications to regular models of hyperelliptic curves, we are sometimes forced to work with
(regular) contractions of Y% where the strict transform of divo(f) is also regular. Deter-
mining whether the horizontal part of divy(f) remains regular on these contractions can be
challenging because it might specialize to a node.

The two main insights of this paper are the following. First, using the machinery of Mac
Lane valuations, it is possible to explicitly modify f to write down a rational function g that
cuts out the unique irreducible horizontal divisor in divy(f) on natural contractions of J,’%.
Note that checking regularity of divy(g) at its unique closed point y is equivalent to checking
whether ¢ is in the square of the maximal ideal at y. This is hard to check directly since
this local ring is 2-dimensional. The second main insight is to use the p,-adic® expansion
of f to write down an analogous explicit decomposition g = > . ¢;. The terms g; in this
decomposition vanish along vertical components through the closed point y (a computation
back in a 1-dimensional local ring), even though ¢ itself does not, and we can exploit the
orders of vanishing to determine when ¢ is in the square of the maximal ideal. It turns out
that the Mac Lane descriptions of vertical components are tailor-made for computing orders
of vanishing of functions along these components!

Our main theorem shows that quite often it is possible to contract entire tails in the dual
graph of 2?%0 and in fact, the minimal embedded resolution we are after is the minimal
regular resolution of one of two neighbouring components of the vs-component in the dual
graph of yij%. We do not see any way to deduce our main theorem directly from [KW20,

Theorem 3.16].

1.1. Outline of the paper. In §2, we introduce Mac Lane valuations. As we have men-
tioned, a normal model of P%- corresponds to a finite set of Mac Lane valuations, one valuation
for each irreducible component of the special fiber. Mac Lane valuations are also in one-to-
one correspondence with diskoids, which are Galois orbits of rigid-analytic disks in ]P)lf. We
will use the diskoid perspective often, and it is introduced in in §2.2.

In §3, we prove several results about the correspondence between Mac Lane valuations
and normal models of P}.. For instance, if ) is a normal model of P}, with special fiber
consisting of several irreducible components, each corresponding to a Mac Lane valuation,
results in §3 can be used to determine which irreducible component a point of P1 specializes
to. After this, we cite a result (Proposition 3.10) from [OW18] giving an explicit criterion
for when a normal model of Pk is regular. More specifically, using that Mac Lane valuations
correspond to normal models of Pk with irreducible special fiber, Proposition 3.10 takes a
Mac Lane valuation as input and gives the minimal regular resolution of the corresponding
normal model as output (as a finite set of Mac Lane valuations, of course)!

In §4, we first define the canonical valuation vy associated to a polynomial f. The minimal
embedded resolution of the pair (Pf,, ,divo(f)) is a certain contraction of V0. So we are
lead to an analysis of regularity of the strict transform of divy(f), which we will henceforth

call D, on natural contractions of y;j%o. To this end, in §4 we first define three types of

regular models of PL that can arise as contractions of ;jgo. Viewing these contractions as a

sequence of closed point blow-downs, a short argument shows that if we want the blow-down
to stay regular and dominate P} > there is a unique component that can be blown down at

3Here ¢,, is the last polynomial that shows up in the Mac Lane description of vy
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every stage (for instance, the vs-component is the only —1-component that can be blown
down in the model Y% by the minimality of the construction of ¥,7%). As we proceed
through this natural sequence of blow-downs, we first go through a sequence of models we
call “Type I” models. If D stays regular on all Type I regular blow-downs of ij%o, we then
move on to the “Type II” models. We continue contracting in this way, and after the Type
IT models, naturally comes the unique “Type III” model. (See Definition 4.8.)

In §5, we run thus argument. The crux is to show that D is not regular on the unique
Type III model (Proposition 5.13), and we use this to show that the minimal embedded
resolution of D must be a special Type I or a Type II model (Corollary 5.14). We then show
that if D is regular on a Type I or Type II model, then the model must include a component
corresponding to one of two additional canonical valuations attached to the polynomial f,
denoted v}, v; (Proposition 5.15) — these turn out to be neighbouring valuations to vy in
the dual graph of y;j%o. The technical lemmas needed for these regularity arguments use
an analysis of valuations of individual terms in the ¢,-adic expansion of f along wvertical
components of these models (Lemma 5.7 for the unique Type III model, and Lemma 5.5
for Type I and Type II models). The Mac Lane machinery for describing these vertical
components is perfectly equipped for carrying out such calculations. Finally, in Theorem 4.3,
we show that the minimal embedded resolution of the pair (g, ,divo(f)) is the minimal

regular model dominating P}QK and either the vj-model or the v;ﬁ—model.

NOTATION AND CONVENTIONS

Throughout, K is a Henselian field with respect to a discrete valuation vg. In much of
the paper (§2.3, §3, §4, and all of §5 until the very end) we will further assume that the
residue field k of K is algebraically closed, but this will be noted specifically and is not a
running assumption for the paper. We denote an algebraic closure of K by K. We fix a
uniformizer g of vix and normalize vi so that vg(mgx) = 1. Note that the valuation vy
uniquely extends to a valuation on K, which we also call v.

For an integral K-scheme or Og-scheme S, we denote the corresponding function field by
K(S). If Y — Ok is an arithmetic surface, an irreducible codimension 1 subscheme of )
is called vertical if it lies in a fiber of Y — Op, and horizontal otherwise. Let f € K()).
We denote the divisor of zeroes of f by divg(f). For any discrete valuation v, we denote the
corresponding value group by I',. If P is a closed point on ), we denote the corresponding
local ring by Oy p and maximal ideal by my p.

Throughout this paper, we fix a system of homogeneous coordinates Pk = Proj K|[xg, z1],
and x 1= /10 and P, := Proj Ok [z, 11].

All minimal polynomials are assumed to be monic. When we refer to the denominator of
a rational number, we mean the positive denominator when the rational number is expressed
as a reduced fraction.
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2. MAc LANE VALUATIONS

2.1. Definitions and facts. We recall the theory of inductive valuations, which was first
developed by Mac Lane in [Mac36]. We also use the more recent [Rutl4] as a reference.
Inductive valuations give us an explicit way to talk about normal models of P!,

Define a geometric valuation of K(z) to be a discrete valuation that restricts to vx on K
and whose residue field is a finitely generated extension of k with transcendence degree 1.
We place a partial order < on valuations by defining v < w if v(f) < w(f) for all f € K[x].
Let vy be the Gauss valuation on K (z). This is defined on K[z] by vg(ag+ a1z +---aa™) =
ming<;<n Vi (a;), and then extended to K(z).

We consider geometric valuations v such that v > vg. By the triangle inequality, these are
precisely those geometric valuations for which v(z) > 0. This entails no loss of generality,
since x can always be replaced by z7!. We would like an explicit formula for describing
geometric valuations, similar to the formula above for the Gauss valuation, and this is
achieved by the so-called inductive valuations or Mac Lane valuations. Observe that the
Gauss valuation is described using the z-adic expansion of a polynomial. The idea of a Mac
Lane valuation is to “declare” certain polynomials ¢; to have higher valuation than expected,
and then to compute the valuation recursively using ;-adic expansions.

More specifically, if v is a geometric valuation such that v > vy, the concept of a key
polynomial over v is defined in [Mac36, Definition 4.1] (or [Riit14, Definition 4.7]). Key
polynomials are monic polynomials in Og[z] — we do not give a definition, which would
require more terminology than we need to develop, but see Lemmas 2.2 and 2.10 below for
the most useful properties. If p € Og[z] is a key polynomial over v, then for A > v(p), we
define an augmented valuation v = [v,v'(¢) = A] on K[z] by

(2.1) v'(ag + arp+ -+ ap”) = Orgig v(a;) +iA

whenever the a; € K[z] are polynomials with degree less than deg(y). We should think of
this as a “base ¢ expansion”, and of v'(f) as being the minimum valuation of a term in the
base ¢ expansion of f when the valuation of ¢ is declared to be A. By [Mac36, Theorems
4.2, 5.1] (see also [Riit14, Lemmas 4.11, 4.17]), v is in fact a discrete valuation. In fact, the
key polynomials are more or less the polynomials ¢ for which the construction above yields
a discrete valuation for A > v(y). The valuation v extends to K (x).

We extend this notation to write Mac Lane valuations in the following form:

[vo, v1(p1(2)) = A1, . vn(pn()) = An).

Here each ¢;(z) € Oglz] is a key polynomial over v;_;, we have that deg(¢;—1(x)) |
deg(pi(z)), and each \; satisfies A\; > wv;_1(p;(z)). By abuse of notation, we refer to
such a valuation as v, (if we have not given it another name), and we identify v; with
[vo, v1(p1(z)) = A1, ..., vi(pi(x)) = N for each i < n. The valuation v; is called a truncation
of v,. One sees without much difficulty that v, (y;) = A; for all i between 1 and n.

It turns out that the set of Mac Lane valuations on K (x) exactly coincides with the set of
geometric valuations v with v = vy ([FGMN15, Corollary 7.4] and [Mac36, Theorem 8.1], or
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[Riit14, Theorem 4.31]). Furthermore, every Mac Lane valuation is equal to one where the
degrees of the ¢, are strictly increasing ([Mac36, Lemma 15.1] or [Riit14, Remark 4.16]), so
we may and do assume this to be the case for the rest of the paper. This has the consequence
that the number n is well-defined. We call n the inductive valuation length of v. In fact,
by [Mac36, Lemma 15.3] (or [Riit14, Lemma 4.33]), the degrees of the ¢; and the values
of the \; are invariants of v, once we require that they be strictly increasing. If f is a key
polynomial over v = [vg, v1(p1) = A1,..., Uu(@n) = M) and either deg(f) > deg(¢,) or
v = vy, we call f a proper key polynomial over v. By our convention, each (; is a proper key
polynomial over v;_;.

We collect some basic results on Mac Lane valuations and key polynomials that will be
used repeatedly.

Lemma 2.2. Suppose f is a proper key polynomial over v = [vg, v1(p1) = A1, ..., Vu(pn) =
Ao with m > 1. If f = ¢f + ae_ 195 + -+ + ag is the p,-adic expansion of f, then
vplag) = va(pS) = eln, and vy (a;pl) > e, for all i € {1,...,e — 1}. In particular,
un(f) = eAn.

Proof. This follows from [Mac36, Theorem 9.4] (or [Riit14, Lemma 4.19(ii), (iii)]). O

Example 2.3. If K = Frac(W(F3)), then the polynomial f(z) = 2® — 9 is a proper key
polynomial over [vg, vi(z) = 2/3]. In accordance with Lemma 2.2, we have v,(f) = v1(9) =
vi(23) = 3-2/3 = 2. If we extend v; to a valuation [vg, vi(z) = 2/3, va(f(z)) = Ao] with
Ay > 2, then the valuation v, notices “cancellation” in 2% — 9 that v; does not.

2.2. Mac Lane valuations and diskoids. Given ¢ € Oklx] monic, irreducible and A €
Q>0, we define the diskoid D(p,\) with “center” ¢ and radius A to be D(p,\) = {a €
K | vg(p(a)) > A} (we only treat diskoids with non-negative, finite radius in the sense of
[Riit14, Definition 4.40]). By [Riit14, Lemma 4.43|, a diskoid is a union of a disk with all
of its Gal(K /K )-conjugates. Such a diskoid is said to be defined over K, since ¢ € Oklz].
Notice that the larger X is, the smaller the diskoid is. We now state the fundamental
correspondence between Mac Lane valuations and diskoids.

Proposition 2.4 (cf. [Riit14, Theorem 4.56], see also [OW18, Proposition 5.4]). There is a
bijection from the set of diskoids to the set of Mac Lane valuations that sends a diskoid D to

the valuation vp defined by vp(f) = infaep vk (f()). The inverse sends a Mac Lane valua-
tion v = [vg, .., Va(@n) = \| to the diskoid D, defined by D, = D(pn, A\n). Alternatively,

D, ={ae K | vk(f(a)) 2v(f) Vf € Kz},
1s a presentation of D, independent of the description of v as a Mac Lane valuation.
Lastly, if D and D' are diskoids, then D C D' if and only if vp = vp. If v and V' are
Mac Lane valuations, then v = v" if and only if D, C D, .

The following proposition is crucial for our method.

Proposition 2.5. Let o € Oy, and let f € K[z]| be the minimal polynomial for a. Then
there exists a unique Mac Lane valuation vy = [vg, ..., Uy(pn) = ] over which f is a
proper key polynomaial.

Proof. Consider the unique valuation vy, on L := K|[z|/(f) extending vg. This lifts to a
discrete pseudovaluation on K|[z| in the language of [Riit14, §4.6] (a valuation which can
6



take the value co on an ideal, in this case (f)). By [Riit14, Corollary 4.67], it can be written
as a so-called “infinite inductive valuation” [vg, ..., v,(@n) = A\p, Vi1 (f) = o], with f a
proper key polynomial over vf := [vg, ..., vn(¢,) = A,]. This shows the existence of vy.
If f is a proper key polynomial over some other valuation v, then for sufficiently large A,
one can construct inductive valuations vy = [vy, v}(f) = A] and v' = [v, V'(f) = A]. By
Proposition 2.4, these inductive valuations correspond to the same diskoid, and are thus
the same. Applying the “only if” direction of [Riit14, Theorem 4.33] (or [Mac36, Theorem
15.3]) to v and ', and then the “if” direction of the same theorem to vy and v shows that
v = 0. U

To close out §2.2, we prove several results linking Mac Lane valuations evaluated at a
polynomial to the valuation of that polynomial at a particular point.

Definition 2.6 ([Riit14, Definition 4.4, Lemma 4.24]). If v = [vg, v1(p1) = A1, ..., Uu(0n) =
An] is a Mac Lane valuation and f € Klz|, then a v-reciprocal of f is a polynomial " € K|z]
such that v(ff' —1) > 0 and v(f’) = v—1(f") = —v(f).

By [Mac36, Lemma 9.1] (or [Riit14, Lemma 4.24]), any f € K|z] with v(f) = v,_1(f) has
a v-reciprocal. In this case, it is clear from Definition 2.6 that f and f’ being v-reciprocals
is a symmetric relation.

Proposition 2.7. Suppose v = [vg, v1(p1) = A1, ..., Vp(pn) = \u] is @ Mac Lane valuation,
a € D(on, A\n), and g € Klx] such that v(g) = v,—1(g). Then vk(g(a)) = v(g).

Proof. Let D := D(p,, \,,) be the diskoid corresponding to v and let D’ := D(g, vk (g()))
with corresponding valuation v'. These two diskoids share the common element «. By
[Riit14, Lemma 4.44], either D C D’ or D' C D, and then Proposition 2.4 shows that either
v <vorov=<v.

Since a € D, by Proposition 2.4 we have vi(g(a)) > v(g). Suppose vi(g(a)) > v(g).
Since v'(g) = vk (g(a)) by definition, we have v(g) < v'(g). Since either v < v or v <X v/,
it follows that v < v'. Let ¢’ € K[z] be a v-reciprocal of g, i.e., g¢ = 1+ h with v(h) > 0
(¢" exists because v(g) = v,-1(g)). Since v < v/, we have 0 < v(h) < ¢'(h). In particular,
V'(gg9') =v(gg’) =0, s0v'(¢') = —v'(9) < —v(g) = v(¢’). But this contradicts v < v'. O

Corollary 2.8. If f is a key polynomial over v = [vg, v1(p1) = A1, ..., Ua(©n) = ] with
root a € K, then vi(g(a)) = v(g) for all g € Ok[z] of degree less than deg(f). In particular,
vic(pi(a)) = A for all 1 <i <n.

Proof. Consider a Mac Lane valuation wy = [vg, v1(¢1) = M, - .., Un(@n) = Any Un1(f) =
Ant1], with A, yq large. Then v,11(9) = v,(g9) and « € D(f, \n11), so the corollary follows
from Proposition 2.7. 0

2.3. Ramification of Mac Lane valuations. For §2.3, we assume that the residue field
k of K is algebraically closed.

If v and w are two Mac Lane valuations such that the value group I',, contains the value
group I',, we write e(w/v) for the ramification index [I',, : [',].

Remark 2.9. Observe that if [vg, v1(p1) = A1,..., vn(vn) = Ay is a Mac Lane valua-
tion, where each \; = b;/¢; in lowest terms, then the ramification index e(v,/vy) equals
lem(eq, ..., c,). Consequently, e(v;/v;) = lem(cy, ..., ¢)/lem(cy, ..., ¢;) for i > j.
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Lemma 2.10. Suppose f is a proper key polynomial over v = [vy, v1(p1) = A1, ..., Vu(pn) =
Anl-
(i) If n =0, then f is linear. If n > 1, then ¢y is linear. Every monic linear polynomial
in Oklz] is a key polynomial over vy.

(ii) If n =1, then deg(f)/ deg(en) = e(vn/vn-1).

Proof. Part (i) follows from [OW18, Remark 5.2(i)] for n = 0, and then for general n > 1 by
applying the n = 0 case to ¢; and vg. Part (ii) follows from [Mac36, Theorem 12.1] (one can
also use the second equation of [Riit14, Lemma 4.30], where F,, = F,,_; = k, but note that
[Riit14, Lemma 4.30] is incorrect as stated — the expression e(v,,/v,_1) should be replaced

by e(Vm-1/Vm—2))- d

Remark 2.11. The assumption k algebraically closed is required above to apply [OW18,
Remark 5.2(i)] and to assume F,,, = F,,,_; = k in [Riit14, Lemma 4.30].

Corollary 2.12. Let v = [vg, v1(p1) = A1, .., Uu(n) = \u] be a Mac Lane valuation of
inductive valuation length n > 1. Write \; = b;/c; in lowest terms for all i. Let N, =
lem;o, c; if n > 1, and let N, = 1 if n = 1. Then N,, = e(v,_1/vo) = deg(p,), and thus
Lo,y = (1/Nn)Z = (1/ deg(y))Z.

Proof. That deg(yp;) = 1 is Lemma 2.10(i), which proves the corollary when n = 1. By

Remark 2.9, e(vj11/v;)lem(eq, ..., ¢;) = lem(eq, ..., ¢j41). The rest of the corollary follows
from Lemma 2.10(ii) and induction. O
Lemma 2.13. Let [vg, v1(p1) = A1, ..., vn(pn) = ] be a valuation over which f is a proper

key polynomial. Then for 1 <i <mn, we have \; ¢ I',, | = (1/N;)Z.

Proof. If \; € T',,_,, then e(v;/v;_1) = 1. If i = n, applying Lemma 2.10(ii) to v,, contradicts
the fact that deg(f) > deg(y,). For i < n, applying Lemma 2.10(ii) to v; contradicts the
fact that deg(w;11) > deg(y;). O

3. MAC LANE VALUATIONS, NORMAL MODELS AND REGULAR RESOLUTIONS

In §3.1, we prove results on the specialization of horizontal divisors, expressed in terms of
Mac Lane valuations. In §3.2 we recall a result from [OW18], giving a criterion in terms of
Mac Lane valuations for when a model of P}, is regular. Lastly, in §3.3, we discuss valuations
that are in a geometric sense “nearby” to a given Mac Lane valuation in a regular model of
PL.. These valuations will play a crucial role throughout the rest of the paper.

A normal model of P is a flat, normal, proper O-curve with generic fiber isomorphic to
P}. By [Riit14, Corollary 3.18], normal models Y of P}, are in one-to-one correspondence
with non-empty finite collections of geometric valuations, by sending ) to the collection of
geometric valuations corresponding to the local rings at the generic points of the irreducible
components of the special fiber of ). Via this correspondence, the multiplicity of an irre-
ducible component of the special fiber of a normal model Y of P} corresponding to a Mac
Lane valuation v equals e(v/vy).

We say that a normal model of P} includes a Mac Lane valuation v if a component of
the special fiber corresponds to v. If ) includes v, we call the corresponding irreducible
component of its special fiber the v-component of the special fiber of ) (or simply the v-

component of ), even though it is not an irreducible component of )). If S is a finite set
8



of Mac Lane valuations, then the S-model of PL is the normal model including exactly the
valuations in S. If S = {v}, we simply say the v-model instead of the {v}-model. Recall that
we fixed a coordinate z on P, that is, a rational function x on P} such that K (P},) = K(x).

For the remainder of §3, we assume the residue field k of K is algebraically closed, but
the statements above about the correspondence between normal models and collections of
geometric valuations are true without this assumption.

3.1. Specialization of horizontal divisors. Each a € K U {oo} corresponds to a point
of P}(K) given by 2 = «, which lies over a unique closed point of PL. If ) is a normal
model of Pk, the closure of this point in ) is a subscheme that we call D,; note that D,
is a horizontal divisor (the model will be clear from context, so we omit it to lighten the
notation).

If v is a Mac Lane valuation, then the reduced special fiber of the v-model of Pk is
isomorphic to P} (see, e.g., [OW18, Lemma 7.1]). It will be useful to have an explicit
coordinate on this special fiber (that is, a rational function y such that the function field of

the special fiber is k(y)).

Lemma 3.1. Let v = [vg, v1(p1) = A1, ..., Un(n) = An] be a Mac Lane valuation, and let
e = e(vp/vn_1). There exists a monomialt in @1, ..., on_1 such that v(tys) =0, and for any
such t, the restriction of t¢ to the reduced special fiber of the v-model of P} is a coordinate
on the v-component that vanishes at the specialization of ¢, = 0.

Proof. Let O C KJz] be the subring of elements f such that v(f) > 0, and let OF be
the ideal of elements g where v(g) > 0. Let e = e(v,/v,—1). By [Mac36, Theorem 12.1]
(or [Riit14, Lemma 4.29] and the discussion before that lemma), O/O% = k[y], where y is
the image of tp¢ in O/OF, for any ¢t € Klz] with v(t¢%) = 0 and v(t) = v,_1(t) (in the
notation of [Riit14], the example used is t = (S')*). Since v(¢¢) € T, ,, we can take ¢ to
be a monomial in ¢1, ..., @, 1. Since Spec O is an affine open of the v-model with reduced
special fiber Spec O/O" = Spec k[y] = A, C P;, we have that y is a coordinate on the
reduced special fiber of the v-model of P%.. 0

Proposition 3.2. Let v = [vg, v1(p1) = A1, ..., Uu(@n) = An] be a Mac Lane valuation and
let Y be the v-model of Pk.. As a ranges over K, all D, with vi(on(a)) > N, meet on the
special fiber, all D, with vk (p,(a)) < A, meet at a different point on the special fiber, and
no D, with vi(n(a)) # A\, meets any Dg with vi(0n(B)) = An.

Proof. Let Y be the v-model of P}. Using the coordinate y := t¢¢ from Lemma 3.1 on
the reduced special fiber of Y, we will show that all @ € K with vx(p,(a)) < A, specialize
toy = oo, all @ € K with vg(p,(a)) > A, specialize to y = 0 and all @ € K with
vk (pn(@)) = A, specialize to some point y = a with a ¢ {0,00}. We now work out the
details.

Let O C K|[x] be the subring of elements f such that v(f) > 0, and let O be the ideal of
elements g where v(g) > 0. Suppose a € D(p,, A,,). Proposition 2.4 shows that vk (g(«)) > 0

for g € OT, thus evaluating y at « gives a well-defined element of k. Furthermore, y = y(«)
9



is precisely the point where D, meets the special fiber of ). We now compute:
y(a) =0 < vk (t(a)en(@)?) >0
& vk (t(a)en(@)) > v(te;)
& vi(pn(@) > A (. vk(t(a)) = o(t)).
This shows that all D, for which vk (p,(c)) > A, intersect on the special fiber at the point
y = 0, but none of them intersect any Ds for which vk (¢,(8)) = A,. All such Dg intersect
the reduced special fiber A} = Spec k[y] of Spec O at some point where y # 0.

Now let a ¢ D(pn, ). We will show that D, N (Spec O)s is empty by contradiction.
Suppose not. Let P € D, N (Spec O); be a closed point of Spec O. We have a well-defined
element g(P) € k for every g € O coming from evaluating g at P. Since P is the closed point
of D, = Spec A with A C Og(q), it follows that g(a) € Ok (q) and furthermore, g(P) = g(«)
mod mo,. ... We will now construct a g € O with vi(g(a)) < 0, which is a contradiction.

Let b be such that bv(p,) € Z~, and let g := (p%/ﬂ'lg(@"). Then v(g) =0so g € O, but

vi(g(a)) = b(vi (pa(@)) — v(pn)) < 0.
Thus D, does not intersect the special fiber of Spec O, so D, specializes to a point of

Vs \ (Spec O)g, which is the “point at infinity” where y = 0o on the reduced special fiber of
Y. This finishes the proof. 0

Corollary 3.3. Let v = [vg, vi(¢1) = A1, Ualn) = Al be a Mac Lane valuation and
let Y be a normal model of P} including v. If a, 8 € K are such that vi(pn(B)) < A\, <
vk (pn(@)) and vic(©n(B)) # v (on(a)), then D, and Dg do not meet on the special fiber of
V.

Proof. Immediate from Proposition 3.2. U

Corollary 3.4. Letv = [vg, v1(¢1) = A1, - -, Un(n) = An] and v’ = [vg, v1(p1) = A1, ..., UL (¢n) =
N1 be Mac Lane valuations with X, < \,. Let Y be a model of Pk including v and v' on
which the v- and v'-components intersect, say at a point z. Then D, meets z if and only if

N, < vk (pn(@)) < Ap.

Proof. We may assume Y is the {v,v’}-model PL.. Let Y and Y be the v and v/-components
of ), respectively, so that z = Y N Y'. First suppose N < vk(pn(a)) < A,. If D, meets
a point of Y\ 7,, then by Proposition 3.2 applied to the blow down of Y Cy (i.e., the
v-model of PL), all D,, outside of D(¢,,\,) intersect this point on Y C Y. So if we blow
down Y C Y, then all D, for a ¢ D(p,, \,) specialize to the same point. Since we can find
a1, ay € K\ D(pn, An) with vg(gn(aq)) = X, and N, < vk (pn(az)) < A, the previous line
contradicts Proposition 3.2 applied to the v"-model of Pk.. The same argument applied to
the blow down of Y (i.e, the v-model of P%.) yields a contradiction if D, intersects a point
of Y/ \'Y. So D, meets the intersection point z of the two irreducible components of the
special fiber.

Now, suppose vk (¢, (a)) < X.. Fix 8 € K such that X, < vk (¢n(8)) < An. Corollary 3.3
shows that D, and Ds do not meet on the v'-model of P}(, and thus not on )Y either. In
particular, since Dg meets z by the previous paragraph, D, does not. A similar proof works
if v (pn(a)) > A, using the v-model instead of the v’-model. This completes the proof of
the corollary. 0
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3.2. Resolution of singularities on normal models of P!. Let ) be a normal model of
PL.. A minimal reqular resolution of Y is a (proper) regular model Z of P}, with a surjective,
birational morphism 7 : Z — ) such that the special fiber of Z contains no —1-components
([CES03, Definition 2.2.1]). Such minimal regular resolutions exist and are unique, e.g., by
[CES03, Theorem 2.2.2].

In the remainder of §3.2, we recall a fundamental result from [OW18] (which requires k
algebraically closed), expressing minimal regular resolutions of models of PL- with irreducible
special fiber in terms of Mac Lane valuations.

3.2.1. Shortest N-paths. We start by recalling the notion of shortest N-path, introduced in
[OW18].

Definition 3.5. Let N be a natural number, and let a > a’ > 0 be rational numbers. An
N-path from a to @ is a decreasing sequence a = by/co > by/c; > -+ > b, /¢, = a’ of rational
numbers in lowest terms such that

bi b N

ci cip1 lem(N,¢)lem(N, ciyq)

for 0 < ¢ <r — 1. If, in addition, no proper subsequence of by/cy > -+ > b./c, containing
bo/co and b, /c, is an N-path, then the sequence is called the shortest N-path from a to o’

Remark 3.6. By [OW18, Proposition A.14], the shortest N-path from o’ to a exists and is
unique.

Remark 3.7. Observe that two successive entries b;/¢; > b;y1/cip1 of a shortest 1-path
satisfy b;/c; — bip1/civ1 = 1/(ciciy1).

Example 3.8. The sequence 1 > 1/2 > 2/5 > 3/8 > 1/3 > 0 is a concatenation of
the shortest 1-path from 1 to 3/8 with the shortest 1-path from 3/8 to 0. Note that the
denominators increase until 3/8 and then decrease afterwards.

3.2.2. Regular resolutions. The following proposition expresses minimal regular resolutions
in terms of Mac Lane valuations and shortest N-paths. We fix the following notation.

Notation 3.9. If v is a Mac Lane valuation, then ), is the v-model of IP’}(, and Y is its
minimal regular resolution. Furthermore, Y, ¢ is the {vg, v}-model of Py, and Y, § — Vo

is its minimal regular resolution. Observe that if X is the vg-model of Pk, then contracting
reg

the v-component of ), yields a canonical map ywo — X factoring through ), .

Proposition 3.10 ([OW18, Theorem 7.8]). Let v = [vg, v1(¢1) = A1,.. ., Vn(n) = Anl.
For each i, write \; = b;/c; in lowest terms, and let N; = lem;o; ¢; = deg(y;) (Corollary
2.12). Set A\ = | A\1], as well as Ngo = Ny =1 and e(vo/v_1) = 1. Then the minimal regular
resolution V¢ of Y, is the normal model of P}, that includes exactly the following set of
valuations:

e For each 1 < i < n, the valuations

Uix = [Uo, U1(901) =X, Uz’—l(%’-l) = N1, Uz'(%') = )\];

as A ranges through the shortest N;-path from (; to \;, where [3; is the least rational
number greater than or equal to \; in (1/N;)Z =T, ,. In other words, 5 = [N;\;|/N;.
11



’—. ............
(%Y Un—1,1
V1, Un—1,A Un,\
V1,81 Un—1,8n-1 Un, B,

F1GURE 1. The dual graph of the minimal resolution of the v = v,,-model of
PL.. The white vertex corresponds to the strict transform of the v. The vertex
labeled v’ (resp. v”) corresponds to the successor (resp. precursor) valuation
of v, see §3.3.

o for each 0 <1 <n—1, the valuations

Wi\ = [Uo, U1(901) =A,, Uz‘(%) =\, Uz‘+1(<Pz‘+1) = )‘]7

as A ranges through the shortest Niiq-path from X\iy1 to e(vi/vi_1)N\;, excluding the
endpoints.
e The valuation vy := [vg, v1(Y1) = Ao| (which is just vy if Ay < 1).

Remark 3.11. For A = e(v;/v;-1)\;, one sees that w; \ = v;.

Remark 3.12. For v as in Proposition 3.10, consider the set S of valuations included in the
minimal regular resolution ' of the v-model ), of Pk.. Using the partial order < on S, one
constructs a tree whose vertices are the elements of S and where there is an edge between
two vertices w and w’ if and only if w < w’ and there is no w” with w < w” < w’. One can
show that this tree is the dual graph of );* by a repeated application of Proposition 3.2.
This graph is shown in Figure 1.

Corollary 3.13. With the notation of Proposition 3.10, the valuations included in fg
are the valuations included in V¢ as well as vy and the valuations [vy, vi(p1) = A] for
Ae{l,2,...,\o—1}. Equivalently, the valuations included in y;‘fg are ezxactly the valuations
we would get from Proposition 3.10 if we changed our convention from Ao = |A1]| to A\g = 0.

Proof. If Ay = 0, then Y8 includes vy, so V!¢ = y;fg. If \g > 1, then if Z is the normal
model of P} including the valuations included in ) as well as vy, then there may be a
singularity where the components corresponding to vy and [vg, v1(p1) = Ao| cross. Since vy
and [vg, v1(¢1) = 0] are the same valuation, and since A\g > A\g —1 > --- > 1 > 0 is the
shortest 1-path from Ay to 0, [OW18, Corollary 7.5] shows that resolving this singularity
yields exactly the description of J,°§ in the statement of the corollary. The equivalent
description is clear, since \; < 1 is equivalent to Ay = 0. 0
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Proposition 3.14. Let v = [vg, v1(p1) = A1, ..., Uu(n) = Ay] be a Mac Lane valuation.
Let YV, & be the minimal regular resolution of the {v,vo}-model of Pi. If w is a valuation
included in Y, 5, then e(w/vo) < e(v/vg), and furthermore, if e(w/vy) = e(v/vo), then w < v.

Proof. For a contradiction, choose a valuation w such that e(w/vg) is maximal among those
w violating the proposition, and among these choose w such that w is maximal under <.
First observe that, since e(v;/vg) < e(v,/vg) for all i < n and v; < v,, we may assume

(3.15) w #v; for any 4.

Let ¢, be the self-intersection number of the w-component of 'yg‘j;g. Since 'yg‘j;g is the
minimal regular resolution of the Y, ,,-model, and since w ¢ {v,v9} by (3.15), we have
cw # —1, thus ¢, < —2. By standard intersection theory on regular arithmetic surfaces
(e.g., [OW18, (3.4)]), we have

—cpe(w/vg) = Z e(w'/vy),

wl

where the sum is taken over all w’ such that the w’-component intersects the w-component.
Since w # v; for any i by (3.15), Figure 1 shows that there are at most two such w’.

Since —c¢,, > 2 and by assumption e(w/vg) > e(w'/vy) for all w' in the sum, we find that
there are exactly two w’ and e(w’/vy) = e(w/vy) for each of them. By Remark 3.12; one of
the w’ satisfies w < w’. Since w is maximal under <, we conclude that w’ does not violate
the proposition. But w < w’ and e(w/vg) = e(w’/vg) imply that w does not violate the
proposition either, a contradiction. 0

3.3. Valuations related to a given Mac Lane valuation. Let v = [vg, v1(p1) = A1, ..., Un(0n)

An]. Recall that ¢; is the denominator of )\;, when written in lowest terms. Let N, =
lem(cq, ..., ch—1) = deg(p,) (Corollary 2.12). We assume that n > 1 and A\, ¢ T, |, =
(1/N,)Z.

Let ), be the v-model of P}, and let V' be its minimal regular resolution. By Proposition
3.10, the following Mac Lane valuations are included in Y;%:

o v i=w, 1 x = [vo, v1(01) = Ay, Une1(Pno1) = Anets vy, (0n) = N,

o V"= v = [vo, 1(p1) = A1, Va1 (0ne1) = Ao, vn(n) = N,
where X is the entry directly following ), in the shortest N,,-path from A, to e(v,,_1/vn_2)An_1,
and )\ is the entry directly preceeding A, in the shortest N,-path from [N,\,]|/N, to \,.
The valuation v’ (resp. v”) is called the successor (resp. precursor) valuation to v.

In the description of the minimal embedded resolution of an irreducibile horizontal divisor,
we have to analyze various contractions of the model described in Proposition 3.10 (Defini-
tion 4.8, Definition 4.10) and the specializations of horizontal divisors on them (Lemma 4.14).
For this purpose, it is helpful to introduce some convenient notation to refer to certain special
valuations appearing in Proposition 3.10. Let us write

o v = wy_1n = (U0, Vi(P1) = A1, Vo1 (@Pn—1) = A1, U (0n) = AT,

® U 1= vy e = [Ug, V1(01) = A1y Uno1(Pne1) = Anct, U (00) = AT,
where v* (resp. v**) can represent any of the valuations amongst the w,_1  (resp. the v, )
from Proposition 3.10. Later in Definition 4.10, we will specialize to specific choices of v* and
v** depending on which regular model is being considered. In the remainder of this section,

we establish some inequalities bounding A*, \** that are valid for all choices of v*, v**. These
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will then be used in the proof of Lemma 5.5, which is the key technical input for the main
theorem of the paper.

Since A, & (1/N,)Z, we have [N,A,] < N X' < NpA, < N A" < [N\, ], the first
inequality coming from [OW18, Corollaries A.7, A.11]. Write A, (resp N, NN N for
NoAn — [ NoAn] (resp. NN — [ NoA, |, NN — [Nn)\nj, Ny A — | NpA ], N /\** LN Anl)-
Then we obtain

0<N <\, <N <1,

Proposition 3.16. Let e, ¢/, ¢”, ¢*, and e** be the denominators of A, N, N, X, and \**,
respectively.

(i) The number X immediately follows \, in the shortest 1-path from A, to 0.
(ii) The number N immediately preceeds N, in the shortest 1-path from 1 to \,.
(iii) The number X* is on the shortest 1-path from A, to 0.

(iv) The number \** is on the shortest 1-path from 1 to \,.

Proof. By [OW18, Lemma A.7|, N,,\ immediately follows N, \, in the shortest 1-path from
NpA, to Nye(vi/vi—1)An—1, and thus in the shortest 1-path from N,\, to | N, A, | by [OW1S,
Lemma A.11]. Since translating by an integer preserves shortest 1-paths, subtracting | N, A, |
from all entries of these paths yields part (i). Part (ii) follows similarly, using that N,\”
immediately precedes N, A, in the shortest N,-path from [N,\,| to N,A,. The proofs of
parts (iii) and (iv) are essentially the same as the proofs of parts (i) and (ii), respectively. [

Example 3.17. If An = 3/8, we would have X =1/3 and N =2/5 (cf. Example 3.8). We
could take A\* to be 1/3 or 0, and we could take \** to be 2/5, 1/2, or 1.

Corollary 3.18. Let e, €, €”, e*, and e** be as in Proposition 3.16. Then
(i) Au— X = 1/(Nyee').
(ii) A = A, = 1/(Npee”).
(iii) A, — A* > 1/(Nyee®), with equality if and only if \* = X'.
(iv) ™ — X\, > 1/(Nyee*™), with equality if and only if X* = \".

Proof. By Proposition 3.16(i) and the definition of 1-path, A, — X = 1/(e€’), from which
part (i) follows. Part (ii) follows similarly, using Proposition 3.16(ii). To prove part (iii),
note that Proposition 3.16(iii) shows that A* is on the shortest 1-path from A, to 0, but that
A* does not directly follow A, on this path unless \* = X. The definition of shortest 1-paths
shows that A, — \* = 1/ee* if and only if \* = X. Since A, — A\* is a multiple of 1/ee* by
common denominators, part (iii) follows. The proof of part (iv) is exactly the same, using
A*. N’ and Proposition 3.16(iv) instead of A\*; X'; and Proposition 3.16(iii). O

* *

Lemma 3.19. Let v, v/, V", v*, and v** be as above. Ife, €, €", e*, and e** are defined as
in Proposition 3.106, then e = e(v/v,_1), € = e(V'/v,_1), €' = e(V"Jv,_1), € = e(v*[v,_1),
and e** = e(v** Ju,_1).

Proof. By construction, e is the denominator of N, A, (and similarly for €', ¢’ e*, and e**).

By [OW18, Lemma 5.3(ii)], e(v/vg) = lem(N,, ¢,), where ¢, is the denominator of \,. By

[OW18, Lemma A.6], this is equal to N,e. Since N,, = e(v,_1/vg), we have e = e(v/v,_1).

This proves the lemma for e, and the proofs for ¢/, €”, e*, and e** are identical. O
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4. SOME REGULAR MODELS OF P! ATTACHED TO A POLYNOMIAL

Throughout §4, we assume that the residue field k of K is algebraically closed.

Let a € O such that vg(a) > 0 and the minimal polynomial f(z) € K[x] of « has
degree at least 2. In this section, we first define a canonical Mac Lane valuation vy attached
to f. We then define certain natural contractions of the minimal regular resolution of the
ve-model, called “Type I”, “Type II”, or “Type III” models. These are candidate models
for the horizontal divisor D, to be regular on. We prove some technical results about these
three kinds of models. These results will then be used in the next section to show that the
minimal regular model on which D, is regular is a special kind of Type I or Type II model.

4.1. The Mac Lane valuation associated to a polynomial. Write

vr = [vg, vi(p1) = A1, oo, Unlpn) = A

for the unique Mac Lane valuation on K (x) over which f is a proper key polynomial (Propo-
sition 2.5(iv)). As usual, write vg,vy,...,v, = vy for the intermediate valuations. For
1 <i <, write \; = b;/¢; in lowest terms. Let N; = lem(cy, ..., ¢i—1) = deg(y;) (Corollary
2.12). Furthermore, pick once and for all a root « of f.

Remark 4.1. If the roots of f generate a tame extension, it is easy to read off the polyno-
mials ; and integers \; from the truncations of Newton-Puiseux expansions of the roots
of f with respect to some choice of uniformizer ¢, as we now explain. Using Proposi-
tion 2.5(iii), we see that we can take ¢; to be the minimal polynomials of the truncations
of the Newton-Puiseux expansions just before there is a jump in the lem of the denomina-
tors of the exponents in the expansion. If « is a root of f, then Corollary 2.8 shows that
Ai = v (i) = 22, g)=0 Vic (@ — B). 1f deg(p;) = m, then the Galois group of the splitting
field of the tame extension generated by the roots of ¢; is generated by the automorphism
t/m s ¢, tY/™ for a primitive m!™ root of unity (. Since the induced Z/mZ-action on the
roots of ; is transitive, a direct computation then shows that for each root g of ¢;, the
quantity vi (o — ) is equal to one of the the exponents in  where the lem of the denomina-
tors of the exponents jumps. (This is the content of [Sril9, Lemma 8.13] using the language
of characteristic/jump exponents.)

For example, let K = C((¢)) and let f be the minimal polynomial of 2t — /2 4 ¢3/3 —
3t7/2 4+ ¢23/6. Then v has the form

vy = [vo, v1(p1) = A1, v2(02) = A,

and we can take ¢; = 2 — 2t and ¢, to be the minimal polynomial of 2t — /2, with A\; = 5/2
and Ay = 5/2+ 8/3. This example also shows that deg(y;) and the invariants A; contain the
same information as the characteristic exponents of the Newton-Puiseux expansion of a root
of f asin [Sril9, Example 8.13] in the tame case.

For the rest of this section we will use the following notation.

Notation 4.2. Lemma 2.13 implies that we are in the situation of §3.3. Like in §3.3, let
° U} = [vo, v1(1) = A1y o5 Une1(Pn—1) = Anc1, U (n) = N
o 07 = [0, 01(21) = Ats - B 1P 1) = A, 2 (0) = V]

be the successor and precursor valuations to vy, respectively.
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For simplicity, we write e = e(vs/v,_1), € = e(v}/v,-1), and " = e(v}/v,_1). This is
consistent with the notation in Lemma 3.19 and Proposition 3.16. We record for later usage
that e = deg(f)/deg(y,) by Lemma 2.10(ii). With this notation, we are ready to state the
main result of this paper. We postpone the proof to Section 5.

Theorem 4.3. Let f € Oklx| be a monic irreducible polynomial of degree > 2, and let
X be the vyg-model of Pl Let vy be the unique Mac Lane valuation over which f is a key
polynomial, and let vf and v be the valuations defined in Notation 4.2. For any Mac Lane
valuation v, let yreg be deﬁned as in Notation 3.9.

(i) If e(vy/vo) < e(vf/vo), then the minimal embedded resolution of (X,divo(f)) is
c: yreg — X, where c 1s the canonical contraction from Notation 3.9.

(ii) If e(vf/vo) > e(vf/vo), then the minimal embedded resolution of (X,divo(f)) is

c: yrf’,go — X, where c is the canonical contraction from Notation 3.9.

We now give two basic examples illustrating Theorem 4.3.

Example 4.4. If f = 2® — 73, then vy = [vg, v1(2) = 3/8]. As in Example 3.8, the shortest
I-path from 1 to 3/8 is given by 1 > 1/2 > 3/8 and the shortest 1-path from 3/8 to 0 is
given by 3/8 > 1/3 > 0, yielding v} = [vg, vi(z) = 1/3] and v} = [vy, vi(z) = 1/2]. Since
e(v/vo) = 3 and e(v}/vg) = 2, part (ii) of Theorem 4.3 applies, and the minimal embedded
resolution of (X, divg(f)) is yr?,go — X.

reg

Remark 4.5. In Example 4.4, applying Proposition 3.10 shows that ) 1,0 includes the

valuations vy := [vg, vi(x) = A], for A € {0,1/2,1}. In particular, there ex1st A both greater
than and less than 3/8 for which v, is included. By Corollary 3.4, this implies that D,,, for
a a root of f, specializes to the intersection of two components (the ones corresponding to
A =0 and A = 1/2). This property makes yv%o a prototype for what we will call a “Type

I model” in the sequel. In particular, vy/s is one of the v\ and vy is one of the wy y; see
Definition 4.8(i).

Example 4.6. If f is Eisenstein, then vy = [vg, v1(x) = 1/deg(f)]. The shortest 1-path
from 1/deg(f) to 0 is given by 1/deg(f) > 0 and the shortest 1-path from 1 to 1/deg(f)
is given by 1 > 1/2 > --- > 1/(deg(f) — 1) > 1/deg(f). So v} = [vo, v1(z) = 0] = vy, and
vi = [vg, vi(z) = 1/(deg(f) — 1)]. Since e(v}/vg) = 1 and e(v}/vo) = deg(f) — 1, part (i)
of Theorem 4.3 applies, and the minimal embedded resolution of (X, divy(f)) is ;,ego — X.
But yreg = yffo = X, so this recovers the easy-to-verify fact that if « is a root of f, then

v

D, is regular on the vg-model X of PL..

Remark 4.7. In Example 4.6, since y;jzgo = X has irreducible special fiber, D,,, for a a root

of f, specializes to only one irreducible component. This property makes yv},,o a prototype

for what we will call a “Type II model” in the sequel. In particular, vy is one of the wy j;
see Definition 4.8(ii).

4.2. The model Y** and its contractions. As we start contracting components in Vort
to identify the minimal embedded resolution of the the pair (P¢, , divo(f)), we go through

an intermediate sequence of regular models of P} that naturally breaks up into three types
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(Definition 4.8), based on the specialization behaviour of D, (Proposition 4.15). To under-
stand whether D, is regular on these contractions, we also need to understand where some
closely related divisors specialize on each of these three types of models (Corollary 4.16).
The goal of the rest of the subsection is to prove Proposition 4.17, which lets us write down
an explicit function that cuts out the divisor D, on each of these three types of models —
the forms of the explicit functions look different in each of these three cases, hence the sub-
division. In §5 we will finally use these explicit functions to understand the regularity of D,
on each of these three types of models. We will show that the minimal embedded resolution
has to be one of the Type I or Type II models, and D,, is not regular on the unique Type
IIT model.
We use the notation of Proposition 3.10 and Figure 1.

Definition 4.8. Fix f as in this section. The Type I, II, and III models below implicitly
depend on f.
e A Type I model of P}, is any regular contraction of Vys® that includes at least one of
the v, » and one of the w,_ , but does not include vy.
e A Type II model of P is any regular contraction of Vit that does not include vy or
any vy, but does include at least one of the w,,_ x.
e Assuming that V)% includes at least one valuation other than vy, the vy, and the

Wwy,—1 5, we define the Type III model of P} to be the model where the vj-component
is contracted, as well as all the v,y and the w,_1 ).

Remark 4.9. Since v,_; is one of the w,_; ), one sees that the Type III model is the
contraction of the v,_j-component in J;° .

Definition 4.10.
e Given a Type I or Type II model Y, define

U; = [Un—hv;((pn) = /\*] = Wn—1,)%,

where \* is maximal such that w,,_; )+ is included in Y.
e Given a Type I model Y, define

VF = [Uno1, 05 (0n) = A7) = v aer,
where \** is minimal such that v,, y++ is included in Y.
o If v} (resp. v}") is defined, define e* (resp. ™) to be the denominator of N,A* (resp.
N,A**). Note that this notation is consistent with that of Proposition 3.16.

e Given a Type III model ), define v/,_; and v!_; to be the successor and precursor
valuations to v,_1, respectively.

Remark 4.11. Note that the v} and v}*-components of Pl intersect using Proposition 3.10
and Remark 3.12.

Remark 4.12. By Lemma 3.19, ¢* = e(v}/v,_1) and ™ = e(v}* /vn1).
4.2.1. Specializations of horizontal divisors.

Lemma 4.13. On the model y;;;g the only component of the special fiber that D, meets is
the vy-component.
17



Proof. The multiplicity of the vp-component of V8 in the special fiber is e(vy, /vn—1)€e(vn—1/vo).
But e(v,/v,_1) = deg(f)/deg(p,) by Lemma 2.10(ii) and e(v,_1/vg) = deg(p,) by Corol-
lary 2.12. So the multiplicity is equal to deg(f).

By Proposition 2.8, vs(¢n(®)) = An. So by [OW18, Lemma 7.3(iii)] and Proposition 3.2,
D, intersects a regular point z on the vs;-model of P}, which is also a smooth point of
the reduced special fiber by [OW18, Lemma 7.1]. By the previous line, we conclude that
the point z is not part of the base locus of the projection J/};jg — Vu;, and this proves the
lemma. 0

Lemma 4.14. Let y be a point on the vs-component of y;;g.

(i) Suppose Y is a Type I model, and T: y;jg — Y 1is the standard contraction. Then
7(y) lies on the intersection of the vy~ and vi*-components of V.
(ii) Suppose Y is a Type II model, and T: y;;g — Y is the standard contraction. Then
7(y) lies only on the vi-component of J).
(iii) Suppose Y is the Type III model, and T: y;;g — Y is the standard contraction. Then

/
n—1"

Proof. This follows from Remark 3.12 and Figure 1. U

7(y) lies on the intersection of the v and v}, -components of ).

Proposition 4.15. Let o, f, vy, v}, 03, v, and v, be as in this section.

(i) If Y is a Type I model of P, then the divisor D, on ) meets the intersection of the
two components of the special fiber corresponding to v} and v§*.

(i) If Y is a Type II model of PL., then the divisor D, on ) intersects only the V-
component of the special fiber.
(iii) If Y is the Type III model of P}, then the divisor D, on Y meets the intersection of

the two components of the special fiber corresponding to v),_, and v)_,.

Proof. By Lemma 4.13, D, meets the special fiber of Vot only on the vs-component. Parts
(i), (ii), and (iii) of the proposition now follow from the respective parts of Lemma 4.14. [

Corollary 4.16. Let Y be a Type I or Type II model of Pk-. Let a,, be a root of p,,.

(i) Suppose B € K has degree less than deg(p,) over K. Then D, and Dg do not meet
on the special fiber of ).
(ii) If Y is Type I, then D, and D,, do not meet on the special fiber of Y.
(i) If Y is Type 11 or Type III, then D, and D,, meet on the special fiber of ).

Proof. By Proposition 4.15, D, specializes to the vj-component of the special fiber of J. By
Corollary 2.12 and Lemma 3.19, the multiplicity of this component is N,e* = deg(¢p,)e* >
deg(¢y). So by [LL99, Lemma 5.1(a)], Ds does not specialize to this component. This proves
part (i).

To prove part (ii), assume ) is Type 1. Note that «,, is a root of ¢,,, we have vi (v, (a,)) =
00, which does not lie between A* and A**. As a consequence, Corollary 3.4 and Proposi-
tion 4.15(i) show that D, does not meet D, on the special fiber of ).

To prove part (iii), it suffices to assume ) is Type II, since a Type III model is a contraction
of a Type II model. Since both vi(p,()) = A, and vi(on(ay,)) = oo are greater than \*,
Proposition 3.2 shows that they meet on the special fiber of the v;-model of PL.. This point is
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not a base point of the contraction ) — yv;, because that would violate Proposition 4.15(ii).
Thus, D, and D,, meet on ). ]

4.2.2. The final result of this section, Proposition 4.17, shows how to appropriately modify
the function f to make a function that precisely cuts out the divisor D, on each of the three
types of models —

Proposition 4.17. Let Y be a Type I, Type II, or Type III model of P}, and let v} and vy
be defined accordingly.
(i) If Y is Type I, the quantity b := e(N, — A*) /(A — X*) is an integer. Furthermore,
there exists a monomial s in @1, ...,pn_1 over K such that the divisor D, s locally
cut out by sf /b
(ii) If Y is Type I, there exists a monomialt in 1, ..., p,_1 such the divisor D, is locally
cut out by sf, where s = t°.
(iii) If Y is Type III, then there exists s € K(x) such that the divisor D, is locally cut
out by sf, and such that the support of s is locally (near D, ) contained in the special

fiber of Y.

Remark 4.18. Since ¢1,...,p,—1 all have degree lower than deg(y,), Corollary 4.16(i)
shows that the support of s is locally (near D, ) contained in the special fiber of ) in parts
(i) and (ii), as well as part (iii).

To prove Proposition 4.17, we first need to compute the orders of vanishing of various
auxiliary functions that will be used to modify the function f along vertical components of
Type I, II, and IIT models. This is accomplished in Lemma 4.19. The proof also needs two
other short lemmas (Lemma 4.20 and Lemma 4.21).

Lemma 4.19. Let f = ¢ + ac 101 + -+ + ag be the ¢, -adic expansion of f. Let Y be a
Type I or Type II model of P, and let v} and vi* be defined accordingly. Let a. = 1.
(i) We have vi(f) = vi(p5,) = eA™.
(i) We have vi(aip;,) > eX* for 0 <i<e—1.
(iii) In the case of a Type I model, we have vi*(f) = vi*(ag) = eA.
(iv) In the case of a Type I model, we have vi*(a;p},) > eA, for 1 <i <e.

Proof. By Lemma 2.2, ¢}, is a term in the ¢,,-adic expansion of f with minimal vs-valuation.
It is also the term whose valuation is decreased the most when vy is replaced with v5.
Thus ¢, is the unique term in the ¢,-adic expansion of f with minimal v}-valuation. Since
vi(pn) = A* by definition, this proves parts (i) and (ii).

Similarly, by Lemma 2.2, aq is a term in the ¢,-adic expansion of f with minimal v-
valuation. It is also the term whose valuation is increased the least when vy is replaced by
vy*. Thus ag is the unique term in the ¢,-adic expansion of f with minimal v}*-valuation.
Since v;*(ag) = vy(ag) = e\, (Lemma 2.2), this proves parts (iii) and (iv). O

Lemma 4.20. On a Type I model Y, we have \** — \* = 1/(N,e*e™).

Proof. Since Y is regular and the v}- and v}*-components intersect, [OW18, Corollary 7.6]

(with X = &” there) shows that A** > \* is the shortest N,-path. By [OW18, Corollary A.7],

A** > \* is a shortest 1-path, where A* and A** are as in Proposition 3.16. By the definition

of a 1-path, \* — \* = 1/(e*e**), so \* — \* = 1/(N,e*e*). O
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Lemma 4.21. On a Type Il model ), we have Fv;; =0, ..

Proof. 1f Y is a Type 1I model, then it dominates )) , and thus includes all the valuations

therein. On the other hand, by the definition of a Type IT model, Y does not include any
valuation of the form [vo, vl(gpl) = A,y ooy Une1(Pn-1) = A1, vn(gon) = Al with A > \*.
Applying Proposition 3.10 to v}, this forces the 3, referred to in the first bullet point of
Proposition 3.10 to equal A*. So \* € (1/N,,)Z =T, _,. Since FU} = [Vn_1,vi(pi) = A*], it
follows that A" together with I', _, generates I';:. Combining the previous two sentences,
we get FU; =I,, . O
Proof of Proposition 4.17. To prove the first assertion of part (i), note that \** — \* =
1/(Npe*e™) by Lemma 4.20. So b = Nyee*e* (A, — A*). Since the denominator of A, divides

e(vs/vo) = Nype and that of \* divides e(v}/vg) = N,e*, we have that b is an integer, and is
in fact divisible by e**

Now, assume we are on a Type I model and let y be the point where D, meets the special
fiber of ), i.e., the specialization of f(x) = 0. The function f in general does not locally
cut out D, at y, because div(f) might also include vertical components passing through
y. By Proposition 4.15(i), z is the intersection of the v} and vy*-components of the special
fiber. By Corollary 4.16(i), (ii), the specialization of ¢; = 0 is not y for any 1 < i < n.
So to finish the proof of part (i), it suffices to construct s as in the proposition such that
vi(sf/en) = v (sf/en) = 0.

By Lemma 4. 19(') we have U}(f/gpfl) = (e — b)\*. Likewise, by Lemma 4.19(iii), we have

v (f/eh) = — bA*™. Since e¢** | b, and the denominators of A, and A\** are N,e and
N,e** respectlvely, e\, — b\ €T, , = (1/N,)Z. This means that there exists s as in the
proposition such that v3*(sf/¢h) = 0. Since v}(s) = v}*(s), showing that vj(sf/@h) = 0 is
reduced to showing that (e — b)A\* = e\, — bA**. But this is immediate upon plugging in the
definition of b.

Now we prove part (ii). Let y be as in part (i). By Proposition 4.15(ii), y lies on a unique
component of the special fiber, namely the vj-component. Furthermore, since the value
group of v} is I, _, (Lemma 4.21), we have that vj(v,) = A* € I',,_,. Thus we can find ¢
as in the proposition such that v}(t) = —\*. By Lemma 4.19(i), v}(t°f) = v;(sf) = 0. By
Corollary 4.16(i), the specialization of ¢; = 0 is not y for any 1 <i <n —1. So sf cuts out
D,,, proving part (ii).

For part (iii), note that ) is regular, and is thus a local UFD. Since div(f) and D,
agree on the generic fiber in a neighborhood of D, there exists s € K(x) with the desired
property. 0]

5. MINIMAL EMBEDDED RESOLUTION

In this section, we prove our main result, Theorem 4.3, which explicitly gives the minimal
embedded resolution of (X, divy(f)), where X is the vo-model of P}, and f € O[] is a monic
polynomial of degree at least 2. We begin in §5.1 with some general results on regularity,
and then return to Mac Lane valuations and models of Pk for the proof in §5.2. The main
technical lemma that makes everything work is Lemma 5.5, which depends heavily on the

work in §4.
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Throughout §5, with the exception of Remark 5.18 and the conclusion of the paper im-
mediately following it, we assume that the residue field k of K is algebraically closed.

5.1. Generalities on regular models.

Lemma 5.1. If X is a reqular model of Pk and D is a reduced, effective, regqular divisor on
X and if f: X' — X is a modification, then the strict transform D' of D in X' is reqular.

Proof. Since X is normal, f is an isomorphism above points of codimension 1, thus over
the generic point of each component of D. So D' — D is proper and birational. Since
dim(D’) = dim(D) = 1, D’ — D is finite as well, and thus it is an isomorphism, proving the
lemma. U

The following proposition is well-known, but we were unable to find an exact reference.
We state it only in the generality we need.

Proposition 5.2. If X is a reqular model of Pk and D is an integral horizontal divisor on
X, then there is a unique minimal modification X' — X such that X' is reqular and the
strict transform of D s reqular.

Proof. By [Liu02, Theorem 9.2.26], there exists some modification ) — X with ) regular
under which the total transform of D has normal crossings, and in particular, the strict
transform of D is thus regular. We now prove that a minimal such ) is unique. By [Liu02,
Theorem 9.2.2], the morphism Y — X is a finite sequence of blowups at reduced closed
points.

We now prove the proposition by induction on the minimum number n of blowups of X at
closed points required to make the strict transform of D regular. The case n = 0 is trivial.
If not, since blowups in centers outside Supp(D) do not affect D, any minimal sequence
of blowups making the strict transform of D regular begins with blowing up the (unique)
intersection point x of D with the special fiber of X. Replacing X with its blowup at x,
and noting that the strict transform of D is still integral on this blowup and then applying
induction completes the proof. 0

Lemma 5.3. Let Y be a reqular snc-model of a smooth curve Y over K, and let y € Y
be a closed point. Let div(f), div(g) be the divisors in Spec Oy, of functions f,g € Oy,
respectively.

(i) Suppose div(f) is of the form >"._, ¢;D; for some integers ¢; > 0 where the D; are
Weil prime divisors. If Y. c; > 2, then f € m%,yy.

(ii) Suppose div(f) = D where D is a Weil prime divisor corresponding to one of the
irreducible components of the special fiber of Y passing through y. Then f € my, \
m3, .

(iii) Ifdiv(f) = D and div(g) = E, where D and E are Weil prime divisors corresponding
to two different components of the special fiber of Y passing through Y, then the
immages of f and g are linearly independent in my7y/m§,7y.

Proof. First note that the regular local ring @y,y is a UFD and thus every height one prime
ideal is principal. Thus in the situation of part (i), f = w]], f{*, where w is a unit and
div(f;) = D;. Since the f; lie in the maximal ideal, this proves (i).
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In fact, by [CES03, Lemma 2.3.2 and its proof], we can write

Oy = Okllyr, ol /(W™ -y — um),
with r € {1,2}. The irreducible components of the special fiber passing through y are cut
out by y; if r = 1 and, by y; and ys if = 2. So in the situation of part (ii), we have f = wy,
or f = wys, with w a unit. Since my, = (y1,y2), this proves part (ii). In the situation of
part (iii), we have r = 2, and the result follows from the fact that the images of wyy; and
woyy are linearly independent in (y1,v2)/(y1, y2)% O

Proposition 5.4. Let Y be a reqular model of Pk, and let y be the point where D, intersects
the special fiber. Let g € Oy, be such that div(g) = D, on Spec Oy,,. Then D, is reqular
if and only if g ¢ m3, .

Proof. This is [Liu02, Corollary 4.2.12]. O

5.2. Non-archimedean analysis of valuations in an expansion. Maintain our notation
from §4. In particular, for the remainder of the paper, f € Oklz] is monic and irreducible
of degree at least 2, « is a root of f, and on any regular model of P}, the divisor D, is
the horizontal divisor corresponding to o as in §3.1. As in §4, we use the notation vy for
the unique Mac Lane valuation over which f is a proper key polynomial. We also use the
valuations v} and v} from Notation 4.2, and we use the concept of Type I/II/III models
associated to f from Definition 4.8, which give rise to valuations v}, v3*, v;,_;, and v;_; as
in Definition 4.10. As in §3.1, we write e = e(vf/v,_1), € = e(V}/vn1), € = e(v}/v,_1),
and, when there is a Type I/II model in play, e* = e(v};/v,_1) and e** = e(v* /v, _1).

We decompose the function cutting out the unique horizontal divisor of D, using the
pn-adic expansion of f, and analyze which of the terms in the decomposition are in miy for
Type I/II models ). This will be the key technical input for analyzing regularity of D, on
these models in the next section.

Lemma 5.5. Let Y be a Type I or Type II model of P, and let y € ) be the point
where D, meets the special fiber of Y. Let s be as in Proposition 4.17(i), (i1), let b be as in
Proposition 4.17(i) if Y is Type T and let b= 0 if Y is Type IL. If f = @ +ae_ 195+ -+ag
1s the pn-adic expansion of f, then we can write

(5.6) — = SO0 48U 10 0 -+ sagp;

Then,

(i) All terms sa;0l" of (5.6) for 1 <i<e—1 areinmj, .

(ii) We have sagp;® € m%,“y if and only if v; # v}

(iii) We have sp¢" € m§,7y if and only if Y is Type Il or vi* # v},

(iv) Suppose Y is Type L. If vy = v} and vy* = v;ﬁ, then s~ and sagp,® generate linearly

independent elements of my,y/m&y.

Proof. Let y be the point where D, intersects the special fiber of ). Recall from Proposi-
tion 4.17 that sf/@? cuts out D,. By Remark 4.18, the horizontal part of div(s) does not
contain y. The same is true for all of the div(a;), since the a; have degree less than ¢, by
definition. Furthermore, Corollary 4.16(ii) shows that the same is true for the horizontal

part of div(ep,) if Y is Type L.
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By Proposition 4.15, y is the intersection of the v}- and v}*-components if ) is Type I,
and y lies on only the v}-component of ) is Type II. Write D* and D** for the prime divisors
corresponding to the v}- and v}*-components, respectively.

We now prove part (i). Assume 1 <i < e — 1. By Lemma 4.19(i), (i), v5(f) < v}(aip;,),
and since the divisor of sf/¢? is horizontal by construction, so 0 = vj(sf/¢h) < vi(sap;®).
Thus D* lies in the support of sa;pi=°. If Y is Type I, the same is true for D** using
Lemma 4. 19(iii) (iv). Since no horizontal component of dlv(sazgp; ) passes through y, we
have that sa;pi=t € Oyy and thus, Lemma 5.3(i) shows that sa;pi* € my On the other
hand, if ) is Type II, then Corollary 4.16(iii) shows that the horizontal part of divy(p,) does
pass through y. In this case, Lemma 5.3(ii) shows that sa;¢! € m%,’y. This concludes the
proof of part (i).

For part (ii), Lemma 4.19(i), (ii) show as above that D* is in the support of div(saggpg ).
If ¥ is Type I, then Lemma 4.19(iii) shows that v}*(f) = v*(ao), so 0 = vi*(sf/¥h) =
vi*(sagp,”), meaning that D** is not in the support of div(sagp,”). Observe further that
the horizontal support of div(sagp;,®) does not pass through y, regardless of whether ) is
Type I or Type II. This means that we have sa;p’~ " € @yjy and by Lemma 5.3(i), we thus
have sagp,” € m3,  if and only if the multiplicity of D* in div(sagy,”) is at least 2.

By Corollary 2.12 and Lemma 3.19, the multiplicity of D* in the special fiber is N, e*, so its
multiplicity in div(sagy,”) is Npe*v}(saop;,”). Since vi(sf/eh) =0, vi(ao) = v5*(ao) = ey
(Lemma 4.19(iii)), and v}(f) = eX* (Lemma 4.19(i)), we have

Nne*U;(SCLoSO;b) = Npe*vi(ao/f)
= N,e* (e, — eX")
> 1.

where the inequality follows from Corollary 3.18(iii), and equality holds if and only if vy = v}.
So the multiplicity of D* in div(sa,p,?) is at least 2 if and only if v # v}, finishing part
(ii).

For part (iii), first suppose Y is Type I. Then Lemma 4.19(i), (iii), (iv) show using similar
reasoning to part (ii) that D** is in the support of div(sp%®) but D* is not. This proves
the first assertion of part (iii). Since the horizontal part of div(s¢¢?) does not pass through
y, the same reasoning as in part (ii) reduces us to showing that the multiplicity of D** in
div(sg; ") is at least 2 if and only if vj* # vf.

By Corollary 2.12 and Lemma 3.19, the multiplicity of D** in the special fiber is N,e**
so its multiplicity in div(sg®?) is N, e**v}*(sgpn *). Since v3*(sf/¢h) = 0 and v3*(f) = e\,
(Lemma 4.19(i)), we have

Nue™ v} (s ") = Nue™ v} (¢5,/f)
= N (eA™ —e),)
> 1.

where the inequality follows from Corollary 3.18(iv), and equality holds if and only if v}* = v}.

So the multiplicity of D** in div(se¢?) is at least 2 if and only if v}* # v, proving part (iii)

in this case.
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Now suppose Y is Type II. Then s@¢° = s¢¢, and by Corollary 4.16(iii), the horizontal
part of div(sy?) does meet y. By Proposition 4.17, s can be taken to be an eth power in
Klz]. Since e > 2, we have sgf, € m§, € mj, . finishing the proof of part (iii).

Lastly, by the proofs of parts (ii) and (iii), if v} = v} and v}* = v}, then div(sy( ") = D**
and div(sagp,?) = D* in Spec (’)y@. Applying Lemma 5.3(iii) completes the proof of part
(iv). O

Lemma 5.7. Assume the Type III model Y of P exists. Let s be as in Proposition 4.17(1i1),

and write sf = s¢¢ + sa._105 1 + - -+ + sag for the product of s with the p,-adic expansion
of f. Then

(1) v 1 (s95) = vn 1 (sr,) = 0,
(i) v, _q(sa;p) >0 and v!_,(sa;p’) >0 for 0 <i <e.

n—1

Proof. By Proposition 4.15(iii), the divisor D, (which is locally the same as div(sf)) meets
the intersection of the v/, _;- and v//_,-components of the special fiber of Y. Thus v/,_,(sf) =

v!_(sf) = 0. So it suffices to show that, for 0 < i < e, both v/, ,(s¢¢) < v!_,(sa;¢’) and
v (spl) < vl (sa;t), or equivalently, that

(5.8) Vi) < Ui (aipy,) and vy (¢h) < oy (aip,).
Fix 7 such that 0 < i < e. We first claim that
(5.9) Un-1(5) < vn-1(aigy,).

By Lemma 2.2, v;(¢%) < vs(a;p?). Since deg(a;) < deg(¢n), we have v,_1(a;) = vs(a;). On
the other hand, applying Lemma 2.2 to ¢,, and v,_; for the equality below, we have

Un—l(‘pn) = 6n—l)\n—l < Uf((pn)
where e,,_1 = deg(y,)/ deg(pn—1). Write 0 = v¢(py,) — vn—1(pyn). Since e > i, we have

Un1(5) = vp(95) — €d < vp(pf) —i6 < vp(aipl,) — 6 = vu_1(aipl),
proving (5.9).
en—1—1

Now, write @, = @, ' + be, "1 + -+ + by for the ¢, ;-adic expansion of ,,, and
recall from Lemma 2.2 that

(5.10) Un—1(Pn) = Vn— I(SOZn 1) = vp-1(bo).

Furthermore, the term whose valuation decreases the most upon replacing v, with v/,_, is
€n—1

v, and the term whose valuation increases the least upon replacing v,y with v/ _, is by
(since it does not increase at all). Thus,

(5.11) Un_1(n) = vy_1 (935 and vy () = v, (bo)-

Let ¢ be the degree of ¢, in the p, j-adic expansion of a;¢!, and note that
(5.12) c < ep_1€,

since deg(a;ph) < deg(¢?). Then, we have

e (5.11) en_1e
/Ufn—l((pn) = U;—1( '

Opy ) = Uno I(SOZn 116) en—16(An_1 — ;z—l) =

. , (5.9),(5.12) i / / i
Unfl((pn) - enfle()\nfl - n—l) < Unfl(ai(pr) - C()\n,1 - )‘n—l) < vn—l(a’i(tpn)
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and,

ey (5.11) . o (5.12) . p ;
Vno1(9) =" 01 (05) = 01 (05) "= a1 (h) < vnoi(aier,) < vy (aiy,).
This proves (5.8), and thus the lemma. O

5.3. The minimal embedded resolution. In this subsection, we prove Theorem 4.3, and
then extend that result to a proof of Theorem 1.1.

Proposition 5.13. If Y is the Type III model of P}, then D,, is not reqular on .

Proof. By Proposition 4.15(iii), D, meets the intersection y of the v/, ;- and v!/_,-components
of the special fiber of ). Let D’ and D" be the respective corresponding Weil prime divisors
on Y.

Let s be as in Lemma 5.7. Write f = ¢¢ + ac_195 ' + ... + ap, and set a, = 1. By
Proposition 4.17(iii), sf cuts out D, locally, so by Proposition 5.4, it suffices to show that
sa;pt € m%,vy for 0 < ¢ < e. By Lemma 5.7, neither D' nor D" appears with a negative
coefficient in any div(sa;p?).

Recall that in Spec @y’y, the support of s is contained in the special fiber and, by Corol-
lary 4.16(iii), y is in the support of the horizontal part D,, of div(y,). Since e > 2, the
divisor of s, is at least Dy, > 2D,,. By Lemma 5.3(i), s¢f, € m3, . If 0 <i <e—1,
Lemma 5.7(ii) shows that both D’ and D" lie in the support of div(sa;¢’). We again use
Lemma 5.3(i) to conclude that sa;@}, € m3, . O

Corollary 5.14. If Y is a non-trivial reqular contraction of y;jg on which D, s reqular,
then Y s Type I or Type II.

Proof. Suppose Y is a non-trivial regular contraction of y;jg that is not Type I or Type II.
Then in the language of Proposition 3.10 and Corollary 3.13 applied to vy, the model Y
includes none of the w,_; » or v, . Thus ) is dominated by the unique Type III model Z
of Pg, given that Z includes exactly those valuations in V%) that are not among the w;,_1x

or v, x. By Proposition 5.13, D, is not regular on Z. By Lemma 5.1, D, is therefore not
regular on any regular contraction of Z, which finishes the proof. 0

Proposition 5.15. Suppose Y is a nontrivial reqular contraction of y;jg. Then D, is reqular
on Y if and only if Y includes v} or vj.

Proof. By Corollary 5.14, we may assume that ) is either Type I or Type II. We show that
if ¥ is Type I (resp. Type II), then D, is regular on Y if and only if ) includes v} or v}
(resp. v}). This yields the proposition.

Let y € Y be the point where D, meets the special fiber, and let s, b, and the a; be as in
Lemma 5.5. By Propositions 4.17 and 5.4, D, being regular is equivalent to sf /¢l ¢ m3, .
By Lemma 5.5(i), this is equivalent to s¢§ " 4 sagp,” ¢ m3, . By Lemma 5.5(ii), (iii),
spS70 + sagp;, b ¢ m%,yy implies either v} = v}, or Y is Type I and vy* = v}, If Y is Type II,
the reverse implication also follows from Lemma 5.5(ii), (iii), and if ) is Type I, the reverse
implication follows from Lemma 5.5(iv). We have shown that D, is regular if and only if
vi = v} or Y is Type I and v}* = v}. By the definition of v} and Type I/II models, v} = v}
is equivalent to v} being included in Y. Likewise, if J is Type I, then vj* = v}’ is equivalent
to Y including v. This finishes the proof 0
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/¢ (and similarly for y o), the following corollary is immediate.

Since y /5, is a blowup of y

Corollary 5.16. The dzmsor D,, is reqular on yreg 5 Yok, and on yrigo
7 7

We now have the main result of the paper.

Proof of Theorem 4.3. By Corollary 5.16, both yreg — X and yreg — X are embedded

! 0 1! 0
resolutions of divg(f). Since yreg and YF, are both contractlons of yvfo, the minimal
embedded resolution is as well. By Corollary 5.14, the minimal embedded resolution includes
either v} or v;i. It obviously includes vy as well, so it is either y;; or y 7o In particular,

one of these models dominates the other, and the dominated one is the m1n1mal embedded
resolution.
Suppose e(v}/vo) < e(v}/vo) as in part (i). Since v} < v¥, Proposition 3.14 applied to v}

shows that v} is not included in yr?go, which shows that yreg is the dominated one, thus

proving the theorem. If e(v}/vg) > e(v ! /uo) as in part (ii), then the same proposition applied

to v} shows that v} is not included in yr?,go, showing that yr?,go is the dominated one, again

proving the theorem. 0

Remark 5.17. Given Theorem 4.3 and Remark 5.18, and assuming k is algebraically closed,
one can construct a minimal embedded resolution of (P, ,divo(f)) for arbitrary squarefree
[ € Oklz] as follows.

First, one can always make a change of variables by taking some v € PGLy(Of) such
that the zeroes of the rational function f(vx) all lie in Og. Replacing f by the numerator
of f(yx), we may thus assume that all roots of f lie in Ok|z|. Letting 7x be a uniformizer
of K, we then have the irreducible factorization f = b f; - - - f. € Og/[x], where all f; monic
and distinct, 7 is a uniformizer of K, and b € {0, 1}, since f is squarefree. Let )); be the
minimal embedded resolution of (Pg,_, divo(f;)), and let )’ be the minimal normal model of
P! dominating all J;. Then )’ is regular (see, e.g., [0S19b, Lemma 5.3]), and the minimal
embedded resolution of (P¢, , divo(f)) is the minimal blowup Y — )’ separating the strict
transforms of divg(mg) and the divo(f;) on )’. Thus, neither the irreducibility nor the
monicity of f is a serious condition, but the statement of Theorem 4.3 is much cleaner when
they are in place.

Remark 5.18. Regular resolutions satisfy étale descent. That is, if L/K is an unramified,
algebraic field extension and f € Oklx] is a monic irreducible polynomial, then ) is an
embedded resolution of (P, ,dive(f)) if and only if Z := Y X, Of is an embedded res-
olution of (Py, ,dive(f)), in which case we have Z = (Y xo, Or)/Gal(L/K). Moreover,
the geometric valuations corresponding to the irreducible components of ) are obtained by
restricting the Mac Lane valuations included in Z to K (z).

Proof of Theorem 1.1. Suppose K is a complete discrete valuation field with perfect residue
field k, and that f € K[z|. If K" is the completion of the maximal unramified extension of
K, then Theorem 4.3 and Remark 5.17 allow us to construct the minimal regular resolution Z
of (P, .. dive(f)). To explicitly present the minimal regular resolution of (P, ,dive(f))
as a collection of geometric valuations, simply let ) be the normal model of Pk corresponding
to the set of restrictions of all valuations included in Z to K(x). This completes the proof

of Theorem 1.1. O
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