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A Multi-Dimensional Deep Learning Framework for IoT Malware Classification and
Family Attribution

Mirabelle Dib, Member, IEEE, Sadegh Torabi, Member, IEEE,
Elias Bou-Harb, Senior, IEEE, and Chadi Assi, Fellow, IEEE

Abstract—The emergence of Internet of Things malware, which
leverages exploited IoT devices to perform large-scale cyber
attacks (e.g., Mirai botnet), is considered as a major threat to the
Internet ecosystem. To mitigate such threat, there is an utmost
need for effective IoT malware classification and family attri-
bution, which provide essential steps towards initiating attack
mitigation/prevention countermeasures. In this paper, motivated
by the lack of sophisticated malware obfuscation in the implemen-
tation of IoT malware, we utilize features extracted from strings-
and image-based representations of the executable binaries to
propose a novel multi-dimensional classification approach using
Deep Learning (DL) architectures. To this end, we analyze more
than 70,000 recently detected IoT malware samples. Our in-depth
experiments with four prominent IoT malware families high-
light the significant accuracy of the approach (99.78%), which
outperforms conventional single-level classifiers. Additionally, we
utilize our IoT-tailored approach for labeling newly detected
‘“unknown” malware samples, which were mainly attributed to
a few predominant families. Finally, this work contributes to the
security of future networks (e.g., 5G) through the implementation
of effective tools/techniques for timely IoT malware classification,
and attack mitigation.

Index Terms—IoT malware classification, deep learning, mul-
timodal learning, feature fusion, static malware analysis.

I. INTRODUCTION

NTERNET of Things (IoT) devices have been integrated

in different aspects of our everyday activities. Despite their
benefits, the rising number of IoT-tailored malware, which aim
at utilizing compromised IoT devices (e.g., weak authentica-
tion) towards coordinating large-scale cyber attacks, has posed
a major threat to the overall Internet ecosystem [1, 2]. For
instance, the Mirai botnet was leveraged in the famous cyber
attack on Dyn (major US DNS service provider) in October
2016 [1], resulting in one of the largest recorded DDoS attacks
on the Internet. More importantly, the release of the Mirai
source code fueled the rapid evolution of more advanced
and sophisticated Mirai-like malware such as Hajime [3],
Satori [4], and BrickerBot [5], to name a few.

It is imperative to evaluate the security of the IoT paradigm
as well as develop rigorous mitigation approaches against the
spread of IoT malware. These tasks are challenging in the
context of [oT due to the lack of empirical data about existing
IoT malware and the lack of knowledge about the behavioral
characteristics of malware-infected IoT devices. To overcome
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these challenges, a number of IoT specialized honeypots have
been deployed to obtain detailed information about existing
IoT malware, including the malware executable/binary [6, 7].
Additionally, static malware analysis techniques can be used to
build a better understanding about IoT malware, while extract-
ing features that can improve attack mitigation by developing
efficient malware classification techniques using machine/deep
learning algorithms. For instance, a number of strings-based
features have been utilized to devise ML/DL methods for
malware classification/clustering [8—10]. Moreover, image-
based techniques, which extract features from the image
representation of malware binaries, have been effectively used
in different contexts [11-15]. Finally, models that leverage a
combination of features (e.g., CFGs, statistical features, etc.)
from different malware characteristics have been proposed for
malware classification [9, 12, 16-19].

To this end, we propose a multi-level approach that lever-
ages a combination of static features along with DL techniques
for effective IoT malware classification and family attribu-
tion. Our objective is threefold: (i) to leverage IoT-specific
properties such as the lack of widely deployed sophisticated
malware obfuscation [20, 21] for extracting static features
from different representation of the IoT malware binaries that
are not empirically feasible in other contexts (e.g., widely
obfuscated Windows PE or Android malware) [22], (ii) to
leverage deep learning methods capabilities to automatically
extract static features without relying on expensive feature-
engineering, and (iii) improving the overall classification ac-
curacy by building a multi-dimensional DL architecture that
utilizes different representations of the target IoT malware
binaries.

To achieve our objectives, we leverage about 70,000 real
instances of IoT malware binaries/executables obtained from
VirusTotal, VirusShare, and a specialized IoT honeypot (IoT-
POT [6]) over a period of 20 months (September 2018—May
2020). We utilize AVClass [23] to investigate [oT malware
family labels as perceived from VirusTotal reports while
identifying about 26,000 IoT malware samples that were “un-
known” or “unseen” by major antivirus vendors. Additionally,
motivated by the lack of malware obfuscation in the IoT
context, we devise string- and image-based analysis techniques
using convolutional neural network (CNN) and long short-
term memory recurrent neural network (LSTM), respectively.
Consequently, we implement our multi-level DL architecture
by fusing the learned features from each sub-component
through a neural network classifier. Finally, we perform a
series of experiments using about 10,000 [oT malware samples
from four different predominant families and evaluate the
effectiveness of our approach in comparison to state-of-the-art



approaches that implement single-level strings-based and/or
image-based classifiers.

In general, our experimental analysis demonstrates the ef-
fectiveness of our purposed multi-level approach towards clas-
sifying IoT malware families. Indeed, the implemented clas-
sifier produces a significantly improved accuracy (99.78%),
which outperforms state-of-the-are single level classifier im-
plementations (accuracy<95%). In addition to classifying
known IoT malware, we leverage the proposed approach for
classifying unknown/unseen IoT malware samples, which are
attributed to a few prominent IoT malware families (e.g.,
Mirai). Finally, while we empirically evaluate the effectiveness
of the proposed approach for IoT malware classification, we
discuss future work towards IoT malware threat mitigation
using multi-level classification techniques.

To this end, this work makes the following main contribu-
tions:

« Given the challenges associated with IoT malware classifi-
cation and family attribution, in this paper, we are among the
first to introduce a holistic, multi-level approach for analyz-
ing IoT malware by combining the benefits of static malware
analysis with deep learning classification techniques. More
importantly, despite the fact that IoT malware families
tend to be similar in terms of implementation and overall
behaviors [20], our results show that the proposed multi-
level approach can be used to perform effective and efficient
classification by considering granular characteristics from
the analyzed malware binaries.

o« We implement the proposed approach by utilizing DL
methods to automatically extract static-based features to
overcome the challenges associated with feature-engineering
methods. Moreover, we evaluate the multi-level deep learn-
ing model with 10,234 recently collected IoT malware
executable binaries. The results indicate a significantly im-
proved classification accuracy (accuracy=99.78% and F1-
score=99.57%), as compared to classifiers that rely on a
single modality of data.

o To the best of our knowledge, we are among the first to
obtain and analyze a large and representative sample of
real IoT malware executables, which contains a variety of
IoT malware variants detected in recent years. While our
analysis results indicate the effectiveness of the proposed
classification approach for attributing malware samples to
known families, we also leverage the multi-level classifier to
predict the labels of 24,271 unknown malware samples that
have not been detected/labeled by major AV vendors. More-
over, while our extended strings-based similarity analysis
corroborates the labeling outcomes, we uncover indications
of new Mirai variants related to the Covid-19 pandemic,
which highlights the rapid evolution of IoT malware found
in the wild.

The rest of the paper is organized as follows. Section II
details the methodology of our proposed multi-level frame-
work. The experimental classification and prediction results
are presented in Section III. We discuss the main outcomes of
this work, as well as limitations and future research directions
in Section V. We present a detailed literature review in Section

IV, followed by concluding remarks in Section VI.

II. METHODOLOGY

In this paper, we attempt to address the IoT malware
classification and family attribution problem through analyzing
IoT malware binaries collected in the wild (see Section II-A).
While using Al-based techniques for malware classification is
not a new problem, previous works mainly rely on the use
of static/dynamic analysis techniques along with ML-based
classifiers, which often require domain knowledge and costly
feature extraction/evaluation operations. More importantly,
with the continuous evolution of IoT malware, such hand-
crafted features might not be useful for detecting/classifying
emerging malware families. Hence, recent work using DL-
based malware classification approaches have been proposed
to overcome such challenges by reducing the cost of artificial
feature engineering while learning features directly from raw
data without the need for additional feature engineering.
Nevertheless, most of the state-of-the-art approaches still rely
on a single representation of the malware data to learn static
or dynamic features, which limits the learning process while
ignoring the benefits of using other representations of the
target data.

To address the above mentioned limitations, in this paper,
we propose a multi-dimensional DL malware classification
approach that can detect and attribute malware executable
binaries to known IoT malware families. Our aim is to develop
and evaluate a classification approach that automatically learns
static features from multiple representation of the malware
binary, while improving the overall classification accuracy
through combining multiple modalities. In particular, we at-
tempt to answer the following research questions (RQs):

1) How can we utilize static malware analysis techniques to
develop an effective multi-level classifier for loT malware
family attribution? Does a multi-level deep-learning ap-
proach that combines learned characteristics of malware
from various data representation yield a higher classifica-
tion performance compared to single modality DL algo-
rithms?

2) How can we benefit from next-generation malware analysis
techniques to overcome the challenges associated with
feature-engineering? How effective is the proposed multi-
level deep learning approach as compared to state-of-the-
art ML approaches that utilize various combinations of
features and feature engineering techniques?

3) How to leverage the developed multi-level classifier to
detect new or unknown malware samples given the infor-
mation about existing malware families?

The architecture of our multi-level deep learning framework
for IoT malware classification is shown in Figure 1. In the
proposed framework, the input is an ELF executable binary
for Linux-based systems, while the classification outcome
represent the IoT malware family label. The classification
module consists of 3 main components: (1) image-based
component, (2) string-based component, and (3) the feature
fusion and classification component. The strings- and image-
based components extract/learn corresponding features from



IMG-CNN

_________________________

B

Malware Images
(128 x 128 x 1) Conv2D MaxPooling2D
(64 filters) pool size(2, 2)

(Sz°0=0) 3nodoiq

_________________________________________

]

=0)

(zo
inodouq |eneds

5|
(]
8
o
=
E
o
B

Strings
Reports

OO0~ 000

Feature Fusion
(input_shape=200)

Dense(1000)

Dense(2)

Word Embeddings
(100 x n)

_________________________________________

Fig. 1. Overview of the multi-level deep learning malware classification system.

different representation of the malware. Consequently, the
final component is responsible for fusing the learned features
into a shared representation, which is used to produce the
final classification outcome. A complete description of the
dataset used for evaluation, as well as an in-depth analysis
of the different sub-components and features types chosen,
are provided in the next sections.

A. IoT Malware Collection and Family Labeling

In this paper, we leverage well-recognized online malware
repositories such as VirusTotal and VirusShare along with a
specialized IoT honeypot (IoTPOT [6]) to obtain a total of
91,776samples collected between 2018-09-14 and 2020-05-25.
To ensure consistency, we performed pre-processing steps to
filter out corrupted or non-executable files (e.g., HTML/ASCII
files) ending up with 74,429 IoT malware binaries. The dataset
represents 18 different malware families, which were labelled
by using AVClass [23] and malware analysis reports from
VirusTotal (VT) [24]. AVClass performs malware labeling by
applying a majority rule on reported malware labels from
multiple anti-virus vendors, as perceived on VirusTotal reports.

As summarized in Table I, the majority of the detected IoT
malware are classified as Mirai (about 55%), followed by a
significantly fewer number of samples labeled as Gafgyt (about
5%), and Tsunami (about 1.3%), respectively. Furthermore,
some samples were not assigned with any family name/label,
or were associated with a generic malware label (e.g., Linux).
We label such samples as “Unknown” throughout the work.
In addition, we identify24,271 malware sample that have not
been detected by antivirus vendors (labeled as “Unseen”), as
perceived from VirusTotal reports. Finally, it is important to
realize that all the IoT malware data used in this work is avail-
able for research purposes and can be directly requested from
the aforementioned sources (e.g., [oTPOT). Nevertheless, due
to restricted sharing policies specified by the data providers,
we are unable to share the analyzed data directly with the
research community.

TABLE I
DISTRIBUTION OF MALWARE BY FAMILY.

Malware Family  Count (%)

Mirai 40,974  (55.05)
Gafgyt 3,976 (5.34)
Tsunami 956 (1.28)
Dofloo 464 0.62)
Others 122 (0.16)
Unknown 2,664 (2.23)

Unseen 24271 (32.60)
Total 74,429 (100)

Malware Detection Timeline. To verify that our malware
labels are accurate and reliable, we considered a 5 months time
period between the end of our malware data collection (May
2020) and our performed malware family labelling in October
2020 to avoid collecting incomplete or inaccurate malware
family labels. Specifically, at the time when this research
was conducted (October 2020), the 24,271 identified unknown
malware samples were never seen on VirusTotal reports even
after 5 months from being detected by IoTPOT. This affirms
the effectiveness and ability of specialized IoT honeypots to
promptly detect loT-tailored malware.

B. Image-based Component

In this paper, we use the approach proposed by Nataraj et
al. [11] to visualize malware binary files as grayscale images.
In particular, a malware binary can be read byte-by-byte as
a vector of 8 bit unsigned integers and then organized into a
2D array (Figure 3). This can be visualized as a gray scale
image whose pixel values range from O to 255 (0: black, 255:
white). As illustrated in Figures 2(a—f), we can clearly observe
the high resemblance between the image representation of two
different malware samples that belong to the same malware
family, respectively.
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Fig. 3. Process of visualizing a malware as a grayscale image.

The literature has demonstrated the effectiveness of malware
classification techniques using malware image representation.
Therefore, as depicted in Figure 1, the image-based component
takes the bytes representation of a malware grayscale image
as input. In our specific implementation, we adopt CNN and
LSTM neural networks for our image-based classification al-
gorithms. Additionally, we perform hyper-parameter tuning to
select the best combinations of hyper-parameters. We evaluate
the performance of both algorithms and present the optimal
architecture, which was selected for our final multi-level model
in Section III-A, respectively.

C. String-based Component

In addition to the image representation, we utilize reverse-
engineering techniques to extract meaningful strings from the
binary code. Specifically, we utilize the strings utility in Linux
to extract printable strings with three or more bytes. Addition-
ally, we are interested in identifying strings that exhibit similar
contextual information, which can help towards grouping IoT
malware samples according to the occurrences of the same
strings. Such embedded strings can provide clues about the
suspect malware and its functionalities (e.g., attack commands,
IP addresses, filenames, unique strings, etc.). For instance, the
example of extracted strings illustrated in Figure 4 shows that
the analyzed malware is trying to download and execute a
malicious file from a possible adversarial C&C server.

Data Representation. Given the extracted strings files,
we utilize natural language processing (NLP) techniques to
tokenize the top 50,000 most common words in each file.
A naive approach to convert words to vectors is to assign
each word with a “one-hot vector”, which means that the
vector would be all zeros except one unique index for each
word. However, this type of word representation can introduce
substantial data sparsity. Instead, we adopt a continuous vector

rm -rf %s;

pkill -9 %s; killall -9 %s;

cd /tmp || cd /var/run || cd /dev/shm || cd /mnt || cd /var;
rm -f *; /bin/busybox wget http://185.*.* */love; sh love; wget
http://185.*.* .*/love; sh love; /bin/busybox tftp -r tftp.sh -g
185.*%.* *; sh tftp.sh; /bin/busybox tftp -c get tftp2.sh -g
185.*.* *; sh tftp2.sh

Fig. 4. Example of readable strings extracted from a malware sample.

space representation of the extracted words (embeddings) that
allows semantically similar words to be mapped to nearby
points, thus encoding useful information about the words’
actual meaning/use in the text. Word embeddings are usually
joint with neural network models for document classification.
Accordingly, we implement CNN and LSTM models for our
text/strings classification. Consequently, we perform 10-fold
cross validation to evaluate/compare the effectiveness of the
implemented models. The optimal architecture, which was
configured following a grid search over the hyper-parameters
of the networks, is presented in Section III-B.

Malware Obfuscation. It is a common technique deployed
by malware writers to hide all or parts of their implementa-
tion while avoiding rapid analysis and detection by conven-
tional static and signature-based techniques [25]. We leverage
FLOSS [26] tool to investigate the presence of obfuscated
malware strings in the analyzed samples. Interestingly, we
found that the obfuscated IoT samples were mainly packed
by off-the-shelf tools such as UPX [27], which can be easily
de-obfuscated. Indeed, our analysis confirms the lack of so-
phisticated malware obfuscation in IoT by extracting and de-
obfuscating strings from the majority (about 76%) of the IoT
binaries. To maintain consistency, we decide to use malware
samples that were successfully de-obfuscated throughout our
analysis, while discarding the remaining samples from further
analysis. Note that although our proposed approach does not
consider obfuscated malware binaries, it is still effective in
the context of IoT, where it can be leveraged to analyze a
significant portion of the detected IoT malware samples in the
wild.

D. Fusion Component and Classification

As illustrated in Figure 1, each sub-component in our
framework extracts features from a different representation of
malware, i.e., a different data modality. The fusion component
is responsible for combining the learned features from multiple
sub-component into a shared representation, which is used to
enable final classification outcomes. It this work, we aim at
demonstrating the effectiveness of applying intelligent fusion
of different modalities of features to achieve better classifica-
tion outcomes, as compared to using single-level classifiers.

To achieve this, we perform per-component pre-training
before the final feature fusion and classification. This step
is done to avoid overfitting a subset of features that belong
to one data modality over the others [17]. Additionally,
we pre-trained each component separately while optimizing
their hyper-parameters to initialize each component in the
multimodal neural network with the optimal learned pre-



trained weights, respectively. This is an idea borrowed from
transfer learning and feature fusion, where the knowledge
and the features learned by each model are transferred into
the multimodal neural network to save training time, while
converging faster towards better classification results [17, 28].
During the process of transferring knowledge, the following
important questions must be answered:

What to transfer & when to transfer: We must com-
prehend which part of the knowledge learned can be trans-
ferred from the source to the target in order to improve the
performance of the target task. We should aim at utilizing
feature fusion to improve the target classification results and
not degrade them. For that reason, we must first pre-train
our sub-component deep learning models and record their
performance, and then proceed towards fusing the most rele-
vant learned features by each sub-component to compare the
classification results with the multi-level model.

How to transfer: Once the first two questions above have
been answered, we can proceed towards identifying ways of
transferring the knowledge across different data modalities.
Deep learning models are layered architectures that learn
various features at different layers. All the layers are finally
connected to a fully connected layer that is responsible for
generating the final output. The key idea of transferring
knowledge is to leverage the pre-trained models’ weighted
layers to extract features, and abandon the models’ final
classification layer. Hence, each sub-component will act as a
feature extractor for the final multi-level deep learning model,
which will fuse the different features learned into a joint multi-
modal representation

Feature fusion and classification. As shown in Figure 1,
the learned representations I of the image-based component
and S of the string-based component are continually generated
across multiple fully connected layers during the training
phase. Consequently, the features learned by the last fully
connected layer of each sub-component are fused into a shared
multi-modal representation at the final phase. Note that vector
I of size i and vector S of size s are fused into a vector M of
size m, where m = i+s. This joint multi-modal representation
M is then fed into a neural network with two fully connected
layers and a dropout layer. The last fully connected layer
is responsible for classifying a malicious binary as follows:
prediction = softmax(b. + W.P), where prediction is a
vector of size C' (number of classes), and W, and b. are
the weights and biases of the layer. The softmax function
outputs the probability of a malware to belong to any of the
malware families in the training set. The sizes of vectors [
and S are determined during the configuration of the network.
Hyperparameter optimization is performed accordingly to set
the numbers of hidden units for yielding the best results (see
Section III). It is important to realise that combining a larger
number of features in the final layer will always result in a
higher dimensional feature set, which will negatively affect
the overall classification outcomes.

Model Evaluation. To compare the effectiveness of the
deployed models, we rely on standard machine learning
measures such as accuracy, precision, recall, and Fl-score.
Precision is the ratio of correctly classified IoT malware

samples over all the IoT malware samples designated as
such (precision = t,ff p). The recall is the ratio of cor-
rectly classified IoT malware samples over the total number
actually existing in the test data (recall = tpiﬁ). While
the precision allows the model to designate only the actual
relevant samples as relevant, the recall validates the model’s
ability to find all relevant samples within a given dataset.
The Fl-score combines these two metrics together by taking
the weighted average (i.e., the harmonic mean) of precision
and recall (F'1 = 2%) Finally, we consider
the best model according to the macro Fl-score, because the
accuracy measure by itself might be misleading when used
with imbalanced data, whereas the macro F1-score metric
gives more importance to False Negatives and False Positives.

III. EXPERIMENTAL RESULTS

In this section, we use empirical data to evaluate the
effectiveness of the implemented classification approach, while
comparing its outcomes to the single-level modality ap-
proaches and the state-of-the-art ML techniques with feature
engineering. To develop our proposed multi-level malware
classification model, we use Keras API to implement the
corresponding image- and strings-based components using
both CNN and LSTM models. The objective is to evaluate
the effectiveness of two different implementation of each
components using CNN and LSTM, while choosing the final
model that produces the best accuracy and F1-score outcomes.

Additionally, to address the problem of class imbalance
within the training dataset, we apply data resampling to obtain
10,234 malware samples representing four prominent IoT
malware families: Mirai (5,927), Gafgyt (3,227), Tsunami
(776), and Dofloo (304). Moreover, we scale the calculated
loss for each observation in the models by the appropriate class
weight to assign more significance to the losses associated
with the minority classes [29, 30]. To validate the stability
and generalizability of the deployed models to an independent
(unknown) dataset, we leverage a stratified version of k-fold
cross validation (K = 10). We calculate the average model
score across multiple validation iterations while preserving
the class distribution in the train and test sets for each
evaluation of a given model. Accordingly, the dataset, which
consists of 10,234 malware samples, is divided into k subsets,
where the models are trained with £ — 1 subsets and tested
with the last subset over k iterations. Further, to select the
best model implementation, we perform grid search using
Talos [31], which automates the hyper-parameters tuning and
model evaluation processes. The optimized hyper-parameters
are presented in Table II.

A. Evaluating the Image-based Component

We present the analysis of the performance of two deep
learning algorithms, CNN and LSTM, that we designed to
classify IoT malware based on their bytes-based image repre-
sentation. As shown in Table II, the results of the 10-fold
cross validation on the implemented models illustrate that
both models perform significantly well with high accuracy
and F1-score outcomes. However, the CNN implementation of



TABLE II
HYPER-PARAMETER TUNING/SELECTION AND 10-FOLD CROSS VALIDATION PERFORMANCE EVALUATION RESULTS FOR THE SELECTED DL MODELS.

Parameters Space IMG-CNN STR-CNN IMG-LSTM STR-LSTM  Multi-Level Model
Num. of filters (f) 32,64 64 32 - - -

Num. of units (u) 2,50,100,128,1000 128, 100 - 128 100 1000, 4
Kernel size (w x w)  (2,2),(3,3),(4,4) (3,3) 4.4) - - -

Pool size (p) 23 2 2 - - -

Batch size 32,64,128 64 64 64 64 64
Epochs 10,15,20,30 15 10 10 10 10
Activations Relu, Elu Relu Relu Relu - Relu
Dropout (0, 0.2, 0.25, 0.3) 0.25 0.5 0.2 0.2 0.3
Spatial droput (0, 0.1, 0.2) - - - 0.2 -
Validation split (0.1, 0.2, 0.25,0.3) 0.2 0.2 0.25 0.2 0.2
Accuracy - 0.9722 0.9886 0.9711 0.9840 0.9978
Macro F1 score - 0.9721 0.9851 0.9702 0.9820 0.9957

the image-based components yields slightly better outcomes,
with about 97.2% for both the classification accuracy and
macro Fl-score. Note that the optimal architecture of the CNN
was configured after a applying grid search over the hyper-
parameters of the network, as summarized by the results in
Table II. The final CNN model, which represents the image-
based component in our proposed multi-level IoT malware
classification approach (Figure 1), consists of the following
layers:

« Input layer. The input of the network is a 128 % 128 % 1
image array of pixel values in the range [0 — 255].

« Convolutional layer. The main building block of a CNN is
the convolutional layer. It is responsible for applying various
convolution filters (64) over the pixels to produce a feature
map. Each convolution filter has specific height and width, in
our case, 3 x 3, and by design it covers the entire depth of its
input. The final output of the convolution layer is a distinct
feature map, put together by stacking all feature maps from
multiple convolutions on the input. The activation function
adopted is the relu function [32].

« Pooling layer. After a convolution operation, pooling is
performed to reduce the dimensionality. This enables us to
reduce the number of parameters, which both shortens the
training time and fights overfitting. We apply max pooling
which slides a window of size 2%2 over its input, and simply
takes the max value in the window. After the pooling layer,
we perform a dropout of 2.5% to prevent overfitting. which
makes the network perform better.

o Fully-Connected layer. After the convolution and pooling
layers, we add fully connected layers to wrap up the CNN
architecture. The output of both convolution and pooling
layers are 3D volumes. Since a fully connected layer expects
a 1D vector of numbers, we flatten the output of the final
pooling layer to a vector, which becomes the input to the
fully connected layer. Our first fully connected layer consists
of 128 units, followed by a dropout of 0.5 and a second fully
connected layer with 100 units. Our last fully connected
layer combines the features learned by the previous layers
and applies the softmax function to output the normalized
probability distribution over malware families.

B. Evaluating the String-based Component

We compare the performance of the CNN and LSTM deep
learning models to classify IoT malware based on the strings
extracted from the malware. As presented in Table II, the the
10-fold cross validation and evaluation results of the two algo-
rithms demonstrate significant accuracy and F1-scores for both
implementations (about 98%). Nevertheless, it can be observed
that the CNN model implementation produced a relatively
higher accuracy (98.86%) and macro F1-score (98.51%), thus,
chosen as our candidate model for implementing the strings-
based component within proposed IoT malware classification
model (Figure 1). The optimal architecture of the CNN string-
based component, which was configured after a grid search
over the hyper-parameters of the network (Table II), consists
of the following layers:

+ Embedding Layer. This layer is defined as the first hidden
layer of the network. It requires that the input data be integer
encoded, so that each word is represented by a unique
integer. It takes as arguments the input dimension, i.e., the
size of the vocabulary set to 50,000 words in our case, the
output dimension, i.e., the size of the vector space in which
words will be embedded (100), and the input length, i.e.,
input sequences that have 400 words each.

o Convolutional Layer. The CNN’s convolutional layer
“scans” text which is organized into a matrix, with each
row representing a word embedding, like it would an image,
breaks it down into features, and judges whether each feature
matches the relevant label or not. The chosen kernel size is
4, and the number of convolutional filters applied is 32. The
activation function adopted is the relu function [32].

« Pooling Layer. A pooling of size 2 is applied to the input.
The pooling stage reduces the dimensionality of the word
features and retains only a simple probability score that
reflects how likely they are to match a label.

o Fully-Connected Layer. At the final stage, these scores,
flattened, are the inputs to a fully connected neural layer.
The “fully connected” part of the CNN network goes
through its own back-propagation process, to determine the
most accurate weights. Each neuron receives weights that
prioritize the most appropriate label. The activation function
is softmax for multi-class classification.
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Fig. 5. Evaluation results for the selected feature-engineering approaches.

C. Effectiveness of the Proposed Multi-Level DL Model

To answer our RQI1, we evaluate the effectiveness of the
proposed multi-level deep learning model against the im-
plemented image- and strings-based components, which are
trained on each data modality independently. To do this, we
leverage the implemented models for the image- and strings-
based components to deploy our multi-level classifier and eval-
uate its effectiveness. We pre-train each component separately
while utilizing their top learned features (n = 100 each) as
an input to the feature fusion and classification component, as
illustrated in Figure 1. The outcomes of the feature fusion and
classification steps demonstrate the effectiveness of our multi-
level IoT malware classification model with significantly high
accuracy and Fl-score that exceed 99.5%. Additionally, it is
clearly observed that the multi-level model outperforms the DL
implementation of the image- and string-based components
(Table II). Thus, answering our first research question by
demonstrating that the multi-level DL model that learns and
combines characteristics of malware from various sources
can yield better classification outcomes as compared to DL
classifiers that rely on a single modality of data.

D. Comparison with Feature Engineering Approaches

To answer our second research question (RQ2), we perform
image- and string-based classification using a set of diverse
features that were extracted from the malware grayscale im-
ages and strings. While there are many possible combination of
features and classification models, for the sake of comparison
to our deep learning approaches, we reviewed the state-of-
the-art malware classification approaches from the literature
[8, 12, 13, 33] and identified combinations of features/models
that were more relevant to our experiments.

Image-based features. A malware binary is first converted
to an image representation, as explained in Section II-B, on
which texture based features can be used as visual signatures
for each malware family. We extract two sets of features from
the grayscale image representation of malware:

o Haralick features (IMG1), which compute a global rep-
resentation of texture based on the Gray Level Co-

occurrence Matrix, (GLCM), a matrix that counts the co-
occurrence of neighboring gray levels in the image [33].

e Local Binary Pattern features (IMG2) instead, compute
a local representation of texture which is constructed by
comparing each pixel with its surrounding neighborhood
of pixels.

String-based features. The combination of extracted print-
able strings from malware samples forms a kind of “digital
fingerprint” for each malware family. We leverage the follow-
ing feature sets for our comparison approach:

« Histograms related to the frequency distribution of length
of strings (STR1) among different malware samples.

o Bag-of-words (STR2), by generating a global list of all
of the strings that occur that are more than three bytes
and their frequency.

o N-grams (NGR), where occurrences of n pairs (n=2) of
consecutive strings are counted.

Implemented Classifiers. To perform the classification
using the aforementioned features, we use Support Vector
Machine (SVM), Random Forest (RF) and XGBoost, which
have been proven to be consistently effective for implementing
image- and string-based classifiers with feature-engineering
[8, 12, 13]. The performance results of our adopted feature-
engineering approaches after a 10-fold cross validation are
presented in Figure 5. Overall, STR2 features resulted in the
highest classification outcomes across the deployed models,
with an accuracy of about 98.9% and 98.5% when using
the RF and XGBoost classifiers, respectively. Despite such
promising results, our implemented multi-level DL archi-
tecture outperforms all the tested implementations in terms
of the overall classification accuracy and Fl-score (Table
II). More importantly, using feature-engineering comes with
practical limitations, which hamper the overall usability and
performance of such approaches as compared to the end-to-end
DL methods. For instance, the size of the Local Binary Pattern
features, which increase exponentially with the number of
neighbours, and the high dimensionality of the GLCM matrix
used to extract Haralick features, lead to an increase of com-
putational complexity in terms of time and space. Additionally,
a drawback of bag-of-words and n-grams feature-engineering
approaches is that they lead to a high dimensional feature
vector due to the large size of strings vocabulary. Besides being
tedious and time-consuming, manual feature engineering is
problem-specific, error-prone, and limited by human expertise
and capabilities. Thus, we answer our second research question
by demonstrating that our multi-level DL approach is in fact
more effective, scalable, usable, and practical, especially when
used with a large amount of raw data.

E. Label Prediction for Unknown/Unseen Malware

We leverage the proposed multi-level [oT malware clas-
sification model in an attempt to identify the family labels
for 24,271 unlabeled (unknown/unseen) malware samples in
our dataset. To do this, we trained our multi-level classifier
with 10,234 ToT malware samples from four predominant
malware families (Mirai, Gafgyt, Tsunami, and Dofloo). Note
that despite the lack of ground truth for the unknown/unseen
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IoT malware, our supervised learning approach will gener-
ate multi-label classification outcomes which associate the
analyzed samples to non-mutually exclusive malware family
labels with a degree of confidence. Accordingly, we assume
that a sample with high predicted class value is likely to belong
to that specific known IoT malware family. On the other hand,
a low class prediction value means that the analyzed sample
is less likely to belong to that specific malware family.

The cumulative distribution functions (CDF) for the samples
that are predicted as Mirai and Gafgyt are illustrated in
Figures 6a and 6b. It is worth noting that the majority of
the samples within these two groups are in fact labeled with
a relatively high prediction accuracy. Nevertheless, to avoid
false positives and achieve a more reasonable/accurate labeling
outcome, we consider a sample to be correctly classified as
either of these two classes if and only if it was predicted with
a threshold greater than 80%. Accordingly, for the first group
(Figure 6a), we classify about 67% of the samples (10,786
out of 16,214) as Mirai, while about 55% of the the malware
samples within the second group (Figure 6b) (4,332 out of
7,923) were classified as Gafgyt.

Moreover, our analysis of the Tsunami-labeled malware
samples shows that about 80% of them (108 out 134) were
predicted with high confidence (>80%). Interestingly, our
classification outcomes did not associate any of the un-
known/unseen malware samples with the Dofloo family. This
might be due to the fact that our unlabeled dataset was
mainly obtained from IoTPOT, which is a specialized IoT
honeypot that is designed to interact with Telnet requests
(Section V-A), hence, it did not capture Dolfoo attacks since
they target other ports/services (e.g., TCP port 2375) [34].
Additionally, it is possible that the Dofloo malware is not
actively circulating in the wild due to the specificity of its
implementation and targeted vulnerabilities, which have been
addressed, respectively. Confirming this however, is beyond
the scope of current work and will be considered for future
work.

Results Validation. It is important to realize that obtaining
the ground truth in terms of malware family labels for the
unknown/unseen malware samples is a challenging task since
these samples have not been detected or known by major
antivirus vendors. To overcome these challenges, we perform

a targeted text similarity analysis on the extracted strings from
a random sample of IoT malware that were classified by our
multi-level model with high confidence (i.e., > 80%). We
use regular expressions to obtain special textual indicators
associated with known malware families while correlating the
strings extracted from the unknown malware samples to those
known ones through the strings-based similarity analysis. Our
assumption is that malware samples from the same family
are likely to share string-based indicators that reflect their
underlying implementations, functionalities, targeted services,
adversarial IP addresses, and command instructions.

Note that the Mirai family consists of the largest number of
malware samples in our dataset. Therefore, we validate the out-
comes of our classifier by manually inspecting 10,786 Mirai-
labeled malware samples and performing text-based similarity
analysis on them to associate them with known Mirai samples.
To do this, we leveraged known Mirai samples to identify
adversarial IP addresses that might be associated with possible
C&C servers or targeted victims. Additionally, we identify
other possible Mirai indicators such as pre-configured default
usernames and passwords that are used during brute-force
attacks, commands sequences for communication with the
C&C server, Internet scanning/probing instructions and com-
mands, DDoS attack commands, and downloaded malicious
payloads/scripts, to name a few.

Our analysis of the Mirai-labeled samples resulted in
identifying 3,378 unique IP addresses, among which, about
67% were matching IP addresses extracted from known Mirai
samples. While common adversarial IP addresses across
different malware samples can associate those samples to the
same adversary (e.g., bot master), it might not necessarily
mean that they belong to the same malware family. Therefore,
we look for additional Mirai-specific string indicators within
the analyzed samples [1, 35]. Interestingly, about 95% of
the Mirai-labeled samples contained one or more instances
of Mirai-specific strings such as “POST /cdn-cgi/”,
“/dev/misc/watchdog/”, “.mdebug.abi32”,
“LCOGQGPTGP”, and “CFOKLKQVPCVMP”, to name a
few. We also found similar commands that are used by Mirai
to check for “wget” or “tftp” installations before using
them to downloading and executing further scripts and attack
payload from designated servers. Since Mirai is designed



to launch DDoS attacks, we also found attack methods
such as “attack_udp_dns”, “attack_udp_vse”,
“attack_tcp_stomp”, “attack_tcp_syn”, and
“attack_tcp_ack”, in the analyzed malware strings.

Despite that our validation approach using strings similar-
ities was tested with one IoT malware family (Mirai), our
findings shed light on common string/textual indicators that
can be used to attribute unknown malware samples to those
from known families.These findings can be used to answer
our final research question (RQ3), while demonstrating high
levels of confidence in the classification outcomes with respect
to labeling unseen/unknown IoT malware samples.

Undecisive Labels. In addition to the unknown malware
samples that were classified with high confidence, a total of
4,773 samples were labeled with a relatively low prediction
values (<70%), meaning that their labeling is positively in-
decisive. Since the model can only predict four family labels,
an indecisive and low prediction result may indicate that these
samples might belong to other known malware families, or are
possibly new variants/families, which were not incorporated in
training the classifier. Additionally, such results could be due
to deployed binary obfuscation and/or possible corrupt files,
which hide or scramble the binary contents and lead to possible
misclassification outcomes. To overcome these challenges, one
can investigate various malware de-obfuscation techniques,
while extracting meaningful information that can be used
for further similarity analysis in correlation to samples from
known malware families.

IV. RELATED WORK

A summary of the reviewed related work along with state-
of-the-art ML/DL classification techniques is presented in
Table III.

Grayscale Images. An original way to represent an ex-
ecutable file is to reorganize its byte code as a grayscale
image, like [11] where every byte was interpreted as one
pixel in the image. Considering such malware representation,
Ahmadi et al. [12] extracted a set of features from the
grayscale image, such as Haralick features and Local Binary
Pattern features, and achieved an accuracy of 96.90% and
97.24% respectively using the XGBoost classifier. Beppler
et al. [13] evaluated and compared global (GIST) and local
(LBP) descriptors using a multitude of classifiers (e.g., KNN,
SVM, DT, RF, CNN). Convolutional Neural networks were
also used for classification of malware represented as images.
Gibert at al. [14] developed a deep learning system based
on a CNN that learns visual features from executable files
to classify Windows malware into families. Su et al. [15]
proposed a lightweight solution for detecting and classifying
IoT DDoS malware and benign application on IoT devices
using a small size convolutional neural network. They achieved
94% accuracy, however their used dataset (500 samples) is
very limited in size and diversity, and their considered image
size (64x64) is attributed empirically with no consent about the
best one. A more prudent resizing of 128x128 has been shown
to produce lower variation and maintain a high accuracy rate
in all cases [13].

Malware Strings. Extracted malware strings can provide
useful indicators associated with a suspect binary and its
functionalities. For instance, Tian et al. [8] leveraged printable
strings extracted from Trojans and viruses to perform classifi-
cation, and evaluated their approach on a multitude of classi-
fiers (e.g. SVM, RF, Instance Based 1 (IB1), Adaboost), and
showed that IB1 and RF classification methods were the most
effective (Table III).Alhanahnah et al. [9] leveraged N-Gram
strings-analysis for correlating and clustering malware samples
based on their strings similarities. In addition, Nguyen et al.
[10] proposed a novel approach for Linux IoT botnet detection
based on the combination of Printable String Information (PSI)
graph and CNN classifier. Their evaluation results show that
PSI graph CNN classifier achieves an accuracy of 92%. Still, to
build PSI Graphs, their approach required generating malware
Control Flow Graphs (CFGs), which is a complex task that
requires time and domain knowledge. Nevertheless, to the
best of our knowledge, no previous work has treated malware
strings as a text classification problem and leveraged the use
of end-to-end learning and NLP techniques for classification
of IoT malware using such information.

Mulitmodal Learning. While these approaches use one
representation of the data to extract features that are used for
malware classification, in practice, these single-level features
might not always be available for analysis (e.g., due to
obfuscation). Thus, efforts are being put to design models that
leverage multiple data modalities from different malware char-
acteristics. Some approaches like [12] rely on fusing multiple
hand-engineered features (e.g., frequency of opcodes, image
representation, entropy statistics, etc.) into a single feature
vector that is used as input to a traditional ML algorithm.
On the other hand, other researchers leverage an ensemble of
individual classifiers that process a different modality of data
to precisely classify malware [16—19]. Alhanahnah et al. [9]
leveraged the benefits of a multi-level approach for malware
clustering and signature generation to detect cross-architecture
IoT malware using features such as code statistics feature,
high-level structural similarity, and N-gram string features.
Gibert et al. [17] leveraged the use of multiple features from
different modalities of data, combined with deep learning al-
gorithms to detect/classify Windows malware. Despite the fact
that their approach produced high classification accuracy, their
implemented classifier relies on features (e.g., API function
calls, assembly language instructions) that require rather so-
phisticated reverse-engineering techniques with deep learning
network models, which tend to be resource consuming. Yet,
in this work, while we deal with certain limitations in the
context of IoT, we leverage features that can be retrieved
without the need to perform expensive pre-processing and
feature-engineering tasks. In addition, while our classification
approach produces improved accuracy (99.78%), our imple-
mented DL models can qualify as a lightweight solution for
enhancing the security of the IoT paradigm through effective
malware classification and threat mitigation.

Transfer Learning. Zhao et al. [36] proposed a malware
detection method of code texture visualization based on an
improved RCNN combining transfer learning, which achieves
an accuracy of 92.8%. Bendiab et al. [37] proposed an IoT



TABLE III
SUMMARY OF THE PREVIOUS STATE-OF-THE-ART CLASSIFICATION APPROACHES (NA STANDS FOR NOT AVAILABLE).

Approach Feature Type Classifier Env. Dataset (#Samples) Accuracy

% Nataraj et al. [11] GIST features k-NN Win. Anubis (9,458) 0.9808
2 gﬁ Ahmadi et al. [12] Local Binary Pattern features XGBoost Win. BIG (10,868) 0.9724
E‘E Gibert et al. [14] 128 x 128 Grayscale Image CNN Win. BIG (10,868) 0.9750
[C) Su et al. [15] 64 x 64 Grayscale Image CNN ToT TIoTPOT (500) 0.9400
) Tian et al. [8] Printable String Information Random Forest Win. Zoo (1,367) 0.9700
E Nguyen et al. [10] PSI Graphs CNN IoT NA (4,002) 0.9240
7 Alhanahnah et al. [9] Statistical & String features, Multi-stage Clustering IoT IoTPOT (5,150) 0.9550
< 2 Islam et al. [18] FLF, PSI, API features SVM, RF, DT, IB1 Win. NA (2,939) 0.9705
E 5 Ahmadi et al. [12] IMG, STR, 1G, ENT, API, etc. XGboost Win. BIG (10,868) 0.9977
é‘ag Mays et al. [16] Image & Opcode N-Grams EL (CNN, NN)* Win. BIG (10,868) 0.9724
L Gibert et al. [17] APIs, Bytes & Opcode sequence Multi-level Deep NN Win. BIG (10,868) 0.9975

This Work Grayscale IMG, Malware Strings Multi-level Model IoT IoTPOT (30,000) 0.9978

*Ensemble Learning

malware traffic analysis approach using deep learning and
visual representation for fast detection and classification of
new malware. They evaluate their proposed method on a
dataset of 1000 pcap files of normal and malware traffic and
achieve 94.5% accuracy rate for detection using ResNet50.
Both of the above mentioned works [36, 37] rely on deep
neural networks with hundreds of layers, such as ResNet50
and ImageNet, whose heavy computational cost of multiple
layers can be difficult to handle by resource-constrained IoT
devices. In contrary, our multi-level IoT malware classification
approach, which achieves an overall accuracy of 99.78%,
relies on lightweight CNN and LSTM models that transfer
their learned features and weights throughout the proposed
architecture, respectively.

Other features. Recent works have applied deep learning
methods on more complex malware representations such as
control flow graphs. Yan et al. [38] used machine learning
techniques to classify malware programs represented as their
control flow graphs. Their MAGIC framework achieves high
accuracy (99.25%). Nevertheless, their approach is shown
to be coarse to detect the malicious programs with a high
false negative rate. For instance, some DDoS samples or
worms may share the same graph structure as benign software.
Our model addresses this by preventing the co-adaptation of
the subnetworks to a specific feature type. Therefore, even
if two different binaries may share the same characteristics
from one modality, our classifier would still achieves good
performance by learning distinctive feature from the other data
modality, hence resulting in less false negative rate. Alasmary
et al. [39] proposed an adversarial machine learning detection
system for IoT malware based on control flow graph feature
representations. Both [38, 39] chose to extract complex and
time-consuming features for their analysis, while we leveraged
the coupled nature of IoT malware [20], their general lack
of obfuscation [20, 21], their lack of diversity [40, 41] and
therefore, the ability of deep learning methods to automatically
extract a set of descriptive static features from their images and
strings without relying on feature-engineering and domain’s
knowledge. We show that our approach is feasible, accurate
and performs well on the used image- and strings-based
features in the context of IoT. Yet, Alasmary’s approach [39]

is robust against Adversarial Examples (AEs) and eliminates
the model’s vulnerability to AEs. We consider complementing
our effective multi-level classifier with an AEs detection
component to make it robust against adversarial attacks (see
Section V-B).

Despite the recent developments and improvements in the
implementation of multi-modal learning techniques, there is
still room for improvements, especially in terms of imple-
menting decision-level fusion approaches, where the features
learned from different modalities are fused into a single shared
representation. In fact, there is little done in literature to
successfully leverage the use of deep fusion strategies for IoT
malware classification. However, in this paper, we demonstrate
the effectiveness of such approaches by implementing and
evaluating a multi-dimensional DL classification approach that
utilizes empirical data in terms of IoT malware executable
binaries, along with strings- and image-based features ex-
tracted from static malware analysis, to perform IoT malware
classification.

V. DISCUSSION

In this paper, we use next-generation techniques, combining
multimodal end-to-end learning and malware features from
multiple sources (e.g., static malware analysis), to classify IoT
malware executables and attribute them to known families.
Yet, while some previous works that rely on transfer learning
[36, 37] and a variety of complex features such as control
flow graphs [10, 38, 39], API function calls [12, 17], have
been shown to be effective in classifying malware samples,
these solutions mainly rely on the ability of domain experts
to extract meaningful features. Additionally, these approaches
often rely on deep neural networks with hundreds of layers,
such as ResNet50 and ImageNet, which are computational
heavy and thus, difficult to handle by resource-constrained
IoT devices. While this is proven to be an expensive task,
we leverage multiple deep learning models to implement
a lightweight multimodal learning approach that provides a
better or comparable classification accuracy, while enabling
scalable and timely classification without any pre-processing
or feature engineering.



In addition, we demonstrate the effectiveness of our pro-
posed multi-level model in preventing the co-adaptation of the
sub-networks to a specific feature type, therefore making the
network less sensitive to the loss of one or more channels of
information. Our intuition is that in a real world scenario, it
is not possible to rely on one malware characteristic, as some
features might be difficult to obtain (e.g., due to obfuscation),
or insufficient to differentiate between two malware variants.
This is indeed the case with IoT malware, where a significant
amount of malware samples in the wild are found to share
similar implementations and functionalities due to wide code-
reuse, as observed in the case of Mirai and the consequent IoT
malware that were based on Mirai’s source code [20].

Another advantage of our proposed classification framework
is in its modular architecture, which can be complemented by
new features from other data modalities to make it adaptable to
new contexts (e.g., ransomware). Moreover, such adaptability
to various contexts can positively support the generalizability
of our approach and the obtained findings. To prove this,
further experimentation using various types of malware is
required, which can be considered for future work. Moreover,
we show the generalizability of our approach to unknown
samples and its ability to predict the labels of unseen malware
(see Section III-E).

A main outcome of this work is to draw attention to
the limitations of existing malware detection and labeling
outcomes provided by major antivirus vendors. Specifically,
we identify a considerable number of IoT malware samples,
which have not been detected or labeled by the antivirus
vendors. Consequently, we demonstrate the effectiveness of
our proposed IoT malware classification approach to address
this limitation, while predicting reliable family labels for such
unknown/unseen samples. In addition, our findings show that
the majority of those new/unlabelled malware samples were
in fact associated with predominant malware families such
as Mirai and Gafgyt. These findings highlight a common
practice among IoT malware authors, who often rely on
reusing/tweaking existing malware implementations to create
new malware instances that can be used to target new vulner-
abilities in a timely manner.

In line with that, our extended analysis of the new/unknown
IoT malware samples unveiled Covid-19 themed Mirai
variants, which included different string indicators such
as “/bin/busybox CORONA” command, or “Total
lockdown is the solution”. More importantly, con-
sidering that this work was conducted during the Covid-19
pandemic, the identification of such covid-related IoT malware
samples shed light on the rapid evolution of IoT malware,
which are designed to abuse global events to their advantage.
Therefore, this work contributes to the cybersecurity research
by providing means for timely classification of new/unknown
IoT malware while attributing them to known families (when
applicable).

Finally, it is important to realize that addressing threats
associated with the emerging IoT malware is essential for the
security of the Internet ecosystem. Moreover, the deployment
of next-generation 5G networks and technologies will enable
large-scale deployment of IoT devices to support everyday

activities of consumers and service providers. Therefore, given
the insecurity of the IoT paradigm, the projected increase in
the deployed IoT devices will without a doubt amplify the
threats associated with IoT malware and IoT-driven cyber
attacks. To mitigate such threats in the context of future
networks, we envision the integration of our next-generation
malware analysis and classification approaches within the
intermediate cloud-based monitoring and management sys-
tems, to support accurate and real-time malware detection,
classification, and attack mitigation, and thus, contributing
towards the overall security of the 5G networks.

A. Limitations

A main limitation of this work is to collect a diverse
and representatives dataset of a IoT malware samples, which
is a challenging task. Indeed, relying on a single source
for data might hinder the diversity and generalizability of
the obtained IoT malware dataset. Nevertheless, while we
leveraged IoTPOT [6] as our main source of data collection, it
is worth noting that IoTPOT is considered as one of the most
reliable sources of [oT malware data, while providing access to
a large number of diverse and recent IoT malware samples. It
has also been shown to be more effective than other honeypots
(e.g. Honeyd [42]) at capturing various IoT-tailored attacks. In
addition, the analysis of Internet-scale scanning activities gen-
erated by compromised [oT devices [40, 41, 43] confirms the
prevalence of Mirai-like malware attacks/samples in the wild,
which are the most dominant variants in the IoTPOT dataset.
Additionally, to address the diversity of the data and collect a
more representative dataset, we extended our data collection
to obtain further IoT malware samples from well-known threat
repositories such as VirusTotal and VirusShare. Accordingly,
our final dataset contained a representative dataset with more
than 70,000 IoT malware samples belonging to four predom-
inant families (Mirai, Gafgyt, Tsunami, and Dofloo).

Another limitation of this work is that we did not consider
obfuscated IoT malware samples in the implementation of our
proposed malware classification approach. It is important to
note that malware authors are inclined to intentionally conceal
their identity and therefore use obfuscation techniques to hide
data in a malicious executable binary [25]. Therefore, such
factors must be considered while building a robust malware
classification model, which can also deal with obfuscated
samples. Nonetheless, our analysis of the [oT malware samples
showed that the majority of them did not employ sophisticated
obfuscation, thus, were de-obfuscated using off-the-shelf tools
(e.g., UPX). Therefore, our proposed model is still capable of
performing effective classification with respect to the majority
of IoT malware samples, while attributing them to known
families with high degree of confidence.

B. Future Work

The continuous evolution of malware variants/families
might negatively impact the prediction outcomes of deployed
ML classification models over time (concept drift). In the
context of IoT, the release of the Mirai source code to the
public enabled adversaries to reuse the code while creating



new Mirai-like malware variants by incorporating new ex-
ploits to the existing code [20]. Hence, creating a corpus of
malware samples with new versions to share similarities with
older versions, respectively. Nevertheless, these similarities
are assumed to degrade slowly, while causing the malware
population to drift over time. Accordingly, we believe that
the prediction quality of malware detectors and classifiers
will eventually decay in the future as malware evolution
might result in completely new variants [44]. As a result,
the aforementioned issue of concept drift has to be taken
into account when building a sustainable model for malware
detection and classification. For instance, applying similarity
measures to track drift in any number of malware families can
act as new feature type selection method that will shed light on
the feature types that drift the least. Thus, the negligible drift
in certain types of features can be exploited in future work
by deploying classifiers based on these features thus making
them more robust to evolving malware.

Another interesting future research direction is to investi-
gate the problems associated with adversarial ML, where an
attacker is assumed to manipulate data and craft adversarial
examples using different techniques (e.g., manipulation of
static feature) to deceive the detection/classification model
[25, 45]. While our proposed framework achieves accurate
classification of IoT malware, we believe that future research is
required to examine the robustness of our multi-level approach
against adversarial ML techniques and detection evasion meth-
ods. For instance, improving interpretability can increase our
multimodel’s robustness to adversarial attacks, by revealing
and understanding which features give more weights to the
model’s performance, and therefore by crafting AEs generated
based on these features-level manipulation.

VI. CONCLUSION

In this paper, we utilized DL architectures to implement
and evaluate a novel approach for classifying IoT malware by
combining multi-dimensional features extracted from strings-
and image-based representations of the executable binaries.
Moreover, we addressed the main challenges associated with
feature selection/engineering by implementing an end-to-end
DL approach that can automatically extract and meaningfully
combine features from different representation of the ana-
lyzed IoT malware binaries. Our experimental results using
10,234 ToT malware samples from four prominent families
demonstrated the effectiveness of our classification approach,
with a significantly improved accuracy (99.78%), as com-
pared to conventional single-level approaches. In addition, we
demonstrated the capability of the implemented model towards
classifying new IoT malware binaries, which were mainly
attributed to few known families (e.g., Mirai and Gafgyt).
Finally, considering the projected increase in the number of
deployed IoT devices, and the pivotal role of these insecure
devices in the operation and infrastructure of next-generation
5G networks, this work provides a major step towards the
development of practical data-driven tools/techniques for ef-
fective IoT threat detection and mitigation, thus, contributing
to the security of the IoT ecosystem.
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