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Abstract. Let K be a discretely valued field with ring of integers OK with perfect residue
field. Let K(x) be the rational function field in one variable. Let P1

OK
be the standard

smooth model of P1
K with coordinate x. Let f(x) ∈ OK [x] be a squarefree polynomial

with corresponding divisor of zeroes div0(f) on P1
OK

. We give an explicit description of the

minimal embedded resolution Y of the pair (P1
OK

,div0(f)) by using Mac Lane’s theory to
write down the discrete valuations on K(x) corresponding to the irreducible components of
the special fiber of Y.

1. Introduction

Let K be a discretely valued field with ring of integers OK with perfect residue field. Let
K(x) be the rational function field in one variable. Let P1

OK be the standard smooth model
of P1

K with coordinate x. Let f(x) ∈ OK [x] with corresponding divisor of zeroes div0(f) on
P1
OK . A minimal embedded resolution of the pair (P1

OK , div0(f)) is a regular model Y of P1
K

with a birational morphism π : Y → P1
OK such that the strict transform of div0(f) is regular,

and such that any other modification π′ : Y ′ → P1
OK with Y ′ regular and the strict transform

of div0(f) regular factors uniquely as Y ′ → Y π−→ P1
OK .1 The main result of this paper is the

following theorem (See Theorem 4.3 for a more precise statement, with notation as defined
in Notation 3.9. Also see the last paragraph of §1.1.)

Theorem 1.1. Let f ∈ OK [x] be a squarefree polynomial. There is an explicit description
of the minimal embedded resolution Y of the pair (P1

OK , div0(f)) when deg(f) ≥ 22. More
specifically, we write down the discrete valuations on K(x) corresponding to the irreducible
components of the special fiber of Y.

Remark 1.2. This minimal embedded resolution is a key technical input to [OS19b], where
it is used to help prove a conductor-discriminant inequality for hyperelliptic curves in residue
characteristic 6= 2, as we now describe.

It is well-known that an algorithm for strong embedded resolution of singularities in di-
mension n − 1 gives rise to an algorithm for resolution of singularities in dimension n.
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1Note that such a resolution exists only when f is squarefree.
2When deg(f) = 1, the divisor div0(f) is already regular on the standard model P1

OK
.
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The motivation for the current paper is to explicitly understand regular models of cyclic
covers of P1

K branched at div0(f) by explicitly constructing embedded resolutions of pairs
(P1
OK , div0(f)) first. The eventual goal of these constructions is to give an upper bound on

the number of components in the exceptional fiber of such a resolution; see [OS19b] for an
application to proving conductor-discriminant inequalities for degree 2 covers of P1

K , and
forthcoming work of the authors for higher degree cyclic covers. We do so by capitalizing on
the recent revival in [Rüt14,OW18] of explicit descriptions of normal and regular models of
P1
K , using descriptions of valuations of K(x) (now called “Mac Lane valuations”) going back

to Mac Lane [Mac36].
In [Rüt14, Proposition 3.4], Rüth shows that normal models of P1

K are in bijection with
non-empty finite collections of discrete valuations on K(x) (extending the given valuation
on K) whose residue fields have transcendence degree 1 over the residue field of K. Over
algebraically closed fields, it is known that analogous valuations with value group Q on
the rational function field can be constructed from supremum norms on non-archimedean
disks. Over non-algebraically closed discretely valued fields, Rüth ([Rüt14, Proposition 4.56],
restated in Proposition 2.4) shows that there is a similar description of valuations in terms
of “diskoids”, which are Galois stable collections of non-archimedean disks defined over the
algebraic closure. In fact, he shows that these diskoids can be explicitly described by giving
a certain sequence of polynomials ϕi in K[x] of increasing degree (whose roots correspond
to the “centers” of a nested sequence of diskoids) and a corresponding sequence of rational
numbers λi (“radii” of the diskoids) – such a description goes back to Mac Lane [Mac36]
from 1936. These ϕi can be thought of as successive lower degree approximations to the
roots of a polynomial f ∈ OK [x], and each rational number λi is simply νK(ϕi(α)) for any
root α of f (Corollary 2.8). Using successive ϕi-adic expansions, one can easily compute
the valuation of any given polynomial from this description, by a procedure analogous to
the computation of the Gauss valuation; see the discussion surrounding (2.1). Mac Lane
valuations have been implemented in Sage in [Rüt]. In [OW18, Theorem 7.8] (restated here
in Proposition 3.10), the authors describe the minimal regular resolution of a model of P1

K

with irreducible special fiber corresponding to a valuation v, using the same polynomials ϕi
that show up in the description of v, and natural Farey paths between successive λi.

The bulk of the paper is devoted to proving Theorem 4.3, which is Theorem 1.1 in the
case where f is monic and irreducible and the residue field k is algebraically closed. The
general result can easily be derived from Theorem 4.3; see Remarks 5.17 and 5.18. So for the
rest of the introduction, assume f is monic and irreducible and k is algebraically closed. To
each such f ∈ OK [x], there is a canonical diskoid centered about the roots of f giving rise
to a valuation vf on K(x) (§4.1). By Rüth’s correspondence, this valuation vf corresponds
to a normal model of P1

K with irreducible special fiber, which we will call the vf -model.
By vf -component, we mean the strict transform of the special fiber of the vf -model in any
model that dominates it. In what follows, we use div0(f) to mean the zero divisor of f on
any model of P1

K ; the model will be clear from context.
Concurrent to our work in [OS19a] (an earlier version of [OS19b]), in [KW20, Theo-

rem 3.16], the authors also noted that div0(f) is a normal crossings divisor on the minimal
regular resolution Yreg

vf
of the vf -model Yvf , which implies that the minimal regular model

Yreg
vf ,0

dominating Yreg
vf

and P1
OK is an embedded resolution of (P1

OK , div0(f)). However, Yreg
vf ,0
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is never the minimal embedded resolution of the pair (P1
OK , div0(f)). In fact, for the ap-

plications to regular models of hyperelliptic curves, we are sometimes forced to work with
(regular) contractions of Yreg

vf ,0
where the strict transform of div0(f) is also regular. Deter-

mining whether the horizontal part of div0(f) remains regular on these contractions can be
challenging because it might specialize to a node.

The two main insights of this paper are the following. First, using the machinery of Mac
Lane valuations, it is possible to explicitly modify f to write down a rational function g that
cuts out the unique irreducible horizontal divisor in div0(f) on natural contractions of Yreg

vf ,0
.

Note that checking regularity of div0(g) at its unique closed point y is equivalent to checking
whether g is in the square of the maximal ideal at y. This is hard to check directly since
this local ring is 2-dimensional. The second main insight is to use the ϕn-adic3 expansion
of f to write down an analogous explicit decomposition g =

∑
i gi. The terms gi in this

decomposition vanish along vertical components through the closed point y (a computation
back in a 1-dimensional local ring), even though g itself does not, and we can exploit the
orders of vanishing to determine when g is in the square of the maximal ideal. It turns out
that the Mac Lane descriptions of vertical components are tailor-made for computing orders
of vanishing of functions along these components!

Our main theorem shows that quite often it is possible to contract entire tails in the dual
graph of Yreg

vf ,0
and in fact, the minimal embedded resolution we are after is the minimal

regular resolution of one of two neighbouring components of the vf -component in the dual
graph of Yreg

vf ,0
. We do not see any way to deduce our main theorem directly from [KW20,

Theorem 3.16].

1.1. Outline of the paper. In §2, we introduce Mac Lane valuations. As we have men-
tioned, a normal model of P1

K corresponds to a finite set of Mac Lane valuations, one valuation
for each irreducible component of the special fiber. Mac Lane valuations are also in one-to-
one correspondence with diskoids, which are Galois orbits of rigid-analytic disks in P1

K
. We

will use the diskoid perspective often, and it is introduced in in §2.2.
In §3, we prove several results about the correspondence between Mac Lane valuations

and normal models of P1
K . For instance, if Y is a normal model of P1

K with special fiber
consisting of several irreducible components, each corresponding to a Mac Lane valuation,
results in §3 can be used to determine which irreducible component a point of P1

K specializes
to. After this, we cite a result (Proposition 3.10) from [OW18] giving an explicit criterion
for when a normal model of P1

K is regular. More specifically, using that Mac Lane valuations
correspond to normal models of P1

K with irreducible special fiber, Proposition 3.10 takes a
Mac Lane valuation as input and gives the minimal regular resolution of the corresponding
normal model as output (as a finite set of Mac Lane valuations, of course)!

In §4, we first define the canonical valuation vf associated to a polynomial f . The minimal
embedded resolution of the pair (P1

OK , div0(f)) is a certain contraction of Yreg
vf ,0

. So we are

lead to an analysis of regularity of the strict transform of div0(f), which we will henceforth
call D, on natural contractions of Yreg

vf ,0
. To this end, in §4 we first define three types of

regular models of P1
K that can arise as contractions of Yreg

vf ,0
. Viewing these contractions as a

sequence of closed point blow-downs, a short argument shows that if we want the blow-down
to stay regular and dominate P1

OK , there is a unique component that can be blown down at

3Here ϕn is the last polynomial that shows up in the Mac Lane description of vf .
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every stage (for instance, the vf -component is the only −1-component that can be blown
down in the model Yreg

vf ,0
by the minimality of the construction of Yreg

vf ,0
). As we proceed

through this natural sequence of blow-downs, we first go through a sequence of models we
call “Type I” models. If D stays regular on all Type I regular blow-downs of Yreg

vf ,0
, we then

move on to the “Type II” models. We continue contracting in this way, and after the Type
II models, naturally comes the unique “Type III” model. (See Definition 4.8.)

In §5, we run thus argument. The crux is to show that D is not regular on the unique
Type III model (Proposition 5.13), and we use this to show that the minimal embedded
resolution of D must be a special Type I or a Type II model (Corollary 5.14). We then show
that if D is regular on a Type I or Type II model, then the model must include a component
corresponding to one of two additional canonical valuations attached to the polynomial f ,
denoted v′f , v

′′

f (Proposition 5.15) – these turn out to be neighbouring valuations to vf in
the dual graph of Yreg

vf ,0
. The technical lemmas needed for these regularity arguments use

an analysis of valuations of individual terms in the ϕn-adic expansion of f along vertical
components of these models (Lemma 5.7 for the unique Type III model, and Lemma 5.5
for Type I and Type II models). The Mac Lane machinery for describing these vertical
components is perfectly equipped for carrying out such calculations. Finally, in Theorem 4.3,
we show that the minimal embedded resolution of the pair (P1

OK , div0(f)) is the minimal

regular model dominating P1
OK and either the v′f -model or the v

′′

f -model.

Notation and conventions

Throughout, K is a Henselian field with respect to a discrete valuation νK . In much of
the paper (§2.3, §3, §4, and all of §5 until the very end) we will further assume that the
residue field k of K is algebraically closed, but this will be noted specifically and is not a
running assumption for the paper. We denote an algebraic closure of K by K. We fix a
uniformizer πK of νK and normalize νK so that νK(πK) = 1. Note that the valuation νK
uniquely extends to a valuation on K, which we also call νK .

For an integral K-scheme or OK-scheme S, we denote the corresponding function field by
K(S). If Y → OK is an arithmetic surface, an irreducible codimension 1 subscheme of Y
is called vertical if it lies in a fiber of Y → OK , and horizontal otherwise. Let f ∈ K(Y).
We denote the divisor of zeroes of f by div0(f). For any discrete valuation v, we denote the
corresponding value group by Γv. If P is a closed point on Y , we denote the corresponding
local ring by OY,P and maximal ideal by mY,P .

Throughout this paper, we fix a system of homogeneous coordinates P1
K = ProjK[x0, x1],

and x := x1/x0 and P1
OK := ProjOK [x0, x1].

All minimal polynomials are assumed to be monic. When we refer to the denominator of
a rational number, we mean the positive denominator when the rational number is expressed
as a reduced fraction.
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2. Mac Lane valuations

2.1. Definitions and facts. We recall the theory of inductive valuations, which was first
developed by Mac Lane in [Mac36]. We also use the more recent [Rüt14] as a reference.
Inductive valuations give us an explicit way to talk about normal models of P1.

Define a geometric valuation of K(x) to be a discrete valuation that restricts to νK on K
and whose residue field is a finitely generated extension of k with transcendence degree 1.
We place a partial order � on valuations by defining v � w if v(f) ≤ w(f) for all f ∈ K[x].
Let v0 be the Gauss valuation on K(x). This is defined on K[x] by v0(a0 +a1x+ · · · anxn) =
min0≤i≤n νK(ai), and then extended to K(x).

We consider geometric valuations v such that v � v0. By the triangle inequality, these are
precisely those geometric valuations for which v(x) ≥ 0. This entails no loss of generality,
since x can always be replaced by x−1. We would like an explicit formula for describing
geometric valuations, similar to the formula above for the Gauss valuation, and this is
achieved by the so-called inductive valuations or Mac Lane valuations. Observe that the
Gauss valuation is described using the x-adic expansion of a polynomial. The idea of a Mac
Lane valuation is to “declare” certain polynomials ϕi to have higher valuation than expected,
and then to compute the valuation recursively using ϕi-adic expansions.

More specifically, if v is a geometric valuation such that v � v0, the concept of a key
polynomial over v is defined in [Mac36, Definition 4.1] (or [Rüt14, Definition 4.7]). Key
polynomials are monic polynomials in OK [x] — we do not give a definition, which would
require more terminology than we need to develop, but see Lemmas 2.2 and 2.10 below for
the most useful properties. If ϕ ∈ OK [x] is a key polynomial over v, then for λ > v(ϕ), we
define an augmented valuation v′ = [v, v′(ϕ) = λ] on K[x] by

(2.1) v′(a0 + a1ϕ+ · · ·+ arϕ
r) = min

0≤i≤r
v(ai) + iλ

whenever the ai ∈ K[x] are polynomials with degree less than deg(ϕ). We should think of
this as a “base ϕ expansion”, and of v′(f) as being the minimum valuation of a term in the
base ϕ expansion of f when the valuation of ϕ is declared to be λ. By [Mac36, Theorems
4.2, 5.1] (see also [Rüt14, Lemmas 4.11, 4.17]), v′ is in fact a discrete valuation. In fact, the
key polynomials are more or less the polynomials ϕ for which the construction above yields
a discrete valuation for λ > v(ϕ). The valuation v′ extends to K(x).

We extend this notation to write Mac Lane valuations in the following form:

[v0, v1(ϕ1(x)) = λ1, . . . , vn(ϕn(x)) = λn].

Here each ϕi(x) ∈ OK [x] is a key polynomial over vi−1, we have that deg(ϕi−1(x)) |
deg(ϕi(x)), and each λi satisfies λi > vi−1(ϕi(x)). By abuse of notation, we refer to
such a valuation as vn (if we have not given it another name), and we identify vi with
[v0, v1(ϕ1(x)) = λ1, . . . , vi(ϕi(x)) = λi] for each i ≤ n. The valuation vi is called a truncation
of vn. One sees without much difficulty that vn(ϕi) = λi for all i between 1 and n.

It turns out that the set of Mac Lane valuations on K(x) exactly coincides with the set of
geometric valuations v with v � v0 ([FGMN15, Corollary 7.4] and [Mac36, Theorem 8.1], or
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[Rüt14, Theorem 4.31]). Furthermore, every Mac Lane valuation is equal to one where the
degrees of the ϕi are strictly increasing ([Mac36, Lemma 15.1] or [Rüt14, Remark 4.16]), so
we may and do assume this to be the case for the rest of the paper. This has the consequence
that the number n is well-defined. We call n the inductive valuation length of v. In fact,
by [Mac36, Lemma 15.3] (or [Rüt14, Lemma 4.33]), the degrees of the ϕi and the values
of the λi are invariants of v, once we require that they be strictly increasing. If f is a key
polynomial over v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] and either deg(f) > deg(ϕn) or
v = v0, we call f a proper key polynomial over v. By our convention, each ϕi is a proper key
polynomial over vi−1.

We collect some basic results on Mac Lane valuations and key polynomials that will be
used repeatedly.

Lemma 2.2. Suppose f is a proper key polynomial over v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) =
λn] with n ≥ 1. If f = ϕen + ae−1ϕ

e−1
n + · · · + a0 is the ϕn-adic expansion of f , then

vn(a0) = vn(ϕen) = eλn, and vn(aiϕ
i
n) ≥ eλn for all i ∈ {1, . . . , e − 1}. In particular,

vn(f) = eλn.

Proof. This follows from [Mac36, Theorem 9.4] (or [Rüt14, Lemma 4.19(ii), (iii)]). �

Example 2.3. If K = Frac(W (F3)), then the polynomial f(x) = x3 − 9 is a proper key
polynomial over [v0, v1(x) = 2/3]. In accordance with Lemma 2.2, we have v1(f) = v1(9) =
v1(x

3) = 3 · 2/3 = 2. If we extend v1 to a valuation [v0, v1(x) = 2/3, v2(f(x)) = λ2] with
λ2 > 2, then the valuation v2 notices “cancellation” in x3 − 9 that v1 does not.

2.2. Mac Lane valuations and diskoids. Given ϕ ∈ OK [x] monic, irreducible and λ ∈
Q≥0, we define the diskoid D(ϕ, λ) with “center” ϕ and radius λ to be D(ϕ, λ) := {α ∈
K | νK(ϕ(α)) ≥ λ} (we only treat diskoids with non-negative, finite radius in the sense of
[Rüt14, Definition 4.40]). By [Rüt14, Lemma 4.43], a diskoid is a union of a disk with all
of its Gal(K/K)-conjugates. Such a diskoid is said to be defined over K, since ϕ ∈ OK [x].
Notice that the larger λ is, the smaller the diskoid is. We now state the fundamental
correspondence between Mac Lane valuations and diskoids.

Proposition 2.4 (cf. [Rüt14, Theorem 4.56], see also [OW18, Proposition 5.4]). There is a
bijection from the set of diskoids to the set of Mac Lane valuations that sends a diskoid D to
the valuation vD defined by vD(f) = infα∈D νK(f(α)). The inverse sends a Mac Lane valua-
tion v = [v0, . . . , vn(ϕn) = λn] to the diskoid Dv defined by Dv = D(ϕn, λn). Alternatively,

Dv = {α ∈ K | νK(f(α)) ≥ v(f) ∀f ∈ K[x]},
is a presentation of Dv independent of the description of v as a Mac Lane valuation.

Lastly, if D and D′ are diskoids, then D ⊆ D′ if and only if vD � vD′. If v and v′ are
Mac Lane valuations, then v � v′ if and only if Dv ⊆ Dv′.

The following proposition is crucial for our method.

Proposition 2.5. Let α ∈ OK, and let f ∈ K[x] be the minimal polynomial for α. Then
there exists a unique Mac Lane valuation vf = [v0, . . . , vn(ϕn) = λn] over which f is a
proper key polynomial.

Proof. Consider the unique valuation vL on L := K[x]/(f) extending vK . This lifts to a
discrete pseudovaluation on K[x] in the language of [Rüt14, §4.6] (a valuation which can
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take the value∞ on an ideal, in this case (f)). By [Rüt14, Corollary 4.67], it can be written
as a so-called “infinite inductive valuation” [v0, . . . , vn(ϕn) = λn, vn+1(f) = ∞], with f a
proper key polynomial over vf := [v0, . . . , vn(ϕn) = λn]. This shows the existence of vf .
If f is a proper key polynomial over some other valuation v, then for sufficiently large λ,
one can construct inductive valuations v′f = [vf , v

′
f (f) = λ] and v′ = [v, v′(f) = λ]. By

Proposition 2.4, these inductive valuations correspond to the same diskoid, and are thus
the same. Applying the “only if” direction of [Rüt14, Theorem 4.33] (or [Mac36, Theorem
15.3]) to v′f and v′, and then the “if” direction of the same theorem to vf and v shows that
vf = v. �

To close out §2.2, we prove several results linking Mac Lane valuations evaluated at a
polynomial to the valuation of that polynomial at a particular point.

Definition 2.6 ([Rüt14, Definition 4.4, Lemma 4.24]). If v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) =
λn] is a Mac Lane valuation and f ∈ K[x], then a v-reciprocal of f is a polynomial f ′ ∈ K[x]
such that v(ff ′ − 1) > 0 and v(f ′) = vn−1(f

′) = −v(f).

By [Mac36, Lemma 9.1] (or [Rüt14, Lemma 4.24]), any f ∈ K[x] with v(f) = vn−1(f) has
a v-reciprocal. In this case, it is clear from Definition 2.6 that f and f ′ being v-reciprocals
is a symmetric relation.

Proposition 2.7. Suppose v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] is a Mac Lane valuation,
α ∈ D(ϕn, λn), and g ∈ K[x] such that v(g) = vn−1(g). Then νK(g(α)) = v(g).

Proof. Let D := D(ϕn, λn) be the diskoid corresponding to v and let D′ := D(g, νK(g(α)))
with corresponding valuation v′. These two diskoids share the common element α. By
[Rüt14, Lemma 4.44], either D ⊆ D′ or D′ ⊆ D, and then Proposition 2.4 shows that either
v′ � v or v � v′.

Since α ∈ D, by Proposition 2.4 we have νK(g(α)) ≥ v(g). Suppose νK(g(α)) > v(g).
Since v′(g) = νK(g(α)) by definition, we have v(g) < v′(g). Since either v′ � v or v � v′,
it follows that v � v′. Let g′ ∈ K[x] be a v-reciprocal of g, i.e., gg′ = 1 + h with v(h) > 0
(g′ exists because v(g) = vn−1(g)). Since v � v′, we have 0 < v(h) ≤ v′(h). In particular,
v′(gg′) = v(gg′) = 0, so v′(g′) = −v′(g) < −v(g) = v(g′). But this contradicts v � v′. �

Corollary 2.8. If f is a key polynomial over v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] with
root α ∈ K, then νK(g(α)) = v(g) for all g ∈ OK [x] of degree less than deg(f). In particular,
νK(ϕi(α)) = λi for all 1 ≤ i ≤ n.

Proof. Consider a Mac Lane valuation wf = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn, vn+1(f) =
λn+1], with λn+1 large. Then vn+1(g) = vn(g) and α ∈ D(f, λn+1), so the corollary follows
from Proposition 2.7. �

2.3. Ramification of Mac Lane valuations. For §2.3, we assume that the residue field
k of K is algebraically closed.

If v and w are two Mac Lane valuations such that the value group Γw contains the value
group Γv, we write e(w/v) for the ramification index [Γw : Γv].

Remark 2.9. Observe that if [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] is a Mac Lane valua-
tion, where each λi = bi/ci in lowest terms, then the ramification index e(vn/v0) equals
lcm(c1, . . . , cn). Consequently, e(vi/vj) = lcm(c1, . . . , ci)/ lcm(c1, . . . , cj) for i ≥ j.
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Lemma 2.10. Suppose f is a proper key polynomial over v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) =
λn].

(i) If n = 0, then f is linear. If n ≥ 1, then ϕ1 is linear. Every monic linear polynomial
in OK [x] is a key polynomial over v0.

(ii) If n ≥ 1, then deg(f)/ deg(ϕn) = e(vn/vn−1).

Proof. Part (i) follows from [OW18, Remark 5.2(i)] for n = 0, and then for general n ≥ 1 by
applying the n = 0 case to ϕ1 and v0. Part (ii) follows from [Mac36, Theorem 12.1] (one can
also use the second equation of [Rüt14, Lemma 4.30], where Fm = Fm−1 = k, but note that
[Rüt14, Lemma 4.30] is incorrect as stated — the expression e(vm/vm−1) should be replaced
by e(vm−1/vm−2)). �

Remark 2.11. The assumption k algebraically closed is required above to apply [OW18,
Remark 5.2(i)] and to assume Fm = Fm−1 = k in [Rüt14, Lemma 4.30].

Corollary 2.12. Let v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] be a Mac Lane valuation of
inductive valuation length n ≥ 1. Write λi = bi/ci in lowest terms for all i. Let Nn =
lcmi<n ci if n > 1, and let Nn = 1 if n = 1. Then Nn = e(vn−1/v0) = deg(ϕn), and thus
Γvn−1 = (1/Nn)Z = (1/ deg(ϕn))Z.

Proof. That deg(ϕ1) = 1 is Lemma 2.10(i), which proves the corollary when n = 1. By
Remark 2.9, e(vj+1/vj) lcm(c1, . . . , cj) = lcm(c1, . . . , cj+1). The rest of the corollary follows
from Lemma 2.10(ii) and induction. �

Lemma 2.13. Let [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] be a valuation over which f is a proper
key polynomial. Then for 1 ≤ i ≤ n, we have λi /∈ Γvi−1

= (1/Ni)Z.

Proof. If λi ∈ Γvi−1
, then e(vi/vi−1) = 1. If i = n, applying Lemma 2.10(ii) to vn, contradicts

the fact that deg(f) > deg(ϕn). For i < n, applying Lemma 2.10(ii) to vi contradicts the
fact that deg(ϕi+1) > deg(ϕi). �

3. Mac Lane valuations, normal models and regular resolutions

In §3.1, we prove results on the specialization of horizontal divisors, expressed in terms of
Mac Lane valuations. In §3.2 we recall a result from [OW18], giving a criterion in terms of
Mac Lane valuations for when a model of P1

K is regular. Lastly, in §3.3, we discuss valuations
that are in a geometric sense “nearby” to a given Mac Lane valuation in a regular model of
P1
K . These valuations will play a crucial role throughout the rest of the paper.
A normal model of P1

K is a flat, normal, proper OK-curve with generic fiber isomorphic to
P1
K . By [Rüt14, Corollary 3.18], normal models Y of P1

K are in one-to-one correspondence
with non-empty finite collections of geometric valuations, by sending Y to the collection of
geometric valuations corresponding to the local rings at the generic points of the irreducible
components of the special fiber of Y . Via this correspondence, the multiplicity of an irre-
ducible component of the special fiber of a normal model Y of P1

K corresponding to a Mac
Lane valuation v equals e(v/v0).

We say that a normal model of P1
K includes a Mac Lane valuation v if a component of

the special fiber corresponds to v. If Y includes v, we call the corresponding irreducible
component of its special fiber the v-component of the special fiber of Y (or simply the v-
component of Y , even though it is not an irreducible component of Y). If S is a finite set
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of Mac Lane valuations, then the S-model of P1
K is the normal model including exactly the

valuations in S. If S = {v}, we simply say the v-model instead of the {v}-model. Recall that
we fixed a coordinate x on P1

K , that is, a rational function x on P1
K such that K(P1

K) = K(x).
For the remainder of §3, we assume the residue field k of K is algebraically closed, but

the statements above about the correspondence between normal models and collections of
geometric valuations are true without this assumption.

3.1. Specialization of horizontal divisors. Each α ∈ K ∪ {∞} corresponds to a point
of P1(K) given by x = α, which lies over a unique closed point of P1

K . If Y is a normal
model of P1

K , the closure of this point in Y is a subscheme that we call Dα; note that Dα

is a horizontal divisor (the model will be clear from context, so we omit it to lighten the
notation).

If v is a Mac Lane valuation, then the reduced special fiber of the v-model of P1
K is

isomorphic to P1
k (see, e.g., [OW18, Lemma 7.1]). It will be useful to have an explicit

coordinate on this special fiber (that is, a rational function y such that the function field of
the special fiber is k(y)).

Lemma 3.1. Let v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] be a Mac Lane valuation, and let
e = e(vn/vn−1). There exists a monomial t in ϕ1, . . . , ϕn−1 such that v(tϕen) = 0, and for any
such t, the restriction of tϕen to the reduced special fiber of the v-model of P1

K is a coordinate
on the v-component that vanishes at the specialization of ϕn = 0.

Proof. Let O ⊆ K[x] be the subring of elements f such that v(f) ≥ 0, and let O+ be
the ideal of elements g where v(g) > 0. Let e = e(vn/vn−1). By [Mac36, Theorem 12.1]
(or [Rüt14, Lemma 4.29] and the discussion before that lemma), O/O+ ∼= k[y], where y is
the image of tϕen in O/O+, for any t ∈ K[x] with v(tϕen) = 0 and v(t) = vn−1(t) (in the
notation of [Rüt14], the example used is t = (S ′)`). Since v(ϕen) ∈ Γvn−1 , we can take t to
be a monomial in ϕ1, . . . , ϕn−1. Since Spec O is an affine open of the v-model with reduced
special fiber Spec O/O+ ∼= Spec k[y] ∼= A1

k ⊆ P1
k, we have that y is a coordinate on the

reduced special fiber of the v-model of P1
K . �

Proposition 3.2. Let v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] be a Mac Lane valuation and
let Y be the v-model of P1

K. As α ranges over K, all Dα with νK(ϕn(α)) > λn meet on the
special fiber, all Dα with νK(ϕn(α)) < λn meet at a different point on the special fiber, and
no Dα with νK(ϕn(α)) 6= λn meets any Dβ with νK(ϕn(β)) = λn.

Proof. Let Y be the v-model of P1
K . Using the coordinate y := tϕen from Lemma 3.1 on

the reduced special fiber of Y , we will show that all α ∈ K with νK(ϕn(α)) < λn specialize
to y = ∞, all α ∈ K with νK(ϕn(α)) > λn specialize to y = 0 and all α ∈ K with
νK(ϕn(α)) = λn specialize to some point y = a with a /∈ {0,∞}. We now work out the
details.

Let O ⊆ K[x] be the subring of elements f such that v(f) ≥ 0, and let O+ be the ideal of
elements g where v(g) > 0. Suppose α ∈ D(ϕn, λn). Proposition 2.4 shows that νK(g(α)) > 0
for g ∈ O+, thus evaluating y at α gives a well-defined element of k. Furthermore, y = y(α)
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is precisely the point where Dα meets the special fiber of Y . We now compute:

y(α) = 0⇔ νK(t(α)ϕn(α)e) > 0

⇔ νK(t(α)ϕn(α)e) > v(tϕen)

⇔ νK(ϕn(α)) > λn (∵ νK(t(α)) = v(t)).

This shows that all Dα for which νK(ϕn(α)) > λn intersect on the special fiber at the point
y = 0, but none of them intersect any Dβ for which νK(ϕn(β)) = λn. All such Dβ intersect
the reduced special fiber A1

k
∼= Spec k[y] of Spec O at some point where y 6= 0.

Now let α /∈ D(ϕn, λn). We will show that Dα ∩ (Spec O)s is empty by contradiction.
Suppose not. Let P ∈ Dα ∩ (Spec O)s be a closed point of Spec O. We have a well-defined
element g(P ) ∈ k for every g ∈ O coming from evaluating g at P . Since P is the closed point
of Dα

∼= Spec A with A ⊆ OK(α), it follows that g(α) ∈ OK(α) and furthermore, g(P ) = g(α)
mod mOK(α)

. We will now construct a g ∈ O with νK(g(α)) < 0, which is a contradiction.

Let b be such that bv(ϕn) ∈ Z>0, and let g := ϕbn/π
bv(ϕn)
K . Then v(g) = 0 so g ∈ O, but

νK(g(α)) = b(νK(ϕn(α))− v(ϕn)) < 0.

Thus Dα does not intersect the special fiber of Spec O, so Dα specializes to a point of
Ys \ (Spec O)s, which is the “point at infinity” where y =∞ on the reduced special fiber of
Y . This finishes the proof. �

Corollary 3.3. Let v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] be a Mac Lane valuation and
let Y be a normal model of P1

K including v. If α, β ∈ K are such that νK(ϕn(β)) ≤ λn ≤
νK(ϕn(α)) and νK(ϕn(β)) 6= νK(ϕn(α)), then Dα and Dβ do not meet on the special fiber of
Y.

Proof. Immediate from Proposition 3.2. �

Corollary 3.4. Let v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] and v′ = [v0, v1(ϕ1) = λ1, . . . , v
′
n(ϕn) =

λ′n] be Mac Lane valuations with λ′n < λn. Let Y be a model of P1
K including v and v′ on

which the v- and v′-components intersect, say at a point z. Then Dα meets z if and only if
λ′n < νK(ϕn(α)) < λn.

Proof. We may assume Y is the {v, v′}-model P1
K . Let Y and Y

′
be the v and v′-components

of Y , respectively, so that z = Y ∩ Y ′. First suppose λ′n < νK(ϕn(α)) < λn. If Dα meets

a point of Y \ Y ′, then by Proposition 3.2 applied to the blow down of Y
′ ⊆ Y (i.e., the

v-model of P1
K), all Dα outside of D(ϕn, λn) intersect this point on Y ⊆ Y . So if we blow

down Y ⊆ Y , then all Dα for α /∈ D(ϕn, λn) specialize to the same point. Since we can find
α1, α2 ∈ K \D(ϕn, λn) with νK(ϕn(α1)) = λ′n and λ′n < νK(ϕn(α2)) < λn, the previous line
contradicts Proposition 3.2 applied to the v′-model of P1

K . The same argument applied to
the blow down of Y (i.e, the v-model of P1

K) yields a contradiction if Dα intersects a point

of Y
′ \ Y . So Dα meets the intersection point z of the two irreducible components of the

special fiber.
Now, suppose νK(ϕn(α)) ≤ λ′n. Fix β ∈ K such that λ′n < νK(ϕn(β)) < λn. Corollary 3.3

shows that Dα and Dβ do not meet on the v′-model of P1
K , and thus not on Y either. In

particular, since Dβ meets z by the previous paragraph, Dα does not. A similar proof works
if νK(ϕn(α)) ≥ λn using the v-model instead of the v′-model. This completes the proof of
the corollary. �
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3.2. Resolution of singularities on normal models of P1. Let Y be a normal model of
P1
K . A minimal regular resolution of Y is a (proper) regular model Z of P1

K with a surjective,
birational morphism π : Z → Y such that the special fiber of Z contains no −1-components
([CES03, Definition 2.2.1]). Such minimal regular resolutions exist and are unique, e.g., by
[CES03, Theorem 2.2.2].

In the remainder of §3.2, we recall a fundamental result from [OW18] (which requires k
algebraically closed), expressing minimal regular resolutions of models of P1

K with irreducible
special fiber in terms of Mac Lane valuations.

3.2.1. Shortest N-paths. We start by recalling the notion of shortest N-path, introduced in
[OW18].

Definition 3.5. Let N be a natural number, and let a > a′ ≥ 0 be rational numbers. An
N-path from a to a′ is a decreasing sequence a = b0/c0 > b1/c1 > · · · > br/cr = a′ of rational
numbers in lowest terms such that

bi
ci
− bi+1

ci+1

=
N

lcm(N, ci) lcm(N, ci+1)

for 0 ≤ i ≤ r − 1. If, in addition, no proper subsequence of b0/c0 > · · · > br/cr containing
b0/c0 and br/cr is an N -path, then the sequence is called the shortest N-path from a to a′.

Remark 3.6. By [OW18, Proposition A.14], the shortest N -path from a′ to a exists and is
unique.

Remark 3.7. Observe that two successive entries bi/ci > bi+1/ci+1 of a shortest 1-path
satisfy bi/ci − bi+1/ci+1 = 1/(cici+1).

Example 3.8. The sequence 1 > 1/2 > 2/5 > 3/8 > 1/3 > 0 is a concatenation of
the shortest 1-path from 1 to 3/8 with the shortest 1-path from 3/8 to 0. Note that the
denominators increase until 3/8 and then decrease afterwards.

3.2.2. Regular resolutions. The following proposition expresses minimal regular resolutions
in terms of Mac Lane valuations and shortest N -paths. We fix the following notation.

Notation 3.9. If v is a Mac Lane valuation, then Yv is the v-model of P1
K , and Yreg

v is its
minimal regular resolution. Furthermore, Yv,0 is the {v0, v}-model of P1

K , and Yreg
v,0 → Yv,0

is its minimal regular resolution. Observe that if X is the v0-model of P1
K , then contracting

the v-component of Yv,0 yields a canonical map Yreg
v,0 → X factoring through Yv,0.

Proposition 3.10 ([OW18, Theorem 7.8]). Let v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn].
For each i, write λi = bi/ci in lowest terms, and let Ni = lcmj<i cj = deg(ϕi) (Corollary
2.12). Set λ0 = bλ1c, as well as N0 = N1 = 1 and e(v0/v−1) = 1. Then the minimal regular
resolution Yreg

v of Yv is the normal model of P1
K that includes exactly the following set of

valuations:

• For each 1 ≤ i ≤ n, the valuations

vi,λ := [v0, v1(ϕ1) = λ1, . . . , vi−1(ϕi−1) = λi−1, vi(ϕi) = λ],

as λ ranges through the shortest Ni-path from βi to λi, where βi is the least rational
number greater than or equal to λi in (1/Ni)Z = Γvi−1

. In other words, β = dNiλie/Ni.
11



vṽ0 vw0,λ vw0,λ vv1 vw1,λ vwn−2,λ vvn−1 fvnvwn−1,λ vwn−1,λ

v′

vv1,λ

vv1,λ

vv1,β1

vvn−1,λ

vvn−1,λ

vvn−1,βn−1

vvn,λ v′′

vvn,λ

vvn,βn

Figure 1. The dual graph of the minimal resolution of the v = vn-model of
P1
K . The white vertex corresponds to the strict transform of the v. The vertex

labeled v′ (resp. v′′) corresponds to the successor (resp. precursor) valuation
of vn, see §3.3.

• For each 0 ≤ i ≤ n− 1, the valuations

wi,λ := [v0, v1(ϕ1) = λ1, . . . , vi(ϕi) = λi, vi+1(ϕi+1) = λ],

as λ ranges through the shortest Ni+1-path from λi+1 to e(vi/vi−1)λi, excluding the
endpoints.
• The valuation ṽ0 := [v0, v1(ϕ1) = λ0] (which is just v0 if λ1 < 1).

Remark 3.11. For λ = e(vi/vi−1)λi, one sees that wi,λ = vi.

Remark 3.12. For v as in Proposition 3.10, consider the set S of valuations included in the
minimal regular resolution Yreg

v of the v-model Yv of P1
K . Using the partial order ≺ on S, one

constructs a tree whose vertices are the elements of S and where there is an edge between
two vertices w and w′ if and only if w ≺ w′ and there is no w′′ with w ≺ w′′ ≺ w′. One can
show that this tree is the dual graph of Yreg

v by a repeated application of Proposition 3.2.
This graph is shown in Figure 1.

Corollary 3.13. With the notation of Proposition 3.10, the valuations included in Yreg
v,0

are the valuations included in Yreg
v as well as v0 and the valuations [v0, v1(ϕ1) = λ] for

λ ∈ {1, 2, . . . , λ0−1}. Equivalently, the valuations included in Yreg
v,0 are exactly the valuations

we would get from Proposition 3.10 if we changed our convention from λ0 = bλ1c to λ0 = 0.

Proof. If λ0 = 0, then Yreg
v includes v0, so Yreg

v = Yreg
v,0 . If λ0 ≥ 1, then if Z is the normal

model of P1
K including the valuations included in Y as well as v0, then there may be a

singularity where the components corresponding to v0 and [v0, v1(ϕ1) = λ0] cross. Since v0
and [v0, v1(ϕ1) = 0] are the same valuation, and since λ0 > λ0 − 1 > · · · > 1 > 0 is the
shortest 1-path from λ0 to 0, [OW18, Corollary 7.5] shows that resolving this singularity
yields exactly the description of Yreg

v,0 in the statement of the corollary. The equivalent
description is clear, since λ1 < 1 is equivalent to λ0 = 0. �
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Proposition 3.14. Let v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn] be a Mac Lane valuation.
Let Yreg

v,0 be the minimal regular resolution of the {v, v0}-model of P1
K. If w is a valuation

included in Yreg
v,0 , then e(w/v0) ≤ e(v/v0), and furthermore, if e(w/v0) = e(v/v0), then w � v.

Proof. For a contradiction, choose a valuation w such that e(w/v0) is maximal among those
w violating the proposition, and among these choose w such that w is maximal under �.

First observe that, since e(vi/v0) ≤ e(vn/v0) for all i ≤ n and vi � vn, we may assume

(3.15) w 6= vi for any i.

Let cw be the self-intersection number of the w-component of Yreg
v,0 . Since Yreg

v,0 is the
minimal regular resolution of the Yv,v0-model, and since w /∈ {v, v0} by (3.15), we have
cw 6= −1, thus cw ≤ −2. By standard intersection theory on regular arithmetic surfaces
(e.g., [OW18, (3.4)]), we have

−cwe(w/v0) =
∑
w′

e(w′/v0),

where the sum is taken over all w′ such that the w′-component intersects the w-component.
Since w 6= vi for any i by (3.15), Figure 1 shows that there are at most two such w′.

Since −cw ≥ 2 and by assumption e(w/v0) ≥ e(w′/v0) for all w′ in the sum, we find that
there are exactly two w′ and e(w′/v0) = e(w/v0) for each of them. By Remark 3.12, one of
the w′ satisfies w ≺ w′. Since w is maximal under ≺, we conclude that w′ does not violate
the proposition. But w ≺ w′ and e(w/v0) = e(w′/v0) imply that w does not violate the
proposition either, a contradiction. �

3.3. Valuations related to a given Mac Lane valuation. Let v = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) =
λn]. Recall that ci is the denominator of λi, when written in lowest terms. Let Nn =
lcm(c1, . . . , cn−1) = deg(ϕn) (Corollary 2.12). We assume that n ≥ 1 and λn /∈ Γvn−1 =
(1/Nn)Z.

Let Yv be the v-model of P1
K , and let Yreg

v be its minimal regular resolution. By Proposition
3.10, the following Mac Lane valuations are included in Yreg

v :

• v′ := wn−1,λ′ = [v0, v1(ϕ1) = λ1, . . . , vn−1(ϕn−1) = λn−1, v
′
n(ϕn) = λ′],

• v′′ := vn,λ′′ = [v0, v1(ϕ1) = λ1, . . . , vn−1(ϕn−1) = λn−1, v
′′
n(ϕn) = λ′′],

where λ′ is the entry directly following λn in the shortestNn-path from λn to e(vn−1/vn−2)λn−1,
and λ′′ is the entry directly preceeding λn in the shortest Nn-path from dNnλne/Nn to λn.
The valuation v′ (resp. v′′) is called the successor (resp. precursor) valuation to v.

In the description of the minimal embedded resolution of an irreducibile horizontal divisor,
we have to analyze various contractions of the model described in Proposition 3.10 (Defini-
tion 4.8, Definition 4.10) and the specializations of horizontal divisors on them (Lemma 4.14).
For this purpose, it is helpful to introduce some convenient notation to refer to certain special
valuations appearing in Proposition 3.10. Let us write

• v∗ := wn−1,λ∗ = [v0, v1(ϕ1) = λ1, . . . , vn−1(ϕn−1) = λn−1, v
′
n(ϕn) = λ∗],

• v∗∗ := vn,λ∗∗ = [v0, v1(ϕ1) = λ1, . . . , vn−1(ϕn−1) = λn−1, v
′′
n(ϕn) = λ∗∗],

where v∗ (resp. v∗∗) can represent any of the valuations amongst the wn−1,λ (resp. the vn,λ)
from Proposition 3.10. Later in Definition 4.10, we will specialize to specific choices of v∗ and
v∗∗ depending on which regular model is being considered. In the remainder of this section,
we establish some inequalities bounding λ∗, λ∗∗ that are valid for all choices of v∗, v∗∗. These
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will then be used in the proof of Lemma 5.5, which is the key technical input for the main
theorem of the paper.

Since λn /∈ (1/Nn)Z, we have bNnλnc ≤ Nnλ
′ < Nnλn < Nnλ

′′ ≤ dNnλne, the first

inequality coming from [OW18, Corollaries A.7, A.11]. Write λ̃n (resp. λ̃′, λ̃′′, λ̃∗, λ̃∗∗) for
Nnλn − bNnλnc (resp. Nnλ

′ − bNnλnc, Nnλ
′′ − bNnλnc, Nnλ

∗ − bNnλnc, Nnλ
∗∗ − bNnλnc).

Then we obtain
0 ≤ λ̃′ < λ̃n < λ̃′′ ≤ 1.

Proposition 3.16. Let e, e′, e′′, e∗, and e∗∗ be the denominators of λ̃n, λ̃′, λ̃′′, λ̃∗, and λ̃∗∗,
respectively.

(i) The number λ̃′ immediately follows λ̃n in the shortest 1-path from λ̃n to 0.

(ii) The number λ̃′′ immediately preceeds λ̃n in the shortest 1-path from 1 to λ̃n.

(iii) The number λ̃∗ is on the shortest 1-path from λ̃n to 0.

(iv) The number λ̃∗∗ is on the shortest 1-path from 1 to λ̃n.

Proof. By [OW18, Lemma A.7], Nnλ
′ immediately follows Nnλn in the shortest 1-path from

Nnλn to Nne(vi/vi−1)λn−1, and thus in the shortest 1-path from Nnλn to bNnλnc by [OW18,
Lemma A.11]. Since translating by an integer preserves shortest 1-paths, subtracting bNnλnc
from all entries of these paths yields part (i). Part (ii) follows similarly, using that Nnλ

′′

immediately precedes Nnλn in the shortest Nn-path from dNnλne to Nnλn. The proofs of
parts (iii) and (iv) are essentially the same as the proofs of parts (i) and (ii), respectively. �

Example 3.17. If λ̃n = 3/8, we would have λ̃′ = 1/3 and λ̃′′ = 2/5 (cf. Example 3.8). We

could take λ̃∗ to be 1/3 or 0, and we could take λ̃∗∗ to be 2/5, 1/2, or 1.

Corollary 3.18. Let e, e′, e′′, e∗, and e∗∗ be as in Proposition 3.16. Then

(i) λn − λ′ = 1/(Nnee
′).

(ii) λ′′ − λn = 1/(Nnee
′′).

(iii) λn − λ∗ ≥ 1/(Nnee
∗), with equality if and only if λ∗ = λ′.

(iv) λ∗∗ − λn ≥ 1/(Nnee
∗∗), with equality if and only if λ∗∗ = λ′′.

Proof. By Proposition 3.16(i) and the definition of 1-path, λ̃n − λ̃′ = 1/(ee′), from which
part (i) follows. Part (ii) follows similarly, using Proposition 3.16(ii). To prove part (iii),

note that Proposition 3.16(iii) shows that λ̃∗ is on the shortest 1-path from λ̃n to 0, but that

λ̃∗ does not directly follow λ̃n on this path unless λ∗ = λ′. The definition of shortest 1-paths
shows that λ̃n − λ̃∗ = 1/ee∗ if and only if λ∗ = λ′. Since λ̃n − λ̃∗ is a multiple of 1/ee∗ by
common denominators, part (iii) follows. The proof of part (iv) is exactly the same, using
λ∗∗, λ′′, and Proposition 3.16(iv) instead of λ∗, λ′, and Proposition 3.16(iii). �

Lemma 3.19. Let v, v′, v′′, v∗, and v∗∗ be as above. If e, e′, e′′, e∗, and e∗∗ are defined as
in Proposition 3.16, then e = e(v/vn−1), e′ = e(v′/vn−1), e′′ = e(v′′/vn−1), e∗ = e(v∗/vn−1),
and e∗∗ = e(v∗∗/vn−1).

Proof. By construction, e is the denominator of Nnλn (and similarly for e′, e′′, e∗, and e∗∗).
By [OW18, Lemma 5.3(ii)], e(v/v0) = lcm(Nn, cn), where cn is the denominator of λn. By
[OW18, Lemma A.6], this is equal to Nne. Since Nn = e(vn−1/v0), we have e = e(v/vn−1).
This proves the lemma for e, and the proofs for e′, e′′, e∗, and e∗∗ are identical. �
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4. Some regular models of P1 attached to a polynomial

Throughout §4, we assume that the residue field k of K is algebraically closed.
Let α ∈ OK such that νK(α) > 0 and the minimal polynomial f(x) ∈ K[x] of α has

degree at least 2. In this section, we first define a canonical Mac Lane valuation vf attached
to f . We then define certain natural contractions of the minimal regular resolution of the
vf -model, called “Type I”, “Type II”, or “Type III” models. These are candidate models
for the horizontal divisor Dα to be regular on. We prove some technical results about these
three kinds of models. These results will then be used in the next section to show that the
minimal regular model on which Dα is regular is a special kind of Type I or Type II model.

4.1. The Mac Lane valuation associated to a polynomial. Write

vf = [v0, v1(ϕ1) = λ1, . . . , vn(ϕn) = λn]

for the unique Mac Lane valuation on K(x) over which f is a proper key polynomial (Propo-
sition 2.5(iv)). As usual, write v0, v1, . . . , vn = vf for the intermediate valuations. For
1 ≤ i ≤ n, write λi = bi/ci in lowest terms. Let Ni = lcm(c1, . . . , ci−1) = deg(ϕi) (Corollary
2.12). Furthermore, pick once and for all a root α of f .

Remark 4.1. If the roots of f generate a tame extension, it is easy to read off the polyno-
mials ϕi and integers λi from the truncations of Newton-Puiseux expansions of the roots
of f with respect to some choice of uniformizer t, as we now explain. Using Proposi-
tion 2.5(iii), we see that we can take ϕi to be the minimal polynomials of the truncations
of the Newton-Puiseux expansions just before there is a jump in the lcm of the denomina-
tors of the exponents in the expansion. If α is a root of f , then Corollary 2.8 shows that
λi = νK(ϕi(α)) =

∑
ϕi(β)=0 νK(α−β). If deg(ϕi) = m, then the Galois group of the splitting

field of the tame extension generated by the roots of ϕi is generated by the automorphism
t1/m 7→ ζmt

1/m for a primitive mth root of unity ζm. Since the induced Z/mZ-action on the
roots of ϕi is transitive, a direct computation then shows that for each root β of ϕi, the
quantity νK(α−β) is equal to one of the the exponents in α where the lcm of the denomina-
tors of the exponents jumps. (This is the content of [Sri19, Lemma 8.13] using the language
of characteristic/jump exponents.)

For example, let K = C((t)) and let f be the minimal polynomial of 2t − t5/2 + t8/3 −
3t7/2 + t23/6. Then vf has the form

vf = [v0, v1(ϕ1) = λ1, v2(ϕ2) = λ2],

and we can take ϕ1 = x−2t and ϕ2 to be the minimal polynomial of 2t− t5/2, with λ1 = 5/2
and λ2 = 5/2 + 8/3. This example also shows that deg(ϕi) and the invariants λi contain the
same information as the characteristic exponents of the Newton-Puiseux expansion of a root
of f as in [Sri19, Example 8.13] in the tame case.

For the rest of this section we will use the following notation.

Notation 4.2. Lemma 2.13 implies that we are in the situation of §3.3. Like in §3.3, let

• v′f = [v0, v1(ϕ1) = λ1, . . . , vn−1(ϕn−1) = λn−1, v
′
n(ϕn) = λ′]

• v′′f = [v0, v1(ϕ1) = λ1, . . . , vn−1(ϕn−1) = λn−1, v
′
n(ϕn) = λ′′]

be the successor and precursor valuations to vf , respectively.
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For simplicity, we write e = e(vf/vn−1), e
′ = e(v′f/vn−1), and e′′ = e(v′′f/vn−1). This is

consistent with the notation in Lemma 3.19 and Proposition 3.16. We record for later usage
that e = deg(f)/ deg(ϕn) by Lemma 2.10(ii). With this notation, we are ready to state the
main result of this paper. We postpone the proof to Section 5.

Theorem 4.3. Let f ∈ OK [x] be a monic irreducible polynomial of degree ≥ 2, and let
X be the v0-model of P1

K. Let vf be the unique Mac Lane valuation over which f is a key
polynomial, and let v′f and v′′f be the valuations defined in Notation 4.2. For any Mac Lane
valuation v, let Yreg

v,0 be defined as in Notation 3.9.

(i) If e(v′f/v0) ≤ e(v′′f/v0), then the minimal embedded resolution of (X , div0(f)) is
c : Yreg

v′f ,0
→ X , where c is the canonical contraction from Notation 3.9.

(ii) If e(v′f/v0) > e(v′′f/v0), then the minimal embedded resolution of (X , div0(f)) is
c : Yreg

v′′f ,0
→ X , where c is the canonical contraction from Notation 3.9.

We now give two basic examples illustrating Theorem 4.3.

Example 4.4. If f = x8− π3
K , then vf = [v0, v1(x) = 3/8]. As in Example 3.8, the shortest

1-path from 1 to 3/8 is given by 1 > 1/2 > 3/8 and the shortest 1-path from 3/8 to 0 is
given by 3/8 > 1/3 > 0, yielding v′f = [v0, v1(x) = 1/3] and v′′f = [v0, v1(x) = 1/2]. Since
e(v′f/v0) = 3 and e(v′′f/v0) = 2, part (ii) of Theorem 4.3 applies, and the minimal embedded
resolution of (X , div0(f)) is Yreg

v′′f ,0
→ X .

Remark 4.5. In Example 4.4, applying Proposition 3.10 shows that Yreg
v′′f ,0

includes the

valuations vλ := [v0, v1(x) = λ], for λ ∈ {0, 1/2, 1}. In particular, there exist λ both greater
than and less than 3/8 for which vλ is included. By Corollary 3.4, this implies that Dα, for
α a root of f , specializes to the intersection of two components (the ones corresponding to
λ = 0 and λ = 1/2). This property makes Yv′′f ,0 a prototype for what we will call a “Type

I model” in the sequel. In particular, v1/2 is one of the v1,λ and v0 is one of the w0,λ; see
Definition 4.8(i).

Example 4.6. If f is Eisenstein, then vf = [v0, v1(x) = 1/ deg(f)]. The shortest 1-path
from 1/ deg(f) to 0 is given by 1/ deg(f) > 0 and the shortest 1-path from 1 to 1/ deg(f)
is given by 1 > 1/2 > · · · > 1/(deg(f) − 1) > 1/ deg(f). So v′f = [v0, v1(x) = 0] = v0, and
v′′f = [v0, v1(x) = 1/(deg(f) − 1)]. Since e(v′f/v0) = 1 and e(v′′f/v0) = deg(f) − 1, part (i)
of Theorem 4.3 applies, and the minimal embedded resolution of (X , div0(f)) is Yreg

v′f ,0
→ X .

But Yreg
v′f ,0

= Yreg
v0,0

= X , so this recovers the easy-to-verify fact that if α is a root of f , then

Dα is regular on the v0-model X of P1
K .

Remark 4.7. In Example 4.6, since Yreg
v′f ,0

= X has irreducible special fiber, Dα, for α a root

of f , specializes to only one irreducible component. This property makes Yv′′f ,0 a prototype

for what we will call a “Type II model” in the sequel. In particular, v0 is one of the w0,λ;
see Definition 4.8(ii).

4.2. The model Yreg
vf

and its contractions. As we start contracting components in Yreg
vf

to identify the minimal embedded resolution of the the pair (P1
OK , div0(f)), we go through

an intermediate sequence of regular models of P1
K that naturally breaks up into three types
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(Definition 4.8), based on the specialization behaviour of Dα (Proposition 4.15). To under-
stand whether Dα is regular on these contractions, we also need to understand where some
closely related divisors specialize on each of these three types of models (Corollary 4.16).
The goal of the rest of the subsection is to prove Proposition 4.17, which lets us write down
an explicit function that cuts out the divisor Dα on each of these three types of models –
the forms of the explicit functions look different in each of these three cases, hence the sub-
division. In §5 we will finally use these explicit functions to understand the regularity of Dα

on each of these three types of models. We will show that the minimal embedded resolution
has to be one of the Type I or Type II models, and Dα is not regular on the unique Type
III model.

We use the notation of Proposition 3.10 and Figure 1.

Definition 4.8. Fix f as in this section. The Type I, II, and III models below implicitly
depend on f .

• A Type I model of P1
K is any regular contraction of Yreg

vf
that includes at least one of

the vn,λ and one of the wn−1,λ, but does not include vf .
• A Type II model of P1

K is any regular contraction of Yreg
vf

that does not include vf or
any vn,λ, but does include at least one of the wn−1,λ.
• Assuming that Yreg

vf
includes at least one valuation other than vf , the vn,λ, and the

wn−1,λ, we define the Type III model of P1
K to be the model where the vf -component

is contracted, as well as all the vn,λ and the wn−1,λ.

Remark 4.9. Since vn−1 is one of the wn−1,λ, one sees that the Type III model is the
contraction of the vn−1-component in Yreg

vn−1
.

Definition 4.10.

• Given a Type I or Type II model Y , define

v∗f = [vn−1, v
∗
f (ϕn) = λ∗] = wn−1,λ∗ ,

where λ∗ is maximal such that wn−1,λ∗ is included in Y .
• Given a Type I model Y , define

v∗∗f = [vn−1, v
∗∗
f (ϕn) = λ∗∗] = vn,λ∗∗ ,

where λ∗∗ is minimal such that vn,λ∗∗ is included in Y .
• If v∗f (resp. v∗∗f ) is defined, define e∗ (resp. e∗∗) to be the denominator of Nnλ

∗ (resp.
Nnλ

∗∗). Note that this notation is consistent with that of Proposition 3.16.
• Given a Type III model Y , define v′n−1 and v′′n−1 to be the successor and precursor

valuations to vn−1, respectively.

Remark 4.11. Note that the v∗f and v∗∗f -components of P1
K intersect using Proposition 3.10

and Remark 3.12.

Remark 4.12. By Lemma 3.19, e∗ = e(v∗f/vn−1) and e∗∗ = e(v∗∗f /vn−1).

4.2.1. Specializations of horizontal divisors.

Lemma 4.13. On the model Yreg
vf

the only component of the special fiber that Dα meets is
the vf -component.

17



Proof. The multiplicity of the vf -component of Yreg
vf

in the special fiber is e(vn/vn−1)e(vn−1/v0).

But e(vn/vn−1) = deg(f)/ deg(ϕn) by Lemma 2.10(ii) and e(vn−1/v0) = deg(ϕn) by Corol-
lary 2.12. So the multiplicity is equal to deg(f).

By Proposition 2.8, vf (ϕn(α)) = λn. So by [OW18, Lemma 7.3(iii)] and Proposition 3.2,
Dα intersects a regular point z on the vf -model of P1

K , which is also a smooth point of
the reduced special fiber by [OW18, Lemma 7.1]. By the previous line, we conclude that
the point z is not part of the base locus of the projection Yreg

vf
→ Yvf , and this proves the

lemma. �

Lemma 4.14. Let y be a point on the vf -component of Yreg
vf

.

(i) Suppose Y is a Type I model, and τ : Yreg
vf
→ Y is the standard contraction. Then

τ(y) lies on the intersection of the v∗f - and v∗∗f -components of Y.

(ii) Suppose Y is a Type II model, and τ : Yreg
vf
→ Y is the standard contraction. Then

τ(y) lies only on the v∗f -component of Y.

(iii) Suppose Y is the Type III model, and τ : Yreg
vf
→ Y is the standard contraction. Then

τ(y) lies on the intersection of the v′n−1- and v′′n−1-components of Y.

Proof. This follows from Remark 3.12 and Figure 1. �

Proposition 4.15. Let α, f , vf , v∗f , v∗∗f , v′n−1, and v′′n−1 be as in this section.

(i) If Y is a Type I model of P1
K, then the divisor Dα on Y meets the intersection of the

two components of the special fiber corresponding to v∗f and v∗∗f .

(ii) If Y is a Type II model of P1
K, then the divisor Dα on Y intersects only the v∗f -

component of the special fiber.

(iii) If Y is the Type III model of P1
K, then the divisor Dα on Y meets the intersection of

the two components of the special fiber corresponding to v′n−1 and v′′n−1.

Proof. By Lemma 4.13, Dα meets the special fiber of Yreg
vf

only on the vf -component. Parts

(i), (ii), and (iii) of the proposition now follow from the respective parts of Lemma 4.14. �

Corollary 4.16. Let Y be a Type I or Type II model of P1
K. Let αn be a root of ϕn.

(i) Suppose β ∈ K has degree less than deg(ϕn) over K. Then Dα and Dβ do not meet
on the special fiber of Y.

(ii) If Y is Type I, then Dα and Dαn do not meet on the special fiber of Y.

(iii) If Y is Type II or Type III, then Dα and Dαn meet on the special fiber of Y.

Proof. By Proposition 4.15, Dα specializes to the v∗f -component of the special fiber of Y . By
Corollary 2.12 and Lemma 3.19, the multiplicity of this component is Nne

∗ = deg(ϕn)e∗ ≥
deg(ϕn). So by [LL99, Lemma 5.1(a)], Dβ does not specialize to this component. This proves
part (i).

To prove part (ii), assume Y is Type I. Note that αn is a root of ϕn, we have νK(ϕn(αn)) =
∞, which does not lie between λ∗ and λ∗∗. As a consequence, Corollary 3.4 and Proposi-
tion 4.15(i) show that Dα does not meet Dαn on the special fiber of Y .

To prove part (iii), it suffices to assume Y is Type II, since a Type III model is a contraction
of a Type II model. Since both νK(ϕn(α)) = λn and νK(ϕn(αn)) = ∞ are greater than λ∗,
Proposition 3.2 shows that they meet on the special fiber of the v∗f -model of P1

K . This point is
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not a base point of the contraction Y → Yv∗f , because that would violate Proposition 4.15(ii).

Thus, Dα and Dαn meet on Y . �

4.2.2. The final result of this section, Proposition 4.17, shows how to appropriately modify
the function f to make a function that precisely cuts out the divisor Dα on each of the three
types of models –

Proposition 4.17. Let Y be a Type I, Type II, or Type III model of P1
K, and let v∗f and v∗∗f

be defined accordingly.

(i) If Y is Type I, the quantity b := e(λn − λ∗)/(λ∗∗ − λ∗) is an integer. Furthermore,
there exists a monomial s in ϕ1, . . . , ϕn−1 over K such that the divisor Dα is locally
cut out by sf/ϕbn.

(ii) If Y is Type II, there exists a monomial t in ϕ1, . . . , ϕn−1 such the divisor Dα is locally
cut out by sf , where s = te.

(iii) If Y is Type III, then there exists s ∈ K(x) such that the divisor Dα is locally cut
out by sf , and such that the support of s is locally (near Dα) contained in the special
fiber of Y.

Remark 4.18. Since ϕ1, . . . , ϕn−1 all have degree lower than deg(ϕn), Corollary 4.16(i)
shows that the support of s is locally (near Dα) contained in the special fiber of Y in parts
(i) and (ii), as well as part (iii).

To prove Proposition 4.17, we first need to compute the orders of vanishing of various
auxiliary functions that will be used to modify the function f along vertical components of
Type I, II, and III models. This is accomplished in Lemma 4.19. The proof also needs two
other short lemmas (Lemma 4.20 and Lemma 4.21).

Lemma 4.19. Let f = ϕen + ae−1ϕ
e−1
n + · · ·+ a0 be the ϕn-adic expansion of f . Let Y be a

Type I or Type II model of P1
K, and let v∗f and v∗∗f be defined accordingly. Let ae = 1.

(i) We have v∗f (f) = v∗f (ϕ
e
n) = eλ∗.

(ii) We have v∗f (aiϕ
i
n) > eλ∗ for 0 ≤ i ≤ e− 1.

(iii) In the case of a Type I model, we have v∗∗f (f) = v∗∗f (a0) = eλn.

(iv) In the case of a Type I model, we have v∗∗f (aiϕ
i
n) > eλn for 1 ≤ i ≤ e.

Proof. By Lemma 2.2, ϕen is a term in the ϕn-adic expansion of f with minimal vf -valuation.
It is also the term whose valuation is decreased the most when vf is replaced with v∗f .
Thus ϕen is the unique term in the ϕn-adic expansion of f with minimal v∗f -valuation. Since
v∗f (ϕn) = λ∗ by definition, this proves parts (i) and (ii).

Similarly, by Lemma 2.2, a0 is a term in the ϕn-adic expansion of f with minimal vf -
valuation. It is also the term whose valuation is increased the least when vf is replaced by
v∗∗f . Thus a0 is the unique term in the ϕn-adic expansion of f with minimal v∗∗f -valuation.
Since v∗∗f (a0) = vf (a0) = eλn (Lemma 2.2), this proves parts (iii) and (iv). �

Lemma 4.20. On a Type I model Y, we have λ∗∗ − λ∗ = 1/(Nne
∗e∗∗).

Proof. Since Y is regular and the v∗f - and v∗∗f -components intersect, [OW18, Corollary 7.6]
(with X = X ′ there) shows that λ∗∗ > λ∗ is the shortest Nn-path. By [OW18, Corollary A.7],

λ̃∗∗ > λ̃∗ is a shortest 1-path, where λ̃∗ and λ̃∗∗ are as in Proposition 3.16. By the definition
of a 1-path, λ̃∗∗ − λ̃∗ = 1/(e∗e∗∗), so λ∗∗ − λ∗ = 1/(Nne

∗e∗∗). �
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Lemma 4.21. On a Type II model Y, we have Γv∗f = Γvn−1.

Proof. If Y is a Type II model, then it dominates Yreg
v∗f

, and thus includes all the valuations

therein. On the other hand, by the definition of a Type II model, Y does not include any
valuation of the form [v0, v1(ϕ1) = λ1, . . . , vn−1(ϕn−1) = λn−1, vn(ϕn) = λ] with λ > λ∗.
Applying Proposition 3.10 to v∗f , this forces the βn referred to in the first bullet point of
Proposition 3.10 to equal λ∗. So λ∗ ∈ (1/Nn)Z = Γvn−1 . Since Γv∗f = [vn−1, vi(ϕi) = λ∗], it

follows that λ∗ together with Γvn−1 generates Γv∗f . Combining the previous two sentences,

we get Γv∗f = Γvn−1 . �

Proof of Proposition 4.17. To prove the first assertion of part (i), note that λ∗∗ − λ∗ =
1/(Nne

∗e∗∗) by Lemma 4.20. So b = Nnee
∗e∗∗(λn−λ∗). Since the denominator of λn divides

e(vf/v0) = Nne and that of λ∗ divides e(v∗f/v0) = Nne
∗, we have that b is an integer, and is

in fact divisible by e∗∗.
Now, assume we are on a Type I model and let y be the point where Dα meets the special

fiber of Y , i.e., the specialization of f(x) = 0. The function f in general does not locally
cut out Dα at y, because div(f) might also include vertical components passing through
y. By Proposition 4.15(i), z is the intersection of the v∗f and v∗∗f -components of the special
fiber. By Corollary 4.16(i), (ii), the specialization of ϕi = 0 is not y for any 1 ≤ i ≤ n.
So to finish the proof of part (i), it suffices to construct s as in the proposition such that
v∗f (sf/ϕ

b
n) = v∗∗f (sf/ϕbn) = 0.

By Lemma 4.19(i), we have v∗f (f/ϕ
b
n) = (e− b)λ∗. Likewise, by Lemma 4.19(iii), we have

v∗∗f (f/ϕbn) = eλn − bλ∗∗. Since e∗∗ | b, and the denominators of λn and λ∗∗ are Nne and
Nne

∗∗ respectively, eλn − bλ∗∗ ∈ Γvn−1 = (1/Nn)Z. This means that there exists s as in the
proposition such that v∗∗f (sf/ϕbn) = 0. Since v∗f (s) = v∗∗f (s), showing that v∗f (sf/ϕ

b
n) = 0 is

reduced to showing that (e− b)λ∗ = eλn− bλ∗∗. But this is immediate upon plugging in the
definition of b.

Now we prove part (ii). Let y be as in part (i). By Proposition 4.15(ii), y lies on a unique
component of the special fiber, namely the v∗f -component. Furthermore, since the value
group of v∗f is Γvn−1 (Lemma 4.21), we have that v∗f (ϕn) = λ∗ ∈ Γvn−1 . Thus we can find t
as in the proposition such that v∗f (t) = −λ∗. By Lemma 4.19(i), v∗f (t

ef) = v∗f (sf) = 0. By
Corollary 4.16(i), the specialization of ϕi = 0 is not y for any 1 ≤ i ≤ n− 1. So sf cuts out
Dα, proving part (ii).

For part (iii), note that Y is regular, and is thus a local UFD. Since div(f) and Dα

agree on the generic fiber in a neighborhood of Dα, there exists s ∈ K(x) with the desired
property. �

5. Minimal embedded resolution

In this section, we prove our main result, Theorem 4.3, which explicitly gives the minimal
embedded resolution of (X , div0(f)), where X is the v0-model of P1

K and f ∈ OK [x] is a monic
polynomial of degree at least 2. We begin in §5.1 with some general results on regularity,
and then return to Mac Lane valuations and models of P1

K for the proof in §5.2. The main
technical lemma that makes everything work is Lemma 5.5, which depends heavily on the
work in §4.
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Throughout §5, with the exception of Remark 5.18 and the conclusion of the paper im-
mediately following it, we assume that the residue field k of K is algebraically closed.

5.1. Generalities on regular models.

Lemma 5.1. If X is a regular model of P1
K and D is a reduced, effective, regular divisor on

X and if f : X ′ → X is a modification, then the strict transform D′ of D in X ′ is regular.

Proof. Since X is normal, f is an isomorphism above points of codimension 1, thus over
the generic point of each component of D. So D′ → D is proper and birational. Since
dim(D′) = dim(D) = 1, D′ → D is finite as well, and thus it is an isomorphism, proving the
lemma. �

The following proposition is well-known, but we were unable to find an exact reference.
We state it only in the generality we need.

Proposition 5.2. If X is a regular model of P1
K and D is an integral horizontal divisor on

X , then there is a unique minimal modification X ′ → X such that X ′ is regular and the
strict transform of D is regular.

Proof. By [Liu02, Theorem 9.2.26], there exists some modification Y → X with Y regular
under which the total transform of D has normal crossings, and in particular, the strict
transform of D is thus regular. We now prove that a minimal such Y is unique. By [Liu02,
Theorem 9.2.2], the morphism Y → X is a finite sequence of blowups at reduced closed
points.

We now prove the proposition by induction on the minimum number n of blowups of X at
closed points required to make the strict transform of D regular. The case n = 0 is trivial.
If not, since blowups in centers outside Supp(D) do not affect D, any minimal sequence
of blowups making the strict transform of D regular begins with blowing up the (unique)
intersection point x of D with the special fiber of X . Replacing X with its blowup at x,
and noting that the strict transform of D is still integral on this blowup and then applying
induction completes the proof. �

Lemma 5.3. Let Y be a regular snc-model of a smooth curve Y over K, and let y ∈ Y
be a closed point. Let div(f), div(g) be the divisors in Spec ÔY,y of functions f, g ∈ ÔY,y
respectively.

(i) Suppose div(f) is of the form
∑r

i=1 ciDi for some integers ci ≥ 0 where the Di are
Weil prime divisors. If

∑
i ci ≥ 2, then f ∈ m2

Y,y.

(ii) Suppose div(f) = D where D is a Weil prime divisor corresponding to one of the
irreducible components of the special fiber of Y passing through y. Then f ∈ mY,y \
m2
Y,y.

(iii) If div(f) = D and div(g) = E, where D and E are Weil prime divisors corresponding
to two different components of the special fiber of Y passing through Y , then the
images of f and g are linearly independent in mY,y/m

2
Y,y.

Proof. First note that the regular local ring ÔY,y is a UFD and thus every height one prime
ideal is principal. Thus in the situation of part (i), f = w

∏
i f

ci
i , where w is a unit and

div(fi) = Di. Since the fi lie in the maximal ideal, this proves (i).
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In fact, by [CES03, Lemma 2.3.2 and its proof], we can write

ÔY,y ∼= OK [[y1, y2]]/(y
m1
1 · · · ymrr − uπK),

with r ∈ {1, 2}. The irreducible components of the special fiber passing through y are cut
out by y1 if r = 1 and, by y1 and y2 if r = 2. So in the situation of part (ii), we have f = wy1
or f = wy2, with w a unit. Since mY,y = (y1, y2), this proves part (ii). In the situation of
part (iii), we have r = 2, and the result follows from the fact that the images of w1y1 and
w2y2 are linearly independent in (y1, y2)/(y1, y2)

2. �

Proposition 5.4. Let Y be a regular model of P1
K, and let y be the point where Dα intersects

the special fiber. Let g ∈ ÔY,y be such that div(g) = Dα on Spec ÔY,y. Then Dα is regular
if and only if g /∈ m2

Y,y.

Proof. This is [Liu02, Corollary 4.2.12]. �

5.2. Non-archimedean analysis of valuations in an expansion. Maintain our notation
from §4. In particular, for the remainder of the paper, f ∈ OK [x] is monic and irreducible
of degree at least 2, α is a root of f , and on any regular model of P1

K , the divisor Dα is
the horizontal divisor corresponding to α as in §3.1. As in §4, we use the notation vf for
the unique Mac Lane valuation over which f is a proper key polynomial. We also use the
valuations v′f and v′′f from Notation 4.2, and we use the concept of Type I/II/III models
associated to f from Definition 4.8, which give rise to valuations v∗f , v

∗∗
f , v′n−1, and v′′n−1 as

in Definition 4.10. As in §3.1, we write e = e(vf/vn−1), e
′ = e(v′f/vn−1), e

′′ = e(v′′f/vn−1),
and, when there is a Type I/II model in play, e∗ = e(v∗f/vn−1) and e∗∗ = e(v∗∗f /vn−1).

We decompose the function cutting out the unique horizontal divisor of Dα using the
ϕn-adic expansion of f , and analyze which of the terms in the decomposition are in m2

Y,y for
Type I/II models Y . This will be the key technical input for analyzing regularity of Dα on
these models in the next section.

Lemma 5.5. Let Y be a Type I or Type II model of P1
K, and let y ∈ Y be the point

where Dα meets the special fiber of Y. Let s be as in Proposition 4.17(i), (ii), let b be as in
Proposition 4.17(i) if Y is Type I and let b = 0 if Y is Type II. If f = ϕen+ae−1ϕ

e−1
n + · · ·+a0

is the ϕn-adic expansion of f , then we can write

(5.6)
sf

ϕbn
= sϕe−bn + sae−1ϕ

e−1−b
n + · · ·+ sa0ϕ

−b
n .

Then,

(i) All terms saiϕ
i−b
n of (5.6) for 1 ≤ i ≤ e− 1 are in m2

Y,y.

(ii) We have sa0ϕ
−b
n ∈ m2

Y,y if and only if v∗f 6= v′f .

(iii) We have sϕe−bn ∈ m2
Y,y if and only if Y is Type II or v∗∗f 6= v′′f .

(iv) Suppose Y is Type I. If v∗f = v′f and v∗∗f = v′′f , then sϕe−bn and sa0ϕ
−b
n generate linearly

independent elements of mY,y/m
2
Y,y.

Proof. Let y be the point where Dα intersects the special fiber of Y . Recall from Proposi-
tion 4.17 that sf/ϕbn cuts out Dα. By Remark 4.18, the horizontal part of div(s) does not
contain y. The same is true for all of the div(ai), since the ai have degree less than ϕn by
definition. Furthermore, Corollary 4.16(ii) shows that the same is true for the horizontal
part of div(ϕn) if Y is Type I.
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By Proposition 4.15, y is the intersection of the v∗f - and v∗∗f -components if Y is Type I,
and y lies on only the v∗f -component of Y is Type II. Write D∗ and D∗∗ for the prime divisors
corresponding to the v∗f - and v∗∗f -components, respectively.

We now prove part (i). Assume 1 ≤ i ≤ e− 1. By Lemma 4.19(i), (ii), v∗f (f) < v∗f (aiϕ
i
n),

and since the divisor of sf/ϕbn is horizontal by construction, so 0 = v∗f (sf/ϕ
b
n) < v∗f (saiϕ

i−b
n ).

Thus D∗ lies in the support of saiϕ
i−b
n . If Y is Type I, the same is true for D∗∗ using

Lemma 4.19(iii), (iv). Since no horizontal component of div(saiϕ
i−b
n ) passes through y, we

have that saiϕ
i−b
n ∈ ÔY,y and thus, Lemma 5.3(i) shows that saiϕ

i−b
n ∈ m2

Y,y. On the other
hand, if Y is Type II, then Corollary 4.16(iii) shows that the horizontal part of div0(ϕn) does
pass through y. In this case, Lemma 5.3(ii) shows that saiϕ

i
n ∈ m2

Y,y. This concludes the
proof of part (i).

For part (ii), Lemma 4.19(i), (ii) show as above that D∗ is in the support of div(sa0ϕ
−b
n ).

If Y is Type I, then Lemma 4.19(iii) shows that v∗∗f (f) = v∗∗f (a0), so 0 = v∗∗f (sf/ϕbn) =

v∗∗f (sa0ϕ
−b
n ), meaning that D∗∗ is not in the support of div(sa0ϕ

−b
n ). Observe further that

the horizontal support of div(sa0ϕ
−b
n ) does not pass through y, regardless of whether Y is

Type I or Type II. This means that we have saiϕ
i−b
n ∈ ÔY,y and by Lemma 5.3(i), we thus

have sa0ϕ
−b
n ∈ m2

Y,y if and only if the multiplicity of D∗ in div(sa0ϕ
−b
n ) is at least 2.

By Corollary 2.12 and Lemma 3.19, the multiplicity of D∗ in the special fiber is Nne
∗, so its

multiplicity in div(sa0ϕ
−b
n ) is Nne

∗v∗f (sa0ϕ
−b
n ). Since v∗f (sf/ϕ

b
n) = 0, v∗f (a0) = v∗∗f (a0) = eλn

(Lemma 4.19(iii)), and v∗f (f) = eλ∗ (Lemma 4.19(i)), we have

Nne
∗v∗f (sa0ϕ

−b
n ) = Nne

∗v∗f (a0/f)

= Nne
∗(eλn − eλ∗)

≥ 1.

where the inequality follows from Corollary 3.18(iii), and equality holds if and only if v∗f = v′f .

So the multiplicity of D∗ in div(saoϕ
−b
n ) is at least 2 if and only if v∗f 6= v′f , finishing part

(ii).
For part (iii), first suppose Y is Type I. Then Lemma 4.19(i), (iii), (iv) show using similar

reasoning to part (ii) that D∗∗ is in the support of div(sϕe−bn ) but D∗ is not. This proves
the first assertion of part (iii). Since the horizontal part of div(sϕe−bn ) does not pass through
y, the same reasoning as in part (ii) reduces us to showing that the multiplicity of D∗∗ in
div(sϕe−bn ) is at least 2 if and only if v∗∗f 6= v′′f .

By Corollary 2.12 and Lemma 3.19, the multiplicity of D∗∗ in the special fiber is Nne
∗∗,

so its multiplicity in div(sϕe−bn ) is Nne
∗∗v∗∗f (sϕe−bn ). Since v∗∗f (sf/ϕbn) = 0 and v∗∗f (f) = eλn

(Lemma 4.19(i)), we have

Nne
∗∗v∗∗f (sϕe−bn ) = Nne

∗∗v∗∗f (ϕen/f)

= Nne
∗∗(eλ∗∗ − eλn)

≥ 1.

where the inequality follows from Corollary 3.18(iv), and equality holds if and only if v∗∗f = v′′f .

So the multiplicity of D∗∗ in div(sϕe−bn ) is at least 2 if and only if v∗∗f 6= v′′f , proving part (iii)
in this case.
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Now suppose Y is Type II. Then sϕe−bn = sϕen, and by Corollary 4.16(iii), the horizontal
part of div(sϕen) does meet y. By Proposition 4.17, s can be taken to be an eth power in
K[x]. Since e ≥ 2, we have sϕen ∈ me

Y,y ⊆ m2
Y,y, finishing the proof of part (iii).

Lastly, by the proofs of parts (ii) and (iii), if v∗f = v′f and v∗∗f = v′′f , then div(sϕe−bn ) = D∗∗

and div(sa0ϕ
−b
n ) = D∗ in Spec ÔY,y. Applying Lemma 5.3(iii) completes the proof of part

(iv). �

Lemma 5.7. Assume the Type III model Y of P1
K exists. Let s be as in Proposition 4.17(iii),

and write sf = sϕen + sae−1ϕ
e−1
n + · · ·+ sa0 for the product of s with the ϕn-adic expansion

of f . Then

(i) v′n−1(sϕ
e
n) = v′′n−1(sϕ

e
n) = 0,

(ii) v′n−1(saiϕ
i
n) > 0 and v′′n−1(saiϕ

i
n) > 0 for 0 ≤ i < e.

Proof. By Proposition 4.15(iii), the divisor Dα (which is locally the same as div(sf)) meets
the intersection of the v′n−1- and v′′n−1-components of the special fiber of Y . Thus v′n−1(sf) =
v′′n−1(sf) = 0. So it suffices to show that, for 0 ≤ i < e, both v′n−1(sϕ

e
n) < v′n−1(saiϕ

i
n) and

v′′n−1(sϕ
e
n) < v′′n−1(saiϕ

i
n), or equivalently, that

(5.8) v′n−1(ϕ
e
n) < v′n−1(aiϕ

i
n) and v′′n−1(ϕ

e
n) < v′′n−1(aiϕ

i
n).

Fix i such that 0 ≤ i < e. We first claim that

(5.9) vn−1(ϕ
e
n) < vn−1(aiϕ

i
n).

By Lemma 2.2, vf (ϕ
e
n) ≤ vf (aiϕ

i
n). Since deg(ai) < deg(ϕn), we have vn−1(ai) = vf (ai). On

the other hand, applying Lemma 2.2 to ϕn and vn−1 for the equality below, we have

vn−1(ϕn) = en−1λn−1 < vf (ϕn),

where en−1 = deg(ϕn)/ deg(ϕn−1). Write δ = vf (ϕn)− vn−1(ϕn). Since e > i, we have

vn−1(ϕ
e
n) = vf (ϕ

e
n)− eδ < vf (ϕ

e
n)− iδ ≤ vf (aiϕ

i
n)− iδ = vn−1(aiϕ

i
n),

proving (5.9).

Now, write ϕn = ϕ
en−1

n−1 + ben−1ϕ
en−1−1
n−1 + · · · + b0 for the ϕn−1-adic expansion of ϕn, and

recall from Lemma 2.2 that

(5.10) vn−1(ϕn) = vn−1(ϕ
en−1

n−1 ) = vn−1(b0).

Furthermore, the term whose valuation decreases the most upon replacing vn−1 with v′n−1 is
ϕ
en−1

n−1 , and the term whose valuation increases the least upon replacing vn−1 with v′′n−1 is b0
(since it does not increase at all). Thus,

(5.11) v′n−1(ϕn) = v′n−1(ϕ
en−1

n−1 ) and v′′n−1(ϕn) = v′′n−1(b0).

Let c be the degree of ϕn−1 in the ϕn−1-adic expansion of aiϕ
i
n, and note that

(5.12) c < en−1e,

since deg(aiϕ
i
n) < deg(ϕen). Then, we have

v′n−1(ϕ
e
n)

(5.11)
= v′n−1(ϕ

en−1e
n−1 ) = vn−1(ϕ

en−1e
n−1 )− en−1e(λn−1 − λ′n−1)

(5.10)
=

vn−1(ϕ
e
n)− en−1e(λn−1 − λ′n−1)

(5.9),(5.12)
< vn−1(aiϕ

i
n)− c(λn−1 − λ′n−1) ≤ v′n−1(aiϕ

i
n)

24



and,

v′′n−1(ϕ
e
n)

(5.11)
= v′′n−1(b

e
0) = vn−1(b

e
0)

(5.12)
= vn−1(ϕ

e
n) < vn−1(aiϕ

i
n) ≤ v′′n−1(aiϕ

i
n).

This proves (5.8), and thus the lemma. �

5.3. The minimal embedded resolution. In this subsection, we prove Theorem 4.3, and
then extend that result to a proof of Theorem 1.1.

Proposition 5.13. If Y is the Type III model of P1
K, then Dα is not regular on Y.

Proof. By Proposition 4.15(iii), Dα meets the intersection y of the v′n−1- and v′′n−1-components
of the special fiber of Y . Let D′ and D′′ be the respective corresponding Weil prime divisors
on Y .

Let s be as in Lemma 5.7. Write f = ϕen + ae−1ϕ
e−1
n + . . . + a0, and set ae = 1. By

Proposition 4.17(iii), sf cuts out Dα locally, so by Proposition 5.4, it suffices to show that
saiϕ

i
n ∈ m2

Y,y for 0 ≤ i ≤ e. By Lemma 5.7, neither D′ nor D′′ appears with a negative

coefficient in any div(saiϕ
i
n).

Recall that in Spec ÔY,y, the support of s is contained in the special fiber and, by Corol-
lary 4.16(iii), y is in the support of the horizontal part Dαn of div(ϕn). Since e ≥ 2, the
divisor of sϕen is at least eDαn ≥ 2Dαn . By Lemma 5.3(i), sϕen ∈ m2

Y,y. If 0 ≤ i ≤ e − 1,

Lemma 5.7(ii) shows that both D′ and D′′ lie in the support of div(saiϕ
i
n). We again use

Lemma 5.3(i) to conclude that saiϕ
i
n ∈ m2

Y,y. �

Corollary 5.14. If Y is a non-trivial regular contraction of Yreg
vf

on which Dα is regular,
then Y is Type I or Type II.

Proof. Suppose Y is a non-trivial regular contraction of Yreg
vf

that is not Type I or Type II.
Then in the language of Proposition 3.10 and Corollary 3.13 applied to vf , the model Y
includes none of the wn−1,λ or vn,λ. Thus Y is dominated by the unique Type III model Z
of P1

K , given that Z includes exactly those valuations in Yreg
vn,0 that are not among the wn−1,λ

or vn,λ. By Proposition 5.13, Dα is not regular on Z. By Lemma 5.1, Dα is therefore not
regular on any regular contraction of Z, which finishes the proof. �

Proposition 5.15. Suppose Y is a nontrivial regular contraction of Yreg
vf

. Then Dα is regular

on Y if and only if Y includes v′f or v′′f .

Proof. By Corollary 5.14, we may assume that Y is either Type I or Type II. We show that
if Y is Type I (resp. Type II), then Dα is regular on Y if and only if Y includes v′f or v′′f
(resp. v′f ). This yields the proposition.

Let y ∈ Y be the point where Dα meets the special fiber, and let s, b, and the ai be as in
Lemma 5.5. By Propositions 4.17 and 5.4, Dα being regular is equivalent to sf/ϕbn /∈ m2

Y,y.

By Lemma 5.5(i), this is equivalent to sϕe−bn + sa0ϕ
−b
n /∈ m2

Y,y. By Lemma 5.5(ii), (iii),

sϕe−bn + sa0ϕ
−b
n /∈ m2

Y,y implies either v∗f = v′f , or Y is Type I and v∗∗f = v′′f . If Y is Type II,
the reverse implication also follows from Lemma 5.5(ii), (iii), and if Y is Type I, the reverse
implication follows from Lemma 5.5(iv). We have shown that Dα is regular if and only if
v∗f = v′f or Y is Type I and v∗∗f = v′′f . By the definition of v∗f and Type I/II models, v∗f = v′f
is equivalent to v′f being included in Y . Likewise, if Y is Type I, then v∗∗f = v′′f is equivalent
to Y including v′′f . This finishes the proof �
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Since Yreg
v′f ,0

is a blowup of Yreg
v′f

(and similarly for Yreg
v′′f ,0

), the following corollary is immediate.

Corollary 5.16. The divisor Dα is regular on Yreg
v′f

, Yreg
v′f ,0

, Yreg
v′′f

, and on Yreg
v′′f ,0

.

We now have the main result of the paper.

Proof of Theorem 4.3. By Corollary 5.16, both Yreg
v′f ,0
→ X and Yreg

v′′f ,0
→ X are embedded

resolutions of div0(f). Since Yreg
v′f ,0

and Yreg
v′′f ,0

are both contractions of Yreg
vf ,0

, the minimal

embedded resolution is as well. By Corollary 5.14, the minimal embedded resolution includes
either v′f or v′′f . It obviously includes v0 as well, so it is either Yreg

v′f ,0
or Yreg

v′′f ,0
. In particular,

one of these models dominates the other, and the dominated one is the minimal embedded
resolution.

Suppose e(v′f/v0) ≤ e(v′′f/v0) as in part (i). Since v′f ≺ v′′f , Proposition 3.14 applied to v′f
shows that v′′f is not included in Yreg

v′f ,0
, which shows that Yreg

v′f ,0
is the dominated one, thus

proving the theorem. If e(v′f/v0) > e(v′′f/v0) as in part (ii), then the same proposition applied
to v′′f shows that v′f is not included in Yreg

v′′f ,0
, showing that Yreg

v′′f ,0
is the dominated one, again

proving the theorem. �

Remark 5.17. Given Theorem 4.3 and Remark 5.18, and assuming k is algebraically closed,
one can construct a minimal embedded resolution of (P1

OK , div0(f)) for arbitrary squarefree
f ∈ OK [x] as follows.

First, one can always make a change of variables by taking some γ ∈ PGL2(OK) such
that the zeroes of the rational function f(γx) all lie in OK . Replacing f by the numerator
of f(γx), we may thus assume that all roots of f lie in OK [x]. Letting πK be a uniformizer
of K, we then have the irreducible factorization f = πbKf1 · · · fr ∈ OK [x], where all fi monic
and distinct, πK is a uniformizer of K, and b ∈ {0, 1}, since f is squarefree. Let Yi be the
minimal embedded resolution of (P1

OK , div0(fi)), and let Y ′ be the minimal normal model of
P1
K dominating all Yi. Then Y ′ is regular (see, e.g., [OS19b, Lemma 5.3]), and the minimal

embedded resolution of (P1
OK , div0(f)) is the minimal blowup Y → Y ′ separating the strict

transforms of div0(πK) and the div0(fi) on Y ′. Thus, neither the irreducibility nor the
monicity of f is a serious condition, but the statement of Theorem 4.3 is much cleaner when
they are in place.

Remark 5.18. Regular resolutions satisfy étale descent. That is, if L/K is an unramified,
algebraic field extension and f ∈ OK [x] is a monic irreducible polynomial, then Y is an
embedded resolution of (P1

OK , div0(f)) if and only if Z := Y ×OK OL is an embedded res-
olution of (P1

OL , div0(f)), in which case we have Z ∼= (Y ×OK OL)/Gal(L/K). Moreover,
the geometric valuations corresponding to the irreducible components of Y are obtained by
restricting the Mac Lane valuations included in Z to K(x).

Proof of Theorem 1.1. Suppose K is a complete discrete valuation field with perfect residue
field k, and that f ∈ K[x]. If Kur is the completion of the maximal unramified extension of
K, then Theorem 4.3 and Remark 5.17 allow us to construct the minimal regular resolution Z
of (P1

OKur , div0(f)). To explicitly present the minimal regular resolution of (P1
OKur , div0(f))

as a collection of geometric valuations, simply let Y be the normal model of P1
K corresponding

to the set of restrictions of all valuations included in Z to K(x). This completes the proof
of Theorem 1.1. �
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[Rüt14] Julian Rüth, Models of curves and valuations, posted on 2014, DOI 10.18725/OPARU-3275,
available at https://oparu.uni-ulm.de/xmlui/handle/123456789/3302. Ph.D. Thesis, Uni-
versität Ulm. ↑1, 2.1, 2.1, 2.1, 2.2, 2.4, 2.2, 2.6, 2.2, 2.2, 2.3, 2.11, 3, 3.1

[Rüt] , A framework for discrete valuations in Sage, available at https://trac.sagemath.org/
ticket/21869. ↑1

[Sri19] Padmavathi Srinivasan, Conductors and minimal discriminants of hyperelliptic curves: a com-
parison in the tame case (2019), available at arxiv:1910.08228v1. ↑4.1

[TSPA] The Stacks Project Authors, The Stacks Project, available at https://stacks.math.columbia.
edu. ↑

Baruch College
Current address: 1 Bernard Baruch Way. New York, NY 10010, USA
E-mail address: andrewobus@gmail.com

University of Georgia
Current address: 452 Boyd Graduate Studies, 1023 D. W. Brooks Drive, Athens, GA 30602.
E-mail address: Padmavathi.Srinivasan@uga.edu

27

arxiv:2003.12357
arxiv:1910:02589v1
arxiv:1910:02589v2
arxiv:1805.09709v3
https://oparu.uni-ulm.de/xmlui/handle/123456789/3302
https://trac.sagemath.org/ticket/21869
https://trac.sagemath.org/ticket/21869
arxiv:1910.08228v1
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

	1. Introduction
	Notation and conventions
	Acknowledgements
	Data availability statement
	2. Mac Lane valuations
	3. Mac Lane valuations, normal models and regular resolutions
	4. Some regular models of ¶1 attached to a polynomial
	5. Minimal embedded resolution
	References

