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Abstract—Mitigating threats associated with the rise of
Internet-of-Things (IoT) malware requires creating a better
understanding about the characteristics and inter-relations of IoT
malware. In this letter, we perform a large-scale characterization
of IoT malware. The analysis of 70,000 recently detected malware
executables indicate that they belong to a few known families.
Additionally, we highlight the lack of sophisticated IoT malware
binary obfuscation. Thus, enabling reverse-engineering and static
malware analysis, while performing a multi-level strings-based
analysis to uncover groups of correlated IoT malware with
common characteristics/features (e.g., adversarial IP addresses
and malware-specific strings). Moreover, while our findings
indicate malicious implementation reuse, we illustrate the rapid
IoT malware evolution by identifying covid-related malware
samples. Finally, this work provides a basis for developing
AI-based malware detection/mitigation models, which benefit
from the simplicity and reliability of the extracted strings-based
characteristics/features for effective IoT malware classification
and family attribution.

Index Terms—IoT malware, strings-based similarity analysis,
clustering, covid-related malware, adversarial IP address.

I. INTRODUCTION

Inferring and mitigating threats associated with the Internet-
of-Things (IoT) paradigm requires developing a better un-
derstanding about the behavioral characteristic of the rising
number of IoT malware and their underlying relationships.
This is a challenging task due to the lack of information about
deployed IoT devices in the user space and the insecurity of
such devices at scale. To address these challenges, various IoT
malware/data collection initiatives have been introduced over
the past years [1]–[3]. Such fundamental knowledge and data
about IoT malware can be utilized to perform static malware
analysis [4] and extract information on the structural and
behavioral characteristics of the analyzed executable binaries,
while creating a better understanding about the state of IoT
malware and their underlying implementations [5], [6].

The analysis of the rising number of IoT malware/bot-
nets [7]–[9] indicates that a considerable number of them have
two main objectives: (i) malware propagation and botnet ex-
pansion by identifying and exploiting vulnerable IoT devices,
and (ii) orchestrating large-scale DDoS attacks by leveraging
compromised devices as attack enablers. To fulfill their objec-
tives, IoT malware need to communicate with adversarial hosts
(e.g., C&C servers) to obtain malicious command/payload and
upload gathered information. This is typically achieved by
embedding a series of commands and IP addresses to ensure
successful post-infection communication for operating further
malicious activities. Indeed, inferring such information from
the malware binaries is key to understanding IoT malware dy-

namics and interrelationships. Nevertheless, this is challenging
due to the common use of code obfuscation techniques by
adversaries, which aim specifically at preventing automated
static and signature-based malware analysis.

To this end, we leverage a specialized IoT Honeypot (IoT-
PoT [3]) along with malware-related information obtained
from VirusTotal to analyze more than 70,000 IoT mal-
ware binaries/executables that were detected over 20 months
(Sept. 2018 to May 2020). Motivated by our preliminary
analysis, which highlights the lack of sophisticated code
obfuscation within the analyzed IoT malware binaries, we
propose a strings-based IoT malware analysis as a reliable and
lightweight approach for performing static malware analysis
while uncovering unique characteristics and underlying inter-
relationships among the analyzed malware binaries. Specif-
ically, we utilize reverse-engineering techniques to extract
meaningful strings from the analyzed binaries including adver-
sarial IP addresses (e.g., C&C servers) and meaningful com-
mands/strings. We perform a multi-level similarity analysis to
uncover underlying relationships among the analyzed malware
samples within and between different families.

Note that various static malware analysis techniques have
been previously utilized to analyze malware binaries and
extract malware-specific features, which can leverage AI-
based malware detection and analysis [6], [10], [11]. For
instance, Alasmary et al. [12] utilized features related to the
malware control flow graphs (CFGs) to perform malware
detection using deep learning methods. Gibert et al. [13]
utilized convolutional neural networks (CNNs) along with
image-based features for malware classification. Additionally,
ensemble methods using a combination of features have been
introduced for malware detection and classification [6], [10],
[14]. Nevertheless, unlike these previous works, we are not
attempting to build a detection/classification model for IoT
malware. Instead, we explore the feasibility of utilizing strings-
based features as a lightweight and yet reliable approach for
characterizing IoT malware and investigating their similarities.
Consequently, such features can drive future work towards
implementing scalable IoT malware detection, classification,
and attribution using deep/machine learning algorithms.

To this end, we summarize the main results/contributions of
this work in the following:

• We analyze a large corpus of real IoT malware bina-
ries/executables that were detected over a course of 2
years. We leverage a publicly available threat repository
(VirusTotal) along with information about the detected
IoT malware binaries to characterize various known IoT
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malware families, while highlighting new, possibly unde-
tected malware samples.

• Motivated by the lack of malware obfuscation in the context
of IoT, or the use of common obfuscating techniques that are
easily reverse-engineered, we design and execute a multi-
level strings-based malware similarity analysis approach
to cluster IoT malware executable binaries and investigate
their underlying correlations by extracting adversarial IP
addresses and/or embedded commands/payloads. We ex-
plored within and between malware family correlations and
show that the detected IoT malware families can be in fact
associated with a small number of implementations, which
shed light on common practices used by adversaries to create
and operate IoT malware in the wild.

• We shed light on the evolution of IoT malware by identify-
ing covid-related IoT malware, which reflect the intentions
of adversaries to abuse ongoing global events such as
the covid-19 pandemic to distribute malware. Moreover,
we demonstrate the effectiveness of our proposed strings-
based similarity analysis by uncovering correlated clusters
of covid-related IoT malware, which share similar command
strings and/or adversarial IP addresses.

II. METHODOLOGY

In this letter, we shed light on the characteristics of IoT
malware, while exploring the feasibility of strings-based analy-
sis/features for implementing IoT malware detection and fam-
ily attribution techniques. Specifically, we aim at answering
the following main research questions (RQs):
1) How can we leverage available information on IoT mal-

ware along with static malware analysis techniques to
build a better understanding about the current state of IoT
malware and the various IoT malware families?

2) How can we leverage strings-based information extracted
from IoT malware binaries to explore malware character-
istics and hidden interrelationships among malware sam-
ples? How can we leverage the proposed approach to infer
IoT malware evolution?

To answer the research questions, we propose a multi-level
approach, which consists of the following main components:
(i) static malware analysis through reverse-engineering and
extraction of meaningful strings from the executable binaries
to build a better understanding about the IoT malware and
infer network-related characteristics and features, while infer-
ring hidden interrelationships among different samples; and
(ii) clustering analysis to explore structural and behavioral
similarities among the analyzed IoT malware samples while
inferring groups/communities of correlated samples.

A. IoT Malware Collection and Labeling

We leverage a known IoT-based honeypot (IoTPOT [3])
to obtain over 70,000 detected IoT-tailored malware samples
between September 2018 and May 2020. Among these sam-
ples, we performed pre-processing steps to filter out corrupted
files and/or samples with no executable data (e.g., HTML/-
text), ending up with a large corpus of 49,272 IoT malware
samples. Furthermore, to have a consistent malware attribution

and labeling procedure, we leveraged VirusTotal and
AVClass to obtain malware information such as family name,
whenever available (Table I). AVClass is an open-source tool
that uses a ranking/voting system to select the most likely
family name for a given malware sample based on reported
information/labels (e.g., VirusTotal) by multiple antivirus
vendors [15]. Note that AVClass cannot assign malware
family names when no family name/labels are associated to
them by antivirus vendors, or when they are labeled with
generic (e.g., linux) malware names. We label those samples
as “Generic” for further analysis.

B. Static Analysis (Strings-Based Analysis)

An effective static malware analysis approach is to explore
embedded indicators such as commands, payloads, and other
identifiable information by extracting meaningful strings from
the executable binaries [6]. In this letter, we analyzed IoT
malware by utilized reverse-engineering techniques to extract
meaningful strings from the binary code. More specifically, we
use regular expressions and text-based analysis techniques to
obtain IP addresses associated with possibly malicious hosts
controlled by adversaries (e.g., C&C servers). For instance,
as shown in Listing 1, the IoT malware is trying to use an
HTTP get request to download malicious payload (bins.sh)
from the specified host (http://103.*.*.*/). Furthermore, it is
clearly observed that the malware is using different techniques
to download malicious scripts/payloads, as presented by the
consequent instructions/commands using the TFTP protocol
(e.g., tftp 103.*.*.* -c get tftp1.sh). Moreover, it is interesting
to see that 786 IoT malware samples contained masked
IP addresses (Table I), which are associated with targeted
destination IP addresses and subnets (e.g., 36.248.%d.%d).
While such behavior is not common among IoT devices, it
can provide a clear indication of targeted scanning behaviors
by the analyzed malware.

cd / tmp | | cd / v a r / run | | cd / mnt | | cd / r o o t | | cd / ;
wget h t t p : / / 1 0 3 . * . * . * / b i n s . sh ; chmod 777 b i n s . sh ;
sh b i n s . sh ; t f t p 1 0 3 . * . * . * −c g e t t f t p 1 . sh ;
chmod 777 t f t p 1 . sh ; sh t f t p 1 . sh ; t f t p − r
t f t p 2 . sh −g 1 0 3 . * . * . * ; chmod 777 t f t p 2 . sh ;
sh t f t p 2 . sh ; f t p g e t −v −u anonymized −p anonymized
−P 21 1 0 3 . * . * . * f t p 1 . sh f t p 1 . sh ; sh f t p 1 . sh ;
rm − r f b i n s . sh t f t p 1 . sh t f t p 2 . sh f t p 1 . sh ; rm − r f *

Listing 1. Extracted strings with adversary IP address.

Packed/Obfuscated Malware Binaries. Malware pack-
ing/obfuscation is a common practice, which aims at scram-
bling the actual code of the malware to evade detection and
prevent automatic detection and analysis using conventional
methods. As a result, we were unable to extract useful strings
and IP addresses from about 21,037 IoT malware binaries,
representing about 42.7% of the analyzed samples (Table I). To
investigate malware packing/obfuscation, we looked common
indicators of packing and obfuscation methods. Interestingly,
we identified about 52% of the obfuscated samples (10,938
samples) to be packed using UPX,1 which is an open source
program for compressing executable files. We leveraged a
combination of manual and automatic reverse-engineering

1The Ultimate Packer for eXecutables https://github.com/upx/upx
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methods using tools such as UPX [16] and IDA Pro [17] to
unpack the UPX-packed binaries for further analysis. In fact,
we were able to extract useful strings and IP addresses from
about 84.6% of the upx-packed samples (9,145 out of 10,938
samples). Finally, we were unable to unpack/decrypt about
20% of the analyzed malware binaries and thus, no useful
strings/IPs were extracted from them for further analysis.
One reason could be due to the fact that the adversaries
leverage unique techniques for obfuscating/packing their code.
It is also possible that the collected malware binaries were
corrupted and therefore, contained no useful information. We
consider the implementation of further malware de-obfuscation
techniques for analyzing those samples for future work.

C. Similarity Analysis

We perform similarity analysis in terms the identified
network information within the obtained strings from the
malware executables. For each analyzed malware binary, we
leverage Natural Language Processing (NLP) techniques such
as word tokenization to process the identified strings and
extract meaningful words (e.g., commands and IPs). We use
a combination of the Jaccard (J(A,B) = |A∩B|

|A∪B| ) and overlap

(O(A,B) = |A∩B|
min(|A|,|B|) ) similarity coefficients to compare

the identified words and obtain correlated malware samples in
terms of the shared adversarial IP addresses and/or analyzed
strings. Moreover, we leverage ClusterONE [18] algorithm
to investigate correlated malware samples and identify groups
of similar IoT malware implementation. ClusterONE tries to
discover densely connected and possibly overlapping regions
(high cohesiveness) by starting from a single seed vertex,
and adopting a greedy strategy to extend the group with
new vertices so that the newly added vertex to increases the
cohesiveness of a group. The clustering outcomes can be in
fact used to highlight granular similarities among a group of
malware samples, which reflect the unique characteristics of
the IoT malware and their underlying implementations.

D. Limitations

The generalization of our results might be hampered by
the fact that we rely on a single source, namely IoTPoT [3],
to obtain real samples of IoT malware binaries. Furthermore,
IoTPoT is deployed on a limited number of IP addresses,
which mainly interact with Telnet-specific requests. Despite
these limitations, it is worthy to mention that the analysis of
Internet-scale scanning activities generated by compromised
IoT devices showed that Telnet ports (e.g., TCP 23/2323) are
indeed among the most predominantly targeted ports/services
by IoT malware [7], [8], [19]. Furthermore, the deployed
IoT honeypot (IoTPoT) have been shown to be more robust
towards capturing various IoT-tailored attacks as compared
to other honeypots (e.g., Honeyd)2. Thus, addressing the
generalizability of our findings through the analysis of a large
and representative sample of real IoT malware executables,
which covers a variety of detected attacks by different IoT
malware variants/families over the past two years.

2http://www.honeyd.org/

TABLE I
A SUMMARY OF THE ANALYZED IOT MALWARE SAMPLES. MALWARE

FAMILY NAMES ARE OBTAINED USING AVCLASS AND VIRUSTOTAL . THE
LAST TWO COLUMNS REPRESENT THE NUMBER OF SAMPLES WITH

ADVERSARIAL (ADVER.) AND/OR TARGET IP ADDRESSES.

Malware Count % Packed Packed Adver. Target
Family Samples UPX IP IP

Mirai 42,537 86.33 18,552 10,409 33,146 –
Gafgyt 1,024 2.08 593 185 605 8

Tsunami 73 0.15 19 19 73 –
Ircbot 39 0.08 39 8 – –
Silex 6 0.01 – – 6 –

Bricker 4 0.01 – – 4 –
Other 4 0.01 2 – 1 –

Unknown 5,327 10.81 1,649 300 3,988 778
Generic 258 0.53 183 17 81 –

Total 49,272 100 21,037 10,938 37,904 786

III. EXPERIMENTAL RESULTS

A. Identified IoT Malware Families

As summarized in Table I, the analyzed samples belong
to a handful of IoT malware families, with majority of the
detected IoT malware samples (about 86%) to be labeled as
Mirai, followed by a significantly fewer detected samples as
Gafgyt. While the prevalence of Mirai malware samples
comes in line with prior studies that analyzed the behaviors of
infected IoT devices in the wild [8], [19], it can indicate the
fact that IoT malware authors tend to reuse the existing Mirai
implementation, especially when they have been effectively
used to exploit IoT dvices with weak/default credentials. In
addition, about 11% of the analyzed malware samples were
not found in VirusTotal reports, meaning that they have
not been detected by the major antivirus vendors.

Moreover, we extracted useful strings from the analyzed
malware samples. In general, about 77% of the analyzed
malware binaries (37,904 out of 49,272) contained one or
more IP addresses associated with adversaries (Table I).
These addresses are likely to be associated with downloading
instructions or payloads from hosts that are controlled by
the adversary (e.g., Listing 1). More specifically, the strings
analysis uncovered 37,904 malware executables that contained
adversarial IP addresses. Interestingly, these adversarial IP
addresses correspond to 7,340 unique IP addresses, which
are distributed across 55 countries, with about half of them
(50.46%) located in the U.S., as illustrated in Figure 1.

Furthermore, about 2% of the identified malware samples
(786 samples) contained masked IP addresses associated to
possible scanning targets. Indeed, the analysis revealed a total
of 134,901 target IP addresses, which correspond to 2,083
unique IP address and/or subnet masks (e.g., 123.123.%d.%d).
As summarized in Table I, only 8 Gafgyt malware samples
contained both adversarial and target IP addresses, while the
remaining 778 malware samples were not associated to known
malware families according to VirusTotal reports, which
may indicate new malware variants/families that are yet to be
discovered by antivirus vendors.
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USA 
NLD 
CAN
GBR
DEU

(50.46%)
(8.54%)
(5.8%)

(5.75%)
(5.33%)

Country Count (%)

3,704
627
427
422
391

Fig. 1. The distribution of the adversarial IP addresses across 54 countries.

B. Similarity Analysis: Covid-Related IoT Malware

This research was done during the covid-19 pandemic,
which resulted in a surge in the overall Internet usage. More
importantly, adversaries were found to abuse the situation to
spread covid-related malicious content and malware. Interest-
ingly, we identified 1,535 IoT malware samples that contained
covid-related strings (i.e., “covid”, “covid-19” or “corona”).
The majority of these samples belong to Mirai (1,388 out of
1,418), with a significantly fewer samples to be associated with
Gafgyt (68). Interestingly, 79 covid-related malware samples
were not associated with any known IoT malware, indicating
new IoT malware that has not been yet discovered by antivirus
vendors, as seen from VirusTotal’s report. To investigate
malware interrelationships, we select the covid-related IoT
malware samples to perform the proposed similarity analysis
considering two aspects: (i) the strings-based similarities, and
(ii) the identified adversarial IP addresses.

1) Strings-Based Similarity: We performed strings-based
analysis on the obtained covid-related strings within the an-
alyzed malware samples. Our analysis revealed 27 unique
string/command combinations that were shared across all
covid-related samples. Moreover, our manual investigation of
those 27 unique string/command indicated further similarities,
which could be leveraged to reduce the number of groups
by combining similar covid-related strings. To do so, we
leveraged our strings-based similarity analysis technique to
identify further correlated strings. We used a lower bound
of 30% (threshold ≥ 0.3) in our similarity analysis to
ensure the quality of the obtained groups while eliminating
loosely correlated samples from the analysis. We obtained
an adjacency matrix representing the pairwise strings simi-
larity measure ([0.3,1]), with the vast majority of the corre-
lated malware samples showing very high similarity measures
(≥ 75%). Consequently, we performed clustering analysis
(ClusterONE algorithm) by initially converting the obtained
adjacency matrix into an undirected network with malware
samples as vertices and edges representing the pairwise strings
similarity coefficient. Indeed, the results highlight 9 clusters
of mutually exclusive and densely-connected IoT malware
samples (C1–C9), as depicted in Figure 2.

We summarize the clustering results in Table II.
For instance, the command “/bin/busybox CORONA”,
which uses busybox to execute possibly malicious script
named “CORONA”, was found across 728 samples,
representing about 52% of total covid-related samples.

Fig. 2. Covid-related malware clusters.

TABLE II
UNIQUE COVID-RELATED STINGS WITHIN THE ANALYZED STRINGS.

CID Members % Density Covid String Example

C1 798 51.99 1.00 /bin/busybox CORONA
C2 420 27.36 1.00 Corona.
C3 103 6.71 1.00 DESC=’corona’
C4 94 6.12 0.82 wget -g ping.covid-19.casa
C5 46 3.00 1.00 corona
C6 28 1.82 0.95 cat shto.sh>Corona3.sh
C7 20 1.30 1.00 Corona 64 Coronav5l
C8 19 1.24 1.00 Coronavirus.
C9 7 0.46 1.00 jupiter.covid-19.casa

In addition, the command “/bin/busybox wget -g
http://**.covid-19.casa” was used in 86 malware
samples to access a set of covid-related domain names for
downloading/uploading various malicious payload and scripts.
Additionally, all clusters resulted in high cluster density
(density =

∑
Edge weights
|Edges| ), which indicates that the clustered

malware samples share almost the exact covid-related string
combinations (Table II). Moreover, it is clearly observed that
the detected groups have no inter-relationships in terms of the
identified strings similarities, thus, resulting in a statistically
significant difference in the number of in-weights as compared
to out-weights (Mann-Whitney U test with p < 0.001).

2) Adversarial IP-Based Similarity: Additionally, about
86.6% of the identified covid-related IoT malware samples
(1,330 out of 1535) contained adversarial IP addresses. Given
a set of IP addresses associate with each IoT malware binary,
we performed similarity analysis by identifying the pair-wise
similarity coefficient using Jaccard index. We set the similarity
threshold to zero to capture all common IP addresses, while
excluding isolated samples along with samples that did not
contain any IP addresses from further analysis.

As illustrated in Figure 3, our IP-based similarity analysis
uncovered 40 groups of correlated malware samples (with
max = 515 and min = 2 adversarial IP addresses), which
indicate the underlying relationship in terms of common
malware operators/authors. Furthermore, as highlighted by the
red circles in Figure 3, the majority of the identified groups
consist of samples that belong entirely to Mirai family,
while only two identified groups (C2–C3) belong to Gafgyt,
respectively. In addition, the largest group of correlated IP
addresses (C1) contained a small fraction of IP addresses
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Fig. 3. Covid-related adversarial IP clusters.

that belong to Gafgyt (greed nodes), which indicates the
possible descriptiveness in the provided family information
by VirusTotal due to the overlapping characteristics of the
involved IoT malware. This, highlights the challenging tasks of
malware labeling and the limitations of existing IoT malware
labeling techniques employed by antivirus vendors.

From a different perspectives, the majority of the identified
groups in Figure 3 represent fully connected covid-related mal-
ware samples, which reflects a common adversarial behavior in
terms of reusing existing resources to recreate various copies
of the malware. We also note that some clusters such as C4
and C5, consist of multiple fully connected components, which
are connected through few peripheral nodes. These connected
sub-components highlight the use of different sets of IP ad-
dresses within various groups of IoT malare. Nevertheless, this
behavior might be justified by the fact that some adversarial
IP addresses might be blacklisted over time, and thus, forcing
malware operators to leverage new sets of IP addresses along
with the ones that are not yet blacklisted.

IV. CONCLUSION

In this letter, we leveraged a specialized IoT honeypot
to obtain a representative sample of IoT malware and ana-
lyze their executable binaries. Our findings indicate that the
majority of the detected malicious executables fall under a
handful of known families (e.g., Mirai and Gafgyt). Moreover,
motivated by the lack of sophisticated malware obfuscation
within the IoT context, we introduced strings-based simi-
larity analysis as a reliable and lightweight approach for
extracting useful information from IoT malware binaries while
uncovering unique characteristics and interrelationships among
the analyzed samples. More specifically, our results shed
light on the emergence of covid-related IoT malware, which
indicate the rapid IoT malware evolution while highlighting
the aggressive behaviors of adversaries towards abusing global
events for maximizing malware propagation and distribution.
Additionally, our strings-based similarity analysis uncovered
mutually exclusive groups of correlated IoT malware samples
with common adversarial IP addresses and/or extracted strings.
Our findings demonstrate the fact that IoT malware authors
heavily rely on reusing previous code/malware executables to

generate new instances of malicious executables. This is due
to a number of main factors such as the resource constraints
on the deployed IoT devices, which makes it difficult to create
sophisticated malware executables. Moreover, previous studies
showed that compromised IoT devices are treated as dispos-
able attack enablers, which might not have a significant value
by themselves. Therefore, adversaries might not invest much
time/effort towards building novel attack techniques given that
they can reuse/tweak previous code and implementation such
as the released Mirai source code to create and propagate
slightly customized malware.

Finally, while our analysis helped in better understanding
the IoT malware threat landscape, we shed light on the
effectiveness of the strings-based analysis and features for
uncovering correlated IoT malware. This can be indeed utilized
for developing IoT malware detection and mitigation through
the implementation of deep/machine learning models that
utilize strings-based features to perform malware classification
and family attribution.
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